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Abstract

Recent success in growing large single-crystal of black
phosphorus has been motivating many intensive investigations of
the physical properties of phosphorus. Particuraly the pressure-
induced frequency-softening of a particular phonon mode (LAx
mode) observed in the orthorombic black phosphorus and the fairly
high superconducting transition temperature, as well as its
pressure dependence, observed in the simple-cubic phosphorus have
been received considerable attention. These characteristic
phenomena are expected to be related with the strong electron-
lattice interaction. |

In part I a role of the ;lectron—lattice interaction in the
lattice dynamics of black phosphorus, which is a narrow gap
semiconductor, has been studied from the microscopic point of
view. The electron-lattice coupling constants are derived on the
basis of tight-binding calculations of the electronic band
structure and the generalized electronic susceptibility is
calculated. From these results the interplanar forces are
evaluated.. Reflecting the narrow gap of this substance, the
interplanar forces take significant values even for far
neighboring planes. Further, owing to considerable decrease of
the energy gap induced by pressure, the interplanar forces reveal
characteristic pressure dependences. These effective forces
combined with short range repulsive forces appropriately chosen‘
explain qualitatively the observed pressure dependence of the

phonon dispersion curves. Particularly we emphasize that the



effective interplanar forces caused by the electron-lattice
ineraction are important to explain the pressure-induced
frequency-softening of the LAx mode as observed.

In part II a role of the electron-lattice interaction in the
superconductivity observed in the simple-cubic phosphorus, which
is stabilized above 110 kbar, has been studied. First we
calculate the electronic band by the self-consistent augmented
plane wave (APW) method. The density of states (DOS) and the
Fermi surfaces are calculated and pressure effects on them are
studied. As pressure increases from 132 kbar to 304 kbar, a
change of the total DOS at the Fermi level, D(EF), is found to be
quite small, but a remarkable change is found for some particular
Fermi surfaces. The small value of D(EF) and fairly high
superconducting transition temperature, such as 5v11 K, suggest
that the simple-cubic phosphorus is a system having the strong
electron-phonon interaction. Therefore we have calculated the
electron-~-lattice matrix elements on the basis of the rigid
muffin-tin approximation, using the electronic band structure
calculated by APW method. By averaging the electron-lattice
matrix elements over the Fermi surface, we have evaluated Tc in
accordance with McMillan-Allen-Dynes equation. Tc is obtained to
be 3010 K for 132 kbar and 4411 K for 304 kbar. The order of
magnitude of Tec is;in good agreement with the observed one. As
for the pressure effect on Tc, the calculated result shows rather
small pressure dependence of Tc compared with that observed by
Akahama et al. This disagreement might be due to a rough

estimation of the phonon frequencies.
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PART T

ELECTRON-LATTICE INTERACTION AND LATTICE DYNAMICS

IN BLACK PHOSPHORUS



§1. Introduction

Recent success in growing relatively large single crystals of
black phosphorus (BP)T’Z) has stimulated many experimental and
theoretical studies of its physical properties. BP is an
interesting material from various polints of view:

(1) it is an elemental semiconductor of narrow gap4(E =

g
0.3 ev)214),

cL . . s : 6

(2) it is a layered system consisting of puckered layers5’ ),

(3) as pressure is increased, it shows a successive phase tran-—
sition such as semiconductor (orthorhombic, A11) to semi-

metal (rhombohedral, A7) and to metal (simple cubic).é'g)

/
(4) in its cubic phase it becomes a superconductor with a

fairly high transition temperature Tc= 5.11 K.9—12)

BP is an attractive system also from the lattice dynamical
point of veiw. According to inelastic neutron scattering
measurements at normal and at high pressure,13) the whole of the
longitudinal acoustic mode (LAx mode) along the [100] direction
shows definite softening with increasing pressure, as shown in
Fig.1-1, whereas the other acoustic phonon branches show
hardening in the pressure range of (0-15) kbar. This LAx
acoustical mode corresponds to the accordion motion of the
puckered layer and affects strongly the bond angle of P atoms.
Hence, this mode is expected to be strongly coupled with
electrons. Thus it is speculated that the softening of the LAx
mode with increasing pressure is related with the

electron-lattice interaction.

Thus far, lattice dynamical calculation at normal pressure



14)

has been performed by Kaneta, Katayama-Yoshida and Morita on

the basis of the valence force field model, and by Kaneta and

15)

Morita on the basis of the adiabatic bond charge model.

The results obtained from the latter model can explain well the

13)

data obtained by inelastic neutron scattering, infrared

6), Raman scattering16’17)
18)

absorption ! , and specific heat

measurements. However, there has been no attempt to explain
the characteristic pressure dependence of the phonon frequencies
mentioned above. The aim of the present study is to investigate
microscopically the coupling between the electrons and the
lattice and to clarify the origin of the softening of the LAx
mode caused by pressure.

In §2 the crystal structure and the Brillouin zone of BP are
described and the electronic band structure is calculated on the
basis of the tigﬁi-binding method with use of the extended Huckel
approximation. We discuss also effects of pressure on the band
structure.

In §3 the electron-lattice interaction is derived microscopi-
cally on the basis of the tight-binding method and the generali-
zed electronic susceptibility, XaB(ij,q), is calculated for BP.

A possible origin of the softening of the LAXx mode is discussed.

In §4 the interplanar forces along the [100] direction caused
by the electron-lattice interaction are evaluated from the
generalized electronic susceptibility obtained in §3.

In §5 lattice dynamics is studied for 15 kbar as well as for
normal pressure. The origin of softening of the LAx mode caused

by pressure 1is discussed in detail.

Finally, §6 is devoted to some remarks and conclusion.
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Fig.1-1 Phonon dispersion of two acoustic modes, LAX(A1)

and TAz(A observed by inelastic neutron

5)
scattering.wB) The full and broken curves are

drawn only for the guide to eye.



§2. Tight-Binding Calculation of Electronic Band Structure

2-1 Crystal Structure

The crystal structure of BP is orthorhombic (space group D;ﬁ)
and consists of puckered layers as shown in Fig.Z2-1. Atomic
positions in this orthohombic lattice are specified by three
latttice constants, a, b,and ¢, and two structure parameters, u

and v. The primitive translational vectors are

a1=(c,O,O), (2.1a)
a2=(0,a/2,b/2), (2.1b)
a3=(0,—a/2,b/2). (2.1c)

Four atoms in the primitive unit cell are located at the

following points:

T1=(uc,0,vb), TH,==Ty,

T3=(c/2—uc,a/2,vb), T,==T5- (2.2)

Here the inversion center is chosen as the origin.

The point group of this crystal is D2h with eight operations:
E,sz,Czy,sz,I,O
C

g._,0_. Half of these operations, namely

y’' oz
2Z,Ox,and g,, are accompanied by non-primitive translation

X’

CZX’

1=(c/2,0,b/2). ' (2.3)



Within a layer, P atoms are covalently bonded each other
through the 3p electrons to form the zig-zag chain along the
y-direction and puckered arrangements along the x-direction. The
layers are loosely bound by weak van der Waals forces. Cartz et
al. have determined the crystal structure parameters from the

19)

neutron diffraction measurements. Their values at normal

pressure (at 15 kbar) are

a=3.3133 (3.3116) A, b=10.473 (10.260) A, c=4.374 (4.289) A
u=0.0806 (0.0782), v=0.1034 (0.1050).

Reflecting the covalent bonding of the zig-zag chain,
compressibility with respect to the y-direction is fairly

1.19)

smal The change of the lattce constant ¢ with increasing
pressre arises mainly from the change of the distance between the
zig-zag chains, and the width of a zig-zag chain itself remains
almost unchanged.

,
*

The reciprocal lattice vectors, a:,a;, and a3, are given by

e

a?=2ﬂ(1/c,0,0), (2.42)
aZ=2w(o,1/a,1/b), ’ (2.4Db)
a§=27r(0,—1/a,1/b). (2.4¢)

The first Brillouin zone of BP is a six-sided prism as shown in

Fig.2-2. The electronic states specified by wave vectors on the



hexagonal face must be two-fold degenerate on acount of the
properties of the irredusible representation of the

0)

non-symmorphic space group. From now on we represent the x,
y, and z components of wave vectors in units of 2n/c, 27n/a, and

21/b, respectively. For example,

r=(0,0,0), X=(1/2,0,0), Z=(0,0,1), L=(1/2,0,1).

Symmetry lines which connect T and X, T and Z, and Z and L are

denoted as A, Z, and U, respectively.



Fig.2-1

y
X
Oo—Q@ O |
b/2
c
X
The crystal structure of black phosphorus. The

upper figure shows the projection of two
successive puckered layers on to the xy-plane.

The lower figure shows that on to the xz-plane.
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Fig.2-2

The Brillouin zone of black phosphorus.



2-2 Electronic Band Sturcture

The electronic band structure and the electronic properties
of BP have been extensively investigated in recent years. There
have been calculations of the energy'bands of BP using the

21)

self-consistent pseudopotential (SCP) method and the

tight-binding (TB) method.<?)
In the SCP calculation, Appelbaum-Hamann type core potential,
which is determined so that the calculated 3s and 3p levels of
P4+ ion could well reproduce the experimental values, has been
used and the X, method with a=0.8 was adopted for the exchange
potential. The results of the SCP calculation are in good

23)

agreement with the XPS spectrum, the partial density of states

24)

measured by soft X-ray spectroscopy, and the valence band

structure measured by angle-resolved photoemission
spectroscopy.25)

In the TB calculation, Slater-type atomic wave functions with
Clementi's exponents for 3s and 3p orbitals and the extended
Huckel approximation (EHA) have been used. The qualitative
features of the electronic density of states as well as the
dispersion curves of the lowest conduction band and the highest
valence band are in good agreement with those obtained by the SCP
calculation.

The TB method has an advantage that it can be extended easily
to calculations of the electron-lattice interaction even in

complex systems. Thus, we adopt the TB method to study the

electron-lattice interaction of BP. We first illustrate the

- 10 -



TB method with use of the EHA, and then the calculated band
structures are presented.
Slater-type wave functionsfor 3s and 3p orbitals are

expressed as

¢38(r)= 3SrZeXp(—OLBSr), (2.5a)
¢3px(r)= 03pxrexp(—a3pr), (2.5b)
¢3py(r)= 3pyreXp(—a3pr), (2.5¢)
¢3p (r)= 03pzrexp(—a3pr), (2.54d)

where C and C are the normalization constants and o, = 1.8806
3s 3p 3s

and a3p=1.6288 (atomic unit) are Clementi's exponents. Bloch

functons are written in the form of linear combinations of the

atomic orbitals:

wiu(k’r): 7%— % (bu(r"R,Q,i)eXp(ik.R!Li)’ (2-6)

where Rﬁi:RR+Ti represents the position vector of the i-th ion

(i=1,2,3,4) in a primitive cell at a lattice point Rz, and u
denotes the atomic orbitals BS,BpX,pr,and 3pz.
The electronic band energies Egk are obtained by solving the

secular equation

det|T, (k,k)|=0, (2.7)

1u’jv(k,k)—ES

iy, jv

where {T.

1u,jv(k’k)} and {S.

i1 jV(k,k)}are transfer and overlap
’

- 11 -



matrices, respectively. Elements of the overlap matrix are

defined by
_ ® 3
Sinj\)(k’k')—_J' wiu(k7r)wj\)(k'7r)d r
zék,k'% Syv(By1Roylexpl-1k- (Ry;-Ry.) 1, (2.8)
where
= 3

are overlap integrals which can be calculated analytically using

eq.(2.5) for arbitrary (Rﬁi_ROj)' Elements of the transfer

matrix are defined by

_ * 3
Tiu,jv(k’k')—J wiu(k,r)H wjv(k"r)d r
zék,k'% T v Ry -Rojlexpl-ike (Rp,-Ry )1, (2.10)
with
= 3
Tuv(RRi-ROj)—f ¢U(r—R£i)H¢V(r—ROj)d r. (2.11)

where H represents the one-electron Hamiltonian which is assumed
to include screening, exchange, and correlation in some
appropriate way in a one-electron approximation.

The wave function @n(k,r) which corresponds to Egk can be
expressed in the form of linear combination of the basis Bloch

functions wiu(k,r):

- 12 -



o (k,r)= I A;, (K)v, (kx), o (2.12)

iu
where A(k) is the transformation matrix and it satisfies the

following relations:

AT () Tk, k) A (x)=E% (k) (2.13)
AT (k)s(x,k)A(k)=1, (2.14)

where Ed(k) is the diagonal matrix with elements Eg When a

=
set of Bloch functions forms an orthonormal basis, contribution

from an atomic orbital u of the i-th ion to the electronic state
(nk) is given by W(iu,nk)E|Aiu’n(k)|2. In case of non-orthognal
basis, on the other hand, this relation is not valid in general.
However, if W(iu,nk) is significantly large for particular iu=jv
compared with other W(iu,nk)'s (iwzjv), it is reasonable to say
that the atomic orbital v of the Jj-th ion mainly contributes to

the electronic state (nk).

After Takao et a1.22) we adopt the EHA to evaluate the

transfer integrals. In the EHA transfer integrals are assumed
to be proportional to overlap integrals:26)
1
2 Kuv(1u+Iv)Suv(R£i—ROj)’ for Ry =Ry,
T v(Bys-Roy)=
IUSU\)’ or Rﬂ,i:ROj’ (2.15)

where Iu denotes the ionization enérgy and Ku represents a

\%

parameter chosen appropriately. In actual calculations the

- 13 -



ionization energies are taken from the values calculated by

Harman and Skillman27) (I

3

as to the values of KSS and Kpp we use the commonly chosen value

1.75 which reproduces fairly well the energy bands of Si or Ge

;=—1.2588 Ryd., 13p=—0.6139 Ryd.) and

obtained on the basis of the emprical pseudopotential method.
The remaining parameter KSp may be chosen so as to reproduce the
band gap at normal pressure.

In actual calculations overlap integrals are taken into
consideration up to the tenth neighbours. The minimum energy gap
E_ between the valence and conduction bands appears at Z point
and is given by Eg:E(ZZ)—E(Z;)’ where ZZ and Z; denote the
irreducible representations of the space group. Fig.2-3 shows
the Ksp—dependence of Eg' The energy gap, 0.3eV, at normal
pressure can be obtained if we take Ksp=1.379, which is slightly

R2) who used the

different from that determined by Takao et al.
crystal structure parameters different from ours. In our
calculations crystal structure parameters are taken from the
measurements by Cartz et al.19) (see §2-1).

The energy dispersion curves along the U line and the X line
in the first Brillouin zone at noraml pressure are shown by solid
curves in Fig.2-4. The region of the energy gap is shaded. The
dispersion curves of the highest valence band (HVB) and the
lowest conduction band (LCB) are quite similar to those obtained
by Asahina et al. on the basis of the SCP method. It is noted

that the character of the wave functions is BpZ—like in HVB and

LCB.

