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The Cauchy problem for Schrgdinger type

equations with variable coefficients

WATARU ICHINOSE

0. Introduction. 1In this paper we study the Cauchy problem

for SchrBdinger type equations with variable coefficients

n .
tuct.x = Lo uct,o - L3 a8l @fmoa, w o+
i t 2 .7, X, X
j.k=1 Jj k
n j‘ n
0, 1) > b (x)aX u + c(x)u = f(t,x) (x € R,
ji=1 J

u(0,x) = uo(x),

jk

. where g (X), bl (x) and c(x) are in 8" (R"). We suppose that

¢ (0.2) gjk(x) (j,k = 1,2,+++,n) are real valued and satisfy
ng(x) = ng(x)

and that the uniform ellipticity

n

(0.3) s lipi2 <1 3 g¥mop.p, | < 8ipl?
. ik
i, k=1
with a positive constant . First of all, remark that it is

impossible to consider the well posedness of (0.1) in Cm(Rn)
space, because (0.1) has an infinite propagation speed (see [101).
Therefore, in the present paper we shall consider the well

posedness of (0.1) in the sense of Lz. We denote the set of all

L2 valued continuous functions in t € [0,T1 by 62([O,T];L2).



We adapt the following definition.

Defnition 0.1. W¥We say that the Cauchy problem (0.1) is L2

01 (T, < 0)), if the

well posed on [O,TO] (T0 > 0) (resp. [TO, 0

following is valid for each T € (O,TO] (resp. [T,.,0)). For any

0

2 0 2 0 2
uO(x) € L™ and any f(t,x) € 6t([0,T];L ) (resp. ét((T,O];L ))
there exists one and only one solution u(t,x) of (0.1) in

2
52([0,T];L2) (resp. 6?([T,O]:L“)).

In order to make clear the character of the Cauchy problem

(0.1) we compare the following three types of the equations on Ri

1 2 . . _
(0.4) _ Stu(t,x) - 58 8xu + 1b(x)8xu + ic(x)u = f(t,x)

(g = 1,0,1),

that is, parabolic equations (€ = 1), kowalewskian type equations

0) and Schrgdinger type equations (g = i), where

(e
b(x) € %m(RI) and c(x) € ﬁm(Rl). For the parabolic equations
(€ = 1) it is well known that for any b(x) and c(x) the
Cauchy problem is L2 well posed for positive direction in t,
but never L2 well posed for negative direction. As to
kowalewskian type equations (€ = 0) it is well posed for
positive and also negative directions in t, if and only if Re
b(x) 1is identically zero. For Schrgdinger type equations (g =

i) the characterization of the L2 well posedness for positive (

0
or negative ) direction in t 1is that l}; Re b(0)d8!| remains



bounded for all p € R' ([111,[161,(161). Thus, we would like to

remark that, in contrast to the parabolic and kowalewskian types,

the characterization of the well posedness of the Cauchy problem
for Schrbdinger type equations can not be given in a local
property, but in a global property of the coefficients.

The results on the above special Schrghinger type equations

can be extended to the equations whose ng(x) are all constants

([41,051,C111,0161,0171). In the present paper we study the
general equations with variable coefficients ng(x). In order

to state our theorem we introduce the classical orbit of (0.1).

Set
n .
(0.5) H(x,p) = + 3 ¥ op.p
, 2 i k=1 ik

and let (X(t,x,p),P(t,%x,p)) be the solutions of

d OH d 9H
- X. = . —,Py, 7P, = - 2 —(X,P) (j,k =1,2,+<+,n).
0.6) dt 7j epj dt "k Sxk

(X,P)|t=0 = (X,p).
H(x,p) and X(t,x,p),P(t,x,p)) are called the Hamiltonian
function of (0.1) and the classical orbit of (0.1) respectively.

Our theorem is as follows :

Theorem. It is necessary for (0.1) to be L2 well posed on

[O,TO] or [TO,OJ for a T, # 0 that the inequality
p

<

n

0.7) sup , . | >
(x,p)ER" ",pER j=1

holds.

o

Re bJ(X(G,x,p))Pj(G,x,p)dGl @

Remark 0.1. 1f all ng(x) are constant, Theorem accords
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with results which had been obtained before.

Now, the inequality (0.7) has a geometrical interpretation

n

as follows. We shall introduce in RX a Riemannian metric
2 i3] i j n
g <Y, 2> = 3 g. .Yz vy =3 v's. , z=32z%_ e T1T.rRY,
X =1 ij i x.1 ; xj X

id
where (gij(x);;%1,2,~~~,n) is the inverse matrix of

. 1 »
(glj(x);341,2.-~-,n). We denote this Riemannian manifold by M.

Let ® be a one form on M defined by

n .
(0.8) @(Y) = g <Y, S5 Re b3 (x38_ > (Y € T_M),
o X . X. X
j=1 Jj
that is,
n .
(0.8)' o= 2 Re bl (x)g., (x)dx, .
i k=1 ik K

If we use the above notations, Theorem may be rewritten as

follows:

Theorem®’., It is necessary for (0.1) to be L2 well posed on

[O,TO] or [TO,O] for a TO # 0 that the inequality

0.7 sup | y @ | ¢ =
yer

holds, where [ is the family of all geodesics on M.
Remark 0.2. In [6] we shall study the Cauchy problem for
Scheringer type equations on a Riemannian manifold without

boundary.

Remark 0.3. 1In section 4 we shall consider the Cauchy
problem (0.1) whose glk(x) do not satisfy the uniform

ellipticity (0.3) (Theorem 4.3).



Now, we explain the ideas of the proof of Theorem. We shall
prove it by contradiction. We make a change of a variable from t
to T = At with a large parameter XA 2 1. Then, using (0.5),

(0.1) is written in the form

Ale(u(t/k,x))

. -1_,(1) . -1
8X) + (i) ZA (x, (ix)

1

|

Ao e+ Hex, (107 9 )
T X

0.1
Ju(t/x,x) = f(t/A,x),

u(r/x,x)|t=0 = uo(x).

If the Cauchy problem (0.1) is L2 well posed on [O,TO], the

Cauchy problem for the equation
(0.9 lel(t,x) = fl(t,x)

is also L2 well posed on [O,ATO]. So, we obtain a priori
estimate of the Cauchy problem for (0.9). Next, if we assume

that (0.7) is not valid, we can take a t, > 0 and a point

0
x9,p% € %"

n

such that

t .
(0.10) éﬁ 0 Re bJ(X(G,xo,po))Pj(e,xo,po)de > log gC(TO) )
1

j=
Here, C(TO) 21 1is a constant determined from the L2 well
posedness of (0.1) on [0,TO] (see Lemma 3.1). Then, we can
construct asymptotic solutions vx(t’X) of (0.9) on the interval
[O,tO] having Lz—estimates which contradict the a priori

estimate of the Cauchy problem for (0.9) derived from the L2 well

posedness on [O,tOJ.

We note that the above tO may be very large. So, we must



construct on the global interval [0,t0] asymptotic solutions

of (0.9). We would like to remark that such a construction is in
contrast with the one for the study of hyperbolic equations
(c.£f.{91). As it will be shown in the appendix, the fact we
would like to emphasize is that if at least one of gjk(x)

(i,k = 1,2,-++,n) is not constant, in almost cases the
Hamilton-Jacobi equation

3 b «+ H(X,Qg = Q
T 9x

has no smooth solution on the global interval [O,tO]. It seems
to us that this fact has obstructed the progress of the study for
(0.1) with variable coefficients gjk(x). Of course, if all
gjk(x) are constant, we can construct asymptotic solutions of
(0.9) on [0,t 1 via the form eilm(t’X)‘{'#o(x) s GO o

**} by using the solution &(tr,x) of the Hamilton-Jacobi
equation.

To avoid the above obstruction, we shall use the Maslov
method originally due to [81. For the proof of our theorem it is
necessary to estimate asymptotic solutions Vx(t’X) of (0.9) by
the Lz—norm on Rg for each <t € (O,tO] and also to estimate on
[O,tO] the remainder terms by the L2—norm on Rg. In [81 the
remainder terms are estimated only on the compact sets in szi .

Hence, in the present paper the modifications of [8] are

necessary mainly in the following two aspects. First, we shall

2(n+1)

t,%x,E,p ( E denotes the

consider not a Lagrangian manifold in R



dual variable of <t ) , but a family of Lagrangian manifolds in

Rinp with a parameter t ¢ [O,tO]. Secondly, we shall estimate
the remainder terms not on the compact set in R:+i , but on

[0,t,1 x R} by the L®-norm .

The plan of the present paper is as follows. Theorem and
Theorem' will be proved in section 3. The main results on the
Maslov method will be stated in section 3 (Proposition 3.4) and
will be proved in section 4. Sections 1 and 2 are devoted to the
-preliminaries for sections 3 and 4.

The author wishes to express his sincere gratitude for their
advices and encouragements to Professor M.lkawa, Professor‘

S.Mizohata, Professor K.Shinkai and Professor D.Fujiwara.



