

Title	Multicommodity Flows in Graphs II
Author(s)	岡村,治子
Citation	大阪大学, 1984, 博士論文
Version Type	VoR
URL	https://hdl.handle.net/11094/1691
rights	
Note	

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Multicommodity Flows in Graphs I

Haruko OKAMURA

1. Introduction

Let G=(V,E) be a graph (finite undirected, possibly with multiple edges but without loops), and let V=V(G), E=E(G) be the sets of vertices and edges of G respectively. In this paper a path has no repeated edges, and we permit paths with one vertex and no edges. For two distinct vertices x,y, let $\lambda(x,y)=\lambda_{G}(x,y)$ be the maximum number of edge-disjoint paths between x and y, and let $\lambda(x,x)=\infty$.

We first consider the following problem.

Let $(s_1, t_1), \ldots, (s_K, t_K)$ be pairs (not necessarily distinct) of vertices of G. When is the following true ?

(1.1) There exist edge-disjoint paths P_i ,..., P_k such that P_i has ends s_i , t_i ($1 \le i \le k$).

Seymour [10] and Thomassen [12] characterized such graphs when k=2, and Seymour [10] when $s_1, \ldots, s_k, t_1, \ldots, t_k$ take only three distinct values.

Our result is the following

Theorem 1. Suppose that $s_1, s_2, s_3, t_1, t_2, t_3$ are vertices of a graph G. If for each i=1,2,3,

$$\lambda(s_i,t_i) \geq 3,$$

then there exist edge-disjoint paths P_1 , P_2 , P_3 of G, such that P_1 has ends s, and t, (i=1,2,3).

If $\lambda(s_i, t_i) \leq 2$ for some i, then the conclusion does not always hold. Figure 1 gives a counterexample.

For a positive integer k, let g(k) be the smallest integer such that for every g(k)-edge-connected graph and for every vertices $s_1, \ldots, s_K, t_1, \ldots, t_K$ of the graph, (1.1) holds. Thomassen [12] conjectured the following.

Conjecture. For each odd integer $k \ge 1$, g(k)=k, and for each even integer $k \ge 2$, g(k)=k+1.

If k is even then g(k) > k (see [12]). It follows easily from Menger's theorem that $g(k) \le 2k-1$, thus g(1)=1, g(2)=3; and Cypher [1] proved $g(4) \le 6$ and $g(5) \le 7$. As a corollary of Theorem 1 we have the following.

Corollary. g(3)=3.

The second problem we consider is the multicommodity flow problem.

Suppose that each edge $e \in E$ has a real-valued capacity $w(e) \ge 0$, and each path has a positive value. We assume that $w \ge 1$ and each path has value 1 when there is no explanation. For a positive number α , paths αP , P denote paths of value α ,1 respectively. We say that a set of paths $\alpha_1 P_1$,..., $\alpha_n P_n$ is feasible if for each edge $e \in E$,

 $\sum_{i \in \{i \mid e \in E(P_i)\}} \alpha_i \leq \omega(e),$

where $E(P_i)$ is the set of edges of P. .

For two vertices x,y and a real number q > 0, a flow F of value q between x and y is a set of paths α_1P_1 ,..., α_nP_n between x and y such that $\alpha_1+\ldots+\alpha_n=q$. When α_1,\ldots,α_n are all integers (half-integers), F is called an integer (halfinteger) flow. We say that a set of flows F_1,\ldots,F_k is feasible if the set of paths of F_1,\ldots,F_k is feasible.

Now the multicommodity flow problem is as follows.

Let $(s_1, t_1), \ldots, (s_k, t_k)$ be pairs of vertices of G, as before, and suppose that $q_1 \ge 0$ $(1 \le i \le k)$ are real-valued demands. When is the following true ?

(1.2) There exist feasible flows F_1, \ldots, F_k , such that F_i has ends s, and t, and value q; $(1 \le i \le k)$.

Remark. When k=3, w \equiv 1, and q =1 (1 \leq i \leq 3), Theorem 1

implies that (1.2) is true if $\lambda(s_i, t_i) \ge 3$ ($1 \le i \le 3$), and then the flows may be chosen as integer flows.

For a set $X \subseteq V$, let $\partial(X) = \partial_{q}(X) \subseteq E$ be the set of edges with one end in X and the other in V-X, and let $D(X) = D_{G}(X) \subseteq (1, 2, ..., k)$ be

 $(i | 1 \le i \le k, X_0(s_i, t_i) \neq \emptyset \neq (V-X)_0(s_i, t_i)).$

It is clear that if (1.2) is true, then the following holds.

(1.3) For each
$$X \subseteq V$$
,

$$\sum w(e) \ge \sum q_i \cdot e \in \partial(X) \qquad i \in D(X)$$

Note that $\sum w(e) = |\partial(X)|$ if $w \equiv 1$, and $\sum q_i = |D(X)|$ $e \in \partial(X)$ $i \in D(X)$

if q =1 for any i.

Our second result is the following

Theorem 2. Suppose that G is a graph and w is integervalued, and that k=3, $q_1 = q_2 = q_3 = 1$. Then (1.2) and (1.3) are equivalent.

Moreover if (1.3) holds, then the flows F_i in (1.2) may be chosen as half-integer flows.

(1.4) In general (1.2) and (1.3) are not equivalent, but in the following cases they are equivalent. (1.4.1) k=1 (Ford and Fulkerson [2]).

(1.4.2) k=2 (Hu [3] and Seymour [8])

(1.4.3) k=5 , $t_i = s_{i+1}$ (i=1,2,3,4) and $t_s = s_i$ (Papernov [7]).

(1.4.4) k=6, and $(s_1,t_1),\ldots,(s_6,t_6)$ correspond to the six pairs of a set of four vertices (Papernov [7] and Seymour [9]).

(1.4.5) $s_1 = s_2 = \dots = s_j$ and $s_{j+1} = \dots = s_{\kappa}$ (obvious extention of (1.4.2)).

(1.4.6) The graph $(V, E \cup \{e_1, \dots, e_k\})$ is planar, where the edge e, has ends s, and t; $(1 \le i \le k)$ (Seymour [11]).

(1.4.7) G is planar and can be drawn in the plane so that $s_1, \ldots, s_K, t_1, \ldots, t_K$ are all on the boundary of the infinite face (Okamura and Seymour E5]).

(1.4.8) G is planar and can be drawn in the plane so that $s_1, \ldots, s_j, t_1, \ldots, t_j$ are all on the boundary of a face and $s_{j+1}, \ldots, s_K, t_{j+1}, \ldots, t_K$ are all on the boundary of the infinite face (Okamura E63).

(1.4.9) G is planar and can be drawn in the plane so that $s_{j+1}, \ldots, s_{\kappa}, t_1, t_2, \ldots, t_{\kappa}$ are all on the boundary of the infinite face, and $t_1 = \ldots = t_1$ (Okamura [6]).

Moreover if (1.3) and the following (1.5) hold in each case except (1.4.3), or if (1.3) holds and w, q_i are eveninteger valued in the case (1.4.3), then the flows F_i of (1.2) may be chosen as integer flows. (1.5) w and q are integer-valued, and for each vertex $x \in V$,

is even.

