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Abstract

Theoretical study is made to understand and/or predict structural and magnetic
properties of two kinds of 3d transition-metal nitrides. One is ferrimagnetic mixed
compound MnyN;_,C, and another is 3d transition-metal mononitride.

By using the recursion method we have studied effects of substitution of C for N
on the magnetic moments of two kinds of Mn atoms in ferrimagnetic MngN, Mn(I)
which has localized character and a large moment and Mn(Il) which has itinerant
character and a small moment antiparallel to that of Mn(I). As a function of C
concentration the calculated Mn(I) moment is found to be almost unchanged while
the absolute value of Mn(Il) moment increases and in total the net ferromagnetic
moment decreases. These results are in good agreement with the experimental
observations. It is clarified that this different influence of C substitution on each
Mn moment originates from the nature of hybridization between Mn 3d and N (or
C) 2p orbital is different for Mn(I) and Mn(I).

Systematic FLAPW (full-potential linearized augmented-plane-wave) band cal-
culations have been carried out for the whole series of transition-metal mononitrides

MN (M=3d transition metal) and the following results have been obtained.

1. ScN, TiN, VN and CrN
The theoretical results for the equilibrium lattice constant of NaCl-type
structure are in good agreement with the observations. The calculated bulk
moduli are larger than those of pure fcc transition metals. This trend is seen

also for other transition-metal nitrides.

2. MnN, CoN, NiN and CuN
The equilibrium lattice constants of the non-magnetic state have been
evaluated for both the NaCl-type and the ZnS-type structures. Energetically
the NaCl-type structure is more stable than the ZnS-type one. The lattice con-
stant observed for thin film of ZnS-type CoN which is grown on Cu substrate

agrees well with our theoretical value.

No magnetic order is expected for both the structures of MnN, NiN and
CuN and also for ZnS-type CoN. For NaCl-type CoN we have obtained a
ferromagnetic solution self-consistently and the energy of the ferromagnetic
state is lower than that of the non-magnetic state. It is suggested that if a
pure bulk sample of CoN is synthesized it may have the NaCl-type structure

and shows some kind of magnetic order.



3. FeN
For ZnS-type FeN, no magnetic order is expected and the equilibrium
lattice constant obtained for the non-magnetic state agrees well with the ex-

perimental data.

All of the equilibrium lattice constants calculated for the non-magnetic,
the ferromagnetic and the ¢ = [111] antiferromagnetic states of NaCl-type FeN

are about 4.00 A, which is much smaller than the observed value, a=4.50 A.

The results of Mossbauer measurements can be explained reasonably if we
assume the sample used in the experiment contains two domains, ¢ = [111]
antiferromagnetic NaCl-type FeN and ferromagnetic fcc Fe with the lattice

constant a=4.50 A.
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Part 1

Theoretical Investigation for
Magnetic Property of Mixed
Compound Mn,N,_,.C.. by
Recursion Method



Chapter 1

Introduction

1.1 Previous Study on Mn,N;_,C,

Intermetallic manganese compounds, MnsN and Mn,C, have cubic perovskite
type crystal structure (space group O}, see Fig. 1.1). In these compounds Mn atoms
occupy the corner and face center sites (these are labeled as Mn(I) and Mn(I),
respectively) and N or C atoms occupy the body center site. A lot of experiments
have been performed to get the magnetic properties of MnyN so far [1],[2],[3]. MnyN
becomes a ferrimagnet below Ty = 755K [3]. In the ferrimagnetic state the magnetic
moment of Mn(I) and Mn(I) is different in magnitude and direction. The magnitude
of the magnetic moment of Mn(I) is about four times as large as that of Mn(Il), and
it is along [111]-direction. The magnetic moment of Mn(Il) is mainly along [111]-
direction (antiparallel to Mn(I)), but cants a little from [111]-direction to have a small
non-collinear component lying in a (111)-plane [3]. But this non-collinear component
cancels if we sum up all these components in a unit cell. Mn,C is unstable at room
temperature [4] and is quite difficult to make a sample. Therefore little is known
about the physical properties of Mn,C. By partially replacing N atom by C atom,
the Néel temperature increases but total magnetic moment decreases [2],[5].

The electronic band structures for the non-magnetic state of MnyN and Mn,C
and for the ferrimagnetic state of MnyN were calculated by Tagawa and Motizuki
by the use of a self-consistent augmented plane wave (APW) method[6]. In the
ferrimagnetic state of MnyN, the calculated magnetic moments inside the muffin-tin
spheres at the Mn(I), Mn(Il) and N sites are 3.02, —0.96 and 0.09, respectively, in
unit of y15 /atom. These are compared with 3.85, —0.90 and 0.045/atom, respectively,
observed at T = 77K[3]. The total moment is obtained to be 0.46u/f.u. which is



about half of the observed value 1.14p;/f.u.[3]. They also estimated the magnetic
moment of the mixed compound Mn,N; _,C,, by adopting the rigid band model for
a substitution of N atoms by C atoms, i.e. the Fermi level is shifted to lower energies

with increasing x. The obtained results are not in agreement with the experiments.

1.2 Purpose of Part I

In Ref. [6] Tagawa et.al. failed to explain the change of the magnetic mo-
ment of each manganese atom in MnyN when N atoms are substituted by C atoms.
We consider that the APW method is not adequate for mixed compounds such as
MnyN;_,C, because in the APW method it is necessary that the system has trans-
lational invariance. On the other hand, the recursion method does not require such
a condition and this character makes it be possible to treat mixed compounds. Pre-
viously we applied the recursion method to the non-magnetic state of MnsN, Mn,C
and MnyN;_,C, (z = %, %, %, g, %) to see an effect of substitution of N atoms by C
atoms on the electronic structure of each Mn atom.

In this thesis we investigate the electronic structure of MnyN; ,C, (x =0, 0.25,
1) and an effect of N atoms substitution on the electronic and magnetic properties

by the recursion method. In this calculation we assume that three Mn(II) moments

are all collinear.

Table 1.1: Magnetic moments of MnyN and MnyNg 75Cy 25[2] observed at T" = 300K.
The unit is pg/f.u. for total and ps/atom for Mn(I) and Mn(T).

MnyN | MnyNj 75Cp.25
Mn(I) | 3.53 3.52
Mn(I) | —0.89 —0.98
total 0.86 0.58




o
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Figure 1.1: The crystal structure of Mny,N and Mn,C.




Chapter 2

Recursion Method

The recursion method is originally formulated by Heydock [7]. The concept
of the recursion method is given by Refs. [7] and [8]. Therefore we would like to

describe practical formulation of the recursion method.

2.1 Formulation

The starting Hamiltonian is assumed as

Ho= S S limo)ttGino | + 525 iy m, o) B (iym, o |

iy mn o im O

> > |ism,o)oAi(i,m, o], (2.1)

im O
where | i,m, o) denotes the atomic wave function of the m-th orbital with spin
1

o(= %3) at the i-th atom. The orthogonality relation

<i,m,0| j,n,0’> = (Sij(smnéggl (22)

is assumed. The first term in the Hamiltonian represents the transfer terms between
the nearest neighboring(n.n.) Mn(I) and Mn(Il), Mn(II) and Mn(I) and Mn(Il) and
N or C as shown in Fig. 2.1, and ¢];" describes the transfer integral between the
m-th orbital of the i-th atom and the n-th orbital of j-th atom. In the second
term FE;, denotes the site energy of the m-th orbital at the i-th atom. The last
term of the Hamiltonian describes the exchange splitting for each atomic state in
the ferrimagnetic state. The exchange splitting A; is assumed to be independent in
orbital. In the non-magnetic state this last term is vanishing.

In the recursion method we first construct from the basis function |i,m, o)

(atomic orbital) the new orthonormal basis functions which tri-diagonalize the Hamil-



tonian (2.1). The construction of the new basis functions are performed in a recursive
way as follows. We first choose an initial atomic state | iy, mg, o) = |0} and then a

new basis function |1} which is orthogonal to |0} is determined from

Since the Hamiltonian (2.1) is diagonal with respect to spin states, we drop the spin
suffix o for simplicity from now on. If we choose ay as ap = {0| H |0}, we obtain the
orthogonality relation

{0]1} = 0. (2.4)

The value of b; can determined from the normalization condition {1|1} = 1 and
given by
01" = {0I(H — a0)' (H — ay)[0}. (2.5)

Next, we operate the Hamiltonian to the new basis function |1} and express the
result as follows:
H|1} = co|0} + aq |1} + bo|2}. (2.6)

From equation (2.6), the following two relations are obtained:
{0| H |1} = co + 2{0|2}, {1 H |1} = a1 + bo{1|2}. (2.7)
Then if ¢y and a; are chosen as
{0| H |1} = o, {11 H |1} = aq, (2.8)
the following orthogonality is satisfied:
{0]2} ={1]2} =0. (2.9)
Furthermore, ¢y equals b; because
{1/ H |0} = ap{1|0} + by {1|1} = b;. (2.10)

The value of by is determined by the normalization condition {2|2} = 1. After

repeating a similar procedure, we get the general relation as follows:

H|Y = bl =1+ al} + |1+ 1},
ap = {l|7‘[|l}

bl = [(H —a) |1} = ool — 1}

{Nry = ow

2
)




with
|0} = | iy, mo, o), |-1} = 0. (2.15)

The local density of states(DOS) arising from the mq orbital with spin o at the

19 site is given by

' 1 . 1 ,
D:?LO,J(E) = —;Im<20,m0,0|m| 207m0’0'>
1 1
= ——Im0 0}. 2.16
—Im{ |E—”H| } (2.16)

Hence D (F) can be obtained by calculating the imaginary part of the (0,0)

component of the inverse matrix of £ — H. Since the matrix representation of the

Hamiltonian with respect to the new basis function |[} becomes

[ Qo b1 0 0 |
b1 aq bg 0
H = 0 bg a b3 s (217)
0 0 by
Dj5 ,(E) can be expressed by
- 1. Dy
DY (F)=—-——Im— 2.1
mo,o( ) T mD07 ( 8)
where Dy and D; are defined by
E— Qo —b1 0
—b1 E — aq —bg
Dy = : (2.19)
0 —bQ FE — (05} i
E — aq —bg 0
—bz FE — a9 —bg
Dy = : (2.20)
0 —bg E — as .
Now we express Dy as
Dg = (E - ao)D1 - b%DQ, (221)



where

FE — (05} —b3 0
—b3 FE — Qs —b4
D, = : (2.22)
0 —b4 E— a4 )

and then D% (FE) is written in the following form:

mo,o
Do (E) = —ttm— " (2.23)
mo,o — = D . .
m FE— ag — b%ﬁ
Repeating the same procedure for g—f, -+, We can express Df;gO,J(E) by the following
continued fraction:
, 1 1
Dy (E)=——=Im 5 (2.24)
” T B by
E — a; — —21)2
E — a9 — -3

If the values of a; and b, converge to some constant values a and b, respectively, for
[ > L, then D3 ,(E) is further rewritten as

. 1 1
Dis, (E) = ——Im ) , (2.25)
’ T B by
Qo b2
E — a1 — 2
E by
ar—1 Q(E)
where
b2
Q(E) = F—a-— 5
E—-a-2
bZ
= F—a— —. 2.26
-5 (2:26)

Solving equation (2.26) for Q we obtain

Q(E) = %lE—a:I:\/(E—a)Z—bZ]. (2.27)

The density of states exists for the energy range in which Q(F) is complex, i.e. for
|E — a| < |0].