1. Pseudo-differential operators with a large parameter x.

Let (xl,--~,xn) and p = (pl,"~,pn) denote the points of Rn
and let o = (al,"',an) be a multi-index whose components aj
are non-negative integers. Then, we use the usual notations
o o
_ ... o _ | n - e :
locf = o, * oo, X=X, S o = o ! x !,
o
a“ = 9 1 a " , Da = D L .- p " s 2 = - s
X X X X ax
1 n 1 n i
_ 19
Dx T i 3x

J
Let K = {kl,"',kﬂ}(l < kl < k2 < *++ < k, £ n) be a

subset of the set (1,2,-°--,n}. We permit that K is empty. For

the sake of simplicity we denote the complementary set of K by

K' in the present paper. Then, as in {81 we denote
L
KL = 8, =y = Gy wmmraXy ds XptPg S 20 Xy Py
1 ') i=1 j

[}
_ _ 2.1/2
Xy dpy = § x, dp, <xp> = (1 + |xK| ) ;

1 A ]
Also, let K1 be another subset of {(1,2,---,n) and let o@((x)
and fj(x) (j = 1,2,*++,m) be C°° functions on Rn. Then, we

denote for f(x) = (f (X),”‘,fm(x))

1

go _ oo ... 90 , ot _ °h queeem
SXK Sxk axk SXK ka. j=1,2,-+-,8
1 [} J
2 2
3~ ¢ _ 3 (Sw ) - ¢ _ 9 (aw )
exKlaxK axKl 8XK axi 8XK GxK
If I|X| = m, D(f) denotes the Jacobian determinant.

D(XK)
Let ¢ = y(Rn) be the Schwartz space of rapidly decreasing
functions on Rn. Following [8], we define the x-Fourier

...8_



transformation (yk,xK*pKu)(xK"pK) over a part of variables

for u(x) € ¥ by

-iAX.,°*PpP
K"K u{x)dx

[Kl/2 jé «

(1.1 (x/21)

and then, the inverse X-~-Fourier transformation

(?;l x v)(xK,pK,) for v(p) € ¥ 1is defined by
,PK K
ixx,-p
(1.2) (A/QT{)‘KI/2 J; K"K v(p)de.
If x =1, ?A'XKAPK and ?1 Py denote the usual partial

Fourier and the inverse Fourier transformations respectively.

" Remark 1.1. We remark that the definitions (1.1) and (1.2)
of the x-Fourier and the inverse x-Fourier transformations in
the present paper are slightly different from those in [8]. If

we multiply (1.1) and (1.2) by constants e_lle/4 and

e”KlK/4 respectively, we obtain corresponding transformations in

{8]1. But, we shall use the same symbols as those in [81].

The following lemma is easily shown from the Plancherel
theorem for the usual Fourier transformation.
Lemma 1.1. Let K be a subset of {(1,2,¢++,n}. Then, we

get

ffe, 4 _’pKul)(xK.,pK)(? P o) (X1 2P ddxp dpy

_fu (x)u (xX)dx

for uj(x) € ¥ (j = 1,2).



We introduce for a real m the symbol class Tm(R;) of
pseudo-differential operators from (8].

Definition L.1. Tm(Rz) denotes the class of all C

functions h(x,p) on T*Rn = R2n satisfying
X X,p
o) . m
lh(B)(x,p)l < Ca,6(<x><p>)
for all multi-indices o and 8 with constants C , where

o, B

(o) _ A0 B
h(B)(x,p) = 8p th(x,p).

We define semi-norms lhlém)(ﬁ = 0,1,2,-++) of

h(x,p) € Tm(Rg) by

sup (<x><p>)_m 2 lhgzg(x,p)l.
X,Dp le+8 159

The x-pseudo-differential operator h(x}l_lDX) with a symbol
“h(x,p) € T'(R)) is defined by

(1.3) h(x,l—lDX)u(x)

= J}ei(x - x')ep h(x,k_lp)u(x')dx'&p

for u(x) € ¥, where adp = (2n)—ndp. Next, as in section 2 of

chapter 2 in [7], we shall introduce the class of double symbols.

Definition 1.2. We denote by T™'® (Ri) the class of
i . . . *_2n _ 54n
all C functions ﬁ(x,p,x sP') on T Rx,x’ = Rx,p,x',p'

satisfying

(o, o0 )

Ih g’g 3 (X,pux" P < C (<x><p») M <x ><pr )"

o, ,B8,8"
for all multi-indices o, ', 8 and B' with constant

_10._



(ot,0t') v nty = A%t nBnB8’ ¢ o

Ca,a'.B.B' » Where h(B.B')(x’p’x P7) 8pep'DxDx'h(x’p’x »P').

We define semi-norms lhlém’m ) (4 = 0,1,2,+++) of
h(x,p,x',p') € ™" (Rz) by

sup (<x><p>) ™ (kx'>¢<p'> ™ 2.
X,p,Xx',p' foa+o +84+8 ' 1<4
(ot,ot*) . .
,Ih(B’B,)(x,p.x ,p') 1.

The A-pseudo-differential operator h(x,k—le,x',kngx,) with a

double symbol h{(x,p,x',p') € ™" (Ri) is defined by

(1.4) h(x,k_lD ,x',x“lo udx)
X X

= ffffeitx - xTrp * (XS XU P e, AT ey
u(x'')dx''ap'dx'ap

for u(x) € 9.
Let h(x,p) € Tm(R;) and K be a subset of {1,2,---,n}.
For the sake of simplicity we shall write h(x,p) as

h(xy,,,.x ). Then, a A-pseudo-differential operator

KXk Pg Py
-1 -1
h(x,,,-x D_ ,x D » P
K pK XK, K

RX p.’ with a double symbol can be defined. We can easily see
K'’YK

that its double symbol h(xK,,—xK,pK,,pk) € C (R

), which acts on the functions on

4n o
x,p.x',p')“ ¢«

).
Xg++Pg

*_2n FMs M o0

TR ) Dbelongs to the class

' ) (R
XK' ’pKQXK' ’pK

The following lemmas 1.2 - 1.5 can be proved by the same

arguments as those in chapter 2 of [7].

Lemma 1.2. Let h(x,p) € Tm(Ri) and K be a subset of

{1,2,*++,ny. Then, it follows for u(x) € ¢ that

— 11 -



2 h(x,l—le)u(x)

-1 {h(xK,.—A_lD A7 p L porg ul (x).

= ¥
A,pK%xK pK XK K A,xK*pK

Lemma 1.3. Let h(x,p,x',p') € ™™

(R;) and N be a non-
negative integer. Then, we have fbr u(x) € ¢

h(x,2 'D ,x',A_IDx,)u(x)

X
_ 1 -lal, (x,0) -1 -1
= > o1 * h(O,a)(x,k D .X,A "D dudx) +
loel <N
-N -1
X rN’A(x,A Dx)u(x),
(o, 0) -1 -1 _ B
where h(O,a)(x’l Dx,x,k Dx) denotes the A-pseudo

differential operator with symbol hgg’g;(x.p.x,p) € Tm+m (Ri)
and Ty l(x,p) belongs to phtm (R;). Setting s = {(n + Iml +

im*{)/2 + 1], we get the estimates for £ = 0,1,2,---

(m+m') (m,m")
Iry,ate < Cn,e Pl Neasen)
with constants CN ) independent of h(x,p,X',pP"') and X x> 1.

For a real m [m] denotes the largest integer not greater than

m.

Lemma 1.4. Let h(x,p) € Tm(Rg) and set s = [(n + Iml)/2 +
1]. Then, if we denote the Lz—norm of u(x) € ¢ by ltluC-)iit, it
follows for u(x) € ¢ that

1 (m) z

[lh(x,x
2s lel<2s

D Yu(-)ll < C Inl (1<->™ p%uceytt,
X X

where C is a constant independent of h(x,p), u(x) and x > 1.

Lemma 1.5. Assume that h(x,p) belongs to Tm(Rg) and that
S(x) € %w(Rn) is a real valued function. Let @(x) € ¢. Then,

- 12 -




e—iAS(X)h(x’l-le)(eilS(X)

@(x)) has the asymptotic expression

and

N-1 .
(1.5) S (o 99 (x, D0 + G N R e
. j X N
j=0
for N = 1,2,+-+, where the remainder term RN¢(X) satisfies
(1.6) IR, @(x)| < C >N
: N N,N'
for N' = 0,1,+++- with constant CN N independent of x
X = 1. Qj(x,DX) (0 £ j £N-1) are linear differential
operators of order at most ] with C°° coefficients and are
defined independently of @(X) and x 2> 1. In particular,
QO(X,DX) and ﬁl(x,DX) have the forms
2 (x,D_y0(x) = h(x,2x)rex)
0" "' 7x *Ox ’
n
_ dh 9s 39
(1.7) { 9,(x,D )@(x) = § ap . Frpx XN gy (x> +
: i=1 J J
2
Loty Ch h( 85 48 S e,
2 'ax 2
. , ap? ax
where Tr A for a square matrix A denotes the trace of A.