 $(1.4.1), \ldots, (1.4.5)$ are all the configurations of (s_i, t_i) for which (1.2) and (1.3) are equivalent for all graphs G and all w,q; (see [9]). When $q_i > 0$ $(1 \le i \le 3)$, the case of Theorem 2 is the only case for which (1.2) and (1.3)are equivalent for all graphs G and all w , (s_i, t_i) . Figure 1 gives a counterexample with $q_1=2,q_2=q_3=1$.

Notations and definitions. We call $S \subseteq E$ an n-cut if |S|=n and $S=\partial(X)$ for some $X \subseteq V$ such that $\langle X \rangle$ (which is the subgraph induced by X) and $\langle V-X \rangle$ are both connected; and an n-cut $\partial(X)$ is called nontrivial if $|X| \ge 2$ and $|V-X| \ge 2$, trivial otherwise. For two vertices x,y a path P[x,y] or a path [x,y] denotes a path between x and y, and let xy be an edge with ends x,y, and let $d(x,y)=d_{G}(x,y)$ be the distance between x and y. If vertices x,y belong to a path P, then P(x,y) denotes the subpath of P between x and y. For a vertex x $deg(x)=deg_{G}(x)$ denotes the degree of x, and we let $N(x)=N_{G}(x)$ be $\{y \in V \mid xy \in E\}$. For a set $X \subseteq V$ and an edge e, we denote graphs $\langle V-X \rangle$, (V,E-e) by G-X, G-e respectively. For a set $X \subseteq V$ ($S \subseteq E$) and an element $x \in V$ ($e \in E$), we denote $X \cup \{x\}$ ($S \cup \{e\}$) by $X \cup x$ ($S \cup e$).

2. Proof of Theorem 1.

In this section disjoint means edge-disjoint. We require the following lemmas.

Lemma 2.1. Suppose that s_1, s_2, t_1, t_2 are vertices of a graph G. If $\lambda(s_1, t_1) \ge 3$ and $\lambda(s_2, t_2) \ge 1$, then G contains disjoint paths $[s_1, t_1]$ and $[s_2, t_2]$.

Proof. Since $\chi(s_1, t_1) \geq 3$, G contains disjoint paths $P_1 [s_1, t_1], P_2 [s_1, t_1]$ and $P_3 [s_1, t_1]$. G contains a path $P_4 [s_2, t_2]$. There exist vertices $x, y \in V(P_4)$ such that $P_4 (s_2, x)$ and $P_4 (t_2, y)$ are disjoint from P_1, P_2, P_3 . Choose x, ywith this property such that $P_4 (s_2, x), P_4 (t_2, y)$ have the maximum length respectively. If x or $y \notin V(P_1) \cup V(P_2) \cup V(P_3)$, then $x=t_2$ or $y=s_2$, and so the result follows. We may therefore assume that $x \in V(P_2)$ and $y \in V(P_1)$ (i=2 or 3). When i=2 (i=3), let P_5 be the path obtained by combining $P_4 (s_2, x)$, $P_2 (x, y)$ and $P_4 (y, t_2) (P_4 (s_2, x), P_2 (x, s_1), P_3 (s_1, y))$ and $P_4 (y, t_2)$). Now P_1 and P_5 are required paths of G.

Lemma 2.2. If G is 3-regular 3-edge-connected graph with no nontrivial 3-cut and with $4 \leq |V| \leq 8$, then G is $K_4, K_{3,3}$, a cube or the graph in Figure 2.

Figure 2.

Proof. Since G is 3-regular 3-edge-connected, G has no multiple edges. Thus if |V|=4, then G is K₄. If |V|>4, then G has no cycle of length three. If |V|=6, then let $V=(x_1,\ldots,x_6)$. We may let $N(x_1)=(x_2,x_3,x_4)$. Since $x_ix_j \notin E$ $(2 \leq i < j \leq 4)$, we have $x_ix_j \in E$ (i=2,3,4; j=5,6). Thus G is $K_{3,3}$. If |V|=8, then it easily follows that G is a cube or the graph in Figure 2.

Lemma 2.3. Suppose that G is a 3-regular 3-edgeconnected graph, and that a, x_1, x_2, x_3, x_4 are vertices such that $a \neq x_1$ ($1 \leq i \leq 4$). Then G-a contains disjoint paths $[x_1, x_2]$ and $[x_3, x_4]$.

Proof. We proceed by induction on |V|. If |V|=2, then G is the graph of triple edges, and the result holds. Therefore we assume $|V| \ge 4$.

First we assume that G contains a nontrivial 3-cut $(e_1, e_2, e_3)=\partial(X)$ (X \leq V). Let $b_i \in X$, $c_i \in V-X$, $e_i = b_i c_i$ (i=1,2,3), then $b_i \neq b_j$, $c_i \neq c_j$ if $i \neq j$, since G is 3-edge-connected. Let H, K be the graphs obtained from G by contracting V-X, X to one vertex respectively. Let V(H)=X Uv, V(K)=(V-X) Uu. Then H,K are 3-regular 3-edge-connected graphs and |V(H)| < |V|, |V(K)| < |V|. We may assume $a \in V-X$. It suffices to prove the lemma in the following cases.

Case 1. $(x_1, x_2, x_3, x_4) \leq V-X$. By induction the result holds in K, and so in G.

Case 2. $x_1 \in X$ and $\{x_2, x_3, x_4\} \subseteq V-X$. By induction the result holds in K (note that $x_1 = u$ in K). Thus the result holds in G, since G contains a subgraph G_1 homeomorphic to K, such that x_1 corresponds to u and each vertex of V-X to itself.

Case 3. $(x_1, x_2, x_3, x_4) \leq X$. G contains a subgraph G_2 homeomorphic to H, such that a corresponds to v and each vertex of X to itself, and so the result holds in G.

Case 4. $(x_1, x_2) \subseteq X$ and $(x_3, x_4) \subseteq V-X$. Since K-{a,u} is connected, this contains a path $[x_3, x_4]$; and H-v contains a path $[x_1, x_2]$.

Case 5. $(x_1, x_3) \subseteq X$ and $(x_2, x_4) \subseteq V-X$. By induction K-a contains disjoint paths $P_1[u, x_2]$ and $P_2[u, x_4]$. We may let $c_i \in V(P_i)$ (i=1,2), and H-v contains disjoint paths $[x_1, b_1]$ and $[x_3, b_2]$. Thus the result follows.

Case 6. $\{x_1, x_2, x_3\} \subseteq X$ and $x_4 \in V-X$. K-a contains a path PEu, x_4], and we may let $c_1 \in V(P)$. H-v contains disjoint paths $[x_1, x_2]$ and $[x_3, b_1]$. Thus the result follows.

Next we assume that G does not contain a nontrivial 3-cut. If G contains an edge e which is not incident to any of a, x_1, x_2, x_3, x_4 , then let \widehat{G} -e be the 3-regular graph homeomorphic to the graph G-e. Then \widehat{G} -e is 3-edge-connected. By induction the result holds in \widehat{G} -e, and so in G. Thus we assume that any edge is incident to one of a, x_1, x_2, x_3, x_4 . Then $|E| \leq 15$ and $|V| \leq 10$. We put $T=(a, x_1, x_2, x_3, x_4)$. We may assume that x_1, x_2, x_3 and x_4 are all distinct. For if not, then the result follows, since G-a is 2-edge-connected. Thus $|V| \geq 5$. If |V|=10, then $N(x_1) \leq V-T$ ($1 \leq i \leq 4$) and |V-T|=5. Thus for some $y \in V-T$, $y \in N(x_1) \cap N(x_2)$. G-(a, y) is connected, and so the result follows. If |V|=6 or 8, then by Lemma 2.2 G is $K_{3,3}$, a cube, or the graph in Figure 2. We ommit the proofs for them.

