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SYNOPSIS

Cyclotron resonance in bismutbth has been carefully inves-
tigated using microwaves of 50 GHz at liq.He temperature in
the Azbel'-Kaner configuration by the field derivative method.
Anomalous behaviour of the Azbel'-Kaner type c¢yclotron resonance
is cobserved. The reflection peak is extremely weak at the
fundamental but strong at the second harmonic, and the line
shape of the harmonic is quite complicated for the hole cyclotrén
resonances which occur in a weakly nonlocal condivion, especially
in the case when the hole cyclotron frequency is less than the
electron-hole hybrid frequency. This is explaied if a longitu-
dinal magnetoplasma excitation and a transverse excitation (Zerne
stein mode and &):n&h} are coupled with the electromagnetic
waves in a magnetoplasma. Further, the strength of the nth
harmonic cyclotron resonance decreases rapidly as the order
increases for electrons even though (0T was 1arge,A Eor a field
lower than the electron-hole hybrid resonance, electromagnetic
waves do not penetrate into the plasma and the coupling is extreme-
ly weak. In this case the coupled mode corresponds to the so-
called high frequency waves. The sbsorpbtion is due to this
coupled mode. These phenomena are guite different from those

for metals which are explaisecd by the exbtremely nonlocal theory.
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I, INTRODUCTION
Electromagnetic waves are usually reflected from the sur-
face of high conductivity materials when the freguency &) is
lower than the plasma frequencyajp. However, since Galt and
Buchsbaum1>showed that in cerbtain compensated conductor (such
as bismuth) magnetoéhydrodynamic or Alfven waves could also be
propagated as in gas plasmas, many experimental and theoretical
investigationsg)“15)have been performed on nmagnetoplasmas in
bismuth. smith and his coworkers investigated the some prop-
erties of the local magnetoplasmas under a classical skin effecs
comdition?) They observed a dielectric anomaly, hybrid resonance,
tilted orbit cyclobtron resonance, and Alfven waves.5>9)‘12) Such
a wave is a disturbance which is harmonic or nearly harmonic in
both time and space, and which is able to propagate deep into the
plasmas under classical skin effect condition. Further, quantum
effects have been investigated by The detalled analysis of Alfven
waves.qO}-qg)The typical phase wvelocity of these waves is very
low. In fact they are lower than the Fermi velocities of car-
riers. The nonlocal effects for spherical and ellipsoidal Fermi
surfaces were analyzed by cyclobron damping of Alfven waves for
Faraday configuration.qB)It was found that the effects for both
cases were different.
14)

The phenomena related to the anomalous skin effect such

as Azbeli-Kaner cyclotron resonance?s)surface skipping orbit,16)"19)
and size effect of Gantmakhergo)appear in the extremely nonlocal
limit quAQ%)}ﬂ, which is equivalent to R»&. Hebel has dis-
cussed a slightly anomalous skin effect when the r.f. electric

(1)



filelds of the microwaves (708Hz) are parallel to the static mag-
netic field ( E,p//B,, ordinary configuration).>” He found that
the cyclotron resonance due to the dipole transitions arising from
the transverse excitation occuredfor the fundamental in this case.
However, in the extraordinary configuration (ErfLBo) the Alfven
waves can propagate for @), > w’®, and cyclotron resonances
occur for electrons under the condition que/a)cez_ﬂ. Purther-
more the hole cyclotron resonances in bismuth occur in a weakly
nonlocal condition, especially in the case that the hole cyclotron
frequency is less than the electron-hole hybrid frequency ﬁ@;&;.
In this case the longitudinal component of the dielectric constant
should play an important role.

In this thesis the waves under a local, an extremely non-
local, and a weakly nonlocal conditions are comprehensively treated.
Under a weakly nonlocal condition we shall present both the exper-
imental and the calculation for the anomalous line shape of the
hole cyclotron resonances. Especially in the extraordinary con-
figuration, our data indicate that the reflection peak near the
second harmonic is the strongest of the peaks associated with either
the fundamental or other harmonics. In addition, the line shape
of the reflection peak may be quite complicated. This behaviour
is quite different from those for mebtals which occur under extremely
nonlocal limit with large values of 4T, in which case the line
shapes depend upon the structure of the Fermi surface as was

21 22)

explained by Chambers” '‘and experimentally shown by HMoore.
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1T, DLEMENTS OF THE THEORY OF THE MAGHETOPLASMAS IN S0LIDS
a. .bsorption and Surface Impedance

‘he observable electromagnetic properties of a wmetal are de-
scribed by the surface impedance #(0) defined as

E B (O)
e R . 1 M A (1)

Z =R + 1iX =
c Hy ¢ EL(0)

where Etand Ht are the tangential components of f‘and'ﬁ evaluated
at the surface of a metal (y-z plane). The real part R of Z
determines the power absorption by the metal. The rate of energy
loss per unit area normal to the metal surface (x=0) is given by

the time average of the real part of the Poynting vector 5 which

magnitude is given by

| = 3% [Re(HxE)|= (4% mEC , (2)

0,

i
when the fieldsare evaluated at x=+0.

Now consider Maxwell's equations

)
div B(r,t) = 0, (3a)
div D(Z,t) = 0, (3b)
rot 3@,t) =1 $=B(F,1), (3¢)

rot B(F,5) = 2 {2 BE,0) + s TE,0} . (GO
From the divergence equabtions it follows that in a plane wave of
the form'i?=‘ﬁgxp(ia‘§ -iwt ), the B-field of the wave is trans-
verse, but the E-field is not always so.

In the fourbth Maxwell's equabtion the conduction current J
igs assumed to be linearly zelated to electric field E. In general,

5.t

the relation between J and o is nonlocal even when linear. We

(3)



shall assume that J is proporitional wo % through a tensor conduc-
tivity which is a function of the freguency w .

We assume the specular reflection of the carriers at the sur-
face. If we consider the remaining half of space (xu<0) filled
with another piece of the same metal, the carriers in each half
will have the same history as if the reflection were specular.

We must only provide the proper electric field at x=0, The gra-
dient of this artificial field will have a cusp at x=0, because
the field is damped in both +x directions;

£ . = 2
x-'t)x=+0 R ax_Et>x=—O . )

Considering this condition, we express each term as a fourier

transformation and find

2

20 Ly

o = = L!-‘Ttib\) E'E”‘»' 5
-G _._;q + —gé Sl“C}_ R ?—“ Jq + ﬁ),)tb)xﬁ-e-o' (7)

The transport equation gives us the relation JQ=(TQEq.