2. The family of Lagrangian manifolds., An immersed

submanifold A in T*Rg = Rinp is called a Lagrangian manifold,

n
if the two form > dpj,\ dxj is identically zero on A ( see
i=1

Definition 4.1 in [8] ). We shall state the fundamental lemma in
the Maslov theory without proof. See Proposition 4.6 in [8] for

the proof.

Lemma 2.1. Assume that A 1is an n-dimensional Lagrangian
manifold. Then, for any point (xo,po) € A there exist an open
neighborhood 6 of (xo,po) on A and a subset K of

{1,2,-*+,n} such that ( ) is a local coordinate system on

Xk Pg
6. K* is the complementary set of K.

Since we assume that the uniform ellipticity (0.3) holds', we .
can easily see that for each (x,p) € T*Rg there exist the

solutions'A(X(t,x,p),P(t,x,p)) of (0.6) for all <t € R. So, for

each T € R we can define a mapping ht from R2n to R2n
. X’p X’p

by

(2.1) h®(x,p) = (X(t,x,p),P(T,X,p)).-

It is easy to see that a family of mappings {ht}tGR forms a
ane-parameter group of diffeomorphism from Rinp onto Rinp. Let

Ag be an n-dimensional immersed submanifold in T*Rg. Then, we

set for each <t € R

(2.2) A: = {r' = h°(x,p); (x,p) € Ag}

and set



(2.3) AMHT) = (r o= (n,hTx,P)): 0 < T KT, (x,p) € AD).
Then, we Know well

Lemma 2.2. If Ag is a C_ n-dimensional Lagrangian

manifold, AE defined by (2.2) is also a c” n-dimensional

Lagrangian manifold for each <t € R.

Let Ag be a Cco n-dimensional Lagrangian manifold and

define the family of Lagrangian manifolds An+l

(T by (2.3) for
any T > 0. Then, we get the following lemma needed in section 3

We remark that only Lemma 2.2 is necessary in {[81].

Lemma 2.3. Let Ag be a C n—dimensionél Lagrangian

n
manifold. Then, the two form > dpj/\ dxj - dH A dt  is
ji=1

An+1

identically zero on (.

Proof. Let EO = (xo,po) € Ag and 00 be an open
0

neighborhood of & on Ag with local coordinates y =
(y1,~~-,yn). We write
0, = (&’ %y e v

. ® . .0 0
by using C functions x (y) = (x1

((p?(y),°",pg(y)) on U. I1f we set for each <t € R

(y),°~~,xg(y)) and p(y) =

am— ‘c -
@r = {(h'g; £ € OO},

y are also local coordinates on Gt . Now, since Az is a
Lagrangian manifold from Lemma 2.2, we get for any point £ =

(xo(y),po(y)) € OO and any T € R

— 15 -



n
(2 dp. A dx. -~ dH A dT) 3 _ ,
j=1 3 ] (t,ht&) Yx Yo
= (2 dp.A dx.) (3_ ,9 )
j J (t,h‘ &)y Yx Ya
= Q (k, & =1,2,-++,n ).

So, we have only to prove for the completeness of the proof that

n
(2 dp. A dx. - dHA dT) ®_,8_ ) =0 (k=1,2,+-,n)
j=l J J ("C,htﬁ) T yk

are valid for any & = (xO(y),pO(y)) € 00 and any T € R. For
the sake of simplicity, we write (X(t.xo(y).po(y)),P(t.xo(y),

po(y))) as (X(t,y),P(T,y)). Then, it follows from (0.6) that

(2 dp. AN dx. - dH A dT) (9_,9_
j J J (t,h*g) T Yk
=S Pty E— X .ty - &= x. .y E— P.(t.y))} +
; dt i 8yk i dt i ayk i’
‘ 9

5;; HX(t,y),P{T,y))

9H 3 8H a__
- ? {Bx.(X’P)ayk xj + apj(x’P)eyk Pj} +

—88— H(X(t,y),P(T,¥))
Yk

:O,
which completes the proof. Q.E.D.

Let So(x) be a real valued Coo function on Rn and set

n asO n
(2.4) AO = {(X,5;_(X)); X € R).

Then, we know well that Ag is an n-dimensional Lagrangian
manifold. Let = be the diffeomorphic mapping from Rg onto

Ag defined by



N as0 n
(2.5) ' Rx S X v (x,ax (X)) € AO.

Then, if we use the natation (E'—l)*SO(ﬁ) = SO(E'_I(i)) (Ee Ag),

we get

Lemma 2.4. It follows that

n

- ':Jc.-l * n
(2.6) El pjdxj = d(E )8, on A,
. _ 3 n
Proof. We have at each point £ = (X’axSO(X)) on AO
p.dx. = S (x)dx.
j=1 4 j=1 axj Y ]
= d(E'"l)*sO ) Q.E.D.

Let Ag be an n-dimensional Lagrangian manifold defined by

(2.4). We define AE and An+1(T) by (2.2) and (2.3) for this

Ag , respectively. Then, since we can determine the

diffeomorphic mapping h® o Z' from Rg onto Ag , we can
introduce a volume form dv: on A: by

(2.7) av® = «n® - 2 h%ax. A -+ Adx,
T 1 n

where dx, A - A\dxn is an n-form on Rg and ((ht ° E')—l)*

1
dx, A **- /\dxn denotes the pull back by the mapping ((h -

A

of the n-form dxli\ .. ﬁ\dxn. Let ©Q be a sufficiently

small open set on An+l(T). Then, there exists a subset K of

{1,2, +++,n} from Lemma 2.1 so that (t,I,) = (t,x ) become

K Kl)pK

local coordinates on Q. Sa, there exists a Coo positive function

JK(r) = JK(r;Q) on § which satisfies



n -1 -1

(2.8) dVt = JK(r) de,/\ de or - JK(r) de./\ de

at r' € A: such that r = (t,r') € Q. Here, de, and de

denote a [K'[-form dx,, A -+ A dx,,
k) kg

< v K kQ) ) and a [Kl-form dpklA .. /\dpkn_Q ( K = {k1

: . . n
kn—l} (kl < < kn—Q) ), respectively. Since th does not

vanish at any point of Az . JK(r) is well defined. Any point

« XK' = (k;

1ot akg) (k) < Ky

2

r* € Az is written in the form

T SSO
r'- = h (y.8 (¥))
880 GSO
= (X(T, y,a (y)),P(t, Y.a y)))
for a y € Rn. So, we can take y = (yl,°",yn) as local
coordinates on A: . Then,
1 n-— o & o
(2.7) th = dyIA ﬁsdyn

is valid from (2.7). So, if we take (t,y) as local coordinates
on §, we have from (2.8)

2.9 JK(r;Q)

5 SSO SSO
ldet 5~(XK,(t Yoax (y», P (t, y.g—‘(Y)))l

880

for (r,ht(y,5;—<y))> € Q.

o1
1]



3. Proofs of Theorem and Theorem®. As was mentioned in the
introduction, we shall prove Theorem by contradiction. That is,

we assume

(As.l1) the Cauchy problem (0.1) is L2 well posed on [O,TOJ (TO

> 0) or [TO,O] (T0 < Q) for a TO 2 0

and
(As.2) the inequality (0.7) is not valid.
In place of (As.l) we may assume without the loss of generality

(As.1)* the Cauchy problem (0.1) is L2 well posed on [O,TO] (T0

> 0).

Let LA be the differential operator defined in (0.1)'. Then,

we obtain
Lemma 3.1. Assume (As.l1)'. Then, there exists a constant
. 0 .y 2
C(TO) 2 1 such that if Vl(t,X) € ét({O,T],L ) and vax(t’X) €

&2([O,T];L2), the inequality

max Ilvl(t,‘)ll
0<t<T
. 2
< C(TO)(IIVA(O, Y o+ x max IIlel(r, Y

0<Lt<T
is valid for each X = 1 and each T € (O,ATO].

Theorem 3.2. Assume (As.l)' and (As.2). Then, there exist

pO € Rn, tO > 0 and v(x) € C:(Rn) such that we can construct

an asymptotic solution Vl(t,X) € &2([O,tO];L2) of (0.9) with
ixx:- 0

an initial data e p v(x) at t = 0 satisfying

- 19 -



3

(3.1) max ||le1(r,~)|l = oA™Yy,
0Lttt
0
and
(3.2) vt =2 cerotiveati « o™
. X0 8 0
for large . Here, C(TO) is the constant in Lemma 3.1.

Theorem is deduced from Lemma 3.1 and Theorem 3.2. Indeed,
substitute (3.1) into Lemma 3.1. Then, we have

-1
llvx(tO’ il « C(TO)llv( il + otx ),

where X is large so that ATO > tO‘ On the other hand, (3.2)

is valid. So, we have
9 . . -1
8 C(TO)!!v( Y1l < C(To)llv( il + o )
for large A sa that ATO 2 to. This inequality shows a

~contradiction for large Ax. Thus, Theorem is proved.