Lemma 2.4. Suppose that G is a 3-regular 3-edgeconnected graph, and that $a_1, a_2, a_3, x_1, x_2, x_3$ are vertices such that N(a)={ a_1, a_2, a_3 } and $a \neq x_1$ ($1 \leq i \leq 3$). Then

 $|I_G| \ge 4$.

Here $I_{G} = I_{G}(a, a_{1}, a_{2}, a_{3}, x_{1}, x_{2}, x_{3})$ is $\begin{cases}
(i, j, k) \\
(i, j, k) = (1, 2, 3). G-a \text{ contains disjoint paths} \\
(x_{1}, a_{1}], [x_{2}, a_{3}] \text{ and } [x_{3}, a_{k}].
\end{cases}$

Proof. We proceed by induction on |V|. We assume $|V| \ge 4$. First we assume that G contains a nontrivial 3-cut $(e_1, e_2, e_3) = \Im(X)$ (X \subseteq V). We define b_1, c_1 (i=1,2,3),H,K,v and u similarly as in the proof of Lemma 2.3. We may assume $a \in V-X$. Then $|X \cap N(a)| \leq 1$. If $a_1 \in X$ for some i, then $a_1 = u$ in K. It suffices to prove the lemma in the following cases.

Case 1. $(x_1, x_2, x_3) \subseteq V-X$; $x_1 \in X$ and $(x_2, x_3) \subseteq V-X$; or $(x_1, x_2, x_3) \subseteq X$. Similar as Case 1,2 or 3 in the proof of Lemma 2.3.

Case 2. $(x_1, x_2) \subseteq X$ and $x_3 \in V-X$. By induction $|I_K(a, a_1, a_2, a_3, u, u, x_3)| \ge 4$. For each (i, j, k) of I_K , K-a contains disjoint paths $P_1[u, a_1]$, $P_2[u, a_3]$ and $P_3[x_3, a_K]$. If $u \notin N_K(a)$, then we may let $c_1 \in V(P_1)$ (i=1,2). By Induction H-v contains disjoint paths $[x_1, b_1]$ and $[x_2, b_2]$. Thus (i, j, k) $\in I_G(a, a_1, a_2, a_3, x_1, x_2, x_3)$, and so $|I_G|\ge 4$. If $u \in N_K(a)$, then we may let $a_1=u, a=c_1$. Now $k \ne 1$ and we may let i=1, j=2, k=3, $c_2 \in V(P_2)$. Since H-v contains disjoint paths $[x_1, b_1]$ and $[x_2, b_2]$, $|I_G|\ge 4$.

Next we assume that G does not contain a nontrivial 3-cut. We may assume that any edge is incident to one of a, x_1, x_2, x_3 (see the proof of Lemma 2.3). Thus $|E| \leq 12$ and $|V| \leq 8$. By Lemma 2.2 G is K₄, K_{3,3}, a cube or the graph in Figure 2, but in the last graph any four vertices do not cover all edges of the graph. Thus G is one of the first three graphs. If G is a cube, then in Figure 3 it suffices to check the case $y_1 = a$, $y_3 = x_1$, $y_6 = x_2$, $y_8 = x_3$. We ommit the proofs for K₄, K_{3,3}.

Figure 3.

Lemma 2.5. Suppose that $s_1, s_2, s_3, t_1, t_2, t_3$ are vertices of a graph G. If G is 3-regular 3-edge-connected, then G contains disjoint paths $[s_1, t_1], [s_2, t_2]$ and $[s_3, t_3]$.

Proof. We proceed by induction on |V|. We put $T=(s_1, s_2, s_3, t_1, t_2, t_3)$. If $s_i=t_i$ for some i, then the result follows by Lemma 2.1, and if $s_1=s_2=s_3$, then the result follows from Menger's theorem. Thus we may assume that these are not the cases.

First we assume that G contains a nontrivial 3-cut $(e_1, e_2, e_3)=\partial(X)$ (X \subseteq V). We define b_1, c_1 (i=1,2,3),H,K,v and u similarly as in the proof of Lemma 2.3. It suffices to prove the lemma in the following cases.

Case 1. To $X=\phi$. By induction the result holds in K, and so in G.

Case 2. $s_1 \in X$ and $(s_2, s_3, t_1, t_2, t_3) \subseteq V-X$. G contains a subgraph G_1 homeomorpic to K, such that s_1 corresponds to u

and each vertex of V-X to itself.

Case 3. $(s_1, t_1) \subseteq X$ and $(s_2, s_3, t_2, t_3) \subseteq V-X$. By Lemma 2.3 K-u contains disjoint paths $[s_2, t_2]$ and $[s_3, t_3]$, and H-v contains a path $[s_1, t_1]$.

Case 4. $(s_1, s_2) \subseteq X$ and $(s_3, t_1, t_2, t_3) \subseteq V-X$. By induction K contains disjoint paths $P_1[u, t_1], P_2[u, t_2]$ and $[s_3, t_3]$. Let $c_i \in V(P_i)$ (i=1,2). By Lemma 2.3 H-v contains disjoint paths $[s_1, b_1]$ and $[s_2, b_2]$. Now the result follows.

Case 5. $(s_1, s_2, t_1) \subseteq X$ and $(s_3, t_2, t_3) \subseteq V-X$. We can get the result by applying Lemma 2.3 on H and K.

Case 6. $(s_1, s_2, s_3) \subseteq X$ and $(t_1, t_2, t_3) \subseteq V-X$. By Lemma 2.4

 $I_{\mathcal{H}}(v,b_1,b_2,b_3,s_1,s_2,s_3) \cap I_{\mathcal{K}}(u,c_1,c_2,c_3,t_1,t_2,t_3) \neq \emptyset,$ and so the result follows.

Next we assume that G does not contain a nontrivial 3-cut. We may assume that every edge of G is incident to a vertex of T (see the proof of Lemma 2.3). Thus $|E| \leq 18$ and $|V| \leq 12$. We require the following.

(2.1) We may assume that $d(s_i, t_i) \ge 2$ (i=1,2,3). If $d(s_i, t_i)=2$ for some i and s_i, t_i are adjacent to a common vertex x, say for i=1, then we may assume that

$$x \in \{s_2, t_2\} \cap \{s_3, t_3\}.$$

Proof. Let $d(s_1,t_1)=1$. If $(s_1,t_1) \cap (s_1,t_1) = \emptyset$, for i=2or 3, say i=2, then $\lambda_{G-s_1t_1}(s_2,t_2)=3$ and by Lemma 2.1 G-s,t, contains disjoint paths $[s_2,t_2]$ and $[s_3,t_3]$, and so the result of Lemma 2.5 follows; if not, then we may let $s_2=s_1,s_3=t_1$ and $s_1\neq t_1$ (i=2,3). Let $y \in N(s_1)-t_1$. By Lemma 2.3 G-s, contains disjoint paths $[s_3,t_3]$ and $[t_2,y]$. Thus the result of Lemma 2.5 follows. Hence we may assume that $d(s_1,t_1) \ge 2$ (i=1,2,3). Assume that s_1 and t_1 are adjacent to a vertex x. Let $y \in N(x) - (s_1,t_1)$. If $x \notin T$, then by Lemma 2.3 G-x contains diajoint paths $[s_2,t_2]$ and $[s_3,t_3]$. If $x \in T$ and $x \notin (s_2,t_2) \land (s_3,t_3)$, then we may let $x=s_1$ and $s_3 \neq x \neq t_3$. By Lemma 2.3 G-x contains disjoint paths $[s_3,t_3]$ and $[t_2,y]$, hence Lemma 2.5 holds. Thus (2.1) is proved.

