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    1. Introduction

    Let G=(V,E) be a graph (finite undirected, possibly

uith multiple edges but without loops), and let V=V(G),

E=E(G) be the sets oe vertices afid edges ol G respectively.

In this paper a path has no repeated edges, and ue permit

paths with one vertex and no edges. For tuo distinct

vertices Å~,y, let X(Å~,y)=7LGt(Å~,y) be the maximum number o"

edge'disjoint paths between Å~ and y, and 1et A(Å~,Å~)=oO.

    Ue first consider the following problem.

    Let (st,tt),...,(sK,tK) be pairs (not necessari1y

distinct) of vertices of G. When is the Åíollowing true ?

                                        '
    (1.1) There exist edge-'disjoint paths Pt ,...,PK such

that P; has ends s;,t; (1SiKk).

    Seymour [le] and Thomassen [12] characterized such

graphs uhen k=2, and Seymour [12] uhen st,..•,sK,ts,...,tK

take only three distinct values.

    Our result is the following

    Theorem 1. Suppose that si,sz,sB,ti,t2,t3 are vertices

of a graph G. If For each i=1,2,3,

                   )L(si,t;))3,

then there exist edge-disjoint paths Pt ,P2,P3 ol G, such

that P; has ends si and t; (i=1,2,3).
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    For a positive integer k, let g(k) be the smallest

integer such that For every g(k)-edge-connected graph and

fOr every vertices si,...,sK,ti,...,tK of the graph, (1.1)

holds. Thomassen [12] conjectured the iollowing.

    Conjecture. For each odd integer k> 1, g(k)=k, and

for each even integer k>2, g(k)=k+1..

    If k i$ even then g(k)> k (see [12]). It "ollows easily
frQtn Menger'si theorem that g(k)S:.2k-1, thus g(1)=1, g(2)=3;

and Cypher [1] proved g(4)K6 and g(5)SL 7. As a corollary of

Theorem 1 we have the follouing.

    Coro11ary. g(3)=3.
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    The second problem we consider is the multicommodity

l1ou problem.

    Suppose that each edge eGE has a real-valued capacity

u(e)) e, and each path has a positive value. Ue a$sume that

wE1 and each path has value 1 when there is no explanation.

For a positive number ct , paths o< P, P denote paths oÅí value

et,1 respectively. Ue say that a set of paths cttPt ,...,of,LPn

 is feasible iF for each edge eeE,

            2 di su(e),
           i e<ileGE(Pi )>

uhere E(Pi) is the set of edges of P; .

    For tuo vertices Å~,y -and a real number q>e, a Plow F of

value q betueefi Å~ and y is a set oe paths ct,Pi ,•..,ofnPeL

between Å~ afid y such that ofi+...+ o(vL=q. When o(i,...,d.L are

all integers (halF-integers), F is called an integer (hall-

integer) flow. Ue say that a set ol ilows Fi ,...,FK is

ieasible if the set of paths ol F, ,...,FK is eeasible.

    Nou the multicemmodity Flow problem is as fo"ows•

    Let <s,,t,),..,,(sK,tK) be pairs oe vertices oG G, as

before, afid suppose that qize (1SiS k) are real-valued

demands. Uhen is the follouing true ?

    (1.2) There exist leasible filows Ft ,...,FK, such that F;

has ends s; and tT and value q; (IKiK k).

                                                  '
    Remark. Uhe.n k=3, u=- 1, and q;=1 (ISiS 3), Theorem 1
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implies that (1.2) is true if X(si,t; )Z 3 (iKiK 3), and

then the flows may be chosen as integer flows.

    For a set Xs!;V, let 'b(Å~)=')q(Å~)sSE be the set oe edges

with one end in Å~ and the other in V-Å~, and let

D(Å~)=D(li.(Å~) C- <1,2,...,k> be

    < " 1 :{ i .S k, Å~A<s; ,ti >7e SZS 7e(V-Å~ )n <sf ,tr >> .

It is clear that if (1.2) is true, then the Following holds.

                                        '
    (1.3) For each XCV,

                Z u(e)2Z qi•
              eG 'b(X) i6D(Å~)

    Note that Z w(e)=I')(x)l ifw=-:1, and Z q;=ID(X)l

               e('b(X) iED(X)
il q.=1 For any i.
    t
    Our second result is the follouing

    Theorefn 2. Suppose that G is a graph and u is integer-

valued, and that k=3, qi=qz=q3=1. Then (1.2) and (1.3) are

equiva1ent.

    Moreover if (1.3) holds, then the flows F; in (1.2) may

be chosen as half-integer "lous.

    (1.4) In gefieral (1.2) and (1.3) are not equivalefit, but

in the following cases they are equivalent•
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    (1.4.1) k=1 (Ford and Fulkerson E2]).

    (1.4.2) k=2 (Hu [3] afid Seymour [8])

    (1.4.3) k=5 , t;=s;.i (i=1,2,3,4) and ts=st (Papernov

[7]).

    (1.4.4) k=6, and (s,,t,),...,(s6,tg) correspond to

the six pairs oi a set ol four vertices (Papernov E7] and

Seymour [9]).

    (1.4.5) st=si=...=sJ and sJti=...=sK (obvious extention

oF (1.4•2)).

    (1.4.6) The graph (V,EU<et,...,ek>) is planar, where

the edge er has ends s; and t; (1SiK k) (Seymour [11]).

    (1.4.7) G is planar and can be drawn in the plane so

that si,•..,sK,tt,...,tK are al1 on the boundary of the

infinite face (Okamura and Seymour [5]).

    (1.4.8) G is planar and can be drawn in the plane so

that si,...,sJ,tt,..,,tJ are al1 on the boundary oe a face

and sj+i,.,sK,tj+t ,...,tK are al1 on the boundary of the

iriIinite face (Okamura [6]).

    (1.4•9) G is planar and can be draun in the plane so

that sj.t,...,sK,tt,t2,.,.,tK are al1 on the boundary of the

infinite "ace, and t)=...=tJ (Okamura [6]).