2.2 Parameter Setting

In practical calculations by the recursion method for MnsN;_,C,, we take into
account only the 3d orbitals for Mn atom and 2p orbitals for N or C atom. The
transfer integral between two atoms can be represented by the Slater-Koster(SK)
two center integrals ¢(ddo) etc. and the direction cosine of the vector connecting the
two atoms. As mentioned before and as shown in Fig. 2.1 we consider the transfer
integrals only for the n.n. atoms. Therefore we have three kinds of SK integrals,
t(ddo), t(ddr) and t(ddd), for the n.n. Mn(I) and Mn(Il) and for the n.n. Mn(II) and
Mn(T), and two kinds of SK integrals, ¢(pdo) and t(pdr), for the n.n. Mn(Il) and N
(or C). We have further considered different orbital energies for different atoms. For
the purpose to evaluate the SK integrals and the orbital energies, we have performed
the tight-binding band calculation for the non-magnetic state of MnyN and Mn,C,
and determined them so as to reproduce the band energies at the symmetry points
in the Brillouin zone calculated by the APW method [6]. Their determined values
are listed in Table 2.1. The SK integrals for the n.n. Mn(I)-Mn(Il) and the n.n.
Mn(II)-Mn(Il) are different in principle from symmetry although their interatomic
distances are the same. For simplicity, however, we have assumed the same SK
integrals for both the n.n. Mn(I) and Mn(Il) and the n.n. Mn(Il) and Mn(I). Tt is
seen from Table 2.1 that large differences between MnyN and Mn,4C lie in the values

of the SK integral ¢(pdm) and the orbital energy E,,.



Table 2.1: The Slater-Koster (SK) integrals and the site energies for MnyN and
Mn,C (in unit of Ryd).

SK integral MnsN Mn,C
t(ddo) —0.03 —0.035
Mn(I)-Mn(T)
t(ddm) 0.025 0.033
Mn(T)-Mn(T)
t(ddd) 0.0 0.0
Mn(T)-N t(pdo) 0.12 0.118
Mn(I)-C t(pdm) 0.1 0.08
site energy MnsN Mn,C
E. 0.61 0.61
Mn(I)
E, 0.5 0.5
E.(xy) 0.55 0.55
E.(yz, 0.58 0.58
Mn(T) vz, 22)
E. (a* —y?) 0.52 0.52
E7(322 —7r?) 0.60 0.60
N E, 0.28
C E, 0.42

10
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Figure 2.1: Transfer integrals between Mn(I)-Mn(1), Mn(II)-Mn(Il) and Mn(I[)-N

are taken into account in the recursion calculation.
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Chapter 3

Results

3.1 Mn,N and Mn,C

First, we applied the recursion method to the non-magnetic state of MnyN and
Mn,C. Figure 3.1 shows the recursion coefficients a; and b; for the non-magnetic
state of MnyN when the initial state is chosen as 3dy(x* — y?) of Mn(T). Tt is seen
certainly that a; and b; show converging behavior for large [. In actual calculation
we have adopted an approximate procedure, i.e. we have assumed a; = a and
b1 = bfor [ > 13. The values of @ and b have been evaluated by taking the average
over [ = 11, 12 and 13. Then, the local DOS of Mn(T) 3dvy(z* — y*) orbital is
calculated from equation (2.25). Carrying out the same calculational procedure for
other atomic orbitals, we have calculated the partial DOS’s of Mn(T) 3d, Mn(I) 3d
and N 2p (or C 2p) and the total DOS. The results are shown in Fig. 3.2 for MnyN
and in Fig. 3.3 for Mn,C. These DOSs do not reproduce quite precisely the DOSs
calculated by the APW method [6], but we can regard that the overall profile of the
DOS by APW has been reproduced.

The total DOS of MnyN is divided into three parts : (i) the low energy part
between 0.0 and 0.3 Ryd, (ii) the intermediate energy range between 0.4 and 0.7
Ryd and (iii) the high energy part between 0.7 and 0.9 Ryd. The 3d orbitals of
Mn(T) are hybridized with the 2p orbitals of N in part (i) and (iii), and are mixed
with the 3d orbitals of Mn(I) in part (ii). The 3d orbitals of Mn(I) mix little with
2p orbitals of N because we have neglected the direct transfer between Mn(I) and
N. This feature is seen in the DOS calculated by APW method [6]. The Fermi level
Ey is located in the part (ii). The DOS of Mn,C is similar to MnyN except that the
part (i) region of MnsC moves to the higher energy side compared with MnyN.

12



To calculate the DOS for the ferrimagnetic state of MnyN, the exchange splittings
A; are introduced for up and down spin states of the 3d orbitals at Mn(I) and Mn(T)
sites. We have assumed A; is independent of the orbital m and determined its value
so as to reproduce the observed Mn moments of pure MnyN. The total and partial
DOS’s calculated for the ferrimagnetic state of MnyN are shown in Fig. 3.4. The
exchange splittings A;, the values of the DOS’s at Er and the magnetic moments
m; at each atom are listed in Table 3.1. As seen from the table very small magnetic
moment is induced on the N site through the hybridization between the Mn 3d and
the N 2p orbitals. From the values of the exchange splitting A; and the magnetic
moment m; we have evaluated the exchange energy I; = A;/|m;|. The results are
0.063 Ryd for Mn(I) and 0.048 Ryd for Mn(Il). These values are comparable with
that of fcc Mn, 0.059 Ryd [9]. Using the total DOS at Ep, the coefficient of the
electronic specific heat v of MnyN is estimated to be 24mJK~2mol~!. On the other
hand, the observed value of 7 is 424-2mJK~2mol~" [1]. Then, the mass enhancement,
factor due to electron correlation and/or electron-phonon interaction is evaluated to
be A = 0.75.

3.2 MH4N1_xCx

For the mixed compounds of MnyN;_,C,, detail study has been performed on
MnyNp 75Cp25 compound [2]. So that we calculate the DOS for the non-magnetic
and the ferrimagnetic state of MnyNg 75Cg05. In principle the recursion method itself
can treat random system, but in such calculation we must determine a number of
transfer integral and site energy parameters. Therefore we have approximated the
crystal by a periodic array of cluster each of which consists of eight unit cells(2x2x 2)
of MnyN lattice and hence contains 32 Mn atoms, 6 N atoms and 2 C atoms. As
shown in Fig. 3.5 there are three types of clusters (a), (b) and (¢) depending on
different C configurations. The ratio of statistical probabilities of (a), (b) and (c)
cases is 3 : 3: 1.

It is further noted that for each type of cluster there exist several inequivalent
sites for Mn(I), Mn(II) and N atoms. In calculating the DOS we have taken average
over all of the inequivalent atomic sites as well as over all of the configurations. As
for the parameters such the SK integrals ¢(pdo) etc, the orbital energies of the 3d or
2p states and the exchange splitting A;, we have used the values listed in Table 2.1

and Table 3.1. Since C concentration is small, we have used tentatively the same

13



values of t(ddo), t(ddr) and t(ddd) as those determined for MnyN. The effect of
the substitution of N atoms by C atoms is taken only by a difference of the orbital
energy of 2p.

The averaged DOS’s calculated by the recursion method for the non-magnetic
and ferrimagnetic states of MnyNy 75Cy 25 are shown in Figs. 3.6 and 3.7, respectively.
The averaged magnetic moment at each atomic site is given in Table 3.2 together
with the DOS’s at Er. In Fig. 3.8 we show the magnetic moments calculated for
ferrimagnetic MnyN;_,C, (z =0, 0.25 and 1). Calculations for x = 1, i.e. for pure
Mn,C have been performed by using the same exchange splittings as those of MnyN.
In the mixed compound MnyNj 75Cy 25, the calculated magnetic moment of Mn(I) is
found to be almost unchanged compared with that of MnsN while the absolute value
of Mn(Il) moment increases and in total the net ferromagnetic moment decreases.

These results are in good agreement with the experimental results.

[us/atom]), DOS at Fermi energy (N(FEg:
[states/Ryd atom] or [states/Ryd f.u.]), exchange energy (I: [Ryd]) and exchange
splitting (A: [Ryd]), obtained for MnyN.

Table 3.1: Magnetic moment (m:

N(Ep
" up d(()vvn) total ! A
Mn(I) 3.9 11.4 2.8 14.2 0.063 0.248
Mn(T) —0.88 26.7 13.6 120.9 0.048 0.042
N 0.07 0.6 0.5 1.1
total 1.33 92.1 441 136.2
Table 3.2: Magnetic moment(m: [ug]) and DOS at Fermi energy (N(Ep):
[states/Ryd atom] or [states/Ryd f.u.]) obtained for MngsNg 75Cq 25.
- N(Er)
up down total
Mn(I) 3.9 11.7 43 16.0
Mn(TT) —0.95 25.5 15.8 124.0
total 1.1 88.2 51.8 140.7
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Chapter 4
Discussion

The different behaviors of Mn(I) and Mn(Il) moments for substitution of C
atoms for N atoms can be understood physically as follows. First we note that
Mn(I) and Mn(Il) atoms show different nature of hybridization with N atoms. The
3d states of Mn(I) hybridize little with the N 2p states, and Mn(I) has a large
moment. Reflecting this localized character, the Mn(I) moment is less affected by
substitution of C for N. On the other hand, the 3d states of Mn(II) hybridize strongly
with the N 2p states, and as the result Mn(Il) has a small moment reflecting the
large band width of Mn(II) 3d states. When N atoms are substituted with C atoms,
the band width of the Mn(Il) 3d states is reduced due to the small SK integrals
between Mn(II) and C compared with those between Mn(Il) and N. As a result, the
Mn(II) moment increases with increasing the number of substituted C atoms.