Now we return to the proof of Lemma 2.5. If $G=K_4$, then $d(s_1,t_1)=1$, and if $G=K_{3,3}$, then s_1 and t_1 are adjacent to common three vertices, contrary to (2.1). If G is the graph in Figure 2, then we may let $s_1=y_1$ without loss of generality. Then $t_1 \neq y_1$ (i=4,5,6) by (2.1). If $t_1=y_1$ (i=2 or 8), say for i=8, then $(y_4,y_5) \subseteq (s_2,t_2) \cap (s_3,t_3)$ by (2.1). So we may let $y_4=s_2=s_3$ and $y_5=t_2=t_3$, contrary to (2.1). If $t_1=y_1$ (i=3 or 7), say for i=3, then we may let $y_4=s_2=s_3$ by (2.1). Now we can not choose (t_2,t_3) such that T covers E, a contradiction. When G is a cube, in Figure 3 we may let $s_1=y_1$ and $t_1 \neq y_1$ (i=2,4,5). If $t_1=y_1$ (i=3,6 or 8), say for i=3, then we may $y_4=t_2=t_3$, and the result

follows. Thus we may let $t_1 = y_\eta$. Since T covers all edges, we may let $(s_1, t_2) = (y_2, y_g)$ and $(s_3, t_3) = (y_3, y_5)$, then the result easily follows.

By Lemma 2.2 we may let |V|=10 or 12. Thus $|T| \ge 5$. Note that for each distinct vertices $x,y \in V$, $N(x) \ne N(y)$, because G has no nontrivial 3-cut. We distinguish three cases.

Case 1. |T|=5. Let $s_1=s_2$. Now |V|=10, and G is a bipartite graph and the partition of V is (T,V-T). The number of vertices which have distance two from $s_1=s_2$ is at least three, and so $d(s_1,t_1)=2$ for i=1 or 2, contrary to (2.1).

Case 2. |T| = 6 and |V| = 12. Now G is a bipartite graph and the partition of V is (T, V-T). If the number of vertices which have distance two from s_1 is at least five, then one of such vertices is t_1 , a contradiction; if not, then the number is four, since G does not contain a nontrivial 3-cut. Thus G contains a subgraph as illustrated in Figure 4, where $T=(s_1, x_1, x_2, x_3, x_4, x_5)$. By (2.1) $t_1 \neq x_1$ (i=1,2,3,4) and (s_1, t_1) is not $(x_1, x_2), (x_1, x_4)$ nor (x_2, x_3) (j=2.3), and so we may let $(x_1, x_3)=(s_2, t_2), (x_2, x_4)=(s_3, t_3)$ and $x_5=t_1$. Now $(x_5y_1, x_5y_2, x_5y_3) \subseteq E$. If $x_1y_1 \in E$ (i=1 or 2), say for i=1, then $(x_3y_2, x_3y_3) \subseteq E$ and $x_2y_3 \in E$. Now the result follows. If $x_1y_3 \in E$, then $x_3y_3 \notin E$, and so $(x_3y_1, x_3y_2) \subseteq E$, contrary to $N(y_1) \neq N(y_2)$.

Figure 4.

Case 3. |T|=6 and |V|=10. Now both ends of just three edges are in T, and by (2.1) $d(s_i, t_i) \ge 3$ (i=1,2,3). Thus G contains a subgraph as illustrated in Figures 5a,5b,5c or 5d, where $T=(x_1, \ldots, x_6)$ and $V-T=(y_1, \ldots, y_4)$.

$$x_1 x_2 x_3 x_4 x_5 x_6$$

Figure 5a.

$$\begin{array}{c} \circ & \circ & \circ & \circ \\ \mathbf{y}_1 & \mathbf{y}_2 & \mathbf{y}_3 & \mathbf{y}_4 \end{array}$$

Figure 5b.

Figure 5c.

x₁ x₂ x₃ x₄ x₅ x₆

y₁y₂y₃y₄

Figure 5d.

In Figure 5a, we may let $(x_1, x_3) = (s_1, t_1), (x_2, x_5) = (s_2, t_2),$ $(x_4, x_6) = (s_3, t_3)$ and $(x_1y_1, x_1y_2) \subseteq E$. Then $x_1y_3 \in E$ (i=2,3; j=1, 2). Since $N(y_1) \neq N(y_2)$, one of them contains (x_5, x_6) or (x_4, x_6) , a contradiction. In Figure 5b, we may let $(x_6y_1, x_6y_2, x_6y_3) \subseteq E$. If for some i=1,3,4,5 $(x_1, x_6) = (s_1, t_1)$, then $d(s_1, t_1) = 2$, a contradiction. Thus we may let $(x_2, x_6) = (s_1, t_1)$, then $d(s_1, t_1) = (s_2, t_2)$ and $(x_3, x_5) = (s_3, t_3)$. Thus $x_2y_4 \in E$. We may let $(x_1y_1, x_1y_2) \subseteq E$, and so $(x_4y_3, x_4y_4, x_5y_1, x_5y_2) \subseteq E$, contrary to $N(y_1) \neq N(y_2)$. In Figure 5c, for some i=1,2,3 $d(s_1, t_1) \leq 2$, a contradiction. In Figure 5d, we may let $(x_2, x_5) = (s_1, t_1)$, $(x_3, x_6) = (s_2, t_2), (x_1, x_4) = (s_3, t_3)$ and $(x_1y_1, x_1y_2, x_4y_3, x_4y_4) \subseteq E$. Now $x_2 y_i \in E$ (i=3 or 4), say for i=3, then $(x_5 y_1, x_5 y_2, x_5 y_4) \subseteq E$. $x_3 y_i \in E$ (i=1 or 2), say for i=1, then $(x_6 y_2, x_6 y_3, x_6 y_4) \subseteq E$. Now the result easily follows.

Proof of Theorem 1. We proceed by induction on |V|. If G is not 2-connected, then we can deduce the result by using induction on blocks. Thus we may assume that G is 2-connected. If G contains a vertex of degree k (\geq 4), then we replace this vertex by a k-gon with k vertices of degree 3. (Figure 6 gives an example with k=5.) If this vertex of G is $s_i(t_i)$ for some i, then we assign $s_i(t_i)$ on any vertex of this k-gon, producing a 3-regular graph G' such that $\lambda_{G'}(s_i, t_i) \geq 3$ for each i. If the result holds in G', then the result clearly holds in G, and so we may assume that G

Figure 6.

is 3-regular. By Lemma 2.5 we may assume that G contains a 2-cut $(e_1, e_2)=\partial(X)$ $(X \subseteq V)$. Let $b_1 \in X$, $c_1 \in V-X$ and $e_1=b_1c_1$ (i=1,2). We define new graphs H,K as follows.

$$H=(X, E(\langle X \rangle) \cup f),$$

 $K=(V-X, E(\langle V-X \rangle) \cup g),$

where f, g are new edges with ends b_1, b_2 and c_1, c_2 respectively. Then H and K are 2-edge-connected. Since $\lambda_{G}(s_1, t_1) \ge 3$, $(s_1, t_1) \subseteq X$ or $(s_1, t_1) \subseteq V-X$ for each i. Thus it suffices to consider the following cases.