Now, we return to the proofs of Lemma 3.1 and Theorem 3.2.
The proof of Thecorem 3.2 is the essential part in the present

paper.

I. The proof of Lemma 3.1. We shall consider the Cauchy

problem (0.1) aon the interval [0,T1] for a T E(O,TOJ. Recall
the definition of the L2 well posedness of the Cauchy problem
(0.1) on [0,T0]‘ Then, if we assume (As.l)', for any uo(x) €
L2 and any f(t,x) € 62([0;T];L2) we have one and only one

solution wu(t,x) of (0.1) in 62({0,T];L2). We first get

Lemma 3.1°. Assume (As.1)". Then, there exists a constant

- 20 -



C(T,) = 1 such that if u(t,x) € 52([0,T];L2) is the solution

of (0.1) for f£(t,x) € 52([0,T];L2) and  u (x) € L2,
max [lu¢t,- >l < C(TO)(IIuO(~)II + max [If¢t, 1)
0<t<T 0<t<T

is valid for each T € (O,TO].

Proof. We first note that 6?([O,T];L2) is a Banach space

with a norm max lig(t,->!l and so, L2 X 62([0,T];L2) is also

0<t<T

a Banach space. Now, since the Cauchy problem (0.1) is L2 well

posed on [O.TO], the mapping : L2 X 82([0,TO];L2)-S(UO(X),f(t,x))
—> u(t,x) € &2([0,TO];L2) is closed, where u(t,x) is the
solution of Lu(t,x) = f(t,x) with u(0,x) = uo(x). Hence, if we
apply the Banach closed graph theorem, the above mapping is

continuous. So, there exists a constant C(TO) =2 1 such that

3.3 max lluCt,->l] < C(To)llu0(~)ll + max J1£Ct, 1D
OStSTO OStSTO

is valid.

Take a T € (0,T 1 and let UCt,x) € 62([0,T];L2) be the
solution of Lu(t,x) = T(t,x) € 62([0,TJ;L2) with U(0,x) =
uy(x) € L%, We extend ¥(t,x) to f(t,x) € 69¢10,T,1;L%) by

Tt,x) (0 <t <T)
f(t,x) =

(T, x) (T <t <Ty

and let u(t,x) € 6?((O,TO];L2) be the solution of (0.1) for

this f(t,x) and uo(x). Then, the uniqueness of the solution

on the interval {0,T]1 shows



u(t,x) = U(t,x) (0 < t < T).

So, if we note the choice of the extension from ¥(t,x) to

f(t,x), we get from (3.3)

max |iuct,-)>I1

O0<t<T
< max lluct, )1
0<t<T
0
< C(TO)(IIuO(-)Il + max {1fCt,-)11)
O0<t<T
0
= C(TO)(lIuO(-)il + max |1fCt,-)t1),
0<t<T e
which completes the proof. Q.E.D.

Let vl(t'X) € GS(EO,T];LZ) be the solution of (0.9) for

v(O)

£(T,%) € £2<[0,TJ;L2) with v, €0,x) = (x) € L2 (0 < T <

ATO). Then, setting u(t,x) = vl(kt,x). we can see from (0.1)°

that u(t,x) € ég(IO,T/A];LZ) is the solution of

Lu(t,x)

]

2
by lel(r,x)
_ 2
= A fl(xt,x)

with u(0,x) = V(O)(X). Hence, noting T/x < TO,_we get Lemma

3.1 from Lemma 3.1°'.

II. The proof of Theorem 3.2. Assume (As.2). Then, there

exist a t. € R and a (xo,po) € Rzn

such that

0
t .
1 f; O Re bJ(X(G,xo,po))Pj(G,XO,pO)dGI > log g C(T,)

M=

I,
]

is valid for the constant C(TO) in Lemma 3.1. Here, we can

assume that to is positive and (0.10) is valid. In fact, a

- 292 -



family of mappings (ht)tER defined by (2.1) forms a one-

parameter group and
(X(-t,x,p),-P(-t,x,p)) = (X(t,x,-p),P(t,x,-p))

is valid from (0.5) and (0.6). So, we get

-t
S .& bJ(X(G,x,—p))Pj(G,x,—p)dQ
j

t .
=3 'g bJ(X(G,x,p))Pj(G.x,p)dG.
B
and setting (x',p') = (X(t,x,p),P(t,x,p)), we also have

£
-2 f; bJ(X(G,X',—p'))Pj(G,x',—p')dG
i
t .
=S j; BI (X(-6,x",p* )P, (-0,x",p')d0
]
t ]
=3 [' bl x(-0+t,x,0))P (-0+t,x,p)d0
i 0 .

t .
=3 .g bJ(X(G,x,p))Pj(G,X,p)dG.
j
0O O 2n
Hence, we can take a tO >0 and a (x ,p ) € R so that (0.10)

0

holds. We fix these t X and p hereafter.

O,
Let v(x) be a Cm function with a compact support and set

(3.4) SO(X) = X'po.

Then, we shall consider the following equation

n
L.v . (t,x) = 0 on [0,t.1 X R_ ,
(3.5) AA 0 X
iASO(x)
v, (0,x) = e vix).
X
We write L in the form

A

(3.6) Lkvl(t’X)



2 .
. -] -1
Dx) + jzl(xx) Hj(x,l Dx)]vl(t,x),

1

_ - -1
= A Dt + H(x,x

where H((x,p) is the function defined by (0.5) and

n . n ik
Hy(x,p) = - 3 bl(x)p. + % S gﬁ——(x)pk ,
(3.7) j=1 ] i, k=1 9%j
H2(x,p) = - ¢c(x).
Let UO be an open neighborhood of xO and set
3S
AY = ((x,g;g(x)) = (x,p0; x € ’M,
(3.8)
3s
n _ _-0 - 0,.
KO = ((X,37 (X)) = (x,p); X € Uy)

which are n-dimensional Lagrangian manifolds. We define A: and

An+l(T) for this An by (2.2) and (2.3) respectively, that is,
0
Az = h%x,pY; x,p") € Ag),
(3.9)
A ey = (en®x,p%); 0 < T < T, (x,p%) € ADY,

where ht(x,po) = (X(t,x,po),P(t,x,po)) are the solutions of
(0.6). In the same way we define

KE - %, 0Y; x,p%) € Kg},
(3.9)"

A" ety = ((o,h% 0% 0 < T < T, (x,p0) € KD» .

Notice Lemma 2.1 and take a sufficiently small UO so that we can

choose a family of connected open sets {Qj}jio on An+1(t0)

satisfying three properties below, where s is a non-negative

integer. We fix such an open neighborhood UO of xo. First, for

each j there exists a subset Kj of {(1,2,-++,n} such that

(t,I, ) (

K ) become local coordinates on Qj. Secondly,
J

we have

TrXg Py
J J



S
a.10 AMlap e O e,

0 J
and thirdly,
Q. n (O,Kg) = ¢ (1 < j < s),
(3.11) Q. n t K" = ¢ (0<k<s - 1),
k 0 tO
Qj N Qk = ¢ (2 < 1j - kxit, i,k = 0,1,2,-°-58)
hold. We also fix the above (Qj}jio and local coordinates
(r,IK )y (j = 0,1,+-+-+,8). The local coordinate system (r,IK Yy =
] j
(t,XK,,pK ) defines the diffeomorphism from Qj into
J j
n+l We denote its inverse diffeomorphism by r =
T,X s P
K!""K.
] J
rK,(t’IK.) = rK.(t’XK!’pK.)’
J ] J J J

Now, hereafter to avoid confusion, we denote the identity

mapping from An+l(t0) into Ri X T*R; as An+1
1

T

(to)ra r —
X T*Rg . Let Z' be the diffeomorphism

from Ri onto Ag defined by (2.5) with So(x) = X‘PO and
n

dVt the volume form on Ag defined by (2.7). Then, we define a

(T(r),x(r),p(r)) € R

o«

C positive function J (r) = J (r;Qj) on Qj by (2.8). Let

K K
J J ,
E be the diffecomorphism from RI onto (0,AJ)( C An+1(t0))
defined by
~. ol 0 n
(3.12) =: RX 3x —>(0,x,p ) € (O,AO).
We shall define a real valued COo function S(r) . on An+1(t0) by
r
(3.13) S(r) = /; P-dX - HAT + (E 1)*so(ro),
r



where H(x,p) is defined by (0.5) and ro = (O.xo,po) € (O,Ag).

Here, the integral in (3.13) is taken along a path from ro to r

An+1

on (t.). Then, we see from Lemma 2.3 that S(r) is

0

independent of the choice of paths. So, we get

(3.14) d4S = p-dX - HAT on An+l(t0).

Also, it follows from Lemma 2.4 that

(3.15) S(r) = (E_l)*SO(r) for r € (0,AD),

that is,

(3.15)" 5C0,x,p%) = 8,0 = x-p°’  for x € R".

Next, let define a real valued ¢” function SKj(r) = SKj(r;Qj)

on Qj for each i by

K
il

Then, it follows from (3.14) that

(3.16) S ‘(r;Qj) = S(r) - ij(r)'ij(r).