Experimentally the total magnetic moment decreases with increasing the C con-
centration x and seems to go down to 0 before x reaches 1. Our results of x = 0
and x = 0.25 are in good agreement with the experimental results. However, if
the concentration is increased further, the theoretical value is expected to deviate
significantly from the experimental value, judging from the value of magnetic mo-
ment calculated at = = 1, i.e. for MnyC (~ 1.0 pg/f.u.). This discrepancy may be
ascribed to that the SK parameters between Mn and N atoms, the site energies and
the exchange splitting of Mn atoms determined for Mn4N have been used also for

MnyN;_,C, irrespective of the x value.
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Chapter 1

Introduction

1.1 What Is Transition-Metal Mononitrides

In contrast to the 3d transition-metal monoxides (MOs) which have been studied
by a lot of people, 3d transition-metal mononitrides (MNs) have been studied only
by a few workers [1],[2]. Most of MNs have the NaCl-type crystal structure (space
group O7) as most of MOs do. There are also some MNs which have the ZnS-type
crystal structure (space group T3) (see Table 1.1 and Figure 1.1).

In the past only ScN, TiN, VN and CrN have been synthesized and all of them
have the NaCl-type structure. These compounds have received much interest by
their own peculiar properties as well as their common properties of having a high
melting point and being a hard material. ScN has been reported to be a semiconduc-
tor with a band gap of 2.1 eV [3]. TiN and VN have been extensively investigated
both experimentally and theoretically because they become superconductors [4]. It
is noted that it is hard to synthesize these two compounds in stoichiometric form
and they include a lot of defects of N atoms. CrN becomes an antiferromagnet with
Néel temperature Ty = 273 K [5],[6]. This magnetic phase transition accompanies
a structural phase transition from orthorhombic structure (low temperature phase)
to NaCl-type structure (high temperature phase).

Fe and N atoms make many kinds of compounds, but if the proportionality of
Fe and N atoms is restricted to 1:1, there were only a few report about amorphous
phase FeN [7],[8]. Recently, however, FeN has been synthesized by the sputtering
method [9],[10]. It is reported that FeN has two kinds of structures depending on
the condition of sample making. One is the NaCl-type structure and another is the

ZnS-type structure, and both of them contain some deficiencies of N atoms. From
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>"Fe Mossbauer spectroscopy measurements performed by Nakagawa et.al. [9], it
has been clarified that for NaCl-type FeN there are two kinds of Fe sites which have
very large hyperfine fields of 49T and 307T. For ZnS-type FeN, on the other hand, no
hyperfine field has been observed at the Fe site. Suzuki et.al. [10] also synthesized
ZnS-type FeN and the lattice constant (ag ~ 4.3A) observed by them is in good
agreement with that of Nakagawa et.al.. Quite recently CoN with the ZnS-type
structure has been synthesized by Suzuki et.al. [11], but nothing is still reported
about MnN, NiN and CuN.

1.2 Purpose of This Work

In this part T we carry out systematic first-principles band calculations for
the whole series of 3d transition-metal mononitrides MN, first to understand the
observed structural and magnetic properties of ScN, TiN, VN and CrN, and secondly
to explain or predict the electronic, structural and magnetic properties of MnN, FeN,
CoN, NiN and CuN whose physical properties are little known or which have not
been synthesized. Particular attention is paid to understand the origin of the two
kinds of large hyperfine fields observed on Fe sites in NaCl-type FeN.

In chapter 2 we first describe our actual band calculational procedures of FLAPW
(full-potential linearized augmented-plane-wave) method, which is used throughout
this part I. Then, general aspects of the non-magnetic band structures of both
NaCl-type and ZnS-type MNs are outlined.

In chapter 3 detailed calculational results for each MN except for FeN are pre-
sented. First the equilibrium lattice constants of non-magnetic ScN, TiN, VN and
CrN with the NaCl-type structure are determined from total energy calculations
and the results are compared with the observations. The bulk moduli of these four
compounds are calculated also. Further the magnetic properties are investigated
by calculating the generalized electronic susceptibility and by performing band cal-
culations for the ferromagnetic state. Secondly the equilibrium lattice constants
are evaluated for both the NaCl-type and the ZnS-type structures of non-magnetic
MnN, CoN, NiN and CuN, and then the stable state is determined by comparing the
total energies. A possibility of magnetic order for each compound is investigated
by analyzing the density-of-states (DOS) at the Fermi level and the generalized
electronic susceptibility and by carrying out ferromagnetic band calculations.

In chapter 4 detailed calculations are performed for both NaCl-type and ZnS-type
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FeN. Particularly, in order to decide what kind of magnetic ordered state is the most
stable for NaCl-type FeN, calculations of the band structure and the total energy
are carried out for non-magnetic, ferromagnetic and two kinds of antiferromagnetic
states of NaCl-type FeN. Band calculations for pure fcc Fe are also carried out to
get insight into the effect of N atom deficiencies contained in real FeN samples.
Hyperfine fields on Fe sites are calculated for each magnetic state of NaCl-type FeN
as well as for pure fce Fe, and then the origin of the two kinds of large hyperfine
fields observed by Nakagawa et.al. [9] is proposed.

Finally the summary of Part I is given in chapter 5.

Table 1.1: Crystal structure and physical properties of 3d transition-metal mononi-

trides synthesized thus far.

Crystal Lattice )
. Physical property

structure | constant[A]
ScN NaCl 4.50 semiconductor
TiN NaCl 4.243 | paramagnet,
VN NaCl 4.133 | superconductor (T ~6K for TiN,~7K for VN)
CeN NaCl R antiferromagnet ... paramagnet

Orthorhombic NaCl
FeN NaCl 4.5 antiferromagnet, large hyperfine field
e
7nS 4.3 paramagnet

CoN 7nS 4.297 | paramagnet,
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Figure 1.1: Crystal structure of 3d transition-metal mononitrides MN: (a) NaCl-type
and (b) ZnS-type.
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Chapter 2

FLAPW Band Calculations

Throughout this Part I we use the band calculational method called FLAPW
(full-potential linearized augmented-plane-wave), which is one of the most reliable
methods in the framework of the local-density functional approximation (LDA).
Detailed formalism of this method is provided in Refs. [12],[13],[14], and here we
simply explain our actual calculational procedure in section 2.1. Then, in section 2.2
we outline general aspects of the non-magnetic band structures of both NaCl-type
and ZnS-type MNs. Detailed calculational results for each compound are given in

separate chapters.

2.1 Calculational Procedure

For the exchange correlation potential we have used the form of Gunnarsson
and Lundqvist [15]. The core states are solved in every iteration step with the
scalar relativistic formalism (only ignoring the effect of spin-orbit interaction). The
Muffin-Tin (MT) radii are determined so that the core electrons stay inside the
MT spheres as well as the MT spheres do not overlap with each other. The basis
functions in the MT spheres are constructed by spherical harmonics with [ < 7 .
We consider the reciprocal lattice vectors K satisfying |k + K| < |K |max wWhose
value is chosen so that the number of APWs per one atom is almost the same for
each compound and for each structure. The charge density inside the MT spheres
is expanded in spherical harmonics up to [ < 7 and in the interstitial region it is
expanded by plane waves each of which satisfy |k| < 2|K |phax. In every iteration
step for self-consistency the charge density is calculated by using an appropriate

number of sampling point in the reduced zone of the first Brillouin zone. Finally we
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repeat the iteration until the r.m.s. difference between input potential and output
potential becomes smaller than 10~°Ryd.

FLAPW band calculations are performed for the whole series of MNs with NaCl-
type crystal structure (space group O7) as well as with ZnS-type structure (space
group T7). Calculations are carried out also for FeN and Fe with the structures spec-
ified by space groups, DS,, D3, Dyl and Dj,. In Table 2.1 we list our calculational
criteria used for each structure such as the MT radius, the number of sampling k

points, the value of | K |y.x and so on.

2.2 General Aspect of Non-magnetic Band Struc-
ture of MNs

We have performed band calculations for the whole series of MN with the NaCl-
type structure. As an example of the non-magnetic band structures of NaCl-type
MN the energy dispersion curves along the symmetry lines and the density-of-states
(DOS) obtained for NaCl-type FeN are shown in Figs. 2.1 and 2.2. The lowest-lying
band in the figure is the 2s states of N atoms. The energy region separated by a
large gap above the 2s band contains mainly bonding states of the metal 3dy and
the N 2p orbitals, and its counterpart, namely the anti-bonding bands are located
at the highest energy region in the figure. The intermediate region between the
bonding and the anti-bonding bands consists mainly of the metal 3de states. Here
we note that the shape of the DOS for MN is quite similar to each other and only
the Fermi energy is shifted according to different number of 3d electrons. In this
sense the rigid-band model can be applicable well for NaCl-type MN.