We obtain the electric field in The metal

b0 igx
23 0 j dq = , (8)

Jl
oA -q2 + ""7 él 4“10&,0_
C

1
i

E(x) =

Q’C‘J

The surface impedance 7 is found from Egs. (1) and (&)

«w oo j
7 = S5 fd_q (7
) 2, We ml«JQ\ ’
c
where Q‘q = EFZZ(q) for ordinary mode, or
2
Ue ()
g”% = WV(QD + 4H 4 4 for extraordinary node.
¢ o] _I + Ghﬁr( )

(&)



If gp satisfies the dispersion relation, the denominator

2_ W 4TI
T e Ej c2 q
inside the metal are proportional to exp(iggx).

is equal to zero for g=qo, and the fields

5)



b. Conductivity Tensor for Spatial Dispersion
The current density J is given by
3? 2ejy§f(r v t)d3 \ (8)
n
where f(?{?,t) is the distribution function in phase space for
carriers of the charge e, velocity'?, and position'?i When the
electromagnetic field is absent, the distribution function reduces
to the thermal equilibrium Fermi-Dirac function Fo(v, ) (E§
being the Fermi energy ),and does not depend explicitly upon the
static magnetic field.ﬁ? When a self-consistent electromagnetic
field is present, the distribution function is determined from
Boltzmand s equation:  ( ¢ =00, )

. - :F -4 _ QF«?—fﬁ (1)
§E4§ + \rwyudf -+ 04:2@ o+ =eb S€ -

By a method due to ChamberseB)the distribution function is given

by

°g¢a¢'—~—£ﬁ@%ﬁ 28T )+ & (7040447 a0

Por an arbitrary Fermi surface, the elements of the magneto-

- ; ‘ see Appendix A)
conductivity have the form( ApP L)

@P(:\),w;wc)e 5 So\a g‘: ;‘:’ngﬁga\"e\m& P . &)

S%Mcfﬁ p 4 o (S g0 g*}clwv)d@}.uq)

2o

For simplicity, we shall assume that the energy surfaces are

()



spherical. The properties of the magnetoplasmas are not changed

by this simplification in the Vo 1““, 41flburat10n.]9>

We arrive atv the following expression of the conductivity

tensor 5 r/ g- \ %%
< 3G, > '_3_ ' D

T === ZZ XK ] Ja (XA €) |x Y Jn (Xammb )
T %0 Lleme L

A df
=+ t(nw, — uo*ql\f.cmé)
where X=q vp/w), and (To~ne‘r/m.

The guantum mechanical discussions for the conductivity have been

24)

given by lMattis and Dresselhauss, by Z"ryanov,“5’by dyryanov and

26)and by ¢uinn and Eodriguez.gT) When the carriers

Kalashinikov,
are degenerate and the Landau level spacings are much less than
the Fermi energy (EF >> kT,'ﬁu%Q, the components of the conduc-
tivity tensor reduce to the expressions given above. The numer-
ator for each n is proportional to the oscillator strength for
single particle excitations in the field of wave number g.

For the propagation in a transverse magnetic field (g is
perpendicular to H), the components of the conductivity for each

25
kind of carriers are given by (¢//%, H//z)27)28’

. + 2 \
T = 22 57 W6 1) (133)
X as=w [+ ((NW,— wW)T y
Sa (X)
Uyy = 3G Z: — 3b)

pewo | (MW, ~w)T ;

(")



30, 2 tn BalX)

T = -, =
vITI T [ +i(nw~w)T

and

h=-p [~ (‘(Y\ W= w) T 4

where

(_,] )Hl X2m+2n

il
8n(X) = 2

w=0 nm!(m+2n)!(2m+2n+1)

2
50 (0) = (2r 2, ()

§: (-1)m2(m+n+1)X2m+2n

m=c mi(m+2n)!(Cm+2n+1) (2o+2n4+3)

mn=v m!(m+2n)!(2m+2n+1) (Cm+2n+3)

(i3¢)

Ga3d)

(14a)

, (14Db)

(14c)

Using the conductivity formalism we shall discuss in the

following sections the properties of the magneto plasmas: the

local, the extremely nonlocal, and the weakly nonlocal plasmas.

(8)
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c. Alfven Waves (Local) ~——— Hizh Field Approximation ( X=0 )

~
7

When the wave frequency () is much smaller than the cyclo-
tron frequencies a)cj (j: electrons or holes), the motion of
charge carriers about the lines of force of the magnetic field
is adiabatic for the closed orbit in the absence of the waves.

his means that the carriers are tied to the lines of force and

=

must move with then. It follows that the amplitude of oscillation

- - - . =+ - = .
induced by the electric field E of the waves in a direction at

—
P

right angles to-ﬁ and £ is the same for all carriers and is
independent of their mass. It also follows, therefore, that the
electric current in the all direction is zero in the above ap-
proximation if the plasma 1s compensated, because then equal
densities of positive and negative charge oscillate in phase
with equal amplitudes. But there is mass motion in the Hall
direction and it is the kinetic energy of this mass motion which
determines the dispersion of the waves.gg}
In the above approximation (which is equivalent to qu/aJc<3:1;
i.es RKE), we may put X = 0 in Egs. (13) and (14).  Then
from the Eq, (6) the field E in the metal is given by the follow-
ing equation;
E(x) = Ejexp(iqox) + Efexp(iqox), (15)
where qg = 00281/02 + 4Tic/ c:2 U—G=O ( this is a dispersion
relation). But for finite WT we can calculatve the field from
from og. (6), and the absorption from Eq. (7), because the
integral function has no pole on real axils of ¢ and E'(0) is

not zero. The dispersion relations for Voigt configuration

(1)



are ziven by

< );._ < + Elg_(l\)ct"wl)(wc’\l““ k))') + (-wl‘t.""" w?’f‘\ )l Ue)

B (1)
£ (o™ wor -

isspecially for the extraordinary mode, the dispersion relation
a3 2
under the conditions of our experiment (a$>>w ) is

(& %)

2 a2
E'd l('df;e “Od'\l — wl /

AT N (Mt ) SHE For e >> W07 (1)

I

This mode is called the Alfven waves under local conditions and
has the properbies of the longitudinal (Wews=i ) and transverse
(mw@;odﬁ Waves. The Alfven speed &? k for high fields is inde-
pendent of frequency, but depends on the mass density n(me+mh)

and is therefore different for different direction in an anisotropic

solid and varies for the change in carrier density and Fermi
. . o A T i miarae 12)
energy due to the gquanbtum effects in high magnetic fields,



d. Azbel'-ianer Oyclotron Resonance —--- Loy Field Approximation
(qR>1)
In the limit vyq/w »1 (R»> &), it is found from the asymp-
totic formula of Egs. (14) that