    Moreover if (1,3) and the following (1.5) hold in each

case except (1.4.3), or il (1.3) holds and w, q. are even-
                                              i
integer valued in the case (1.4.3), then the flows F; of

(1.2) may be chosen as integer flows. •
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    (1.5) u and q. are integer-valued, and for each vertex
                t
Å~GV,
                 '
                Z w(e) ' 2 q;
               eE'b(Å~) iGD(Å~)

,

ls even.

     (1.4.1),...,(1.4.5) are al1 the configurations of

(sT,t;) for which (1.2) and (1.3) are equivalent for all

graphs G and all u,qT (see [9]). Uhen q;>e (IKiK3), the

case of Theorem 2 is the only case for uhich (1.2) and (1.3)

are equivalent for all graphs G and all w ,(s;,t;). Figure 1

gives a counterexample uith qi=2,qz=q3=1.

    Notations and delinitions. Ue call SCE an n-cut if

ISI=n afid S='Z>(X) for some XgV such that <Å~> (which is the

subgraph induced by Å~) and <V'Å~> are both connected; and an

n-cut )(Å~) is called nontrivial if 1Å~IZ2 andIV-XIZ2,

trivial otherwise. For two vertices Å~,y a path P[Å~,y] or a

path [Å~,y] denotes a path between Å~ and Y, and let xy be an

edge with ends Å~,y, and let d(Å~,y)=dq(x,y) be the distance

betueen Å~ and y. If vertices Å~,y belong to a path P, then

P(Å~,y) denotes the subpath of P between Å~ and y. For a

vertex Å~ deg(Å~)=degq(Å~) denotes the degree of Å~, and we let

N(Å~)=NGt(Å~) be <yGVI xyGE>. For a set Xs!!V and an edge e,

we denote graphs <V-Å~>, (V,E-e) by G'Å~, G-e respectively.

For a set XSV (Ss;! E) and an element Å~eV (eeE), ue denote

XU<Å~> (S U<e>) by XUx (SUe).
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    2. Proof of Theorem 1,

    In this section disjoint means edge-disjoint. Ue require

the fol1ouing 1emmas.

    Lemma 2.1. Suppose that si,sz,ti,tz are vertices oF a

graph G. If pa( st ,tt )2 3 and 2L( s2 ,t2 )): 1, then G con tains

disjoint paths [st,t,] and [s2,t2 ].

                   '
    Preof. Since lrtL(st,tt))t 3, G contains disjoint paths

Pi[Si,ti],Pz[si,tt] and P3 [s,,tt]. G contains a path

P4 [s2,tP. There exist vertices Å~,yeV(P+) such that

P4(s2,Å~) and P4(t2,y) are disjoint from Pi ,P2 ,Pj . Choose Å~,y

with this property such that P4(s2,Å~),P4(t2,y) have the

maximum 1ength respective1y. 1i Å~ or y gE V(Pt )UV(P- )UV(P3),

then Å~=tizor y=s-, and so the result follows. Ue may

therelore assume that xE V(P2) and yeV(P{) (i=2 or 3). Uhen

i=2 (i=3), let Ps be the path obtained by combining P4(s2,Å~),

Pz ( Å~,y) and Pe (y,t2 ) (P4 (s2 ,Å~),P2 ( x,s i),P3 (si ,y) and

P+(y,t2))• Now Pt and Ps are required paths of G.

    Lemma 2.2. If G is 3-regular 3-edge-connected graph with

no nontrivial 3-cut and with 4 SL1Vl.S. 8, then G is K4,Ks.3 ,

a cube or the graph in Figure 2.
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    Proof. Since G is 3'regular 3-edge-connected, G has no

multiple edges. Thus if IVI=4, then G is K4. I" IVI> 4,

then G has no cycle oF length three. Il IVI=6, then let

V=<xi,...,Å~6>. Ue may let N(Å~t)=<Å~2,Å~3,Å~4>• Since Å~;xj g! E

(2 SZi<jS4), ue have xi xJ G E (i=2,3,4;j=5,6). Thus G is

K3.3. If IVI=8, then it easily follous that G is a cube or

the graph in Figure 2.

    Lemma 2.3. Suppose that G is a 3-regular 3-edge'

connected graph, and that a,xi,Å~2,Å~3,Å~+ are vertices such

that alx; (2SiS 4). Then G-a contains disjoint paths

[xt,Å~2] and [Å~3,Å~+1.

    Proo". We proceed by induction on IV(• !'F IVi=2, then G

is the graph of triple edges, and the result holds.

There"ore we assume IVI24.

    First we assume that G contains a nontrivial 3-cut

<ei ,ez ,e3 >='b( Å~) (Å~ (.: V). Let bi eX, ci eV-- Å~, ei =b; ci (i=1,2,3 ),
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then b.Sb•,c.Sc. il i7ej, since G is 3-edge-connected. Let H,
      iJs               J
K be the graphs obtaiDed from G by contracting V-Å~, Å~ to one

vertex respectively. Let V(H)=XUv, V(K)=(V-Å~)Uu. Then H,K

are 3-regular 3-edge-connected graphs and IV(H)i < IVI,

IV(K)l<iVl. Ue may assume aGV-Å~. It suf"ices to prove the

1emma in the Fol1ouing cases.

    Case 1. <Å~i,Å~2,Å~3,Å~4>S!l V'X. By induction the result

holds in K, and so in G,

    Case 2. Å~,GX and <Å~2,Å~3,Å~+>gV-Å~. By induction the

result holds in K (note that Å~i=u in K). Thus the result

holds in G, since G contains a subgraph Gt homeomorphic to

K, such that xi corresponds to u and each vertex of V-X to

itse1".

    Case 3. <Å~i,Å~.,x3,Å~+>S X. G contains a subgraph G2

homeomorphic to H, such that a corresponds to v and each

vertex oF Å~ to itself, and so the result holds in G .

    Case 4. <Å~i ,Å~.>9X and <Å~3,x">s:I V-Å~. Since K-<a,u> is

conneeted, this contains a path [Å~3,Å~4]; and H-v contains a

path [Å~i,XP'

    Case 5. <xt,Å~3>gX and <xz,Å~4>s;; V-X. By induction K-a

contains disjoint paths Pt [u,x2] and Pz[u,Å~4]. We may let

cfGV(Pi) <i=1,2), and H-v contains disjoint paths [Å~i,bi]

and [Å~3,bz]. Thus the result follous.