Before proceeding to the band structures of ZnS-type MN we describe the band
structure of NaCl-type ScN in more detail. Figure 2.3 shows the DOS of NaCl-type
ScN enlarged in scale around the Fermi level. The valence bands consist of the Sc
dv and the N 2p states, and main component of the lower part of the valence bands
is the Sc de state. As it can be seen from the figure, at the I point there is a small
hole pocket of the valence band which consists almost of the N 2p states, and at
the X point there is a small electron pocket. Although this overlap is very small,
our band calculations give a semimetallic behavior for NaCl-type ScN. This result
contradicts with the experimental result that ScN is a semiconductor with a band
gap of 2.1 eV (~0.15 Ryd) [3]. This discrepancy may be ascribed to LDA itself

because this approximation usually underestimates the gap energy.
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Recently it is reported that FeN and CoN with the ZnS-type structure have
been synthesized. Hence we have performed band calculations also for ZnS-type
MnN, FeN, CoN, NiN and CuN. As an example of the non-magnetic band structure
of ZnS-type MN the dispersion curves and the DOS of FeN is shown in Figs. 2.4
and 2.5. The lowest band in the figure consists again of the 2s states of N atoms.
Separated by a large gap above this 2s band there are hybridized bands of the
metal 3de state and the N 2p state (bonding bands). The two bands separated
by a small gap above this bonding bands consist mainly of the metal 3dy states,
and the highest bands are the anti-bonding states of the 3ds-2p hybridized bands.
From comparison with the band structures of NaCl-type MN it is clearly seen that
the nature of hybridization between 3d and 2p states is different for NaCl-type and
ZnS-type. This difference originates from the different coordinate of the N atoms
around metal atoms in respective structure, i.e. they are located at the octahedral
sites in NaCl-type whereas at the tetrahedral sites in ZnS-type. It is finally noted
that the rigid-band model can be applicable also for ZnS-type MNs.
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Table 2.1: Criteria of FLAPW band calculations. ryr is the Muffin-Tin radius in
unit of |a|. The unit of |K |ax is |@*|. The symbol “N”, “F” and “A” indicate

non-magnetic, ferromagnetic and antiferromagnetic state, respectively.

space rMT sampling Number of APW Number of P.W.
group Metal N point(k) | |K|max | at T point | expanding charge
O3(NaCl) | SeN~CuN | 027 | 018 85 5.8 181 1639
T2(ZnS) | SeN~CuN | 0.234 | 0.155 85 5.8 181 3007
De FeN(N,F) 0.35 0.30 85 3.61 409 3037
3d Fe(NJF) | ~0.5 85 2.74 203 1265
D3 FeN(A) 0.35 0.30 85 3.61 409 3471
3d Fe(A) ~0.5 85 2.74 203 1503
i FeN(N,F) | ~0.382 | ~0.255 115 4.1 181 1639
" Fe(N,F) | ~0.382 115 4.15 181 1687
Dl FeN(A) ~0.382 | ~0.255 75 4.15 403 3379
" Fe(A) | ~0.382 75 4.15 403 3379
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Figure 2.1: Electronic band structure of non-magnetic state of NaCl-type FeN with

lattice constant a=4.00A. If we shift the Fermi level according to the valence electron

number, we could get the band structure of each MNs. The dotted lines indicate the

Fermi level of MN other than FeN. Energy origin is set at the Fermi level of FeN.
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Figure 2.2: Density of states of non-magnetic state of NaCl-type FeN with lattice
constant a=4.00A. The unit of DOS is states/Ryd per formula unit and per spin.
If we shift the Fermi level according to the valence electron number, we could get
the DOS of each MNs. The dotted lines indicate the Fermi level of MN other than
FeN. Energy origin is set at the Fermi level of FeN.
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Figure 2.3: The dispersion curves and the DOS of NaCl-type ScN enlarged in scale
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Figure 2.4: Electronic band structure of non-magnetic state of ZnS-type FeN with
lattice constant a=4.20A. If we shift the Fermi level according to the valence electron
number, we could get the band structure of each MNs. The dotted lines indicate the
Fermi level of MN other than FeN. Energy origin is set at the Fermi level of FeN.
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Figure 2.5: Density of States of non-magnetic state of ZnS-type FeN with lattice
constant a=4.20A. The unit of DOS is states/Ryd per formula unit and per spin.
If we shift the Fermi level according to the valence electron number, we could get
the DOS of each MNs. The dotted lines indicate the Fermi level of MN other than
FeN. Energy origin is set at the Fermi level of FeN.
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Chapter 3

Calculational Results for M Ns
except for FeN

3.1 ScN, TiN, VN and CrN

3.1.1 Lattice Constant and Bulk Modulus

In order to estimate the equilibrium lattice constant (ag) at 7=0 K for ScN,
TiN, VN and CrN we have calculated the total energy of the non-magnetic state for
each compound as a function of volume. We considered only the NaCl-type crys-
tal structure because ScN~CrN have been reported to have the NaCl-type crystal
structure in the non-magnetic state. The equilibrium lattice constant or the equi-
librium volume is estimated as follows. First we calculate the total energy E for
several discrete values of unit cell volume v, and then the calculated energies are

fitted to the Murnaghan equation of states [16] expressed by

1 ck
E=2% { (@> + 1} + const. (3.1)

Tk lck—1\v

Three parameters, vy, ¢ and k, in the above equation are determined by a least-
square method. Here it is noted that vy represents the equilibrium unit cell volume
and ¢ the bulk modulus. The derivation of the Murnaghan equation of states is
given in Appendix A.

As an example of the total energy as a function of the unit cell volume we show in
Fig. 3.1 the total energy calculated for ScN and the results fitted to the Murnaghan
equation of states. The value of vy is determined as vo=23.4A% /ScN | and we obtain

the equilibrium lattice constant ag=4.54A. The equilibrium lattice constants for
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TiN, VN and CrN have been determined in the same way, and the results are shown
in Fig. 3.2 and Table 3.1 together with the experimental results. We can see the
theoretical results are in good agreement with the experimental ones. Therefore we
can regard that the FLAPW method is a quite useful method to estimate properly
the equilibrium lattice constant of MNs. A little bit large discrepancy between the
theoretical and the experimental results for CrN may be ascribed to the fact that
CrN becomes an antiferromagnet with orthorhombic symmetry below Tx=273 K.
It has been said that these nitrides display a refractory property, which is related
to the bulk modulus. Therefore we have estimated also the bulk modulus for each of
these compounds from the total-energy curve as a function of the unit cell volume.
For TiN bulk modulus becomes 3.05 Mbar from our estimation. This result is in
good agreement with the experiment. For VN our estimated value is about two times
as large than experimental value. The results of the equilibrium lattice constant
and the bulk moduli are given in Table 3.1. We see a trend that mixing with N
atoms make these transition metals hard. We could naively understand this trend
as follows. NaCl-type and ZnS-type MN can be regarded to be obtained from fcc
transition metals by N atoms occupying the octahedral or the tetrahedral interstitial
site of the fcc structure. Then the distance between the nearest neighboring atoms
is shortened. Of course the lattice is expanded by the occupancy, but the expansion
is not so large to compensate the shortening of the nearest-neighboring interatomic
distance. As the results the metal atoms are not able to move easily from their
equilibrium position, i.e. it becomes hard. Although not all of the transition-metals
have the fcc structure in its single crystal phase, it could be seen generally that the
distance of the nearest neighboring transition-metal atoms is somewhat expanded
from its single phase value but the distance between the metal atom and the N atom
is shorter than the distance of the nearest neighboring transition-metal atoms of its

single crystal phase [17].

3.1.2 Magnetism

To study the magnetic properties of these four compounds we first calculated
the total and the partial density-of-states (DOS) of the non-magnetic state for the
equilibrium lattice constant. The results are shown in Figs. 3.4, 3.5, 3.6 and 3.7.
It is clearly seen that the shape of DOS is similar with each other, and therefore
the rigid-band model can be applied well. In order to investigate the effect of the

Fermi surface nesting we have calculated also the generalized electronic susceptibility
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Xo(q), which is defined by,

Xolg) =3 Jew) = Jemiera) (3.2)

o o Emktq — Enk
here ¢, denotes the band energy of wave vector k and band suffix n, and f(z,)
represents Fermi distribution function. From the calculational results of yo(q) we
may get information about the wave vectors which specify possible magnetic states.
Moreover we have calculated the total energy of the ferromagnetic state for each

compound and compared the result with that of the non-magnetic state.

For NaCl-type ScN the Fermi level is located at the bottom of the DOS. So that
the DOS at the Fermi level, N(ep), is very small, that is N (ep)=0.1 states/Ryd-spin.
As mentioned previously ScN is semiconducting experimentally. From these theo-
retical and experimental results ScN is expected not to order magnetically. For
completeness we have performed ferromagnetic band calculations for the equilib-
rium lattice constant of the non-magnetic state, but no self-consistent solution has

been obtained.

For both TiN and VN the Fermi level lies at the slope of the DOS. The values of
N(ep) are 4.2 and 10.3 states/Ryd-spin for TiN and VN, respectively. The value of
4.2 is rather small to satisfy the Stoner condition of ferromagnetism, N(ep) x I > 1
with [ being the exchange interaction energy, if we use tentatively the value of
I ~ 50 mRyd) estimated for single crystal of Ti [17]. Certainly no self-consistent
solution has not been obtained for ferromagnetic band calculations for TiN. For VN
the value of N(ep) is also small to satisfy the Stoner condition and ferromagnetic
band calculations have no solution again. Furthermore, yo(q) calculated for TiN
and VN does not have any large peak as a function of ¢ (see Fig. 3.8 for TiN and
VN). From these reasons we could conclude that both TiN and VN do not have any

kind of magnetic ordered state. This result is consistent with the experiment.

The Fermi level of CrN is located at one of the peaks of DOS and we obtain a
fairly large value of N(ep), that is, N(ep)=27.1 states/Ryd-spin. This suggests a
possibility that CrN may have a certain kind of magnetic ordered state. In fact we
have carried out tentatively ferromagnetic band calculations and obtained certainly
a self-consistent solution. The obtained ferromagnetic moment is about 1.27u5/Cr,

and the total energy of the ferromagnetic state is lower by about ~5 mRyd/CrN
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(Fig. 3.9) than that of the non-magnetic state. Experimentally CrN becomes an
antiferromagnet below Ty=273 K with accompanying orthorhombic distortion from
the NaCl-type structure (O — D35) [5]. The antiferromagnetic structure of this
compound is rather complicated [5]. If we ignore the orthorhombic distortion and
take a unit cell of the cubic structure, the CrN’s magnetic structure is illustrated
as shown in Fig. 3.3. Such a magnetic structure cannot be described by a single
g. Band structure calculations for this complicated magnetic structure of CrN have

been done already by Mavromaras et.al. [6].