- 14 -
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Fig.2-3 Ksp—dependence of the minimum energy gap at the %
point for O kbar (normal pressure) and for 15

kbar.
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Fig.2-4 The energy dispersion curves along the U and o

lines. Full curves: at O kbar (normal pressure).
Broken curves: at 15 kbar. The gap region is
shaded.,
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2-3 Pressure effects

The electronic band structure of BP at 15kbar has been
calculated in the same way as at normal pressure. We used
crystal structure parameters a, b, c, u, and v at 15kbar
determined by Cartz et a1.19) But, no modification were made
K

for the values of EHA parameters, K and Ks

ss’ "pp’ P’

‘ At 15kbar, the minimum energy gap, which appears also at Z
point, is 0.17eV as shown in Fig.2-3 and Fig.2-4. The
calculated pressure coefficient of energy gap dEg/dP has negative
value of -8.5 meV/kbar: this is about a half of the experimental
value, -16.7 meV/kbar, which has been determined by electrical

8)

resistivity measurements. In spite of the simplified
treatments for the transfer integrals, our calculations well
reproduce the pressure dependence of the energy gap.

The energy dispersion curves along the U and I lines at 15
kbar are shown by dashed curves in Fig.2-4. It should be noted
that as pressure is applied the energies of HVB (Z;—UZ-L1)
considerablly shift up whereas the energies of LCB (ZZ—UZ—L1) are
almost unchanged. Hence the direct or indirect energy gap
between HVB and LCB along the U line decreases considerably when
pressure is applied.

From group theoretical consideration, the electron-phonon
matrix elements between two electronic states with U,-symmetry on
the U line do not vanish only for AT—phonons, to which the
LAx-phonon belongs. Therefore, these facts suggest that the

remarkable narrowing of the energy gap along the U line could be

responsible for the pressure-induced softening of the LAx-phonon.

- 17 -



§3 Electron-Lattice Interaction

3-1 Generalized electronic susceptibility

In the adiabatic approximation the ions in the crystal
vibrate in the instantaneous potential given by the sum of (i)
electrostatic potential produced by ions themselves and (ii)
adiabatic potential which is the electronic free energy when the
ions rest at their instantaneous positions. If displacements of
the ions 6R£i from their equilibrium position Rli are assumed
to be sufficiently small, we can treat the problem within the

harmonic approximation. Then, the change of the total potential

energy due to the displacements can be generally expressed as

oV =51 T T FP(ra,n0g)eRY eRE, (3.1)
aB 22'1i]
where FaB(li,l'j) represents force constant. Introducing

Fourier transform of the displacement, ug(q), defined by
o _ 1 o —

eq.(3.1) can be expressed as

—

1

AV=’2-°Z§J

1 0%f(15,0)ud(@)u? (-q), (3.3)
8 J

where Dae(ij,q) is the so-called dynamical matrix defined by

- 18 -



p*%(1j,q) = ! P (21,015)expliqr (Ry; =Ry, )} C(3.4)

In general the electronic free energy can be expressed as

-F Here F

F e-e’ bs

bs denotes the contribution from the band

structure (effective one-electron energy part) and Fo_ o

represents the sum of the Hartree potential energy and the

correlation-exchange energy. The term —Fe must be necessary
so that the electron-electron interaction energy is not counted
twice. Consequently, within the adiabatic and harmonic

approximation we can express the dynamical matrix as follows:

B

p*(i3,q) = D (1j,q) + R*(

ij,aq) (3.5)

where D%g(ij,q) is the contribution arising from the change of

Fbs due to lattice distortion, AFbS, and RGB(ij,q) represents the

contribution from the change of ion-ion Coulomb energy and -—Fe_e°
It should be noted that the forces correponding to Rag(ij,q) are

)

short-ranged in general.29

AFbS can be obtained on the basis of the TB method extended to
the displaced structure. In calculating the energy bands of the
displaced structure we have two choices. One is the Frolich

approach and the other is the Bloch approach. In the Frolich
approach, the atomic wave functions are moving adiabatically with
the ions. In the Bloch approach, the electron-lattice matrix
element is taken with respect to electronic states of the
undistorted structure. It has been shown by Ashkenazi et al.BO)

that within the harmonic approximation both approaches lead to

- 19 -



the same physical results. 1In the present study we adopt the
Frolich approach and express the basis functions in the displaced

structure as

v, (6,1) = o T o (e-Ry =8By exp(ikeRy ;). | (3.6)

L

Overlap and Transfer matrices are defined by

!
Siu,jv(k’k )

Il

[ wii(k,r)w. (k',r)d’r, (3.7)

JV

1
Tiu,jv(k’k ) J

* 3
wlu(k,r)ijV(k',r)d r, (3.8)

and the band energies of the distorted structure are determined

by solving the secular equation
det|T(k,k')~ES(k,k')|=0. (3.9)

It is noted that overlap and transfer matrices are not diagonal
in k. In the harmonic approximation it is sufficient to take
into account the change of overlap and transfer integrals up to
the second order of ngi. Then, the band energies of the
distorted structure are calculated by using the first and the
second order perturbation theory for the non-orthogonal

representation. The results are as follows:

_ w0 ()
Eox = Epxt Epx’o (3.10)

)
i

_ lOL,JB o B a
nk' T W} § (nk,q)ui(q)uj( q)

o

- 20 -



ia 0 i 0 %

: g™ (nk,n'k-q; By )g? P (nk,n k-qED )T o

+tgtll u; (q)ut(-q).
N g fa3g O i
; nk n'k-q
(3.11)
Here g and g, are defined by
ia ' . _ sia ' 0 _ia

g " (nk,n'k-q;E) = & (nk,n k—q)—Enkn (nk,n'k-q), (3.12)
gi® 38 (nk,q) = €2% 3% (nk,nk,q)-£0, n1% I8 (nk,nk,q), (3.13)

where

3% ntkt)=F 7 AL

XAV .
uirvg 11,0 )Ty (2 10k, JTvk)A

ot (D, (3014

1% (nk,n'k')= T T A, (k)é?_(i'uk,j'vk')Aj (k'), (3.15)

pitvi itu,n 'v,n’

g2 B nk,nikr,g)= T T Ar, ()P4 uk, vk )a (k)

2 S SO STV TRE ST R ’ jtv,n ’
(3.16)

io,jB 1t = % saB sy 51 1

n; (nk,n'k',q) uguvngi'U9n<k)sij(l uk,j'vk )Aj,v,n,(k').
(3.17)

é? and éi? are expressed in terms of derivatives of overlap

integrals as follows:

£ . . _ a o
S3(Ltule, Jrvkt)= 845,880y gay, (1)=8; 50880, 50, (k) (3.18)
saB ., . _ o aB

S13 (1M, IV, Q)= 854508550800, e, (1)=8550855,8757 50, (K0

- 21 _—



aB af
- 6ij'6ji'Si'U,j’v(k'+q)_6ii'6jj’S’i'u,j'v(k-q)’ (3.19)

where
o _ o N T _
Si'u,j'v(k) = % Sﬁv<R£i' Rg,j,)exp{ ik (Rzi' Rz'j')}’ (3.20)
afB aB .
Si'u,j'v(k) = % Sﬂv (Rzi'_Rz‘j‘)eXp{_lk°(Rzi'—R2'j‘)}’ (3.21)
with
Q .
Sfm““ = 3R, S,y (R), (3.22)

s7%F(R) = _22 5 (m) (3.23)
uv - BRaaRB pv : :

T? and Tg? are expressed in the same forms as those of ég and
é?@ in terms of T’% and T’aB. The first and the second order
ij uv pv

derivatives of the overlap integral, egs.(3.23) and (3.24), can
be represented in terms of Slater-Koster's two center integrals
and their derivatives. Their expressions for s and p orbitals
are given in Appendix A. In a framework of the EHA the

derivatives of transfer integrals are evaluated as follows:

, 0 1 , O
mo(R) = 4 K, (T, +1,)85(R), (3.24)

,aB _ 1 , 08
Tuv (R) = 5 Kuv(1u+1v)suv (R). (3.25)

gia(nk,n'k—q;Egk), which is called theelectron-lattice interction
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coefficient, represents the strength of coupling between the
electronic states (nk) and (n'k-q) caused by the displacement

g (q) .

The free energy associated with the electronic bands is given

by
Fpo = —kgT gklog[1+exp{—(Enk—ue)/kBT}]+ueNe, (3.26)

and the chemical potential U is determined from

N, =2 ] £(E ), (3.27)
nk
where
f(Enk) - 1+ex{(% —u ) /k.T} (3.28)
PtA%nHe/ /%8
In the harmonic approximation the change of Fbs due to lattice

distortions is simply given by

2)
sF, =27 B3) ¢ , (3.29)

bs ik nk
where fO(Enk) is the Fermi distribution function for the undistorted
structure. Substituting eq.(3.11) into eq.(3.29) we obtain the

final expression for AFbs as follows:

_ 1 aBys s Q B
AF, 2 Dy (ij,q)uy (q)ut (-q)
bs - 2 g ga%B bs'* i j 74
-1 T I BB ¢ p2B(ig,a) 1ud ()’ (-a), (3.30)
q iajB J
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where

iy 1
x*F(1j,q) =2 Il —35 5
nn'k Enk - En'k—q
x (gt (nk,n'k-q;ED, ) g3 ® (nk,n1k-q;E0 )£O(E0))
i 0 ' 0 % 0,0
—-glu(nk,n'k-—q;En|k_q)g']B(nk,n'k—q;En,k_q)f (En'k—q)]’
(3.31)
p2f(15,9) =2 § 2¢"% 9P (nk,q) 200 (3.32)

nk

xaB(ij,q) is called the generalized electronic susceptibility and
represents the contribution to the dynamical matrix arising from
the linear electron-lattice interaction. Forces correponding to
XaB(ij,q) are usually long-ranged in metals and narrow-gap
semiconductors. On the other hand, forces coorresponding to
D%B(ij,q) can be treated as short-range and the term D%B(ij,q)

can be included safely into RQB(ij,q). Thus, from now on we

express the total dynamical matrix as

p*8(i5,q9) = x*®(1j,9) + R*P(1j,q). (3.33)

The phonon frequencies are determined from diagonalization of

p*8(13,q).
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B(

3-2 Eigenvalues of Xa ij,a)

We have calculated qu(ij,q) for the narrow gap semiconductor
BP at zero temperature. The summation over the first Brillouin
zone has been carried out by dividing the 1/8 irreducible zone
into 234 rectangular meshes. The relative weights have been
correctly considered for meshes which are truncated by the zone
boundary plane perpendicular to a*=(0,1,1). The accuracy of
numerical evaluation of qu(ij;Q) is estimated to be 142 per cent
from comparison between the results obtained by using 235 meshes
and by using 125 meshes.

We focus our attention to lattice vibrations along the x
direction and hence numerical calculations of xus(ij,q) have been
carried out for seven wave vectors, q=(m/12,0,0) (m=0-6), along
the A line. Then, eigenvalues and eigenvectors of xas(ij,q) have
been determined for each q. In Fig.3-1 we show all eigenvalues
of Xas(ij,q) at normal pressure by open circles. A1l of the
obtained eigenvalues are negative, which means that electron-
lattice interaction has a role of lowering phononen frequencies.
The eigenvectors on the A line are classified into four irreduci-
ble representations, A1, A2, A3 and AA' Symmetry coordinates
which belong to each irreducible representation are tabulated in
Table 3-1. 1In Fig.3-2 we show in magnified scale three eigen-
values which correspond to three acoustical branches, LAx, TAy,
and TAz, respectively. The symmetries of LAx, TAy, and TAz are

A?’ A4 and A2, respectively. The eigenvectors of LAxXx mode con-

but the

sists mainly of two symmetry coordinates x1+x4 and x2+x

37
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components of Zq~2, and Z,-%5 are also included a little.

We have calculated the eigenvalues of Xas(ij,q) also for 15
kbar. The results are shown by closed circles in Fig.3-2. As
seen from the figure the magnitude of the eigenvalues become
larger as the pressure is increased. Hence, XQB(ij,q) plays a
role of softening the phonon frequencies with increasing
pressure. The change of eigenvalues of A1—modes is relatively
large compared with that of other modes, and in particular the
LAx mode has the largest increase of the magnitude of eigenvalue
among three acoustical modes. This fact strongly implies a
possibility that only the LAX acoustic phonon shows softening as
pressure is applied.

The large softening of the A1—mode is related with the
electronic band structure near the Fermi level. Because of the
energy difference in the denominator of eq.(3.31) a main
contribution to X arises from couplings between HVB and LCB near
Z point. If we consider a wave vector q on the A line and
choose as (nk) state the bottom of the conduction band at Z
point, ZZ, then a large contribution arises if (n'k-q) state lies

in HVB with U,-symmetry along the U line. In this case there is

2
a selection rule by group theoretical concideration mentioned in
previous section and only the AT—mode can connect those two
electronic states, ZZ, and U2. As seen from Fig.2-4 the energy
difference E(ZZ)_E(UZ) decreases considerably with increasing
pressure. This is the main reason why the decreases of

eigenvalues of the A1—symmetry mode under pressure are large.

Validity of the above argument is confirmed by the following
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analysis. First we have carried out numerical calculations of
the magnitude of electron-lattice coefficient |g$2| where A
denotes a mode of atomic displacements modulated by the wave
vector q, and 1 and 2 denote a pair of electronic states (nk) and
(n'k-q). We have chosen as (nk) the bottom of the conduction
band , ZZ. On the other hand, as (n'k-q) we have chosen

following two bands near Fermi level along the U line:

(i) HVB with U,-symmetry,

(ii) the second highest valence band with U -symmetry.

|g?2| is non-vanishing for A with A1—symmetry in the case (i) and
for A with A,-symmetry in the case (ii) according to the
selection rule. The values of |g?2] calculated for symmetry
modes >\=A1(X)EX1+X4 and )\=A2(Z)EZ1+Z4 in the cases of (i) and
(ii) are shown in Fig.3-3a by solid line (normal presssure) and
broken line (15kbar). We can see that !g?zl is large in the
case (i) compared with that in the case (ii). However, the
change of |g$2| due to pressure in the case (ii) is as large as
that in the case (i). Therefore, there is no evidence that the
change of Ig?ZI due to pressure can be a origin of large
softening of A1—phonons. Next we have taken energy denominator
E,-E, into consideration. Calculated |g$2|2/(E1-E2) is shown in
Fig.3-3b by solid line (normal pressure) and broken line
(15kbar). As is obvious from the figure, the change of
|g?2|2/(E1—E2) due to pressure is considerably large in the case

(i) compared with that in the case (ii). Thus, it has been
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clearly shown that the large decrease of eigenvalues of

A,-symmetry modes caused by pressure is a result of the

1

pressure-induced narrowing of the energy gap.
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Fig.3-3

12
(nk) = ZZ
e
iy
o4
@
5 8 1
e
\Y
\J
\J
~
u .
I L .
= <<
c -
< e~ A (2)
| ==l T 2
o | Tzl
0
X A r
q
<< 6
3 A (k)= 2]
o) / n =
& ’A 4
<] L7/ \
(=X \
\
o \
£ 4 \ —
c \
u
' \
* \
w \
~ \
o~
3 \
w2 A Aq(x) =
T ~~<
x -
c “~~
= T~
(<5 ‘“\‘
(@) ‘\\
\3
0
X A I

- Wave vector dependence of (a) ng(nk,n'k—q,Enk)l

A 2
and (b) |g (nk,n'k—q,Enk)| /(Enk— E ) for

n'k-q
A=A1(x)=x1+ X, and A=A2(z)=z1+ 2y - Electornic

state nk is fixed at the lowest conduction band state
24

with U, symmetery for A=A1(X) and along the second

and n'k-q moves along the highest valence band

highest valence band with U, symmetry for A=A2(z).
Solid line: at O kbar (normal pressure). Broken
line: at 15 kbar.

