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Abstract 

1n high intensity synchrotron , heavy beam loading e百ects and instabilities related 
to rf accelerating systems 訂e very important problems, and rnany analysises have 
been done on typical cases so far. 

However, there is a peculiar problem in a high energy synchrotron, that is, since 
bunches are filled in the ring non-symmetrically, transient condition arises and it 
makes the analysis of the beam loading and instability difficult. 

ln this thesis, the transient beam loading was investigated by analytica1 ca1culaｭ
tion particle tracking simulation and the experiment using high intensity beam. Then , 
it was found 出at transient beam loading became veηsevere under the peculiar conｭ

dition for the cavity impedance and the transient beam loading could be suppressed 

by broad-band impedance of the cavity. 

Furthennore, coupled bunch instability under the transient beam loading is also 
estimated by the analytical equations. 1n such analysis of instability, it was found 

that the transient beam loading a仔ected the coupled bunch instability, and lumped 
constant circuit model that approximately expresses the cavity an impedance played 

a irnportant role. 
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A Resonant Circuit of Transmission Line 1 Introduction A-1 

B Characteristics of Magnetic Cores B-1 
1n nuclear and particle physics , one of the most efficient approaches to investigate them 

is the experiment using particle accelerator, and synchrotron accelerators have been conｭ

structed to get high energy beams. Furthermore, physicists have strongly wished high 

intensity beams for the experiments of rare event and its precise measurement [1]. 

ln the synchrotron , the beam is guaran-

C Approximation of Wake Field Calculation C-1 

V 
teed to stay in a ring by restoration force , 

which is provided by radio frequency(rf) elecｭ

tric field for the longitudinal motion along 

the direction of acceleration and by magnetic 

field for its vertical one. The number of partiｭ

cles accumulated in a synchrotron ring is limｭ

ited by space charge force and the interactions Figure 1.1: The wake voltage caused by 
the beam-cavity interaction. 

between the beam and surroundings such a 

Bunched 
Beam 

beam pipe, rf accelerating system, some in-

struments and beam itself. The field induced in such interactions is called “ wake field" as 

shown in Fig.l.1. 

On the rf acceleration , rf cavity gives 出e
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restoration force to the beam, but the cavity 

interacts with the beam simultaneously beｭ

cause the cavity has some impedance. Then 

the rf electric field for the restore force is disｭ

turbed by the wake field and this interaction 

may cause the beam energy loss. 

There are two issues to research the longi-Figure 12:The rf acceleration under the 
beam loading. The beam energy is lost 

tudinal motion of the beam under high inten- with respect to the original condition. 

sity condition on the rf cavity. One is “ Beam 

Loading" which means the continuous energy loss of the beam as shown in Fig.l.2，如d

it must be compensated by something to add more energy to the beam. Anotber is “Be釘n

A
V
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Instability" which means the growth of the amplitude of the beam motion as shown in 

Fig.l.3. 

8unched 
8eam 

B…J~~ . 
、'. 

Figure 1.3: The beam instability. The amplitude of the beam motion is grown aga匤st the 

restore force by the rf field. 

Many accelerator physicists have researched them, and many knowledges have been 

obtained to avoid the beam loss and to get more particles in the accelerator ring [2, 3, 4 , 

5, 6]. 

However, peculiar problem is remained to accelerate proton over a few Ge V in a high 

intensity proton synchrotron , and they were not investigated so well in the past because 

the problem was considered as not so serious for the existing synchrotrons , but it should 

be considered as well for the future plans of very high intens咜y proton synchrotrons where 

the number of the particles 匤 the ring will be over 1013 per bunch. 1t is “ transient beam 

loading". 

On multi-bunch operation , the wake voltage that affects on a bunch is made of the 

summation of that by itself and the other bunches. If the bunches 紅e circulating in equally 

spaced consecutively, the amplitude of the wake voltage is the same on all bunches a 

shown in Fig.l.4. In this case, the effect of the beam loading is also the same on all 

bunches , which is called “ static beam loading" , so the cure for the beam loading can be 

applied to all bunches equally. 

} TNTRODUCTION 3 

Wake 

じ〉

Figure l.4: The static beam loading. The amplitude of the wake voltage are the same on 

the all bunches. 

On the other hand, the amplitude of the wake voltage is not the same on each bunch 

any more as shown in Fig.l.5 if the bunches are circulating in non-symmetric configuraｭ

tion and intermittently. In this case, the effect of the beam loading is different on each 

bunch , which is called “ transient beam loading" , so equally cure for the beam loading is 

abandoned. 

。

Figure 1.5: The transient beam loading. The amplitude of the wake voltage are di百erent

on each bunch. 

The reason why such transient condition is made is that since the p紅ticles 紅e bent by 

magnetic field , the particle energy that can be achieved on a synchrotron is limited by the 

field strength of the magnet, another synchrotron must be prepared to accelerate the proton 

over a few Ge V. Generally, the number of the bunch filled in the former synchrotron 

is smaller than that in the latter one, the condition, where the bunches are filled nonｭ

symmetrically, may be appeared and it makes the transient condition periodically. 
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1t was considered so far that band width of thc cavity impedance should be as narｭ

row as possible for the cure of the transient beam loading [7] , becausc the narrow-band 

impedance could make the amplitude of the wake voltage smaller. However, the wake 

voltage on the narrow-band impedance remains longer than that on the broad-band one 

from the view point of transient response , and the summation of the wake voltage is imｭ

po口ant for the transient beam loading. So it can not be concluded that the narrow-band 

impedance always better than the broad-band impedance. 

In this thesis , it will be shown that the transient beam Joading becomes most severe at 

the peculiar band-width of the cavity, then the very broad-band impedance can also cure 

the transient beam loading. 

Furthermore, the analytical estimation of coupled bunch instability, which is one of 

the beam instabilities, under the transient beam loading will be also shown in this thesis , 

and it has not been inve5tigated clearly 50 f;訂 [8 ， 9, 10] because it is very complicated 

situation to investigate how the beam is stable. Then , it was found the transient beam 

loading affected the coupled bunch instability. 

1n such process , more realistic lumped constant circuit model for the rf cavity wa 

applied on the evaluation of the wake field. Then , it was also found that the condition 

where the coupled bunch instability was not occurred existed in such lumped constant 

circuit model. 

1n order to verify such things，自rstly beam dynamics of the longitudinaJ motion in 

the synchrotron and fundamentals of the rf cavity loaded with magnetic cores are ﾎntroｭ

duced, then the formulas which evaluate the beam loading and the instability including 

the interaction between the beam and the rf cavity wilI be derived. According to those forｭ

mulas , analytic estimations , numerical calculations and experiments using high intensity 

electron beam wiI1 be described on the transient beam loading. Using the results of the 

transient beam loading, the coupled bunch instability will be estimated by the analytical 

calculations. 
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2 RF Acceleration in Synchrotron 

In a synchrotron , the beam should be stayed in a ring during the acceleration on same 

orbit, so the particles should be converged by the electromagnetic force. In the transverse 

direction, which means that it is vertical to the beam direction , the magnetic force is 

adopted as such one and the electric force is adopted in the longitudinal direction. The 

fundamentals about the longitudinal particle motion without the beam-cavity interaction 

and the eJement that realizes the acceleration wiU be described in this section. 

2.1 Longitudinal beam dynamics without beam-cavity interaction 

1n a synchrotron , particles are divided into some groups called “ bunch" during filling and 

the acceleration in the synchrotron ring as shown in Fig. 2.1 to guarantee longitudinal 

tability by the electric field for generating restoration force under the condition that the 

p紅ticles circulate on same orbit in spite of momentum changing. The sinusoidal wave 

voltage is basically used for generating the electnc field as shown in Fig. 2.2. 

Synchrotron 
Ring 

Figure 2.1: Schematic view of bunch in 

the ring. This case eight bunches are 

白lled .

V sinusoidal 
/バ voltage

Figure 2.2: The sinusoidal rf voltage and 

bunches. 

After this , let us regard that the bunch shape is not changed and the center of the bunch 

behaves as a point like charged p訂ticle. This model is called “ rigid bunch model". 
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where the ωrf 27rhfrev is angul紅 frequency of the sinusoidal voltage, Trev -1/ frev 
is revolution period and h is the integer number called “ harmonic number". Substituting 

eq.(2.2) into eq.(2.3) , the relation the phase to the momentum di百erence can be obtained 

The longitudinal particle motion is expressed by two quantities , that is, the energy 

E( or the momentum p) and the phasc ゆ that is respect to the sinusoidal rf voltage. 

Let us consider “ synchronous particle" circulating on central orbit in the ring exactly, 

that has the energy of Es , and also let us consider another particle which has the energy 

of E circulating on different orbit from the central one. 

In the ring , the particle having the momentum p circuｭ

lates on the di百'erent orbit from the central one in propol二

tion to the momentum difference ムp = p -Ps as shown 

in Fig.2.3 , where Ps is the momentum of the synchronou 

particle, because the orbit of the circulating p紅ticles i 

bent by Lorenz force that is proportional to the momenｭ

tum. Then , it leads to the difference of the orbit length 

2 RF ACCEしERATlON IN SYNCHROTRO 

ムc = c -Cs as 

2 RFACCEしERATlONIN SYNCHROTRON 

as 

ムp
(~<Þ)turn = -27rhη7 (2.4) 

The other quantity, the di百erence of the 

energy per a tum (ムE)turn between the a parｭ

ticle at the phase ゆ and the synchronous parｭ

ticle at the phase ゆs ， is expressed as 

Voltage sinusoidal 
/吋 voltage

(ムE)turn = eV sin ゆ - eV sin ゆs , 
(2.5) 

where V is the arnplitude of the sinusoidal 

voltage and e is an elementary electric charge. 
Figure 2.4: The definition of the synｭ

These two di百erence equations of (2.4) and ch;onous phase ゆs and the phase of 訂bi-
(2.5) are the most fundarnental ones for the tr紅y particle ゆ.

longitudinal motion in the synchrotron without the bearn-cavity interaction. 

For the practical analysis, these two di百'erence equations are converted into the di百er

ential ones by supposing that ムゆ加d ムE 訂e not so ch加ging in a few 旬ms as 

ムC ムp
一一一Cs -pv  

Figure 2.3: The difference 

of the orbit between the arｭ

(2.1) bitrary particle and the synｭ

chronous one. 

where Cs is the circumference of the central orbit and α 

is called “ momentum compaction factor". The di百'erence of the orbit length leads to that 
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and ηi臼s called “、S叫1 i中ppage factor" which means that the frequency difference is defined by 

the relativity in addition to the orbit length. 

On the other hand , let us express the position of the particle in the ring as the phase 

of the sinusoidal voltage, that is，ゆ =ωρ27r fr(t , where frf is the frequency of it. 

Then , the differe恥e of the phase per a tum (ムゆ)山1 between the a巾trary particle and 

the synchronous particle at the phase of ゆs ニ Wrfts is expressed as 

(2.2) dムE~(ムE)turn
dt Trevs 

dムゆ I"...J(ムゆ)turn
dt Trevs 

(2.6) 

then , two differential equations are obtained as 

:t (託)法(sin <� -叫s)
dムゆ L2. . 2 η ( ~E ¥ 
一一一 … 一 ・一.

dt 一 同凶問VS 2゚ Es ¥ hωrevs) 

(2.7) 

(2.8) 

/ムfrev ¥ 
(ω)turn ニ(ゆ一弘)tu rn =ωrん-叫「一叫evs ( 五)

(2.3) 

These two differential equations of (2.7) and (2.8) are the most fundamental ones for the 

longitudinal motion in the synchrotron without the beam-cavity interaction. 

The analytical solutions for eq. (2.7) and (2.8) can not be got explicitly because of 

the non-linearity, but it is known that the properties of the motion can be evaluated by 

trajectory of the motion in the phase space [11] as shown in Fig. 2.5. 

7 
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Now we have an interest in the small amplitude of the motion around the synchronous 

particle, then supposing that ゆ-仇<< 1, we can obtain 

d2ムゆ 2 
1. ...，一 +ωJムゆ = 0
dt2 

r一一一-

fLW;evs TJe V cosゆs
2ゆß2Es

where Ws is called “ synchrotron frequency". As clearly shown in eq.(2.10) , the particle 

motion in small amplitude is expressed as one of the harmonic oscillator. The particle 

which is slipped from the central orbit is surely put back by the restore force. 

Separatrix 

μ)s ニ

FAV 

Particle 
Trajectory 2.2 Cavity Resonator 

Figure 2.5: The particle trajectory in the phase space for the longi~dinal motion in the 
ムE

synchrotron. 1n this case，弘二 o is chosen. Furthermore, W = 応二s

The restore force of the synchrotron 

oscillation is given by the sinusoidal 

electric voltage generated at rf accelｭ

erating cavity. The cavity is gene子

叫ly composed of the coaxial transmisｭ

sion line shorted at a terminal because 

it shows the resonant characteristics(see 

Appendix A). The schematic view of 

typical rf cavity is shown in Fig. 2.6. 

