Osaka University Knowledge Archive

Title	Multicommodity Flows in Graphs II
Author（s）	岡村，治子
Citation	大阪大学，1984，博士論文
Version Type	VoR
URL	https：／／hdl．handle．net／11094／1691
rights	
Note	

Osaka University Knowledge Archive ：OUKA
https：／／ir．library．osaka－u．ac．jp／

Multicommodity Flows in Graphs \mathbb{I}

1. Introduction

Let $G=(V, E)$ be a graph (finite undirected, possibly with multiple edges but without loops), and let $V=V(G)$, $E=E(G)$ be the sets of vertices and edges of G respectively. In this paper a path has no repeated edges, and we permit paths with one vertex and no edges. For two distinct vertices x, y, let $\lambda(x, y)=\lambda_{G}(x, y)$ be the maximum number of edge-disjoint paths between x and y, and let $\lambda(x, x)=\infty$.

We first consider the following problem.
Let (s, t_{1}),..., $\left(s_{k}, t_{k}\right)$ be pairs (not necessarily distinct) of vertices of G. When is the following true ?
(1.1) There exist edge-disjoint paths P_{1}, \ldots, P_{k} such that P_{i} has ends $s_{i}, t_{i}(1 \leq i \leq k)$.

Seymour [10] and Thomassen [12] characterized such graphs when $k=2$, and Seymour [10] when $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}$ take only three distinct values.

Our result is the following

Theorem 1. Suppose that $s_{1}, s_{2}, s_{3}, t_{1}, t_{2}, t_{3}$ are vertices of a graph G. If for each $i=1,2,3$,

$$
\lambda\left(s_{i}, t_{i}\right) \geq 3,
$$

then there exist edge-disjoint paths P_{1}, P_{2}, P_{3} of G, such that P_{i} has ends s_{i} and $t_{i}(i=1,2,3)$.

If $\lambda\left(s_{i}, t_{i}\right) \leq 2$ for some i, then the conclusion does not always hold. Figure 1 gives a counterexample.

Figure 1.
For a positive integer k, let $g(k)$ be the smallest integer such that for every $g(k)$-edge-connected graph and for every vertices $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}$ of the graph, (1.1) holds. Thomassen [12] conjectured the following.

Conjecture. For each odd integer $k \geq 1, g(k)=k$, and for each even integer $k \geq 2, g(k)=k+1$.

If k is even then $g(k)>k$ (see [12]). It follows easily from Menger's theorem that $g(k) \leq 2 k-1$, thus $g(1)=1, g(2)=3$; and Cypher [1] proved $g(4) \leq 6$ and $g(5) \leq 7$. As a corollary of Theorem 1 we have the following.

Corollary. $g(3)=3$.

The second problem we consider is the multicommodity flow problem.

Suppose that each edge $e \in E$ has a real-valued capacity $w(e) \geq 0$, and each path has a positive value. We assume that $w \equiv 1$ and each path has value 1 when there is no explanation. For a positive number α, paths $\alpha P, P$ denote paths of value $\alpha, 1$ respectively. We say that a set of paths $\alpha_{1} P_{1}, \ldots, \alpha_{n} P_{n}$ is feasible if for each edge $e \in E$,

$$
\sum_{i \in\left\{i \mid e \in E\left(P_{i}\right)\right\}} \alpha_{i} \leq w(e),
$$

where $E\left(P_{i}\right)$ is the set of edges of P_{i}.
For two vertices x, y and a real number $a>0$, a flow F of value q between x and y is a set of paths $\alpha_{1} P_{1}, \ldots, \alpha_{n} P_{n}$ between x and y such that $\alpha_{1}+\ldots+\alpha_{n}=q$. When $\alpha_{1}, \ldots, \alpha_{n}$ are all integers (half-integers), F is called an integer (halfinteger) flow. We say that a set of flows F_{1}, \ldots, F_{k} is feasible if the set of paths of F_{1}, \ldots, F_{k} is feasible.

Now the multicommodity flow problem is as follows.
Let $\left(s_{1}, t_{1}\right), \ldots,\left(s_{k}, t_{k}\right)$ be pairs of vertices of G, as before, and suppose that $q_{i} \geq 0(1 \leq i \leq k)$ are real-valued demands. When is the following true ?
(1.2) There exist feasible flows F_{1}, \ldots, F_{k}, such that F_{i} has ends s_{i} and t_{i} and value $q_{i}(1 \leq i \leq k)$.

Remark. When $k=3, w \equiv 1$, and $a_{i}=1(1 \leq i \leq 3)$, Theorem 1
implies that (1.2) is true if $\lambda\left(s_{i}, t_{i}\right) \geq 3(1 \leq i \leq 3)$, and then the flows may be chosen as integer flows.

For a set $X \subseteq V$, let $\partial(X)=\partial_{G}(X) \subseteq E$ be the set of edges with one end in X and the other in $V-X$, and let $D(X)=D_{G}(X) \subseteq(1,2, \ldots, k\}$ be
$\left\{i \mid 1 \leq i \leq k, X n\left\{s_{i}, t_{i}\right\} \neq \varnothing \neq(V-X) \cap\left\{s_{i}, t_{i}\right\}\right\}$.
It is clear that if (1.2) is true, then the following holds.
(1.3) For each $X \subseteq V$,

$$
\sum_{e \in \partial(X)} w(e) \geq \sum_{i \in D(X)} a_{i} .
$$

Note that $\sum \quad w(e)=|\partial(x)|$ if $w \equiv 1$, and $\sum \quad q_{i}=|D(x)|$ $e \in \partial(x)$ $i \in D(X)$
if $q_{i}=1$ for any i.
Our second result is the following

Theorem 2. Suppose that G is a graph and w is integervalued, and that $k=3, q_{1}=q_{2}=q_{3}=1$. Then (1.2) and (1.3) are equivalent.

Moreover if (1.3) holds, then the flows F_{i} in (1.2) may be chosen as half-integer flows.
(1.4) In general (1.2) and (1.3) are not equivalent, but in the following cases they are equivalent.
(1.4.1) $k=1$ (Ford and Fulkerson [2]).
(1.4.2) $k=2$ (Hu [3] and Seymour [8])
(1.4.3) $k=5, t_{i}=s_{i+1}(i=1,2,3,4)$ and $t_{5}=s_{1}$ (Papernou [7]).
(1.4.4) $k=6$, and $\left(s_{1}, t_{1}\right), \ldots,\left(s_{6}, t_{6}\right)$ correspond to the six pairs of a set of four vertices (Papernow [7] and Seymour [9]).
(1.4.5) $s_{1}=s_{2}=\ldots=s_{j}$ and $s_{j+1}=\ldots=s_{k}$ (obvious extention of (1.4.2)).
(1.4.6) The graph ($V, E \cup\left\{e_{1}, \ldots, e_{k}\right\}$) is planar, where the edge e_{i} has ends s_{i} and $t_{i} \quad(1 \leq i \leq k)$ (Seymour [11]).
(1.4.7) G is planar and can be drawn in the plane so that $s_{1}, \ldots, s_{k}, t_{1}, \ldots, t_{k}$ are all on the boundary of the infinite face (Okamura and Seymour [5]).
(1.4.8) G is planar and can be drawn in the plane so that $s_{1}, \ldots, s_{j}, t_{1}, \ldots, t_{j}$ are all on the boundary of a face and $s_{j+1}, \ldots, s_{k}, t_{j+1}, \ldots, t_{k}$ are all on the boundary of the infinite face (Okamura [6]).
(1.4.9) G is planar and can be drawn in the plane so that $s_{j+1}, \ldots, s_{k}, t_{1}, t_{2}, \ldots, t_{k}$ are all on the boundary of the infinite face, and $t_{1}=\ldots=t_{j}$ (Okamura [6]).

Moreover if (1.3) and the following (1.5) hold in each case except (1.4.3), or if (1.3) holds and w, q_{i} are eveninteger valued in the case (1.4.3), then the flows F_{i} of (1.2) may be chosen as integer flows.
(1.5) w and q_{i} are integer-valued, and for each vertex $x \in V$,

$$
\sum_{e \in \partial(x)} w(e)-\sum_{i \in D(x)} q_{i}
$$

is even.
(1.4.1),..,(1.4.5) are all the configurations of $\left(s_{i}, t_{i}\right)$ for which (1.2) and (1.3) are equivalent for all graphs G and all w, q_{i} (see [9]). When $q_{i}>0(1 \leq i \leq 3)$, the case of Theorem 2 is the only case for which (1.2) and (1.3) are equivalent for all graphs G and all $w,\left(s_{i}, t_{i}\right)$. Figure 1 gives a counterexample with $q_{1}=2, q_{2}=q_{3}=1$.