- 31 -



Table 3-1. Symmetry coordinates at the I point and on the A line.

I point (2T] + 2Ty + T + 277 + 2T7)

A line (4A1 + 4A2 + 2A3 + 2A

- 32 -



§4 Interplanar Forces Caused by Electron-Lattice Interaction

L-1 Interatomic forces and interplanar forces

In general qu(ij,q) can be expressed as the Fourier

29)

transform of effective interatomic forces

g, = T Efe e liar (Ryy Ry, )3, (4.1)

and inversely F;B(Ki,z’j) is expressed as

P®(21,213) = & T x*P(i5,a)expl-1q- (R, -R), )}, (4.2)
X q 1 J
Further, we can express the change of electronic free energy due

to atomic displacements as:

aF =31 T Z.Fis(Zi,Z‘j)ngidRE,i : (4.3)
af 2i8'] Y

From eq.(4.3) we can easily see that —F;B(Qi,l'j) represents an

effective interatomic force acting on the atom (2'j) along the

B-direction when the atom (i) is displaced by a unit length

along the a-direction, and vice versa.

In general AF1 must be invariant under symmetry operations of
the crystal. From this requirement we can obtain a number of
mutual relations among F;B(Qi,z'j)'s. Further, we can determine
the tensor form of F;B(Zi,k'j) for a given pair of atoms by

considering the symmetry operations of the crystal that keep the
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pair invariant. In Appendix B we give detailed consideration of
the crystal symmetry of BP and determine explicitly tensor forms
of the effective force for several kinds of atomic pairs.

If a crystal contains many ions in the primitive unit cell
and its crystal symmetry is low, we have a number of independent
elements of force constant tensors even if we consider forces
only between near neighboring atoms. BP is an example of such
crystals. In case we focus our attention on phonon diespersions
along a particular direction in the g-space as in the present
study, it is convenient to introduce interplanar force831)
instead of interatomic forces. It is noted that the lattice
dynamics for wave vectors along a particular direction can be
completely determined by giving forces between planes
perpendicular to that direction because all the same kind of
atoms on one of such planes vibrate in the same phase. Hence the
crystal vibrations can be described as vibrationsof a linear
chain of planes moving as rigid units. In this picture,
xaB(ij,q) can be expressed as one-dimensional Fourier transform
of effective interplanar forces:

OLB(

. . _ aB ., . ! . _
x (1j,q) = 123 Kx (pi,p J)eXp{lq(Rpi Rp,j)}, (4.4)

where p or p' denotes a unit cell in the linear chain of planes,

(Rpi_Rp'j) represénts the distance between the p-th plane of i

atoms and p'-th plane of j atoms. The effective interplanar
force Kis(pi,p'j) is obtained by inverse Fourier transformation

of XQB(ij,q). It can be expressed also in terms of interatomic
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forces as follows:

plane(pi)

K§B<pi,p'j) = Fig(zi,a'j), (4.5)

where the atom (2'j) is on the plane (p'j) and the summation
over & is confined on the plane (pi). It is clear form eq.(4.5)
that —K;B(pi,p‘j) represents the force acting on an atom on the
plane (p'j) along the B-direction when the plane (pi) is
displaced by a unit length along the a-direction.

If we confine ourselves to the [100] direction of BP, each
atomic plane contains only one kind of phosphorus atom, 1, 2, 3,
and 4, and the form of interplanar force tensors is determined

by symmetry consideration as follows (see Appendix B):

8 a 0 b
K*®(p,0)= 0 ¢ 0|, (for p=0, 1, 5, and 7) (4L.6)
X b 0 4
8 a 0 b
K*®(p,0)= 0O ¢ 0|, (for p=2, 4, and 8) (4.7)
X -b 0 4
3 a 0 b
K*® (p,0)= 0 ¢ O | . (for p=3A, 6A, and 9A) (4.8)
X da 0 e

Here we have omitted for simplicity the site index i (or j) of
atoms: a plane of atom 1 has been chosen as the plane 0, and the
plane 1 is a plane of atom 2, the plane 2 is a plane of atom 3,
the planes 3A and 3B are planes of atom 4, and so on (see

Fig.4-1). The interplanar force tensors for p=3B and 6B are
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related to those for p=3A and 6A, respectively, as follows:

K;“(BB,O) = Ki“(aA,O), (e=x, ¥, 2z) (4.9a)
z2X _ _gXz X2 - _p2X

K*(38,0) = -K;°(34,0),  KI®(3B,0) K>*(34,0), (4.9b)

Ki“(éB,O) = K;“(eA,o), (a=x, y, 2) (4.10a)
zX _ »XZ , XZ _ w2X

KX (6B,O) = KX (6A,O), KX (6B,O) KX (6A,O) (4.10b)

The relation for p=9B and 9A are the same as thosé for p=3B and
3A. Because of the crystal symmetiry Oy (i.e. reflection in the
plane y=0 ), off-diagonal xy, yx, yz, and zy elements vanish
exactly. Interplanar force tensors K;B(p',p") between arbitraly
planes, p' and p", can be easily obtained from the knowledge of

K;B(p,O) by considering the symmetry of the crystal.

- 36 -



Fig.4-1
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4L-2 Effective interplanar forces corresponding to Xas(ij,q)

Instead of performing inverse Fourier Transformation of
eq.(4.5) we have determined the interplanar forces K;B(p,O) by a
least sqgares fitting (LSF) procedure so as to reproduce XaB(ij,q)
for q¥ r, (1/2)TX, and X.

The number of independent matrix elements XaB(ij,q) for above
three gq-vectors is 50 (11 from I, 13 from X, and 26 from
(1/2)TX). This is a sufficient number of data to determine the
interplanar forces up to the ninth neighboring plane because
there are 43 independent force constants within the ninth
neighboring plane.

For convenience we introduce three kinds of vector, {Xp},
{Ku} and {Xp} (p=1,%2+,50, u=1,+++,43):

X' independent matrix elements XGB(ij,q) calculated from
eq.(3.31) for g=I, 1/2I'X and X.
K ;3 independent interplanar force constants up to the ninth
neighboring plane,
X ; independent matrix elements XGB(ij,q) calculated from
eq.(4.5) in terms of KU for q=r, 1/2TX and X.

Obviously, Xp is expressed in linear combination of Ku as
X =Y C_ K , (p=1,+++,50 ;u=1,++2,43) (4.11)
u

where coefficients Cpu are known quantities. Then, the variance

is defined by
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B L \2  _ _ 2
vV = g wp(xp xp) g WQ[ECDUKU pr , (4.12)

where Wp denotes the weight. Now, {Ku} can be determined by the

minimization condition for the variance V, which is expressed as

E AV,U KU = Dv y (v=1,%°+,43) (4.13)
where
AV,U = g cpvacpu , and Dv = g WpvaXp . (4.14)

On the basis of the above LSF method we have determined the
effective interplanar force constants at normal pressure and 15
kbar. We have used the uniform weight (Wp=const). Solid and
dashed curves in Figs.3-1 and 3-2 represent the results of
diagonalization of XGB(ij,q) obtained from eq.(4.4) using such
determined interplanar force constants. As seen from the figure,
xas(ij,q) caleculated from eq.(3.31) have been reproduced almost
completely.

In Fig.4-2 we show the determined values of —Kzg(p,O) at
normal pressure. Characteristic features of the effective
interplanar forceslare summarized as follows:

(1) Almost all the forces have negative values, which means that
the electron-lattice interaction tends to destabilize the
bonds.

(2) Force constants of far neighboring planes aré certainly

small, but qu(ij,q) obtained from eq.(3.31) are reproduced

- 39 -



poorly if we neglect these far neighboring forces. In this
sense the effective force is fairly long-ranged.

(3) Magnitude of —Kix(p,o) is remarkably large for the second
neighboring plane (p=2) reflecting strong covalent bonding
between the plane O and the plane 2. It shoud be also noted
that the effective force of the fourth neighboring planes
(p=4) is considerably large compared with those of other far
neighboring planes.

(4) —K{y(p,O) shows a distance-dependence similar to that of the
xx-component, but its magnitude is smaller than that of the
xxX-component.

(5) The zz-component shows a distance-dependence different from
that of the xx- or yy-component. The magnitue of —Kiz(p,O)
is the largest for the first neighboring plane which is
connected to the plane O by covalent bonds orientating
parallel to T -Tye

(6) Off-diagonal xz~- and zx-compoments are quite small except
for the first neighboring plane. For this reason the mixing
of the displacements along the X- and z-directions is
considerably small in the LAx and TAz eigenvectors of
x*®(1j,a).

Next we have investigated effects of pressure on the
effective interplanar forces. The changes of interplanar forces

due to pressure

Al-k%F (p,0)7

aB aB
X ["KX (p’o)]15kbar - [_KX (p’O)]OkbaI‘
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are ploted in Fig.4-3. Effects of pressure on each component of
QKGB(p,O) are summarized as follows:

(a) All of A[—Kix(p,O)] are found to be negative, i.e. the
magnitude of the xx-~component is increased by pressure. It
should be noted that the relaticve increase of the magnitude
is particularly large for p=4.

(b) The magnitude of A[—Kiy(p,O)] is almost the same as that of
the xx-component for p=1 and 2. For p=4 and 5, however,
the magnitude of A[—Kiy(p,O)] is about a half of that of
A=K (p,0)].

(c) The magnitude of A[~K;Z(p,0)] is particularly large for p=1.
However, this change cannot affect strongly the frequencies
of the LAz mode of long wave length, as will be discussed in

the next section.
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The effective interplanar force constants
—K;B(p,O) corresponding to the generalized

electronic susceptibility xaB(ij,q).
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§5 Lattice Dynamics

From the results of calculation of the generalized electronic
susceptibility xue(ij,q) of BP we have pointed out in §3 that the
electron-lattice interaction can give rise to large softening of
the LAx phonon frequency as pressure is applied. As mentioned
at the end of subsection 3-1, however, thé true phonon frequency
is determined by the total dynamical matrix DaB(ij,q) = Xae(ij,q)
+ RaB(ij,q). Hence, to see whether the LAX mode can actually
shdw softening as pressure is applied we have to calculate the
phonon dispersion along the [100] direction by taking account of
short-range repulsive part Ras(ij,q).

We express RQB(ij,q) in terms of short-range interplanar
force constants KgB(pi,p'j) in the same manner as eq.(3.4).

Then, the total interplanar force constants KQB(pi,p‘j) are given

by

KOLB( OtB(

y (PL,p'3) + Kﬁg(pi,p'j)- (5.1)

pi,p'j) =K

and the dynamical matrix DaB(ij,q) is expressed as the Fourier

transform of KaB(pi,p'j):
p®®(1j,q) = § k* (pi,p'ilexplia(R_-R_, )}. (5.2)
D P pl

Now, the phonon frequencies are determined by solving the secular

equation
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det] D%F(ij,q9) - Mo® | = 0, (5.3)

where M denotes the mass of the phosphorus atom.

At symmetry points or on symmetry lines the dynamical matrix
D can be represented in a irreducible form (i.e. a block
diagonalized form) and then the determinant in eq.(5.3) can be
factorized. For example, D is decomposed into two 2%X2 matrices
and eight 1x1 matrices at the T point and into two 4X%X4 matrices

and two 2%2 matrices on the A line.

- 45 -



5-1 Lattice dynamics at normal pressure

We first calculate the phonon dispersion curves at normal
pressure. For that purpose we have to determine the short-range
interplanar force constants Kgs(p,O) at nermal pressure. We have
assumed KgB(p,O)=O for pz4 except ng(A,O). Then, the total
number of independent short-range force constants is 13. These
independent force constants have been determined by a procedure
of least-squares fits (LSF) so as to reproduce thirteen phonon
frequencies (eight optical modes at T, two at X, and three

acoustical modes at (1/4,0,0) ) obsreved by Raman scattering,17)

6)

by infrared reflection,1

13)

and by inelastic neutron
scattering. These experimental data are listed in Table 5-1
and ploted in Fig.5-1 by closed circles. The force constant
KEZ(A,O) had to be included in order to reproduce the phonon
frequency of the F; mode.

Eigenvectors of four optical modes, F;, FZ, F; and FZ, are
determined uniquely from symmetry. Hence, the phonon
frequencies of these modes are expressed explicitly in the form
of linear combination of the interplanar force constants. By
making use of these linear relations we have reproduced exactly

the frequencies of the FZ, Fg and F4 modes . As for the F; mode

we did not fix its frequency at the observed value, 197 cm_1.17>

The reason is that if we reproduce completely the frequency of
the F; mode the frequency of the TAy branch at the X point is
then determined always to be lower by about 20 cm"1 than the

observed value, 146 cm—1.13) We have tried to reproduce the
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frequency of the TAy branch as well as possible with sacrifice of
the frequency of the F; mode . Furthermore, we have given
special weight on the three acoustical modes at q=(1/4,0,0) so as
to reproduce the frequencies of these modes with the smallest
variance. The final values of those phonon frequencies optimized
in this way are shown in column 5 of Table 5-1.

In Fig.5-1 we show by solid curves the phonon dispersion
curves calculated by using Kgs(p,O) determined above and K;B(p,O)
obtained in §4. The whole dispersion along the A line consists

of six high-energy branches with energies higher than 35Ocm~1,

and six low-energy branches with energies lower than 2500111_1
including three acoustical branches, LAx, TAy and TAz. The
characteristic shape of the LAx branch as well as the features of
the TAz and the TAy branches are in good agreement with the
experimental results by Yamada et al.13)
The short-range interplanar forces K%B(p,O) and the total
interplanar forces Kas(p,O) are illustrated in Fig.5-2 and 5-3,
respectively. Comparing Figs.4-1, 5-2, and 5-3 we can see a
large cancellations between K;B(p,O) and KgB(p,O). Since we have
assumed K%B(p,0)=0 for pz4, Kas(p,O) is equal to K;B(p,O) for
pz4. The total interplanar force constants KaB(p,O) can be
classified into three groups according to their magnitudes and

each group plays a charateristic role in determining the phonon

frequencies as follows:

(1) Group L: Forces with magnitude larger than 13x10% dyn/cm.