Thep紅ticles feel electric field at the acｭ

celerating gap. The cavity is driven by 

rf amplifiers. 

The particle in “ separatrix" can oscillate stably, whereas go away at the outside of 

the separatrix. This separatrix is called “ rf bucket" in the longitudinal motion of the 

synchrotron , and this oscillation is called “ synchrotron oscillation". The particles in the 

the rf bucket are guaranteed to stay in the ring, say the principle of “ phase stability" in 

synchrotron which is one of the most important property in the synchrotron. The area of 

the rf bucket is also called “ acceptance" , and that of the beam is called “ beam emittance". 

Of course, the beam emittance should be smaller than the acceptance, if it is not realized , 

the beam will be lost out of the ring. 

Substituting eq.(2.7) into eq. (2.8), we get 

d2ムゆ eVhηωfEV 
一一+ q s (sin ゆ sm 仇) = 0 . 
dt2 2ゆß2E泊

(2.10) 

(2.11) 

Amplifier 

Figure 2.6: The rf cavity resonator loaded with 

agnetlc cores. 
Since the revolution frequency of 

the proton beam is changing greatly up to a few Ge V region because of its heavy mass, 

magnetic cores 訂e generally loaded in the rf cavity for the proton synchrotron to make 

the cavity always have some impedance over the frequency range during the acceleration. 

Of course, it is also the reason for loading with magnetic cores that wave length of the rf 

voltage should be almost same as the length of the cavity on the range of hundreds kHzl'V 

decades 恥1Hz， which is typical frequency for the proton synchrotron. 

(2.9) 
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Evaluation of Cavity by Lumped Circuit Expression 3 There are two methods to keep the impedance on wide frequency range. 

It is very important for the analysis of the beam-cavity interaction to know the impedance 

of the cavity because the impedance of the cavity is mainly defined by the characteristics 

of the magnetic cores in the cavity for proton synchrotron. Although the cavity should 

be expressed as the distributed constant circuit precisely, it is almost equal to the lumped 

constant circuit near the resonant condition(see Appendix A) , so let us consider how to 

express the characteristics of the magnetic cores as the lumped constant circuit model. 

As described in section 4, the model of the cavity impedance wiI1 a百ect on the wake 

voltage because the phase of the cavity impedance plays an important role on such calcu-Frequency 
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Series and Parallel Expression for Magnetic Loss 

lation. 

3.1 Figure 2.8: The untuned and the broad 

band impedance type. 

pa
 

m
 

Z
E
I
A
V
 

Let the magnetic core magnetize by rf 

Figure 2.7: The resonant 仕equency tuning 

and the naπow band impedance type with 

depending on the change of the revolution 

frequency. 

Rp i唱

Rs 

HoeJωt ， then magnetic 

Boej (ωト 15 ) is generated, 

magnetic field H 

ftux density B 

where 6 indicates the phase difference be-
reaJized hown in Fig. 2.7 , which i One is the reson如t frequency tuning type [12] as 

L; tween H and B caused by the some magnetic 
by putting the DC magnetic f�ld on the magnetic cores, that is, the permeability of the 

loss mechanisms [15 , 16, 17, 18]. In th﨎 case , 
cheme, there are cores is changing and it leads to the resonant 仕equency change. In thi 

no restrictions for the band width of the cavity impedance, and many proton synchrotron 
the pe口neability of the core is expressed as 

B Bn ", Bn _ Bn 
μ =-= 」e-30 = ニヱ cos 6 -jニエ

H Ho - Ho ---- J H，。

have employed this scheme so f，紅.

in 6 

(3.1) 
case, hown in Fig. 2.8. In thi The other is the resonant frequency untuning type as 

(b) 

Figure 3.1: Two di百erent expressions 

about rf loss at the magnetic cores. 

(a) 

and a complex permeability is defined as 

enough to cover the the 匇pedance of the cavity must have broad-band characteristic 

frequency range [13 , 14]. 

(3.2) μ = μ - Jμ 

Since the impedance of the rf cavity for the proton synchrotron is almost de白ned by 

Bn ~__ , __..J 11 Bn _:_, 'T't..._ ..1 
where 〆 = 常ω6 andμ= 五imdThe μpart indicates the contribution to the 

magnetization 匤 deed, and μ11 part 匤dicates the magnetic losses. The ratio of 〆 toμ11 is 

the character�tics of the magnetic cores , it is very important to investigate them. The 

es The resistance is caused by magnetic 10 core has some inductance and resistance. 

(3.3) 

defined as “ quality factor" of the magnetic core 

ι= tan6 = 工
μ1 Q 

where the input rf magnetic f�ld does not contribute to the magnetization because of 

The analytical expressions for the magnetic cores and their effects to the bearn loading 

and the instability will be described in section 3.1 and 6, respectively. 

some magnetic mechanisms [15 , 16, 17 , 18]. 



By the way, since Ls and Rs 紅e coupled strongly, a11 p紅ameters 訂e necessary in this 

expression when we calculate the resonant frequency of the cavity. So there is another 

expression using the parallel expression as shown in Fig. 3.1 (b). In this case, the circuit 

is simple and this expression is used usually for the cavity model. Let us consider as 
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The high Q means low magnetic losses in thc core assuming 〆 is constant. This quantily 

is very important to investigate the behavior of the rf cavity. 

Then , the de自nition of eq.(3.2) indicates the series expression on lumped circuit as 

shown in Fig.3.1 (a). On this expression , the impedance of the magnetic core Zms be-

comes 1 11  
一一一

Zr叩 jωLp Rp 
Zmp = Zms 

(3.11) 

(3.12) Zms 二 jωLs 十 Rs . (3.4) 

Using a formula of an inductance Lt for the coaxial transmission line 

per length l , 
Now, since we want to express the inductance and the rf magnetic loss of the magnetic 

宇 1 1 
core by a complex inductance L~ as -;;一二一一一， then 

p --Zmp jωL; 

(3.14) 

μb 
Lt = 士一lln ..:... 

乙7f α

(3.5) 
1 1 

(3.13) 
μμ;jμ; 

becomes useful expression. The quality factor is expressed as 

where αand b are inner and outer radius of the core as shown in Fig.3.2 , let 

us express the inductance and the rf magnetic loss of the magnetic core by 

a complex inductance L~ as 

μ;-jμ:b 
L;=tμolln て二 μolln'=' = (μ; - Ms)Lo ， 

Lπ a 27f α 

ー
均
一
d
a

-ｭlu 
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n
A
U
 n

 
a
 Figure 3.2: 

The configｭ

uration of 

the toroidaJ 

core. 
μ b 1 (μI42μ~ 2 f.l; ¥ 

L;= 一μolln 一 =-lf ぅ -J ヮっ |μolln ..:... 
p 2πα2π 〔 μγ+μrμγ+μ~<!) 

= ( 2-2 ,\ μpμp μpμp ¥ 
.J . ') ..') I .uo ・

μf+μ;2JU+μ~2 } 
(3.15) 

(3.6) 
Thus , the complex inductance L~ is defined by 

μ0" b 
where Lo 二士~lln ー. Then , the equation (3.4) becomes 

L7f α 

Zms = Jω(μ;-3μ~)Lo = Jωμ;Lo+ωμfLo (3.7) 

Comparing eq.(3.4) with (3.7) , we obtain 

Ls = μ~Lo 

Rs= ωμ:Lo 

(3.8) 

(3.9) 
Multiplying ~ on each side of (3.13), we obtain 

jωL。

F
3
 u

 

h
u
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1 1 1 1 1 1 1 
一一一一一 一一十一

jωμLo JωL~ Zp juJμ~Lo j . jωμ;Lo jωμ~Lo ωμ~Lo (3.16) 
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Comparing eq.(3.11) with (3.16), we can get 

(3.10) 
Lp = μ~Lo 

Rp 二 ωμ;Lo

(3.17) 

(3.18) 川f
Now, an important quantity is derived such as ~ J, this is proportional to the rf magnetic 

Q 
loss in the series expression. 

13 
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Then , 

μ~ 1ωL刷
工二 tan b 二一-- --Jニ

μ~ ----- Q Rp 

ん=叫=仰 μ0114 (3.19) 

Now, an important quantity is derived such as J-，，~Q f , this is proportional to the rf magｭ

netic loss in the parallel expression, and this p紅白neter is usually used to eva1uate the 

characteristics of the magnetic cores. 

Comparing eq.(3.6) with (3.15) , we can find that there are re1ations such a 

, ,,2 

μr=fP内つ
Sμレ +ltf

12 11 

μ: ーん μp，，- , 2 ,,2 
μ~L + μ; 

(3.20) 

(3.21 ) 

between the series expression and the parallel expression , and they are rewritten by using 

Q as 

， μ; 
μs 一一ーτ-

1 + 手

μfF=JL 
s 1 + Q2 

(3.22) 

(3.23) 

From these叩ations ， f.-"~ is almost sarne as μ: in the high Q region 

Since the treatment of the ana1ytical ex- >、
場_，

pression becomes very complicated in the se- D
句
。
E
」
ω
止

ries expression as shown in next section, the 

parallel expression has been prefe打ed for the 

simplicity on analyzing the beam instabilitie 

so far. 

As shown in Fig. 3.3 , we should note that 

,ua 
、 . 

. 
・. . 

/
，μ
 

Frequency 
the peロneabilities ， μI and mu" are not always 

Figure 3.3: The frequency dependence of 
constant. ln case of high Q cavity, the cavity 

the complex permeability. 
impedance is nearly zero except for the reso-

nant frequency range. These models are consistent each other and good approximation 

because we can assume the permeability is constant around the 仕equency where the cavｭ

ity impedance is large. However, the cavity impedance is not negligible for wide range in 

case of a low Q cavity. We need to consider these two circuit model 訂e not exactly same 

when we assume that the circuit parameters, that is , the inductance and the resistance are 

constant for all frequency range. 

In the proton synchrotron the choice of the low Q magnetic core is probable in deed, 

the e仔ects of the difference between the circuit model wilI affect to the beam-cavity inｭ

teraction. So both cases wilI be shown latter sections to prove the e百ect of the difference. 

3.2 Lumped Circuit Expression of Cavity 

From the above discussion about expressing the magnetic loss , there are two models 

which present the rf cavity as the lumped circuit of the cavity. They are shown in Fig. 

3.4. 

し

Ra 

(a) 
、
1

・
'

h
u
 

，
，e
‘
、

Figure 3.4: The lumped circuit model of the cavity. Para11el expression(a) and series 

expression(b). 

Let us call the model (a) as “ series expression" with respect to the magnetic loss of the 

core and (b) as "parallel expression". In Fig. 3.4, C is a capacitance of the cavity and Rα 

is an external resistance. Furthermore, the inductances of Ls and Lp are a1ways constant 

over all frequency, and Rs and 1込征e also regarded as the constant over all frequency 

for the simplicity, though the magnetic loss is changing depending on the frequency. The 

15 
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(
・2h〈
)
一
N

一

(3.24) 

(3.25) 

value of Rs and Rp 紅e selected at the resonant frequency as 

Ro = Wrs主-

Q 
Rp ニ WrpLsQ . 

Cavity in Series Expression 3.2.1 

Next, the series expression in Fig. 3.4 (a) is adopted to the impedance of the cavity ZふJ)
。

Fr巴q.(Arb.)