Notations and definitions. We call $S \subseteq E$ an n-cut if $|S|=n$ and $S=\partial(X)$ for some $X \subseteq V$ such that $\langle X\rangle$ (which is the subgraph induced by X) and $\langle V-X\rangle$ are both connected; and an n-cut $\partial(X)$ is called nontrivial if $|X| \geq 2$ and $|V-X| \geq 2$, trivial otherwise. For two vertices x, y a path $P[x, y]$ or a path $[x, y]$ denotes a path between x and y, and let $x y$ be an edge with ends x, y, and let $d(x, y)=d_{G}(x, y)$ be the distance between x and y. If vertices x, y belong to a path P, then $P(x, y)$ denotes the subpath of P between x and y. For a vertex $x \operatorname{deg}(x)=\operatorname{deg}_{G}(x)$ denotes the degree of x, and we let $N(x)=N_{G}(x)$ be $\{y \in V \mid x y \in E\}$. For a set $X \subseteq V$ and an edge e, we denote graphs $\langle V-X\rangle,(V, E-e)$ by $G-X, G-e$ respectively. For a set $X \subseteq V(S \subseteq E)$ and an element $x \in V$ (e $E E$), we denote $X \cup\{x\}(S \cup\{e\})$ by $X \cup x(S \cup e)$.
2. Proof of Theorem 1.

In this section disjoint means edge-disjoint. We require the following lemmas.

Lemma 2.1. Suppose that $s_{1}, s_{2}, t_{1}, t_{2}$ are vertices of a graph G. If $\lambda\left(s_{1}, t_{1}\right) \geq 3$ and $\lambda\left(s_{2}, t_{2}\right) \geq 1$, then G contains disjoint paths $\left[s_{1}, t_{1}\right]$ and $\left[s_{2}, t_{2}\right]$.

Proof. Since $\lambda\left(s_{1}, t_{1}\right) \geq 3, G$ contains disjoint paths $P_{1}\left[s_{1}, t_{1}\right], P_{2}\left[s_{1}, t_{1}\right]$ and $P_{3}\left[s_{1}, t_{1}\right] . G$ contains a path $P_{4}\left[s_{2}, t_{2}\right]$. There exist vertices $x, y \in V\left(P_{4}\right)$ such that $P_{4}\left(s_{2}, x\right)$ and $P_{4}\left(t_{2}, y\right)$ are disjoint from P_{1}, P_{2}, P_{3}. Choose x, y with this property such that $P_{4}\left(s_{2}, x\right), P_{4}\left(t_{2}, y\right)$ have the maximum length respectively. If x or $y \notin V\left(P_{1}\right) \cup V\left(P_{2}\right) \cup V\left(P_{3}\right)$, then $x=t_{2}$ or $y=s_{2}$, and so the result follows. We may therefore assume that $x \in V\left(P_{2}\right)$ and $y \in V\left(P_{i}\right)(i=2$ or 3$)$. When $i=2(i=3)$, let P_{5} be the path obtained by combining $P_{4}\left(s_{2}, x\right)$, $P_{2}(x, y)$ and $P_{4}\left(y, t_{2}\right)\left(P_{4}\left(s_{2}, x\right), P_{2}\left(x, s_{1}\right), P_{3}\left(s_{1}, y\right)\right.$ and $\left.P_{4}\left(y, t_{2}\right)\right)$. Now P_{1} and P_{5} are required paths of G.

Lemma 2.2. If G is 3-regular 3-edge-connected graph with no nontrivial 3 -cut and with $4 \leq \mid V I \leq 8$, then G is $K_{4}, K_{3,3}$, a cube or the graph in Figure 2.

Figure 2.

Proof. Since G is 3-regular 3-edge-connected, G has no multiple edges. Thus if $|V|=4$, then G is K_{4}. If $|V|>4$, then G has no cycle of length three. If $|V|=6$, then let $V=\left\{x_{1}, \ldots, x_{6}\right\}$. We may let $N\left(x_{1}\right)=\left\{x_{2}, x_{3}, x_{4}\right\}$. Since $x_{i} x_{j} \notin E$ $(2 \leq i<j<4)$, we have $x_{i} x_{j} \in E(i=2,3,4 ; j=5,6)$. Thus G is $K_{3,3}$. If $|V|=8$, then it easily follows that G is a cube or the graph in Figure 2.

Lemma 2.3. Suppose that G is a 3-regular 3-edgeconnected graph, and that $a, x_{1}, x_{2}, x_{3}, x_{4}$ are vertices such that $a \neq x_{i}(1 \leq i \leq 4)$. Then G-a contains disjoint paths $\left[x_{1}, x_{2}\right]$ and $\left[x_{3}, x_{4}\right]$.

Proof. We proceed by induction on $|V|$. If $|V|=2$, then G is the graph of triple edges, and the result holds. Therefore we assume $|V| \geq 4$.

First we assume that G contains a nontrivial 3 -cut $\left\{e_{1}, e_{2}, e_{3}\right\}=\partial(x)(X \subseteq V)$. Let $b_{i} \in X, c_{i} \in V-X, e_{i}=b_{i} c_{i}(i=1,2,3)$,
then $b_{i} \neq b_{j}, c_{i} \neq c_{j}$ if $i \neq j$, since G is 3-edge-connected. Let H, K be the graphs obtained from G by contracting $V-X, X$ to one vertex respectively. Let $V(H)=X \cup V, V(K)=(V-X) \cup U$. Then H, K are 3-regular 3-edge-connected graphs and $|V(H)|<|V|$, $|V(K)|<|V|$. We may assume $a \in V-X$. It suffices to prove the lemma in the following cases.

Case 1. $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq V-X$. By induction the result holds in K, and so in G.

Case 2. $x_{1} \in X$ and $\left\{x_{2}, x_{3}, x_{4}\right\} \subseteq V-X$. By induction the result holds in K (note that $x_{1}=u$ in K). Thus the result holds in G, since G contains a subgraph G_{1} homeomorphic to K, such that x_{1} corresponds to u and each vertex of $V-X$ to itself.

Case 3. $\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\} \subseteq X . \quad G$ contains a subgraph G_{2} homeomorphic to H, such that a corresponds to v and each vertex of X to itself, and so the result holds in G.

Case 4. $\left\{x_{1}, x_{2}\right\} \subseteq X$ and $\left\{x_{3}, x_{4}\right\} \subseteq V-X$. Since $K-\{a, u\}$ is connected, this contains a path $\left[x_{3}, x_{4}\right]$; and $H-v$ contains a path $\left[x_{1}, x_{2}\right]$.

Case 5. $\left\{x_{1}, x_{3}\right\} \subseteq X$ and $\left\{x_{2}, x_{4}\right\} \subseteq V-X$. By induction $K-a$ contains disjoint paths $P_{1}\left[u, x_{2}\right]$ and $P_{2}\left[u, x_{4}\right]$. We may let $c_{i} \in V\left(P_{i}\right)(i=1,2)$, and $H-v$ contains disjoint paths $\left[x_{1}, b_{1}\right]$ and $\left[x_{3}, b_{2}\right]$. Thus the result follows.

Case 6. $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq X$ and $x_{4} \in V-X$. K-a contains a path $P\left[u, x_{4}\right]$, and we may let $c_{1} \in V(P)$. H-v contains disjoint paths $\left[x_{1}, x_{2}\right]$ and $\left[x_{3}, b_{1}\right]$. Thus the result follows.

Next we assume that G does not contain a nontrivial 3 -cut. If G contains an edge e which is not incident to any of $a, x_{1}, x_{2}, x_{3}, x_{4}$, then let $\widetilde{G-e}$ be the 3 -regular graph homeomorphic to the graph G-e. Then $\widehat{G-e}$ is 3-edge-connected. By induction the result holds in $\widetilde{G-e}$, and so in G. Thus we assume that any edge is incident to one of $a, x_{1}, x_{2}, x_{3}, x_{4}$. Then $|E| \leq 15$ and $|V| \leq 10$. We put $T=\left\{a, x_{1}, x_{2}, x_{3}, x_{4}\right\}$. We may assume that x_{1}, x_{2}, x_{3} and x_{4} are all distinct. For if not, then the result follows, since $G-a$ is 2 -edge-connected. Thus $|V| \geq 5$. If $|V|=10$, then $N\left(x_{i}\right) \subseteq V-T(1 \leq i \leq 4)$ and $|V-T|=5$. Thus for some $y \in U-T, y \in N\left(x_{1}\right) \cap N\left(x_{2}\right) . G-\{a, y\}$ is connected, and so the result follows. If $|V|=6$ or 8 , then by Lemma 2.2 G is $K_{3,3}$, a cube, or the graph in Figure 2. We ommit the proofs for them.