- 2 :
a o g ?) W ne 1 1 - lbdt
yyl@) T 0, () == o coth(-~——-—-—--~~--~~--wcz T, (20)

which shows periodic oscillabtions provided that LT, T > 1. In
the same limit the surface impedance in the extremely anomalous

region with specular reflection is

v T E /l/a 1 - lw.c 48N
72(B) = Z(0)*tanh PR ST\ e . 2
(H) (0) - ta ( ez ) (21)

These expressions are valid for qu/OJc7 n (n: order of the cy-
clotron harmonics); when n exceeds qu/&)c, gn(}{) and s, (X) be-

come small. If we take the asympbtotic formula for g, (X) and

Sn
etc,, we commit an error of the form of the final term in the

following equation

g 8, (X) 1 T 1 - 10T
37 = = v —= coth(——=—=T)
== 1+ i(nw, -w)T QT &@cz
%0 (X)ax
23 5" x Ton . (22)
Xp=—0 1 + i(nl‘«)c -0)T

The last term is nearly equal to the first term for X<n, but
for X>n this term is of the order of x~3/2, 28)

At the resonance W/W, = n, both the real and imaginary
parts of the surface impedance are minimum at the case of a
guadratic dispersion law and of an infinite &)'Z./'E’) The

attenuation due to the collisions makes the impedance converges

to the zero magnetic field value.

11



e. Honlocal HMagnetoplasma Ixcitations

4

The longitudinal excitation, which corresponds to the collec-
tive mode of a plasma, occurs when the condition:

&y -

XX

= Zch-, = 0, (a//x, B//z) (23)

4

is fulfilled,
the transverse excitabion,vhich corresponds bto the single

particle excitation,is given by the following equations:

522251"4 ZQ— 0y (25)

1l

from these relations we can determine the dispersion relations
for those excitations 1f the frequency and wave number dependent
dielectric functions shown in Zgs. (13) are employed.

The transverse excitation occurs at oozncoc. For the lon-
gitudinal excitation we leave the lowest order Term for the lon-
3itudinal component of the effective dielectric functionsin a long
wavelength approximation (X<1). We will consider the case when
the electron cyclotron frequency is much larger than the hole
cyclotron frequency. In this case the electrons contribute to
the dielectric function with a termvarying smoothly as a function

of the electron cyclotron frequency, so that effects of electrons

can be included in £o. The longitudinal excitation near the
lower harmonics of hole cyclotron frequency can be obtained from
the followingz ecuation in the approximation including the terms

up to XE,

(12)



2 2

£ £ W P W
= i * 2 B

- W) Wweg - w

=0, (26)

where the oscillator strengths 0551 and a)§2 are given by

%2

(051=005 (1= X5/5), and &) 2= WEX7/5. (27)

The solutions of Zg. (26) for &JS/E})j7&)§ are given by
2 2 2 2 ~a
08 =W/E,+ (W2 + 3a%E/5, (28)

W2 = (2,2 - 3q%v2/5. (29)

The higher mode LJ+ is well-known magnetoplasma excitabion which
xists even for g=0 (hybrid plasma mode or plasma shifted cyclotron

Y

resonance ). The lower mode {) , which can exist only for finite g,

- ¥ o . - . - !
corresponds to the Bernstein mode in a nondegenerate plasma.ao 31)
This excitation (J- appears only in the vicinity of the second

harmonic in a long wavelength approximation up to the order of Kg.

1t is dinteresting o note that for this mode the zroup velocity

and the phase velocity are in opposite directions, Further the
longitudinal excitations appear only in the vicinity of the

1q

second harmonic cyclotron frecuency and the hybrid plasma mode,

Prradito) !

- o , o
because U}54>?(4}§, and A)in>&309- if the next higher order

terms up to X' are included, the longitudinal excitations near

the third harmonic appear. In general, the longitudinal exci-
. P . B s T2 S ;
tations neaxr the nth harmonic appear at X ~, because the

effective plasma freguency W is smaller than (J;. (Y\Z‘l)

(13)



£, Coupling of the [lectromagnetic Waves with Nonlocal

Magunetoplasna Mode

Electronmagnetic waves couple with the transverse and the
longitudinal excitations when the static magnetic field and wave
vector are perpendicular to each other. Cne of these coupled
mode is polarized along the magnetic field, and this meode is pure
Uransverse because there is no magnetoresistance (ordinary mode),
The other mode is polarized in the plane normal to the magnetic
field, and this mode changes from the longitudinal to the trans-
verse waves (extraordinary mode),

The dispersion relations of these coupled modes are obtained

from the Maxwell's eguations and g~dependent dielectric functions,

The results are given by

C ‘
&aF = €,, (30)
for the ordinary mode, and
2
2 €
¢qy = 1
(za) €yy * 5 ) (31)
XX

for the extraordinary mode.

Let us now consider the spectra of the electromagnetic
excitations in solid state plasma with an equal number of electrons
and holes. _ Wave propagation was observed in the vicinity of
Azbel'-Kaner cyclotron resonance, which is called‘high freguency
wave, for potassium.Bg) In contrast to voth the helicon and
Alfven waves, its phase velocity(v =W/k) scarecely depends on
the velocity of the electromagnetic waves but dces depend on the

Fermi velocity of carriers., In this sense the plasma waves which

are called high frequency waves are like sound waves whereas the

(14)



the helicon and Alfven waves are electromaghetic waves. The
dispersion relation is given by
2
Wol 2
Cq? - gl X 1 G2
W W 5(1 = W5/ y

near the fundamental cyclotron resonance for X<« on the ordinary

mode, But the extraordinary mode is very complicated because
This mode couples with longitudinal excitation and transverse

excitation shown in Zgs. (23) and (24, respectively. We have

4

solved Eg. (31) for fictitous semimetal having spherical electron and

L'r

ole energy surfaces and being m <«m,. The conductivity functions were

expanded up to XEQ and the roots were found graphically as shown

[’

in Pig. 1. The model chosn here to simulate bismuth with magnetic
field parallel to the bisectrix axis has the following feabtures:

1. electron mass me=0.02m

o» nole mass my,=0.21m ,

2. carrier densities for electrons and hcoles = 2.9x1017cm“%
3. Fermi velocities v?e=9=107cm/sec, vﬁh;5v107cm/seca