F陀q.(Arb.)

rs2 

。

(
・
凶
u
-
u
)
U

凶
司
Z
仏

(3.26) 

(3.27) 

+ +7μjし

Zs(ω) Rα Rs + jωLs J 

Ra(Rs + Rα)(R/ + ω2 Ls 2) 

( ω 2" ) (Rs 2 +ω2 Ls 2f Ra 2 十九)2+ \ωC Rs2 ↓ ~2 Ls 2 ) 

Jω_ "..u Ls~_ ') ) 円W2Ls2)Rα 
R/+ω'2L/ ) 、，

/ωLs ¥ (Rs+ 九)2 + ( ωC- ) (R52+ω2 L/)2 Rα2 
¥"'-'''' R/ + ω2Ls2 ) 

R
 

Zs(ω)= 

such as 

of the series expression about the absolute value and the Figure 3.5: The characteristic 

phase. 

as and we obtain the absolute value of Z 

(3.28) 

1 

伽Rルド RS23J
IZs(ω)1 = Rα (RS2 + ω2L/) 

Cavity in Parallel Expression 3.2.2 

adopted to the imped組ce of the cavity Zp (ω) 

(3.32) 

(3.33) 

1 1 1 1 
一一一=一+-=-+一一 +JωC
Zp(叫ん RαjωLp

=h 1+ -L+jωC. 
R旬-h-jiωLv
A ‘づP Rp+Ra J --1' 

The parallel expression in Fig. 3.4 (b) i 

such as 

The frequency ωrsl where Z s (ω) becomes pure real number is derived from eq.(3.27) as 

(3.29) っ 1 (噌 CR/ \
ω凶=五万 い - ---y;:-) 

and the frequency Wrs2 where IZs(ω) 1 becomes maximum is derived from eq.(3.28) a 

(3.30) 
円 1 I R. ¥ 

ωdt 二一一一 l 一二+ 1 I 
山 LsC \Rα/ 

The feature of the series expression is that the frequency ωrsl 1 

(3.34) 
ω(ωC ーヰ)弓2

1+ (ωC- 右)月2

Using R~ = Rp石hJ'different from ωrs2 as 

shown in Fig.3.5 , so it makes the anaJysis of the cavity difficult. 1n the series expression, 

nt
d
 つ

-V
吋

円
4\

、
E
l

-
-
/

f
p一
ー
一
叫

R

一
一C

 
ω
 

〆
'
'
'
'
tt‘
、、

+
 

寸
E

ム

Zp(ω)= 

(3.31) 

let us define the resonant 仕equency ωrs as 

←示(~: + 1) 
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(3.38) 

let us define the resonant frequency ωrp as 

ωrp2- L;c (3.35) 
1 

1 + (ωC 一志) ~2 

and we obtain the absolute value of Zp a 

|み (ω) 1 =ぺ

Both expressions are consistent each other and good approximation for the high Q as 

shown in Fig.3.7 and 3.8, where the frequency ωrs1 is close toωrs2 ・
The 丘equency ωrpl where Zp becomes pure real number is derived from eq.(3.34) a 

内 1
ωTP1=E51 

(
壬
〈
}
円N一

【
戸
七
〈
}
同
一

(3.36) 

(3.37) 

and the frequency ωrp2 where IZpl becomes maximum is derived from eq.(3.35) as 

円 1

ωrP2=EE 

Freq _ (Ar七)

。

。

(!
宏
司)y
z
ι

Freq .( A巾 )

。

。

{
凶ω司
}司
君

E

F陪q . (A巾)Fro叫 (Ar七)

(
.
D
』
〈
)
一
N

一

Figure 3.8: The impedance and the phase 

of the cavity in the parallel expression 

loaded with high Q magnetic core 

Figure 3.7: The impedance and the phase 

of the cavity in the series expression 

loaded with high Q magnetic core 
Freq.(Arb.) 

中2
。

(
-
∞
u
-
M
)
U

凶
司
【
{
門
戸

But in very low Q region , the behavior of the series expression is di百'erent from a 

real cavity impedance. The Figure 3.9 shows the comp紅白on between the measurement 
。

result of the rf cavity loaded with the magnetic alloy(see Appendix B) of Q r'V 0.6 and the 

analytical estimation using the series expression. Both absolute value of the impedance 

IZI and the phase of the analytical estimation are not sirnilar to the measurement result. Fr巴:q.(Arb.)

Figure 3.6: The impedance and the phase of the parallel expression. 

The feature of the parallel expression is that the frequency ωrpl is equal toωrp2 as 

shown in Fig. 3.6, so it makes the analysis of the cavity easy. In the parallel expression , 
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On the other hand , they are similar in the parallel expression as shown in Fig. 3.10. 
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Figure 3.9: The measurement result(thick 

line) and the calculated result(thin line) 

in the series expression for the cavity 

impedance. 
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Figure 3.10: The measurement re-

ult(thick line) and the calculated reｭ

sult(thin line) in the pむallel expression 

for the cavity impedance. 

The reason why the estimation in series expression is di百'erent from the real cavity 

impedance is that we derived the lumped circuit model where the magnetic Joss was alｭ

ways constant over the all 仕equency. However, we are interested in the impedance of 

the cavity ne紅 the resonant condition , and we w組t to investigate how the difference beｭ

tween the 仕equencies eq.(3.29) and (3.30) affects on the beam loading and the instability. 

Since the measurement result of the cavity impedance shows such frequency difference 

in practice, we will investigate the beam loading and the instability in both expressions ・
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4 Longitudinal beam dynamics with beam-cavity interｭ

action 

The rf cavity gives the energy to the particles through the electric field , but it should not 

be ignored that the particles also give the energy to the rf cavity through the electric field 

in high intensity case. The 白eld induced by the p訂ticles is called “wake 白eld". Especially 

in the high intensity proton synchrotron, the magnitude of the wake field becomes as same 

order as the one of the rf cavity, and it causes the beam loading e百ects and the instabilities 

which lead to the particle loss in the ring. 

In this section, the analytical expression of the longitudinal motion associated with 

the interaction between the cavity and the beam wiU be described. 

4.1 Wake Voltage and Lumped Circuit Expression of Cavity 

4.1.1 Wake Voltage in Parallel Expression 

The parallel expression as shown in Fig.3.4 (a) is adopted to the impedance of the cavity 

as Zp(ω) in eq.(3.32). Let us consider that a point like particle which has a charge e is 

i吋ected to the cavity. At a time t = 0, a point like charged particle ec5(t) passes through 

the cavity gap , the response of the cavity to the particle is expressed as 

Z(s)=i 
P\~J C ヮ 1 1 

&十一一ごナ十一一一
じttL CLP 

(4.1) 

where s denotes a complex frequency. In order to know the time response of the gap 

voltage 1~(t) ， the inverse LapJace transform is performed to the Zp(s) as 

~(t) α ￡一 1[Zp(s)] 

=円 (∞s 1 1 克E

EZ;-F可 t- J古一品pSI cL-可 t)
(4.2) 

Now let us define the quality factor Q~ of the cavity impedance for the parallel ex-
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of the energy conservation low [19]. 

Figure 4.1: The wake voltage. A p紅ticle passes through the cavity gap at t = 0, then the 
w叫(e field is excited and it is gradually damped. The amplitude and the damping time 

depends on the impedance of the cavity. 

Time(Arb.) 

(.
D』
〈
)
ω者
、
少

(4.3) 

(4.4) 

(4.6) 

(4.5) 

Then , some important parameters in order to investigate the characteristics of Vp( t) 

R: 
Q:J == --S一?

「 μ)rp j_~p

山'ro
α 一一一ー-

p 2Q~ 

百二=叫n ， 1 1 一一一一文
l' .yv 4Q~k 

tan6,., = _ cxp 

ー叫)p

presslOn as 

and this Q~ is different from Q. 

紅e defined as 

rewnt-Using equations (4 .4),(4.5) and (4.6) , the time response ofthe gap voltage v~(t) i 

Induced Voltage and Gap Voltage \
1
1
1
1

ノ

千
L一竹n

 

.
司

E
A2αpR~e一α什 ('08巧t- 竺

・ 1μJ¥ """'p 

ten as 

(4.7) 

(4.8) 

ら(t)

I 2αR;e-αpt C08(巧t -6
p
) 

\/1 ー戒す

As seen clearly， αP is a damping constant，巧 is a frequency, and 6p is an initial phase of 

Vp(t) , respectively. 

the characteris-The voltage Vp(t) , which causes “ wake field" at the cavity gap , show 

tics of the damped oscillation as shown in Fig. 4.1 , and the field at the cavity gap for the 

ome periods according to the damping parameterα restoration force is disturbed during 

due to the beam-cavity interaction as shown in Fig. 4.2. As clearly seen, the amplitude of 

Vp(t) depends on the effective resistance of the cavity R~ and the quality factor Q' , and 

the damping time depends on the quality factor Q'. By the way, the amplitude of 九(0) at 
3伺 400 5仰

Time(nsec.) 
200 1帥。-1伺

Figure 4.2: The example for the wake voltage(dotted line) and the nominal rf sinusoidal 

voJtage(thin line). The beam is experienced the sum of both voltages(thick line). 

the time t = 0, which is the infiuer 
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4.1.2 Wake Field in Series Expression characteristics of the wake field are defined as 

Next, the series expression in Fig. 3.4 (b) is adopted to the impedance of the cavity as 

Zs(ω) in eq.(3.26). Let us obtain the response of the cavity in the same way as the parallel 

expression. In a time at t = 0, a point like cha伊d particle eo(t) passes through the cavity 

gap, the response of the cavity to the p白ticle is written as 

μ)rs 

α 一一一-s - 2Q~ , (4.12) 

(4.9) 

一1
一
川
町
主
主

一
一4

一
一
一
凶

一

1
α

一

h

=

 

=

J

 

一
片
岡

(4.13) 

ζ(3) 二た2+ (EL;+2) :志位+1) 
(4.14) 

Using equations (4.12) , (4.13) and (4. 14), the time response of the gap vo1tage Vs(t) is 

rewntten as 

In order to know the time response of the gap voltage t ~ (t) , the inverse Laplace transform 

is performed to the Z s (3) , 引t)α (2a，Rα-4e-α t (cos叩一千叶

= (2a,R. -R. ~:) ~ 1 + (αs-D2 ーαst cos(百戸 - os) 
αL 一一

(4.15) 

Vs(t) α 1' -1 [ Zs(3)] 

=古バ ( 4.16) 

Q
U
 

O
 

ρ
し

/FIt--¥ 

c~， (去 +1) -H品;+2)t

(4.10) 

As seen clearly， αs is a damping constant, Ws is a frequency, and os is an initial phase of 

Vs(t) , respectively. 

The voltage Vs(t) causing the wake field at the cavity gap also shows the characterｭ

istics of the damped oscillation as Fig. 4.1 , and the field at the cavity gap is disturbed 

during the period according to the cavity paramete工 As clearly seen, the amplitude of 

Vs(t) depends on the magnetic loss Rs , the external resistance Ra, and the damping time 

depends on the quality factor Q~. 

1 & 
CRa Ls 

cL (会 +l)- t (式+会)2

Now let us define the quality factor Q~ for the series expression as 

QI L;.}rsLs 

ーごと +Rq
CRα 。

(4.11 ) 4.2 Synchrotron Oscillation Including Wake Field 

this Q~ is different from Q. Then , some important parameters in order to investigate the 

In order to consider the inftuence of the wake field to the synchrotron oscillation, the 

energy loss of the particles caused by the wake field should be included in eq.(2.5). Now, 

we investigate no acceleration case, that is，ゆs = O. Let us consider two bunches in the 

ring as shown in Fig. 4.3 , the 白rst one is set in the 1st bucket and the other is set in the k-th 

bucket, where the ring has h buckets. Supposing that the bunches circulate for n + 1 turns 

since they were i町ected into the ring at the 1 st turn , then the di妊erence of the energy of 
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the bunch between the η 十 l-th and the n-th tums is 

日1 = e¥. sin rP l ，n+l 一 乞川 ，m- 乞州，m
m二o m=O 

~E2 = fY sin ゆい+1 -L eW2，m 一芝川，rn ，

(4.17) 

now 

2nd 1 st 
Bunch Bunch 

past 

2nd 1st 
Bunch Bunch 

(4.18) 
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て
」

ー争 ・'
n-th turn 

where the su伍x “ 1 竹 and “ 2" denote the bunch number,“n" and “ m" denote the turn 

number, and HT is the wake voltage which is defined by eq.(4.8) or (4.16). The effect 

of the wake voltage is the summation made by each bunch in now and the past. For 

simplicity, let us use the standard representation for the wake voltage 1ゲ as

(ト k+1}与(ト1}与

h三L
(l)丙

Figure 4.4: The time axis for the formalization. 