Lemma 2.4. Suppose that G is a 3-regular 3-edgeconnected graph, and that $a, a_{1}, a_{2}, a_{3}, x_{1}, x_{2}, x_{3}$ are vertices such that $N(a)=\left\{a_{1}, a_{2}, a_{3}\right\}$ and $a \neq x_{i}(1 \leq i \leq 3)$. Then

$$
\left|I_{G}\right| \geq 4 .
$$

Here $I_{G}=I_{G}\left(a, a_{1}, a_{2}, a_{3}, x_{1}, x_{2}, x_{3}\right)$ is

$$
\left\{\begin{array}{l|l}
(i, j, k) & \{i, j, k\}=\{1,2,3\} . \text { G-a contains disjoint paths } \\
{\left[x_{1}, a_{i}\right],\left[x_{2}, a_{j}\right] \text { and }\left[x_{3}, a_{k}\right] .}
\end{array}\right\} .
$$

Proof. We proceed by induction on $|V|$. We assume $|V| \geq 4$. First we assume that G contains a nontrivial 3-cut
$\left\{e_{1}, e_{2}, e_{3}\right\}=\partial(X)(X \subseteq V)$. We define $b_{i}, c_{i}(i=1,2,3), H, K, v$ and u similarly as in the proof of Lemma 2.3. We may assume $a \in U-X$. Then $|X \cap N(a)| \leq 1$. If $a_{i} \in X$ for some i, then $a_{i}=U$ in K. It suffices to prove the lemma in the following cases. Case 1. $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq V-X ; x_{1} \in X$ and $\left\{x_{2}, x_{3}\right\} \subseteq V-X$; or $\left\{x_{1}, x_{2}, x_{3}\right\} \subseteq x$. Similar as Case 1,2 or 3 in the proof of Lemma 2.3.

Case 2. $\left\{x_{1}, x_{2}\right\} \subseteq X$ and $x_{3} \in V-X$. By induction $\left|I_{K}\left(a, a_{1}, a_{2}, a_{3}, u, u, x_{3}\right)\right| \geq 4$. For each (i, j, k) of $I_{K}, K-a$ contains disjoint paths $P_{1}\left[u, a_{i}\right], P_{2}\left[u, a_{j}\right]$ and $P_{3}\left[x_{3}, a_{k}\right]$. If $u \notin N_{K}(a)$, then we may let $c_{i} \in V\left(P_{i}\right)(i=1,2)$. By Induction $H-v$ contains disjoint paths $\left[x_{1}, b_{1}\right]$ and $\left[x_{2}, b_{2}\right]$. Thus $(i, j, k) \in I_{G}\left(a, a_{1}, a_{2}, a_{3}, x_{1}, x_{2}, x_{3}\right)$, and so $\left|I_{G}\right| \geq 4$. If $u \in N_{K}(a)$, then we may let $a_{1}=u, a=c_{1}$. Now $k \neq 1$ and we may let $i=1, j=2, k=3, c_{2} \in V\left(P_{2}\right)$. Since $H-v$ contains disjoint paths $\left[x_{1}, b_{1}\right]$ and $\left[x_{2}, b_{2}\right],\left|I_{G}\right| \geq 4$.

Next we assume that G does not contain a nontrivial 3-cut. We may assume that any edge is incident to one of a, x_{1}, x_{2}, x_{3} (see the proof of Lemma 2.3). Thus $|E| \leq 12$ and $|V| \leq 8$. By Lemma 2.2 G is $\mathrm{K}_{4}, \mathrm{~K}_{3,3}$, a cube or the graph in Figure 2, but in the last graph any four vertices do not cover all edges of the graph. Thus G is one of the first three graphs. If G is a cube, then in Figure 3 it suffices to check the case $y_{1}=a, y_{3}=x_{1}, y_{6}=x_{2}, y_{8}=x_{3}$. We ommit the proofs for $K_{4}, K_{3,3}$.

Figure 3.

Lemma 2.5. Suppose that $s_{1}, s_{2}, s_{3}, t_{1}, t_{2}, t_{3}$ are vertices of a graph G. If G is 3 -regular 3 -edge-connected, then G contains disjoint paths $\left[s_{1}, t_{1}\right],\left[s_{2}, t_{2}\right]$ and $\left[s_{3}, t_{3}\right]$.

Proof. We proceed by induction on $|V|$. We put $T=\left\{s_{1}, s_{2}, s_{3}\right.$, $\left.t_{1}, t_{2}, t_{3}\right\}$. If $s_{i}=t_{i}$ for some i, then the result follows by Lemma 2.1, and if $s_{1}=s_{2}=s_{3}$, then the result follows from Menger's theorem. Thus we may assume that these are not the cases.

First we assume that G contains a nontrivial 3-cut $\left\{e_{1}, e_{2}, e_{3}\right\}=\partial(X)(X \subseteq V)$. We define $b_{i}, c_{i}(i=1,2,3), H, K, v$ and u similarly as in the proof of Lemma 2.3. It suffices to prove the lemma in the following cases.

Case 1. Tn $X=\phi$. By induction the result holds in K, and so in G.

Case 2. $s_{1} \in X$ and $\left\{s_{2}, s_{3}, t_{1}, t_{2}, t_{3}\right\} \subseteq V-X$. G contains a subgraph G_{1} homeomorpic to K, such that s_{1} corresponds to u
and each vertex of $V-X$ to itself.
Case 3. $\left\{s_{1}, t_{1}\right\} \subseteq X$ and $\left\{s_{2}, s_{3}, t_{2}, t_{3}\right\} \subseteq V-X$. By Lemma 2.3 $\mathrm{K}-\mathrm{U}$ contains disjoint paths $\left[s_{2}, \mathrm{t}_{2}\right]$ and $\left[s_{3}, \mathrm{t}_{3}\right]$, and $\mathrm{H}-\mathrm{v}$ contains a path $\left[s_{1}, t_{1}\right]$.

Case 4. $\left\{s_{1}, s_{2}\right\} \subseteq X$ and $\left\{s_{3}, t_{1}, t_{2}, t_{3}\right\} \subseteq V-X$. By
induction K contains disjoint paths $P_{1}\left[u, t_{1}\right], P_{2}\left[u, t_{2}\right]$ and $\left[s_{3}, t_{3}\right]$. Let $c_{i} \in V\left(P_{i}\right)(i=1,2)$. By Lemma 2.3 $\mathrm{H}-\mathrm{V}$ contains disjoint paths $\left[s_{1}, b_{1}\right]$ and $\left[s_{2}, b_{2}\right]$. Now the result follows.

Case 5. $\left\{s_{1}, s_{2}, t_{1}\right\} \subseteq X$ and $\left\{s_{3}, t_{2}, t_{3}\right\} \subseteq V-X$. We can get the result by applying Lemma 2.3 on H and K.

Case 6. $\left\{s_{1}, s_{2}, s_{3}\right\} \subseteq X$ and $\left\{t_{1}, t_{2}, t_{3}\right\} \subseteq V-X$. By Lemma 2.4

$$
I_{H}\left(v, b_{1}, b_{2}, b_{3}, s_{1}, s_{2}, s_{3}\right) \cap I_{K}\left(u, c_{1}, c_{2}, c_{3}, t_{1}, t_{2}, t_{3}\right) \neq \phi,
$$

and so the result follows.
Next we assume that G does not contain a nontrivial 3-cut. We may assume that every edge of G is incident to a vertex of T (see the proof of Lemma 2.3). Thus $|E| \leq 18$ and $|V| \leq 12$. We require the following.
(2.1) We may assume that $d\left(s_{i}, t_{i}\right) \geq 2(i=1,2,3)$. $d\left(s_{i}, t_{i}\right)=2$ for some i and s_{i}, t_{i} are adjacent to a common vertex x, say for $i=1$, then we may assume that

$$
x \in\left\{s_{2}, t_{2}\right\} \cap\left\{s_{3}, t_{3}\right\} .
$$

Proof. Let $d\left(s_{1}, t_{1}\right)=1$. If $\left\{s_{i}, t_{i}\right\} \cap\left\{s_{1}, t_{1}\right\}=\varnothing$, for $i=2$ or 3 , say $i=2$, then $\lambda_{G-s_{1} t_{1}}\left(s_{2}, t_{2}\right)=3$ and by Lemma 2.1

G-s, t_{1} contains disjoint paths $\left[s_{2}, t_{2}\right]$ and $\left[s_{3}, t_{3}\right]$, and so the result of Lemma 2.5 follows; if not, then we may let $s_{2}=s_{1}, s_{3}=t_{1}$ and $s_{1} \neq t_{i} \quad(i=2,3)$. Let $y \in N\left(s_{1}\right)-t_{1}$. By Lemma 2.3 G-s, contains disjoint paths $\left[s_{3}, t_{3}\right]$ and $\left[t_{2}, y\right]$. Thus the result of Lemma 2.5 follows. Hence we may assume that $d\left(s_{i}, t_{i}\right) \geq 2(i=1,2,3)$. Assume that s_{1} and t_{1} are adjacent to a vertex x. Let $y \in N(x)-\left\{s_{1}, t_{1}\right\}$. If $x \notin T$, then by Lemma 2.3 G-x contains diajoint paths $\left[s_{2}, t_{2}\right]$ and $\left[s_{3}, t_{3}\right]$. If $x \in T$ and $x \notin\left\{s_{2}, t_{2}\right\} \cap\left\{s_{3}, t_{3}\right\}$, then we may let $x=s_{2}$ and $s_{3} \neq x \neq t_{3}$. By Lemma $2.3 \mathrm{G}-x$ contains disjoint paths $\left[s_{3}, t_{3}\right]$ and $\left[t_{2}, y\right]$, hence Lemma 2.5 holds. Thus (2.1) is proved.