This group determines mainly the energies of the six
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high-energy branches.

(2) Group M: Forces with magnitude of 1X104’\»4X1O4 dyn/cm.
This group determines mainly the energies of the six
low-energy branches.

(3) Group S: Forces with magnitude smaller than 1x10% dyn/cm.
This group modifies slightly the energies of the six

low-energy branches.

Since the puckered layer is constructed by the covalent bonds,
both xx- and yy-components of the total interplaner forces take
their largest value (belong to group L) for p=2, whereas the
zz-component takes its largest value (group L) for p=1.

The normal coordinate of the F§ mode is given by z1+22—23—z4
and hence the frequency of this mode is determined only by the

zz-components of the forces as follows:

w(r3) = [2(-K"%(2,0)-2K"%(34,0)-k"%(4,0)}/M] /2 (5.4)

where we have neglected K??(p,0) with pz6. In the right-hand
side of eq.(5.4) a considerable cancellation occurs between the
negative force (group M) for p=2 and the positive forces (group M)
for p=3A (see Fig.5-3). This is a reason why the zz-component of
the short-range force for p=4 had to be taken into account as an
adjustable parameter.

Off-diagonal xz- or zx-components of the total forces take
their largest value (group M) for p=1. It should be noted that

these off-diagonal forces play a significant role in determining
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the curvature of the characteristic shape of the LAx branch, as
explained below. If we neglect all of the off-diagonal forces in
the present case , the lowest optical branch and the acoustical
branch with symmetries A1 and A2 become as shown by solid curves
in Fig.5-3. Here the squared frequency wz(q) of the LAx mode or
the TAz mode can be written as

2(

sz(q) = -4K(3A)sin ﬂq/2)—4K(6A)sin2(wq)—S

#1824 {K(1)K(2)+K(1)K(4)+K(2)K(5) }sin? (mq/2)

S4{K(1)K(5)+K(2)K(4) }sin? (1q)

1/2

_LK(4)K(5)sin? (37q/2) ] (5.5)

where SEK(1)+K(2)+K(4)+K(5) and K(p) represents K *(p,0) for the
LAX mode and KZZ(p,O) for the TAz mode. The dotted curves which
are plotted in the extended zone and meet with the LAx and the
TAz branches at the X point, respectively, indicate the energies
of "extended" acoustical branches calculated from eq.(5.5) by
extending the wave vector g to I''=(1,0,0) beyoned the =zone
boundary X. It should be noted that the symmetry of the mode
changes from A1 (A2) to A2 (A1) as coming from the first
Brillouin zone (T'-X) into the extended zone (X-T') along a
acoustical branch defined by eq.(5.5). Thus, the lowest optical
branch which meets the TAz branch at the X point and crosses with
the LAx branch near (2/3)TX has the same symmetry as that of the
LAx mode, i.e."A1 symmetiry. Therefore, if we take account of

off-diagonal forces , this accidental degeneracy at the crossing
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between the two branches is removed. As the result we obtain
such a characteristic shape of the LAx branch. It should be
noted that the energy of the F; mode (136 cm—1) shown in Fig.5-3

is not affected by the off-diagonal forces.
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Fig.5-1 The phonon dispersion curves at O kbar (normal
pressure) . Experimental data are taken from
Ref.13. Data represented by closed circles are

used for the least-squares fitting procedure to

determine the short-range interplanar forces.
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Fig.5-3 The total interplanar force constants -K B(p,O) =

-1x28(p,0) + Kp' (p,0)1.
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5-2 Pressure effects - Softening of LAx-phonon

In order to see clearly effects of the change of K;B(p,o)
due to pressure on the lattice dynamics we have first calculated
the phonon dispersion curves by using KiB(p,O) at 15 kbar and
K%B(p,o) determined for normal pressure in the previous
subsection. The results are shown by dotted curves in Fig.5-5.
For comparison, the phonon dispersidon curves at normal pressure
are also depicted by full curves. As expected in §3 every modes
shows softening of frequency due to pressure. Among three
acoustical branches the LAx branch certainly shows the largest
softening in the region except near the I point. The frequency
of the TAz mode with long wave-length (i.e. with a wave vector
near the I point) is considerably small at normal pressure and
its freguency is very sensitive to‘change of the forces.
Therefore it becomes imaginary at 15 kbar.

In real situation the short range forces Kgs(p,O) also depend
on pressure and we may expect that the magnitude of K%B(p,O)
increases with increasing pressure. At present, however, we
have no way to evaluate the pressure dependence of K%B(p,O).
Therefore, we have assumed simply that magnitudes of Kgs(p,O)
increase at the same rate, €, as pressure is applied. The
dotted curves in Fig.5-6a show phonon dispersion curves obtained
by using KiB(p,O).at 15 kbar and short-range force constants
larger by 5% (£=0.05) than those at normal pressure. Fig.5-6b
shows the phonon dispersion curves of the LAx and TAz modes in

enlarged scale. As seen form Figs.5-6a and 5-6b the LAX mode
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does show softening whereas othere phonon modes show hardening
except the TAy mode whose frequency is almost unchanged.
Experimentally there 1s no observation about the pressure
dependence of the TAy mode. Experimental results by Yamada et
al.13) are shown in Fig.5-6b by open circles (0O kbar) and by
closed circles (15 kbar). We can see a qualitative agreement
between the theoretical and experimental results.

It should be emphasized that far-neighboring interplanar
forces caused by electron-lattice interaction is indispensable to
explaining the observed pressure-dependence of phonon
frequencies. In particular, large increase of the magnitude of
K§X(4,O) caused by pressure plays a vital role in
pressure-induced softening of the LAXx mode. If we neglect all of
off-diagonal components of the forces and take account of the

forces up to the sixth neiboring plane, then the squared

frequency of the LAx mode with long wave-length is written as

M2 (q)= ~[K(3A)/4 +K(6A) +Y{K(1)+K(5)}/8 +YK(4)/21q° (5.6)

where K(p) stands for K**(p,0), and y=K(2)/{K(1)+K(2)+K(4)+K(5)}.
Eq.(5.6) is obtained by expanding eq.(5.5) with respect to g
around the I point. The value of y is nearly equal to unity
because the magnitude of K(2)=K*™(2,0) is very large compared
with those of K(1), K(4) and K(5) (see Fig.5-3). Therefore the
right-hand side of eq.(5.6) is much affected by the change of
K(4)=k**(4,0) and K(6A)=K*™(6A,0). 1In the present case the value

of K(6A)=K§X(6A,O)and its pressure dependence are very small (see
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Figs.4-2 and 4-3). Dashed curves in Fig.5-4 show the dispersion
curves obtained by using KXX(A,O) at 15 kbar and the other force
constants at normal pressure with neglect of off-diagonal xz- and
zx-components. It is clearly seen that the considerable
softening of the LAx mode can be caused by the change of the
fourth neighboring interplanar force due to pressure.

According to our consideration about the origin of the
characteristic shape of the LAx branch, it can be understood that
the pressure dependence of the forces which give rise to the
hardening of the TAz mode is also responsible to the hardening of

the LAX mode which have appeared near the zone boundary.

Sugai et al.16) have found from the Raman scattering
experiment that three Raman active modes F: (467cm_1, 362 cm—j),
and T (439 cm_T) show the hardenings by magnitudes of 2 cm_1, 10

4

cm—1, and 4 cm_1, respectively, as pressure of 15 kbar is
applied. As seen from Fig.5-6a, the hardenings of these modes
are qualitatively reproduced by our calculation though the
calculated frequencies are somewhat larger than measured ones.
OQur calculation predicts also that the infrared active Fg mode
will show hardening by magnitude of a few cm—1 as pressure of 15
kbar is applied. Thus far, however, there has been no

measurement on the pressure dependence of this frequency.
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Fig.5-4 The phonon dispersion curves of the LAx and TAz

modes when the off-diagonal xz- and zx-components

of interplanar forces are neglected. The broken

curves represent the dispersion obtained by using

k*¥*(4,0) at 15 kbar and other forces at O kbar.
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Fig.5-5 The phonon dispersion curves calculated by using
x[0 kbar] and R[O kbar] (full curves) and by using

x[15 kbar] and R[O kbar)] (broken curves).
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Fig.5-6a The phonon dispersion curves calculated by using
x[0 kbar] and R[O kbar] (full curves) and by using
x[15 kbar] and 1.05xR[0 kbar] (broken curves).
The numbers, 1, 2, 3 and 4, denote the symmetry:

13 A1: 23 A2; 3: AB’ ot AZ‘,'
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Fig.5-6b The phonon dispersion curves of the LAx and TAz
modes which are drawn by eniarging Fig.5-6a.
Full curves: at O kbar: broken curves: at 15 kbar.

Experimental data are taken from Ref.13.
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Table 5-~1. Thirteen phonon frequencies used for the LSF
determination of the short-range interplanar forces.

Phonon frequency (cm_1)

No. Irred. Rep. Experiment Calculation
1 ry R 365 365.7
2 ry R 470 478.7
3 ry R 233 248.7
4 r; R 440 425.6
5 rg R 197 215.0
6 r; R 442 442.0
7 r5 IR 136 136.0
8 ry IR 470 470.0
9 X, N 85 83.1

10 X, N 146 139.0

11 6, N 76 73.0

12 8, N 28 37.0

13 AA* N 84, 72.0

* q=(1/2)TX

16)

R: Raman scattering (Sugai and Shirotani)
IR: Infrared reflection (Sugai and Shirotani) 16)
13)

N: Inelastic neutron scattering (Yamada et al.)
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§6. Supplementary Remarks and Conclusion

As mentioned in §1 lattice dynamics of BP at normal pressure
has been studied thus far on the basis of two phenomenological
models: one is the valence force field model (VFFM) by Kaneta et
al.14) and the other the bond charge model(BCM) by Kaneta and
Morita.'?)

The VFFM has beenvwidely used to calculate molecular
vibrations and lattice vibrations of covalent crystals of the

32) 14)

group IV. Kaneta et al. introduced four lattice dynamical
variables within a puckered layer: the changes of the two kinds
of bond lengths for the nearest and next nearest neighboring
atoms, 6r and 6r', and the changes of the two kinds of bond
angles, 60 and &6°'. In the scheme of interatomic forces this
model of Kaneta et al. takes account of interatomic interactions
up to the fifth neighbors in a layer. As for the interaction
between the nearest neighboring puckered layers they assumed
axially symmetric interatomic forces up to third neighbors. In
the scheme of interplanar forces along the [100] direction this
model takes account of interplanar interactions only up to third
neighbors.

This VFFM can reproduce almost all the observed phonon
frequencies at normal pressure. However, it has two
disadvantageous points. The first one is that it cannot

reproduce the frequency of the F; mode in a satisfactory way.

As long as the interlayer interaction is very weak, the
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frequencies of the T; and T; modes are almost determined only by
a single parameter, Kgi, which is the coefficient of (66')2 in
the VFF, and then it is easily shown that the frequency of the

Tg mode ia always higher than that of F; mode. Experimentally
~1y16)

the frequency of the T; mode (136cm is much smallar than

that of the T; mode (197 cm_1).17)

interactions between the layers, we may reproduce both

If we assume unusually large

frequencies of the Tg and T; modes. If we do so, however, we
cannot reproduce other phonon frequencies at all. The second
disadvantageous point is that it cannot explain the
characteristic pressure dependences of phonon frequencies. In
fact, we have tried to explain the observed pressure effects on
the basis of the force constant model with use of interplanar
forces only up to the third neighboring planes, which is
equivalent to the VFFM with respect to the lattice vibration
along the [100] direction. As the result we have found that we
can never explain the experimental results. This fact also
suggests strongly the necessity of far-neighboring interplanar
forces in order to explain the observed pressure dependences of
phonon frequencies.

Recently, Kaneta and Morita15) have used the BCM to improve
lattice dynamical calculation of BP at normal pressure. In this
model, point bond charges which move adiabatically with the ions
are introduced at the midpoint of each pair of covalently bonding
ions. The first disadvantageous point in the VFFM is then

removed, because the BCM has new additional degrees of freedom
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with respect to the point bond charge so that the vibration of
the Fg mode can be described without changing BC-ion-BC angle,
g'. There has been no attempt to calculate lattice dynamics of
BP at 15 kbar on the basis of this BCM. Hence, it is not clear
whether the BCM can explain the observed pressure dependences of
phonon frequencies.

We have calculated the generalized electronic susceptibility
XQB(ij,q) of BP and the corresponding interplanar forces
K;B(pi,p’j) by using the electron-lattice interaction derived
microscopically on the basis of realistic tight-binding
calculation of the band structure. With respect to the short
range repulsive part Rae(ij,q) of the dynamical matrix we have
treated it phenomenologically. In this s;nse, our calculation
of lattice dynamics of BP is not fully microscopic. The point
we would like to stress is that we have succeeded for the first
time in presenting a partly microscopic model of lattice dynamics

which can explain well the characteristic pressure dependences of

phonon frequencies observed in BP.

The results we obtained in the present study are summarized
as follows:

(1) Effective interplanar forces caused by electron-lattice
interaction is fgirly long-range in black phosphorus
because of its small energy gap.

(2) These effective interplanar forces play a role of softening

phonon frequencies as pressure is applied.
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(3)

The softening is the largest for the LAx (A1—symmetry) mode.
This conseQuence comes from the facts: (i) the energy gap
decreases considerably by pressure and (ii) only the A1—mode
can couple the conduction band bottom (ZZ) with the highest
valence band states (U2—symmetry) near the 7 point.

These effective interplanar forces combined with short-range
repulsive forces appropriately chosen can explain
qualitatively the characteristic pressure dependences of
phonon frequencies, i.e. only the LAx mode shows softening
as pressure 1is applied whereas other modes show hardening.
It is the effective force KiX(A,O) (fourth neighboring

interplanar force) that plays a most crucial role in

pressure-induced softening of the LAx mode.
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Appendix A. Slater-Koster representation of differential
coefficients of overlap integral

We summarize here the differential coefficients of overlap
integrals with respect to the Cartesian coordinates of atom.

The overlap integral between an orbital v centered at origin
and an orbital centered at (x,y,z) = R{(2,m,n), i.e. distance R

along direction (2,m,n), can be represented as

SUV(X’y’Z) = z CU

J V’j{ﬁ,m,n}°(uv;j) (A.1)

where (uv;j) stands for Slater-Koster's (S-XK) two center
integral, which is a function of interatomic distance R, index j
specifies a type of bond, namely j=o,m,8§,++-, Cuv’j{ﬁ,m,n} is a
function of direction cosines, 2,m,n. The S-K representation of
overlap integrals for s and p orbitals are presented in Table
A-1.

In order to treat (£,m,n,R) as a set of independent
variables, we introduce an artificial variable u=(22+m2+n2)1/2,

which 1s unity in actual. Then alternative sets of independent

variables (Xx,y,z,u) and (2,m,n,R) are related as

x=LR, y=mR, z=nR, u=(22+n2+n?)1/? (A.2)
The inverse relation is
2=xu/(x2+y2+22)1/2, m=yu/(x2+y2+22)1/2, n=zu/(x2+y2+zz)1/2,
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2, 2 2)1/2/u.