    Case 6. <xt,Å~2,x3 >s: Å~ and Å~4G V-Å~. K-a contains a path

P[u,Å~-], ancl we may let cieV(P). H'v contains disjoint

Paths [Å~i,Å~2] and [Å~3,bi]• Thus the result "ollous.
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    Next we assurne that G does not contain a nontrivial

3-cut. If G contains an edge e which is not incident to any
oi a,Å~,,xz,x3,Å~+, then let ?Gl>:e be the 3-regular graph

homeomorphic to the graph G-e. Then '7Gl> :e i3 3-edge'connected.

By induction the result holds in Grf>fe, and so in G. Thus we

assume that any edge is incident to one of a,Å~i,xz,Å~3,Å~+.

Then {El S 15 and IVi < le. Ue put T=<a,xt ,Å~, ,Å~3 ,Å~" >. Ue MaY

assume that xi,xz,Å~3 and xs are all distinct. For if not,

then the result "ollous, since G-a is 2-edge-cofinected. Thus

1VlZ 5• IF IVI=le, then N<Å~.)sgl V-T (1SisL 4) and IV-Tl =5.
                             t
Thus "or some yGV'T, yeN(xt)4 N(Å~2). G-<a,y> is connected,

and so the result follows. IfiIVI=6 or 8, then by Lemma 2.2 G

is K3.3 ,a cube, or the graph in Figure 2. Ue ommit the

proofs "or them.

    Lemma 2.4. Suppose that G is a 3-regular 3-edge-

connected graph, and that a,ai,a2,a3,xt,x2,Å~3 are verticeS

such that N(a)=<ai,a2,a3> and a7Ex; (1Sis 3). Then

                      S Iqlz4.

Here Iq. = Iq(a,ai ,az ,a3 ,xi , Xz , X3 ) iS

 '(.(i'j'ls'l [iiig5ii[ll2,;,3.i'..G,-a,IO,?::,i?s disjoint pathsl.].

                                                  '

    Proof. Ue proceed by induction on IVI. Ue assume IVi2 4.

First we assume that G cofitaifi$ a nontrivial 3-cut
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 <et ,e2 ,e3 >=?)(Å~) (X g V)• We del ine br ,ci (i=1,2 ,3),H,K,v and

u similarly as in the proof oP Lemma 2.3. Ue may assume

a E V-Å~. Then lXA N(a)l S. 1. If a; 6 Å~ for some i, then a; =u in

K. It suffices to prove the lemma in the Following cases.

    Case 1. <Å~i ,xz,Å~3 >.C V-Å~; xt G Å~ and <Å~. ,Å~3 >g V-Å~ ; or

<Xt,Å~2,Å~3>{Å~. Sirni1ar as Case 1,2 or 3 in the proof of

Lemma 2.3.

    Case 2. <xi,Å~i>gX and Å~3cV-Å~. By induction

lIK(a,a, ,az ,a3 ,u,u,Å~3 )l > 4. For each (i,j,k) of IK, K-a

contains disjoint paths Pt [u,ai], P2 [u,aJ] and P3 [Å~3,aK].

Ifi uÅëNK(a), then ue may let crG V(P;) (i=1,2). By

Induction H-v contains disjoint paths [xi,bi] and [Å~2,b2].

Thus (i,j,k)e Iet(a,a,,a.,a3 , Å~:,Å~2,xs), and so

IIet124.• If ueNK(a), then ue may let ai=u,a=ci. Nou k7El and

ue may let i=1, j=2, k=3, c2e V(P2 ). Since H-v contains

disjoint paths [Å~,,bi] and [x.,b2 ], lIq124.

    Next we assume that G does not contain a nontrivial

3'eut. Ue may assume that any edge is incident to one of a,

Xi,xz,Å~3 (see the prooF ol Lemma 2.3). Thus IEIS12 and

IViS 8. By Lemma 2.2 G is K4, K3,3, a cube or the graph

in Figure 2, but in the last graph any "our vertices do not

cover all edges of the graph. Thus G is one of the first

three graphs. Il G is a cube, then in Figure 3 it sullice3

to check the case yt =a, y3 =xt, y6=xz, yx=Å~3. We ommit the

proois for Kl, K3.3.
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    Lemma 2.5. Suppose that st,s.,s3,ti,t2,t3 are vertices

of a graph G. If G is 3-regular 3-edge-connected, then G

contains disjoint paths [st,ti],[sz,tz] and [s3,t3].

    Proof. We proceed by induction on IVI. Ue put T=<st,s2,s3,

tt,t2,t3>. IF s;=tl for some i, then the result follows by

Lemma 2.1, and if s,=s2=s3, then the result eollows erom

Menger's theorem. Thus we may assurne that these are not the

cgses.
    First we assume that G contains a nont'rivial 3-cut

<ei ,ez ,e3 >=b(Å~) (X C- V). Ue deFine bT ,ci (i=1,2,3),H,K,v and

u similarly as in the proof of Lemma 2.3. It suffices to

prove the 1emma in the iol1ewing cases.

    Case 1. Tn Å~=gS . By induction the result holds in K,

and so in G.

    Case 2. sieÅ~ and <s2,s3,ti,t2,t3>C-V-Å~• G contains a

subgraph G! homeomorpic to K, such that si corresponds to u



                                                      13

and each vertex of V-X to itself.

    Case 3. <si,tt>S;; X and <s.,s3,t2,t3>C.- V-Å~. By Lemma 2.3

K-u contains disjoint paths [sz,t2] and [s3,t3], and H-v

contains a path [si,tt].

    Case 4. <s,,sz>cÅ~ and <s3,ti,t.,t3>{g V-Å~. By

induction K contains disjoint paths Pi [u,tt],Pz[u,tz] and

[S3,t3]• Let c; e V(Pi ) (i=1-,2). By Lemma 2.3 H--v contains

disjoint paths [st,b,] and [s.,bz]. Nou the result follous.