Now we return to the proof of Lemma 2.5. If $G=K_{4}$, then $d\left(s_{1}, t_{1}\right)=1$, and if $G=K_{3,3}$, then s_{1} and t_{1} are adjacent to common three vertices, contrary to (2.1). If G is the graph in Figure 2, then we may let $s_{1}=y_{1}$ without loss of generality. Then $t_{1} \neq y_{i}(i=4,5,6)$ by (2.1). If $t_{1}=y_{i}(i=2$ or 8), say for $i=8$, then $\left\{y_{4}, y_{5}\right\} \subseteq\left\{s_{2}, t_{2}\right\} \cap\left\{s_{3}, t_{3}\right\}$ by (2.1). So we may let $y_{4}=s_{2}=s_{3}$ and $y_{5}=t_{2}=t_{3}$, contrary to (2.1). If $t_{1}=y_{i}$ ($i=3$ or 7), say for $i=3$, then we may let $y_{4}=s_{2}=s_{3}$ by (2.1). Now we can not choose $\left\{t_{2}, t_{3}\right\}$ such that T covers E, a contradiction. When G is a cube, in Figure 3 we may let $s_{1}=y_{1}$ and $t_{1} \neq y_{i}(i=2,4,5)$. If $t_{1}=y_{i}(i=3,6$ or 8$)$, say for $i=3$, then we may let $y_{2}=s_{2}=s_{3}$ and $y_{4}=t_{2}=t_{3}$, and the result
follows. Thus we may let $t_{1}=y_{\eta}$. Since T covers all edges, we may let $\left\{s_{2}, t_{2}\right\}=\left\{y_{2}, y_{8}\right\}$ and $\left\{s_{3}, t_{3}\right\}=\left\{y_{3}, y_{5}\right\}$, then the result easily follows.

By Lemma 2.2 we may let $|V|=10$ or 12. Thus $|T| \geq 5$. Note that for each distinct vertices $x, y \in V, N(x) \neq N(y)$, because G has no nontrivial 3-cut. We distinguish three cases.

Case 1. $|T|=5$. Let $s_{1}=s_{2}$. Now $|V|=10$, and G is a bipartite graph and the partition of V is ($T, V-T$). The number of vertices which have distance two from $s_{1}=s_{2}$ is at least three, and so $d\left(s_{i}, t_{i}\right)=2$ for $i=1$ or 2 , contrary to (2.1).

Case 2. $|T|=6$ and $|V|=12$. Now G is a bipartite graph and the partition of V is $(T, V-T)$. If the number of vertices which have distance two from s_{1} is at least five, then one of such vertices is t_{1}, a contradiction; if not, then the number is four, since G does not contain a nontrivial 3-cut. Thus G contains a subgraph as illustrated in Figure 4, where $T=\left\{s_{1}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right\}$. By (2.1) $t_{1} \neq x_{i}(i=1,2,3,4)$ and $\left\{s_{j}, t_{j}\right\}$ is not $\left\{x_{1}, x_{2}\right\},\left\{x_{1}, x_{4}\right\}$ nor $\left\{x_{2}, x_{3}\right\}(j=2,3)$, and so we may let $\left\{x_{1}, x_{3}\right\}=\left\{s_{2}, t_{2}\right\},\left\{x_{2}, x_{4}\right\}=\left\{s_{3}, t_{3}\right\}$ and $x_{5}=t_{1}$. Now $\left(x_{5} y_{1}, x_{5} y_{2}, x_{5} y_{3}\right\} \subseteq E$. If $x_{1} y_{i} \in E(i=1$ or 2$)$, say for $i=1$, then $\left\{x_{3} y_{2}, x_{3} y_{3}\right\} \subseteq E$ and $x_{2} y_{3} \in E$. Now the result follows. If $x_{1} y_{3} \in E$, then $x_{3} y_{3} \notin E$, and so $\left\{x_{3} y_{1}, x_{3} y_{2}\right\} \subseteq E$, contrary to $N\left(y_{1}\right) \neq N\left(y_{2}\right)$.

Figure 4.
Case 3. $|T|=6$ and $|V|=10$. Now both ends of just three edges are in T, and by (2.1) $d\left(s_{i}, t_{i}\right) \geq 3(i=1,2,3)$. Thus G contains a subgraph as illustrated in Figures 5a,5b,5c or 5d, where $T=\left\{x_{1}, \ldots, x_{6}\right\}$ and $V-T=\left\{y_{1}, \ldots, y_{4}\right\}$.

Figure 5a.

$$
\begin{array}{llll}
y_{1} & y_{y_{2}} & y_{3} & o_{y_{4}}
\end{array}
$$

Figure 5b.

$$
\begin{array}{llll}
{\stackrel{\circ}{\gamma_{1}}}^{1} & \dot{\gamma}_{2} & \stackrel{\circ}{3}_{3} & {\stackrel{\circ}{y_{4}}}^{\prime}
\end{array}
$$

Figure Sc.

$$
\begin{array}{cccc}
\stackrel{\circ}{y_{1}} & \dot{y}_{2} & \dot{y}_{3} & \dot{y}_{4}^{\circ}
\end{array}
$$

Figure Sd.
In Figure Sa, we may let $\left\{x_{1}, x_{3}\right\}=\left\{s_{1}, t_{1}\right\},\left\{x_{2}, x_{5}\right\}=\left\{s_{2}, t_{2}\right\}$, $\left\{x_{4}, x_{6}\right\}=\left\{s_{3}, t_{3}\right\}$ and $\left\{x_{1} y_{1}, x_{1} y_{2}\right\} \subseteq E$. Then $x_{i} y_{j} \in E \quad(i=2,3 ; j=1$, 2). Since $N\left(y_{1}\right) \neq N\left(y_{2}\right)$, one of them contains $\left\{x_{5}, x_{6}\right\}$ or $\left\{x_{4}, x_{6}\right\}$, a contradiction. In Figure $5 b$, we may let $\left\{x_{6} y_{1}\right.$, $\left.x_{6} y_{2}, x_{6} y_{3}\right\} \subseteq E$. If for some $i=1,3,4,5\left\{x_{i}, x_{6}\right\}=\left\{s_{1}, t_{1}\right\}$, then $d\left(s_{1}, t_{1}\right)=2$, a contradiction. Thus we may let $\left\{x_{2}, x_{6}\right\}=\left\{s_{1}, t_{1}\right\}$, $\left\{x_{1}, x_{4}\right\}=\left\{s_{2}, t_{2}\right\}$ and $\left\{x_{3}, x_{5}\right\}=\left\{s_{3}, t_{3}\right\}$. Thus $x_{2} y_{4} \in E$. We may let $\left\{x_{1} y_{1}, x_{1} y_{2}\right\} \subseteq E$, and so $\left\{x_{4} y_{3}, x_{4} y_{4}, x_{5} y_{1}, x_{5} y_{2}\right\} \subseteq E$, contrary to $N\left(y_{1}\right) \neq N\left(y_{2}\right)$. In Figure $5 c$, for some $i=1,2,3 d\left(s_{i}, t_{i}\right) \leq 2$, a contradiction. In Figure Sd, we may let $\left\{x_{2}, x_{5}\right\}=\left\{s_{1}, t_{1}\right\}$, $\left\{x_{3}, x_{6}\right\}=\left\{s_{2}, t_{2}\right\},\left\{x_{1}, x_{4}\right\}=\left\{s_{3}, t_{3}\right\}$ and $\left\{x_{1} y_{1}, x_{1} y_{2}, x_{4} y_{3}, x_{4} y_{4}\right\} \subseteq E$.

Now $x_{2} y_{i} \in E\left(i=3\right.$ or 4), say for $i=3$, then $\left\{x_{5} y_{1}, x_{5} y_{2}\right.$, $\left.x_{5} y_{4}\right\} \subseteq E . \quad x_{3} y_{i} \in E(i=1$ or 2$)$, say for $i=1$, then $\left(x_{6} y_{2}, x_{6} y_{3}\right.$, $\left.x_{6} y_{4}\right\} \subseteq E$. Now the result easily follows.

Proof of Theorem 1. We proceed by induction on $|V|$. If G is not 2 -connected, then we can deduce the result by using induction on blocks. Thus we may assume that G is 2 -connected. If G contains a vertex of degree $k(24)$, then we replace this vertex by a k-gon with k vertices of degree 3. (Figure 6 gives an example with $k=5$.) If this vertex of G is $s_{i}\left(t_{i}\right)$ for some i, then we assign $s_{i}\left(t_{i}\right)$ on any vertex of this k-gon, producing a 3 -regular graph G^{\prime} such that $\lambda_{G}\left(s_{i}, t_{i}\right) \geq 3$ for each i. If the result holds in G^{\prime}, then the result clearly holds in G, and so we may assume that G

Figure 6.
is 3-regular. By Lemma 2.5 we may assume that G contains a 2 -cut $\left\{e_{1}, e_{2}\right\}=\partial(X)(X \subseteq V)$. Let $b_{i} \in X, c_{i} \in V-X$ and $e_{i}=b_{i} c_{i}$ ($\mathrm{i}=1,2$). We define new graphs H, K as follows.

$$
\begin{aligned}
& H=(X, E(\langle X\rangle) \cup f), \\
& K=(V-X, E(\langle V-X\rangle) \cup g),
\end{aligned}
$$

where f, g are new edges with ends b_{1}, b_{2} and c_{1}, c_{2} respectively. Then H and K are 2-edge-connected. Since $\lambda_{G}\left(s_{i}, t_{i}\right) \geq 3, \quad\left\{s_{i}, t_{i}\right\} \subseteq X$ or $\left\{s_{i}, t_{i}\right\} \subseteq V-X$ for each i. Thus it suffices to consider the following cases.