In Fig. 2 the result of the calculation in the neighbourhood of
the second harmonic of {the hole cyclotron resonance are shown as
solid lines. The microwave frequency is assumed to be 52.5 GHz,
and the effect of carrier scattering is neglected. In Fig, 2 the
longitudinal excitation, transverse excitation, and local Alfven
waves for the Voigt configuration (éxtraordinary mode ; are also
shown as broken lines, The solid line indicates the coupling of
the Alfven waves with longitudinal or {transverse excitations.
Strong microwave rellection would be expected to occur between

voints A and B, since in this region the real wave number does not

(15)



exist as a consequence of the assumption of an infinite relaxation
time. The gap between A and B is nearly equal to O.quvghmhc/e/a).
For the weakly nonlocal magnetoplasma (X<<1), such a strong
reflection peak is not expected to occur for either the fundamental
or for the third and higher harmonics, and the anomaly in the dis-
persion relation near the fundamental is negligibly small because
the plasma frequency Copl is much larger than the cyclotron frequency.
The longitudinal excitation appears only in the viecinity of the
second harmonic as discussed in Sec.IT e.

As the transerse excitation 5"'

vy = 0 occurs at each cyclotron

harmonic, the dispersion relation for the btransverse wavesis

2
W= 1w, —%)BRE ol (33)
for a short wavelength approgimation. In the long wavelength
approximation the transverse escitations appear 1if the higher
order Germs are included. However, all the transverse excitations
disappear at the lowest order expansion {XZ), since the longitudinal
electric field creates a space charge which shields out the

transverse resonances in the lowest order.aa)

(16)



z. The Burface Quanbtum State

The surface impedance was calculated by a perbturbative technique

16=-17)
for maznetic surface

pan

‘

first used by R. 4. Prange and D, . He
N
4/,:.

<D

AN

3

levels and by H. D. Drew and U, Strom or corrections to the
line-shave theory™ q)due to retardatvion effect, For unperturbed
fields the exponential functions were used to approximate the
anomalous skin effect fields. While we refer the serious reader

A P
to the detailed theoretical discussion by “ranze and Hee ' 37), we

sketeh here the surface quantum states to provide the necessary

background for the present experiments. In the weak magnetic fields

(O to a few ven Ce), the microwave fields penetrate to a character—

istic skin depth on the order of 1O_Pcm, but the cyclotron radius R
is typically on the order of 1O—Ecm. Only those for which the
electrons are moving essentially parallel to the surface, will make
an important contribution to the surface currents out of bthe entire
spectrun of possitle collidingz orbits., Je restrict our attenbion

Go electrons moving along the surface with velocity v, approximately

./

equal to vy, the Permi velocity. lMoreover, we may take Ve to be

essentially comstant throughout each cycle of the skipping motion

and consequently the electrons see the potential

evyix (x2_0),

Ye are therefore concerned with a particle confined in a

v(X) )
(34)

i

triangular potential well. The electrons go arround between the
surface and the classical turning point of ifts perlodic motion,

From the Bohr- Sommerfeld guantization rule we obtdin

(17)



. A -
2(x_~x)

§i§xdx = 2 J’PF o dx = (n - #)h, (35)
where P has been expressed in terms of the Fermi momentum PF and
appropriate geometrical factors. R represents the radius of the
skipping trajectory. The phase factor of % is chosen appropriately
for the case of a single turning point of the motion. The possible
energy states 5 (as measured from the Fermi energy EF) are described
in terms of quantum nmechanically allowed values of the maximum
depth of penetration x, as

€, = ev,Hx_. (z6)

Evaluating the integral and solving for x we obtain

%y = (o -,@h"* 27 i Ran P2, o

Where R is the cyclotron radius, K the radius of curvature of the
Fermi surface in K-space. Consequently, we obtain the energy-level

scheme for the surface gtates

[T - %>|)’f”<e2h)"/5n2/5vgx""/5. (38) |

Since we have made use of the Bohr-Sommerfeld rule in our derivation,
the energy level scheme in Eq. (38) differs from the expression

derived by strict argument by about 1% for the lowest-lying 1evel.18)

Prange, Nee and Xoch derived the surface impedance due to the

. o 6-17) s
surface state making use of a perturbation method.qo 7) Their

result is given by

az _ . 2 [z (© )_]2 O(?m“([—lz,H,g)
di - g(om)2 Sdki L0 = e T & T

/

(18)



ITI. PROPERTIES OF BISMUTH

Bismuth belongs to the fifth group of the periodic table and
have a rhombohedral crystal structure. This structure can be
derived from a face centered cubic structure by applying an internal
displacement of atoms and a shear distorbion both along the body
diagonal directions. The Brillouin zone for this structure and

and several important symmetry points are shown in ‘the following.

3 i re
.LleLt.f.‘k.

Tﬁgo\rw.g az&i <

! . , /
oYy ax:s
/

X

Blsmuth is a typical semimetal which has carrier concentrations
of 2.9X1017 cm‘gfor electrons and holes, and is a useful material
to investigate the magnetoplasmas in solids because of a long
relaxation time. The Fermi surfaces of frec carriers in biswmuth
have been exbtensively studled by various methods. Probable
locations of Fermi surfaces in the Brillouin are L at the centres
of the six pseudohexagonal faces for the six half-ellipsoids for

electrons and T, centres of the perfect hexagonal faces for the two

(19)



half-ellipsocids for holes. Shoenberg's work on the de Haas-van Alphen
effect has shown that one of the ellipsoids for electrons can be

descrived in the crystallographic axis systenm bj
3 g J

o - LS
2m E* = PteP, (40)
where
_ [ WMy O 0
<A PN
O(e‘ = VV\Q. = 0 VV\&? Maz (41)

0 M}}E Wz
is the effective mass tensor, E* the energy, and P is the quasi~
momentum. The other two ellipsoids are generated by rotating the
ellipsoid through +120° about the trigonal axis,
The hole band is made up of an ellipsoid of revolution aboub

the trigonal axis, it is

em (B - E ) = PP, (42)
where
AT = My T 0 My O (43
[y
0 o Mg

is the effective mass, Eb the band overlap energy, and L = Eb the

hole energy.