R=(x"+y" +z (A.3)

Making use of eq.(A.3), the partial differential operaters with

respect to the Cartesian coordinates x,y, and z, can be expressed

as
5, = [(1-2%)3, ~tmd_ ~tnd_ 1/R + 23, , (A.4a)
3, = [—m282+(1—m2)3m -mnd_ 1/R + mdg , (A.4b)
2 = [-n%d, -nnd_+(1-n°)a_ 1/R + ndy , (A.4c)

where u is unity, and the notation aq (g=x,y,z,%2,m,n,R) means the
partial differntial operator with respect to gq. Note that we can

simply differentiate CU j{Q,m,n} as if 2, m, and n are the

vV,

independent variables, when we operate egs.(A.4a,b,c) to

right-hand side of eq.(A.1). The result is, for example,

uv X Tuv
(uv;J) a(uvs i)
=Z[{(1_g2)azcuv -amd G -4nd C J—""" _ac Y
3 v d 1 d rd R UV, J aR
(A.5)

Similar relations for Sﬁz(R), and SQS(R) can be obtained by using
eqs.(A.4b) and (A.4c), respectively. S-K representation for the
differential coefficients of overlap integrals for s and p

orbitals are presented in Table A-2.
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Table A-1. S-K representation of overlap integrals for s and p

orbitals.
Sqg™ (sso)
Sox™ 2(spo)

S,,= L2(ppo) + (1-2%) (ppm)

Sxy= ¢m(ppo) - m(ppm)

In present study, S-K two center integrals are eveluated by the

Slater orbitals (see §2-2) as follows:

(s80)=[1+s+(7/15)s24(2/15)s°+(2/75)s*+(1/225)s°+(1/1575) %15

(ppo)=[1+p+(9/25)p2+(2/75)p>=(34/1575)p*~(13/1575)p°
_(1/525)p%17P

(ppm)=[1+p+(34/75)p°+(3/25)p>+(31/1575)p*~(1/525)p° 1P

(spo)=A05+A14—A16—2A23~A25+2A34 ,

Anm= In(u)Jm(v)+Im(u)Jn(v),

_n ' 11—, k+1 _ ! m
In(u)—g[n./(n—k).]e Jut T, Jm(V)— - EIIm(V)+(—1) Im(-V)]

where s=aBsR, p=a3pR, u=(s+p)/2, and v=(s-p)/2, Cgq and a3p are

the Clementi's exponent.
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Table A-2. S-K representation of differential coefficients
overlap integrals for s and p orbitals.

y X_ 1
Sss 2(ss0o)

8.%= (1-2%) (spo)/R +2%(spo)
Sé§= -m% (spo)/R +m(spo)’
8:%= 28(1-2%) [(ppo)-(ppm) 1/R -27 (ppo) ' +2(1-22) (pprm) "

S},()};: -222m[ (ppo)-(ppm)1/R +m(ppm)’
%)

s:¥= (1-20°%)n[ (ppo)-(ppm) 1/R -22ul (ppo) ' - (ppm)"']

Xy

s;§= ~22mn[ (ppo)-(ppm)1/R +&mn[ (ppo)'-(ppm)"']

where (uvj)' stands for d(uvj)/dR.
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Appendix B. Derivation of the general form of interatomic
' forces and interplanar forces in BP

Interatomic forces

The change of the total interatomic potential energy due to
the displacements, {dRzi}, of atoms from their equillibrium

posotions is written, in the harmonic approximation, as follows:

AV = (1/2) T T % FaB(Qi,R'j)ngiGRE,j (B.1)
2i 275 aB

where the force constant FaB(Qi,R'j) is equal to FBQ(R'j,Qi).
For brevity, we rewrite eq.(B.1) as
MV({SR }) = (1/2)] [ “(SR.)F(L,M)6R, , (B.2)
L M

where we have introduced the vector notations

ot
SRy = 5Rf ,SR{ ,GRE ) (B.3)

for the displacements, and tensor notations

P L ,M) FY(L,M) FRE(L,M)
F(L,M) = | F¥*(r,m) F'Y(1,M) FY?%(1,M) (B.4)
FEX(L,M) F2Y(L,M) TFZ%(L,M)

for the force constants, L and M are the contracted symbols for
atomic sites 21 and 2'j, respectively.

Let us consider a symmerty operation, T={y|b}, of the épace
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group, where Y is a point group oparation (identity, rotation,
reflection, or inversion) and b is a translational vector.
Suppose that the symmetry operation T replaces atoms located at
L,M,*++, by atoms located at i,ﬁ,---, respectively. Since T is
a symmetry operation of the crystal, the atomic displacements
SRL, SRM,
YSR&, *++, regpectively, without a change of the form of the

s++, in the expression (B.2) must be replaced by Y8R,

total potential energy, AV, namely;

AV(8Rp,8R, SR

Vo SBys oot ) = AV(YSRI, YSRy, YRy, =+ ). (B.5)

Using eq.(B.2), right-hand side of eq.(B.5) can be written as

BUCLYSRED) = (1/2)] [ "(8RT) *YF(L,10) ¥Ry

= (1/2)] | PR ) IYF(TL, TM) v ]8R (3.6)
L M L M

where symbols TL and TM denote atomic sites to which atoms are

moved by operation T from atomic sites L and M, respectively.

It is clear, through eq.(B.5), that eq.(B.6) is an alternative

expression of eq.(B.2). Thus following relation holds for each

symmetry operation:

F(L,M) = UYF(TL,TM)Y . (B.7)

Such relations reduce the number of independent elements of the
force constant tensors. The translational operation T'={E|Rm}

requires
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F(2i,8'j) = F(L+mi,2+mj). (B.8)

Next we consider a pair of atoms. As a matter of convenience,
here we define two terms, "equivalent" and "transposed" : if an
atomic pair (L,M) and another atomic pair (L',M') are connected
by a translational operation, such atomic pairs are called
"equivalent" pairs. The force constant tensors for the
equivalent pairs are equal to each other, by eq.(B.8). By
exchanging the order of atoms in a pair (L,M), we get (M,L) which
is a "transposed" pair of (L,M). The force constant tensor for a
transposed pair (M,L) can be obtained by transposing that for

pair (L,M) as

F(M,L) = °F(L,M). (B.9)

In general, a pair (L,M) will be moved by symmetry operations

I''to a pair (IL,I'M) which is

(1) equivalent to (L,M), or
(2) equivalent to (M,L), or

(3) otherwise.

In case of (1), following restriction F(L,M) must be imposed on a

force constant tensor,

F(L,M) = "YF(IL,TM)y = “YF(L,M)y . (B.10)
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In case of (2), similarly,

F(L,M) = SyFO,1)y = YR,y (B.11)

It can easily be proved that more information other than
eqs.(B.10), (B.11) cannot be obtained from the case (3).

A pair of the nearest neighboring atoms, which are indicated
by 1 and 3 in Fig.2-1, is transposed by a symmetry operation
{CZZIT}' Therefore, the interatomic force for this pair
satisfies F(1)=C2ZF(1)CZZ. Thus the form of this tensor can be

written as

a u v
F(1)= u b w |. (B.12)
-v -w ¢

Eq.(B.12) can also be obtained by considering the symmetry
operation {GZIT}.

A pair of the second neighboring atoms, which are indicated
by 1 and 2 in Fig.2-1, is moved to the pair equivalent to itself
by a reflection, {oyIO}, and transposed by the inversion {I|0} or
a rotation {CZyIT}‘ Therefore, the force constant tensor for
this pair satisfies F(2)=OyF(2)Oy=ItF(2)I. Thus the forme of

this tensor can be written as

F(2)=

< Of
Qo O
0 O«

(B.13)

A pair of third neighboring atoms, which are indicated by 1
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and 1' in Fig.2-1, is transposed by a reflection {ole}. Thus,

F(3)=oth(3)oy must be satisfied, and therefore,

a u v
F(3)=|-u b w{. (B.14)
vV -W ¢ ‘

The force constant tensor for a pair of fourth neighboring
atoms, which are indicated by 1 and 3' in Fig.2-1, has the same
form as eq.(B.12).

The force constant tensor for a pair of fifth neighboring

atoms, which are indicated by 1 and 4 in Fig.2-1, has most

general form with nine independent elements.

Interplanar forces

The interplanar force constant tensors for atomic planes
perpendicular to [100] direction inherit their charactors from
constituent interatomic force constant tensors. The definition,

eq.(4.5), can be rewitten as

P
K(p,P') = § F(L,M), (B.15)
L
where M is arbitrary atomic site included in plane P', the
summataion with respect to L is confined on plane P. From

eq.(B.7), we have

p
F(L,M) = Sy[] F(rL,rM)ly . (B.16)
T

14y
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Let us consider a symmetry operation I' that moves atoms

(a) from plane P to P, and from P' to P', or

(b) from plane P to P', and from P' to P.

In the case of (a), TL and TM can be replaced by L and M,

respectively, in eq.(B.16). Then we have
K(pi,p'j) = °v K(pi,p'j)v , (B.17)

where i and j specify the kind of atoms (1,2,3, or 4) incuded in
plane P at p-th unit cell and plane P' at p'-th unit cell,
respectively. In the case of (b), TL and TM can be replaced by

M and L, respectively, in eq.(B.16). Then we have
N 0 TS,
K(pi,p'j) = "y K(pi,p'j)y . (B.18)

Since Oy moves atoms within a plane, eq.(B.17) says that all
of the interplanar force constant tensors are unchanged when they

are transformed by Oy, namely,
K(pi,p'j) = o K(pi,p'jlo, . (B.19)

Therefore, off-diagonal xy,yx,z2y, and yz components vanish

exactly, namely,

K(pi,p'j)= (B.20)

O e
oo O
o O

Making use of egs.(B.17),(B.18), and the relations
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. . t s
K(pi,p'j) = "K(p'j,pi), (B.21)
K(pi,p'j) = K(p+mi,p'+mj), (B.22)
we can fined the form of the interplanar force tensors. In case

of i=2 and j=1, we can chose inversion operator I as [, and
obtain K*%(p2,p'1)= K*®(p2,p'1). In cace of i=3 and j=1, we can
chose {OXIT} with appropriate primitive translation {EIRm} as I,
and obtain K*%(p3,p'1)= -K**(p3,p'1). 1In case of i=1 and j=1,
and in case of i=4 and j=1, we find no relation between

off-diagonal components, d and d', in eq.(B.20).

Condition of infinitesimal translation invariance

Suppose that whole crystal is displaced by infinitesimal
vector. It is obvious that arbitrary plane (p'j) dose not accept

the force, namely,

.

! I K(pi,p'j) =1 I K(pi,0j) =0 . (B.23)
p i ip

Let us define following tensor:

K{i,jl = } K(pi,0j). (B.24)
p

Since the inversion I tréﬁspose atoms 1 and 2, atoms 3 and 4, we

obtain: K[1,11=K[2,2], K[3,31=K[4,4], K[2,11=K[1,2]= 'k[2,1],
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K[3’4]=K[4,3]=tK[3,4]. On the other hand, a reflection {C}JT}

transpose atoms 1 and 3, atoms 2 and 4, thus using egs.(B.16),

(B.21), we obtain:

t

K[3,1] = % K[1,35 =0 "KI3,1k . (B.25)

This means K*2[3,1]1=-K?*[3,1]. Further, a reflection {OZIT},

which transpose atoms 1 and 4, atoms 2 and 3, leads to

t

K(4,1] = 5 Kl[1,4]6, = oth[A,TloZ. (B.26)

This means K*%[4,11=-K?*[4,1]. By substituting obtained
relations of K{i,j] into eq.(B.23), we can find the conditions of

infinitesimal translation invariance as follows:

The restoring

force K(pi,pi) can be defined by
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K 01,11 + ¥F(2,11 + K¥F13,11 + K¥F(4,11 = o, (B.27a)
KYY01,11 + k(2,11 + ¥V03,11 + ¥7Y[4,1] = o, (B.27b)
KZ%[1,1] + K%%[2,1] + K®%[3,1] + K*?[4,1]1 = O, (B.27¢)
KX201,11 + ¥°%[2,11 + K*%[3,1] + K*%[4,1] = o, (B.274)
K*¥201,11 + ¥*%[2,1] - ¥*%[(3,1]1 - k*%(4,1] = o. (B.274')
Note that eqs.(B.27d),(B.27d') require
K*%[1,11 + k*%[2,1] = 0, (B.28a)
k*?(3,11 + k*%[3,1] = O. (B.28b)

eqs.(B.27a-d"').
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PART II

ELECTRONIC BAND STRUCTURE AND SUPERCONDUCTIVITY

IN SIMPLE-CUBIC PHOSPHORUS
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§1. Introduction

Black phosphorus studied in part I reveals successive
structural transformation as pressure is applied. Around 55 kbar
the crystal structure transforms from orthorhombic (A11) to
rhombohedral (A7) structure and above 110 kbar it becomes the
1)

simple-cubic structure. The simple—cubic phosphorus 1s

metallic and its electronic band structure has been studied thus
far on the basis of the pseudopotential method.2’3)

The occurence of superconductivity in metallic phosphorus has
received considerable attention, as pressure induced

4-8)

superconductivity. Recently several experimental studies of
the préssure dependence of the superconducting transition
temperature, Tc, have been reported.

Wittig et al.A) have found an interesting behavior of Tc as a
function of pressure: Tc exhibits two distinct maxima at 120 kbar
and 230 kbar both being separated by a pronounced minimum at 170
kbar. Similar results have been obtained by Akahama et al.7)
Moreover, they have found that Tc decreases linearly with
pressure above 230 kbar.

6)

Kawamura et al. have reporteds’ anomalous pressure
dependence of Tc: Tc versus pressure curve strongly dedpends on a
path. Two different path A and B were considered. In path A the
pressure is applied at room temperature and then the temperature
is cooled down to liquid helium temperature. Experiments by

Wittig et al. and by Akahama et al. have been done also by using

this path A. In path B the sample is cooled down to 4.5 K
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without applying pressure and then the pressure is increased. In
the case of path A Kawamura et al. have found that Tc is almost
constant (6K) as a function of pressure, which contradicts the
results obtained by Wittig et al. and by Akahama et al. In the
case of path B, on the other hand, Tc rapidly increases from 5 K
to 11 K as pressure increases from 130 kbar to 290 kbar. From
these results they speculated that the orthorhombic phase and the
simple-cubic phase coexist in samples prepared by using the path
B. This speculation has been confirmed by X-ray diffraction
measurements at liquid nitrogen temperature.6)

In the present stage, however, there is no clear
understanding of the superconductivity of phosphorus under
pressure, even of pure simple-cubic phésphorus.

Our purpose is to study microscopically the superconductivity
of the pure simple-cubic phosphorus, on the basis of the BCS-type
mechanism with strong electron-phonon coupling. We pay our
attention also to the pressure effect on Tec.