Case 1. $\left\{s_{1}, s_{2}, s_{3}, t_{1}, t_{2}, t_{3}\right\} \subseteq x . \quad B y$ induction the result holds in H.

Case 2. $\left\{s_{1}, s_{2}, t_{1}, t_{2}\right\} \subseteq X$ and $\left\{s_{3}, t_{3}\right\} \subseteq V-X$. By Lemma 2.1 H contains disjoint paths $P_{1}\left[s_{1}, t_{1}\right]$ and $P_{2}\left[s_{2}, t_{2}\right]$. Let P_{3}, P_{4} P_{5} be disjoint paths of K between s_{3} and t_{3}, and let $c_{1} c_{2} \notin E\left(P_{3}\right) \cup E\left(P_{4}\right)$. If $b_{1} b_{2} \notin E\left(P_{1}\right) \cup E\left(P_{2}\right)$, then P_{1}, P_{2}, P_{3} are required paths of G. Thus let $b_{1} b_{2} \in E\left(P_{1}\right)$. If $c_{1} c_{2} \notin E\left(P_{5}\right)$, then by Lemma $2.1 \mathrm{~K}-\mathrm{c}_{1} \mathrm{c}_{2}$ contains disjoint paths $\left[s_{3}, \mathrm{t}_{3}\right]$ and $\left[c_{1}, c_{2}\right]$; and if $c_{1} c_{2} \in E\left(P_{5}\right)$, then let $P_{6}\left[c_{1}, c_{2}\right]$ be the path obtained by combining $P_{5}-c_{1} c_{2}$ and P_{4}. In each case we can construct required paths of G.
3. Proof of Therem 2.

For an integer $n \geq 3$ and vertices $x_{1}, x_{2}, \ldots, x_{n}$, we denote feasible paths $\frac{1}{2}\left[x_{1}, x_{2}\right], \frac{1}{2}\left[x_{2}, x_{3}\right], \ldots, \frac{1}{2}\left[x_{n-1}, x_{n}\right]$, and $\frac{1}{2}\left[x_{n}, x_{1}\right]$ by $\frac{1}{2}\left[x_{1}, \ldots, x_{n}, x_{1}\right]$. For a vertex $x \in V$ and $a, b \in N(x)$, let $G_{x}^{a, b}$ be the graph ($V, E \cup e_{1}-\left\{e_{2}, e_{3}\right\}$), where e_{1} is a new edge with ends a, b and e_{2}, e_{3} are edges of E with ends a, x and b, x respectively.

Lemma 3.1 (Mader [4]). Suppose that G is a graph and x is a non-separating vertex of G with deg $\times \geq 4$ and with $|N(x)| \geq 2$. Then there exist two vertices $a, b \in N(x)$, such that for each two vertices $y, z \in V-x$,

$$
\lambda_{G_{x}}^{a, b}(y, z)=\lambda_{G}(y, z) .
$$

Lemma 3.2. Suppose that x_{1}, \ldots, x_{5} are vertices of a graph G. If for each $1 \leq i<j \leq 5$,

$$
\lambda\left(x_{i}, x_{j}\right) \geq 4,
$$

and each vertex of G has even degree, then G contains edgedisjoint paths $\left[x_{1}, x_{2}\right],\left[x_{2}, x_{3}\right],\left[x_{3}, x_{4}\right],\left[x_{4}, x_{5}\right]$, and $\left[x_{5}, x_{1}\right]$.

Proof. We proceed by induction on $|E|$. We put $T=\left\{x_{1}, \ldots, x_{5}\right\}$. If $|T| \leq 4$, then the result follows from (1.4.4), and so we may let $|T|=5$. We may assume that G is 2 -connected, and that for each vertex \times of G deg $\times \geq 4$. If there exists a vertex x in $V-T$, then by Lemma 3.1 there
exist two vertices $a, b \in N(x)$ such that $\lambda_{G_{x}}^{a, b\left(x_{i}, x_{j}\right)=\lambda_{G}\left(x_{i}, x_{j}\right)}$ ($1 \leq i<j \leq 5$). $\left|E\left(G_{x}^{a, b}\right)\right|<|E|$ and each vertex of $G_{x}^{a, b}$ has even degree, thus by induction the result holds in $G_{x}^{a, b}$, and so in G. Let $V=T$. If $x_{5} x_{1} \in E$, then we can apply (1.4.5) for the graph $G-x_{5} x_{1}$, and for pairs $\left(s_{i}, t_{i}\right)=\left(x_{i}, x_{i+1}\right)$ and $a_{i}=1$ $(1 \leq i \leq 4)$. Thus we may let $x_{5} x_{1} \notin E$ and $x_{i} x_{i+1} \notin E(1 \leq i \leq 4)$. Now G contains a subgraph as illustratrd in Figure 7a or 7b, and the result holds.

Figure 7a.

Figure 7b.

Lemma 3.3. Suppose that G is a 2-edge-connected graph and a, b, c, d, x, y are vertices such that $\operatorname{deg} a=3, N(a)=\{b, c, d\}$, deg $b \geq 3$, and a, x, y are all distinct, and that for each

2-cut $\partial(x)(x \subseteq v,|x| \leq|v-x|)$,

$$
X=\{x\}, X=\{y\} \text { or } X=\{x, y\} \text { and }|E(\langle x\rangle)|=1 \text {. }
$$

Then G-a contains $\frac{1}{2}[b, c, x, d, y, b]$, if it is not the cases that deg $c=2, c=x$, $\operatorname{deg} c_{1}=2\left(N(c)=\left\{a, c_{1}\right\}\right)$ or, deg $c=2, c=y$.

Proof. We distinguish four cases.
Case 1. deg cz 3 and deg $d \geq 3$. Now G-a is 2-edge-connect. Let G ' be the graph obtained by replacing each edge of G by double edges. Then $G^{\prime}-\mathrm{a}$ is 4-edge-connected, and so by applying Lemma 3.2 on G^{\prime}-a we can deduce the result.

Case 2. deg $c=2$ and deg $d \geq 3$. Let $N(c)=(a, q)$. By the hypothesis $c \neq y$, and so $c=x$ and deg $c_{1} \geq 3$. $\mathrm{G}-\{a, c\}$ is 2-edgeconnected, and so this contains $\frac{1}{2}\left[b, c_{1}, d, y, b\right]$ by Lemma 3.2.

Case 3. deg $c \geq 3$ and deg $d=2$. Let $d=x$ and $N(d)=\{a, d$,$\} .$ If deg $d_{1} \geq 3$, then $G-\{a, d\}$ is 2-edge-connected, and so this contains $\frac{1}{2}\left[b, c, d_{1}, y, b\right]$. If deg $d_{1}=2$, then $d_{1}=y$. By (1.4.4) $G-\{a, d\}$ contains $\frac{1}{2}\left[b, c, d_{1}, b\right]$, thus G contains $\frac{1}{2}[b, c, x, d, y, b]$ When $d=y$, the proof is similar.

Case 4. deg $c=d e g d=2$. Now $c \neq d$ and $c \neq y$, thus $c=x, d=y$, and G-\{a,c,d\} is 2-edge-connected. By (1.4.4) G-a contains $\frac{1}{2}[b, c, d, b]$.

If we prove following Lemma 3.4, Theorem 2 follows.

Lemma 3.4. Suppose that G is a graph with $w \equiv 1$, (s_{1}, t_{1}), $\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right)$ are pairs of vertices of G, and $q_{1}=q_{2}=q_{3}=1$.

If (1.3) holds, then G contains feasible paths $\frac{1}{2} P_{1}\left[s_{1}, t_{1}\right]$, $\frac{1}{2} P_{2}\left[s_{1}, t_{1}\right], \frac{1}{2} P_{3}\left[s_{2}, t_{2}\right], \frac{1}{2} P_{4}\left[s_{2}, t_{2}\right], \frac{1}{2} P_{5}\left[s_{3}, t_{3}\right]$, and $\frac{1}{2} P_{6}\left[s_{3}, t_{3}\right]$.

Proof. We proceed by induction on $|E|$. We put $T=\varsigma_{1}, s_{2}$, $\left.s_{3}, t_{1}, t_{2}, t_{3}\right\}$. We require the following
(3.1) We may assume the following.
(3.1.1) G is 2 -connected, and $|T|=6$.
(3.1.2) For each 2-cut $\partial(X)(X \subseteq v),|X|=|X \cap T|=1$ or $|X \cap T| \geq 2$.
(3.1.3) For each edge $e \in E$, there exists $X \subseteq V$ such that $|\partial(x)|=|D(x)|$ and $e \in \partial(x)$.
(3.1.4) For each $1 \leq i \leq 3, s_{i}$ and t_{i} are not adjacent.
(3.1.5) If for vertices $x_{1}, x_{2}, x_{3}, x_{4}$ of G deg $x_{2}=\operatorname{deg} x_{3}=2$ and $\left\{x_{1} x_{2}, x_{2} x_{3}, x_{3} x_{4}\right\} \subseteq E$, then deg $x_{1} \geq 3$ and deg $x_{4} \geq 3$.

