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1. Introduction

Let G=(V,E) be a graph (finite undirected, possibly
with multiple edges but without loops), and let V=V(G),
E=E(G) be the sets of vertices and edges of G respectively.
In this paper a path has no repeated edges, and we permit
paths with one wvertex and no edges. For two distinct
vertices x,y, let lﬂx,y)=2€§x,y) be the maximum number of
edge—dis joint paths between x and y, and let 2A(x,x)=00,

We first consider the following problem.

Let (s,,t;)y.0.,(s,,tc) be pairs (not necessarily

distinct) of vertices of G. When is the following true ?

(1.1) There exist edge-disjoint paths P, ,...,P such

that F’; has ends S.,t; (1 <i k).

Seymour [10] and Thomassen [12] characterized such
graphs when k=2, and Seymour [181 when S, eSSt ety
take only three distinct values.

Our result is the following

Theorem 1. Suppose that s,,s,,3;,t,,t,,t; are vertices
of a graph G. If for each i=1,2,3,
2(s;,t: )23,
then there exist edge—disjoint paths'ﬂ P, sF of 6, such

that ﬂ has ends s, and t; (i=1,2,3).



If xﬂs;,ti)g_z for some i, then the conclusion does not

always hold. Figure 1 gives a counterexample.

Q
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Figure 1.
For a positive integer k, let g(k) be the smallest
integer such that for every g(k)—edge—connected graph and
for every vertices Sy seeesScaty e,y of the graph, (1.1)

holds. Thomassen [123 conjectured the following.

Conjecture. For each odd integer k>» 1, g(k)=k, and

for each even integer k> 2, g(k)=k+1.

If k is even then g(k)> k (see £121), It follows easily
from Menger'é theorem that g(k) { 2k-1, thus g(1)=1, g(2)=3;
and Cypher [1] proved g(4)< é and g{(5) 7. As a corollary of

Theorem 1 we have the following.

Corollary. g(3)=3.



The second problem we consider is the multicommodity
flow problem.

Suppose that each edge e€ E has a real-valued capacity
w({e)> 8, and each path has a positive value. We assume that
w=1l and each path has value 1 when there is no explanation.
For a positive numberd , paths (P, P denote paths of value
X »1 respectively. We say that a set of paths oPF ,...,%F,
is feasible if for each edge ec¢E,

> A L wled,
ie(i\eeE(Pi)}
where E(Pi) is the set of edges of a .

For two vertices x,y and a real number 70, a flow F of
value q between x and y is a set of paths oF ,...,dnPn
between x and ¥y such that d\+...+ dn=q. When o,s...sdn are
all integers (half-integers), F is called an integer (half-
integer) flow. We say that a set of flows F, ,...,F is
feasible if the set of paths of F, ,...,Fx is feasible.

Now the multicommodity flow problem is as follows.

Let (s,,t,),.00 (s sts) be pairs of vertices of G, as
before, and suppose that qiz_e (11 k) are real-valued

demands. When is the following true ?

(1.2) There exist feasible flows F, ,...,F , such that Fi

has ends s. and t. and value q; (1< i< k.

Remark. When k=3, w=1, and q‘.=1 (1£i£ 3), Theorem 1



implies that (1.2) is true if }Ks;,t:)2_3 (11 3), and

then the flows may be chosen as integer flows.

For a set XCV, let 'B(X)='3q.(X)_C__E be the set of edges
with one end in X and the other in V-X, and let

DCX)=D(X) € €1,2,...,k) be
Cil 1£i<k, Xals;,t; ¢ P#(V-XIn{s,,t: 3.

It is clear that if (1.2) is true, then the following holds.

(1.3) For each XCV,
2 we) > 3 a; .
e € 2(X) 1 eD(X)

Note that J  w(e)=[200| if w1, and J  a,=|D(X)|
e €d(X) ieD(X)
if qi=1 for any 1i.

Our second result is the following

Theorem 2. Suppose that G is a graph and w is integer—

valued, and that k=3, q,=qz=q3=1. Then (1.2) and (1.3) are

equivalent.

Moreover if (1.3) holds, then the flows F; in (1.2) may

be chosen as half-integer flows.

(1.4) In general (1.2) and (1.3) are not equivalent, but

in the following cases they are equivalent.



(1.4.1) k=1 (Ford and Fulkerson [21).
(1.4.2) k=2 (Hu £33 and Seymour [{81)

(1.4.3) k=5 , t:=s;+ (i=1,2,3,4) and t.=s, (Papernov

'
£71.
(1.4.4) k=6, and (s,,t,)s+.0,(8,,t;) correspond to

the six pairs of a set of four vertices (Papernov [7] and

Seymour [91]).

(1.4.5) S| TS, T .. =8, and Sipy Tee TSy (obvious extention
of (1.4.2)).
(1.4.6) The graph (V,E\J(ei,...,ek}) is planar, where

the edge e. has ends s, and t, (1{if k) (Seymour [111).
(1.4.7) G is planar and can be drawn in the plane so
that s,,.0048¢st;s:4.5t are all on the boundary of the
infinite face (Okamura and Seymour [5]).
(1.4.8) G is planar and can be drawn in the plane so
that SiseeesS; st seeist, are all on the boundary of a face

and sj+(,.,sx,t seeerty are all on the boundary of the

J+ 1
infinite face (Okamura [61).
(1.4.9) G 1s planar and can be drawn in the plane so

that S;. seeesS, st sty ..., t, are all on the boundary of the

i
infinite face, and t,=...=t; (Okamura L61).