    Case 5. <st ,sz ,t, >9 Å~ and <s3 ,tz ,t3 >S V-X. Ue can get

the result by applying Lemfna 2.3 on H and K.

    Case 6. (si ,s2 ,s3 > C; Å~ and <ti ,t. ,t3 >C- V-X. By Lemma 2.4

        IH(v,bi ,bz ,bysi ,si,s3 )n IK(u,ci ,cz ,c3 ,ti ,t2,ts )S 5Z5,

and so the result follows.

    Next we assume that G does not contain a nontrivial

3-cut. Ue may assume that every edge o{ G is incident to a

vertex of T (see the proof of Lemma 2.3). Thus IEI<18 and

{VIK 12. Ue require the follouing.

                                              .
    (2.1) Ue may assume that d(s;,ti)Z2 (i=1,2,3). If

d(s;,ti)=2 eor some i and s;,ti are adjacent to a common

vertex Å~, say for i=1, then we may assume that

           Å~G<S2 ,'C2 >n <S3 ,t3 >.

    Proof. Let d(s, ,tt )=1. If <si,ti >A <si,tt >= IS , for i=2

or 3, say i=2, then ?L                          (S2,t2)=3 and by Lemma 2.1                     q- S,ti
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G-sitt contains disjoint paths [s2,t2] and [s3,t3], and so

the result oP Lemma 2.5 Follows; if not, then ue may let

s2=si,s3=ti and silti (i=2,3). Let ye N(st)--ti . By Lemma 2.3

G-s, contains disjoint paths [s3,t3] and [t2,y]. Thus the

result of Lemma 2.5 lollows. Hence we may assume that

d(s;,t;)2 2 (i=1,2,3). Assume that st and ti are adjacent

to a vertex Å~. L' et yG N(Å~)-<si,tt>. If xjE T, then by

Lemma 2.3 G-Å~ contains diajoint paths [s2,t2] and [s3,t3].

If xeT and xst <sz,t2>A <s3,t3>, then ue may let Å~=s2 and

s3#Å~7Et3. By Lemma 2.3 G-Å~ contains disjoint paths [g3,tzs]

and [t.,y], hence Lemma 2.5 holds. Thus (2.1) is proved.

    Nou ue return to the prooe ol Lemma 2.5. IF G=K4 , then

d(si,ti)=1, and it G=K3.3 , then st and tt are adjacent to

common three vertices, contrary to (2.1). I" G is the graph

in Figure 2, then we may let s,=yt uithout loss of

generality. Then t,#yi (i=4,5,6) by (2.1). If tt=yi (i=2 or

8), say For i=8, then <y4,ys>9<s2,t2>A<s3,t3> by (2.1). So

we may let y4 =s2 =s3 and ys =t2 =t3 , con trary to (2.1). I" ti =yr

(i=3 or 7), say for i=3, then we may let y+=s2=s3 by (2.1).

Now we can not choose <t2,t3> such that T covers E, a

contradietion. Uhen G is a cube, in Figure 3 ue may let

st=yi and t,ty; (i=2,4,5). If tt=y; (i=3,6 or 8), say for

i=3, then we may let y2 =si=s3 and y4=tz=t3, and the result
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follows. Thus we may let tt =yv . Since T covers all edges,

ue may let <sz,t2>=<y2 ,ytr > and <s3,t3>=<y3 ,ys>, then the

resu1t easi1y {o11ous.

    By Lemma 2.2 ue may let iVl=le or 12. Thus ITI2t 5. Note

that for each distinct vertices Å~,yG V, N(Å~)tN(y), because G

has no nontrivial 3-cut. We distinguish three cases.

    Case 1.r. ITI=5. Let st=s2. Now iVl=le, and G is a

bipartite graph and the partition of V is (T,V'T). The

number oe vertices which have di3tance tuo frorn si=s2 is at

least three, and so d(s.,t.)=2 for i=1 or 2, contrary to
                       IS
(2.1).

    Case 2. ITI=6 and IVI=12. Nou G is a bipartite graph and

the partition of V is (T,V-T). If the number of vertices

which have distance tuo from si is at least "ive, then one

ol such vertices is ti, a contradiction; iF not, then the

number is four, since G does not contain a nontrivial 3-cut.

Thus G contains a subgraph as illustrated in Figure 4, where

T=<St,Å~;,X2,Å~3,xl,xs>. By (2.1) tt)EÅ~; (i=1,2,3,4) and

<Sj,tJ.> iS nOt <Å~i,xz>,<xi,Å~? nor <x2,Å~3> (j=2.3), and so

ue may let <Å~i,x3>=<s2,t2>, <Å~2,Å~,F>=<s3,t3> and xs=ti. Now

<XrYi ,XyY2 ,XsY3 >C-- E. If xt y; G E (i=1 or 2), say for i=1,

then <Å~3 y2 ,Å~3 y3>SF E and x.y3 e E. Now the result fol1ous. If

xt y3 G E, then Å~3 y3 Åë E, and so <Å~3yt ,Å~3 yz>C- E, contrary to

N(y,)tN(y.)•
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                      ll
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In Figure 5a, we may 1et <xt,Å~3>=<Si,tt>,<Å~2,Xs>=<S2,t2>,

<Å~4,Å~6>=<s3,t3> and <xiyt ,xt y->g;; E. Then xt y..eE <i=2,3; j=1,

2). Since N(yi)fN(y. ), one oe them contains <xs,Å~4> or

<x4,Å~6>, a contradiction, In Figure Sb, we may let <Å~6yi ,

Å~6yz,xs y3 >C-E. If eer some i=1,3,4,5 <Å~1,Å~6>=<s,,ti>, then

d(st,tt)=2, a contradiction. Thus ue may let <Å~2,Å~6>=<st,tt>]

(Xi , Å~4 >=<S2,t2 > and <Å~3 ,xs>=<s3 ,t3 >. Thus Å~2 y4 G E. Ue may let

<xiyi ,xt y2>C. E, and 3o <Å~4 y3 ,Å~4 y4 ,xryt ,xsy2>{1 E, contrary to

N(yi)IN(y2). In Figure 5c, for some i=1,2,3 d(s;,t;)K 2, a

contradiction. In Figure 5d, we may 1et <Å~2,xs>=<Si,tt>,

<X3,Å~6>=<S2,t2>,<Å~I,xzF>=<s3,t3> and <Å~1 yl ,xl y2 ,Å~4 y3 ,Å~- y4 >9 E.
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Now Å~2 y; G E (i=3 or 4), say for i=3, then <xs Yt ,Xs Y2 ,

xsy4 >C. E. Å~3y;EE (i=1 or 2), say for i=t, then <Å~6 y2 ,Å~6 y3,

Å~6 y->gE. Now the result easi1y fol1ows.