Proof. (1) If $|T| \leq 5$, then Lemma 3.4 follows from (1.4.5).
(2) Let $\left\{e_{1}, e_{2}\right\}=\partial(X)$ be a 2 -cut, and let $a_{i} \in X, b_{i} \in V-X$ and $a_{i} b_{i}=e_{i} \quad(i=1,2)$. We define new graphs H, K as follows.

$$
\begin{aligned}
& H=(X, E(\langle X\rangle) \cup f), \\
& K=(v-X, E(\langle v-X\rangle) \cup g),
\end{aligned}
$$

where f, g are new edges with ends a_{1}, a_{2} and b_{1}, b_{2} respectively. If $X \cap T=\varnothing$, then by induction the result of Lemma 3.4 holds in K, and so in G. If $|X \cap T|=1$ (say $s, \in X$) and $|X| \geq 2$, then we assign s_{1} on the midpoint of g in K,
producing a new graph K^{\prime}. Now by induction the result of Lemma 3.4 holds in K^{\prime}, and so in G.
(3) If there exists $e \in E$ such that for each $X \subseteq V$ with $e \in \partial(x)$ and $|\partial(x)|>|D(x)|$, then the hypothesis of Lemma 3.4 holds in G-e, and so we can apply induction on G-e.
(4) If $s_{3} t_{3} \in E$, then we can apply (1.4.2) for the graph $G-s_{3} t_{3}$, and for two pairs $\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right)$ and $a_{1}=a_{2}=1$.
(5) If deg $x_{1}=2$, then $x_{i} \in T(1 \leq i \leq 3)$ by (3.1.2), and so we may let $x_{1}=s_{2}, x_{2}=s_{1}$ and $x_{3}=t_{2}$ by (3.1.4) and (1.3). Let $x_{0} \in N\left(x_{1}\right)-x$. Let G^{\prime} be the graph obtained by contracting the edge $x_{0} x_{1}$. By induction G^{\prime} contains feasible paths $\frac{1}{2} P_{1}\left[s_{1}, t_{1}\right], \frac{1}{2} P\left[s_{1}, t_{1}\right], \frac{1}{2} P_{3}\left[s_{2}, t_{2}\right], \frac{1}{2} P_{4}\left[s_{2}, t_{2}\right], \frac{1}{2} P_{5}\left[s_{3}, t_{3}\right]$ and $\frac{1}{2} P_{6}\left[s_{3}, t_{3}\right]$. Let Q_{1}, \ldots, Q_{6} be the corresponding paths of G. We may let $x_{1} x_{2} \in E\left(Q_{1}\right) \cap E\left(Q_{2}\right)$ or $x_{1} x_{2} \in E\left(Q_{1}\right) \cap E\left(Q_{3}\right)$. In the former case, let Q_{7} be the path of G such that $E\left(Q_{7}\right)=\left\{x_{1} x_{2}, x_{2} x_{3}\right\}$ and let Q_{8} be the path of G obtained by combining $x_{2} x_{3}, Q_{3}\left(t_{2}, x_{0}\right)$ and $Q_{2}\left(x_{0}, t_{1}\right)$. Then $\frac{1}{2} Q_{1}, \frac{1}{2} Q_{8}$, $\frac{1}{2} Q_{7}, \frac{1}{2} Q_{4}, \frac{1}{2} Q_{5}, \frac{1}{2} Q_{6}$ are required paths of G. In the latter case $\frac{1}{2} Q_{1}, \ldots, \frac{1}{2} Q_{6}$ are required paths of G.

Now we come to the proof of Lemma 3.4. We distinguish three cases.

Case 1. G contains a nontrivial 2 -cut $\left\{e_{1}, e_{2}\right\}=\partial(X)$ $(X \subseteq V)$. We define H, K, a_{i}, b_{i}, f and g similarly as in the proof of (3.1.2). Then H and K are 2-edge-connected. It suffices to consider the following cases by (3.1.2).

Case 1a. $\left\{s_{1}, t_{1}\right\} \subseteq X$ and $\left\{s_{2}, s_{3}, t_{2}, t_{3}\right\} \subseteq V-X$. Assume that $K-g$ contains feasible paths $\frac{1}{2} P_{1}\left[s_{2}, t_{2}\right], \frac{1}{2} P_{2}\left[s_{2}, t_{2}\right]$, $\frac{1}{2} P_{3}\left[s_{3}, t_{3}\right]$ and $\frac{1}{2} P_{4}\left[s_{3}, t_{3}\right]$. Then $H-f$ contains a path $P_{5}\left[s_{1}, t,\right]$, and $P_{5}, \frac{1}{2} P_{1}, \frac{1}{2} P_{2}, \frac{1}{2} P_{3}, \frac{1}{2} P_{4}$ are required paths of G. If this is not the case, then by (1.4.2) for the graph $K-g$, and for two pairs $\left(s_{2}, t_{2}\right),\left(s_{3}, t_{3}\right)$ and $q_{2}=q_{3}=1$, (1.3) does not hold. Thus for some $Y \subseteq V-X$ with $b_{1} \in Y$,

$$
D_{K-g}(Y)=\{2,3\} \text { and }\left|\partial_{K-g}(Y)\right|=1
$$

For each $Z \subseteq X$ such that $a_{1} \in Z, f \in \partial_{H}(Z)$ and $D_{H}(Z)=\{1\}$,

$$
\left|D_{G}(Y \cup Z)\right|=3
$$

and so

$$
\left|\partial_{G}(Y \cup Z)\right|=\left|\partial_{H-f}(Z)\right|+\left|\partial_{K-g}(Y)\right| \geq 3
$$

thus $\quad\left|\partial_{H-f}(Z)\right| \geq 2$.
Hence by (1.4.2) H-f contains feasible paths $\frac{1}{2} P_{1}\left[s_{1}, t,\right]$, $\frac{1}{2} P_{2}\left[s_{1}, t_{1}\right], \frac{1}{2} P_{3}\left[a_{1}, a_{2}\right]$ and $\frac{1}{2} P_{4}\left[a_{1}, a_{2}\right]$, and K contains feasible paths $\frac{1}{2} P_{5}\left[s_{2}, t_{2}\right], \frac{1}{2} P_{6}\left[s_{2}, t_{2}\right], \frac{1}{2} P_{7}\left[s_{3}, t_{3}\right]$ and $\frac{1}{2} P_{8}\left[s_{3}, t_{3}\right]$. Now we can construct required paths of G.

Case 1b. $\left\{s_{1}, s_{2}\right\} \subseteq X$ and $\left\{s_{3}, t_{1}, t_{2}, t_{3}\right\} \subseteq V-X$. If $H-f$ is 2-edge-connected, then we assign a new vertex u on the midpoint of g, producing a new graph K^{\prime}. By induction K^{\prime} contains feasible paths $\frac{1}{2} P_{1}\left[u, t_{1}\right], \frac{1}{2} P_{2}\left[u, t_{1}\right], \frac{1}{2} P_{3}\left[u, t_{2}\right]$, $\frac{1}{2} P_{4}\left[u, t_{2}\right], \frac{1}{2} P_{5}\left[s_{3}, t_{3}\right]$ and $\frac{1}{2} P_{6}\left[s_{3}, t_{3}\right]$. We may let $u b_{1} \in E\left(P_{1}\right) \cap E\left(P_{2}\right)$ or $u b_{1} \in E\left(P_{1}\right) \cap E\left(P_{3}\right)$. In each case we can construct required paths of G, since by (1.4.5) H-f contains feasible paths $\frac{1}{2} P_{7}\left[s_{1}, a_{1}\right], \frac{1}{2} P_{8}\left[s_{1}, a_{1}\right], \frac{1}{2} P_{9}\left[s_{2}, a_{2}\right]$ and $\frac{1}{2} P_{10}\left[s_{2}, a_{2}\right]$ and contains $\frac{1}{2}\left[s_{1}, a_{1}, s_{2}, a_{2}, s_{1}\right]$. Thus we may assume that $H-f$ is not 2-edge-connected, and so H contains a 2-cut
$\left\{f, f^{\prime}\right\}$. Then $\left\{f^{\prime}, e_{1}\right\}$ and $\left\{f^{\prime}, e_{2}\right\}$ are 2-cuts of G. By (3.1.2) $H=\left(\left\{a_{1}, a_{2}\right\},\left\{f, f^{\prime}\right\}\right)$, and so we may let $a_{1}=s_{1}$ and $a_{2}=s_{2}$. By (3.1.5) deg $b_{i} \geq 3(i=1,2)$. If K contains a 2 -cut $\left\{g, g^{\prime}\right\}=$ $\partial_{K}(Y)(Y \subseteq V-X)$, then $\left\{g^{\prime}, e_{1}\right\}$ and $\left\{g^{\prime}, e_{2}\right\}$ are 2 -cuts of G. Since deg $b_{i} \geq 3(i=1,2)$, by (3.1.2) $|Y \cap T|=2$ and $|(V-X-Y) \cap T|=2$ By Case 1a we may let $\left.Y \cap T \neq C s_{3}, t_{3}\right\}$, and so we may let $\langle Y\rangle$ is an edge, contrary to (3.1.5). Thus assume that $K-g$ is 2-edge-connected. By (3.1.3), there exists $X \subseteq V$ such that $|\partial(x)|=|D(x)|$ and $s_{1} s_{2} \in \partial(x)$. Thus we may assume that G is the graph as illustrated in Figure 8. Let Y_{1}, Y_{2} be the subsets