3.2 MnN, CoN, NiN and CulN

We have seen in the previous section that the FLAPW method can give the
equilibrium lattice constants which are in good agreement with those observed for
ScN, TiN, VN and CrN. In this section we carry out in detail the FLAPW band
calculations for MnN, CoN, NiN and CuN which have not been synthesized yet
except CoN. The equilibrium lattice constants are evaluated and magnetic properties
are discussed. The calculations are performed for both the NaCl-type and the ZnS-
type crystal structures because it has been reported that CoN has the ZnS-type
structure [11]. As for FeN, its electronic, structural and magnetic properties are

investigated in detail in the following chapter.

3.2.1 Lattice Constant and Equilibrium State

The equilibrium lattice constants of the non-magnetic state evaluated for both
the NaCl-type and the ZnS-type structures are shown in Fig. 3.2 and Table 3.1. For
ZnS-type CoN the theoretical value agrees well with the experimental one.

Looking around Fig. 3.2, two remarks should be mentioned. First, as a function
of atomic number of the transition metal the equilibrium lattice constant has the
minimum value at CoN for both the structures. Secondly, the equilibrium lattice
constants of ZnS-type MNs are larger by about 0.3A than those of NaCl-type MNs.
In ZnS-type MNs, the N atoms are located at the tetrahedral site of the fcc structure
of transition-metal atoms. This site is rather closer to neighboring transition-metal
atoms compared with the octahedral site of the N atoms in the NaCl-type structure.
In this sense it seems reasonable that we have obtained larger lattice constants for
ZnS-type MNs.

The structural difference between NaCl-type and ZnS-type MNs is the relative
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position of N atom to transition-metal atom (octahedral site for NaCl-type and
tetrahedral site for ZnS-type), and it is interesting to clarify which structure is
energetically favorable. Therefore, for each MN (M = Mn, Co, Ni, Cu) we have
compared the total energy at the respective equilibrium lattice constant of the NaCl-
type and the ZnS-type structures. As the results, we have found that for all the four
compounds the NaCl-type structure is more stable than the ZnS-type one (see Table
3.2). Tt is noted, however, that for CoN the total energy of the ZnS-type structure is
almost the same as that of the NaCl-type one if we consider the numerical accuracy.

We have calculated also the bulk modulus of the four compounds for both the
structures. The results are given in Table 3.1 together with the bulk modulus
obtained for fcc transition metals themselves. We see again that mixing with N
atoms makes the transition metals hard also for Mn, Co, Ni and Cu. This will be

understood by the same discussion as given in the previous section.

3.2.2 Magnetism

Next we have investigated the possibility of appearance of magnetic ordered state
in these four compounds. The DOSs at the Fermi energy of the non-magnetic state of
NaCl-type MnN, CoN, NiN and CuN are N (sr)=33.7, 24.1, 9.1 and 6.1 states/Ryd-spin,
respectively. On the other hand, for ZnS-type MnN, CoN, NiN and CuN they are
N(ep)=4.5, 7.7, 10.7 and 7.8 states/Ryd-spin, respectively. These values are ob-
tained for the equilibrium lattice constant of the respective structure. The NaCl-type
MNs have rather large values of N(sr). But it should be noted that if we decom-
pose N(ep) into the partial DOS, the 3d-component of the transition-metal is not
so large. In fact, ferromagnetic band calculations have obtained no self-consistent
solution except for NaCl-type CoN. Furthermore, the calculated values of yo(q) are
rather small and it has no particular peak as a function of wave vector q. Therefore
we cannot expect any magnetic ordered state except for NaCl-type CoN.

For NaCl-type CoN we obtain a ferromagnetic self-consistent solution and the
calculated magnetic moment is about 0.155/Co. Furthermore, from comparison of
the total energy it has been found that the ferromagnetic state is more stable than
the non-magnetic state. This result appears to contradict with the experimental
result that CoN is paramagnetic and has the ZnS-type structure [11]. Here it should
be noted, however, that the sample of CoN used for the experiment has been grown
by using Cu substrate. Therefore it is considered that there is a large misfit of the

lattice constant. Thus we would like to say that if a pure bulk sample of CoN is
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synthesized it may have the NaCl-type structure and show some kind of magnetic

order, at least ferromagnetic order. Further experimental study is desired.

Table 3.1: Equilibrium lattice constant of MNs (in unit of A). For TiN and VN the
last column is experimental value of the bulk modulus for each compounds. The last
column of FeN is our calculated value of the bulk modulus for non-magnetic state
fcc Fe. For other metals the last column is calculated value of the bulk modulus

for single phase of transition-metal in non-magnetic state with fcc structure referred
from [17]. The unit of bulk modulus is Mbar.

Lattice Constant Bulk Modulus
Calc. Exp. Calc.

ScN 4.54 4.50[18] 2.18 0.57
TiN 4.24 4.24[19] 3.05 2.88
VN 4.07 4.13[20] 4.14 2.33[21]
CrN 4.00 4.15[5] 3.90 2.70[21]

NaCl 3.95 4.43 2.91
MnN

7nS 4.30 3.51

NaCl 4.00 4.5[9] 3.49 3.05
FeN 4.24 4.33[9] 3.73

7nS

4.307[10]

NaCl 3.90 4.82 2.84
CoN

7ZnS 4.20 4.29[11] 2.45

NaCl 3.96 3.20 2.20
NiN

7ZnS 4.26 3.44

NaCl 4.05 3.07 1.55
CuN

7ZnS 4.34 3.05
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Table 3.2: Stable state of transition-metal mononitrides. Total energy is lower in
right hand side than left hand side. The lattice constant is chosen as the equilibrium

one in the non-magnetic state.

unstable stable

MnN | ZnS-type(NonMag NaCl-type(NonMag)
CoN | ZnS-type(NonMag)~NaCl-type(NonMag)  NaCl-type(Ferro)
NiN | ZnS-type(NonMag NaCl-type(NonMag)
CuN | ZnS-type(NonMag NaCl-type(NonMag)

)
)
)
)
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Figure 3.1: Total energy of non-magnetic state NaCl-type ScN as a function of unit

cell volume.
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Figure 3.3: Upper panel is a unit cell of antiferromagnetic state of CrN, middle one
is a cell which is doubled in volume. Thick line is a unit cell in cubic symmetry.
A unit cell in cubic symmetry is shown in the lower panel in which orthorhombic
distortion is neglected. The two kind of big circles are chromium atoms whose spin

directions are antiparallel each other.
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Chapter 4

Iron Nitride FeN

Iron nitride (FeN) has been reported to have strange properties of taking two
kind of crystal structure (NaCl-type and ZnS-type) and having a large lattice con-
stant and two kinds of large hyperfine field at Fe site [9],[10]. It can be seen from
Table 3.1 that the observed lattice constant 4.50A of NaCl-type FeN seems abnor-
mal. Further the observed hyperfine fields are much larger than the experimantal
value of a-Fe. In this chapter we try to make clear the origin of these peculiar

properties of FeN.

4.1 Equilibrium State of FeN

In order to determine the equilibrium state of FeN, we adopted the same pro-
cedure as used in the previous chapter. First we calculate the total energies of
NaCl-type and ZnS-type FeN in the non-magnetic state. From the results we esti-
mate the equilibrium lattice constant and bulk modulus. The calculational results
are shown in Fig. 3.2 and Table 3.1. Experimentally the lattice constant of NaCl-
type FeN has been reported as 4.50A, which is much larger than the calculated
lattice constant 4.00A. For ZnS-type FeN, on the other hand, the theoretical and
experimental results are in good agreement. Comparing the observed lattice con-
stant of NaCl-type FeN with that of other NaCl-type MN, it is hard to believe that
the FeN sample used in the experiments has the equilibrium state of its bulk sys-
tem. Therefore we speculate that such a large lattice constant as observed might
be caused by the effects of surface and/or boundary (interface to substrate). In fact
the synthesized sample [9] is thin film and have a lot of N atom deficiency.

Next we compare the total energies of NaCl-type and ZnS-type FeN to determine
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which structure is more stable. The total energies as a function of unit cell volume
are shown in Fig. 4.1. The minimum total energy of NaCl-type FeN is lower than
that of ZnS-type FeN, but as seen from the figure the difference between the two is
very small (~0.3 mRyd). Therefore we cannot say conclusively which structure is
more stable, if we take account of numerical accuracy of our calculations.

Finally, as seen in other MN, the bulk modulus calculated for NaCl-type and
ZnS-type FeN is also larger than that of Fe metal itself (see Table 3.1).

4.2 Magnetism of FeN

Experimentally, it is suggested that NaCl-type FeN is an antiferromagnet. But
this suggestion is based only on the results of Mossbauer measurements, which can-
not definitely determine a magnetic structure. Therefore, as a first step to get insight
into the magnetic structure of NaCl-type FeN from the theoretical side we carry out
band calculations for ferromagnetic state and two kinds of antiferromagnetic states
specified by ¢ = [111] and g = [001].

If we assume the antiferromagnetic state of ¢ = [111], the space group reduces
to trigonal (D3,), and if we assume the antiferromagnetic state of g = [001], the
space group reduces to tetragonal (D} ). Hence this section is divided into three
subsections according to the symmetry: section 4.2.1 for cubic, section 4.2.2 for
trigonal and section 4.2.3 for tetragonal symmetry. For ZnS-type FeN, it has been

reported to be a paramagnet. Therefore it is described in section 4.2.1.

4.2.1 Cubic Symmetry

Fig. 4.2 shows the DOS of non-magnetic state of NaCl-type FeN, which is
obtained for the lattice constant a=4.00 A. Tt is noted that the overall feature of
DOS does not depend sensitively on the value of the lattice constant. Similar to
the CrN, the Fermi level lies at one of the peaks of DOS, and the DOS at the
Fermi level is large , that is , N(ep)=38.1 states/Ryd-spin. Hence, if we apply the
Stoner’s model, we could expect that NaCl-type FeN will have a certain magnetic
ordered state. Since we could say nothing about what kind of magnetic order is
realized in this compound only from the DOS, we next calculate yo(g) for two
lattice constant, a=4.00 A and a=4.50 A. The results are shown in Fig. 4.3. For
a=4.00A the calculated yo(q) has rather flat structure whereas for a=4.50A it has
a peak at the L point (¢ = [111]). This result indicates that if such a large lattice

95



constant as a=4.50 A is realized by some reason, an antiferromagnetic structure
corresponding to ¢ = [111] is a strong candidate for the stable magnetic state.