    ProoF of Theorem 1. Ue preceed by induction on tVl. IF

G is not 2-connected, then we can deduce the result by using
induc- tion on blocks. Thus we tnay assume that G is

2-connected. If G contains a vertex of degree k (Z 4), then

we replace this vertex by a k'gort uith k vertices oF degree

3. (Figure 6 gives an example with k=5.) If this vertex of G

is sl(t;)for some i, then ue assign s;(tT) on any vertex oF
this k-gon, producing a 3-regular graph d such that

7Lqf(sr,t;)) 3 For each i. Il the result holds in G', then

the result clearly holds in G, and so we may assume that G

is 3-regular. By

2-cut <e,,e2>=e(X)

(i=1,2). We define

     ------>

   Figure 6.

LemrRa 2.5 we

 (xcv). Let
 neu graphs H

may assume that G contains a

 b;EÅ~, c;6V-Å~ and e;=bTc;

,K as follews.
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               H=(X, E(<X>)U-F),

               K=(v-x, E(<v-Å~>)ug),

uhere f, g are new edges uith ends bt,b2 and ci,c2

respectively. Then H and K are 2-edge-connected• Since

7Lq<sT,t;)Z 3, <sT,ti>c. Å~ or <s;,t;>g V-Å~ eor each i.

Thus it suffices to consider the follouing cases.

    Case 1. <si,sz,s3,tt,t2,t3>!!! X. By induction the

result holds in H.

    Case 2. <s:,s2,ti,t2 )2Å~ and (s3,t3>gV-X. By Lemma 2.1

H contains disjoint paths Pi [st,ti] and P2 [s2,th ]. Let P3 ,P4

Ps be disjoint paths of K between s3 and t3, and let

ci cz et E(P3 )U E(PzF ). If b, bz st E(Pt )U E(P.), then Pi ,P2,P3 are

required paths of G. Thus let bs b2 e E(Pi ). If ctc2 9E E(PEr),

then by Lemma 2.1 K-c,c2 contains disjoint paths [s3,t3] and

[ct,c2]; and ie c, czE E(Ps-), then let P6[c,,c2] be the path

obtained by combining Ps'cicz and P4. In each case ue can

construct required paths oS G.
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     3. Proo" o" Therem 2.

     For an integer nZ3 and vertices xvx2 ,••.,Å~., we denote
feasible paths iz[Å~i,Å~2],i[Å~2,Å~3],...,zi[Å~..i,Å~"], and zt[Xn,Å~{]

by kExi,•••)x.,xt]. For a vertex Å~ e V and a,be N(Å~), 1et

Gcex'b  be the graph (V,EVe, -<e.,e3>), where et is a new edge

uith ends a,b and ez,e3 are edges oe E with ends a,Å~ and b,Å~

respective1y.

    Lemma 3.1 (Mader [4]). Suppose that G is a graph and Å~

 is a non-separating vertex of G with deg Å~)4 and with

IN(Å~)i)2. Then there exist two vertices a,beN(Å~), such that

"or each tuo vertices y,ze V-Å~,

           pt' ql'5(Y,Z)= Aq(y,z)•

    Lemma 3.2. Suppose that xt,...,xs are vertices ol a

graph G. If for each IK i< jS 5,

              A- (Å~•,x•))t 4,
                  tJ
and each vertex o" G has even degree, then G contains edge-

disjoint paths [Å~t,Å~i],[Å~2,Å~3],[Å~3,Å~4],[Å~+,Å~s], and [xs,Xt].

    Proof. Ue proceed by induction on IEI. We put

T=<Å~t,...,xs>. IF ITIK 4, then the result fol1ows from

(1•4.4),and so we may let ITi=5. Ue may assume that G

is 2-connected, and that for each vertex Å~ of G deg Å~) 4.

Il there exists a vertex x in V-T, then by Lemma 3.1 there
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exist two vertices a,be N(Å~) such that 7-(!flt'b(Å~i,Xj)"fLGt(Xr'XJ')

(IKi< j< 5), iE'(Gctx'b )l<lEl and each vertex o" Ga.'b has

even degree, thus by induction the result holds in Gi:'ts , and

so in G. Let V=T. I" Å~.Å~,G E, then we can apply (1.4.5) for

the graph G-xsxt , and for pairs (s;,t;)=(x;,Å~;+i) and q;=1

(1S iK 4). Thus we may let xs x, Åë E and Å~; Å~;., sl; E (1 Sl iK 4).

Now G contains a subgraph as illustratrd in Figure 7a or 7b,

and the result holds.

                        Xl

               X4 X3

                    X2 XS

                   Figure 7a.

                        Xl

              X4 X3

and

deg

               X2 X5

               Figure 7b

Lemma 3.3. Suppose that G

atbtctdtxty are vertices

b) 3, and a, Å~, y are all

.

 is a 2-edge-connected

such that deg a=3, N(a)

 distinct, and that for

graph

=<b,c,d>,

 each
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2-cut D(Å~) (x.c.. v, 1xisg lv-xi),

          Å~=<Å~>, X=<y) or Å~=<x,y> and IE(<Å~>)i=1.

Then G-a contains l[b,c,Å~,d,y,b], if it is not the cases that

          deg c=2, c=Å~, deg'ci= 2 (N(c)=<a,ci>) or,

          deg c=2, c=y.

    Proof. Ue distinguish eour cases.

    Case 1. deg cz3 and deg dZ3. Now G-a is 2-edge-connect.