Figure 8.
of V such that $b_{i} \in Y_{i}$ and $\partial\left(Y_{i}\right)=\left\{s_{i} b_{i}, c_{1} c_{2}, d_{1} d_{2}\right\}(i=1,2)$. We construct new graphs K_{1}, K_{2} as follows.

$$
K_{i}=\left(Y_{i} \cup v_{i}, E\left(\left\langle Y_{i}\right\rangle\right) \cup\left\{b_{i} v_{i}, c_{i} v_{i}, d_{i} v_{i}\right\}\right), i=1,2,
$$

where v_{1}, v_{2} are new vertices. If for $i=1$ or $2, K_{i}$ contains a 2-cut $\partial K_{i}\left(Z_{i}\right)\left(Z_{i} \subseteq Y_{i}\right)$ such that $\left|Z_{i}\right| \geq 2$ and $\left|V\left(K_{i}\right)-Z_{i}\right| \geq 2$, say $i=1$, then $\partial_{G}\left(Z_{1}\right)$ is a 2-cut of G, and by (3.1.2) $Z_{1} \cap T=\left\{s_{3}, t_{2}\right\}$. Thus we may assume that $Z_{1}=\left\{s_{3}, t_{2}\right\}$ and deg $s_{3}=$ deg $t_{2}=2$. This allows that we can apply Lemma 3.3 on
K_{1} and K_{2}.
Assume that deg $c_{1} \geq 3$, deg $d_{2} \geq 3$ or deg $c_{2} \geq 3$, deg $d_{1} \geq 3$, say the former. By Lemma $3.3 K_{1}-v_{1}$ contains $\frac{1}{2}\left[b_{1}, c_{1}, s_{3}, d_{1}, t_{2}, b_{1}\right]$ and $K_{2}-v_{2}$ contains $\frac{1}{2}\left[b_{2}, d_{2}, t_{3}, c_{2}, t_{1}, b_{2}\right]$. Now we can construct required paths of G. Assume that for $i=1$ or 2 , deg $c_{i} \geq 3$ and deg $d_{i} \geq 3$, say for $i=1$. Now we may assume that deg $c_{2}=\operatorname{deg} d_{2}=2 . \quad c_{2}=t_{1}, d_{2}=t_{3}$ or $c_{2}=t_{3}, d_{2}=t_{1}$, say the former, then by Lemma $3.3 \mathrm{~K}_{2}-v_{2}$ contains $\frac{1}{2}\left[b_{2}, d_{2}, t_{3}, c_{2}, t_{1}, b_{2}\right]$ and $K_{1}-v_{1}$ contains $\frac{1}{2}\left[b_{1}, c_{1}, s_{3}, d_{1}, t_{2}, b_{1}\right]$. Assume that deg $c_{i}=2(i=1,2)$ or $\operatorname{deg} d_{j}=2(j=1,2)$, say the former. Let $y_{1} \in N\left(c_{1}\right)-c_{2}$, and let $y_{2} \in N\left(c_{2}\right)-c_{1}$, then by (3.1.5) deg $y_{i} \geq 3(i=1,2)$. By (3.1.4) we may let $c_{1}=t_{2}$, $c_{2}=t_{1}$ or $c_{1}=s_{3}, c_{2}=t_{1}$. If $c_{1}=t_{2}$, then by (1.4.2) $K_{1}-\left\{v_{1}, c_{1}\right\}$ contains feasible paths $\frac{1}{2} P_{1}\left[s_{3}, d_{1}\right], \frac{1}{2} P_{2}\left[s_{3}, d_{1}\right], \frac{1}{2} P_{3}\left[b, y_{1}\right]$ and $\frac{1}{2} P_{4}\left[b_{1}, y_{1}\right]$, and $K_{2}-\left\{v_{2}, c_{2}\right\}$ contains feasible paths $\frac{1}{2} P_{5}\left[t_{3}, d_{2}\right]$, $\frac{1}{2} P_{6}\left[t_{3}, d_{2}\right], \frac{1}{2} P_{7}\left[b_{2}, y_{2}\right]$ and $\frac{1}{2} P_{8}\left[b_{2}, y_{2}\right]$, and so the result follows. If $c_{1}=s_{3}$, then by Lemma $3.3 K_{1}-\left\{v_{1}, c_{1}\right\}$ contains $\frac{1}{2}\left[b_{1}, y_{1}, d_{1}, t_{2}, b_{1}\right]$ and $K_{2}-\left\{v_{2}, c_{2}\right\}$ contains $\frac{1}{2}\left[b_{2}, d_{2}, t_{3}, y_{2}, b_{2}\right]$, and so the result follows.

Case $1 c .\left\{s_{1}, s_{2}, t_{1}\right\} \subseteq X$ and $\left\{s_{3}, t_{2}, t_{3}\right\} \subseteq V-X$. We may assume that neither Case 1 a nor Case 1 b occurs. If deg $a_{1}=2$, then $\partial\left(X-a_{1}\right)$ is a 2 -cut of G and $\left|\left(X-a_{1}\right) \cap T\right|=2$, a contradiction. Thus deg $a_{i} \geq 3$ and deg $b_{i} \geq 3(i=1,2)$. We assign new vertices v_{1}, u_{2} on the midpoints of f, g respectively, producing new graphs H^{\prime}, K^{\prime}. For the graph H^{\prime}, and for two pairs $\left(s_{1}, t_{1}\right),\left(s_{2}, v_{2}\right)$ and $q_{1}=1, q_{2}=2$, if (1.3) does not hold, then
there exists $Z \subseteq V\left(H^{\prime}\right)$ such that $D_{H^{\prime}}(Z)=\{1,2\}$ and $\left|\partial_{H^{\prime}}(Z)\right|=2$. Now Case 1b occurs in G, thus (1.3) holds, and so (1.2) holds. Hence $H^{\prime}-v_{2}$ contans feasible paths $\frac{1}{2} P_{1}\left[s_{1}, t_{1}\right]$, $\frac{1}{2} P_{2}\left[s_{1}, t_{1}\right], \frac{1}{2} P_{3}\left[s_{2}, a_{1}\right]$ and $\frac{1}{2} P_{4}\left[s_{2}, a_{2}\right]$. Similarly $K^{\prime}-U_{2}$ contains feasible paths $\frac{1}{2} P_{5}\left[s_{3}, t_{3}\right], \frac{1}{2} P_{6}\left[s_{3}, t_{3}\right], \frac{1}{2} P_{7}\left[t_{2}, b_{1}\right]$ and $\frac{1}{2} P_{8}\left[t_{2}, b_{2}\right]$, and so the result follows.

Case 2. Every 2-cut of G is trivial, and G contains a 2 -cut. Now we may let deg $s_{1}=2$, and let e_{1}, e_{2} be the edges incident to s_{1}. By (3.1.3), for $i=1,2$ there exists $X_{i} \subseteq V$ such that $s_{1} \in x_{i},\left|\partial\left(x_{i}\right)\right|=\left|D\left(x_{i}\right)\right|$ and $e_{i} \in \partial\left(x_{i}\right)$. For $i=1,2$, since $\left|\partial\left(x_{i}\right)\right|=3$, let $\partial\left(x_{i}\right)=\left\{e_{i}, f_{i}, g_{i}\right\}$. We put $X_{3}=V-\left(X_{1} \cup X_{2}\right)$, then $t_{1} \in X_{3}$, By simple counting we have

$$
(3.2)\left|\partial\left(x_{1} \cup x_{2}\right)\right|=\left|\partial\left(x_{1}\right)\right|+\left|\partial\left(x_{2}\right)\right|-\left|\partial\left(x_{1} \cap x_{2}\right)\right|
$$

$$
-2\left|\partial\left(x_{1}-x_{2}\right) \cap \partial\left(x_{2}-x_{1}\right)\right|
$$

If $\left|\partial\left(x_{1} \cap x_{2}\right)\right| \geq 4$, then by (3.2)

$$
\left|\partial\left(x_{3}\right)\right|=\left|\partial\left(x_{1} \cup x_{2}\right)\right| \leq 3+3-4=2 .
$$

Thus $\left|\partial\left(x_{3}\right)\right|=2$ and $\left|\partial\left(x_{1} \cap x_{2}\right)\right|=4$. Then $\left|x_{3}\right|=1$ and $X_{1} \cap X_{2}=\left\{s_{1}, x\right\}$ for some $x \in V$ with deg $x=2$. We may let $x=s_{2}$, then $t_{2} \in X_{3}$, and so $t_{1}=t_{2}$, a contradiction. Thus $\left|\partial\left(X_{1} \cap X_{2}\right)\right|=2$ and $X_{1} \cap X_{2}=\left\{s_{1}\right\}$.