Moreover if (1.3) and the following (1.5) hold in each
case except (1.4.3), or if (1.3) holds and w, q, are even-—

integer valued in the case (1.4.3), then the flows F; of

(1.2) may be chosen as integer flows.



(1.5) w and q, are integer-valued, and for each vertex
x eV,
2: w(e) ~ EZ a.
e €a(x) ieD(x)

is even.

(1.4.1),...,€(1.4.5) are all the configurations of
(s;,t.) for which (1.2) and (1.3) are equivalent for all
graphs G and all Wy Q. (see [91). UWhen q;>08 (1£iK3), the
case of Theorem 2 is the only case for which (1.2) and (1.3)
are equivalent for all graphs G and all w ,(s;,ti). Figure 1
gives a counterexample with q,=2,q9,=q,=1.

Notations and definitions. We call SCE an n—cut if
ISI=n and S=o(X) for some XCV such that <X> (which is the
subgraph induced by X) and <V-X> are both connected; and an
n—cut 9(X) is called nontrivial if [X|22 and|V-XI|2> 2,
trivial otherwise. For two vertices x,y a path PLx,y] or a
path [Cx,y] denotes a path between x and y, and let xy be an
edge with ends x,y, and let d(x,y)=dajx,y) be the distance
between x and y. If vertices x,y belong to a path P, then
P(x,y) denotes the subpath of P between x and y. For a
vertex x deg(x)=degeﬁx) denotes the degree of x, and we let
N(x)=Nq_(x) be {ye V| xye E)., For a set XCV and an edge e,
we denote graphs <V-X>, (V,E-e) by G-X, G—e respectively.
For a set XC&V (SCE) and an element xeV (ecE), we denote

XU{x> (SU{e)) by XUx (SUe).



2. Proof of Theorem 1.

In this section disjoint means edge-disjoint. We require

the following lemmas.

Lemma 2.1. Suppose that s,,s,,t,,t, are vertices of a
graph G. If A(s,,t;)23 and A(s,,t, )21, then G contains

disjoint paths [s ,t,] and [s,,t, 3.

Proof. Since n(s,,t, )2 3, G contains disjoint paths
Pils,,t,1,P,Cs,,t, ] and R, Ls,,t,;]. G contains a path
a_Esl,tlj. There exist vertices x,ye:V(R*) such that
Py (s, ,x) and Py (ty,y) are disjoint from P ,F, ,P; . Choose x,y
with this property such that R+(sz,x),P4(t2,y) have the
maximum length respectively. If x or y ¢ V(P,)UV(PIYJV(Pj),
then x=t,or y=s,, and so the result follows. We may
therefore assume that xe V(P,) and y eV(P;) (i=2 or 3). When
i=2 (i=3), let F. be the path obtained by combining P, (s,,x),
P, (x,¥) and P, (¥,t,) (R+(sz,x),ﬁz(x,s,),P3(s,,y) and
P+(y,t1)). Now P, and P, are required paths of G.

Lemma 2.2. If G is 3-regular 3-edge—connected graph with
no nontrivial 3-cut and with 4 {|VIL 8, then G is K,,K; ; ,

a cube or the graph in Figure 2.



Figure 2.

Proof. Since G is 3-regular 3-edge-connected, G has no
multiple edges. Thus if |V[=4, then G is K,. If IVI> 4,
then G has no cycle of length three. If (VI=6, then let
V=0x; ,+405%g2. We may let N(x  )={x,,x3,%x42). Since x;%j¢ E
(2£1< j<£4), we have X; X & E (i=2,3,4;i=5,6). Thus G is

K If |Vi=8, then it easily follows that G is a cube or

3,3 °

the graph in Figure 2.

Lemma 2.3. Suppose that G is a 3-regular 3—edge-—
connected graph, and that a,x, ,x;,x3,x, are vertices such
that a#x: (11 4). Then G-a contains disjoint paths

Cxy5x53 and Cxz,x43.

Proof. We proceed by induction on [V|. If [V|=2, then G
is the graph of triple edges, and the result holds.
Therefore we assume |VI2X 4.

First we assume that G contains a nontrivial 3-cut



then biﬁpj,c;#cj if i#j, since G is 3—edge—connected. Let H,
K be the graphs obtained from G by contracting V-X, X to one
vertex respectively. Let V(H)=XUu, W(K)=(V-X)Uu. Then H,K
are 3-regular 3-edge—connected graphs and [V(H)I < V],

| VKN < IVl We may assume a € V-X. It suffices to prove the
lemma in the following cases.

Case 1. (x,,x;,%5 5% )< V-X. By induction the result
holds in K, and so in G.

Case 2. x,eX and {xz,x3,x+}§;V—X. By induction the
result holds in K (note that x,=u in K). Thus the result
holds in G, since G contains a subgraph G, homeomorphic to
K, such that x, corresponds to u and each vertex of V-X to
itself.

Case 3. (x,,x3s%3,%,2& X. G contains a subgraph G,
homeomorphic to H, such that a corresponds to v and each
vertex of X to itself, and so the result holds in G .

Case 4. (x, ,x,2C X and (x3 0%, 2C V=X, Since K-{a,ul is
connected, this contains a path Ex3,x4J; and H-v contains a
path [x,,x,J.

Case 5. (x,,x32>¢ X and (xz,x4}§ V-X. By induction K-a
contains disjoint paths P, Cu,x,] and Pltu,x4]. We may let
c; e\J(Pi) (i=1,2), and H-v contains disjoint paths [x,,b,]
and [x3,b,]. Thus the result follows.