Let G' be the graph obtained by replacing each edge oP G by

double edges. Then G'-a is 4-edge-connected, and so by

applying Lemma 3.2 on G'-a we can deduce the result.

    Case 2. deg c=2 and deg d)3. Let N(c)=(a,g>. By the

hypothesis c7Ey, and so c=x and deg ct2 3. G-<a,c> is 2-edge-

connected, and so this contains :zigb,ci,d,y,b] by Lemma 3.2.

    Case 3. deg cz3 and deg d=2. Let d=Å~ and N(d)=<a,dl>•

If deg d,) 3, then G-<a,d> is 2-edge-connected, and so this
contains :5[b,c,dt,y,b]. If deg dl=2, then dl =y. By (1.4.4)

G'<a,d> contains lr[b,c,di,b], thus G contains 2-1[b,c,Å~,d,y,b]

Uhen d=y, the prooF is similar.

    Case 4. deg c=deg d=2. Now c7Ed and c;y, thus c=Å~,d=y,

and G--<a,c,d> is 2-edge-connected. By (1.4.4) G'a contains
I[b,c,d,b].

    Il we prove "ellowing Lemma 3.ZI, Theorem 2 eollows.

    Lemma 3.4. Suppose that G is a graph with u=- 1, (ss,tt),

(s2,t2),(s3,t3) are pairs of vertices ol G, and qi=qz=q3=1.
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Ii (1.3) holds, then G contains feasible paths tP, [s,,ti],

 iPi [Si,t; ], IP3 [s2,t2P, fP4 [s2,ti ], 2'i-Ps [s3 ,t3 ], and i} P6 [s3,t3].

    Proof. Ue proceed by induction on IEI. We put T=<si,s2,

S3,ti,t2,t3>• We require the fol1ouing

                        .
    (3.1) We may assume the Following.

    (3.t.1) G is 2'connected, and ITI=6.

    (3.1.2) For each 2-cut 'b(X) (X.C. V), IXI=1XA TI=1 or

1Å~A T1 .z 2.

    (3.1.3) For each edge ecE, there exists XgV such that
l'2>(X>l =1D(X)l and ee)(X).

    (3.1.4) For each IKiS 3, s. and t. are not adjacent.
                               1t
    (3.1.5) IF for vertices Å~i,Å~i,x3,Å~4 ol G deg Å~2=deg Å~3=2

and <Xi Å~2 ,Å~2 Å~3 ,Å~3 Å~->g! E, then deg x, ) 3 and deg x4 t 3.

    Proof. (1) If ITiK 5, then Lemma 3.4 fiollows erom

(1.4.5).

    (2) Let <e, ,e2 >= )( X) be a 2-cut , and let a; e X, b; G V-X

and aTb;=ei (i=1,2). Ue define new graphs H,K as lollows.
                                '                           '          H=(Å~,E(<X>)U"), .
          K=<v-x,E(<v-x>)u g),

where f, g are new edges with ends ai,az and bi,bz
respectively.'  IF XAT=9S, then by induction the result of

Lemma 3.4 holds in K, and so in G. Ii IXATI=1 (say steX)

and lXl2 2, then we assign st on the midpoint of g in K,
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producing a new graph K'. New by induction the result of
                'Lemma 3•4 holds in K', afid-so in G.

    (3) If there exists e-G E such that for each XCV uith

eEb(Å~) and l')(Å~)i )ID(Å~)l, then the hypothesis o" Lemma 3.4

holds in G'e, and so we can apply induction on G'e.

    (4) Il s3 t3 E E, then we can apply (1.4.2) lor the graph

G-s3t3, and for two pairs (st,ti),(sz,t2) and qt=qz=1.

    (5) If deg xi =2, then Å~:GT (iSiK 3) by (3.1.2), and so

Ue may let xt=s2, Å~2=si and Å~3=t2 by (3.1.4) and (1.3). Let

Å~.e N(xt)-Å~ .' Let G' be the graph obtained by contracting

the edge xoxi. By induction G' contains feasible paths
iL p, [s,,t, ], ;t p2[s,,t,], S p3 [s.,-t. ], z-l-p4 [s2,t2], il ps [s3,ts]

and 2iP6[s3,t3]. Let Qi,.•.,Q6 be the corresponding paths of

G. We may let x, Å~2 E E(Qt)A E(Qz) er xtÅ~2E E(Qi)A E(Q3). In

the Former case, let Q7 be the path ol G such that

E(Q7)=<Å~iÅ~2, Å~2Å~3> and let QB be the path oi G obtained by
combining xzÅ~3, Q3(t2,Å~.) and Q2(Å~.,tt). Then 2iQt, 2'i'Qs,

2-i  Q7, 21 Q4, II Qs, a-t Q6 are required paths of G. In the latter

case ltQt,...,Å}Q6 are required paths o" G.

    Now we come to the proof of Lemma 3.4. Ue distinguish
                  '                      'three cases.

    Case 1. G contains a nontrivial 2-cut <ei,e2>=D(Å~)

(XgV). Ue define H, K, a:, b;, ," and g similarly as in the

prooi of (3.1.2). Then H and K are 2'edge-connected. It

suffices to consider the "ollouing cases by (3.1.2).
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    Case la. <si ,tt >S Å~ and <sz ,s3 ,t2 ,t3 >-C- V-Å~. Assume

 that K-g contains feasible paths lrPi [s2,t2], Å}P2[S2,t2],

IEP3 [s3,t3] and iP4. [s3,t3]. Then H+ contains a path

Ps [si ,te], and Ps, IPt , 2-i' Pz , i P3 , I P4 are required paths o"

G. If this is not the case, then by (1.4.2) "or the graph

K-g, and for tuo pairs (si,t2),(s3,t3) and q2=q3=1, (1.3)

does not hold. Thus For sofne Y9V'Å~ with bte Y,

          DK.s(Y)=<2,3> and i') K.-s(Y)l =1.