Kj Kj

Now, we shall define a pre-canonical operator X(Qj’IK,)
J

y for each j, which corresponds

(3.17) ds = ﬁK,’diK' - X ;
J J

-dSK - HdT on Q..
]

acting from CZ(Q.) to cZ(r"*!
] T,X

to (6.3) in [8]1, by

(3.18) X(Qj,l Yo (t,Xx)

J

K

ikSKgr)

-1
= 7 [ o) | ]
Xy OXp g (172 r=ry (T,Xg.,Pg
] i K. j j j

)

for o(r) € CO(Qj).

...26_



Lemma 3.3. We have

Yo, )12 = /A loct,r)l2avh
. An T

1K@, ,1
1 ]

K
T

for any @(r) € cg(Qj).

Proof. [t follows from Lemma 1.1 and (2.8) that

2

Yyedxt, )1l
]
_ 2
= f; (le(r | /JK.(r))lrzr (T, X0, Pw ) de!de_

R j K, K!""K. 1 J

J J J

_ . 2 .,y0
'-fn }m(r,r ) | dVr Q.E.D.

A
T

Il;K(Qj,IK

Taking account of (3.10), there exist e, (r) € cg(Qj) (j =

0,1,---,s) satisfying
S n+1l
(3.19) > e.(r) =1 on A (t).
. i 0
i=0
Ve fix these functions ej(r) (j = 0,1,++-+,8). Set
2
(3.20) F{x,p) = 1 Tr 8_H (x,p) - H, (x,p)
: * 2 9x9p ° | B ‘
We have from (3.7)
n .
(3.200"  F(x,p) = 2 blx)p..
Z 3
ji=1
(1) n+l

Then, we shall define W acting from C (A (ty))  to

cm(A“+l(tO)> by

) d

(3.21) v ll% ) = & - Fh®x, 09000t h%x, 0%

at r = (r,ht(x,po)). Then, we obtain the following

correspondingly to Theorem 9.3 in [81]1,

Proposition 3.4. By choosing a real constant o(Qj) (1 € j <



s) in a suitable way, we can define an operator K acting from

n+l n+l)

C (A (to)) to C (Rt,x by
s ioc(Q.)
(3.22) Ke(t,x) = e 1 X@Q.,1, Ye.¢) (T, x)
20 j’ K. ]
i J
(O(QO) = 0) so that Ke(t,x) for e¢(r) € Cg(Kn+l(t0)) satisfies
(i), (ii) and (iii) below.
iAx- 0 0
(i) Ke0,x) = e P ww,x,p.
.. 2 _ . 2..,n
(ii) lle(tO, )1 _-fn lw(to,r AN
. At 0
4]
(iii) LkKw(t,x) has the asymptotic expression
N1 -9 L)
(3.23) LAK@(I,X) = > (ix)y KW o) (t,x) + R\@(T,X)
2=1
for N =1,2,-++, where we have for the remainder terms RN@(r,x)
(3.24) max IRy (T, 11 = o Ny,
0<LtL£t
0
w(ﬂ) (2 £ 4 <N - 1) are linear differential operators in
An+1(t0) of order at most 22 independent of 2A.
Remark 3.1. We do not study the index of a curve on
A“*lcto) (c.f. [81). So, we shall determine 0(Q) (I £ j < s)

directly in the proof of Proposition 3.4.

If we admit Proposiotion 3.4, we can give the proof of

Theorem 3.2 as follows. Let v(x) € CE(UO). We shall construct

an asymptotic solution vk(t,x) of (3.5) satisfying

[' max |IL v, (T, )l = 0(x”3),

o<t<t A

(3.25) 0

..28..



0

IXX*P ¢ (x)

vl(O,x) = e

in the form

(3.26) v, (T, %) = K[jZ3 (i) e, x.

=0

[f @.(r) (j =0,1) belong to cEcK“*lctO)) and satisfy the

following equations

d T 0 T 0 -

{dt F(h (y,p ))}Qo(t,h (y,p )) 0,
0

wO(O,y,p Y = v(y)

and

(4— - Fh%cy,p? 2

dt
4]
wl(O,y,p ) = 0,

)))wl(t,ht(y,po)) . W ¢O(t,ht(y,po)) = 0,

we see that Vl(t,X) satisfies (3.25) from (i) and (iii) of
Proposition 3.4. Obviously, wo(r) and wl(r) are written as

]

T
¢0(r,h‘(y,p°)) = {exp é Fh¥(y,p") a0 vy,

(3.27) wl(t,ht(Y.Po))

(2>

T T .
= —,g (exp 4, Fhl ¢y, p%rd0 v (T ,h" (v,p0)rde'.

So, ¢,(r) belongs to CE(Kn+1(tO)). Also, since W s a
linear differential operator in An+l(to), we can see that wl(r)
belongs to C(A™1c¢t )). Thus, @.(r) € &™) (5 = 0,1

0 0 j 0 0
are determined.

If we take v{(x) such that supp v<(+) is sufficiently small

around x = xo, we get from (ii) of Proposition 3.4 and (2.7)"°

(3.28) ||vl(t0,‘)l|



-1
llK@O(tO. Il + ox )

I

t
= ¢/ l(exp Re L7 eenliy,p%ra0 vy 12av? H12 4 o™t
An 0 tO
t0
tA

>3 (exp Re L © ren®(x%, %7401 ¢ fﬂ lviy)12ayr 72

4 0 Rn

ox” .
Hence, we obtain by (0.10) and (3.20)'

[fv.(t Sl 22 e otiveatl + ox™H Q.E.D

X0 8 0 T

Proof of Theorem'. Using the Legendre transformation, for

)

the Hamiltonian function H(X,p) defined by (0.5) we define the

Lagrangian function L(x,n) on the tangent bundle THE = inn
by
(3.29) L(x,n) = pn - Hx,p),

where p is expressed in terms of n by the formula

_ oH _ 1] il .
(3.30) n = ap(x,p) = p(g (x),j 5 1,2, ,n).

Then, it is easy to see that L({x,n) is written in the form

' = 1
(3.29) L(x,n) = 9 . gij(X)ninj

n
2
»Ji=1
The following two facts are well known in the theory of
analytical dynamics ( for example, see section 15 in [11 ). If

(X(t,x,p),P(t,x,p)) are the solutions of (0.6), we have

dX _ ed
(3.301) dt(t,X,p) = 8p(X(t,X,p),P(t,X,p))

and



d_ 9L  y dX, _ 9L .y dX, _ ;
(3.32) 43 8nj(x,dt) ox (Xogi) = O (1 < j < n).

The equation (3.32) is called Lagranges equations of motion.
Conversely, let X(t,x,p)> be the solutions of (3.32) with
initial data X(0,x,p) = x and %%(O,X,p) = %%(x,p), and set

' - oL , dX
(3.33) PCt,x,p) = 5 (X, ) -

Then, X(t,x,p),P(t,x,p)) are the solutions of (0.6).
Now, we can see that the equations (3.32) are also the

equations of geodesics on M

J d Y S -
. er (dt XQ(t))(dt Xk(t)) = 0

~ Mo

(3.32)" (g*)zx.(t) +
dt i ]

(1 < j £ n),

. n ..
where T3 are the Christoffel symbols (1/2) S g'd@ g . +
¢k - XQ ki

axngi - axigﬂk) ( for example, see pl67 in [14] ). Hence, it

follows from (0.8)' and (3.31) that

n t .
b3 ,g Re bJ(X(G,X,p))Pj(G,x,p)dG

t .
J
}; Re b (X(G,x,p))gjk(X(G,x,p))ka(O,x,P)

H
e XM3 -

where 7y denotes a geodesic {(X(0,x,p); 0 < 0 < t}.

Consequently, we can easily complete the proof from Theoremn.

Q.E.D.



4. Proof of Proposition 3.4. We shall first prove (i) and
(ii) of Proposition 3.4.

Since Q, includes (0,Kp) = (0,x,p0): x € u,) from

(3.11), KO is the empty set. Let @(r) = ¢(t,r') belong to

n+1(to)). Then, it follows from (3.11) and (3.19) that

cO(K
eO(O,r') = 1 on supp (0, ).

So, we get together with (3.156)"

Ko (0,x)
= X(QO,IKO)(eOQ)(O,X)
ikx~p0 0.1/2 0
(e /JK 0,x,Pp ) )(0,x,p ).
0
Since K is the empty set, IJ (O,X,po) =1 for x € U is
¢] KO 0]
valid from (2.9) as S, (x) = x-p’. Hence, we obtain (i).

in the same way to the proof of (i) we have

Km(to,x)

io(Qs)
= e X(QS,IKS)¢(tO,X).

This shows (ii) by Lemma 3.3 independently of the choice of real

constants O(Qj).