In the table 1, the paramerters which have been obtained up to

. . s Appendix B
now as well as those in the present experiments are listed, " PPeRAL

(20)



IV. EXPERIMENTAL ASPECTS
a. Preparation of Sample

Comercially available bismuth metals of nominal purity of
99.9999% were zone refined about thirty times by multizones in
a2 high purity carbon boat and a vacuum higher than 8X157 torrs.
The ingot was crystalized with a long furnace having a sharp beme—
perature gradient at the front part, and smoother gradient at
middle and rear part, travelling in the same direction as the
refining furnaces with the speed of 3 cm/hour. The carbon boat
had been baked at 600°C for a few days. The crystal was anealed
for one day at 20006, thien The temperature was decreased at a
rate of 20°C/hour.

The crystal ingot is cleaved in bthe trigonal plane, When
the surface is chemically polished by 30% nitric acid solufbion,
several s2tch lines parallel to the binary axis appear. By this
method, the crystalographic axes were determined. The crystal
was cut in the form of parallel plate or wedge shape with its
thickness 0.3-3 mm. The block was planed using a spark planer,
and the surfaces were made flat very carefully. Furvher, iregularities
on the surface was removed by chemical polishing (30% nitric acid)

. 36)

and by electropolishing.

(21)
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0. Measuring Technique and Experimental Apparatus

The experimental was performed with standard microwave
technigue at freguencies near 50 GHz,. Magnetic field derivative
of surface impedance as a function of magnetic fields was observed
by detecting the change in ¢ or in the resonant frequency of a
TE 117 cylindrical cavity of which the bismuth sample is mounted
on a choke joint in a horizontal plate forming the small parst
of one end wall. In order to observe cyclobron resonances we
took care of that the sample and the cavity were in contact.
But the sumple was mounted to the joint with silicon grease
softly not to distort the crystal. The cavity and the sample
were in bthe exchange gas so as not to be impressed in liquid
helium because the disturbance due to the change of the ligquid
helium surface in the wave guide was supressed. The nmicrowave
power from a stabilized klystron was branched at a magic tee,
and a part of the power was transmitted Lo the cavity while
the other part was fed into a matched load. The reflected power
from the cavity was detected at the fourth arm of the magic tee
by a crystal detector. The output voltage of the crystal was
fed into a linear amplifier, a narrow band amplifier and then
a phase sensitive detector, and recorded as a function of magnetic
field. The modulation magnetic field is parallel to the d.c.
magnetic field. The d.c. magnetic fiel@@as measured by the
Hall probe calibrated by the nuclear magnetic resonances of .
nrovons and lithiums and by the electron spin resonance of
DPPH from 500 gauss to 25 kG. The measurement of the magnetic fields

from zero gauss to 400 gauss was done with the Hall probe and

L

(22)
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excliting current. The field value due to those two methods
differ less than 1.5%. Hall voltage and current sroducing the
magnetic field are linearly proportional to magnevic fields

The cavity has two orthozonal and degenerate modes in which
the microwave currents across the wall are pervendicular to each
otner. In the cavity one mode is excited about ten times stronger
than the other, as was chiecked by the electron spin resonance

signal of DPPH,

The experimental response is the field derivative of absorption

hal

or reflected power from the sample which is nearly proportional to
the field derivative of the real part of surface impedance Z

for c/4T D4, The temperature of the specimen was kXept during

the ex ment at 1.6—~—"1. 7OK. A temperature increase to 4,2%
resulted in a broadening of the peaks and a reduction in their
amplitude, corresponding to a reduction of the relaxation time

by a factor 4/3, differing between different groups of carriers
and different sections of the Fermi surface. The position of

the resonances was not affected by the change in temperafure,

(23)
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c. HMeagsurementofl the Wave Number
When the dispersion relation for wT=00 has a real solution,

we can consider the metal or semimetal to be a dielectric mediun.

gnd =TH, (44

is satisfied, where a4 i3 Che wave number in a sample, 4 is the

i is an intGeger. This condition corresponds

st

sample Thickness and

to the interference of the wave reflected nultiply between the

]

plane parallel faces of the sample (Fabry-Perot inbterference

condition). Since q . varies as a function of magnetic fields

»

for magnetonlasnma waves (Alfven waves), a series of inter

Hz
©
3
®
P
(¢
@

fringes is observed.
In the simplest case where the dispersion relation (u%??j?&ft

1) is given by

o = < I .

LO=&)d - H . 11

in the Eq.(19) and the carrier density Y ngmy is indevpendent of

d oo Y = -
= N =YL 5 (45)

magnetic fields, the interference appears periodically with

respect to the ilnverse magnetic field strength as shown in Figs.
% and 9, The marited deviation from the straight line at high

field is explained in terms of the quantum variation of the
ENETTY o ) Further, the deviation of the field lower than the
second harmonic of holes is explained in terms of {the coupling

of the Alfven wave mode to the magneto-acoustic wave.
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v, EXPERIMENTAL RESULTS AND DISCUSSIONS

figs. 4-8 show the field derivabive of the gsurface impedance
Tfor the various configurations. Pig. 4 is obbained from the

-y
configuration that ¢ is along a binary axis, B along the bisectrix
. e _ - . . . -
axis and L, along the trigonal axis The Fabry-Perot interferenc

pattern due to the Alfven waves and "Azbel'=-Kaner cyclotron
gher harmonics of the holes are
attern of the dimensional resonances (Fabry-—

Zerot These interference pabtterns can be solved o obtain

L)

Q

the wave number g of the Alfven waves using the condition (44).

The wave number g obbtained in this manner is plobbted in Figs.

9 and 10 as a function of magnetic field. The experimental points

are in an excellent agreement with the sclid line obtained by

nonlocal anisobtropic dielectric functions fox bisauth. e have
neglected the off-diagonal elements of the dielectric tensor
arising from the tilting of the electron energy surfaces, since

they have very lititle effects for £Q"GGDC%§D'Q)L on our resulis.

mede and the

The dispersion relationsfor the longitudina

Alfven waves in the local limit are shown in this figure as
broken lines. The calculation was based on Egs. (23) and (31).