Case 6. (x,,x,s%x32C X and x4 € V-X. K-a contains a path
PEu,x+], and we may let c, € V(P). H-v contains disjoint

paths [x,,x,] and [x;,b;J. Thus the result follows.
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Next we assume that G does not contain a nontrivial
3—cut. If G contains an edge e which is not incident to any
of a,x, y%, 1X3,% 5 then let G=e be the 3-regular graph
homeomorphic to the graph G-e. Then G~e is 3—-edge-connected.
By induction the result holds in G~e, and so in G. Thus we
assume that any edge is incident to one of a,x; ,x; »X3 X+
Then [E| 1S and |V 18. UWe put T=(a,x, yX;sX3:%,3. UWe may
assume that x ,x, ,x and x are all distinct. For if not,
then the result follouws, since G~a is 2—-edge—connected. Thus
(vi2 5. If [V1=18, then N(x.)C V-T (1< i< 4) and IV-TI=5.
Thus for some yeV-T, y&N(x,)n N(x,). G-{a,y} 1s connected,
and so the result follows. If|Vi=6 or 8, then by Lemma 2.2 G

is Kg,3 sa cube, or the graph in Figure 2. We ommit the

proofs for them.

Lemma 2.4. Suppose that G is a 3-regular 3-edge-—
connected graph, and that a,a,,a;,a;,x, »x, ,x; are vertices
such that N(a)={(a,,a,,a3> and a#x; (11 3). Then

Igl2a.
Here L%=I&(a,a,,az.as,x,,xz,x3) is
{(i,.i,k)( ¢i,j,k)»=(1,2,3). G-a contains disjoint paths}

Ex,,ai],Exl,qj] and Ex3,aK].

Proof. We proceed by induction on [V|. We assume |V]|2 4.

First we assume that G contains a nontrivial 3-cut
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(e, 1€, 583 I=(X) (XC V). We define b‘-,cl- (i=1,2,3),H,K,v and
u similarly as in the proof of Lemma 2.3. We may assume
aeV-X. Then | XAN(a)| L 1. If a; ¢ X for some i, then a.=u in
K. It suffices to prove the lemma in the following cases.

Case 1. (x;,x34x33C V-X; x, € X and {(x,,%x33CV-X ; or
{x,s%, sx33C X, Similar as Case 1,2 or 3 in the proof of
Lemma 2.3.

Case 2. (x ,%x,3C X and x; € V-X. By induction
\IK(a,a,,az,a3,u,u.x3)|24. For each (i,j,k) of Iy, K-a
contains disjoint paths P, Lu,a.d, R Eu,aJ] and P; [x;,a,].
If ug Ng(a), then we may let c.& V(P,) (i=1,2). By
Induction H-v contains disjoint paths Cx,,b,] and [x, ,b,].
Thus (i, j,k) e Iq_(a,a, 9859839 X; 9X33X3), and so
IIq.lld.\ If ue Nk(a), then we may let a,=u,a=c, . Now k#1 and
we may let i=1, j=2, k=3, c, € V(P,). Since H-v contains
disjoint paths [x,,b,J and [x,,b; ], llqlza.

Next we assume that G does not contain a nontrivial
3-cut. We may assume that any edge is incident to one of a,
X, »X; yX3 (see the proof of Lemma 2.3). Thus |E!I < 12 and
|vi<8. By Lemma 2.2 G is K, , K3,3, a cube or the graph
in Figure 2, but in the last graph any four vertices do not
cover all edges of the graph. Thus G is one of the first
three graphs. If G is a cube, then in Figure 3 it suffices
to check the case Yy S8 Y3 SX; s Yo TX 0 Ya TXg We ommit the

proofs for K+, K3,3 .



12

Y4 ° Y3

Figure 3.

Lemma 2.5. Suppose that s,,s,,s;,t, ,t, ,t; are vertices
of a graph G. If G is 3-regular 3-edge-connected, then G

contains disjoint paths (s ,t,1,[s,,t,] and [s;,t;31].

Proof. We proceed by induction on IV|. We put T=(s, ,s,,s;,
tyst, st32. If s, =t, for some i, then the result follouws by
Lemma 2.1, and if s, =s,=s;, then the result follouws from
Menger’s theorem. Thus we may assume that these are not the
cases.

First we assume that G contains a nont?ivial 3-cut
(e, e, ,e32=3(X) (XC V). We define b;,c, (i=1,2,3),H,K,v and
u similarly as in the proof of Lemma 2.3. It suffices to
prove the lemma in the following cases.

Case 1. Tn X=¢ . By induction the result holds in K,
and so in G.

Case 2. s,e X and (s,43;3,t,,t,,t32C V-X. G contains a

subgraph G, homeomorpic to K, such that s, corresponds to u



13

and each vertex of V-X to itself.

Case 3. (s,,t,2C X and (s,,s;,t,,t;2C V-X. By Lemma 2.3
K-u contains disjoint paths [s,,t,] and [s;,t;J, and H-v
contains a path (s, ,t,J.

Case 4. (s,,s,2¢C X and (s,,t, ,t,,t;2C V-X. By
induction K contains disjoint paths P, Cu,t,J,P, Lu,t,] and
Cs,,t3d. Let c; € V(P; ) (i=1,2). By Lemma 2.3 H-v contains
disjoint paths [s,,b, ] and [s,,b,]J. Nouw the result follows.