In §2 the electronic band structure is calculated by the
self-consistent APW method. Density of states (DOS) and the
Fermi surfaces are obtained. In §3 the electron-lattice matrix
elements are calculated on the basis of the rigid muffin-tin
approximation. In §4 the electron-phonon mass enhancement
parameter ) is estimated by using the obtained electron-lattice
matrix elements, the calculated DOS at the Fermi level, and the
phonon frequencies estimated by using the measured bulk modulus.
We calculate the superconducting transition temperature TC in
accordance with McMillan-Allen-Dynes equation. Pressure effects

of Tc is discussed. Finally, §5 is devoted to summary.

- 83 -



§2. APW Calculation of Electronic Band Structure

2-1 Band structure

The augmented plane wave (APW) method has been widely applied
to calculate the Bloch functions as well as the electronic energy
bands of crystals in which the crystal potential can be
successfully approximated by a muffin-tin (MT) potential.

The simple-cubic phosphorus is one of the crystals with the
highest symmetry, even though the coordination number is 6, so
that the crystal potential around a lattice point cannot be
considered to have much larger non-spherical components than that
for the other elemental crystals with higher coordination number.
Thus we can expect that this crystal is a good example for the
band calculation based on the APW method with the MT
approxmation.

Fig.2-1 shows the first Brillouin zone of the simple-cubic
lattice. Four symmetry points, I';, X, M and R, and six symmetry
lines, A, Z, T, A, ¥ and S, are presented in a tetrahedal
irreducible =zone.

We have calculated the electronic band structures of simple-
cubic phosphorus using a semi-relativistic version of the APW
method which includes the mass-velocity and Darwin corrections
exactly but neglects the spin-orbit interaction.g) The
exchange-correlation potential is constructed using the

10)

Gunnarsson-Lundgvist form of the local density approximation,

and the electron charge density of the crystal is determined
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self-consistently within the MT approximation. Actual
calculations have been performed for two lattice constants, a =
2.369 A and 2.298 A, which were determined by the X-ray
diffraction experiments at 132 kbar and at 304 kbar

1)

respectively. The MT radius, TyT is chosen to be a half of
the lattice constant for both pressure. The ratio of the volume
of the MT sphere to the primitive cell volume is 0.52: this is
relatively small compared with that for hcp or fcc lattice
(0.74), and even for bce lattice (0.68).

The first step in APW band calculation is a self-consistent
determination of the energy levels and the charge density of an
isolated atom. The electron configuration of a single P atom is
1822322p63823p3, and we have obtained the following atomic energy

levels (in unit of Ryd.):

1s : -152.722,
2s : =12.859, 2p :+ =-9.286,

3s :  -1.125, 3p : -0.514.

Because the energy levels of 1s, 2s, and 2p electrons are
sufficiently deep compared with those of 3s and 3p electrons, we
treat 1s, 2s, and 2p shells as a frozen core whose charge density
is a source of the core potential for the band electrons. The
charge density constructed by 3s and 3p electrons are used as a
starting valence charge density of the self-consistent
calculation.

In the next step, the sampling k-points are appropriately
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chosen in the Brillouin zone and iteration of the APW calculation
is performed until the energy eigenvalues and the charge density
of the crystal converge. The eigenvalues have converged within
1 mRyd in our case.

In order to clarify whether the self-consistent eigenvalues
depend on a choice of a set of sampling k-points or do not, we
performed calculations for two different sets of k-points

described as follows:

(i) 22 k-points with high symmetry, i.e. the symmetry points
'I', R, X, and M, and 3 k-points (3/10, 5/10, and 7/10
position) on each symmetry line of A, S, Z, I, T, and A.

(ii) 20 special-points for the simple cubic structure, i.e.
those k-points in an irreducible zone written as
n(l,m,n)/8a, where 1, m, and n are odd integers such as 1,
3, 5, and 7. (The special point method was first proposed

\
by Chadi and Cohen. '/)

For the set (i), the first 8 iterations were carried out using T,
and R points, and X, and M points were added in the next 9
iterations. All the midpoints of 6 symmetry lines were taken
into‘account in the next 10 iterations. Finally, after 3
iterations with use of all of 22 k-points the eigenvalues
converged within the required accuracy. For the set (ii),
iterations were carried out using 20 special-points from the
first time and the energy eigenvalues and the valence charge

density converged well after only 10 iterations. In both
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calculations, the angular momentum component of the states of a
valence electron in the MT sphere has been taken into account up
to £=5, and the cutoff wave vector of APW has been taken to be
3.1(2m/a) which correspond to the wave vector of a free electron
with the kinetic energy of 12%v13 Ryd. The agreement between the
self-consistent eigenvalues obtained from the sets (i) and (ii)
is fairly well, but the energy values in the latter case are
about 6 mRyd smaller than those obtained from the set (i). This
fact implies that we can obtain good eigenvalues and wave
functions by the use of relatively small number of k-points if we
employ an appropriate set of specilal-points. Therefore, in the
following calculations, we employ the self-consistent crystal
potential obtained by using the 20 special-points.

Fig.2-2a shows 4wr2 times the total charge density, p(r), and
its core electron and valence electron components inside the MT
sphere at 132 kbar, and Fig.2-2b shows those at 304 kbar. For
both pressure the core electrons localize inside r=O.5rMT and
valence electrons mainly exist outside it. The number of the
valence electrons inside the MT sphere is found to be 3.6265 at
132 kbar and 3.5381 at 304 kbar: a slightly larger number of
electrons are extended to the interstitial region at higher
pressure.

Fig.2-3a shows the energy bands at 132 kbar along the
symmetry lines in the Brillouin zone. The features of these
bands below the Fermi level, which is indicated by the horizontal
line at 0.62 Ryd, are similar to those of free electrons in the

empty lattice.
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From the features of dispersion curves and the decomposition
of the wave function inside the MT sphere into the f-componemts
(i.e.angular momentum components), we have obtained following

informations:

(1) The lowest band almost completely consists of 3s state
except for the states near the R point. The lowest 3-fold
degenearte state at R has a pure 3p character.

(2) The second and the third bands are degenerate along the T
and A lines. These bands almost completely consists of 3p
states. As expected from Fig.2-3a, the second band provides
Fermi surface of the hole-pocket type that surounds T point.
On the other hand, the third band provides Fermi surface of
the open-type, which inevitably contacts with the above hole
surface at a point on the A line because the second and third
bands are degenerate on the A line.

(3) The fourth band provides two kinds of Fermi surfaces of
the electron-pocket type: one surrounds the R point and the
other surrounds the M point. The state of the fourth band at
the R point consists of 3s state. As coming apart from the R
point along the A, S, or T lines, the 3p components increase.
The state of the fourth band at the M point has pure 34

character.
On account of the high symmetry of the simple cubic

structure, 3p orbitals cannot hybridize with 3s or 3d orbitals at

symmetry points I', X, R, and M. According to the consideration
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based on the tight-biding model, the characters of several low
energy states at symmetry points can be interpreted in terms of

the atomic orbital as follows

I point: 3s <bonbing>, 3p (3-fold) / 34 (2-fold), ...,
X point: 3s, 3pX / pr and 3p, (2-fol1d), ...,
M point: 3s, 3p, and 3py (2-fold), 34 / ...,

R point: 3p (3-fold), 3s <anti-bonding> / 3d (2-fold), ...

where the energy of the state increases from left to right, and
the position of the Fermi energy is indicated by a slash, /
Because the 3s band lie well below the Fermi level almost in the
whole B.Z., the 3s-electrons hardly contribute to the bonding.
The bonds are composed mainly by the 3p-electrons with a little
3d contribution.

Fig.2-3b shows the energy bands at 304 kbar. Comparing this
with Fig.2-3a, one can find the broadening of the band widths.
This is due to an increase of the transfer integrals owing to a
decrease of the lattice constant. The second and the third bands
show a slight broadening of the band widths, but the positions
at which these bands cross the Fermi level along the symmetry
lines are almost unchanged by pressure in the range of 132-304
kbar. We note that with increasing pressure the electron-pocket
centered at the R point vanishes and the electron-pocket centered
at the M point expands remarkably. The characteristic vanishing
of the electron-pocket at the R pointvis due to the increase of

the energy separation between the lowest 3-fold degenerate 3p
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state and the anti-bonding 3s state: this increase of energy
separation is due to the broadening of the 3s and 3p bands.
Similarly, the expansion of the electron-pocket centered at the M

point can be interpreted as due to the broadening of the 3d band.
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Fig.2-1 The Brillouin zone of simple cubic lattice.
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Fig.2-2a

4nr2 times the total charge density inside the

muffin-tin sphere for 132 kbar. The core electron

and the valence electron components are also

shown.
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Phosphorus Simple Cubic Phase (P=304 Kbar)

_——— Total Charge Density of P atom
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— Valence Charge Density

Fig.2-2b Anrz times the total charge density inside the
muffin-tin sphere for 304 kbar. The core electron
and the valence electron components are also

shown.
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P simple cubic phase (P=132kbar)
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Fig.2-3a The energy dispersion curves of simple cubic
phosphorus at 132 kbar. The Fermi level is

indicated by a horizontal line at 0.62 Ryd.
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P simple cubic phase (P=304kbar)
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Fig.2-3b The energy dispersion curves of simple cubic
phosphorus at 304 kbar. The Fermi level is

indicated by a horizontal line at 0.76 Ryd.
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2-2 Density of states

We have calculated the energy eigenvalues for 165 k-points in
the irreducible zone. These values were then interpolated by
spline funtions12) to calculate the Fermi level (EF) as well as
the density of states (DOS). Actual calculation of the DOS has
been done by the tetrahedron method13) with use of 12,341
k-points in the irreducible zone.

Fig.2-4a shows the results of calculation at 132 kbar. The
full curve denotes the total DOS and the dotted curves represent
the partial DOS which arises from each band, 1, 2, 3, 4, and 5.
The total DOS at the Fermi level, EF=O.62 Ryd, is found to be
2.10 states/Ryd-atom+ spin, which agrees with the result obtained
by ab initio psudopotential calculation.B) This value of the
total DOS is smaller than the DOS at the Fermi level for free
electrons, 2.69 states/Rydsatomespin, which is calculated from
the relation

D (E { Q/(Zﬂ)2}2/3°(3n/4)1/3 (states/Ryd+atomespin),

free F):

3

where the unit cell volume is Q2=89.8 a.u.” at 132 kbar, and the
number of valence electrons is n= 5.

Values of the partial and the total DOS at EF are listed in
the second column of Table 2-1. As seen from the table, the
third band, which provides the large Fermi surface of the

open-type, gives rise to the largest partial DOS at E The

P
partial DOS at EF of the band 4 may be divided into two
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contributions: one comes from the electron-pocket centered at the
M point and the other from that centered at the R point. The
latter contribution is consideravly small compared with the
former contribution.

Fig.2~-4b shows the total and the partial DOS at 304 kbar.

Values of the partial and the total DOS at E,=0.76 Ryd are listed

F
in the third column of Table 2-1. Comparing the results for 304
kbar and those for 132 kbar, we can find that the partial DOS at
EF of the second and the third bands decrease with increasing
pressure: this tendency can be explained by the broadening of

these two bands. On the other hand, the partial DOS at E. of the

F
fourth band increases remarkably to result in the net increase
(1.4 %) of the total DOS at EF as pressure increases from 132
kbar to 304 kbar.

It should be noted that in pressure range of 132-304 kbar the
increase of the total DOS at EF is quite small, but that
remarkable changes are found in the partial DOS of the third and
the fourth bands. The small value of DOS and the fairly high
superconducting transition temperature, such as 5-11 K, suggest

that the simple-cubic phosphorus is a system having the strong

electron-phonon interaction.
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Fig.2-4 Thé electronic density of states (DOS) for (a) 132
kbar, and for (b) 304 kbar. Total DOS is plotted
by solid curve and the contributions from bands
1n5 are shown by dotted curves. The Fermi level

is indicated by a vertical line.
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Table 2-1. Partial and total DOS at Fermi level (in unit of per
Ryd-atom+spin). Partial DOS arising from band 4 is
decomposed into two contributions from states around

the R point and from states around the M point.

band Density of states D(EF)
132 kbar 304 kbar
2 0.25 0.21
3 1.70 1.60
4 0.15 0.32
( 4-R ) ( 0.03 ) ( 0.0 )
( 4-M ) ( 0.12 ) ( 0.32 )
total 2.10 2.13
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2-3 Fermi surfaces

Making use of energy eigenvalues obtained for 12,3471 k-points
in the irreducible zone by an interpolation method with use of
spline functions, we have constructed the Fermi surfaces (FS) in
the first Brillouin zone.

At 132 kbar, four types of FS are formed from bands 2, 3, and
4. The band 4 gives ries to two FS: one is centered at the R
point and the other centered at the M point. The obtained Fermi
surfaces are shown in Figs.2-5a, 2-5b and 2-5c¢. The features of

these FS can be described as follows:

(1) FS-2: The FS formed by the band 2 (Fig.2-5a).
The length of edges of this dice-like-shaped FS is about
0.67/a. Electrons fill the outside of this FS.
(2) FS-3: the FS formed by the band 3 (Fig.2-5b).
This FS is open-type with six necks which intersect the
faces of the zone boundary. The Brillouin zone is devided
by this FS into two regions: the symmetry points I and X
belong to the hole-region, and the symmetry points M and R
belong to the electron-region.
(3) FS-4R: the FS centered at the R point formed by the band 4
(Fig.2-5¢c).
The inside of this FS is filled by electrons.
(4) FS-4LM: the FS centered at the M point formed by the band 4
(Fig.2-5c).

The inside of this FS is filled by electrons.
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When the pressure is increased up to 304 kbar, FS-2 and FS-3
remain almost unchanged, whereas FS—4R completely vanishes and
FS-4M expands remarkablly as shown in Fig.2-6.

We can find in Kittel's text book14) a typical shape of the
FS for the simple cubic lattice. Fig.2-7 shows the FS in half-

filled case for the simplest tight-binding band
E(k) = -27¢ cos(kxa) + cos(kya) + cos(kza)}. (2.1)

This band shows a characteristic perfect-nesting with respect to
the wave vector Q=TR because the relation E(k) = -E(k-Q) holds.
Thus, this 1is a typical example of the electronic system that
15)

favors the Peierls instability. Reflecting the fact that FS-3
of simple-cubic phosphorus is formed by nearly half-filled
3p-bands, there is no topological difference between the FS-3 and
the typical FS shown in Fig.2-7 . 1In fact, FS-3 can be regarded
as a certain modification, which arises from the anisotropy of
the 3p orbitals, of the FS shown in Fig.2-6.

If the shapes of the hole-region and the electron-region of a
particular band in the Brillouin zone are congruent each other,
such a band is said to perfectly nest itself. It should be
pointed out here that the band 3 has a property of nearly perfect
nesting. This can be clearly seen by drawing FS-3 by choosing
its center at the R point as shown in Fig.2-8. Comparing
Fig.2-8 with Fig.2-5b, we can see a similarity between the two

kind of ¥S-3. Thus, it has been shown that FS-3 nests itself and

that the nesting vector is Q.