Near the second harmonic the wave length of the Alfven waves 1s

about 15 times as large as bthe cyclotron radius. The coupling

(26)



of the btransverse excitation with Alfven waves cannot be observed,
since X is much less than one in this case. If the specimen is
thick and wedge-shaped, the Fabry-Perot interference pattern
disappears and only the change of the surface impedance is ob-
erved as shown in #ig. 5 because the damping (imaginary part

of the wave number) near the resonance is large. e observe

a weal peak near the fundamental and The absorption due to a

dielectric anomaly on the low field side in addition to the cyclotron
harmonics already seen in Fig. 4. As the static magnebtic field
is rotated from the bisectrix to the trigonal axis, the resonance
line shape near the second harmonic becomes complex with a satelite
peak on the low field side as shown in Fig. 7. This peak corre-~
sponds to a transverse excitation which becomes stronger with
increasing X. Due to the characteristic mass anisobropy of
bismuth, X near the second harmonic becomes large as the magnetic
field is rotated from the bisectrix to the trigonal axis. The
conditions are the same for 0/ trl”Oﬁul, J//b¢ ectrix and'?? //
binary axis. ’ig. 8 shows the line shape in the vicinity of the

4 =

second harmonic for Hthis configuration. - Since X near th

- —

resonance is still larger than that in Fig. 5, the peaks due

i

to the "transverse"” and "longitudinal® resonance separate further

. - . -2 .
as shown Dy arrovws,. For the ordinary mode where Sop 18 parallel
L

to the magnetic field, the fundamental cyclotron resonance 1is

nis

(SN

gtronger than the second harmonic as shown in Fig. ©. In

magnetic fileld direction, the crystal symmetry is poor and the

St

extraord 1narg mode is not totally exciuded. Conzeguently the



oscillatory variation of the reflected power due to the
ference of Alfven waves 1s observed in This orilentation
The absorption is due to the Transverse waves which are

: 32)

- waves for the ordinary configuration.,” ’/



b. Electrons (Cyclotron Resonance)
Pigs. 11-13 show the field derivative of the surface impedance

for various configurations. Hesonance patterns were observed

1egetive values as shown in the upper part of fig. 11. In the
niddle part of Fig. 11 the magnetic field values of the peak

' -

positions of the cyclotron harmonics are skelbc

frmid

ned as a function
of reciprocals of the harmonic order in the configurabtion bthat

a//binary, B//bisectrix, and E P//t«_oona‘ axis. The curve

displays a hysbteresils loop just as is observed in ferromagnetisn.

As the magnetlc field ciclically decreased, the curve becomes

linear with practically no change in slope at the origin, Turther,
the magnetic field is changed from positive to nezative direction
passing throuzh Tthe zerc, and then the cyclotron resonsnces atb

low magnetic fields have ficlle structures and ars weal. In

this case Tthe internsl total maznetic fields ~ don't change smooth—

R

-

13 . Cn the other hand, when the magnetic Tilelds are changed

many btimes on one side or decreased, The inbternal total magnetic

e oy e it -y ~ RS o
CIETl. They are as follows;
1. some ordered states due

% e oy ey R Ty
tne surface laver becsuse the
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'\"" T TURTTR UTT ATV NV AUy T
CALCUDARTICY OF LIHE SHOAPE OF CYoLOTRon

-

ATy TYTOUT
AND DIEC

In this section we shall calculate the line shape of the

reflection or the avbsorption of Tthe nicrowaves in terms of the

surface impedance and compare the calculated line shapes with

St

the experimental results presented in Sec. V. Hebel dicussed

l—J

the microwave absorption due to a ghtly anomalous sgkin effect

by calculating the surface conductivity and refractive index from

]
the dispersion relation for the weakly nonlocal case.“> His
method is applicable both for difuse and specular reflection,

]

unfortunately it is limited to the ordinary mode and to The extremng-
ly weakly nonlocal case wherc R<<X1/|q\, and the difference be-
tween the specular and diffuse is livtle. Therefore we have
employed the standard method of calculating the surface impedance,
which has been exbtensively used in mebals, bubt we have considered

»

both the long and short wavelength approximations. In the case
of metals the density of carriers is so high tha ]q\Rj2>1 and
the dielectric functions can be expanded asymptotically in bterms of
1/aR. In this case the inbtegrand of BEg. (7) has no pole in the

region of long wavelength, and can be analytically inte gza‘ed

AV
o

-+
Nt

as was done by Azbel'~Kaner 15) and other authors.
bismuth, however, the carriers are compensated and thelr densities
are so low bthat the intesrand has poles in Gthe region of long

or an infinite relazxation btime.

wavelength
result of the caleulation for the second haymonic is conared with

. ﬂ' - . !

. - . s . .
atclon; ¢//binary, B//bisectrix and

the erxperiment in the confizum



-
Erf//tr1501al axis. In this calculation only the lowest order

) were btaken into account but the result devends negligibly

upon the upper 1limit of the integration and the higher order berms
for this second harmonic, The transverse resonance at the secon
harmonic appears bubt is very weak as shown in Fig. 15. JTor the

third harmonic shown in Fig, 15 the convergence is very poor and
cive to the higher order terms, since the ilfven waves

couple with Tthe longitudinal or transverse mode at ¢lir~v1 around

as discussed in Sec. II(d) dbut the coupling occurs in the region
where ¢R<n. Therefore, for the integration from O to 4/R, the
integrand was expanded up Go Kao, and for that from 4/R to infinity,
the asympitotic formula was employed. The resullt reproduces the

experimental curve fairly well, when we assumed that [U{=100. This

relaxation time coincides with the obtained one for the dispersion

relation.
. . L= _ . .
When G//trlvonal B/Vbl trix and ﬁrf//olnaLy axis, gR is

nearly equal to unity in the neighbourhood of the second harmonic

due to the anisotropy of the hole mass. In this case the transverse
and the longitudinal excitations are clearly separated. The result
of the calculation for the surface impedance is shown in Fig. 16,
which should be compared with the observed derivative curve shown
fig. 8. The arrows in Figs. 2 and 8 are the "transverse" and
"longitudinal®™ resonances, respectively (points A and B). The
field intervals delineated by arrows on the experimental and

calculated curves agree very well (see Figs. 8 and 16). However,

TN
%
o
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the experimental relative intensity of these two peaks is reversed
rom the calculated intensity. Although the peak for the trans-

verse resonance of the experiment is stronger, the high field

edge (B) of the absorption curve is steeper than the low field

edge (A) in the calculation. This discrepancy probably results

both from the failure of the assumption that the carriers reflect
specularly at the surface,and the neglect of the off-diagonal
elements, arising from the tilting effect of the electron Fermi
surfaces, of the dielectric tensor because in this case the
cyclobron resonance is near Uhe nybrid resonance. If we attribute
the series of anomalies in Tthe reflection curve to the harmonics

a

of the Azbel'-Kane cyclobron resonance, we obtain the value (0.213

o

. . > . . .
iO.OOE)mO as the cyclotron mass for holes for B//bisecctrix axis.