Case 5. {(s,,s,,t,2C X and {(s;,t,,t;2C V-X. We can get
the result by applying Lemma 2.3 on H and K.

Case 6. (s,,3,,5;2C X and {(t,,t, ,t;2C€ V-X. By Lemma 2.4

Igtv,b, b, ,b;,s,,3,,83 )N IK(u,c,,cz,ca,tl,tz,ta)#jﬁ,
and so the result follous.

Next we assume that G does not contain a nontrivial
3-cut. We may assume that every edge of G is incident to a
vertex of T (see the proof of Lemma 2.3). Thus |E| L 18 and

IVI<12. We require the following.

(2.1) We may assume that d(s;,tf)Z_Z (1=1,2,3). If
d(s;,t;)=2 for some i1 and s, ,t; are adjacent to a common
vertex x, say for i=1, then we may assume that

xels, 53N (s3,t; 2.

Proof. Let d(s,,t,)=1. If {si,ti}r\(s,,t,}=ﬂs, for i=2

or 3, say i=2, then (s,,t,)=3 and by Lemma 2.1

ﬂ-q - S;t|
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G-s,t) contains disjoint paths [s,,t,] and [s;,t3], and so
the result of Lemma 2.5 follows; if not, then we may let
S,75, 1S, =t, and s,#t; (i=2,3). Let ye N(s,)-t, . By Lemma 2.3
G-s, contains disjoint paths Esa,tal and Ct,,yl. Thus the
result of Lemma 2.5 follows. Hence we may assume that

d(s; ,t, )2 2 (i=1,2,3). Assume that s, and t;, are adjacent
to a vertex x. Let ye N(x)-{(s,,t,>. If x¢ T, then by

Lemma 2.3 G—-x contains diajoint paths (s, ,t, ] and Csy,t31.
If xeT and x¢ (s,,t,3Nn (s;,t3), then ve may let x=s, and
ss#x#ts. By Lemma 2.3 G-x contains disjoint paths Esa,t3]

and [t,,y], hence Lemma 2.5 holds. Thus (2.1) is proved.

Now we return to the proof of Lemma 2.5. If G=K, , then
d(s,,t,)=1, and if G=K,; 3 , then s, and t, are adjacent to
common three vertices, contrary to (2.1). If G is the graph
in Figure 2, then we may let s,=y, without loss of
generality. Then t, ¥y, (i=4,5,6) by (2.1). If t =y, (i=2 or
8), say for i1=8, then Cy4,y5}§;(sz,t2}r\Csa,tB) by (2.1). So
we may let y4=sz=§aand Y =t,=t; , contrary to (2.1). If t,=yf

(i=3 or 7?), say for i=3, then we may let ¥y =s,=s, by (2.1).

4 3

Now we can not choose (t,,t;2 such that T covers E, a
contradiction. When G is a cube, in Figure 3 we may let
s, =y, and t,#y; (i=2,4,5). If t,=y; (i=3,6 or 8), say for

1=3, then we may let xz=sl=§aand Yq =t =t5 and the result
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follows. Thus we may let t =y . Since T covers all edges,
we may let (sl,t2}=Ca ,%.} and (sz,t3}=(y3,y5}, then the
result easily follows.

By Lemma 2.2 we may let |V{=18 or 12. Thus |T|> 5. Note
that for each distinct vertices x,ye V, N(x)#N(y), because G
has no nontrivial 3-cut. We distinguish three cases.

Case 1. [T|=5. Let s,=s,. Now [V|=18, and G is a
bipartite graph and the partition of V is (T,V-T). The
number of vertices which have distance two from s, =s, is at
least three, and so d(si,t;)=2 for i=1 or 2, contrary to
(2.1).

Case 2. IT|=6 and IVI=12, Now G is a bipartite graph and
the partition of V is (T,V~-T). If the number of vertices
which have distance two from s, is at least five, then one
of such vertices is t,, a contradiction; if not, then the
number is four, since G does not contain a nontrivial 3-cut.
Thus G contains a subgraph as illustrated in Figure 4, where
T=(s‘,x',xz,x3,x+,x5). By (2.1) t,#x; (i=1,2,3,4) and
(gj,?j} is not {x,,x,2,{x, ,x,2 nor {x,,x,;> (j=2.3), and so
we may let {x ,x33=(s,,t,}, {x,,x,3=(s,,t;2 and xs=t,. Now
{xey, ,x;%_,xsxa}g;E. If X, ¥, € E (i=1 or 2), say for i=1,
then {x3y, ' X3 ¥3 JCE and x,y; € E. Now the result follows. If
x,% € E, then x;y, % E, and so (x;v, » X3 ¥, YC E, contrary to

N(y, )#N(y, ).
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Figure 4.

Case 3. |T{=6 and |V|=18. Now both ends of just three
edges are in T, and by (2.1) d(s;,t:)z 3 (i=1,2,3). Thus G

contains a subgraph as illustrated in Figures 5a,5b,5c or

5d, where T=(x',...,x6) and V-T=(y|,.‘.,x4}.

Figure 5b.
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Figure 3d.