H・ (t ) ニ \ bOe-α t cos(wt -0) ( 4.19) 
Using eq.( 4.19) , the e叫qua仙tio∞n (件4.17η) 加d (件4.1凶8) 紅e written as 

ムM叫Eι1 山川i凶帥nØ州ゆ仇i 叶n+ l -一 ;トいρι山L凡L0 ∞ 

dι内もい0 ￡ ffパαベ{ <P l ， n川川川nぺ勺勺Tγ七つ1℃γ1:二ププr;ff;アアd町l ，m+川一吋)

in order to apply any type of the cavity model , where VbO is the amplitude of the wake 

voltage derived by substituting t = 0 into eq.(4.8) or (4.16). 

m=l 
1 st 

bucket x cos [w { ~lt71m + (叶 1- m)引- 0] 

-eVb。玄r
m=l 

Synch rotron 
Ring 

x cos刊1172m ー (k - 吃+(叶 1- m)引- 0] (4.20) 

2nd :ー
Bunch 川

ムE2 = eV 叫2川l 一 ;ト炉何e尚仙凡恥O ∞ 
n _ . 、

'fT ~ ーαf2，n+l -rp2 ， !!:!:.+(η+ l-m)九全}
-e VbO ) . e l ~rl ~rt ) 

m=l 

x cos [w { ぺ;ゆ2~+ 付 +1-m) fzZ )-61
Figure 4.3: The configuration of the bunch filling. v 寸 p-Q{~tJ<P l ， m - (h- k+1)か(n+l-m)h元)

VbO ノーじ

s [中21プ1 ~-(h-k+l)ご+山 -m)hZ )-6| 問
Since the equation (4.20) and (4.21) 紅e so complicate, let us consider the simplification to 
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the sumrnation terms by the fact that thc w紘e 白eld is damped quickly in a few revolution , 

which is true fo1' the rf cavity in the proton synchrotron in deed. The details are described 

in Appendix C. After simpli自cations ， we obtain 

ム~El = elι山川r S瓦冶S白sin州n

一寸eι山九恥Oe α叫州(仰h一糾山山1り)元 cos ~いw (行門ゆ仇1 附川1 一 ゆ仇仇叫1 ，n川::+刊hβ竺) -ó斗; 
l \ ωrfωrf J J 

一α(h-k+l) ， ~7r. ~~~ 1:-; f ゆ l ，n十 l ーゆ2 ，n+l ゆ l ，n+l ーゆ 1 ，n π 1 ;:1 eVbOe ω;:r cos 1ω~ Yl ,TL -r 1 
YL ,H -r 1 + 'l' 1 ,"-r 1 

'1' 1 ," + (h _ k + 1)-=-:_:_ ~ -� 
I l Wrfωrf Wrf) J 

(4.22) 

ムE2 = eV sin 1>2 川1 一 ;d内~いwCωO
一寸e尚仙九Oe α(kー 1)号 cos ~ w ( ~2 ，n+l - 1>2,n + h竺) -� ~ 

l \ωrf ωrf J J 

-o(k-l) ， ~7r. ~_~ 1-0 r ゆ2附l 一ゆl ，n+l ゆ2 ，n+l ーゆh π1 ,, 1 -e ì'bOeω;:r cos 1ω~ Y': ,n-r l Yl ,n-r l + Y .L,n-r 1 
'l' L ,n + (k _ 1)ー ~-ﾓl 

l ωrf Wrf ωrf J J 

(4.23) 

Comparing eq.(4.22) and (4.23) with eq.(4.20) and (4.21) , these simpli白catlûns mean 

that the wake voltage exists in the ring over two turns on each bunch , that is , the summaｭ

tion may be pe1'formed only on the m = 1 term in eq.(4.22) and (4.23). So the equation 

(4.22) and (4.23) are valid in such condition. Afte1' this , these equations become the basis 

of the analysis for the synchrotron oscillation including the wake voltage. 

Since the equation (4.22) and (4.23) have a non-linear form for 仇 let us consider to 

transform them into a linear one in order to investigate the motion of the bunch clearly. 

Deriving following relations from eq.(2.8) such as 

dゆ1 2π九η
一一=一一一:_ ' 6E， 二 G6E， ‘dt 2゚ Es ム， , 

(4.24) 

dゆ2 2π九η
一一=一ーァ~6Eっ =GムEっ‘dt 2゚ Es ゐ.. , 

(4.25) 

where ゆ l ，n = 0 and ゆ2 ，η= 0 are chosen , so ゆl ，n+ l ーゆl ，n -ゆ1 and ゆ2 ，n+ l - ゆ2 ，n - ゆ2 ・
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Substituting eq.(4.24) and (4.25) into eq.(4.22) and (4.23) , respectively, we obtain 

2πhd~E， 
一一一τァ:...:.. = eV sin ゆ1 一 ~eVbO cos ﾓ 
WrfαE 乙

川k ((ο企E， _ 2π\ _1 
-eVbOe 山ωrf COS 何ト==-:. + h-=-:_:_ トハ

l \ωrfωrf / J 

(h-k+l)k 1_ ( ゆ1 ーの +GムE1 1 , , ~ ¥ 2π1 ,1 -eVbOe α(n-IC -t- J ) ..";rf COSω~ 'f/ 1 'f/Z I ~ '-4L J  J + (h _ k + 1) ~ ~ _ � 1 

L lωrfωrf J j 

=山川一 jト炉い尚山凡O ∞
一寸e尚内九VbOe〆e一α崎九吃元 C∞ωOω州s(GωムM叫叫Eι町1)∞ω吋S斗↓ ヒ三竺竺立町~(仙Gωムt::. Eι1+川)-ó • 

l ωrl J 

+尚Oe一α勺州GムE1 ) sin ~ヒ竺(G~El + 川) -ó • 
lωrl J 

29 

一久Oeα(h-k+l)元 ω(ゆ1 一ゆ2 +GムE2 ) ∞s I W ~ Wrf {ゆl 一ゆ2 +GムE2 + 加(h-k+1)} 一 ól
1 一一 | 

lωrl I 

+刈Oeα(九一糾 l)え sin( 1) l -ゆ2+ GムE2 ) sin 1 竺二型{1>1 仇 +GムE2 +州 -k+1)}-ól
|ωrf 

(4.26) 

27rh竺主 = eV sinφ2-l尚o cos ﾓ 
Wrfαr ~ 

一円hk ((G~Eつ _2π\ _1 
-eVbOe …凶rf COS く w ( -=-一二十九一一 1 - � > 

l ¥ Wrf Wrf / J 

(トl)k f-r 1>2 -ゆ1 + GムE2 1 , ~ ¥ 2π1 .1 -eVbOe-αl lí: -l) ';;~'f COSω ~ 'f/Z 'f/ 1 I ~..... .LjZ + (k _ 1) ~ ~ _ � I 

I l ωrf ωrf J I 

=山Mーがo cos ﾓ 

一品Oe一吋ω(G6E2 ) COS ~ ヒ笠(GムE2 + 2州)一パ
lωrf J 

+尚ofhin(GムE1 ) sin ~ W -出(GムE2 +2刊)ーパ
l Wrl J 

-eVbOe 吋一味 ω(ゆ2 一仇 + G~El) ∞s 件三~{ゆ2 一仇 +GムEl+州-川-� 
|ωrl I 

+eVbOe α(k - l)元州仇-ゆ1 + G6E1) sin I ヒ竺{仇-ゆ1 + G6E1 + 2介 (k 一 l)}-ól
|ωrl I 

(4.27) 

These eq.( 4.24) , (4.26) and (4.25) , (4.27) 紅e simultaneous di百erential equations fo1' 
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the synchrotron oscillation including the beam-cavity interaction. 

4.2.1 Equilibrium Phase and Beam Loading 

Now, let us define the “ equilibrium phase" , that is, the phases of ゆ 1 5 and ゆ25 that satisfy 

ムEl = 0 and ムE2 = 0, respectively. They are defined as follows; 

ell sin れ =leli30Cosd+FILop-αflf号 cos (竺二竺~2刊 - c5 ) 
τ ム ο 1 一 一 \ ωτf } 

+e1 bOC一α(h-k+1)元∞s(ゆ15 一九)∞s l 三二三竺 {ゆ15 -1>25 + 2π (h -k 十川 - c51 

| ωrf J 

- eVbOe α(h-k+1)元州ゆ15 -1h5) sin 1 ヒ三~ { 1> 1S ーゆ25 +州 -k+l) } - c5 1
I Wrf J 

山i M 2 5 = iむ←いいいe1尚山ωI九恥恥いいも匂いM山Oμ仰山ωC∞ωωOωωS吋5 付川叫刊1九1 bOe山ω円0〆e
\ ωτ式f J 

+尚oeα(k-l )年 c州ゆ2s -ﾘls) cos 1 竺二型 {似-ゆ15 + 27f (k -1)} -c51 

| ω~ J 

-eVbOe 州一味叫ゆ25 -1>15) sin !と出 {ゆ25 ーゆls +針(k-l)}- c5 !
i ωrf J 

These equilibrium phases mean that the 

bunches don' t lose the energy under the efｭ

fect of the wake field as shown in Fig.4.5 if 

the bunches 紅e just on those phases. Sayｭ

ing in other words , the continuous energy loss 

will occur on the bunches , then the pa.rticles 

may be lost if the bunches are on the di百erent

(4.28) 

(4.29) 

original 
sinusoidal 
rf voltage 
+ 

wake voltage 

Phase 

phases from the equilibrium ones-This effect Figure 45:The equilibrium phase under 
the beam loading. 

is called “ Beam Loading". ln the high inten-

sity synchrotron which has no empty bucket, the beam loading effect is compensated by 

changing the phase of the rf voltage, which make the condition of ムE = O. However, 

it is not realized under a certain condition, and it will be described later in section 5.1 as 

“ Periodic Transient Beam Loading". 
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4.2.2 Small Amplitude Motion with respect to Equilibrium Phase 

Next, let us consider the amplitude of the motion which is expected to oscillate around 

the equilibrium phase such as 

!.p1= ゆ1 ーゆ 15 ， 1.{J2- ゆ2- ゆ25 , (4.30) 

where 伊1 << 1 and ψ2 << 1. Substituting eq.(4.30) into eq.(4.26) and (4.27) , then also 

subst�ting eq.(4.28) and (4.29) , we obtain 

?竺竺旦= ell cos 仇5 sin ψ1 
μ)rfαE 

+eVbOe一αh35sin(GムE1 )

x {cos (守旧-�) sin (守山，) +sベ?一)}
-e α(h-k +1);;f sin(GムE2 十伊1 ーの)

• 1 , ¥ Iω-ωrf r , ~ / . . _ , ~ ~ I 
×卜 sin (ゆ1s ーゆ25) cos 1 一一一{九- 1>25 + 2π (h -k + 1)} -c51 

L I ωrバf I 

一 C∞ω叫O凶S

I (μω，J) 一 ωrげf( J ....... / ~ ...." .....1 
一 C∞ωOωs(陥ゆ仇1>15凶s 一ゆ仇似25) cos I 一一一{仲怜ゆ仇15 ーゆ25 + 2π (h -k + 1)} -� 1 

l ωrf I 

X sin {守山+ 1.{J 1 一仇l}

+ sin( 1> 15 ー砂川? {ゆ15 -1>25 + 2π(h-k+l)}-ð] 

X sin {守山+~， -~2l }] 
(4.31) 
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2主?宇 = e 1/山山山y、hωCωωOω帥…S吋ゆ
+e1凡仏仏Oe一αh三元号 SI山n川(GムE2 )) 

x { Cベ干2刊-8) sin (守山2) +sベ守2吋 -8)} 
-e α(ト 1)元 sin(G~E1 + 92 -(/)1) 

×卜in(ゆ2s -(hs) cos 巨立{ゆお ーい 2π(k-l)}-5]

-cos(いIS) sin 円竺{ゆ28一一(k 一川

叫s 一九ω仙山山)μ凶同C∞cosωs [陪守干立{怜仇ゆ仇似2s一一(k -1)} -,,] 

n{守立山+ <(J2 一 伊，)} 

巾(いIS) sin 日立{ゆ25 -C゙lS + 2π(k-l)}-8] 

×ペ守山+92 一仇) }]

32 

( 4.32) 
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Differentiating eq. (4.24) and (4.25) on t , and substituting eq.(4.31) and (4.32) into them , 

finally we obtain two differential equations as follows; 

ぷ引2551 = levcos ゆ1s
-eVbOe一的-k+l)考 sin 1 ゆ18 ーのs+E竺! {ゆ 18 一ゆ28 一州 -k+l)}+ と皇制-81 

Lωrfωrf I 

-eVbOe α(h- k+ l)元 cos I C゙1S - ゆ2s +ヒ竺~ {ゆ18 ーゆ28 一州 -k+ 川+E竺lM ー 81
L ωrfωrf I 

1_:_ '0 -ωrf _:__ W -ωrf (2πhd伊2 ¥ 11 X I Stn-一一一一ω1 +Stn-一一一一一 l 一一一一一一 ω') II I 只 ln (山

l ωrfωrf \ ωrf dt r L 

J I I 
----T L 

+尚oe一αh奇 心iII( Zニ白川ーパ+ COS ( 互二三立27rh ーパ sin (互二竺f 27rh d竺~ ~ 1 
l \ ωrf ) \ ωrf } \ωrfωrf dt J J 

n(竺坐)
ωrf dt 

+e 'もoe一的-k+ l )元 sin I ゆ 1 8 -dJ28 + ヒ竺~ {ゆ18 一ゆ2s 一州 -k+l)}+ ヒ竺2尚一 81
Lωrfωrf I 

n(竺坐 - 'P2) ωrf dt T.. J 
(4.33) 

主( 空) 
2 

252 = ド附川Vcω 
一~凡恥VbOe〆e一寸吋吋叶和叩α叫州朴恥川(伊件仰川kトい川一→叶1リ)元払hS引i巾巾n [ql巾[ドいドゆ仇九2s 一 ゆ1s + 干 {dJ2s - C゙18 -2 π ( k -1 ) } + TM -61 
-eVbOe -Q吋 cos [いIs+守 {九一九 - 27r (k 小守主2πh -5] 