For each Z-CX such that aiE Z, fE'bH(Z) and DH(Z)=<1>,

              lDeir(YU Z)( =3,

and so l bg.-(YUZ)( =l? H.s(Z)( +l7 k-s (Y)1 ) 3,

thus l7H.s(Z)I )t 2•
Hence by (1.4.2) H-f contains feasible paths IEPt [si,ti],

illP2 [st,ti], z'1-P3[at,az] and 2] P4[ai,a2], and K contains

Peasib1e paths {Ps [s.,t21, i P6 [sz,t2 ], z-t P7 [s3,t3] and

z-1'Ps[s3,t3]. Now ue can con$truct required paths of G.

    Case lb, <s, ,s.>s;;Å~ and <s3,tt,t2,t3>9V-Å~. Il H-F

is 2-edge-connected, then we assign a new vertex u on the
                                     'midpoint ol g, producing a new graph K'. By induction K'
contains feasible paths Å}Pi [u,ti], !P2 [u,ti], zL P3 [u,tz],

.1 P- [u,t21, .-L Ps[s.,t3] and ,`,LP6 [s3,t3 ]. Ue may 1et

ubiE E(Pi )n E(P2) or ub;E E(Pi )A E(Ps). In each case we can

construct required paths of G, since by (1.4.5) H-f contains
eeasible paths a--I P7[sc,ai],l Ps [si,ai], it Pg [sz,az] and

2-l Pto[s2,az] and contains z-L[st,ai,s2,a2,st]. Thus we may assume

that H-f is not 2-edge--connected, and so H contains a 2-cut
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 <e,f'>. Then <l',ei> and <i',e,> are 2-cuts of G• By (3.1,2)

H=(<a,,a2>,<f,F'>), and so ue may 1et ai=s, and a2=s2. By

 (3.1•5) deg b;)3 (i=1,2). r" K contains a 2-cut <g,g'>=

2>K(Y) (YS V-X), then <g',e,) and <g',ez> are 2-'cuts of G.

Since deg b:>3 (i=1,2), by (3.1.2) lYA TI=2 and l(V""Å~-'Y)A TI=2

By Case la we may Tet Yn T7E<s3,t3>, and so we may let <Y> is

an edge, contrary to (3.1.5). Thus assume that K-g is

2-edge-connected. By (3.1.3), there exists X9V such that

l')(Å~)l =iD(X)l and s,sze'b(X). Thus we may assume that G is the

graph as illustrated in Figure 8. Let Yt,Yz be the subsets

                 SI S2 '         /.'-'S"t b21""'XN

         ts tN        t1 ts        i' aS3 Nl.1 .2I Ot3 )il

        k et2 ,t l, otl i
         Xx. ./Nt d2. /
           Ssd.. N                            t

               Figure 8.

of V such that bTEYI and ?(YR=<sTbT ,c, c2 ,d,dz> (i=1,2). We

construct new graphs Ki,Kz as lollous.

          Ki=(Y: U v;, E(<YT >) U<b;v;,c;vi,d;v;>), i=1,2,

where vpv2 are new vertices. If for i=1 or 2, K; contains a

2-cut DK,(Z;) (Z;S: YT) such that 1Z:l). 2 and IV(Kr)-Z;lZ2,

say i=1, then :)q(Zi) is a 2-cut of G, and by (3.1.2)

Zin T=<s3,t2>. Thus ue may assume that Zt=<s3,t2> and

deg s3=deg t2=2. This allous that we can apply Lemma 3.3 on



27

 Ki and K2,

     Assume that deg ctz 3, deg d2Z3 or deg c.) 3, deg d,) 3,

 say the former• By Lemma 3.3 Ki-vi contains
 IY[bi,ci,s3,dt,ti,bt] and K2'vz contains i![b2,d2,t3,c2,ts,b2].

 Nou we can construct required paths of G. Assume that for

 i=1 or 2, deg cr)3 and deg d:) 3, say lor i=1. Now ue may

 assu rne that deg c2 =deg d2 =2. cz =tt , dz =t3 or ci =t3 ,d2 =ti ,

 say the former, then by Lemma 3.3 Kz-vi contains
 lz[b2,d2,t3 ,c2,ti,b2] and Kt -vt contains Å}[bi ,c,,s3,dt,t2,bi].

 Assume that deg c;=2 (i=1,2) or deg dj=2 (j=1,2), say the

 former. Let y, e N(ci )'c2, and let y2 E N(c2)'ct, then by

 (3.1.5) deg yl]t 3 (i=1,2). By (3.1.4) we may let ci=t2,

 C2=tior ct=s3, c2=ti. I'F ci=t2.then by (1.4.2) Ki--<v, ,c,>

 contains teasib1e pathsiLP, [s3,dt], lP2 [s3,di], 2LP3Ebt,yi] ancl

2'i'P4 [bi,y,] , and Kz-<v.,c2> contains feasible paths ;I Ps[t3 ,d2],

 S P6 [t3 ,d2 ], f P7 [b2 ,yz] and IPs [bi ,y2 ], and so the result

 follows. If ci=s3, then by Lemtna 3.3 Kt-<vi,ci> contains
l[ [ bi ,yt ,di ,t2 ,bi] and K2 -<vz ,c2 > c on tain s il [b2 ,d2 ,t3 ,y2 ,b i] ,

 and so the result follous.

     Case lc. <si,sz,tt>gÅ~ and <s3,t2,t3>gV-Å~. Ue may

 assume that neither Case la nor Case lb occurs. I" deg as=2,

 then 'b(X-at) is a 2-cut oe G and 1(X-ai)n Tl=2, a

                          ' contradiction. Thus deg a;2z 3 and deg br) 3 (i=1,2). Ue

 assign new vertices vi,u2 on the midpoints of f,g
                                                       ' respectively, producing new graphs H',K'. For the graph H',

 and for two pairs (s,',ti),(s2,v2) and qt=1, qz=2, if (1.3)

does not hold, then
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there exists Z-CV(H') such that DHi(Z)=<1,2> and l'Z>H/(Z)l =2.

Nou Case lb occurs in G, thus <1.3) holds, and so (1.2)
holds. Hence H'-vz contang feasible paths lPi [si,ti],

2[ Pz [si,ti], E5 P3 [s2,ai] and il P+ [s2,a21. Simi1arly K'-u2

c on tains feasibl e paths Å} Ps [s3 ,t3 ], I P6 [s3 , t3], Å} P7 [tz,bi]

and .'L.Ps[t-,b2], and so the result "ollows.