In Figure 3a, we may let {(x, » Xg I={s,,t,2,{x, yxg2=(s, ,t, 7,
(x‘t_,xé}=(33 yt32 and {x,y, ,x, ¥, 2CE. Then x,%eE (i=2,3; =1,
2). Since N(y,)#N(y, ), one of them contains {(x;,x;) or
{x4sxg2, a contradiction, In Figure 5b, we may let {(x,v, ,
XgYy 3%, ¥3 XCE. If for some i=1,3,4,5 {(x;,x,2=(s ,t,2, then
d(s, ,t,)=2, a contradiction. Thus we may let (x,,x,)=(s,,t, 2,
(x;9x43=(s,,t,} and {x,,x.)=(s,,t32. Thus x,y,¢E. Ue may let
{x,% »x, % 3CE, and so (x4_y3 s Xy Y 9 Xy, ,xsy,_}g_l E, contrary to
N(y )#N(y,). In Figure Sc, for some i=1,2,3 d(s,;,t. ) 2, a
contradiction. In Figure 5d, we may let {(x,,xs)={(s, ,t,J,

Ixzax¢2=(s,,t,3,{x, s%g)=(s3,t32 and (X, ¥ yX ¥ sx4 ¥ s, % 2C E |
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Now X, ¥; € E (i=3 or 4), say for i=3, then Uxey, 9% % o
xg ¥, 2C E. X3¥, € E (i=1 or 2), say for i=1, then {x,y, yx,¥3

X, y+}g E. Now the result easily follows.

Proof of Theorem 1. We proceed by induction on [V]|. If
G is not 2-connected, then we can deduce the result by using
induction on blocks. Thus we may assume that G is
2-connected. If G contains a vertex of degree k (2 4), then
we replace this vertex by a k—gon with k vertices of degree
3. (Figure 6 gives an example with k=5.) If this vertex of G
is sz(t;)For some i, then we assign s:(t;) on any vertex of
this k—-gon, producing a 3-regular graph G such that
?%{(s;,t;)z 3 for each i. If the result holds in G, then

the result clearly holds in G, and so we may assume that G

e

Figure 6.

is 3-regular. By Lemma 2.5 we may assume that G contains a
2-cut (e, ,e,2=a(X) (XC V). Let b;eX, c;€V-X and e.=b;c;

(i=1,2). We define new graphs H,K as follows.
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H=(X, E(KX>)U#F),
K=(v-X, E(KV-X>)Ug),
where f, g are new edges with ends b,,bs and ¢, ,c,
respectively. Then H and K are 2-edge—connected. Since
ﬁel.(si,t;)z 3, (s;,ti}gx or (s;,t;}QV—X for each i.
Thus it suffices to consider the following cases.
Case 1. (s,,s;,,8;,t,,t, ,t32C X. By induction the
result holds in H.
Case 2. {s;,s,,t,,t;, YC X and {(s;,t;2CV-X. By Lemma 2.1
H contains disjoint paths P, [s ,t;1 and P, [s,,t, 1. Let 93,%
Pe be disjoint paths of K between s; and t;, and let
c, c2_¢E(P3 JUER ). If b, b, ¢ ECPYUE(P, ), then P, ,P, ,P; are
required paths of G. Thus let b,b, € E(P). If c,c2¢E(P;),
then by Lemma 2.1 K-c,c, contains disjoint paths [s;,t;] and
Cc,scyd; and if ¢, c;€ E(P:), then let P;Lc,,c,] be the path
obtained by combining F; -c,c, and a_. In each case we can

construct required paths of G.
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3. Proof of Therem 2.

For an integer n2 3 and vertices X, ,;X, s«+«sXy,s we denote
feasible paths {Ex,,xlj,%fxz,xaj,...,%txbfxm], and %Exn,x,]
by %Ex,,-.-,xn,x.]. For a vertex x € V and a,be N(x), let
th be the graph (V,EV e ~{e,,e32), vhere e, is a new edge

with ends a,b and e, ,e; are edges of E with ends a,x and b, x

respectively.,

Lemma 3.1 (Mader C43). Suppose that G is a graph and x
is a non—separating vertex of G with deg x24 and with
IN(x)I22. Then there exist two vertices a,be N(x), such that

for each two vertices y,ze V-x,

Kq_;,b(y.z)= ;lq_(y,z).

Lemma 3.2. Suppose that x,,...,xs; are vertices of a
graph G. If for each 1< i< j£5,
X(XI,XJ)Z 4,
and each vertex of G has even degree, then G contains edge-

disjoint paths [x,,x;3,0x; ,x33,0x3,x,43,0x¢ »x53, and Cx ,x, 1.

Proof. We proceed by induction on |E|. We put
T={x,4e0esxg>. If IT|< 4, then the result follows from
(1.4.4),and so we may let |IT[=5. We may assume that G
is 2-connected, and that for each vertex x of G deg x> 4.

If there exists a vertex x in V-T, then by Lemma 3.1 there
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exist two vertices a,b& N(x) such that’16&}(x:,xj)=ﬂq(x;,xj)
(1£i< j< 3. lE(G:b )| < |El and each vertex of G;b has
even degree, thus by induction the result holds in Gi’L , and
so in G. Let V=T. If x.x, & E, then we can apply (1.4.35) for
the graph G-xsx,, and for pairs (s;,t:)=(x;,xhg and q;=1
(1i< 4). Thus we may let x,x, ¢ E and x,x, ¢ E (1<i<4).
Now G contains a subgraph as illustratrd in Figure 7a or 7b,

and the result holds.

%3

Figure Ta.

Figure 7b.

Lemma 3.3. Suppose that G is a 2-edge—connected graph
and a,b,c,d,x,y are vertices such that deg a=3, N(a)={(b,c,d?d,

deg b> 3, and a, x, ¥y are all distinct, and that for each
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2-cut HX) (XCV, [XI [v-xl),
X=(x), X=(y} or X=(x,y> and [E(XX>)]=1.