1_:_ W ー ωrf '0 -ωrf (2πh d<P2 ¥ II 
x l Slllτ「ψ2 +smコ~ \可否一 ψ1 ) 11 sin <P2 

均一α明 {sベ干2πh -8) + cos (守2刊-8) sベ守空誓)}
X sin (告制
叫oC α(ト 1)え sin [ゆ2s 一仇s+干 {ゆ2s ーゆI s 一州 - 1)}+守山l

n(572i) ーーIー - <Pl I 

(4.34) 
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Translating eq.(4.33) and (4.34) easily to see, 

5字字5去1〕十叶叫叫叫Al州川州山1パρ訓(作ω仰tの巾)sベ空守引)ト+ 軌引叫州川(収例仲川tの巾)片Sベ舎?一 ψサ2う) + C1 (収山t

5字令3F2 +叫4七州山2バ山ω(t例仲山t功巾)μS

34 

As clearly seen, the equations (4.35) and (4.36) are di百erential ones which show the nonｭ

linear coupled oscillators with damped systems. Furtherrnore, since the coefficients of 

each variable are varying with the time, these systems include the aspect of “ parametric 

oscillation", which is complicated to understand the motions. So we neglect the time de-
dω 

pendent terms in A(t) ,B(t) and C(t) , because they have a form ポ rvGムE， which is 

very small ra伽伽nzf均πh -o. Using such assumptions and the linear approxiｭ

mation for 'P << 1, we obtain linear simultaneous equation as 

d2伊 1 eVTJWrf COS ゆ ls
dP=-32EsTmVl 

eVboTJWバーα九2!é. . (w ー ωrf.... 1 ,\ d 
l 一一一~27r h -0 I 二工土

2゚ Es - ----\ωrf 
_.. . v 

- ) dt 

eVbOTJWrf2 ーα(h-k+ 1 )竺
ドーrr

2介hß2Es -

|ω-ωrf r I I ¥ • ....... I 1 r -1. ¥ 

" 

(" I 
x sin I (ゆ 1s 一九) 一 一一一 {(九 - cP2s) + 2π(h-k+l)}+ol(伊1 -1.{J2) 

| ωrf I 

eVbo 1]Wf-α(h-k+ 1 ) V'- ，，"T ~ Jw rf sin(ゆls 一九)
2πhß2Es 

x sin ! 三二三~ {(ゆls ーのs) +州 -k+l)}-O!(ψ1 -1.{J2) 
| ωrf I 

eVboTJW~-α(h-k+1)35 
2゚Es -

x sin r (ゆ15 -ﾘ25) 一 二W -Wrf {一→{ω(仲ゆ仇似い……lsド一一s -CPぺd一イ哨引ゆ仇似2S)一+は州州叫2針判州汁叫伯(伊九 一 k糾い山山+刊刊叶1り川山)リ)I I , ¥ W -Wrf r I , ¥ • ,... I , , , ¥ ) r I 

| ωrl I 

eVbOTJWrf ーα(h-k+ 1)VL- ，，" T ~}可 sin(ﾘlS -cP2s) 2゚Es 

×川S凶叶|戸互ヒ己U己『二ヱ平半判三竺竺判E立町l円{…(
l ωrバf I 

(4.37) 
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d2ψ2 eV TJWrf COS ゆ28
dt2 2゚ E/T.問VV2
e VbOTJWrf ーαh~ . ( w- ωrf ~ ， r \ω 

I =-一一_"27r九 - 0 I 二工ニ2゚ Es - ----\ωrf 
_, .'U ~ ) dt 

elもOTJWrf20ーα(kー 1) 35
2πhß2Es -

|ω-ωrf (1  I ¥ 

__  

/ 'J ..... '¥ .... ,.. I 
x sin I (ゆ25 ー ゆ 18) 一一一一{(九一郎)+2π(k -1)} + 0 I (ψ2 -<pl) 
1ωrf 

e九oTJWJ ーα(k-l) 

+2πhß;-Ës 
e- u\,'-lJ Wrf sin(ゆ28 ゆ18)

刈nl こ竺{(ゆ2s -ﾘ1S) + 州一川-01 (I.{J2 ー机)
|ωrl I 

eVb0 1]Wrf 。一α(k- l )33
ß2Es

日

x sin 1 (Ø2s 一九) -と三~{( ﾘ2s - ゆ1S) +州-川 +0 1 ~色
|ωrf " ' ~V , .V / ¥ IJ -1 dt 

1Ihflηωvf 内I l- _ n…li 

e ut九リニ;:r sin (φ2s 一ゆ15)2゚Es 

ﾗ 叶 互亡己己己『二ヱ止辺判竺竺型判f旦円f斗{伽(仲仇ゆ仇似いい一2sγけ一s -Øベ一イ哨ゆ仇1
1 (ω~rl I 

35 

(4.38) 

These equations are fundamental ones to investigate the synchrotron oscillation including 

the beam-cavity interaction. The explanations and the analyses are described in section 6. 
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5 Transient Beam Loading 

In the previous section , the longitudinal p訂ticle motion with the beam-cavity interaction 

was derived approximately for proton synchrotron, and the energy loss of the particle 

caused by the wake field was derived as “ beam loading". In this section , the behavior 

of the beam loading under the transient condition wiI1 be described and the experimental 

tudied of the beam loading also will be described. 

5.1 Periodic Transient Beam Loading 

Usually the beam loading e百ects are analyzed under the “ static" condition that the 

bunches are filled symmetrically as shown in Fig.5.1. 

Wake 

。 …・・ •••••• 

Figure 5.1: The static beam loading. The amplitude of the wake field are same on all 
bunches. 

In this case , the amplitude of the wake voltage becomes same on all bunches, so the 

energy loss of the bunch becomes same on them. It is called “ static be創n loading", and 

the equilibrium phases , for example, at two bunches case as shown in eq.(4.28) and (4.29) , 

紅e of course same one on all bunches. In order to compensate the energy loss , the phase 

of the rf field should be change as expressed in eq.(4.28)=(4.29) , then all bunches are 

guaranteed to avoid the beam loading. 

On the other hand , there is a peculiar case at the high energy proton synchrotron. 

Since the particles are bend by the magnetic field , the particle energy wh1ch can be 

achieved on a synchrotron is limited by the field strength of the magnet. In the ordinary 
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In this case, the amplitude of the wake field will not becomes same on all bunches, 

so the energy 10ss of the bunch wilI be different on each bunch. It is called “ transient 

beam loading". Furthermore, the transient condition is periodically continued until the 

buckets are fiUed symmetrically in the main synchrotron , it is called “periodic transient 

beam loading" especially. 

Since the amplitude of the wake field on each bunch is not same any more, the equilibｭ

rium phases , for examp)e, at two bunches case as shown in eq.(4.28) and (4.29) , become 

different on them. So uniform change of the phase of the rf voltage can not guarantee the 

stable acceleration under the periodic transient beam loading. 

process , the proton is accelerated by a linac at several decades ,,-, hundreds MeV firstly, 

then i吋ected into a synchrotron(booster synchrotron). However, since the mass of the 

proton is heavy and its momentum is changing greatly up to a few Ge V, the proton can be 

accelerated up to such energy because of the limitation of the range of the magnet field. 

So another synchrotron(main synchrotron) must be prep紅ed to accelerate the proton over 

a few GeV as shown in Fig.5.2. 
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5.2 Calculation of Transient Beam Loading 

Linac In the past , it was considered to suppress the transient beam loading that that the quality 

factor of the cavity should be high [7 ], then the amplitude of the wake voltage was made 

mall as expressed in eq.(4.19), naturally 加y beam loading e百'ect could be suppressed. 

However, since the rf cavity of the proton synchrotron is loaded with the magnetic core, 

there is the limitation of making the quality factor so high by the characteristics of the 

Booster 
Synchrotron 

Figure 5.2: The cascade of synchrotrons ・

core. 
Since the number of the buckets of the booster synchrotron is usuaIly smaller than 

that of the main synchrotron , and since several decades to hundreds msec are needed to 

accelerate the bunch at the booster synchrotron, it is happened that the buckets of main 

synchrotron are not 白lled at all as shown in Fig. 5.3. 

Wake Field(Q=1) Wake Field(Q=10) 
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Figure 5.3: The periodic transient beam loading. The amplitude of the wake 白eld are 

di百'erent on each bunch. 

Figure 5.4: The wake field caused by Q = 

1 cavity. 

Figure 5.5: The wake field caused by Q = 
10 cavity. 
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On the other hand , another method to suppress the transient effect is found. Since 

the transient effect is caused by overlapping the wake v01tage of each bunch, if the wake 

fie1d is damped quickly enough that the wake field of a bunch will not remain on the next 

bunch, then no transient effect will be vanished. 1t is the case that the qua1ity factor of the 

cavity is very small as shown in Fig.5.4. 

1n order to investigate such a thing , the equilibrium phases expressed in eq.(4.28) and 

(4.29) were calculated for the case 1isted in Table 5.1. 

harmonic number 

number of bunch 

number of p訂ticles per bunch 

revolution freq. 

gap voltage 

peak impedance of cavity 

resonant freq. of cavity 

4 

2 
1.0 X 1013 

858.9 kHz 

420 kV 

10 kf2 
3.436 MHz 

Table 5.1: The condition of the calculation for the equilibrium phase. 

1n these calculations, the impedance of the cavity was supposed that the peは value of 

the impedance and the resonant frequency were made constant , then the quality factor of 

the magnetic core was changed , that is , the inductance and the capacitance of the cavity 

were changed to be satis白ed such conditions. Then, for the parallel expression of the 

cavity impedance, the inductance Lp and the capacitance C were derived by the peak 

impedance I み I = Rp using the resonant frequency ωrp and the quality factor Q of the 

magnetlc core as 

L~ = _!!_ι -

p WrpQ 

C= 」7
I..Vrp .LJp 

(5.1 ) 

(5.2) 

where the equation (3.25) and (3.38) were used in the derivation. For the series expression, 

the inductance Ls , the capacitance C and the magnetic 10ss Rs were derived by the peak 

impedance I Zs I using the resonant frequency ωrs and the quaJity factor Q of the magnetic 

5 TRANSIENT BEAM LOADJNG 41 

core as 

(5.3) 

(5.4) 

(5.5) 

where the equation (3.24) and (3.31) were used in the derivation. These equations were 

derived without the extemal resistance Ra in Fig. 3.4. 

The Figure 5.7 and 5.8 show the calculation results of the equilibrium phase of two 

bunches for the case the bunches are 白 lled in non-symmetric configuration in the ring. 

The parallel expression of the cavity impedance was used in the calculation for Fig. 5.7 

and the series one was used in the calculation for Fig. 5.8. 

The horizonta1 axis is the quality factor ofthe magnetic core and the vertical axis is the 

equilibrium phase(upper graph) and the difference of the equilibrium phase(lower graph) 

expressed as the time ゆs/uJrf. 

As can be clearly seen , the equilibrium phase of each bunch became small at high 

Q region because since the amplitude of the wake voJtage itse1f was made smal1 and 

it also leads that the summation of the wake voltage by many bunches is made small. 

Furthe口nore ， it was found that the transient e百'ect， which was measured by the di百erence

of the equilibrium phase, was aJso small in the low Q region. Then the di百erence of the 

equilibrium phase of each bunch became maximum around Q rv h/2. So it was found 

that there were two choices about suppressing the transient beam loading, one was that 

the quality factor shouJd be high as known so far, and another was that the quality factor 

hould be as small as possibJe. The Jatter case has not been concemed in the past. 

The behavior of the transient beam loading was not so changed between the parallel 

expression and series one on the cavity impedance because the transient beam loading 

almost depended on the むnplitude of the wake voJtage, and the di百erence of the phase 

was not so contributed to it. 

Of course, since the amplitude of the wake voltage is so high at the low Q region as 

hown in Fig.5 .4, and since the bunch is spread to some extent which is not expressed 
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The calculation results for such case are also shown in Fig. 5.10 for the parallel expression at the rig冝 bunch model , the particles in a bunch apart from the center are affected by 

and in Fig. 5.11 for the series expression of the cavity impedance , respectívely, and the 1n order to avoid such disturbance at the low Q region, the such high wake voltage. 

difference of the equ匀ibrium phase on each bunch became always zero on all quality 

factors of the magnetic core, so the trans冾nt effects could not be occurred. 

beam loading compensation scheme as shown 1n section 5.5 is valid because of the quick 

response of the cavi ty. 

Synchrotron 

Ring 

Synchrotron 

Ring 

Figure 5.6: The non-symmetric con白guration of the bunch 自 lling .
Figure 5.9: The symmetric con白guration of the bunch filling. 
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Figure 5.11: The calculation result of 

the transient beam loading in symmetric 

bunch filling using the series expression. 
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Q 

Figure 5.10: The calculation result of 

the transient beam loading in symmetric 

bunch filling using the parallel express卲n. 