We shall prove (iii) of Proposition 3.4. Let X(Qj,I ) be

K.
J

the pre-canonical operator defined by (3.18). We shall first

consider Lx(x(Qj‘IK,)w(t’X)} for e@(r) € CO(Qj)‘ Here, we omit

J
the suffix j. Then, we get from (3.17)



9 o~
ax SK(rK(t,xK,.pK)) = pK,(rK(t,xK.,pK)),

K'

§____ _

Q—S (r (t,x P.)) + H(x - g——S (r.» g S (r,),p,) = 0

3t”K K "K'’ YK K’ SpK K K ’axK, K" K ' K )
We also have from (2.9) as SO(X) = x-p0

T 0.. _ 3 .y 0 0

(4.2) JK(t.h (y,p )) = ldet ay(XK,(r,y,p ),PK(t,y,p )R
at (r,ht(y,po)) € Q. Hence, if we apply Lemmas 1.1 - 1.5 to

LA{X(Q’IK)¢(Y’X)}’ we obtain in the similar way to the proof of

Theorem 8.4 in [8]

Proposition 4.1. Let o(r) € CO(Qj)’ Then, Lx{x(Qj’IKj)m(t’
x)} has the following asymptotic expression
“1.C1) NC1 -0, (9)
YICiIX) W le(r) + 2 (ia) 92 Q., I, dYo(rr»idr,x)
j . =2 iTK,

+ RI,N(Qj’I

(4.3) ﬂ(Qj,IK

Kj)@(t,x)

w(1)

for N =1,2,+-+, where is an operator defined by (3.21)

and Q(Q)(Qj,l ) (2 < § <N - 1) are linear differential

J
operators independent of X and N in 1r' € A: of order at most

K

9. We also have for the remainder terms
(4.4) max IR, (@, 1, do(t, Il = o™ Ny,
0<T<t NI By

Next, let Qi and Qj be connected open sets in (Qj}jio

such that Qi N Qj is not empty. Then, we shall study the

transformation formula from :K(Qi,lK ) to X(QJ.,IK ).

i J



We set up the decomposition into disjoint sets as in the
proof of Lemma 6.3 in [8]
{1,2,-+-,n} = avubucud
with the property
(4.5) K.l = auUb, Ki = c Uy d, Kj = a VU c, K3 = b U d.

Then, we have for ¢(r) € CO(;(Qi n Qj)

(4.6) ‘?k,x -p {X(Qi’IK.)w}(r’th’pK,)
K. K. i J J
J J
-1 .
= F o F {(exp 1xXS, (r))elr)
X’Xcﬁpc l’pb—’xb Ki
~-1/2
J., (r) _ }
Ki Ir—rK.(r,fo,pK.)
i i i
_ (lbl+lcly/2 . .
= (1/2n) Jr(exp 1A¢(xc,pb,t,xK3,ij))
-1/2
@(ryd, (r) |- dp, dx_,
Ki r~rK‘(t,fo,pK.) b e
1 1 1
where
(4.7) ¢ = ¢(xc,pb) = m(xc’pb;t’XK!’pK.)
J )
= —xc~pC + xb-pb + SK.(rK.(t’XKf’pK.))‘
_ i i i i
It follows from (4.1) and (4.5) that
b R ~
ax_ (XorPp? = Py * P (rg (T,Xg.,Py ),
(4.8) c i i i
9 _ o P.) = X, - X, (r, (T,Xy,»Py ))
Spb c' b b b K. *TKPFK, ‘
1 1 1
Take an open connected set Qij so that
(4.9) supp @(*) C Qij c Qij c Qi N Qj.
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Then, we may consider ¢(xc.pb;t,xK..pK ) in (4.6) as a function
J J

on the set

= {bl
(r,xK{,pKi) € Qij’ xb € R .

(4.10) {(Xc’pb;t‘ij’ij); rKI

icl
pC € R }.

We shall study the proof of Lemma 6.3 in [8] in more detail
mainly in order to obtain the estimate (4.15) below. We see from

(4.8) that a stationary point (xc,pb) of ¢(Xc’pb;t’xK3'ij)

on the set (4.10) is determined by

(4.11) xh = Xb(rK.(t’fo'pK.))’ pC = pc(rK.(t,xK!,pK‘)).
1 1 1 1 1

On the other hand, the equalities

(4.12) : xd = xd(rKi(t,xK{,pKi)), pa = pa(rKi(t,xKi,pKi))

always hold from (4.5). So, (4.11) is equivalent to

(4.11)° xKj = XKi(r ( )),

pK‘ = pK.(rK.(t’XK!’pK.))‘
J J 1 1 1
) are local coordinates on

K, ‘T Xk Pk,
1 1 1

Since (t’XK!’pK ) and (t,XK:,PK

i i J j
Qi N Qj respectively, (4.11)' is also equivalent to

1 J
Hence, we can see from (4.11)' that if and only if ¢(xc,pb;t,

(r ), D).

K.

ToXg Py
J J J

Py
1

xK..pK ) on (4.10) has a stationary point, (t,xK,,PK ) belongs
J J J ]

to the set

(4.13) {(t,x

) = (t(r),xxj(r),ij(r)); r € Qij).

K Pk,
J J



Also, we see from (4.5) and (4.11)'' that the stationary point of

—

w(xc,pb;t(r).xK3(r),ij(r)) (r € Qij) is determined by

(4.14) (Xc'pb) = (xc(r),pb(r)).
Moreover, we obtain the fact below from (4.11)' together with

(4.8). There exists a constant C0 > 0 such that if (t,xK.,pK )
’ i J

does not belong to the set (4.13), for any point in the set

(4.10) satisfying

rKi(t’XKi’pKi) € supp @(-)

we have
el . el
(4.15) Iax (Xc’pb’r’XK!’pK.)l + lSp
c J i b
2 2.1/2
> CO(I + |xbl + Ipcl ) .
Let (t,xK..pK ) be not contained in the set (4.13). Set T
Jj J
= %(l%ﬁ-lz |%9—|2)‘1(gz -gx * gm -g ) and let ‘T be the
c pb c c pb pb

transposed operator of T. Then, since the supports of

m(rK.(t’xK{’pKi

1 )) = @(rKi(t,xc,xd,pa,pb)) with respect to

variables (xd,pa) are compact, we get from (4.6) and (4.15) for

N' = 1,2,---
(4.16) l?A’XK by (KCQ , Ty D) (T, Xy, Py )
j j ! 1 ]
- Gz (Ibheleld /2 =Nt a0 LN

-1/2 l
J (r ~
Ki r—rK.(t,fo,pK.
1 i 1

)}dpbéxcl



(Ibl+icl)/2-N" 2 2.1/2 -N"*
< CN' hY {(1 + bel + Ipcl ) <xd><pa>}
. (lbl+lcl)y/2-N" 2 2.-N'/2
< CN' X (1 + IXK!' + IpK‘I ) ’
J J
where CN' and CN, are constants independent of (t'xxi’ij) #

{(r(r),ij(r),ij(r)); r € Qij} and X = 1.

Next, let r € §Ej' Then, we can easily obtain the following

two results in the similar way to the proof of Lemma 6.3 in [8].

First, we have from (4.7) and the definitions (3.16) of

SK (r;QQ) 2 = 1,1])
']
(4.17) @(xc(r),pb(r);t(r),xK!(r),pK‘(r))
] J
= SK‘(r;Qj).

J
Secondly, setting

8%

3”¢
2 dp, 8%
_ | 9x b e, ~ ~ o~ ~ ~
(4.18) Aji(r) = c (Xc(r),pb(r),t(r),xKi(r),ij(r)),
8% 8%

axcapb SpE
we have from (4.8) and the definitions (2.8) of JK (r;QQ)(Q = i,
[}
i)

(4.19) ldet A, . (r)f = J_ (r;Q.)/J, (r;Q.).
. Ji Kj j Ki i

Now, we see from (4.19) that we can apply the stationary phase

method to (4.6) with (< )y = (T(r), (r),ﬁK (r)). See
J

Xy Pk XK
J J J
Theorem 1.4 in [81, Theorem 2.4 in [2] or Theorem 7.7.6 in [3]

for the stationary phase method. Then, it follows from (4.14),
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(4.17) and (4.19) for N = 1,2,-++ that

(4.20) ?A,x Sp {K(Qi.IK.)w)(t(r),th(r),pK.(r))
K. K. i ] J

J J
(ibl+jcl)/2

= (X/2m) {exp ik@(xc(r),pb(r);t(r),ij(r),ij(r)))

{exp Ly sgn A, (r)}idet A..(r)/27ti_l/2 A—(lbl+ICl)/2
4 ji J1
N1
(1 + 2 2x £ 20(ry (T,Xy ., Py )
m=1 i i i
-1/2
J (r ) e~ _~ o~ +
Ki Ki t—r(r),fo—ij(r),pK.~pK_(r)
1 1 1 1
RZ:N(IKJ:IKi)¢(r) .
= (exp Bi sgn A..(r))(exp iAS. (rnd. oy V2% o«
4 ji Kj Kj
N-1
N AN .