Then G-a contains i[b,c,x,d,y,b], if it is not the cases that
deg c=2, c=x, deg c,= 2 (N(c)=(a,c,2) or,

deg c=2, c=y.

Proof. We distinguish four cases.

Case 1. deg c2 3 and deg d2> 3. Now G-a is 2-edge—connect.
Let G° be the graph obtained by replacing each edge of G by
double edges. Then G’ -a is 4-edge—connected, and so by
applying Lemma 3.2 on G'-a we can deduce the result.

Case 2. deg c=2 and deg d> 3. Let N(c)={a,q>. By the
hypothesis c#y, and so c=x and deg c,2 3. G-{a,c) is 2-edge-
connected, and so this contains %Eb,c,,d,y,b] by Lemma 3.2.

Case 3. deg c>2 3 and deg d=2. Let d=x and N(d)=(a,d 3.
If deg d,2 3, then G—{a,d} is 2-edge-connected, and so this
contains %Eb,c,d,,y,b]. If deg d,=2, then d, =y. By (1.4.4)
G-{a,d} contains %Eb,c,dl,b], thus G contains %Cb,c,x,d,y,b]
When d=y, the proof is similar.

Case 4. deg c=deg d=2. Now c#d and c#y, thus c=x,d=y,
and G-{a,c,d} is 2-edge—connected. By (1.4.4) G-a contains

itb,c,d,bl.
If we prove following Lemma 3.4, Theorem 2 follows.

Lemma 3.4. Suppose that G is a graph with w=1, (s,,t,),

(s3+t2),(s;,t3) are pairs of vertices of G, and q,=q,=q;=1.
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If (1.3) holds, then G contains feasible paths %P‘Es|,t|],

1P, Cs,,t, 1, £P,Ls, '+, 3, tP [s,,t, 1, $P [s,,t, 1, and 1P [s,, 151,

Proof. We proceed by induction on [E]. We put T=(s,,s,,

S;st, 5t st32. We require the following

(3.1) We may assume éhe following.

(3.1.1) G is 2-connected, and | Tl =6.

(3.1.2) For each 2-cut (X)) (XC V), [XI=1Xn TlI=1 or
XA Tl 2 2.

(3.1.3) For each edge ec E, there exists XCV such that
[20X] =|D(X) and ee 2 (X).

(3.1.4) For each 1< i< 3, s. and t, are not adjacent.

(3.1.5) If for vertices x,,x,,x3,x4 of G deg x,=deg x3=2

and (xlxl,xzxa,x3x+}§ E, then deg x,2 3 and deg x, > 3.

Proof. (1) If ITIL S, then Lemma 3.4 follows from
(1.4.5).
(2) Let (e, ,e,2=2(X) be a 2-cut , and let a.eX, b;e V-X
and a.b;=e;, (i=1,2). We define new graphs H,K as follous.
H=(X,E(KX>) U ),
K=(V=-X,E(KV-X>)U gJ,
uhéfe f, 9 are new edges with ends a,,a, and b,,b,
respective]}. If Xn T=%, then by induction the result of
Lemma 3.4 holds in K, and so in G. If |[XnTl=1 (say s, € X)

and [X|Z2 2, then we assign s, on the midpoint of g in K,
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producing a new graph K7, N§u by induction the result of
Lemma 3.4 holdslin K, and so in G.

| (3) If there exists e€ E such that for each XCV with

e € 3(X) and IQ(X)|7 |B(X), then the hypothesis of Lemma 3.4
holds in G-e, and so we can apply induction on G-e.

(4) If s;t3 ¢ E, then we can apply (1.4.2) for the graph
G-s; t3, and for two pairs (s,,t,),(s,,t,) and gq,=q,=1.

(3) If deg x, =2, then X . eT (1<1i< 3) by (3.1.2), and so
we may let x,=s,, x,%s, and x3;=t, by (3.1.4) and (1.3). Let
Xo &€ N(x,)-x . Let G’ be the graph obtained by contracting
the edge x,x,. By induction G’ contains feasible paths
1P Cs,,t 3, 3RCs,,t,1, $P;[s,,t 3, 1P, Cs,,t,], TPss,,t;]
and %sts,tgj. Let Q,,...,Q; be the corresponding paths of
G. We may let x,x, € E(Q,)n E(Qy) or x,x2 € E(Q,)n E(Q3). In
the former case, let Q, be the path of G such that
E(Q,)=(x,x2, x,x3) and let Q3 be the path of G obtained by
combining x;x3, Q;(t,,x,) and Q,(x,,t,). Then 1Q , %Q?’
%Q7, %Q4, {QE, fQ‘ are required paths of G. In the latter

case éQ,,‘.‘,%Q6 are required paths of G.

Now we come to the proof of Lemma 3.4. We distinguish
three cases.

Case 1. G contains a nontrivial 2-cut (e, ,e,>=d(X)
(XC V). We define H, K, a. , b., f and g similarly as in the
proof of (3.1.2)., Then H and K Are 2—-edge-connected. It

suffices to consider the following cases by (3.1.2).
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Case 1la. (s,,t,2CX and {s,,s;,t, ,t;2C V-X. Assume
that K~g contains feasible paths -L-P, Cs, ,t,1, éPlEsz,t,_],
%_‘PB [s;,t3] and ;—F"‘_ Cs,,t;J1. Then H-f contains a path
P.Cs,»t,1, and Py, ;_—P, ’ %PZ ’ %F’3 , 'l:,_‘a are required paths of
G. If this is not the case, then by (1.4.2) for the graph
K-g, and for two pairs (s,,t;),{(s;,t3) and q,=q,=1, (1.3)
does not hold. Thus for some YCV-X with b,e Y,

DK_ﬂ(Y)=C2.3} and I’BK.a(Y)|=1.
For each ZCX such that a,e Z, f €9n(Z) and Dy(Z)=(12,

[DgtYL 2){ =3,
and so [’aCT(YUZ)(=l’bH_§(Z)l+['BK_3(Y)|Z 3,
thus | 2-5 <D 2 2.