Hdowever, according to the above discussion, we analyze the line
shape including the shift of peaks from the position of the exact
creclotron harmonics. The mass value determined in this manner

is (0.21020.002)m,. The difference between bLhese two masses is
greater than one standard deviation.
Yhen bthe nolarization of the microwaves is rotated

N

cenbtre of ©The anom-
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extraordinary to ordine

aly at the second harmonic shifts to the higbher fileld side as shown
in Fizg,.17. Since the transverse resonance domlnant in
the ordinary configuration is on Ghe lower field side compared

- . - . . ~

: ey e oS el a4y n . gl Al o Y~ A P a4 e
with tie longitudinal resonance which is dominant for the extra-

ordinar); conilguration at the weakly nonlocal limit, the rTesonac
would shiaft to the lower field side with rotation of The micro-

A 4.
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have concluded

for the resonance in the ordinary configurati

he mass of the exbrenmum orbit. The 1imi

O]

ot

—
s o K - " p .~ . . £ 2. - . N - .
estimated to be (0.217+0.00%)m_  for B//bisectrix from this exvmeriment.
The mizing of the exbraordinary mode in the oxdinary confisuration

cen be neslected for The cyclotron resonance, since the calculated

: PO I O N - M o~ o - E-] I gy w2y
#inally we discuss the cyclotron resonance of electrons, “he
coupling of Che elecctromagne waves with the longitudinal or

. N -5
1Gions occurs in the region wiere XnNdn for B//

oisectrix. For the calculation of the surface LMﬂeuance, he
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enployed for vhat from 10/R to infinity. In Fig. 19, the result

f the calculation for the extraordinary configuration (gy/binary,
B//oisectrix) is shown. This is to be compared with the experimental
curve in Pig. 12. In Fig. 19 The positions of the resonances

for the light electrons, the heavy electrons and the electron-
electron hybrid are indicated with le, he and e-ehy, respectively
(11=0.0091n,, mpe=0.019%m5).  The real part of the surface
impedance, which is proporblonal to an absorpbion, has structure

near the each resonance and the peaks are atv btze field higher than
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the each resonance, but the experimental is simpl

field iz not so good as assumed 1in thae

kand, the absorption peaks for the ordinary configuration occur a¥b
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each electron cyclobron resonance as shown in the calculation

P R gt Ty . B Rt s L. » -
for the holes in ¥ 18. The exnerimental result is zhown in
Fig.i%, This curve iz more complicated sthan the curve for the

cbraordinary mode in |l 12.  The strength of

cyclotron resonances decreases rapidly as the harmonic order in-
creases for both configurations. The extra-structure in the ordinary
configuration is due to the combined resonances. The spin splitvt-

E o DA . 2 e Y . 3 L} o - cx 3 y e} - & \
ing racwor Llz the same as obbained by osmith, Baralf and xoweil@Sl

) T ool ER o -
GIC LF0ILC Iesoenang

than vhe ordinary configuration as shown in Figs. 12 and 13. One

of the rcasons may come from neglect of the tilting of electron
rermi surfaces in tThe calculation. The eigen-nmodes beconme nmixbure

of ordinar; and extraordinary modes due bto the tilting of the

the electron enerzy surfaces.

““i,)#
Takinz into account of the difference of assignment of

resonance points for the extrasordinary and ordinary configurations

)

as discussed above, we obbained the cyclotron masses of electrons
at extremum orbit (extraordinary) as well as limiting point (

ordinary) as shown 1n Table 1. 1the effect of hysteresis was

assumed to give a constant shift of magnetic field.

Ty L2 ol

For some crystal orientation we observed high frequency
waves as shown in Fig.20 Some of bthe magnetic surface statbe

T

resonances were observed for B//bisectrix axis as shown in Fig. 27,



This structure is the same as the observed one in ref, 18.
The line shapes and the sbtrength of the cyclotron resonances,

re sensltlve Ho the surface
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the dielectric anomaly and hybrid resonance
are insensitive. Pven when we could not observe the surface

states though the surface were Ifresh, we used the same relaxation

wave aumber of the coupled modes in Fig. 10 and from the line
shape of tChe interference pabtterns due To the Alfven waves,

in order to analyse the line shape. AT Ghe low magnetic field

the relaxabtion time becomes short. Rather nice fit of the line
shape between tlheory and experiment shows that the relxation time
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CONCLUSIONS

The cyclotron resonance in bismuth is understoed in terms of the coupl-
ing of electromagnetic waves with a {ongitudinal magnetoplasma excitation
and a transverse excitation. Considering on the line shape of the calcu-

lation, we determine the cyclotron effective mass. ( Table 1 )
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Appendix A (Conductivity)

spersion which is defined 1n the Cartesian ordinate {(0123%) b¥

[

2Eng = A Pt o, P+ o PR 2 B Pt Anlas Pa Ty + 205, T P,

=
Ity

he cyclotron mass M

olor D along the 03 axis is

o ;o i
HC = j’V\a /( 0‘00()_ ~— D‘(u )/L >

the ellipsold volume V in monmentum space is

i ) 4 % d\ d;\]). dsl i <I:T 3/
. 4 ! ] o N \
Vv = %!CZEFVV‘“?//‘%L oy olas =T<2tﬁMu)l/D/L
3"0(;; 0(,)_3 Qz?)‘j <

%)
t
o

I

e
by
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arrier density then reads

Wnen the magnetic field is not along a prinecipal axis of
the ellipsoild, the real space trajectory iz the resulbant of a
uniform motion alony the magretic Tield and of an ¢lliptical
trajectory in a plane perpendicular o the field., The velocity

. a 4

components and Tthe momentum component p, are (¢=wt)

V/I = (
"4'2 = (2
(

*K
' . A .4 %
COS‘Fd = (1 - dii/@iﬁi;)ﬂ‘7 San 1)(1 = Ogiz /(O(‘O(L),D,
%
p, = (2 Op/mp)’” cos 6

69)



" Ay Ry Sy .
where - ‘ .
Vl = Jdp oy hsy / (57(\ da— din ) )
. 7
‘*3\ %oy °L3

/bL= (olz'i\;" Ollzd-n,’)/ (0(\0‘}_"'0{:;.),
1) = (iday = oy %) [ Cobioky — o ),

and
somparing the ecupressions for HC, n,p ,vq,vi,an& v, with the
pherical case, we obbain

similar expressions in ref, 28 for the spher
with angular

L

e . o e \ s
vitv Tensor in berms of the tensor @

the conducti
ial exploration parameter X relevant vo the
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Appendix B ( Cyclotron Mass )

If we assume the effective mass tensor is given by

PUEN [ W WMy, by,

¥ /

VV\ = [ W’lz Mﬂ- W1z;

\ W\':‘ MZ? VV}B? i s 4-.7)

The cyclotron effective mass is determined by

PN —  ded -3

det (W) T mhb =0

where xf = fiEL-;— and B is a resonance field for electromag-

me jw o
netic waves of frequency ).
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Flgure Captions

Fig.1 For the extraordinary mode, we expand the effective conductivity
for fictitous semimetal having spherical electron and hole energy surfaces.
We can find the root of the dispersion relation by the cross pointsof

q2 and £.% as a function of q. e¥- £y EQ/EXL

Fig.2 Plot of the wave number for the coupled mode near the second harmonic
of the hole cyclotron resonance as a function of maznetic fields for the

fictitous semimetal.