    Case 2. Every 2-cut ol G is trivial, and G contains a

2-cut. Now we may let deg st=2, and let ei, e2 be the edges

incident to st. By (3.1,3), for i=1,2 there exists Å~;9 V

such that siE Xr, i')(X:)l =ID(Å~; )l and erE 2)(Å~;). For i=1,2,

since l?(Å~;)l =3, let b(Å~;)=<er,f; ,g;>. Ue put

Å~3 =V-( Xi U Å~2 ), then t, E X3 . By simple counting ue have

    (3.2)l')(Å~,U Å~, )i =1?(X, )l +l'Z)( Å~. )l -i'b(XiA Å~,)(

                    -21 'D(Å~, -Å~2 ) n '1)(Å~2 -X i)l •

I" )O(Å~,A Å~2)l]l 4, then by (3.2)

    l b( x3 )1 =l 'b (x, u Å~.) K 3+3-4=2 .

Thus iZ(X3)l =2 and l3(XmX2)l=4 . Then iX31=1 and

XtnX2=<st,Å~> for some Å~EV with deg Å~=2. Ue may let Å~=sl,

then tzE Å~3, and so tt=t2, a contradiction. Thus ll)(XtAX"=2

                      'and Å~tA Xz=<si>.

             '    Case 2a. "i,F2,gi,ga are not al1 distinct. We may let
fi =f2 . Since Åí, Åë 'b(XtnX2)=<ei,e2>, "i e ')(Xi'Å~2)A'b(X2-Xt).

By (3.2)
      l)(Å~, )l =1?(X, U Å~. )l K 3+3-2-2 = 2.

           '                                          'Thus X3=<tt>, and we may assume that G is the graph as

i11ustrated in Figure 9.
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                            Sl
                   tt""'--xu4. 1t "'"'-Å~

                  ts S                 ;/t OS2 'tlliC'llsrl;iLiji'iSgt git/ Ot2 Sl;

                 i ttt                 l1.I                                       '                 SkOS3 zzt Ot3/
                  Nss .-'i f. 1=f2 SNs. ./
                    ..- .. -..t                        '

                         Figure 9.

Since every 2-cut is trivial, deg bTZ 3 and deg ciZ 3

(i=1,2). By Lemma 3.3 <Xt> contains ll:[bi,s3,di,s2,Ci,bi]

an d < X2 > c ontains iz[b2 ,t3 ,d2,tz ,c2 ,b 2], an d so the resul t

    Case 2b. Åí,fvgi,g2 are all distinct. Nou
'b(Xi-Xz)n 'D(Xz-Å~,)=sz5 . From (3.2) ue have

              i1)(Å~J)1 =3+3-l'b(X,n X. )l =4.

Thus we may assume that G is the graph as illustrated in

Figure le.

                        Sl           //"N.bttht z tb2"'-xx

          tt es2 l i Ot2 x
          tt l1          Kxxos3 ,C,/Nt c'3-'-'cst-t xCx2Ot3..,I

            " N- -"Eilirxii-;ix4 d3 e ti d4 l;/f-;2!ill2S' - - '

                      N-                      N-.---

                    Figure 12.

<Å~3> is connected. For if not, then there exist Yt ,Y2 sS Å~3

such that Å~3=YiUY2 , YtAY2=95, and l'D(Yt )l =l'b(Y2)1 =2• Then

lX3ATI=2, a contradiction. deg c;)3 and deg dr23 (i=3,4),

for iÅí not, then deg tt =2 and one of Åí ,fz ,gi,g2 is incident to
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tv say gi, and Case 2a• occurs for Xt, XzUX3-tt instead oe

Xs, X2. If <Å~3> contains a 1-cut <h>=D<Å~3>(Yi) (Yig Å~3),

then Yi con tains just tuo oP c3 ,c4 , d3 ,d4. Put Yz =Å~3 -Yi .

<cs ,d3>5ZI Yi , thus we may let <cs ,c+>-C. Yi ,<d3,d4>g Y2 and

ttGYi. Let vt,v2 be the yertices such that v:E Y;(i=1,2) and
vt v2 =h. <Yi > conta ins t[c3 ,c4 ,vt ,tt ,c3 ], for if <Yt> is not

2-edge'connected, then deg v, =2 and v, =t,. <Yz> contains
iL[d3 ,d4 ,v2 ,d3 ]. Thus < Å~3 > c on tain s -L[cs ,tt ,d4,d3 ,c4 ,c3 ] and

feasible paths i[c3,c4], 1[c3 ,tt], ii [ti ,c4] and [d3,d4].

I" <Å~3> is 2-edge-"connected, then <Xs> contaifis
l[C3 ,ti ,d4 ,d3 ,c4 ,c3 ] by Lemma 3.2• Assume that deg ci =2.

Ue may let c,=s2. <Xt> contains zL[bi,s2,dt,s3,bt] and <X3>

con tains l[c3 ,t, ,d4, d3 ,c4 , c3 ]. Ie deg d2 2 3 or deg dz =2,

d2=ti, then by Lemma 3.3 <Xz> contains :[bz,t3,c2,t2,d2,bz].

If deg d2=2 and d.=t3, then <Xz> contains eeasible paths
15P, [b2,t3], fl P2 [b2,t3], :'i't P3[c.,t2] and i!P4[c2,t2]. Nou we

can dedeuce the result. Thus ue may assume that deg c•)t 3
                                                       '
(i=1,2). By Lemma 3.3 <Xi> contains z-i-[bt ,ci,sz,di,s3,bt]

and <X2> contains lk[b2,c2,tz,d2,t3,b2]. IF <Å~3> is 2-edge-

connected, then by Lemma 3.2 <Å~3> contains

S[c3,tt,c4,d3,d4,c3]; and if not, then <Å~3> contains

l easible paths i [c3 ,c4 ],2-l [c3 ,ti ], 2-t [t, ,c4] and [d 3, d4]. Now

we can deduce the result.

    Case 3. G is 3-edge-connected. By Theorem 1 the result

"o11ows•
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