Case 1. $(s_1, s_2, s_3, t_1, t_2, t_3) \leq X$. By induction the result holds in H.

Case 2. $(s_1, s_2, t_1, t_2) \subseteq X$ and $(s_3, t_3) \subseteq V-X$. By Lemma 2.1 H contains disjoint paths $P_1[s_1, t_1]$ and $P_2[s_2, t_2]$. Let P_3, P_4 P_5 be disjoint paths of K between s_3 and t_3 , and let $c_1 c_2 \notin E(P_3) \cup E(P_4)$. If $b_1 b_2 \notin E(P_1) \cup E(P_2)$, then P_1, P_2, P_3 are required paths of G. Thus let $b_1 b_2 \in E(P_1)$. If $c_1 c_2 \notin E(P_5)$, then by Lemma 2.1 K- $c_1 c_2$ contains disjoint paths $[s_3, t_3]$ and $[c_1, c_2]$; and if $c_1 c_2 \in E(P_5)$, then let $P_6[c_1, c_2]$ be the path obtained by combining $P_5 - c_1 c_2$ and P_4 . In each case we can construct required paths of G.

3. Proof of Therem 2.

For an integer $n \ge 3$ and vertices x_1, x_2, \ldots, x_n , we denote feasible paths $\frac{1}{2} [x_1, x_2], \frac{1}{2} [x_2, x_3], \ldots, \frac{1}{2} [x_{n-1}, x_n]$, and $\frac{1}{2} [x_n, x_1]$ by $\frac{1}{2} [x_1, \ldots, x_n, x_n]$. For a vertex $x \in V$ and $a, b \in N(x)$, let $G_x^{a,b}$ be the graph $(V, E \cup e_1 - \{e_2, e_3\})$, where e_1 is a new edge with ends a, b and e_2, e_3 are edges of E with ends a, x and b, xrespectively.

Lemma 3.1 (Mader [4]). Suppose that G is a graph and x is a non-separating vertex of G with deg $x \ge 4$ and with $|N(x)|\ge 2$. Then there exist two vertices $a,b \in N(x)$, such that for each two vertices $y,z \in V-x$,

$$\lambda_{q_{\chi}^{a,b}(y,z)} = \lambda_{q}^{(y,z)}.$$

Lemma 3.2. Suppose that x_1, \ldots, x_5 are vertices of a graph G. If for each $1 \le i \le j \le 5$,

$$\lambda(x_1,x_2) \geq 4$$

and each vertex of G has even degree, then G contains edgedisjoint paths $[x_1, x_2], [x_2, x_3], [x_3, x_4], [x_4, x_5]$, and $[x_5, x_1]$.

Proof. We proceed by induction on |E|. We put T=(x₁,...,x₅). If $|T| \leq 4$, then the result follows from (1.4.4),and so we may let |T|=5. We may assume that G is 2-connected, and that for each vertex x of G deg x ≥ 4 . If there exists a vertex x in V-T, then by Lemma 3.1 there exist two vertices a, b \in N(x) such that $\lambda_{G_x^{a,b}(x_1,x_j)=\lambda_{G_x^{a,b}(x_1,x_j)}$ ($1 \le i \le j \le 5$). $|E(G_x^{a,b})| \le |E|$ and each vertex of $G_x^{a,b}$ has even degree, thus by induction the result holds in $G_x^{a,b}$, and so in G. Let V=T. If $x_x \le E$, then we can apply (1.4.5) for the graph $G_{x_x} \le I$, and for pairs $(s_1,t_1)=(x_1,x_{1+1})$ and $q_1=1$ ($1 \le i \le 4$). Thus we may let $x_x \le E$ and $x_1 \times_{i+1} \notin E$ ($1 \le i \le 4$). Now G contains a subgraph as illustrated in Figure 7a or 7b, and the result holds.

Figure 7a.

Figure 7b.

Lemma 3.3. Suppose that G is a 2-edge-connected graph and a,b,c,d,x,y are vertices such that deg a=3, N(a)=(b,c,d), deg b \geq 3, and a, x, y are all distinct, and that for each 2-cut $\partial(X)$ (X $\subseteq V$, $|X| \leq |V-X|$),

 $X=(x), X=(y) \text{ or } X=(x,y) \text{ and } |E(\langle X \rangle)|=1.$

Then G-a contains $\frac{1}{2}$ [b,c,x,d,y,b], if it is not the cases that deg c=2, c=x, deg c₁ = 2 (N(c)=(a,c₁)) or, deg c=2, c=y.

Proof. We distinguish four cases.

Case 1. deg $c \ge 3$ and deg $d \ge 3$. Now G-a is 2-edge-connect. Let G' be the graph obtained by replacing each edge of G by double edges. Then G'-a is 4-edge-connected, and so by applying Lemma 3.2 on G'-a we can deduce the result.

Case 2. deg c=2 and deg d \geq 3. Let N(c)={a,q}. By the hypothesis c \neq y, and so c=x and deg c₁ \geq 3. G-{a,c} is 2-edge-connected, and so this contains \neq [b,c₁,d,y,b] by Lemma 3.2.

Case 3. deg $c \ge 3$ and deg d=2. Let d=x and N(d)=(a,d_1). If deg d_1 \ge 3, then G-(a,d) is 2-edge-connected, and so this contains $\frac{1}{2}$ [b,c,d_1,y,b]. If deg d_1=2, then d_1=y. By (1.4.4) G-(a,d) contains $\frac{1}{2}$ [b,c,d_1,b], thus G contains $\frac{1}{2}$ [b,c,x,d,y,b] When d=y, the proof is similar.

Case 4. deg c=deg d=2. Now c≠d and c≠y, thus c=x,d=y, and G-(a,c,d) is 2-edge-connected. By (1.4.4) G-a contains $\frac{1}{2}$ [b,c,d,b].

If we prove following Lemma 3.4, Theorem 2 follows.

Lemma 3.4. Suppose that G is a graph with w = 1, (s_1, t_1) , $(s_2, t_2), (s_3, t_3)$ are pairs of vertices of G, and $q_1 = q_2 = q_3 = 1$.

If (1.3) holds, then G contains feasible paths $\frac{1}{2}P_1$ [s₁,t₁], $\frac{1}{2}P_2$ [s₁,t₁], $\frac{1}{2}P_3$ [s₂,t₂], $\frac{1}{2}P_4$ [s₂,t₂], $\frac{1}{2}P_5$ [s₃,t₃], and $\frac{1}{2}P_6$ [s₃,t₃].

Proof. We proceed by induction on |E|. We put T= $(s_1, s_2, s_3, t_1, t_2, t_3)$. We require the following

(3.1) We may assume the following.