2 (i v (Ip T De(r) + RZ’N(IK‘,IK‘)Q(r)

4=1 i i j i
and
(4.21) max IR} . (I I, Yor)l = o™ Ny

) = 2,N" 7K.’ K, ’
req. . j i
1]

where sgn Aji(r) denotes the signature of Aji(r)‘ ﬁm m = 1,2,
+**,N-1) are linear differential operators independent of X in
X € RlCl and p, € Rlbl of order at most 2m and V(l)(l , 1 )
C b Kj Ki
(2 = 1,2,--+,N-1) are linear differential operators independent

of X and N in r' € AE of order at most 2¢.
If we note that ¢(r) € C:;(Q.1 N Qj), we can combine (4.16)
and (4.20) with (4.21). We obtain

(4.22)  F (KQ,, I )

K. Pk, i
J J

)Q}(t’th’pK.
J J



= (exp Zi sgn A..(r)}(exp iAS, (r))J (r)“l/z{l +
4 ji Kj Kj
N-1
RN AN ')
2 (ix) v (I, ,1, )ieCr)| _ +
0= Kj Ki r—rK.(t,xK!,pK')
J J ]
(2)
R2,N(IK.’IK?Q(1’XK{’pK.)
] i ] i
and
(4.23) max 1IRSZ2(1. 1. Yect, -, )11 = o Ny,
2,N" K. K.
OSrStO B] 1

Here, sgn Aji(r) is constant on ﬁgj, because det Aji(r) = 0

on Qij and 5}j is connected. So, we set
(4.24) o(Q.,0.) =L sgn A..(r) (r €Q..).
i i 4 ji 1]
Operate ?-1 on both sides of (4.22) and apply Lemma 1.1
X, Py DXy
] ]

to the remainder term. Then, we have

Proposition 4.2. X(Q. ,I. )e(t,x) for @(r) € c‘;’(ni n Q.

K
1
has the another expression for N = 1,2,---
io(Qi,Q.) N-1 -0 (8)
(4.25) e 4 Q.1 Y{o(r) + 2 (ix) v (i , I Yp(r)}
i’ K. - K.’ K.
J 2=1 j i
(t,x). + RZ,N(IK.’IK.)¢(t’X)’
j i
where the remainder term RZ,N(IKJ,IKi)Q(t,X) satisfies
(4.26) max |IR, . (I ,1. dect, )1l = o Ny.
2,N""K.’ K.
OStStO i i

If we use Propositions 4.1 and 4.2, we can complete the proof
of Proposition 3.4 as follows.

First, we see from (4.25) that



io(Qi.Qj)
.)w(t,x) e X(Qj,IK‘)w + Rz,l(IK.

X(Qi.I
i i i i

K

and

io(Qj,Qi)
.)w(r,x) e x(Qi'IK.)Q + RZ,I(IK.'IK )Q

XK(Q.,I
] J i i J

K

for any o¢(r) € C:(Qi 0O Qj). So, we get from (4.26) and Lemma

_9 io(Qi,Q.)+io(Q.,Qi) 9
oM %) = 111 - e J J KR, T e, )1
i
iG(Qi,Q.)+iO(Q.,Q.)
= [l - e J ) {@(r)
-1/2 2
J.. (r) _ 317 dx,,dp
K, r=ry (T.xg..pg ) Ki K
1 1 1
for any o@(r) € Cz(Qi n Qj). Hence,
(4.27) oR.,0.) = -0(Q.,Q.)
i’ i’7]
is valid.
We shall determine real constants o(Qj) (1 £ j £ s) by
J
(4.28) o(Qj) = - g 0(Q,Q ).
k=1
We choosed {Qj}jio in section 3 so that if and only if Qj N Qm

is not empty, m 1is equal to j~-l, j or j+l. So, if Qj n Qm is
not empty, we have from (4.27)
(4.29) o(R.) - o(Q ) = 0o(Q ,Q.).

J m m ]

Using these O(Qj), et define K by (3.22).

We shall use Proposition 4.1. For the sake of simplicity we

set




N-1
(4.30) 2@, I ) = (i) Iy L 7S G QQ(Q)(Q.,IK ),
TN g=2 TR
which acts from Cz(Qj) to Cg(Qj). Then, we have for ¢@(r) €
o n+l
Co A (ty))

(4.31) L. (K> (T,x)

X
s io(Qj)
= > e LAKXKQ ., I, de.@)(T,x)
5=0 A IR
s io(Qj) s
= e X(Q.,1,)2.Q.,I, Ye.¢ + > R Q.,1_, Ye.Q.
. *"K. "N ' K. . 1,N K.
=0 ] J ) KJ ) i=0 ] KJ ]
Next, we also set for V(Q)(IK ,IK ) in Proposition 4.2
i i |
N-1 :
_ R D)
(4.32) Vg »1g ) = 1+ g (ix) ~v°° (Ip L Ig D,
i i 2=1 j i

which acts from C:(Qi nQo  to Cz(Qi N Q). Then, since wve

have from (3.19) for @(r) € C:(Qj n K“+1(t0))

S
> VN(IKj,IK ) (e @) (r)

m=0 m
s N-1
=+ S S o E® g 1 e 10y,
= K.” K m
m=0 4=1 j m
there exists for each j
N-1
(4.33) V@.,1,) =1+ 3 o WP 1)
N"7j Kj 0=1 i Kj

such that we have for any @(r) € c‘g(Qj n Kn+1(t0))

S
(4.34) « 2 V(I o Ip de }VN(QJ,IK‘)w(r)
m=0 J m ]
2(N-1) -
s« S ot V(Q)(Q.,IK Yle(r),
2=N J j
(8 ICAD) . . .
where V (Qj’IK ) and V (Qj’IK ) are linear differential
j J

operators in r' € Ag of order at most 2£ and 24£°'.respectively,
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Now, let @(r) € C;(Kn+l(to)). Then, if we note the function

)y, V. (I I, ) and the like

spaces on which operators X(ijl N Kj’ Km

K.
J
act, we can apply proposition 4.2 and (4.34) to (4.31) as follows.
We obtain

(4.35) L. (Kg) (t,x)

io(Q.) s _
e T x@.,1,0¢( 3 v (I, ,i. e IV.(Q.,I.)
0 J : - . m J
J m
2 ¢

n
M >

J

S
). -
BRI E

@N(Qj.l .
i J

K

=
V(Q)(Q.,I Y2,.(Q.,1
J Kj N3
iO(Qj)—iO(Qm,Qj)
= .Z e K(Qm,IK de VN(Qj,I R
l,m m ]
QN(Qj,I j)ej(p(t,x) + R&Q(I,X).

There, it follows from Lemma 3.3, Propositions 4.1 and 4.2 that

K

(4.36) max |IR\®CT, )11 = o Ny,

OStStO

If we use (3.19), (4.29), (4.30) and (4.33), we get from (4.35)

L, (Ke) (T, x)

io(Qm) s
e x(Qm,I e ‘2 v (Qj,I
0 m )=

i
nNMw >

2,.(Q2.,1., de.p(t,x) +
. N * K. ’
0 KJ j R,

RNw(t,x)

m

N-1
KO 3 (ix Qw(ﬂ)m y(T,x) + Rye(T,x),
0=1

which shows (3.23) and (3.24). Thus, we can complete the proof

of Proposition 3.4.

As was mentioned in Remark 0.3, Theorem in the present paper

- 42_



is generalized as follows.
L(1)

(4.37)
u(0,x) = uO(x),

where g3¥(t,x), b (t,x)

We consider the Cauchy problem
n
1

= 1 _ 1 jk
uCt,x) =+ 9, ult,x) > 9, (& (t,x)38_ uw) +

2 iVk=1 %j K

n .
S bJ(t.x)ax u + c(t,x)u = £(t,x),
j=1 J

and c¢(t,x) are complex vaued Cm

functions on R?+i. We assume that
(4.38) all ng(t,x) (j, k =1,2,,n) are real valued and
satisfy g3%(t,x) = g59¢t,x).

Here, we do not suppose even the ellipticity.

As in the proof of The
from t to T = At with

use the Taylor expansion,

VA(I,X) = u(t/x,x)
lzLil)Vl(t,X)
(4.3 | =P+ Hy'
(1207 H

orem, let make a change of a variable
a large parameter X 2 1., Then, if we

(4.37) is written in the form for

2 .
dexoap oy« S o H Y (oux, 2oy +
X . ] X
i=1
1)(t,x,A—IDX;A)]vl(t,x) = f(e/2,%),

vl(O,x) = uo(x),

where
(L _ 1
HO (X,p) = 2
J
(4.39) H(l)(t,x,p) = -

n i K

2 g’ (0,X)P.P»

k=1 J
n ) n jk
S bJ(O,X)pj + % S —g-§~~(o,x>pk +
j:l j,k:'l j

LRARLRAS ISP AL RBETS 24



. n ik .
)L T 3 gf— (0,30P;p,,
i, k=1
(1)

H, " (t,x,p) belongs to TZ(RQ) and we have

<

BN

b

_l . . -
3 (Tt,X, X Dx,x)m( yit «

(4.40) sup {{H
0<Lt<T, 1<x

for any ¢(x) € ¥ and any T > 0.