If we assume the ferromagnetic state, the cubic symmetry is retained and the
calculation can be carried out with use of the cubic symmetry. However, we perform
the ferromagnetic band calculations with the hypothetical doubled unit cell, which
has the trigonal symmetry, in order that we can make comparison between the
ferromagnetic and the antiferromagnetic states on the equal footing. Therefore
the results of the ferromagnetic band calculations are presented in the following
subsection.

Figure 4.4 shows the DOS of non-magnetic state of ZnS-type FeN, which is
obtained for the lattice constant a=4.20 A. For all values of a, the DOS has a rather
small value at the Fermi level, and we could not expect that this compound has
any magnetic ordered state. In fact, we made ferromagnetic band calculations, but
we were not able to obtain a self-consistent solution. Therefore we conclude that
ZnS-type FeN is a paramagnet, which agrees with the experimental result.

Recently Suzuki et. al. reported this compound shows mictomagnetism [10]. If
this is true, each Fe atom has a magnetic moment and this moment must induce
hyperfine field on Fe atom. But according to the result of Mossbauer measurements
performed by Nakagawa et. al. [9], there is no hyperfine field at Fe site in ZnS-type

FeN. Further experiments for this compound are desired.

4.2.2 Trigonal Symmetry

If we assume the g = [111] antiferromagnetic state, Fe in (111)-plane order
ferromagnetically and the spin direction alternates every other plane in the [111]-
direction. Then, by taking a trigonal unit cell as shown in Fig. 4.5 two Fe atoms
are included in the unit cell, one with up-spin and the other with down spin. To
make comparison on the equal footing we performed band calculations for the non-
magnetic and the ferromagnetic states by taking the same unit cell as that of the
q = [111] antiferromagnetic state.

The total energies calculated for the non-magnetic, the ferromagnetic and the
antiferromagnetic states are shown as a function of unit cell volume in Fig. 4.6. As
seen from the figure the total energy has its minimum value at around a=4.00A for
all the three states. So we are not able to obtain such a large equilibrium lattice
constant as a=4.50 A even if we assume the magnetic states. By comparing the

minimum total energies it is found that the ferromagnetic state is the most stable
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among the three states. But if we assume the lattice constant of a=4.50 A, the
antiferromagnetic state is more stable than the ferromagnetic state although the
energy difference is very small.

We have calculated also the magnetic moment and the hyperfine field on Fe site
as a function of the lattice constant or the unit cell volume for both the ferromagnetic
and the antiferromagnetic states. The definition of the hyperfine field in this thesis

is as follows:
167

Hyr = === (151 (0)* = [s1(0) ) (4.1)

where 5 is the Bohr magneton and v,(0) represents the value of s-component
wave function at the nucleus position. In actual calculations we estimate 15, (0) at
r ~ 10~ *au (see Appendix B for details). The calculational results of the magnetic
moment and the hyperfine field at Fe site are listed in Table 4.2 as a function of the
lattice constant.

It is seen from Table 4.2 that the magnetic moment of Fe atom monotonically
increases with increasing the lattice constant in both the ferromagnetic and the
antiferromagnetic states. At lattice constant of a=4.00 A the magnetic moments
are 1.34, for both the states while at a=4.50 A they are 3.17 i and 3.34 py for
the ferromagnetic and the antiferromagnetic states, respectively.

In contrast to the magnetic moment the hyperfine field behaves as a function of
the lattice constant differently for both the states. This different behavior mainly
comes from the difference of the contribution from the valence (4s) states. In the
ferromagnetic state both contributions from the core and the valence electrons mono-
tonically increase in magnitude with increasing the lattice constant, and as the sum
of both the contributions the total hyperfine field becomes a decreasing function of
lattice constant. In the antiferromagnetic state, on the other hand, the core contri-
bution increases monotonically while the valence contribution is almost constant, as
a function of lattice constant. As the result the total hyperfine field increases with
increasing the lattice constant.

The origin of the hyperfine field contributed from core states is understood as
follows. The intra-atomic exchange interaction between core and valence 3d electron
spins is different for down and up spins because of the spin polarization of 3d state.
This produces distinction for the radial distribution of core states for each spin. The
distinction at the nuclear position is the origin of the core state contribution to the
hyperfine field. In this thesis the hyper fine field is defined as the equation (4.1)

and the sign of hyperfine field contributed from core states becomes "minus”. This
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means the population of the core states with spin parallel to the magnetic moment
is less than that of another spin state at the nuclear position. In contrast to the core
state contribution, the valence electron(4s) contribution is complex to understand.
But it is common for both the ferromagnetic and the antiferromagnetic states that
the sign of the valence contribution is opposite to that of the core contribution.

At a=4.00 A (~ equilibrium lattice constant) the values of hyperfine field of
both the ferromagnetic and the antiferromagnetic states are too small to explain
the experimental values. It should be noted, however, that if we assume a=4.50 A
and the antiferromagnetic state, the magnitude of the hyperfine field becomes 35 T
which is comparable to one of the two observed values, 30 T. Therefore we propose
here that the lower field among the observed two hyperfine fields originates from the
antiferromagnetic structure with the lattice constant a=4.50 A, although realization
of this lattice constant is open to question. Furthermore the origin of the larger
hyperfine field, 49 T, is also open to question.

In order to get insight into the origin of the larger hyperfine field, we investigate
effects of N atom deficiencies which are contained in the sample of NaCl-type FeN
synthesized by Nakagawa et. al. [9]. If all the N atoms are removed from NaCl-
type FeN, the remaining Fe atoms form the fcc structure. Then we consider that
domains of such fcc Fe may exist if a lot of N atom deficiencies are contained, and
we carry out the band calculations for the non-magnetic, the ferromagnetic and the
antiferromagnetic states of fcc Fe. The calculations have been performed for the
lattice constant a=4.50 A. The results of calculations such as total energy, magnetic
moment and hyperfine field are give in Table 4.1 together with the results for NaCl-
type FeN. As seen from the table, for fcc Fe the ferromagnetic state is more stable
than the antiferromagnetic state, but the energy difference is very small. Quite
interestingly, the magnitude of the hyperfine field at Fe site is 48.2 and 14.8 T for
the ferromagnetic and the antiferromagnetic states, respectively. It should be noted
that the magnitude of the hyperfine field 48.2 T of the ferromagnetic state is close
to the larger one of the observed fields, 49 T.

Combining all the results obtained in this subsection we conclude that the results
of Mossbauer measurements can be explained reasonably if we assume the sample
used in the experiment contains two regions, antiferromagnetic NaCl-type FeN and

ferromagnetic fcc Fe with the lattice constant a=4.50 A.
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4.2.3 Tetragonal Symmetry

We have performed band calculations also for another kind of antiferromagnetic
state specified by ¢ = [001]. In this case the magnetic moments on the (001)-plane
order ferromagnetically, and the spin direction alternates every other plane in the
[001]-direction. Then we can reconstruct the cubic unit cell into the tetragonal one as
shown in Fig. 4.7. In order to make comparison on the equal footing we have perform
the band calculations also for the non-magnetic and the ferromagnetic state by using
the tetragonal cell. The lattice constant was chosen as a=4.50 A. The calculational
results of the total energy, the magnetic moment and the hyperfine field are listed
in Table 4.3. In this symmetry the most stable state is the antiferromagnetic one,
and the hyperfine field at Fe site is 12.8 and 1.6 T for the antiferromagnetic and
the ferromagnetic states, respectively. These values are too small to explain the
experimental results. Therefore we can rule out this ¢ = [001] antiferromagnetic

state from the candidate for the observed magnetic state of NaCl-type FeN.
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Table 4.1: Total energy, magnetic moment and hyperfine field of NaCl-type FeN

(upper table) and fcc Fe (lower table) at a=4.50 A. These

using the unit cell of trigonal symmetry.

results are obtained by

non-magnetic | ferromagnetic | antiferromagnetic
state state state ¢ = [111]
Total Energy
—2650.8816 —2650.9429 —2650.9433
[Ryd/FeN]
Magnetic Moment
3.17 3.34
[11/ Fe]
Hyperfine core —41.4 —44.2
Field [T] | valence 42.7 9.2
at Fe total 1.3 —35.0
Total Energy
—2541.8375 —2541.9167 —2541.9163
[Ryd/Fe]
Magnetic Moment
2.89 3.26
[t/ Fe]
Hyperfine core -394 —42.2
Field [T] | valence —8.8 27.4
at Fe total —48.2 —14.8
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Table 4.2: Hyperfine field and magnetic moment for ferromagnetic and antiferro-
magnetic states of NaCl-type FeN as a function of lattice constant. Core and valence
represent the contribution to the hyperfine field from core and valence electrons, re-
spectively, and total denotes the sum of the two. The unit of hyperfine field is T.

These results are obtained by using the unit cell of trigonal symmetry.

o[A] ferromagnetic state
core valence total m|[ 1/ Fe
3.70 —10.7 19.8 9.1 0.91
3.80 —12.3 20.3 8.0 1.02
3.90 —14.0 20.5 6.5 1.14
4.00 —16.7 21.5 4.8 1.34
4.10 —24.5 29.0 4.5 1.96
4.20 —31.6 35.3 3.6 2.47
4.30 —34.9 374 2.5 2.71
4.40 —38.4 40.4 2.1 2.95
4.50 —41.4 42.7 1.3 3.17
d A] antiferromagnetic state
core valence total m|[ 1/ Fe
3.70 —9.6 4.6 —5.0 0.77
3.80 —11.5 4.8 —6.7 0.94
3.90 —14.2 2.3 —8.9 1.14
4.00 —17.1 5.7 —11.4 1.34
4.10 —-22.1 5.7 —16.4 1.70
4.20 —28.1 5.1 -23.0 2.16
4.30 —35.7 5.6 —30.1 2.75
4.40 —41.4 7.2 —34.2 3.14
4.50 —44.2 9.2 —35.0 3.34
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Table 4.3: Total energy, magnetic moment and hyperfine field of NaCl-type FeN
(upper table) and fcc Fe (lower table) at a=4.50 A. These

using the unit cell of tetragonal symmetry.

results are obtained by

non-magnetic | ferromagnetic | antiferromagnetic
state state state g=[001]
Total Energy
—2650.8601 —2650.9408 —2650.9434
[Ryd/FeN]
Magnetic Moment
3.22 3.17
[0/ Fe]
Hyperfine core —41.3 —40.8
Field [T] | valence 42.9 28.0
at Fe total 1.6 —12.8
Total Energy
—2541.8255 —2541.9135 —2541.9039
[Ryd/Fe]
Magnetic Moment
3.15 3.18
116/ Fe]
Hyperfine core —42.2 —41.9
Field [T] | valence 6.2 48.7
at Fe total —36.0 6.8
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Figure 4.1: Total energy of non-magnetic NaCl-type and ZnS-type FeN as a function
of unit cell volume. The solid and dashed lines are result of the fitting by using the

Murnaghan’s equation (A.4).
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Figure 4.5: Coordinate and unit cell of D}, symmetry (q = [111] antiferromagnetic

state). The white and shaded circles are Fe sites which have opposite spin direction
each other. If we consider these two Fe sites equivalent, it becomes unit cell of D,

symmetry and this is just the unit cell of non-magnetic and ferromagnetic state.