(3.1.1) G is 2-connected, and |T|=6.

(3.1.2) For each 2-cut $\Im(X)$ (X $\subseteq V$), $|X| = |X \cap T| = 1$ or $|X \cap T| \ge 2$.

(3.1.3) For each edge $e \in E$, there exists $X \subseteq V$ such that $|\Im(X)| = |D(X)|$ and $e \in \Im(X)$.

(3.1.4) For each $1 \leq i \leq 3$, s, and t, are not adjacent.

(3.1.5) If for vertices x_1, x_2, x_3, x_4 of G deg x_2 =deg x_3 =2 and $(x_1, x_2, x_2, x_3, x_3, x_4) \subseteq E$, then deg $x_1 \ge 3$ and deg $x_4 \ge 3$.

Proof. (1) If $|T| \leq 5$, then Lemma 3.4 follows from (1.4.5).

(2) Let $\{e_1, e_2\}=\partial(X)$ be a 2-cut , and let $a_i \in X$, $b_i \in V-X$ and $a_i b_i = e_i$ (i=1,2). We define new graphs H,K as follows.

 $H=(X,E(\langle X\rangle)\cup f),$

 $K=(V-X,E(\langle V-X\rangle)\cup g),$

where f, g are new edges with ends a_1, a_2 and b_1, b_2 respectively. If $X \cap T = \emptyset$, then by induction the result of Lemma 3.4 holds in K, and so in G. If $|X \cap T| = 1$ (say s, $\in X$) and $|X| \ge 2$, then we assign s, on the midpoint of g in K, producing a new graph K'. Now by induction the result of Lemma 3.4 holds in K', and so in G.

(3) If there exists $e \in E$ such that for each $X \subseteq V$ with $e \in \partial(X)$ and $|\partial(X)| > |D(X)|$, then the hypothesis of Lemma 3.4 holds in G-e, and so we can apply induction on G-e.

(4) If $s_3 t_3 \in E$, then we can apply (1.4.2) for the graph $G-s_3 t_3$, and for two pairs $(s_1, t_1), (s_2, t_2)$ and $q_1 = q_2 = 1$.

(5) If deg $x_1 = 2$, then $x_1 \in T$ ($1 \le i \le 3$) by (3.1.2), and so we may let $x_1 = s_2$, $x_2 = s_1$ and $x_3 = t_2$ by (3.1.4) and (1.3). Let $x_0 \in N(x_1) = x$. Let G' be the graph obtained by contracting the edge $x_0 x_1$. By induction G' contains feasible paths $\frac{1}{2}P_1[s_1,t_1], \frac{1}{2}P_2[s_1,t_1], \frac{1}{2}P_3[s_2,t_2], \frac{1}{2}P_4[s_2,t_2], \frac{1}{2}P_5[s_3,t_3]$ and $\frac{1}{2}P_6[s_3,t_3]$. Let Q_1,\ldots,Q_6 be the corresponding paths of G. We may let $x_1 x_2 \in E(Q_1) \cap E(Q_2)$ or $x_1 x_2 \in E(Q_1) \cap E(Q_3)$. In the former case, let Q_7 be the path of G such that $E(Q_7)=(x_1 x_2, x_2 x_3)$ and let Q_8 be the path of G obtained by combining $x_2 x_3$, $Q_3(t_2,x_0)$ and $Q_2(x_0,t_1)$. Then $\frac{1}{2}Q_1$, $\frac{1}{2}Q_8$, $\frac{1}{2}Q_7$, $\frac{1}{2}Q_4$, $\frac{1}{2}Q_5$, $\frac{1}{2}Q_6$ are required paths of G.

Now we come to the proof of Lemma 3.4. We distinguish three cases.

Case 1. G contains a nontrivial 2-cut $(e_1, e_2) = \partial(X)$ (X \subseteq V). We define H, K, a_i , b_i , f and g similarly as in the proof of (3.1.2). Then H and K are 2-edge-connected. It suffices to consider the following cases by (3.1.2). Case 1a. $(s_1, t_1) \subseteq X$ and $(s_2, s_3, t_2, t_3) \subseteq V-X$. Assume that K-g contains feasible paths $\frac{1}{2}P_1[s_2, t_2], \frac{1}{2}P_2[s_2, t_2],$ $\frac{1}{2}P_3[s_3, t_3]$ and $\frac{1}{2}P_4[s_3, t_3]$. Then H-f contains a path $P_5[s_1, t_1]$, and $P_5, \frac{1}{2}P_1, \frac{1}{2}P_2, \frac{1}{2}P_3, \frac{1}{2}P_4$ are required paths of G. If this is not the case, then by (1.4.2) for the graph K-g, and for two pairs $(s_2, t_2), (s_3, t_3)$ and $q_2 = q_3 = 1$, (1.3) does not hold. Thus for some $Y \subseteq V-X$ with $b_1 \in Y$,

 $D_{K-q}(Y) = (2,3) \text{ and } |\partial_{K-q}(Y)| = 1.$

For each $Z \subseteq X$ such that $a_1 \in Z$, $f \in \mathcal{O}_H(Z)$ and $D_H(Z) = \{1\}$,

 $|D_G(Y \cup Z)| = 3,$

and so $|\partial_{G}(Y \cup Z)| = |\partial_{H-f}(Z)| + |\partial_{K-g}(Y)| \ge 3$, thus $|\partial_{H-f}(Z)| \ge 2$.

Hence by (1.4.2) H-f contains feasible paths $\frac{1}{2}P_1$ [s₁,t₁], $\frac{1}{2}P_2$ [s₁,t₁], $\frac{1}{2}P_3$ [a₁,a₂] and $\frac{1}{2}P_4$ [a₁,a₂], and K contains feasible paths $\frac{1}{2}P_5$ [s₂,t₂], $\frac{1}{2}P_6$ [s₂,t₂], $\frac{1}{2}P_7$ [s₃,t₃] and $\frac{1}{2}P_8$ [s₃,t₃]. Now we can construct required paths of G.

Case 1b. $(s_1, s_2) \in X$ and $(s_3, t_1, t_2, t_3) \in V-X$. If H-f is 2-edge-connected, then we assign a new vertex u on the midpoint of g, producing a new graph K'. By induction K' contains feasible paths $\frac{1}{2}P_1$ [u,t,], $\frac{1}{2}P_2$ [u,t_1], $\frac{1}{2}P_3$ [u,t_2], $\frac{1}{2}P_4$ [u,t_2], $\frac{1}{2}P_5$ [s_3,t_3] and $\frac{1}{2}P_6$ [s_3,t_3]. We may let ub_1 $\in E(P_1) \cap E(P_2)$ or ub_1 $\in E(P_1) \cap E(P_3)$. In each case we can construct required paths of G, since by (1.4.5) H-f contains feasible paths $\frac{1}{2}P_7$ [s_1,a_1], $\frac{1}{2}P_8$ [s_1,a_1], $\frac{1}{2}P_9$ [s_2,a_2] and $\frac{1}{2}P_{10}$ [s_2,a_2] and contains $\frac{1}{2}$ [s_1,a_1,s_2,a_2,s_1]. Thus we may assume that H-f is not 2-edge-connected, and so H contains a 2-cut (f,f'). Then (f',e,) and (f',e,) are 2-cuts of G. By (3.1.2) H=((a,,a,),(f,f')), and so we may let a,=s, and a,=s,. By (3.1.5) deg b; \geq 3 (i=1,2). If K contains a 2-cut (g,g')= $\partial_{K}(Y)$ (Y $\subseteq V-X$), then (g',e,) and (g',e,) are 2-cuts of G. Since deg b; \geq 3 (i=1,2), by (3.1.2) |Y \cap T|=2 and |(V-X-Y) \cap T|=2 By Case 1a we may let Y \cap T \neq (s_3, t_3), and so we may let $\langle Y \rangle$ is an edge, contrary to (3.1.5). Thus assume that K-g is 2-edge-connected. By (3.1.3), there exists X $\subseteq V$ such that $|\partial(X)| = |D(X)|$ and $s_1s_2 \in \partial(X)$. Thus we may assume that G is the graph as illustrated in Figure 8. Let Y, Y_2 be the subsets

Figure 8.

of V such that $b_i \in Y_i$ and $\partial(Y_i) = (s_i b_i, c_i c_2, d_i d_2)$ (i=1,2). We construct new graphs K_1, K_2 as follows.