Let (X(t,x,p),P(t,x,p)) be the solutions of (0.6) as

H(1)

0 (x,p) and set 8(x,p) > 0 by

H{x,p) =
B(x,p) = sup {t; IX0,x,p)i + IP@,x,p)l < », 0 < @8 < T).
Then, we obtain

Theorem 4.3. It is necessary for the Cauchy problem (4.37)
to be L2 well posed on [O,TO] or [TO,O] for a T0 # 0 that the

inequality

o . _
sup | .g Re bJ(O,X(G,x,p))Pj(G,x,p)dGI <

(x,p)ERZD,

0<p<B(x,p)
holds.

it Mo

1

Proof. We can prove Theorem 4.3 in the same way to the proof
of Theorem. There, we note that F(x,p) defined by (3.20) is

replaced by

1 82“31) (1)
5 Tr %9 (x,p) - H1 (t,x,p)
n . i n 3 jk
= 3 bJ(O,x)pj -5 T > 5%—(O,x)pjpk.
j=1 jr.k=1
Take a  (x°,p%) € R2™ and a ty (0 <ty < 8(x%,0%)). Then,
if vx) is a Cm function with sufficiently small compact

support around x = xO, we can construct the asymptotic solution
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Vx(t'X) satisfying

1 (1) -1

max [I[x D + Hy "(x,x D +
0<Lt<t
0
2 -3, (1) -1 -3
ZZ i e  ex AT DIV (e 03t = oY,
i=1 ] X A
iAx~pO
vk(O,x) = e v{(x)
in the corresponding form to (3.26). We can easily see for this

Vx(t’X) from (4.40) that

3

(1 _ -
vl(r, Y = ox )

max HL/l

OSrstO
is valid. Using such vl(r,x), since ng(t,x) are real valued
functions, we can complete the proof of Theorem 4.3 in the same

way to the proof of Theorem. Q.E.D.



Appendix. Here, we shall show that if at least one of ng(x)

(i,k =1,2,+++,n) is not constant, in almost cases the Hamil ton-
Jacobi equation atm + H(x,g% = 0 has no smooth solution on the

global interval [O,tol. Let ((X{(t,x,p),P(1,x,p)) be the
solutions of (0.6). Then, to show it, we have only to prove that

the family of rays {X(t,x,p)} n for any fixed p very often
X€ER

has a focal point on [O,tO], if we use the terminology in optics.

Here, a point (t,X{(t,%X,p)) € Rn+1 is called a focal point, if
det %ﬁ(t,x,p) = 0. Though we consider only the simple examles,

the result for them indicates the above.

We consider the Hamiltonian function
1 2 ik
(A.1)  Hx,p) = = 3 g% x0p.p.,
2 i k=1 itk

where we éssume that
all ng(x) are real valued and satisfy ng(x) = ng(x).
We suppose the assumption (%):

(i) We have for any (x,p) € R2n

n k 2
(A.2) | S g’ x)p.p, | < &lpl
i k=1 1

with a positive constant § independent of (x,p) € Rzn.

(ii) There exists a family of real valued C2 functions

n
(yj(x)}j:1 such that

.. . t
3y ij il oy . _
(A.3) ax(x)(g (x),qu,z, ,N) ex(x) = 1 or |

holds at each point x € Rn, where y(x) = (yl(x),"',yn(x)),



t ay

§‘)L(x) denotes the transposed matrix of ax(x) and I the

ax

identity matrix.

Remark A.l1. Let n = 1, and let gll(x) be a real valued Cl

function and be bounded function which does not vanish on Rl.

X 1
Set yx) =f(; 11
Ig (6)

172 d0. Then, the assmption (%) is

automatically satisfied.

Let (X(t,x,p),P(t,x,p)) be the solutions of the canonical

equations (0.6) for H(x,p) defined by (A.1). Then, we get

Theorem A.l. Assume (*). Then, the following (i) and (ii)

are equivalent.

(i) There exists a t # 0 such that det %ﬁ(t,xo,p) does
not vanish for any p € Rn.
agld o
(ii) ox% (X)) = 0 holds for all i, j -and k.
Kk

We first introduce the result on the global homeomorphism

from [13] without proof.

Theorem A.2 (Theorem 1.22 in [131). Let f be a Cl mapping
R" 5 x —> f(x) = (£,(x), 7+, £ (X)) € R". If there exists the

inverse matrix gi(x)nl of %ﬁ(x) for each x € Rn and we have
sup (13207 < -,
_ X€R
then, f is a homeomorphism of R" onto R". Here, {(1Ql] for

a matrix Q denotes the operator norm of Q as the mapping from

R" to gD



Proof of Theorem A.l. Since we may replace ¢ by -t, in

place of (A.3) we can assume

t

' oy R P y. -
(A.3) ax (X2 (& T 1,2, ) U0 = T

It is easily seen from the assymptions (A.2) and (A.3)' that we
can apply Theorem A.2 to the mapping : R" 39 X —> y(X) € R". That
is, the above mapping is-a diffeomorpism of Hn onto Rn. There,

we denote the inverse mapping by the mapping : R“-a y ——f> x(y) =

(xl(y),"-,xn(y)) € R". Then, since we have
n Sxk
2} = 2 S(y)d_ ,
Yi k=1 9 *x
one can define the canonical transformation ¢ from Rinp onto
2n
R b
Y,q y
a.4) 0 : RIM 3 (x,p) —> (y(x0),pE(y0)) € R2D .
XsP 9y y,q

Then, the inverse canonical transformation ®_1 is given by

, -1, ,2n Iy 2n
(A.4) Ry’q ? 3,2 —> XY ,g (x(y))) € Rx,p

See section 4 in [8] or chapter 9 in [l1] for the theory of the
canonical transformations. Using this canonical transformation &,
H(x,p) defined by (A.l1) is given from the assumption (A.3)' by
the formula

2.

1 2 ik ]
(A.5) H(x,p) = 5 2 g’ (x)p.p, = 5 lal
i k=1 J

It is well known in the theory of the analytical dynamics
that canonical transformations map the solutions of the canonical

equations into the other ones. Consequently, noting (A.5), we get
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a6 xet,x2, 00, P, x%, 0% = (x(y%+ 1% .q° %ﬁ(x(y°+tq°))),
where (yo,qo) = ¢(x0,p0). So, we have
a6y xt,x%, 0% = xiyx® + tp° gz(y(x M.
. . ax 0 0 . .
Then, it is easy to see that det ax (t,x ,p ) # O is equivalent
to
0 # det [I + t{§—5 p? gxcycx ))}g (vx®11
ax Y
= det [I + tM(x , P )].
. g 0 . .
The (i,j) component of M(x ,p’) is given by
n 9% Ix
(A.T) 5 p? &= Euyhn Q(y(xo))
k 0 oy oy
k,4=1 8xl 1
8 b'd oy 9x
4] kK 0 0
= 2 p “‘““*(y(x T (X )7 (y(x ))
K.%,m k 9y 8y QXQ Ay
2
n 9°x
0 K 4]
= 2 P (y(x")).
k=1 k 3y Syj
0 0 . . . . . Q 0
So, M(x ,p ) is a real symmetric matrix and satisfies M{(x ,up )
= uM(XO,pO) for o € R. Consequently, (i) in Theorem A.l is
. 0 0 0 n C
equivalent to Mx',p ) = 0 for any p € R, which is also
equivalent to
Szxk 0
(A.8) 5;;5;;(y(x Yy = 0 (i, j, k =1,2," , )
from (A.7).
We have only to prove that (A.8) is equivalent to (ii) in

Theorem A.1. Assume (A.8). Then,
ij L1d ... - 9x
(g (x),qu,z. ,n) = dy

49

t

(y(x)) 2

ay(Y(X))y

since we have from (A.3)°



it follows that (ii) in Theorem A.l is valid. Conversely, assume

(ii) in Thearem A.1l. Then, we have from (A.3)'

8  ,9x Sx
(A.9) w0y F5(y)} = 0 (k = 1,2,°*-,n).
Oy 9y oy y=y (x%)
We may assume y(xo) = Q. Set
(A.10) 2(y) = x(¥) Q—(O) 1
. y 3y .

Then, since we have

9z - 9x 4,1 3x
ay (V) = 5y (0 5,0,

we get from (A.9)

2 2z 9z

0 = ayk{ay(y) ey(y)}l
_ 9 29z | 3 82
i |id i id . _ .
(ajk'jal’z’ «,n) + (a1k 341’2' ,n) (k = 1,2, ,n),
i 8
where ajk = 5;;5;T zi(y)|y=0 . So,
J
' i i
(A.9) ajk + aki = 0

for all i, j and k are valid. Consequently, for any fixed i,

] and k we have

i i _ J k _ k i _
ajk oy, = 0, o . + ®yg = o, aij oy, T 0.

There, if we add the first equality to the third one, we obtain
i i _ i
ajk = 0 by the second one and ajk = akj’ Hence, we can see

together with (A.10) that (A.8) is valid.
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