67



-2650.94 . P
b
-2650.90 [
-2650.95 [ -
5 g
u /I
3 -2650.96
=>
T
& -2650.95 o
aj \
c
L
Ju
o
—
*‘ FeN(NaCl-type)
-2651.00 [ N NonMag ---&---
\\ Ferro —_—
N e Antiferro —e—
Yl |
15 20
Volume [A3/FeN]
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magnetic states.
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O C :

Figure 4.7: Coordinate and unit cell of D}, symmetry (q = [001] antiferromagnetic
state). The white and shaded circles are Fe sites which have opposite spin direction
each other. The black small circle is N atom. If we consider these two Fe sites
equivalent, it becomes unit cell of D} symmetry and this is just the unit cell of

non-magnetic and ferromagnetic state.
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Chapter 5
Summary

In this part I we have carried out systematic FLAPW band calculations for the
whole series of transition-metal mononitrides MN (M=3d transition metal). The

main results are summarized as follows.

1. ScN, TiN, VN and CrN

e The theoretical results for the equilibrium lattice constant of NaCl-type

structure are in good agreement with the experimental ones.

e The bulk moduli calculated for these transition-metal nitrides are larger
than that of pure fcc transition metals. This trend is seen also for other

transition-metal nitrides.

2. MnN, CoN, NiN and CuN

Among these four compounds only CoN has been synthesized thus far.

e The equilibrium lattice constants of the non-magnetic state have been
evaluated for both the NaCl-type and the ZnS-type structures. The
equilibrium lattice constants of ZnS-type MN are larger by about 0.3A
than those of NaCl-type MN, and for ZnS-type CoN the theoretical value

agrees well with the experimental one.

e Energetically NaCl-type MN is more stable than ZnS-type MN, and mag-
netic order is expected only for NaCl-type CoN.

e For NaCl-type CoN we have obtained at least a ferromagnetic solution
self-consistently and the energy of the ferromagnetic state is lower than

that of the non-magnetic state. It is suggested that if a pure bulk sample
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of CoN is synthesized it may have the NaCl-type structure and show some

kind of magnetic order.
3. FeN

e All of the equilibrium lattice constants calculated for the non-magnetic,
the ferromagnetic and the ¢ = [111] antiferromagnetic states of NaCl-
type FeN are about 4.00 A, which is much smaller than the observed
value, a=4.50 A.

e The hyperfine field at Fe site calculated for the equilibrium lattice con-
stant of both the ferromagnetic and the g = [111] antiferromagnetic
states cannot explain the hyperfine fields observed by Mossbauer mea-

surements

e The results of Mossbauer measurements can be explained reasonably if
we assume the sample used in the experiment contains two domains,
g = [111] antiferromagnetic NaCl-type FeN and ferromagnetic fcc Fe
with the lattice constant a=4.50 A.

e For ZnS-type FeN, no magnetic order is expected and the equilibrium
lattice constant obtained from the band calculation for the non-magnetic

state agrees well with the experimental data.

71



Appendix A

Equilibrium Lattice Constant

In order to estimate the equilibrium lattice constant for a system by FLAPW
band calculation, there is one way to compare the total energy as a function of
lattice constant. But we cannot calculate the total energy with changing lattice
constant continuously, so that we must interpolate the calculated results by some
method to estimate the equilibrium lattice constant. The simplest interpolation

method is Hooke’s Law in which the relation between volume (v) and pressure (p),

1_ _1(
K = v \ Op

which postulates a linear relation between stress and strain, has a limited range of

)T, is assumed. In this relation, K is a constant. The Hooke’s Law,

applicability. Therefore let us assume a linear relation [16]
1dv 1

“vdp | c(l+kp) (A1)

() "
P s

The homogeneity of stress has been assumed also, and dependence of temperature,
is neglected because it is assumed that temperature is OK in the band calculation.
Equation (A.2) indicates the parameter ¢ denotes isothermal bulk modulus(ky).

. . o oF
From equation (A.1) and the relation between pressure and energy p = — (W>T’
the energy is written as follows:

cv 1 Vo \
EF=— — 1 . A4
ck{ck—l(v) * }+const (A-4)

where vg is the equilibrium volume at which pressure becomes 0. In practice, the
parameters ¢ and ck are determined by fitting the calculated results of energy versus

volume to equation (A.4) by a least square method.
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We apply this method to paramagnetic state of a-Fe and y-Fe as a test to evaluate
the equilibrium lattice constant and isothermal bulk modulus. The results are shown
both in Figs. A.1 and A.2 and also in Table A.1. The obtained equilibrium lattice
constant cannot reproduce quite well the experimental data, and this is considered
to be due to the use of LDA. If we compare our lattice constant with the results of
other calculations [22],[23], fairly good agreement can be seen. On the other hand,
the bulk modulus does not agree with that of other calculation [22]. Tt might be due
to different band calculational method and different fitting method. Seeing Fig. A.2,
the fitting is not good in the range that the system is extended (right hand side of
the figure). Therefore this method can be used well near the equilibrium state, but

should not be applied to the range far from the equilibrium state.

Table A.1: The calculated equilibrium lattice constants and bulk moduli of a-Fe

and y-Fe.
ag[A] kr[Mbar] other’s calc.[24]
Calc. Exp. Calc. Exp. ap KT
a-Fe 2.73 2.86 2.37 1.7 2.75 2.8
~-Fe 3.40 2.86 3.45 2.6
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Figure A.1: Total energy versus volume for a-Fe. The circles denote calculated

point. The solid line is fitting line.
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Figure A.2: Total energy versus volume for y-Fe. The circles denote calculated

point. The solid line is fitting line.
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Appendix B

Mossbauer effect

B.1 Principle of the Mossbauer Effect

B.1.1 Nuclear y-ray Resonance

Mossbauer spectroscopy measurement utilizes a transition of nuclear state,
mostly between a ground and an excited state, to get information of an atom. The
difference of energy level between a ground and an excited state is an individual
character of atom. When a nucleus is in an excited state, that nucleus decays to
a ground state with radiating y-ray. This radiated vy-ray can afford to transfer an-
other nucleus to the excited state. The energy of this y-ray is so high that the atom
receives a recoil when it is radiated or absorbed. This recoil energy is obtained as

following way. Conservation of energy and momentum can be written as follows.
E = E +FEg (B.1)
0 = p,+Mv (B.2)

where F, E, and Ep are difference of energy between the ground state and the

excited state, energy of y-ray and recoil energy, respectively. And p,, M,v are

momentum of y-ray, mass of nucleus and velocity of nucleus, respectively. The

energy of y-ray and recoil energy are expressed as

EV = CPy (B3)
Ep = %MU? (B.4)

where ¢ is light velocity. From the momentum conservation, the velocity of nucleus(v)

is expressed as

v = —— (B5>
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= ———L B.6
e (B.6)
Substituting equation (B.6) into (B.4)
1 (E\\°
Ep=— J) . B.7
oM < c (B7)
Suppose E ~ E.,
1 (E\?
Er~—1|(—]| . B.8
B= oM <c) (B:8)

The energy gain of absorber is smaller than £ about by amount of 2Ek. So that

the probability of such transition (occurrence of resonance) is very small.

B.1.2 Recoilless Nuclear v-ray Resonance

In a solid all atoms are loosely bound to their surrounded atoms, so that any
atom can’t move freely. Roughly the recoil energy is received by a whole solid in the
process of y-ray emission or absorption. This means that the nuclear mass which
appears in the equation (B.8) is replaced by the macroscopic mass of solid. Then
the recoil energy is effectively zero. This is an oversimplification of the phenomenon.
The crystal lattice possesses vibrational degrees of freedom, phonon, which expresses
the displacement of atoms. If the recoil energy is enough to excite a phonon, the
energy of y-ray is reduced by amount of the excitation energy of the phonon. In
such a case nuclear y-ray resonance can’t occur. But there is some probability that
no phonon is excited in these v-ray processes. Such a recoilless process is called
Mossbauer effect and is important in the Mdssbauer effect measurement. We think
about the case that a nucleus receives recoil energy Er. Furthermore we think
that the probability of the occurrence for no phonon excited process is f(f is called
recoilless fraction), and we restrict the transition of phonon state to the state which
energy is higher than initial state by amount of hr. Then from the conservation of
the energy,

Er=(1- f)hv. (B.9)

And the recoilless fraction becomes

— ER
f=1-" (B.10)

It is necessary for the Mossbauer spectroscopy measurement that this f is not zero.
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B.2 Mossbauer Spectrum

In the Mossbauer spectroscopy measurement, y-decay of nucleus is used. For
example, °"Fe is very convenient for the investigation of the magnetism of the inter-
metallic compound of Fe. The energy level of this nucleus is shown in Fig. B.2. 57Co
which is unstable radio-isotope of %*Co decays to "Fe which nuclear angular mo-
mentum is [ = g When this 5"Fe decays, its nuclear angular momentum decreases
to [ = % and v-ray is radiated. After that °"Fe decays to the state which nuclear
angular momentum [ = % Mossbauer spectroscopy measurement utilizes the y-ray
which is just radiated form the last process. The condition which must be satisfied

by the energy level of ground state and excited state of source and absorber is

(Ee)s — (Ey)s = (Ee)a — (Eg) a, (B.11)

where subscript e and ¢ denotes the excited state and ground state, respectively,
and S and A denotes the source and absorber, respectively. However the local
environment around nucleus is different between source and absorber, so that the
energy level is slightly different. This is why that there is a shift of peek position
and there are a lot of peeks in a Mdssbauer spectrum. If we know about the nucleus
in the source, we can get information about nucleus in the absorber. And indirectly
we can get information about electrons surrounding the nucleus.