1 ・

Figure 5.8: The calculation result of the 

transient beam loading in non-symmetric 

bunch filling using the series expression. 

Figure 5.7: The calculation result of the 

transient beam loading in non-symmetric 

bunch filling using the parallel expression. 

Furthermore, there is better scheme to avoid periodic transient beam loading. Il is the 

case that the bunches are filled in symmetric con白guration in the ring as shown in Fig. 5.9. 



where 九ake(ω) is the wake voltage on the 仕equency ω component，ん is the beam current 

on the frequency ω component， and Z，ω(刈 is an impedance of the rf cavity. In eq.(5.8), 

h(ω) is obtained by a Fourier transformation based on a revolution frequency for the 
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which are apart from the center of 

Multi-bunch Particle Tracking 

Since the bunch is spread to some extent, the particle 

TRANSIENT BEAM LOAD1NG 

5.3 

5 

the bunch are affected by the different wake voltage from that at the center as shown in 

(5.9) 

particle distribution in time h( t) as 

MVLdrev)=21F ん(t)e一山山dt
wrev J _ __!I_ー

Fig.5.12. 1n order to investigate the transient beam loading in such a practical condition, 

imulation code in the longitudinal we have also developed a multi-part兤le/multi-bunch 

ロlotlOn.

The wake voltage 九ake (ω) in eq. (5.8) is transformed to the time domain voltage 1仏ke(t) 

(5.10) 

through an inverse Fourier transformation, 

Vwake(t) = 乞凡ake(Nwrev)e一山revt
N 

(N=l ， 2 ， 3γ ・・ )

This wake voltage is consistent with (4.2) and (4.10) because the Laplace transformation 

the Fourier transformation in the periodic condition. become 

Voltage 

Original 
RF Voltage 
+ 

wク Volta

Original 
RF Voltage 

Jf¥ 
Phase 

Voltage 

were filled in 17 buckets, and therefore there were simulation , eight bunche 1n thi 

empty buckets , so the beam had many harmonics of the revolution frequency, and the Real Bunch Rigid Bunch Model 

impedance of the cavity was employed the p紅allel expression because the transient beam 

loading was not so change between the parallel expression and the series expression, and Figure 5.12: The rigid bunch model and the real bunch. 

the impedance of the cavity was supposed that the peak vaJue of the impedance and the 

resonant frequency are made constant, then the quality factor of the magnetic core was This code calculates difference equations for each particle a 

changed , that is , the inductance and the capacitance of the cavity were changed to be 

described in section 5.2. uch conditions a atisfied 

(5.6) 

(5.7) 
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The following parameters were used in this simulation. 

where Vo is a norninal accelerating voltage which means the beam-cavity interaction is 

not considered，九ap = va 一九ake，ムゆ=ゆb ーのap is a feedback phase value in order 

to suppress the beam loading by adjusting the phase of the gap voltage to the equilibrium 

phase, where ゆb and ゆgap 訂e the phase of the bunch center and that of the gap voltage, 

respectiveJy. 

(5.8) 

The wake voltage 九ake is obtained with a frequency domain as 

九ake(ω) ニ Zcav(ω) x h(ω) , 
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Ring Circumference 
Nominal Accelerating Voltage 九

Harmonic Number 

lnitial Revolution Frequency 

lnitial Energy 

lnitial ムp/p
lnitial Bunch Length 

Bunch Shape 

Synchronous Phase 仇

Momentum Compaction Factor αp 

Number of Particle per Bunch 

1445 m 

280kV 

17 

201.5 kHz 

3GeV 

土 0.4 % 

120 nsec. 

Parabola 

o Deg. 
-0.001 

1.25 X 1013 

Table 5.2: Simulation parameters. 
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Figure 5.13: Initia1 beam emittance used in the simulation. 
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The Figure 5.13 shows an initial beam emittance in the longitudinal phase space, and 

5000 macro particles, where each pむticle had 2.5 X 109 coulomb charge, were used in 

this simulation. 
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Figure 5.14: Trajectory of the bunch center in the longitudinal phase space. 
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The Figure 5.14 shows the Q-dependence of the transient e百'ects. Beam intensity was 

same in all Q value, 1.25 x 1013 particles per bunch , and shunt impedance was 14 kD. 

In Fig. 5.14, each line shows a trajectory of a bunch center in the longitudinal phase 
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space. Vertical axis and horizontal axis 訂e momentum difference and the phase measured 

from the nominal synchronous particle, respectively, which is free from any beam load匤g. 

As shown in Fig. 5.l4, each bunch center was oscillated by the transient effect apart 

from the phase correction of the rf voltage. Increasing Q up to J 0, the oscillation of each 

bunch center became larger, and 匤creasing Q further, the oscillation became smaller 

again. The transient effect was most severe around Q = 10. On the other hand , in the low 

Q case the trans冾nt effect was very small. 

Trajectory 
of 

Bunch Center 

Limitation 
by 

Beam Pipe 

Figure 5.15: The beam emittance growth and beam loss ・

The reason why we hate the transient beam loading 﨎 that the beam emittance is grown 

by the non-linearity of the rf bucket if the bunch is oscillating apart from the bucket center 

as shown in Fig. 5.15 , then the edge of the beam ernittance hits on the beam pipe and i 

lost. So the motion of the bunch center should be retained near the bucket center to avoid 

the beam loss. In the transient beam loading, however, it is not guaranteed. 

5 TRANSlliNT BEAM LOADING 49 

5.4 Experiment of Transient Beam Loading 

In order to examine the beam loading effects , we have developed a test bench as shown in 

Fig.5.16, where high intensity electron beam can be i吋ected into the rf cavity in deed. 

5.4.1 Beam Loading Test Bench 

Sli ー
は」

Figure 5.16: The beam loading test bench. 

Faraday 
Cup 

1000:1 
Probe Pulse 

Power 
Supply 

Figure 5.l7: The Schematic view of the beam loading test bench. 
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type( 1 MHzrv 1 GHz) , located between the electron gun and the cavity. Some p訂ameters

about the beam are listed in Table 5.3. 

The bunched electron beam was focused by solenoids not to spread by the self space 

charge, then injected into the cavity. The wake voltage at the cavity gap could be measured 

by the 1000: 1 high voltage probe directly, as shown in Fig.5.17. 

Furthermore, the energy of the beam could be measured at the downstream of the 
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cavity by simple spectrometer which consisted of a bending magnet and two slits located 
3.5 4 

Tlmc(μseçl 

3 2.5 

at upper-stream and downstream of the bending magnet, also as shown in Fig.5.17. Since 

the cavity gap could be shorted electrically, the energy loss of the beam at the cavity gap 

could be measured by comparing between “ gap short"case and "gap open" one. 

Measurement Procedure 5.4.2 

To begin with, the We have measured the transient beam loading on the rf cavity. 
~よ_.__........... 

J 3.5 4 

Tl同c (μ、cc)

2 2.5 

0.5 

impedance of the cavity was measured and its quality factor was defined beforehand. The 
1.5 0.5 

parallel expression of the cavity impedance was used to define the quality factor and the Figure 5.18: An example of the bunch shape and the high voltage pulse. 

pe叫<. impedance of the cavity. The quality factor could be controlled keeping the resonant 

frequency constant by changing the radial gap of the cut core and the added capacitance 

at the cavity gap as shown in Appendix B. 
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Then , the high intensity electron beam was i吋ected into the cavity. In order to eval-

uate the effect of the cavity impedance, there was a gap shot relay in the cavity. On the 
r、J

downstream of the cavity, there was the first beam slit which has the width of 1mm. Fur-Table 5.3: The performance of the electron gun. 

lit was located down-stream of the bending magnet as shown in econd thermore, the 

Fig. 5.17. 
The electron gun of thermal cathode type could generate the high intensity electron 

ed through the two slits was measured by Faraday Cup Changing The beam which pa 
beam up to rv 30 A, then it was accelerated by the high voltage pulse of rv 175 kV by the 

the field strength of the bending magnet at the spectrometer, the cuπent Ifc was also 
pulse power supply, where the pulse voltage was measured in the high voltage transformer 

changing which depended on the width of the slit αas 
by the voltage divider, and the width of the pulse was about 3μsec as shown in Fig. 5.18 

九(B) = 1 -|-Lf - ld|
l aeBo .} αeB。ー|

The EIMAC YU156 grid-cathode assembly which was designed to obtain the high 

(5.11) The electron beam could be divided intensity electron beam was installed in the gun. 

into several bunches by modulating the grid potential of the electron tube by the high 
lit pass-

ing. The example of the measured Faraday Cup signal is shown in Fig.5.19. Each peak 

where Bo is the field strength for the matched energy beam against the double 
voltage FET(Field E百'ect Transistor) switch. The Figure 5.18 shows the generated elec-

tron bunches measured by the Fast Current Transformer(FCT) , which is very wide-band 
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Appendix B. Since we were adjusting the resonant frequency constant, capacitances were Then , the current pe叫( is regarded as the energy indicates the current by each bunch. 

added at the cavity gap, then the peak value of the impedance of the cavity was changed beam. 

to some extent. 

We have measured about the following cases listed in Table 5.4. 

Impedance (D) 

71 ] 
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755 

720 
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Table 5.4: The measured parameters. 

The beam intensity and the bunch shape used at these measurements are shown in Fig. 

5.20. 

4
0
4

岨
司
令

L

(
〈
)
】
巴
U
ヒ
コ

U
ト
υ

Bunch 1 
• • • • • 

・

2 3 

150 

av 

v
 

w
 

h
 

145 

M
r
j
C
 

「
「
ト
ト
ト

-
p
ト
「
「
ト
ト
ト

「
;
了
-
←
一

判

。
。
。
。

κ
0
4
-
1

ヲ
La
o
v
'
a

18l 

(
〈E
)吉
ω
ヒ
コ

υ
υ
凪

1.6 1.8 2 

Tim巴(μ巴c .)

Figure 5.20: The beam intensity and the bunch shape used at the measurements of the 

transient beam loading. 

1.4 1.2 0.8 0.6 0.4 0.2 

Figure 5.19: The measured signal at the Faraday Cup for four bunches. 

In order to investigate the quality factor dependence of the transient beam loading, the 

hown in Fig. 5.21 , 5.22, 5.23 , 5.24, 5.25 The experimental results for each case are measurements were perfo口ned by keeping the beam intensity, the bunch shape and the 

for Q = 30 , 6.7 , 4.0, 2.4, 1.1, respectively. On each case, the wake voltage measured 

at cavity gap(upper graph) and the energy the each bunch reconstructed by the Faraday 

was 

loaded with six Magnetic Alloy cores which could change the quality factor as shown in 

resonant 仕equency of the cavity constant. The rf cavity used in this measurement 
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Cup signa1(lower graph) are shown. In these experiments, the transient beam 10ading 

in case that the harmonic number is 8 and 4 bunches were filled non-symmetricaUy was 

examined in deed, and we could investigate the energy 10ss of each bunch by comparing 

the cases between the gap-short, which means no impedance is seen by the bunch, and 

the gap open, which means the impedance of the cavity affects on the bunch. 

The Figure 5.26 shows the energy loss which was measured by subtracting the bunch 

energy at the gap open from that at the gap short. As can be clearly seen, the difference of 

the energy loss on each bunches was 1arger at the case of Q = 6.7 and 4.0 than that of the 

other Q value. This tendency, which was the transient beam loading became severe around 

Q ̂-I h /2 , was cons凶tent with the analytical result and the particle tracking simulation. 

Thus , it was proved actually that not only very high Q va1ue but also very low Q value 

was valid to suppress the difference of the energy loss on each bunch , that is , to suppress 

the transient beam loading. 
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Transient Beam Loading(Q=30, R=711 Q) 
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Figure 5.21: Measurement results of the transient beam loading at Q = 30. 
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Transient Beam Loading(Q=4.0, R=755 n) Transient Beam Loading(Q=6.7, R=825 n) 
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Figure 5.23: Measurement results of the transient beam loading at Q = 4. 
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Figure 5.22: Measurement results of the transient beam loading at Q = 6.7. 
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Transient Beam Loading(Q=1.1 , 322 n) 
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Figure 5.25: Measurement results of the transient beam loading at Q = 1.1. 

.Gap Short 

.Gap Open 

...一一

.. ..ーー

4 3.5 

• 
• 

3 2.5 2 

事

量ーー・・

1.5 

-・・ ・・・、

0.5 

]62 

160 
0 

161 

付H
泊

・
O

-
C

1
p
 

剖

O
-p
p
ｭ

a
a
 

G

G

 

吋

・
・

…

4.5 5 

Bunch 

Figure 5.24: Measurement results of the transient beam loading at Q = 2.4 • 
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Beam Loading Compensation 5.5 

In the low-Q cavity, it was found that the transient beam loading could be suppressed Transient Beam Loading 

because the wake field was quickly damped enough not to a百'ect next bunch. However, 

since the amplitude of the wake voltage is so high , the beam loading compensation by the 
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Figure 5.27: The concept of the beam feedback to compensate the wake voltage. 
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B unch N u mber The scheme is that the beam signal picked up by a Fast Current Transformer is attenu-
345  

Bunch Number 
2 1 

ated and delayed by cable line arbitrary, then fed into the cavity through amplifiers. When 

the attenuation and delay c加 be optirnized, it wiU be expected that the wake voltage is Q=1.0 
compensated clearly as shown in Fig. 5.27. 