Case 2a. $f_{1}, f_{2}, g_{1}, g_{2}$ are not all distinct. We may let $f_{1}=f_{2}$. Since $f_{1} \notin \partial\left(x_{1} \cap x_{2}\right)=\left\{e_{1}, e_{2}\right\}, f_{1} \in \partial\left(x_{1}-x_{2}\right) \cap \partial\left(x_{2}-x_{1}\right)$. By (3.2)

$$
\left|\partial\left(x_{3}\right)\right|=\left|\partial\left(x_{1} \cup x_{2}\right)\right| \leq 3+3-2-2=2 .
$$

Thus $X_{3}=\left\{t_{1}\right\}$, and we may assume that G is the graph as illustrated in Figure 9.

Figure 9.

Since every 2-cut is trivial, deg $b_{i} \geq 3$ and deg $c_{i} \geq 3$
($i=1,2$). By Lemma 3.3 $\left\langle X_{1}\right\rangle$ contains $\frac{1}{2}\left[b_{1}, s_{3}, d_{1}, s_{2}, c_{1}, b_{1}\right]$ and $\left\langle x_{2}\right\rangle$ contains $\frac{1}{2}\left[b_{2}, t_{3}, d_{2}, t_{2}, c_{2}, b_{2}\right]$, and so the result follows.

Case 2b. $f_{1}, f_{2}, g_{1}, g_{2}$ are all distinct. Now $\partial\left(x_{1}-x_{2}\right) \cap \partial\left(x_{2}-x_{1}\right)=\varnothing$. From (3.2) we have

$$
\left|\partial\left(x_{3}\right)\right|=3+3-\left|\partial\left(x_{1} \cap x_{2}\right)\right|=4 .
$$

Thus we may assume that G is the graph as illustrated in Figure 10.

Figure 10.
$\left\langle X_{3}\right\rangle$ is connected. For if not, then there exist $Y_{1}, Y_{2} \subseteq X_{3}$ such that $X_{3}=Y_{1} \cup Y_{2}, Y_{1} \cap Y_{2}=\varnothing$, and $\left|\partial\left(Y_{1}\right)\right|=\left|\partial\left(Y_{2}\right)\right|=2$. Then $\left|X_{3} \cap T\right|=2$, a contradiction. deg $c_{i} 23$ and deg $d_{i} \geq 3(i=3,4)$, for if not, then deg $t_{1}=2$ and one of $f_{1}, f_{2}, g_{1}, g_{2}$ is incident to
t_{1}, say 9_{1}, and Case 2a occurs for $X_{1}, X_{2} \cup X_{3}-t_{1}$ instead of X_{1}, X_{2}. If $\left\langle X_{3}\right\rangle$ contains a 1 -cut $\langle h\rangle=\partial_{\left\langle X_{3}\right\rangle}\left(Y_{1}\right)\left(Y_{1} \subseteq X_{3}\right)$, then Y_{1} contains just two of $c_{3}, c_{4}, d_{3}, d_{4}$. Put $Y_{2}=X_{3}-Y_{1}$. $\left\{c_{3}, d_{3}\right\} \nsubseteq Y_{1}$, thus we may let $\left\{c_{3}, c_{4}\right\} \subseteq Y_{1},\left\{d_{3}, d_{4}\right\} \subseteq Y_{2}$ and $t_{1} \in Y_{1}$. Let v_{1}, v_{2} be the vertices such that $v_{i} \in Y_{i}(i=1,2)$ and $v_{1} v_{2}=h$. $\left\langle Y_{1}\right\rangle$ contains $\frac{1}{2}\left[c_{3}, c_{4}, v_{1}, t_{1}, c_{3}\right]$, for if $\left\langle Y_{1}\right\rangle$ is not 2-edge-connected, then deg $v_{1}=2$ and $v_{1}=t_{1} \cdot\left\langle Y_{2}\right\rangle$ contains $\frac{1}{2}\left[d_{3}, d_{4}, v_{2}, d_{3}\right]$. Thus $\left\langle X_{3}\right\rangle$ contains $\frac{1}{2}\left[c_{3}, t_{1}, d_{4}, d_{3}, c_{4}, c_{3}\right]$ and feasible paths $\frac{1}{2}\left[c_{3}, c_{4}\right], \frac{1}{2}\left[c_{3}, t,\right], \frac{1}{2}\left[t_{1}, c_{4}\right]$ and $\left[d_{3}, d_{4}\right]$. If $\left\langle X_{3}\right\rangle$ is 2-edge-connected, then $\left\langle X_{3}\right\rangle$ contains $\frac{1}{2}\left[c_{3}, t_{1}, d_{4}, d_{3}, c_{4}, c_{3}\right]$ by Lemma 3.2. Assume that deg $c_{1}=2$. We may let $c_{1}=s_{2} .\left\langle X_{1}\right\rangle$ contains $\frac{L}{2}\left[b_{1}, s_{2}, d_{1}, s_{3}, b_{1}\right]$ and $\left\langle X_{3}\right\rangle$ contains $\frac{1}{2}\left[c_{3}, t_{1}, d_{4}, d_{3}, c_{4}, c_{3}\right]$. If deg $d_{2} \geq 3$ or deg $d_{2}=2$, $d_{2}=t_{2}$, then by Lemma $3.3\left\langle x_{2}\right\rangle$ contains $\frac{1}{2}\left[b_{2}, t_{3}, c_{2}, t_{2}, d_{2}, b_{2}\right]$. If deg $d_{2}=2$ and $d_{2}=t_{3}$, then $\left\langle X_{2}\right\rangle$ contains feasible paths $\frac{1}{2} P_{1}\left[b_{2}, t_{3}\right], \frac{1}{2} P_{2}\left[b_{2}, t_{3}\right], \frac{1}{2} P_{3}\left[c_{2}, t_{2}\right]$ and $\frac{1}{2} P_{4}\left[c_{2}, t_{2}\right]$. Now we can dedeuce the result. Thus we may assume that deg $c_{i} \geq 3$ ($i=1,2$). By Lemma $3.3\left\langle X_{1}\right\rangle$ contains $\frac{1}{2}\left[b_{1}, c_{1}, s_{2}, d_{1}, s_{3}, b_{1}\right]$ and $\left\langle X_{2}\right\rangle$ contains $\frac{1}{2}\left[b_{2}, c_{2}, t_{2}, d_{2}, t_{3}, b_{2}\right]$. If $\left\langle X_{3}\right\rangle$ is 2-edgeconnected, then by Lemma $3.2\left\langle X_{3}\right\rangle$ contains $\frac{1}{2}\left[c_{3}, t_{1}, c_{4}, d_{3}, d_{4}, c_{3}\right]$; and if not, then $\left\langle X_{3}\right\rangle$ contains feasible paths $\frac{1}{2}\left[c_{3}, c_{4}\right], \frac{1}{2}\left[c_{3}, t_{1}\right], \frac{1}{2}\left[t_{1}, c_{4}\right]$ and $\left[d_{3}, d_{4}\right]$. Now we can deduce the result.

Case 3. G is 3-edge-connected. By Theorem 1 the result follows.

References

[1] A. Cypher: An approach to the k paths problem, Proc. 12th Annual ACM Symposium on Theory of Computing (1988) 211-217.
[2] L. R. Ford, Jr. and D. R. Fulkerson: Maximal flow through a network, Canad. J. Math. 8 (1956), 399-404.
[3] T. C. Hu: Multi-commodity network flows, Operations Res. 11 (1963), 344-360.
[4] W. Mader: A reduction method for edge-connectivity in graphs, Annals of Discrete Math. 3 (1978), 145-164.
[5] H. Okamura and P. D. Seymour: Multicommodity flows in planar graphs, J. Combinatorial Theory Ser. B 31 (1981), 75-81.
[6] H. Okamura: Multicommodity flows in graphs, Discrete Applied Math. 6 (1983), 55-62.
[7] B. A. Papernov: Realizability of multi-product flows, (in Russian), Compendium Investigations in Discrete Optimization, Nauka, Moscow, (1976).
[8] P. D. Seymour: A short proof of two-commodity flow theorem, J. Combinatorial Theory Ser. B 26 (1979), 370-371.
[9] P. D. Seymour: Four terminus flows, Networks 10 (1980), 79-86.
[10] P. D. Seymour: Disjoint paths in graphs, Discrete Math. 29 (1988), 293-309.
[11] P. D. Seymour: On odd cuts and plane multicommodity flows, Proc. London Math. Soc. (3) 42 (1981), 178-192.
[12] C. Thomassen: 2-1inked graphs, Europ. J. Combinatorics 1 (1980), 371-378.