- 101 -



The nesting property of FS-3 mentioned above can also be
confirmed by calculating the "band-decomposed" electronic

1
susceptibility Xg,n (q) defined by

f(E_,) - f(E )
! 2 k Tk—
o't (@) = §F 1 = = (2.2)
k En'k—q - Bk
where f(Enk) denotes the Fermi distribution function. We have

calculated xg’n'(q) at zero temperature using energy eigenvalues
obtained for 8,000 k-~points by the interpolation method. The
results at 132 kbar are shown in Fig.2-9. As clearly seen,
Xg’a(q) has a large peak at q=Q and xg’B(Q) is the largest among
xg’n'(q). From these results we may expect a large
frequency-softening of phonons at the R point. Precisely
speaking, however, the frequency softening is determined not by
xg’n'(q), but by the generalized electronic susceptibility
qu(ij,q) which includes the electron-lattice coupling constants
(see Part I). Therefore, in order to obtain a definite
conclusion we need to investigate matrix elements of electron-
lattice interaction for a pair of electronic states |3k> and
|3k—Q> with both k'and k-Q being on or near the FS-3. If these
matrix elements are large or not so small, then we certainly

expect a large frequency softening of phonons at the R point.
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Fig.2-5a The Fermi surface formed by the band 2 (FS-2).
The shape of this hole-surface is almost unchanged

within pressure range of 132 ~ 304 kbar.
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Fig.2-5b The open-type Fermi surface formed by the band 3
(FS-3). The hole region-side of this surface is
shaded. The shape of this Fermi surface is almost

unchanged within pressure range of 132 ~ 304 kbar.
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Fig.2-5c Two kinds of Fermi surfaces formed by the band 4
at 132 kbar. We can see 8 fragments of the ele-
ctron-surfaces (FS-4R) centered at the R points
and 12 fragments of the ellipsoidal electron-

surfaces (FS-4M) centered at the M points.
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Fig.2-6 The Fermi surface FS-4M at 304 kbar. FS-4R is

-.completely vanishing at this pressure.
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Fig.2-7 A typical example of the Fermi surface for simple

cubic lattice found in Kittel's text book.

- 107 -



Fig.2-8

T

/!

The open-type Fermi surface ¥S-3 displayed in the

box which is centered at the R point.

corners are the T point.

shaded.
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Fig.2-9 The "band-decomposed" electronic susceptibility

Xg '

Band suffices are shown by the notation, n-n'.

(q) along the A, A, and I lines at 132 kbar.
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§3. Electron-Lattice Interaction

3-1 Rigid muffin-tin approximation

The ab initio calculation of the electron-lattice interaction
has long been a major problem in the solid state physics. On the
basis of the adiabatic (Born-Oppenheimer) approximation, the
matrix elements of the electron-lattice interaction, I(nk,n'k') =

( I®(nk,n'k'), I¥(nk,n'k'), I%(nk,n'k') ), are defined by
u(q)-I(nk,n'k') = <nk|sUjn'k'> , (3.1)

where §U is a change of the crystal potential U(r) caused by the
lattice displacement de=u(q)exp(iq~Rv). 8U can be written
explicitly as

§U(r) = u(q).y exP(iq-R\))[aU(r)/aR\)] . (3.2)

%
where Rv denotes the position vector of the vth atom. Note that
we consider the crystal containing only one atom in the unit
cell. From now on I(nk,n'k?) will be called the electron-lattice
matrix elements.
The rigid muffin-tin approximation (RMTA) is based on an

assumption that the crystal perturbed by the displacement of the
ions may be adequately described by a rigid displacement of the

16-19)

MT potential. The form of the MT potential is written as

U(r)

V([r—va), for r inside MT(v)

B Vconst ’ for r in intersticial region, (3.3)
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where MT(v) means the MT sphere of the v-th ion. Then the
RMTA leads to the relations

3U/3R,, (Blr—va/BRv)dV/dp = —pV', for r inside MT(v),

= 0, ' for elsewhere, (3.4)

where pE[r—Rv|, pE(r—Rv)/p. In the RMTA, the effects of the
electron screening and the change of potential due to the charge

distribution outside the MT spheres are neglected.

The APW function for the eigenstate |nk> is expressed as2o)
o x(T) = g Chi, i X(Kg,T) (3.5)
exp(ik.*R )M R,(p,E_ ) A A
X(ky,T) = LT P (2ee1) g (ky8) - (k,vp),
v/ NQ 2=0 Ry (8,E, 4 )
2 nk
(3.6a)
for r inside MT(v)
= 7%§—exp(ik°r), for elsewhere (3.6b)

where @ denotes the unit cell volume, j2 i1s the spherical Bessel
function of the 2-th order, PR represents the Legendre
polynomial, kiEk+Gi with Gi being the i-th reciprocal lattice
vector, and iizki/lkil' RQ(Q,E) is the radial wave function
corresponing to the energy E, and S denotes the radius of the MT
sphere. Substituting egs.(3.2)-(3.6a) into eq.(3.1), we obtain

the following expression for the electron-lattice matrix elemens:

- 111 -



I(nk,n'k')=iz U(,Q,,,Q,+17E) Xg(nk,n'k'), (3°7)

2
with
S 2
R (p,E)V'R (D,E)Q dp
0 Q 2 +1
U(,2+1,E) = , (3.8)
Q-RQ(S’E)RQ-F‘I (SyE)
X, (nk,n'k')= T N A S P (3.9

where we have considered only the case of energy-conserving
scattering of electrons by the lattice displacements, i.e.
E E

E. A, in eq.(3.9) is defined by

nk “n'k'" 2

~

. _ . . . A A .A . .A A
Ay (g ke =000, (e 805y (et 38) [ p By (kyep)B, . (' Sep)dp )

-{ k, « k'j }1(20+1) (22+3), (3.10)

where dp stands for d(cosf)d¢ and this integration can be
performed analytically. The integration in eg.(3.8) can be
easily performed by using radial Schrodinger equations for

21)

angular momenta ¢ and ¢+1 , and U(2,8+1,E) is obtained in a

simple form as
U(R,8+1,E) =[(Vyp-E)8° - (L, (B)S-2}{L,,,(E)S+2+2}]/,  (3.11)

where VMT denotes the MT potential on the surface of a MT sphere

and LZ(E) denotes logarithmic derivative defined by

L, (E) = [dlog{Rg(p,E)}/dp]pzs . (3.12)
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3-2 Electron-lattice matrix element

The electron-lattice interaction of the simple-cubic
phosphorus is expected to be fairly strong from following two

facts:

(i) The simple-cubic phosphorus is a superconductor with fairly
high Tc in spite of the small DOS at the Fermi level. |

(ii) It shows second-order-like structural phase transition into
the A7 structure at =110 kbar as pressure is decreased.
Since the A7 structure is described by condensation of the
R-point phonon mode of the simple-cubic structure, it is
speculated that this structural phase transition is drived

by softening of the R-point phonon mode.

In McMillan's theory of superconductivity which will be explained
in §4 electron-lattice matrix elemenps between arbiﬁrary pair of
electronic states on the Fermi surface can contribute to
superconductivity. As discussed at the.end of subsection 2-3, on
the other hand, electron-lattice matrix elements between two
electronic states on or near the FS-3 whose wave vectors are
connected by Q=m(1,1,1)/a are expected to play an important role
in frequency softening of the R-point phonon mode. Thus, it is
interesting to investigate the electron-lattice matrix elements
of simple-cubic phosphorus for various pair of electronic states
on or near the Fermi surfaces.

First, we consider a pair of electronic states of the band
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3: |3k> and |3k'> where k=m(2,1,0)/2a and k'=n(0,-1,-2)/2a.
These two states have the same energy, and k and k' are located
very close to FS-3. Further, note that these wave vectors are
connected by the wave vector of the R point, Q=w(1,1,1)/a, i.e.
k-k'=Q. The decompositions of the wawe functions inside the MT
sphere have shown that these states are mainly composed by the p
state (707%) and the remaining contributions come almost equally
from the s- and d-states. At 132 kbar, the MT potential VMT on
the surface of a MT sphere has been determined to be -0.4676 Ryd.
Now, using the determined transformation coefficients cnk,i and
the calculated logarithmic derivatives LQ(E), we have calculated
Xz(Bk,Bk') and U(%,8+1,E) from eqgs.(3.9) and (3.11). The results
are shown in Table 3-1. Note that the x- and z-componets of
XQ(Bk,Bk') vanish exactly from symmetry. The value of X{(Bk,Bk')
decreases very rapidly as % increases. Reflecting the nature of
these two states large contributions come from p-d and s-p
scattering. We finally obtain IY(3k,3k') = 9.60 eV/A.

Next, we have chosen the following typical four states out of
electronic states of the bands 3 and 4 on the Fermi surfaces:

|3k1>, ]3k2>, |4k3>, and ]4k4>. As shown in Fig.3-1, k., and k

1
on FS-4R. We have calculated

2

lie on FS-3, k, on FS-4M, and k

3 4
the electron-lattice matrix elements for every pair out of these
four states. Calculated U(2,2+1,E)'X£(nk,n'k') for 2=0-4, and
I(nk,n'k') are presented in Table 3-2. As seen from the table,
the electron-lattice matrix element is considerably large for

(3k1, AkB) and (3k2, 4k3), i.e. the states on FS-3 are coupled

strongly with those on FS-4AM by the lattice displacements. For
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these pairs the largest contributions are arising from the p-d
scattering, whereas the s-p scattering hardly contributes because
the electronic states of the band 4 near the M point almost
completely consist of d state.

It is noted that the magnitude of the electron-lattice matrix
element between |3k1> and ]3k2> (k1—k2=ﬂ(3,1,—3)/103) is smaller
than that between |3k> and |3k'> (k-k'=Q=7(1,1,1)/a). We
further calculated the electron-lattice matrix elements for other
various pairs of states | 3k> and |3k—q> on or near the FS-3. As
the results, we found that the matrix elements take particularly
large values for q=Q. Thus, in accordance with the discussion
given at the end of subsection 2-3 we can conclude definitely
that a large frequency softening of phonons at the R point will
be caused by combined effects of the nesting property of the FS-3
and the strong electron-lattice interaction. We may suggest
that the structural phase transition from the simple-cubic
structure to A7 structure is related with this expected large

frequency-sofetning of the R-point phonons.
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FS—-4R

Fig.3-1 Typical four wave vectors chosen for calculating

the electron-lattice matrix elements: k1 and k2

on FS-3, k, on FS-4M and k, on FS-4R.

3 4
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Table 3-1. Electron-lattice matrix elements taken between two
electronic states of the band 3, |[3k> and [3k'>, where
k=m(2,1,0)/2a and k'=uw(0,-1,-2)/2a. Note that k-k!'

=Q =17n(1,1,1)/a.

) U(2,241,E) X{(Bk,sk‘) U-X
[eV/A] lev/A]

0 s-p -2.21 1.337 ~2.96
1 p-d 1.44 4. 461 _6.42
2 a-f 1.29 ~0.229 ~0.29
3 f- 0.56 0.184 0.10
L g-h 0.38 -0.052 -0.02
|19 (3k,3k')| = 9.60 ev/A
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Table 3-2. Electron-lattice matrix elements taken between the
following pairs of electronic states of the bands 3
and 4:
(1) (3ky, 3ky), (2) (3kq, 4k3), (3) (3ky, 4k,),
(4) (3k,, 4k3), (5) (Gk,, 4k4), (6) (4k3, 4k4),
where each wave vector is defined by
k1=w(26,17,1)/40a, k2=n(14,13,13)/40a,
k3=ﬂ(38,38,8)/40a, k4=ﬂ(36,35,35)/403-

Note that k, and k

5 lie on FS-3, k3 on FS-4M and k, on

1 4
FS-4R.
(1) . X - y . 2
| L u-X, U- X7 U- X,
(eV/A] [eV/A] [eV/A]
0 s-p ~-1.12 0.68 0.45
1 p-d -0.63 0.59 -0.44
2 d-f ~0.52 -0.06 0.30
3 f-g 0.02 -0.03 0.00
L g-h 0.00 0.00 0.00
| 1% (3k,, 3k,) | 2.25 1.18 0.31
(2) XX 7o xY . xZ
% U-X; - Xy u- X,
0 s-p -0.14 ~0.10 0.01
1 p-d 5.17 -0.24 -0.05
2 d4-f 0.15 0.74 0.11
3 f-g -0.01 0.00 0.00
L g-h 0.00 0.00 0.00
| I% (3K, 4kj) | 5.17 0.40 0.07
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Table 3-2. (continued)

(3) . xX x7 . xZ
L u- X, U- X7 U- X,

[ev/a]  [eV/Al [eV/A]
0 s-p ~0. 44 2.22 -0.63
1 p-d 0.02 -0.85 0.26
2 d-f -0.06 -0.40 -0.08
3 f-g -0.06 -0.05 0.01
4L g-h 0.00 0.00 0.00
| T 3k, , 4k, ) | 0.54 0.92 0.44
(4) L xX xY . v%
3 u-X U- X7 U- X,
0 s-p -0.01 0.03 0.01
1 p-d 2.26 -4.92 0.02
2 d-f 0.00 -0.67 -0.01
3 f-g 0.00 0.01 0.00
4L g-h 0.00 0.00 0.00
| 1% 3k, , 4X5) | 2.25 5.55 0.02
(5) L xX LxY . v7?
2 u-x U-x; U-X

0 s-p -2.26 1.05 . 1.05 -
1 p-d 0.33 -0.39 -0.39
2 d-f 0.23 -0.17 -0.17
3 f-g 0.03 -0.01 -0.01
L g-h -0.01 0.01 0.01
| 1% (3k,, 4k3) | 1.68 0.49 0.49
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Table 3-2. (continued)

(6) [} U-Xy U-Xxy U-Xp
[eV/A] [eV/A] [eV/A]

0 s5-p -0.31 -0.32 0.03

1 p-d  2.45 1.71 0.14

2 a-f ~0.21 -0.10 ~0.12

3 f-g ~0.03 ~0.02 0.00

L g-h 0.00 0.00 0.00
]Ia(4k3,4k4)| 1.90 1.27 0.05
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§4. Superconducting Transition Temperature Tc

4L~1. Electron-phonon mass enhancement parameter A\

McMillanzz) has proposed a semi-empirical equation to
determine the superconducting transition temperarture Tc by using

the strong-coupled theory of superconductivity. Later, Allen

23)

and Dynes have proposed the following improved equation for

Tc by modifying the McMillan's equation:

<w> exp -1%04(1+A) . (4.1)
1.2 A-u (1+0.622)

Here <w> denotes a kind of averaged phonon frequency, u%
represents the effective electron-electron repulsion constant,
and A is the so-called electron-phonon mass enhancement parameter

defined by

P ZIOdw _—, (4.2)

where azF(w) represents the spectral function of the electron-~

lattice interaction and can be written as

: 1
o*F(w) = D(By) — << [le s I(nk,n'k) |26 (w-w ) >>

Tt
2Mw y Yk-k

Yk-k! FS

(4.3)

In the above equation D(EF) is the electronic DOS (per atome*spin)

- 121 -~



at the Fermi level, qu and EYq denote the frequency and the
polarization vector, respectively, of a phonon of wave vector g
and mode Y, M is the mass of the ion, and <<f(nk,n'k')>>FS means

that the average of an arbitraly function f which depends on a

pair of states (nk,n'k') is taken over the FS, namely,

Z Z 'd(Enk—EF)(S(Enyk'—EF)f(l’lk,l’l'k')

<KE (nk,n'k!)>> o = nkn 'k
L2 S (BBl 8 (B —Bp)
(4.4)
We note that eq.(4.2) can be rewritten as
€ e ger * {0k, k) |2
X = D(Eg)<< % 2 >>pg- (4.5)

Oyk-k!