Electrons which surround nucleus make both electric and magnetic field at the
nucleus. These two fields cause a lot of changes in the nuclear state (Figure B.1).
Mossbauer effect measurement is intended to get information about nucleus state
in a solid. The other way we can get information about electrons, charge and spin

density, indirectly from the nuclear state.

B.2.1 Interaction with Electric Field

A nucleus is surrounded by a lot of electrons which make electric field at the
nucleus. The interaction between the electron and the nucleus is carried by the
Coulomb interaction between the electron charge and the nucleus (proton) charge.

We start to consider this interaction classically,

Hins = /pn(R)V(R)dR, (B.12)
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where p,(R) is the charge distribution of nucleus. The definition of V(R is written

using the electron charge distribution p.(r) as

V(R) = ﬁ#%w. (B.13)

The protons are located fairly close to R ~ 0 so that we neglect the contribution
of electric field from the electron inside |r| < |R| and expand the V(R) around
R =0,

V(R)=V(0) +Z<

oV 1 0V
) X,-+—’Z< ) XX+,
8@ R=0 2! i afL’ZafL’J R=0

(B.14)

1,7 denote x, y or z. If we neglect the terms which are more than third order

differential term,

H

12

+z<

1 02V
X+ = ( ) X,X; ydR
>R 0 2%: al’lal‘j R=0 ]}
= V() [ pu(R dR+Z< ) /pn )X.dR

1

— n(R)X; X;dR.
+ Z <8x 8@) /p J

(B.15)

The first term of the equation (B.14) is the Coulomb interaction between electron
and proton which is assumed to be located at R= 0. The second term vanishes if

we assume the parity of p,(R) is even. The third term is written as

I I
= =S Vi [ pu(R)F2R + = Vs [ pu(R) (3X.X; — 6,) dR,  (B.16)
t 2V

?V
Vi = (axiax}'>R07

R = X?4+Y?4+ 277

The first term of the equation (B.16) expresses the energy shift caused by the spher-
ically distributed protons’ charge, and the second one is the energy shift caused

by the asphericity of the protons’ charge distribution. Each term of the equation
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(B.16) is called electric monopole interaction and electric quadrupole interaction,

respectively. From the Poisson’s relation
0?V n 0*V N o*V
ox?  Jy? 022

= —dnp(r), (B.17)
we can rewrite the electric monopole interaction as follow,
1
%mono = - Z‘/;z/pn(R)RQdR

- ——pe /pn R)RYR (B.18)

Furthermore if we assume that the protons’ charge distribution is uniform in a sphere

which radius is R,
Ze

oo (B.19)
§7TR3

Pn =

where Z is the atomic number. Substituting the equation (B.19) into Hone

4m 3Ze 9
= —— B.2
Honono = = pc(0 4R3/RdR (B.20)
4m 3Ze Am
= — 5.0 - B.21
27
- —?eﬂpe(o)}z? (B.22)
226
= Ol (B.23)

In the last equation we consider that the electron density is well approximated
by —e |1(0)]>. This Hupono will be different, for two nuclei of the same charge but
different charge distribution (isotopes), or for two nuclei of the same mass and charge
but different nuclear states (isomers). So that Mossbauer spectrum has a peek at

the position which is shifted by amount of 6 which becomes

7= 2% (2 ) (Juor] - o)), (B.24

This § is called isomer shift.

Next we consider about the electric quadrupole interaction(H juqq)-

1
Hquad = 5 Z Vii Qi (B.25)
l’]
where
62V 37”i7”j — 5ijr2
;= = [ o) .
v (a%’a%)}%o /p (r) s " (B.26)
Qij = /pn(R> (3Xin - 5in2) dR. (B.27)
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To obtain a quantum mechanical expression for the quadrupole interaction, we re-

place the classical p,(R) by its quantum mechanical operator p(R ),

pu(R) = p(R)=ed (R — R,) (B.28)

Substituting the equation (B.28) into the classical definition of @Q;; (B.27), we obtain
the quadrupole operator Qij

0, = ez/(s(R - R,) (3X.X, — ,R*) dR
P

= € Z (3Xpiij — (SUR;) (B29>
p

Then we have a quadrupole term in a quantum mechanical form. In the Mossbauer
spectroscopy measurement, in general, we are concerned only with the ground state
of a nucleus or with the exited state which has sufficiently long life-time. Therefore
a nuclear state can be specified by the total angular momentum (I') of each state, a
component of the angular momentum (I.) and a set of other quantum numbers (7).

The matrix elements of Qij which has non zero value are
<[7[73777|sz| [a[;an> (B30>

Now we introduce the irreducible tensor operator 15,, The definition of 15, is listed

in Table B.1. Then Qu can be expressed by a linear combination of T5,,.
Qij - Z aij,mTZm(r)- (B31>
And using the coefficients ;;,, we could define new tensor as

Q;j =Y aijmTom(I). (B.32)

Applying the Wigner-Eckart’s Theorem, we can make a relation between Q,-j and
Aéj‘ A A

(I, L,n|Qul I,1L,m) = C(I, L,n|Qy| 1,1, 1) (B.33)
where C'is a constant which depends on I and n but same for all I.,I i and j. We
can express C' by the matrix element for which I, = I, =1 and X, = X,,; = Z, as

follow

(I,I,n|ez(3Z§—R§) | 1,I,n) = C{.1,n| (313—12) | 1,1,7)

p

= CI(2] 1) (B.34)
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In evaluating the right-hand side of the equation (B.34), we assume the quantum
number 7 can commute with I> and I,. Using the equation (B.34), we define a

symbol eQ as
eQ=(I.1,nle> (322~ R})|1.1,n) (B.35)

p
Q is called the quadrupole moment of a nucleus. We can express the C in the

equation (B.34) as

eQ
I(2I —1)
Reconstructing the nuclear quadrupole operator by the nuclear angular momentum

C= (B.36)

operator and taking the axes to a set of principal axes relative to which V;; = 0 for
it # j. Then the quadrupole Hamiltonian becomes

e@
61(21 —1)

This interaction causes an appearance of a lot of peeks in a Mdssbauer spectrum

H guad = {VM (32 - 1*) +V,,, (31} — I*) + V.. (312 - 12)}. (B.37)

and sometimes causes asymmetry in a Mossbauer spectrum. Electrons surround-
ing a nucleus are divided into two parts, closed shell and open shell. The electric
quadrupole interaction might occur from only open shell, because it is considered
that a electron which belongs to a closed shell distributes spherically which does
not give any contribution to field gradient. But aspherical distribution of open shell
electron causes distortion of the electron distribution of closed shell. This effect
is called Sternheimer antishielding. It makes difficult to estimate the quadrupole

interaction.

B.2.2 Interaction with Magnetic Field
A nucleus has a magnetic moment (m,,) which is defined as
m, = y,h1I, (B.38)

where 7, is gyromagnetic ratio of nucleus and I is an angular momentum operator
of a nucleus. This magnetic moment makes a vector potential (A ). Under the

condition V-A = 0, the vector potential is written as

m, Xr m,
_me Xt g (ma), B
In this field, Schrodinger equation for one electron becomes
1 2
H = — (p+EA> +v.ho -V x A +V(r)
2m c
2 h
~ P v+ Em, 40V A (B.40)
2m mc
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where v, is gyromagnetic ratio of electron, o is the electron spin operator and I
is the angular momentum of a electron. In the last equation we neglect the term
which is proportional to A 2. The last term expresses the interaction between the
magnetic field of nucleus and electron spin. From now on we concentrate on this

interaction (Hnag)

Hinag = ﬁmn l+vho-VxA (B.41)
me
Using the relations
VxVxA = V(V-A)-V?4, (B.42)
1
v (-) — —4ri(r) (B.43)
r

Hmag becomes

5
= —vhI - Hy,. (B.44)

8 o r(o-r) I-1
Hmag = —%emh’o - I6(r) =7 h"T - {73 —3T} + Vet —-.

H . is called hyperfine field, and the definition is

87 r’ec —3(c-r)r l

H, = —gvehé(r)a + 7.l o — el (B.45)

H ,,. is the effective field for nuclear angular momentum created by electron spin.
The meaning of each terms are written below. The first term is Fermi contact
term which denotes the magnetic field that electron creates at the nuclear position.
The second term is classical dipole-dipole interaction. And the last term represents
the interaction between the nucleus magnetic moment and electron current. In
general the Fermi contact term is considered to contribute most to the hyperfine

field therefore we neglect other two terms. Then H,,,, is approximately
8
Hinag ~ gve%FLQI cod(r). (B.46)

We can see from the equation (B.46) that only s-orbital electron which has a finite
probability at the nuclear site make a contribution to the Fermi contact term. Then
the hyperfine field which is created by the Fermi contact becomes
8 2 2
Hige = =57 ([, (0) = [0 (0)7) - (B.47)
The degeneracy of nuclear states which has a same quantum number [ but different
in a quantum number I, is decomposed. Therefore a lot of peeks could appear in a

Mossbauer spectrum.
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Table B.1: Irreducible tensor operator (Ty,, (m=-2,-1,0,1,2)). x, y and z are oper-

ators of coordinate, and I., It = I, +il, and I~ = I, — il, are operators of total

angular momentum of a nucleus.

Tgm(’r‘)

TZm(I)

(z + iy)?

I+

—2z(x + iy)

—(LIT +1I"L)

\/2(322 —7r?)

V3B -17)

T271

22(x — 1y)

LI-+I°1

Ty

(v —iy)?
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Figure B.1: Energy level shift of 5"Fe
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