In order to compensate not only the fundamental component of the beam induced 

voltage but also the higher harmonics as weU , the beam signal was sep紅ated into each • • • 
harmonic and the adjustment was done for them, then each signal was combined and fed • 

etup of the filtering the beam signal is shown in Fig. 5.28. In this 

experiment, the beam signal up to the 3rd higher harmonic was retumed to the cavity. 

into the cavity. The 
3 4 5  

Bunch Number 
2 1 品

。
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Figure 5.26: The measured energy loss of each bunch for each Q value. 



5 TRANSfENT BEAM LOADING 

Low Pass 
Filter 

9MHz 
Band Pass 

Filter 

Figure 5.28: The setup of filtering the beam signal. 

62 

to Amp. 

The measured voltage of the cavity gap without compensation and with compensation 

紅e shown in Fig. 5.29-(a) and -(b) , respectively, and frequency spectrum is shown in 

Fig. 5.30, white bar is the spectrum without compensation, and black one is the spectrum 

with compensation. In this Fourier analysis, ten bunches were counted by a period. A 

clearly seen in Fig. 5.30, the fundamental component of the gap voltage became about 

one hundredth. The second and the third higher harmonic a1so became one tenth and one 

fourth , respectively. 
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Figure 5.29: The measured gap voltage with compensation and without compensation. 
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Estimation of Coupled Bunch Instability under Nonｭ

Symmetric Bunch Filling 

6 

Spectrum 01 the Gap Voltage 

In the previous section, the transient beam loading e百ects are described and it was found 

that they depend on the ampl itude of the wake voltage on each bunch. 

On the beam instabiJity which means that the amplitude of the bunch motion grows 

larger apart from the equilibrium phase , � wiU be shown that it � def�ed by the phase 

of the wake voltage whether such motion is grown or damped. The phase of the wake 

voltage is changed by the characteristics of the cavity and also changed by the di百erence
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0 of the equilibrium phase on each bunch, that is , it is considered that the periodic transient 

beam loading a百ects on the beam instability. 仁二三ゴ WithöutCompepsation 

・圃・ With Compensation In this section, the motion of the bunches is analyzed by the synchrotron motion with 
80 

the beam-cavity interaction in succession from Section 4.2.2, then the e仔ects of the non-
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• 60 
ymmetric bunch 白lling to the bunch motion will be described. 

Interpretation of Synchrotron Motion with Beam-Cavity Interｭ
action 

6.1 

Recalling the equations (4.37) and (4.38) to investigate the bunch motion with the wake 
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(6.2) 

Since this scheme can cancel the wake voltage itself, we can make any beam loading 

However, this scheme is not applicable to the high Q cavity 

because the feedback response of the cavity is not quick on such a cavity. 

and instability suppress. 
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where 

仏JC12

仏J522

eVηωrf COS ゆ ls

2゚ EsTrev 
eVTjWrf COS ゆ28

2゚ EsTrev 
A ρι山L凶ωM川Oρ刊仰削7η平7(

----e ω叫州rf S剖in ( 一一一土2πh 一 ó ¥ 2゚ Es - ----\ ωrf -) 

ß , = eVbOηωJ e-α(h-k+ l)与Wrf -
~ 2πhß2Es 

|ω- Wrf ( f I ¥ • ^ f J , ~ ¥ ) (" I 
x sin I (ゆ ls 似)一一一一{(ゆ1s -ﾘ2s) + 2π (h - k+l)}+ól 
|ωrf J 

e l LowJ-α(kー 1)去Bっ=
ι2πhß2E 

|ω-ωrf ("1 I ¥ • 1""¥ IJ .;1¥) ("'1 
x sin I (仇s -ØlS) 一一一ー{(仇s -ﾘlS) + 2π(k - l)} +ó l 

| ωrf J 

el bOηωJ-α(h-k+l) 
D1= 乃 e l lE;7siII (ゆ 1s ーのs)

2πhβ2Es 

X S1イ守{((hs -ﾘ2S) + 2π (h -k + l)} -8] 
eVb。ηωJ -α(k-1)

D2 二 月つ e t jE:7 sin(ゆ25 -ゆ15)
27fh゚'2 Es 

× 山
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(6.3) 

(6.4) 

(6.5) 

(6.6) 

(6.7) 

(6.8) 

(6.9) 

These equations show the coupled oscillator with the damping system as shown in 

Fig. 6.1. Comparing eq.(6.1) and (6.2) with eq.(2.10) ， ω51 and Ws2 are considered as the 

renormalized synchrotron frequency under the beam loading , in other words , it is shown 

that the restoration force at the harmonic oscillation is changed by the beam loading. 
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Figure 6.1: The coupled oscillator with the damped system. 

Furthermore, the coupled force which executes through the term <{J1 - <{J2 or ψ2 -<(J1 

is included in this system. 1n the coupled system, the well-known “ mode analysis" will 

be valid , a cert出n “mode" characterized by the di百erence of the phase on each oscillator 

wiU be excited with a “ characteristic frequency". 

Then, it is derived by the damping term whether the amplitude of such mode motion 

wiU be growth or damped. It can be distinguished by the sign attached with the damping 

term, the negative sign shows that the amplitude of the motion wiU be decreased, and the 

positive sign shows that since the negative resistant force will be executed on the system. 

Then the amplitude of the motion wiI1 be increased, which means the motion of the bunch 

wiU grow, it leads the particle 10ss in the ring. 

6.2 Single Bunch 

When only one bunch is circu1ating in the ring, the equation of the longitudina1 bunch 

motion can be expressed simpJy. 1n this case, the coup1ed teロn and the damping te口nm

eq.(6. l)紅e vanishing, i.e. , ﾟ and D are equal to zero, then one equation of motion is 
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derived as 

d2ψ 1 2 A d!.pl 
--7=-LdsltVl-A一一-dt2 -- ,'" r' dt 
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(6.10) 

The solution of this case is known well as the harmonic oscillator with damped system. 

If the sign of A is positive, the motion ψ1 will be damped even at any initial conditions , 

that is , if 

竺二三i2πh-o>O
μ)rf 

is satisfied, then the bunch motion is made stable. 

(6.1 J) 

On the contrary, ifthe sign of A is negative , the motion!.pl will be growing inde白 nitely .

This growth of the motion is called “ Robinson instability [2]" , so the high intensity synｭ

chrotrons should be designed that the growth is not occurring or if it is occurring , the 

growth rate should be smaller than the period of the injection and the extraction. 

6.3 Symmetric Bunch Filling 

In order to investigate coupled bunch instability, we try the mode analysis , where the 

normal coordinate system exists which can uncouple the simultaneous equation consists 

of (6.1) and (6.2) into two independent equations by a linear transformation. 

Since the equilibrium phase ゆ15 is consistent with ゆ25 in the symrnetric bunch filling 

as seen in Fig.5 .1 0 , the coefficients of eq.(6.3)ー(6.9) become same under the replacement 

of the suffix between 1 and 2. In the coefficients of eq.(6 . 3)-(6.9) ， ω51 -ω52 -ωs ， 

Bl 二 B2 二 B ， D1 = D2 = D with ゆ15 ー ゆ25 = 0 and k = ~ + 1 are substituted, and the 

normal coordinate system is defined as 

ψ1 = 'P1 + !.p2 

ψ2 = ψl 一 ψ2

(6.12) 

(6.13) 

then the two uncoupled equations for each normal coordinate system are obtained as 
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follows: 

where 

d2ψ 1 2 _ I I A nrn ¥ dψl 
_u? ωszψ1 一 (A + BTrev) -~. ~ dt'2 -., T ' ,-- ---""'/ dt 

d2 
'l�2 ( 2 . ("¥ n ¥ _ I I A n rn ¥ dψ2 「2=-(ωs2 + 2B) ψ2 一 (A-BTm) -dt2 ¥ --" , - - / T ., ,- - --I I::V J dt 

B = eVboTJWJ -α主主 I W-ωrf l 
= e 2ωrf X sin 1 一一一一_"27f --=-十 0 1

2πhß2 Es ~ " ~... l ωrf _.. 2 I ~ I 
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(6.14) 

(6.15) 

(6.16) 

Since the equation (6.14) and (6.15) are independent with each other, the distinction 

of the growth of the bunch motion were performed on each mode in the same way at the 

case of the single bunch. 

ψ1 mode 

The condition where the motion ψ1 will be damped is 

A + BTrev > 0 

eM35sin { 竺二竺~2刊 -0) -e-α町f sin ( 三ニ竺1πh -O) >0 
\ ωrf j ¥ Wrf j 

(6.17) 

In this mode, each bunch moves keeping same phase di百'erence as shown in Fig.6.2. 

ψ2 mode 

The condition where the motion ψ2 will be damped is 

A -BTrcv > 0 

e- Cth~号 sin ( 乞二竺~2刊 -0 ) +e一尚三f sin ( 竺二竺fπ九-0) > 0 
\ ωrf j ¥ Wrf J 

(6.18) 
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In this mode, each bunch moves keeping inverse phase difference as shown in Fig.6.3. 

Figure 6.2: The mot�n of bunch in ψl 

mode. 

Figure 6.3: The motion of bunch in ψ2 

rnode. 

In the synchrotron ring , each mode is expressed as shown in Fig. 6.4 and 6.5. 

Synch rotron 

Ring 

Figure 6.4: The motion of bunch in ψ1 

mode in the ring. 

6.4 Non-Symmetric Bunch Filling 

Synchrotron 

Ring 

Figure 6.5: The motion of bunch in ψ2 

mode in the ring. 

In this case, the classical mode analysis is abandoned because we can not discover the 

normal coordinate system which can uncouple the sirnultaneous equation consists of (6.1) 
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and (6.2) into two independent equations by a “ linear" transformation. So let us try to 

solve the simultaneous equation by Laplace transformation. 

Rewriting eq.(6.1) and eq.(6.2) as a matrix form 

[~ 咋)ト+イ巾[r，いZ川(山) R川円(勺t一 ム則叶l]叫l
+ [wベ8C占山;匹子己♂;rl) -TJ41)l G;)=0 

The equation (6.19) is written as the vector form , 

where 

[l](i(t)) + [c](土 (t)) + [k](x(t)) = 0 , 

時)二位)

lト[~ ~] 

Perfo口ning Laplace transformation for each side of eq.(6.20) , 

[1] {S2X(S) -sx(O) - 土 (O)} + [c] {sx(s) -x(O)} + [k]互い) = 0 , 

where x(s) = .E[x(t)]. Then , 

{s[l] + [c]} x(O) + [m]土 (0)
互い)= =[Z(s)] -1{互い)} , 

s2[1] + s[c] + [k] 

where 

Z(s) = s2[1] + s[c] + [kJ 

is called “ Mechanical Irnpedance" of the damped system and 

{豆(s)} = [s[l] + [cJJ {x(O)} + [1] {土 (O)}

(6.19) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 
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is a Laplace transformed input at the initial condition. Let Us define a matrix of transfer 

function G(8) given by 

Substituting eq.(6.31) into (6.27) , 

z=(s-S1)(s-S2)(s-S3)(s-S4) 

[山8+ω822 + (B2 - D2) 同- DI) -Trev(Bl 一日 ) 8l I (8[1] + [C])X(O) 
(B2 -D2) -TrバB2 -D2)8 82 + A8 + ω81 2 + (B1 -DI) I 

[A(8)] 
[G(s)] ニ [Z (s)t 1 = 一一一

IZ(8)1 
(6.26) 

where [A(8)] is the 叫oint and ¥Z(8)1 is the determinant ofthe impedance matrix [Z(S)]. 