Hence by (1.4.2) H-f contains feasible paths -'2—_-P' Cs,,t 3,
|EP2 Cs,,t,3, 3'_-P3 La, ,a,] and 5'_-P4Ea, sa,l1, and K contains
feasible paths -liPS (s,,t,7, -2LP6 [s,,t, 1, )_"‘F’,7Es3,t3] and
}_@Esa,‘t@]. Now we can construct required paths of G.

Case 1b. (s, ,s,2C X and (s;3,t, sty s t32 CV-X, If H-Ff
is 2—edge—connected, then we assign a new vertex u on the
midpoint of g, producing a new graph K'b. By induction K’
contains feasible paths 4P, Cu,t,J, 2P, [u,t,3, LPsCu,t,1,

P Cu,t,1, £P.Cs,,t;] and 1P Cs;,t31. We may let

ub, € E(P, )n E(P, ) or ub;€ E(R, )N E(P3). In each case we can
construct required paths of G, since by (1.4.5) H-f contains
feasible paths 5I_P7Es, - %Pg s,,a,d, iLP? Cs,,a,l and
%P,ofsz,azj and contains 4[s,,a, ,s,,a,,s8,1. Thus we may assume

that H-f is not 2-edge—connected, and so H contains a 2-cut



26

{(f, 3. Then {(f",e,} and (f',e,} are 2-cuts of G. By (3.1.2)
H=({a, ,a,},{f,f ), and so we may let a,=s, and a,=s,. By
(3.1.5) deg b; 23 (i=1,2). If K contains a 2-cut (g,g’2>=

Pk (Y) (YC V-X), then (g",e, > and (g",e,} are 2-cuts of G.
Since deg b; 2 3 (i=1,2), by (3.1.2) |Yn T|=2 and [(V=X=Y)n T|=2
By Case 1a we may let Yn T#(sa,t3}, and so we may let <Y> is
an edge, contrary to (3.1.5). Thus assume that K-g is
2-edge—connected. By (3.1.3), there exists X<V such that
[0 =|B(X)] and s,5,€ 0(X). Thus we may assume that G is the

graph as illustrated in Figure 8. Let Y,,Y, be the subsets

Figure 8.

of V such that b.€eY; and 9(Y;)=(s;b;,c,cz,d,dz) (i=1,2). We
construct new graphs K, ,K, as follows.

Ki=(Y; YUv,, EKY;>)Ulb,v,,c,v;,d;v;3), i=1,2,
where v,,v, are new vertices. If for i=1 or 2, K; contains a
2-cut 9k(Z;) (Z;CY;) such that |Z;|2 2 and [W(K;)-Z.| 2 2,
say i=1, then 9g(Z,) is a 2-cut of G, and by (3.1.2)
Zin T={s;,t,). Thus we may assume that Z,={sg,t2} and

deg s;=deg t,=2. This allows that we can apply Lemma 3.3 on
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K, and K, .

Assume that deg c¢,> 3, deg d,2>2 3 or deg c,>» 3, deg d,23,
say the former. By Lemma 3.3 K,-v, contains
1Cb, ,c, »55,d, »ty,b, ] and K, v, contains ifb, ,d, ,t;,c, »t, sbzJ.
Now we can construct required paths of G. Assume that for
i=1l or 2, deg c;2 3 and deg d:z 3, say for 1i=1. Now we may
assume that deg c,=deg d,=2. ¢, =t,, d,=t; or c,=t;,d,=t,,
say the former, then by Lemma 3.3 K, -v, contains
%Ebz,dl,ta,cl,t,,sz and K| -v, contains é[b,,c,,s;,d,,tz,b‘]_
Assume that deg c;=2 (i=1,2) or deg q]=2 (j=1,2), say the
former. Let y, & N(c,)-c,, and let y, e N(c,)—c,, then by
(3.1.35) deg y; 23 (i=1,2). By (3.1.4) we may let ¢, =t,,
c,=t,or c,=s;, c,=t,. If c,=t,,then by (1.4.2) K,-{y, ,c,>
contains feasible pathsiP,Es3,d,J, éﬁzfs3,d,], %Psfb,,y,J and

§P4Eb,,y.] » and K, -{v, ,c, > contains feasible paths {P;Cta,dzl
% P Cts3,d,3, LP,Cb,,y,] and 1P, [b,,y,], and so the result
follows. If c,=s;, then by Lemma 3.3 K,-{v, ,c,} contains
%Cb,,y,,d.,tz,b.] and K, -{v, ,c,2> contains %Ebz,dz,ts,yz,bij,
and so the result follows.