Further, if we neglect the mode dependence of the phonon

frequencies, then eq.(4.5) can be transformed into a simplified

form as
lI(nk,n'k')l2
A= D(EF)<< 5 >>FS’ (4.6)
ka—k'

by using the orthogonality relation of the phonon polarization
vectors, i.e.

*

] B

£ =6 . (4.7)

Q
L leyqg 1 eyq = Sop

Y

The original definition of the averaged phonon frequency <w>
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given by Allen-Dynes is

o 2
J dw Logw g_gigl - 2
Loglw> = 0 - 2 J dw fLogw o F(w) (4.8)
® azF(w) A 0 w
(a0 ©2()
0 w

A central problem in evaluating the transition temperature is
the estimation of A, and the most difficult task in calculating
A from eq.(4.5) or eq.(4.6) is how to perform the averaging over
the Fermi surface. Gaspari~Gyorffy18) have proposed an
approximate method for estimating A, and their method has been
widely applied, particularly to systems with complicated-shaped

Fermi surfaces.18’21)

However, the shapes of the FS of the
simple cubic phosphorus are not so complicated, and hence it is
possible to perform the numerical average over the Fermi surfaces
without great difficulty as described in the following.

In general, eq.(4.4) can be expressed in terms of the
integrals over each F3S as follows:

<<f(nk,n'k')>>FS

a*k [ ack a2k
= ¥ I J f(nk,n'k')/[ 7 [

nn' v v n v
nk n'k!' nk

2
» o (4.9)

where vnkEIBEnk/ak]. If the Fermi velocity v, does not depend

on wave vector k on each FS, eq.(4.9) can be further rewritten as
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Kf(nk,n'k')>>., = F n.n , (4.10)
) FS nn,nn' 221

where kn denotes a wave vector on the FS formed by the band n,
and n,= Dn(EF)/D(EF) with Dn(EF) being the partial DOS at the
Fermi level arising from the band n. We employ eq.(4.10) in
estimating the value of the electron-phonon mass enhancement
parameter A.

In order to estimate A we need knowledge about phonons.
However, there has been neither experimental nor theoretical
study for lattice dynamics of simple-cubic phosphorus. Therefore
we have calculated the phonon frequencies from bulk modulus by
assuming a simple form of dispersion. Our recipe is summarized

as follows:

(1) Evaluate the bulk modulus B=-V(dP/dV) from Murnaghan

equation of state,

!
P=(K,/K') [(ay/2)% =17, (4.11)
where @ is the unit cell volume. The constants KO’ K', and
QO have been determined by Kikegawa and IwasakiT) as: KO=95

GPa, K'=2.1, Q,=15.2 &°.
(2) Evaluate the longitudinal sound velocity v, along the [100]

direction from
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3B(1-0)
v, = [ *—~—:i— ]1/2, (4.12)
o (1+c0)

where p is the mass density and ¢ denotes the Poisson's
ratio defined by 05012/(011+C12). Eq.(4.12) is obtained by
using the relations, VS=(C11/Q)1/2 and B=(CT1+2012)/3.

(3) Assume the following simple form of phonon dispersion:

1/2

wq = uylsin®(q,a/2) + sin®(q a/2) + sin®(q,a/2)]

(4.13)

Then, we obtain the following relation

wy = ZVS/a. (4.14)

In the above procedure the Poisson's ratio is an unknown
parameter. In a fluid medium we obtain o=1/2. This value is
reduced in actual metals: for example, o= 0.28 (Mo,W), 0.3600.37
(A1,Ni), 0.420,0.46 (Cu,Ag,K,Na,Pb,Au,Li). Therefore, we have
assumed the following three cases for the value of o: (a) 0=0.36,
(b) ¢=0.40, and (c¢) 0=0.5. The values of the bulk modulus B
evaluated at 132 kbar and 304 kbar are listed in column 3 of
Table 4-1. The values of wy evaluated for each case assumed
above are also listed in Table 4-1. Very recently Chang et
al.24) have calculated the phonon frequencies at several symmetry
points in the Brillouin zone on the basis of the frozen-phonon
method with use of the pseudopotential band calculation. The

frequency of the longitudinal phonon at the X point obtained by
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them is 4.19x10 12 rad/s at 120 kbar and 5.16x10'2 rad/s at 300
kbar, which are not far from the values of Wy estimated by us.

By using eq.(4.13), eq.(4.6) can be rewritten as

D(Ep)E

A=, (4.15)
M(wX)2

where £ is defined by

| T(nk,n'k')|?

< : 2 >>ag - (4L.16)
W_xr /Y%

LA
i

From now on & is called the strength of averaged electron-lattice
matrix elements. It should be noted that &€ is independent of

the value of wX.
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Table 4-1.Bulk modulus B estimated by using Murnaghan equation
(4.11). The value of wy has been evaluated from
eqs.(4.12) and (4.14) for three cases with different

value of Poisson's ratio o; (a) 0=0.36, (b) 0=0.40, (c)

6=0.50.
P [kbar] V [A°] B [GPa] o wX[1O13rad/s]
132 13.3 126 (a) 5.72
(b) 5.46
(c) 4 .82
304 12.0 156 (a) 6.26
(b) 5.97
(c) 5,27
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4,-2 Evaluation of Tc

In order to evaluate the transition temperature Tc from
eq.(4.1) we first estimate the value of the electron-phonon mass
enhancement parameter A from egs.(4.15) and (4.16).

To calculate £ for 132 kbar, we have selected 336 k-points on
the Fermi surfaces in‘the Brillouin zone: A48 k-points on FS5S-2,
144 k-points on FS-3, 48 k-points on FS-4R, and 96 k-points on
FS-4M. The average over FS in eq.(4.16) have been performed by
making use of eq.(4.10). All of possible pairs out of the above
k-points are taken into account in the calculation. The value of
g obtained for 132 kbar and the contribution to £ from each FS
are presented in Table 4-2. Large contributions arise from the
scattering between the states on FS-3 and those on FS-3, FS-2 or
FS-4M.

The calculation of g for 304 kbar has been carried out by
using 288 k-points in the Brillouin zone: 48 k-points on FS-2,
144 k-points on FS-3, and 96 k-points on FS-4M. At this pressure
FS-4R vanish completely. The results are presented also in Table
4L-2. It must be noted that the contribution arising from the
scattering between the states on FS-3 and those on FS-4M
considerably increase with increasing pressure. This is due to
the increase of the partial DOS arising from FS-4M. Even if we
neglect the k-dependence of the phonon frequencies in eq.(4.13),
similar dependence on pressure are obtained. Therefore the
averaged electron-lattice matrix elements & are enhanced by the
increase of the partial DOS arising from FS-4AR, which consists of

d-like states.
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The electron-phonon mass enhancement parameter A has been
estimated for both pressure, 132 kbar and 304 kbar, by

substituting &, D(EF), and w. into the right-hand side of

X
eq.(4.15). The values of D(EF) are listed in Table 2-1. The
value of wy has been evaluated from eqs.(4.12) and (4.14) for
three cases with different value of Poisson's ratio o (see Table
4=1). The value of A estimated in this way are presented in
Table 4-3. The value of X ranges from 0.4%0.6, and hence
simple-cubic phosphorus is regarded as a superconductor with
fairly strong electron-phonon coupling. As seen from Table 4-3
the value of X is almost independent of pressure in spite of
considerable increase of & with increasing pressure. This is
because the increase of & 1is compensated by the increase of the

phonon frequency mX.+

T Very recently, on the basis of total energy calculation by

using the pseudpotential method Chang et a1.24) have calculated
the phonon frequencies at the X and M points and the matrix
elements of electron-phonon interaction associated with these
phonons. Their results show also that the electron-lattice
interaction is strong in simple-cubic phosphorus. Further, they
have calculated the gq-dependent electron-phonon mass enhancement
parameter Aq which may be defined by the same expression as
eq.(4.5) provided that the average is taken for a fixed value of
k-k'=q. However, Chang et al. have not calculated the total X
and the transition temperature Tc' According to their results

the values of Aq obtained for q=ayx and Ay show rather decreasing
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trend with increasing pressure.

Now, the superconducting transition temperature Tc can be
evaluated from McMillan-Allen-Dynes equation (4.1) if we know the
values of u* and <w>. We evaluate the wvalue of the Coulomb
repulsion parameter U* by using Bennemann-Garland's empirical

25)

formula:

Vs

o= 0.26N(Ep)/[1+N(E) ], (4.17)

where N(EF) denotes the electronic DOS at the Fermi level (in
unit of per eVe-atom). The original definition of <w> is the
logarithmic average of phonon frequencies with respect to the
spectral function a2F(m) as expressed by eq.(4.8). For
simplicity, however, we have evaluated <w> by using the phonon
DOS F(w) corresponding to our simplified phonon dispersion given
by eq.(4.13) instaed of azF(w), i.e.

(logwq)/wq

)
poglw> = 9 . (4.18)
) 1/wq
q

The summation over the Brillouin zone in the above equation has

been carried out by using Monte Calro method with use of

5,000,000 sampling points. Then we have obtained <w> = 1.03wX.
We have evaluated the transition temperature ‘I‘c by using the

values of A, un and <w> determined above. The results are shown

in Table 4-3. As seen from the tabie, the value of Tc depends
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somewhat on the choice of the value of o. However, we would like

)

to emphasize that the éxperimental value of Tc= 5v11 K4_8 has
been reproduced in order of magnitude by our microscopic
calculation based on the McMillan-Allen-Dynes theory. Therefore
we are convinced that the superconductivity of simple-cubic
phosphorus are well understood within the strong coupling theory
of the BCS mechanism. If we assume that Poisson's ratio is
independent of pressure, we expect that Tec increases only by ~1K
when pressure is increased from 132 kbar to 304 kbar. According
to experimental results by Wittig et al.A) and by Akahama et

al.7)

the observed TC shows larger pressure dependence. In
order to discuss more precisely the pressure effect on TC as well
as the magnitude of Tc we need to study the lattice dynamics in
detail. In particular it will be necessary to take account of

softening behavior of phonons around the R point, which is

expected as discussed in subsections 2-3 and 3-2.

- 131 -



Table 4~2. Calculated values of the strength of the electron-

lattice interaction, £ [eVZ/AZ]. Eij [eVZ/AZ]
represents the contribution from a pair of Fermi
surfaces, FS5-i and FS-j. & can be written as
E= ) [ &. .
i3

The weightingfactorWijEninj arising from partial DOS

is also presented.

FS 132 kbar 304 kbar
b Y1 ®1] Y13 f1
2 2 0.014 0.58 0.010 0.45
3 2 0.094 4L.75 0.075 4.18
3 3 0.653 14.76 0.561 14 .25
LR 2 0.002 0.04 0. 0.
LR 3 0.013 0.30 0. 0.
4R 4R 0.000 0.02 0. 0.
LM 2 0.007 0.37 0.015 0.83
LM 3 0.048 242 0.113 5.61
LM AR 0.001 0.02 0. 0.
LM 4M 0.003 0.00 0.023 0.06

total £= 31.16 €= 35.99
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Table 4-3. Values of A and Tec evaluated for three cases with
different value of Poisson's ratio: (a) 0=0.36, (b)
0=0.40, (c) 0=0.50. Coulomb repulsion parameter u*

has been evaluated from Bennemann-Garland's empirical

formula.

P [kbar]l s A Te [K]

132 0.10 (a) 0.44 3.3
(b) 0.48 4.7
(c) 0.62 9.8

304 0.10 (a) 0.45 3.7
(b) 0.49 5.3
(c) 0.63 11.0
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§5. Summary

On the basis of the self-consistent APW method we calculated
first the electronic band strucutre of simple-cubic phosphorus at
132 kbar (a=2.369 A) and at 304 kbar (a=2.298 A). Then, the
electron-lattice interaction was studied within the rigid
muffin-tin approximation, and the electron-phonon mass
enhancement parameter A was estimated with use of the calculated
electron-lattice matrix elements and the phonon frequencies
evaluated from the observed bulk modulus. Finally, the
superconducting transition temperatufe TC was evaluated in

accordance with the McMillan-Allen-Dynes equation.

The results obtained in this part II are summarized as

follows:

(a) The energy dispersion curves below the Fermi level are
similar to those of free electrons in the empty lattice.
The density of states at the Fermi level D(EF) is small and
its pressure dependence is quite small: D(EF) = 2.10 per
Ryd-atomespin at 132 kbar and D(EF) = 2.13 per Ryd-atomespin
at 304 kbar.

(b) Four kinds of Fermi surfaces are obtained at 132 kbar.

(1) FS-2: Dice-shaped hole pocket around the T point.

(2) FS-3: Open-type Fermi surface with six necks which
intersect the faces of the zone boundary.

(3) FS-4R: Small electron pocket around the R point.

(4) FS-4M: Ellipsoidal electron pocket around the M point.
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(c)

(d)

(e)

At 304 kbar FS-4AR vanishes completely and FS-4M is expanded
remarkably whereas FS-2 and FS-3 are almost independent of
pressure within this pressure range. The electronic states
on FS-4AM consist mainly of d-states.

Simple-cubic phosphorus is a system with strong electron-
lattice interaction. The strength of averaged electron-
lattice matrix elements, &, shows a fairly large increase
when pressure is increased: £=31.16 eV2/A? at 132 kbar and
£=35.99 eV2/A2 at 304 kbar. This increase is ascribed to
expansion of FS-4M with increasing pressure. On the other
hand, the estimated value of X (= 0.470.6) is almost
independent of pressure if we assume pressure-independent
Poisson's ratio which was introduced to estimate the phonon
frequencies.

The superconducting transition temperature Tc is evaluated
to be a few K v 10 K, which agrees in order of magnitude
with the observation. Detailed and more realistic study of
the lattice dynamics is desired to discuss precisely the
pressure effects on TC as well as the magnitude of T,.
Large frequency softening of phonons at the R point is
expected because of the nearly-perfect nesting propert§ of

the FS-3 as well as the strong electron-lattice interaction.
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