 $K_i = (Y_i \cup v_i, E(\langle Y_i \rangle) \cup \{b_i v_i, c_i v_i, d_i v_i\}), i=1,2,$ where v_1, v_2 are new vertices. If for i=1 or 2, K_i contains a 2-cut $\partial_{K_i}(Z_i)$ $(Z_i \subseteq Y_i)$ such that $|Z_i| \ge 2$ and $|V(K_i) - Z_i| \ge 2$, say i=1, then $\partial_{\hat{H}}(Z_i)$ is a 2-cut of G, and by (3.1.2) $Z_{1\cap} T = \{s_3, t_2\}$. Thus we may assume that $Z_i = \{s_3, t_2\}$ and deg $s_3 = \text{deg } t_2 = 2$. This allows that we can apply Lemma 3.3 on K_1 and K_2 .

Assume that deg $c_1 \ge 3$, deg $d_2 \ge 3$ or deg $c_2 \ge 3$, deg $d_1 \ge 3$, say the former. By Lemma 3.3 K₁-v₁ contains $\frac{1}{2}$ [b₁,c₁,s₃,d₁,t₂,b₁] and K₂-v₂ contains $\frac{1}{2}$ [b₂,d₂,t₃,c₂,t₁,b₂]. Now we can construct required paths of G. Assume that for i=1 or 2, deg $c_{1,2}$ 3 and deg $d_{1,2}$ 3, say for i=1. Now we may assume that deg $c_2 = deg d_2 = 2$. $c_2 = t_1$, $d_2 = t_3$ or $c_2 = t_3$, $d_2 = t_1$, say the former, then by Lemma 3.3 $K_2 - v_2$ contains $\frac{1}{2}$ [b₂,d₂,t₃,c₂,t₁,b₂] and K₁-v₁ contains $\frac{1}{2}$ [b₁,c₁,s₃,d₁,t₂,b₁]. Assume that deg $c_i = 2$ (i=1,2) or deg $d_j = 2$ (j=1,2), say the former. Let $y_1 \in N(c_1)-c_2$, and let $y_2 \in N(c_2)-c_1$, then by (3.1.5) deg $y_{1} \ge 3$ (i=1,2). By (3.1.4) we may let $c_{1} = t_{2}$, $c_2 = t_1 \text{ or } c_1 = s_3, c_2 = t_1$. If $c_1 = t_2$, then by (1.4.2) $K_1 - (v_1, c_1)$ contains feasible paths $\frac{1}{2}P_1$ [s₃,d₁], $\frac{1}{2}P_2$ [s₃,d₁], $\frac{1}{2}P_3$ [b₁,y₁] and $\frac{1}{2}P_4[b_1,y_1]$, and $K_2 - \{v_2,c_2\}$ contains feasible paths $\frac{1}{2}P_5[t_3,d_2]$, $\frac{1}{2}$ P₆ [t₃,d₂], $\frac{1}{2}$ P₇ [b₂,y₂] and $\frac{1}{2}$ P₈ [b₂,y₂], and so the result follows. If $c_1 = s_3$, then by Lemma 3.3 $K_1 = \{v_1, c_1\}$ contains $\frac{1}{2}$ [b₁,y₁,d₁,t₁,b₁] and K₂-(v₂,c₁) contains $\frac{1}{2}$ [b₂,d₂,t₃,y₂,b₂], and so the result follows.

Case 1c. $(s_1, s_2, t_1) \subseteq X$ and $(s_3, t_2, t_3) \subseteq V-X$. We may assume that neither Case 1a nor Case 1b occurs. If deg $a_1=2$, then $\Im(X-a_1)$ is a 2-cut of G and $|(X-a_1) \cap T|=2$, a contradiction. Thus deg $a_1 \ge 3$ and deg $b_1 \ge 3$ (i=1,2). We assign new vertices v_2, u_2 on the midpoints of f,g respectively, producing new graphs H',K'. For the graph H', and for two pairs $(s_1, t_1), (s_2, v_2)$ and $q_1=1, q_2=2$, if (1.3) does not hold, then there exists $Z \subseteq V(H')$ such that $D_{H'}(Z)=(1,2)$ and $|\partial_{H'}(Z)|=2$. Now Case 1b occurs in G, thus (1.3) holds, and so (1.2) holds. Hence $H'-v_2$ contans feasible paths $\frac{1}{2}P_1 [s_1,t_1]$, $\frac{1}{2}P_2 [s_1,t_1], \frac{1}{2}P_3 [s_2,a_1]$ and $\frac{1}{2}P_4 [s_2,a_2]$. Similarly $K'-u_2$ contains feasible paths $\frac{1}{2}P_5 [s_3,t_3], \frac{1}{2}P_6 [s_3,t_3], \frac{1}{2}P_7 [t_2,b_1]$ and $\frac{1}{2}P_8 [t_2,b_2]$, and so the result follows.

Case 2. Every 2-cut of G is trivial, and G contains a 2-cut. Now we may let deg $s_1=2$, and let e_1 , e_2 be the edges incident to s_1 . By (3.1.3), for i=1,2 there exists $X_i \subseteq V$ such that $s_1 \in X_i$, $|\Im(X_i)| = |D(X_i)|$ and $e_i \in \Im(X_i)$. For i=1,2, since $|\Im(X_i)| = 3$, let $\Im(X_i) = (e_i, f_i, g_i)$. We put $X_3 = V - (X_1 \cup X_2)$, then $t_1 \in X_3$. By simple counting we have

 $(3.2) |\Im(X_1 \cup X_2)| = |\Im(X_1)| + |\Im(X_2)| - |\Im(X_1 \cap X_2)| - |\Im(X_1 \cap X_2)|.$

If $|\partial(X_{10}, X_2)| \ge 4$, then by (3.2)

 $|\partial(X_3)| = |\partial(X_1 \cup X_2)| \le 3+3-4=2.$

Thus $|\Im(X_3)| = 2$ and $|\Im(X_{1\cap}X_2)| = 4$. Then $|X_3| = 1$ and $X_{1\cap}X_2 = \{s_1, x\}$ for some $x \in V$ with deg x = 2. We may let $x = s_2$, then $t_2 \in X_3$, and so $t_1 = t_2$, a contradiction. Thus $|\Im(X_{1\cap}X_2)| = 2$ and $X_{1\cap}X_2 = \{s_1\}$.