Case 1c. (s,,3,,t,2C X and {s;,t,,t32C V-X. Ue may
assume that neither Case 1a nor Case 1b occurs. If deg a, =2,
then 9(X-a,) is a 2-cut of G and |(X-a;)n Tl=2, a 4
contradiction. Thus deg é;z 3 and deg b;2 3 (i=1,2). We
assign new vertices v,,u, on the midpoints of f,g
respectively, producing new graphs H’,K’. For the graph H',
and for two pairs (s{,t.),(sz,vz) and q,=1, q,=2, if (1.3)

does not hold, then
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there exists ZCV(H’) such that DFV(Z)=<1’2} and YBH/(Z)|=2.
Now Case 1b occurs in G, thus (1.3) holds, and so (1.2)
holds. Hence H' -y, contans feasible pathS‘éﬁ [s,,t, 1,

J,_-F’l Cs, ,t, 1, ‘2'jP3 [s,,a,1 and -;!_-P+ [s, ya,]. Similarly K'-u,
contains feasible paths fliF’sEsa,t_;], %Pg [s,,t3d, 2L_P7 Ct, b,
and 1P3[t, ,b, ], and so the result follows.

Case 2. Every 2-cut of G is trivial, and G contains a
2-cut. Now we may let deg s,=2, and let e,, e, be the edges
incident to s,. By (3.1.3), for i=1,2 there exists X;C V
such that s,¢ Xs |3(X;)’=|D(X;ﬂ and e € E(X;). For i=1,2,
since |3(X;)| =3, let (X;)=(e;,f; ,g9.3. We put
X3=V-(X,UX,), then t,€ X3. By simple counting we have

(3.2) X U X)) =[3(X ) +]AX )| =12(Xi Xzﬂ

=2} 3(X, =X, ) (X, =X )] .
If |3(X,n X0 2 4, then by (3.2)

| 3¢X3)] =[3(X, U X,) | < 3+3-4=2,

Thus |9(X3)] =2 and IE(X,nxl)f=4 . Then |X3]=1 and
XinXy={s,,x} for some x €V with deg x=2. We may let X=S,
then t, e X3, and so t,=t,, a contradiction. Thus '9(X.nX1ﬂ=2
and X, % =Cs,). |

Case 2a. f, +f, 9,59, are not all distinct. We may let
f, =f, . Since f, ¢ 0(X,aXy)=Ce, 12, F, € 3(X,=X3) N (XX ).
By (3.2)

| 2¢X3)| =]2¢X, U X, )] < 3+3-2-2 = 2,
Thus X,;=(t,2, and we may assume that G is the graph as

illustrated in Figure 9.
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Figure 9.

Since every 2-cut is trivial, deg b;2 3 and deg c;2 3
(i=1,2). By Lemma 3.3 <X > contains iCb, ,s;,d,,s;,c,,b,]
and <X,> contains %Cbl,ta,dl,tz,cz,bzl, and so the result
follous.

Case 2b. f, ,f; ,9,,9, are all distinct. Now
BXy =X )N (X=X ,)=@ . From (3.2) we have

| 9CX3)] =3+3-| X, n X3)| =4.

Thus we may assume that G is the graph as illustrated in

Figure 10.
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Figure 18.
{X3> is connected. For if not, then there exist Y, ,Y,C X;
such that X3=Y,UY, » YiaY2=%, and |3(Y )| =[2(Y,)] =2, Then
| X3 AT|=2, a contradiction. deg c,2 3 and deg d.23 (i=3,4),

for if not, then deg t, =2 and one of ﬁ ,'Fz_,g|,g2 is incident to
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t,» say g,, and Case 2a occurs for X,, X,UX;-t, instead of
Xys Xz2. If <X3> contains a 1-cut {h}=‘3<x3}Yj) (Y, C X3,
then Y, contains just two of c3,cy, d;,dg. Put Y,=X;-Y,.
{cy ,d3}¢_ Y, , thus we may let (ca »Cy 3C Y, ,(ds,d4}g Y, and
tieY, . Let v,,v, be the vertices such that v; € Y;(i=1,2) and
viva=h. <Y;> contains ilc;,c,,v, ,t, ,c;1, for if <Y,> is not
2-edge—-connected, then deg v, =2 and v, =t, . <Y, > contains
%Ed3,d4,v1,d3]. Thus <X3> contains %Eca,t,,d4,d3,c4,c3] and
feasible paths i[ca,c4], %Cc3,t,], %Et,,c4] and [d;,d,3.
If <X3> 1is 2-edge-connected, then <X3> contains
%Ec3,t,,d4,d3,c4,c3] by Lemma 3.2. Assume that deg c, =2.
We may let c,=s,. <X,> contains LIb,,s,,d,,s;,b,] and <X3>
contains {Ec3,t,,d4,d3,q4, cyl. If deg d, 23 or deg d,=2,
d.=t, , then by Lemma 3.3 <X,> contains %Ebl,t3,c2,tl,dz,bl].
If deg d,=2 and d,=t3, then <X,> contains feasible paths
P, [b, ,t31, £$§Eb2,t3], £P3Cc1,t1] and %R4Ec2,t2]. Now we
can dedeuce the result. Thus we may assume that deg c, 23
(i=1,2). By Lemma 3.3 <X,> contains 1[b, ,c,,s;,d,,s3,b,]
and <X;> contains xlb, ,c, »t, »d, ,t5,b2T. If <X3> is 2-edge-
connected, then by Lemma 3.2 <X3> contains
%Cca,t,,c4,d3,d4,c3]; and if not, then <{X3> contains
feasible paths Llcy,cy1,50c;,t,3, 3Lt, ,c4] and [dy,d,d. Now
we can deduce the result.

Case 3. G is 3-edge—connected. By Theorem 1 the result

follows.
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