Fig.3 Microwave absortion from a bismuth single crystal as a function of
magnetic field ( derivatiye curve ). “37/binany,72//bisectrix,
?gif//trigonal axis; f=46.94@Hz, T=1.6OK, d=2.035£0.005mm. 'The peak at
16.75KG is the electron spin resonance of DPPH, the peak at 1.79KG is
"the second harmonic cyclotron resonance" (longitudinal excitation).

The periodic interference with respect to the inverse magnetic fleld is

“due to the Alfven waves.

Fig.lL Microwave reflection from a slab of a bismuth single crystal as a
- —
function of magnetic field ( derivative curve ). q//binary, B{/bisectrix,
ekl
E //trigonal axis; f=52.50Hz, T=1.6%K. The sample thickness d is

0.715+0.003mm.

Fig.5 Microwave reflection from a wedge-shaped bismuth single crystal as

a function of magnetic field ( derivative curve ). 67/binary,

(64}



-—
B//bisectrix axis; f=52.0GHz. The sample has a wedge angle of 3 degrees.

Pig.6 Microwave reflection from a slab of a bismuth single crystal as a
function of magnetic field ( derivative curve ). q//binary,

Eif//‘é?/bisectrix axls, f=52.5GHz, d=0.4110.002mn.

Fg.7 Microwave reflection from a wedge-shaped bismuth single crystal as
a function of magnetic field ( derivative curve ). '37/binary axis,
5}=27O, £=52.00Hz, where & is the angle between bisectrix axis and

magnetic field ( yz-plane ).

Fig.8 Microwave reflection from a bismuth single crystal as a function of
"y -
magnetic field ( derivative curve ). q//trigonal, B//bisectrix,
o}
Er /binary axis; £=52.5GHz, T=1.6OK, d=2mm. The arrows A and B co-

rrespond to the arrows A and B in Fig. 2 and in Fig. 11.

Fig.9 Dispersion relation of electromagnetic waves for L46.9UGHz as a
function of magnetic fields. Open cilrcles are the experimental points

obtained from interference patterns. Solid line is a calculated dispersion

relation.

Fig.10 Dispersion relation of electromagnetic waves for f=52.5GHz in the
vicinity of the second harmonic (1970 Gauss ) and the fundamental ( 3940
Gauss ) of the hole cyclotron resonances. The solid lines are the calcu-
lated curves for the electromagnetic waves for {7 =100 coupled with

longitudinal excitations ( nonlocal Alfven waves ), and the broken lines

PaeN
Oy

\J7

ot



are the calculated curves for: Alfven waves in the local regime and the
longitudinal excitation t)_ ( nonlocal ) for wT = (vo. Dots are the

experimental points obtained from interference patterns.

Flg.12 Microwave reflection from a slab of a bismuth single crystal as a
)
function of magnetic field ( derivative curve ). G//binary, B//bisectrix,

—
Erf//trigonal axis,and =50.3CGHz.

Fig.13 Microwave reflection from a slab of a bismuth single crystal as a
function of magnetic field ( derivative curve ). 73//binary,

-3 >
B//Erf//bisectrix axis and f=50.3GHz.

Fig. 1l Real part of the surface impedance of magnetic fleld derivative as
a function of magnetic field. The solid line represents the experimental
curve for the microwave reflection in the vicinity of the second harmonic
of the hole cyclotron resonance. The dotted line is the calculated line
shape assuming ¢ = 100 and retaining terms up to the order of X2.
The calculated curve Has not significantly altered even if higher order

terms were retained as shown in Fig. 15.
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Fig.15 Real rart of surface impedance ( calculated ) as a function of mag-

netic field for c_f//binary, ﬁ/&isectrix, E;f//trigonal axis, =52.5GHz,

£ T = 100. The dotted line is the calculated curve for the real paal
of the surface impedance in the long wavelength approximation for
X<

§. The solid line represents the curve cbtained by adding the

contribution for X Z 4 in the short wavelength approximation to the

upbper result.

Pig.16 Real part of surface impedance (calculated ) as a function of mag-

netic field, for T?/trigonal, gB%//bisectrix, Eif//binary axis, =52.5GHz
and w<(= 100. The solid line is the calculated curve for the real part
of the surface impedance obtained by adding the iong and the short wave-
length approximations. The arrows A ans B correspond to the arrows in
Fig. 7 respectively and to A and B in Fig. 2.

=t

Fig.17 Shift of anomalies with the angle @ © between Ez;f and B

s

e

(q//binary,
B//oisectrix axis ). Ordinate M is H, (& )/H, (90), where H,( 6 ) is

the middle point of the anomaly near the second harmomic measured

relative to the anomaly in extraordinaty configuration.

Fig.18 The real part of the surface inpedance in the long wave-length
approximation (gqR < 2) as a function of magnetic field near the funda-
mental and the second harmonic cyclotron rescnance of the holes for

q//oinary, E*//Ej //bisectrix axis, £=52.50Hz, W = 100.

Pig.19 The real part of the surface impedance as a function of magnetic

e



el ey ity
field, for q//binary, B//bisectrix, E_o//trgonal axis, £=52.5GHz and
LOC = 50. The line shape has structure because in the extraordinary mode

there may be two modes which are called high frequency waves.

Fig.20 Microwave reflection from a slab of a blsmuth single cyystal as a
function of magnetic field ( derivative curve )ﬁ;//binary, B//a

( the angle between Z and bisectrix is 40° ), £=50.3GHz and d=0.713mm.

Fig.21 Microwave reflection from a slab of a bismuth single crystal as a

function of magnetic fiedd ( derivative curve )—Ef//bjmary, E//bisectrix.
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