Case 2a. f_1, f_2, g_1, g_2 are not all distinct. We may let $f_1 = f_2$. Since $f_1 \notin \partial(X_1 \cap X_2) = \{e_1, e_2\}, f_1 \in \partial(X_1 - X_2) \cap \partial(X_2 - X_1)$. By (3.2)

 $|\partial(X_3)| = |\partial(X_1 \cup X_2)| \le 3+3-2-2 = 2.$

Thus $X_3 = \{t_1\}$, and we may assume that G is the graph as illustrated in Figure 9.

Figure 9.

Since every 2-cut is trivial, deg $b_1 \ge 3$ and deg $c_2 \ge 3$ (i=1,2). By Lemma 3.3 $\langle X_1 \rangle$ contains $\frac{1}{2}[b_1, s_3, d_1, s_2, c_1, b_1]$ and $\langle X_2 \rangle$ contains $\frac{1}{2}[b_2, t_3, d_2, t_2, c_2, b_2]$, and so the result follows.

Case 2b. f_1, f_2, g_1, g_2 are all distinct. Now $\Im(X_1 - X_2) \cap \Im(X_2 - X_1) = \emptyset$. From (3.2) we have

 $|\partial(X_3)| = 3+3-|\partial(X_1 \cap X_2)| = 4.$

Thus we may assume that G is the graph as illustrated in Figure 10.

Figure 10.

 $\langle X_3 \rangle$ is connected. For if not, then there exist $Y_1, Y_2 \subseteq X_3$ such that $X_3 = Y_1 \cup Y_2$, $Y_{1 \cap} Y_2 = \emptyset$, and $\left| \partial(Y_1) \right| = \left| \partial(Y_2) \right| = 2$. Then $|X_3 \cap T| = 2$, a contradiction. deg $c_1 \ge 3$ and deg $d_1 \ge 3$ (i=3,4), for if not, then deg $t_1 = 2$ and one of f_1, f_2, g_1, g_2 is incident to

 t_1 , say g_1 , and Case 2a occurs for X_1 , $X_2 \cup X_3 - t_1$ instead of X_1, X_2 . If $\langle X_3 \rangle$ contains a 1-cut (h)= $\partial_{\langle X_3 \rangle}(Y_1)$ ($Y_1 \subseteq X_3$), then Y_1 contains just two of c_3 , c_4 , d_3 , d_4 . Put $Y_2 = X_3 - Y_1$. $(c_3, d_3) \notin Y_1$, thus we may let $(c_3, c_4) \subseteq Y_1, (d_3, d_4) \subseteq Y_2$ and $t_1 \in Y_1$. Let $v_1^{}$, $v_2^{}$ be the vertices such that $v_1^{} \in Y_1^{}(i=1,2)$ and $v_1 v_2 = h$. $\langle Y_1 \rangle$ contains $\frac{1}{2} [c_3, c_4, v_1, t_1, c_3]$, for if $\langle Y_1 \rangle$ is not 2-edge-connected, then deg $v_1 = 2$ and $v_2 = t_1 \cdot \langle Y_2 \rangle$ contains $\frac{1}{2}$ [d₃,d₄,v₂,d₃]. Thus $\langle X_3 \rangle$ contains $\frac{1}{2}$ [c₃,t₁,d₄,d₃,c₄,c₃] and feasible paths $\frac{1}{2}[c_3, c_4], \frac{1}{2}[c_3, t_1], \frac{1}{2}[t_1, c_4]$ and $[d_3, d_4]$. If $\langle X_3 \rangle$ is 2-edge-connected, then $\langle X_3 \rangle$ contains $\frac{1}{2}$ [c₃,t₁,d₄,d₃,c₄,c₃] by Lemma 3.2. Assume that deg c₁=2. We may let $c_1 = s_2$. $\langle X_1 \rangle$ contains $\frac{1}{2}[b_1, s_2, d_1, s_3, b_1]$ and $\langle X_3 \rangle$ contains $\frac{1}{2}[c_3, t_1, d_4, d_3, c_4, c_3]$. If deg $d_2 \ge 3$ or deg $d_2=2$, $d_2=t_2$, then by Lemma 3.3 $\langle X_2 \rangle$ contains $\frac{1}{2}[b_2,t_3,c_2,t_2,d_2,b_2]$. If deg $d_2=2$ and $d_2=t_3$, then $\langle X_2 \rangle$ contains feasible paths $\frac{1}{2}P_1$ [b₂,t₃], $\frac{1}{2}P_2$ [b₂,t₃], $\frac{1}{2}P_3$ [c₂,t₂] and $\frac{1}{2}P_4$ [c₂,t₂]. Now we can dedeuce the result. Thus we may assume that deg $c_{i} \geq 3$ (i=1,2). By Lemma 3.3 (X_1) contains $\frac{1}{2}$ [b₁,c₁,s₂,d₁,s₃,b₁] and $\langle X_2 \rangle$ contains $\frac{1}{2}[b_2, c_2, t_2, d_2, t_3, b_2]$. If $\langle X_3 \rangle$ is 2-edgeconnected, then by Lemma 3.2 $\langle X_3 \rangle$ contains $\frac{1}{2}$ [c₃,t₁,c₄,d₃,d₄,c₃]; and if not, then $\langle X_3 \rangle$ contains feasible paths $\frac{1}{2}$ [c₃, c₄], $\frac{1}{2}$ [c₃, t₁], $\frac{1}{2}$ [t₁, c₄] and [d₃, d₄]. Now we can deduce the result.

Case 3. G is 3-edge-connected. By Theorem 1 the result follows.

OSAKA CITY UNIVERSITY

References

- [1] A. Cypher: An approach to the k paths problem, Proc. 12th Annual ACM Symposium on Theory of Computing (1980) 211-217.
- [2] L. R. Ford, Jr. and D. R. Fulkerson: Maximal flow through a network, Canad. J. Math. 8 (1956), 399-404.
- [3] T. C. Hu: Multi-commodity network flows, Operations Res. 11 (1963), 344-360.
- [4] W. Mader: A reduction method for edge-connectivity in graphs, Annals of Discrete Math. 3 (1978), 145-164.
- [5] H. Okamura and P. D. Seymour: Multicommodity flows in planar graphs, J. Combinatorial Theory Ser. B 31 (1981),75-81.
- [6] H. Okamura: Multicommodity flows in graphs, Discrete Applied Math. 6 (1983), 55-62.
- [7] B. A. Papernov: Realizability of multi-product flows, (in Russian), Compendium Investigations in Discrete Optimization, Nauka, Moscow, (1976).
- [8] P. D. Seymour: A short proof of two-commodity flow theorem, J. Combinatorial Theory Ser. B 26 (1979), 370-371.
- [9] P. D. Seymour: Four terminus flows, Networks 10 (1980), 79-86.

- [10] P. D. Seymour: Disjoint paths in graphs, Discrete Math. 29 (1980), 293-309.
- [11] P. D. Seymour: On odd cuts and plane multicommodity
 flows, Proc. London Math. Soc. (3) 42 (1981), 178-192.
- [12] C. Thomassen: 2-linked graphs, Europ. J. Combinatorics
 1 (1980), 371-378.