1ntroducing eq.(6.26) in (6.23), we can write the transformed response as (布(S) ) -
お(8) ) -(8 -81)(8 -82)(8 -83)(8 -84) 

x I ~~ + A:_ ~同22 + (B2 -D2) (B1 -D1) -7ん (B1 一 Dl)S1
I (B2 -D2) -TrバB2 -D2) S S2 + A8 + ω8 1 2 + (B1 -DI) I 

kv(B~ 日1 ー ム) \ (CP1(0)¥ 
TrバB2 -D2) A I ¥ 'P2(0)) 

{X(8)} = [G(s)]{R(s)} , (6.27) 

and the response if obtained by writing the inverse Laplace transformation , 

{x(t)} = 1' -1[王(s)] = l'-l[G(s)]{R(s)} . (6.28) 

-
('" -"，1)("，ーム -S3)(s-h) [2;:(3 2;131(川 (6.32) 

1n order to perfoηn the inverse Laplace transformation , we must know the poles for the 

matrix of the transfer function by where 
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(;11("') = A {82 + A8 + ω822 + (B2 -D2) } 十 九y(B2 -D2) 

(6.33) 

Gロ (8) = Trev(Bl -D1) {S2 + A8 + ω822 + (B2 -D2)} + A {(B1 -D1) -Trev(Bl -D1)} 

(6.34) 

(;21 (8) = TrバB2 -D2) { S2 + A8 + ω81 2 +(B1 一 D1 )} + A {(B2 -D2) -Trev(B2 -D2)} 

(6.35) 

(6.29) 

then 

84 +A83 +[A2 +{ω81 2 + (B1 - D1 ) } + {ω82 2 + (B2 -D2)} -Tre/(Bl -D1)(B2 -D2)] 82 

+ [A { ω81 2 + (B1 -D1)} + A {ω82 2 + (B2 -D2) } + 2TrバB] 一 D l )(B2 -D2)] 8 

+{ω8 1 2 + (B1 -D1)} { ωS22 + (B2 -D2)} -( Bl 一 D1 )(B2 -D2) = 0 . 

G22 ( 8 ) = A{ 82 + A8+ ω8 1 2 + (B 1 一 DI) } + TrバB1 -DI) 

(6.30) From the equation (6.32) , 

Supposing that four poles 81 , 82 , 83 , 84 are obtained from the characteristic equation FT(s) = 1(G11(s)V1(0)+G12(s)ψ2 (0) ) 
('" -81)(8 -82)(8 -83)(8 -84) 

お(8) ニ 1(G21(s)伊 ] (0) + G 22 ( S ) ψ2(0) )・(8 -81)(8 -82)('" -83)(8 -S4) 

(6.30), 

� ",2 + As + ωs22 + (B2 -D2) (B1 -DI) -Trev (Bl 一 D 1 ) 8 1
|(B2 -D2) -TrバB2 -D2) 8 ",2 + As + ω8 1 2 + (B] 一 Dl) J

IG( s)]= L 」

(6.31) 

(6.36) 



6 ESTIん1ATlONOFCOUPLED BUNCH INSTABTLITY UNDER NON-SYMMETRIC BUNCH FILLlNG 74 6 ESTlMATlON OFCOUPLED BUNCH INSTABILITY UNDER NON-SYMMETRIC BUNCH FILLlNG 75 

Finally, the bunch motion of <(Jl (t) and ψ2 (t) 紅e obtained as 

伊l(t)= 1' -l[石(s)] = A. IG l1 eslt 十 AMIles2H A3Clips:1H A4Cllfht 

+AIG12eSlt+A2C12eS2t+A3G12eS3t+A4C12A84t 

(6.37) 

So the motion of the bunch in the non-symmetric filling is made of two modes though 

the characteristic equation is quartic one. In the equation (6.43)α1 and α2 indicate the 

damping(or growth) constant and rh and D2 indicate the mode frequency on each mode. 

Though the explicit expression for the decision whether the coupled bunch instability 

is grown or damped can not be derived analytically, the transient beam loading may a百ect

the coupled bunch instability because the di百erence of the equilibrium phase are included 

in the coef白cients of eqs.(6.3)-(6.7). 

By the way, the transient beam loading also make the bunch motion grow from the 

beginning, whereas the bunch motion grown by the coupled bunch instability gradually 

as shown in Fig. 6.6. 

<(J2( t) ニ1'-1 防2'(s)] = A.陥lpS1t+A2G21pS2t+A3C21 pW+A4C21pS4t 

+AIC22eSl t +A2C22eS2t+A3G22fS3t+A4C22pS4t' 

(6.38) 

where 

A1G11 , A2Gl1 , A3C、 A4Gll Gll (パ)
一一一 + 一一一 +一一」一+一一一二 (6.39) 
8-81 8-82 8-83 8-84 (S-81)(S-32)(8-33)(S-8 ,,) 

A1G12 , A2G12 , A げ、 A4G 12 G12 (s) 
一一一一 +一一一一+一一~+一一一一= (640) 
8-81 8-82 8-83 8-84 (8-81)(8-82)(8-S3)(8-84) 

A1G21 , -"hG21 , A3G21 , A4G21 G21(8) 
一一ー +一一一 十一一一+一一一， ¥ , -",' ,\ -, , , , ( 6.41 ) 
8-S1 S-S2 8-S3 8-84 (S-81)(8-82)(:可- 83)( 電8 -84) 

A1G22 , A2G22 , A3G22 , A4G22 G22 (8) 
一一一一+一一一一+一一一一+一一一一 - I , I - ",",\' ¥ I ¥ • (6.42) 
8-81 8-82 S-S3 8-84 (S-81)(8-82)(8-33)("写 84)

Now, since we are interested whether the motion of the bunch is grown or not, that is, 

interested in the sign of the real p訂t at 81 ヲ S2 ， 句、 S4 ・ In order to know the sign of them , 

we must obtain the roots of the characteristic equation (6.30) , but there is no analytical 

method to get the roots of such quartic equation , so it is solved numerically. 

However, we can guess the characteristics of the solutions. If the solutions are consist 

of the complex number as 81 =α1+jDl ， S2 = α2+jD2 ， S3 = α3+ jD3 , and 8" =α4+jD4 ， 

then the following relation should be satisfied because the coefficicnts in eq.(6.30) should 

be the pure real number:α2 二 α1 with D2 = -D1 and α4α3 with D4 = -D3 ・ They

shows that the roots of eq.(6.30) are consists of complex conjugate pairs as 

午
一p

。

Transient Beam Loading Coupled Bunch Instability 

Figure 6.6: The difference of the growth of the bunch motion caused by the transient 

beam loading and coupled bunch instability. 

S 1 二 α1 + jDl 

82 =α1 -jDj 

83 =α2 + jD2 

84 =α2 -jD2 ・

So if the effect of the transient beam loading is small enough to avoid the beam 10ss, 

we must care the coupled bunch instability, but if the e百ect of the transient beam loading 

is so large, the beam loss is occu汀ed before the bunch motion is grown by the coupled 

bunch instability. 

(6.43) 
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6.5 Difference of Wake Voltage between Circuit Models and its Effect 

to Coupled Bunch Instability 

Watching the coefficients of eqs.(6.3)-(6.7) , the sign of them is defined by the following 

conditions: 

1. The periodic transient beam loading: ゆ 1 s ゆ2s

2. The difference of the frequency between the wake voltage and the rf voltage: 

ω一二二三ェi
弘)rf

3. Initial phase of the wake voltage: �. 

Recal1ing the derived wake voltage for the parallel expression and the 問nes expres-

sion in Section 3.2, since the amplitude of the wake voltage i not so changed in both 

cases because it is almost defined by the peak value of the impedance which i needed 

to generate the rf voltage required at the acceleration , the effect of the periodic transient 

beam loading is not so change in both cases. However, the difference of the frequency 

between w and Wrf and the initial phase � of the wake voltage i changed depending on 

the lumped circuit model. 

Considering the frequency of the wake voltage w, it can be controlled by changing 

the cavity resonant frequency ωrp in eq.(3.38) or ωrs in eq.(3.31) on each circuit model , 

respectively, the sign of 日p can be伽1ged arbit問 in bothωes 

On the other hand, the behavior of ん is quite different between in the parallel ex-

pression and in the series one. The Figure 6.7 show the calculation result of � on each 

case under the condition that L and C are constant and only the quality factor Q of the 

magnetic core is changing. As can be seen，ゐ is monotonously increasing, then is close 
to 0 on the high Q region , and �s is also monotonously increasing , but it is crossing 0 and 

the sign is different from �p on the high Q region. 

These facts shows that the sign of � can not be changed in the parallel expression , 

but it can be realized in the series one , and also can be made zero. The condition where 
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ん = 0 is derived from eq.(4.14) as 

Rs ~ 
αs - L~ = u 

Rs 1 

Ls CRα 3 
then 

where the resonant frequency ωrs becomes 

( 

℃ 
国
』
} 

c.. 
c-o 

( 

てコ
伺
』

) , 
<-0 

3 

ωJ =Jrs -LsC 

6 10 

Q 

9 10 

Q 

Figure 6.7: The di百'erence between �p and � s' 
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(6.44) 

(6.45) 

Thus ， 広一 ωrf = 0 and �s = 0 can be realized in the eries expression, which means 

that the damping terms of eq.(6.1) and (6.2) 紅e clearly vanished, when the bunches are 

自lled in the ring symmetrically. 
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The real cavity impedance shows that the 仕equency where the absoJute value of the 

impedance is maximum is not exactly equaJ to the frequency where the impedance beｭ

come pure real number as shown in Fig. 3.9 and 3.l0. This suggests the possibility that 

the phase p訂ameter 8 of the wake voltage may be vanish if we could choose the optimum 

external resistor at the condition in eq.(6.44). However, we should note that the series exｭ

pression for the cavity impedance can not express the real cavity impedance completely, 

so we only pointed out the feasibility to vanish the phase parameter, which can not be 

realize in the parallel expression of the cavity. 
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7 Conclusion 

The beam loading and the coupled bunch instabiJity were investigated under not only in 

symmetric bunch filJing but also in non-symmetric bunch filling in the synchrotron. 

On the transient beam loading, so far the cavity which had a high quality factor to 

reduce the amplitude of the wake voltage was preferred. However it was found that the 

low quality factor was also valid to suppress the transient beam loading by the analytｭ

ical calculation and the particle tracking simulation. Furthermore, it is also found that 

the transient beam loading becomes most sever around the condition that the quality facｭ

tor of the cavity becomes the half of the harmonic number when the bunches 紅e filled 

non-symmetrical1y. Obviously, the transient condit�n can be canceled in the symmetric 

bunch f�ling. The transient beam loading was investigated experimentally in the beam 

loading test bench , where the high intensity electron beam was i吋ected into the prototype 

rf cavity, then same results as the calculation and the simulation were obtained. 

The coupled bunch instability under the transient beam loading was estimated to have 

a smalJer growth rate than that under symmetric bunch f�ling in the past. We could get the 

analyticaJ form to solve the coupled bunch instability of the proton synchrotron. Then, 

it was found the transient beam loading a百'ects the coupled bunch instability because the 

characteristic equation for the growth rate of the bunch motion includes the transient beam 

loading. 

Furthermore, it was found that the analysis of the coupled bunch instability depended 

on the lumped circuit model for the rf cavity, because the coupled bunch instability is 

ensitive to the phase of the cavity impedance. We investigated the coupled bunch instaｭ

bility using the lumped circuit mode1 in both series and parallel expressions with respect 

to the 10ss of the magnetic core, then, it was found that the condition where the growth or 

damping of the bunch motion would not occur could be made in peculiar impedance of 

the cavity. 

、、
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A RESONANT C1RCU1T OF TRANSM1SSION LlNE 

A Resonant Circuit of Transmission Line 

The frequency of the rf field be-

comes usually from hundreds kHz to 
Z十企Z

!�.'------i 

A-l 

decades MHz , so the wave length of it -ι些Jl IしJみ鋲LJt桁笥 L哩与学ぷ

咋附り 巧干叶ωCåz 1肋becomes from a few m to a few cm in 

consideration of the pe口neability of the 

magnetic cores. Since it is aJmost con- l欣ρι， り l欣ρ伊+企必Z， り

sistent with the length of the cavity, it 

necessary that the impedance of the 
Figure A.l: The distributed constant circuit. 

cavlty 1 obtained by the analysis of the 

distributed constant circuit model precisely. In this case, the voltage and the cuπent in the 

cavity depend on not only the time but aJso the position. 

Let us consider a transmi ion line of the length ムz as shown in Fig. A.l , where 

Lう C， R , G means an inductance, a capacitance, a resistance and a conductance of the 

unit length , respectively. Now we have the relation of the voltage v to the cuηent i at the 

position z and z +ムz ， then we execute the limitation ムz → 0 ， we can obtain the equation 

of the transmission line as 

θυθ2V 
百二 RGv + (RC + LG) :: + LC:'_L~ 
8z θtθt2 

2t θtθ2t 

8z2 二 RGi + (RC + LG)a~ + LC友E

(A.l) 

(A.2) 

The complex expression to the voltage and the current is employed as v(z , t) 

V(z)eJωt ， i ( z , t) = 1 ( z ) eJω t ， then eq.(A.l) and (A.2) become 

d2V(z) 

ヲ;γ= γ2V(Z) (A.3) 

(A.4) 
d2I(z) 

dz2 
2I(z) 

γ=α +jß = ν/(R+ jωL)(G + jωC) , (A.5) 
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where γ is cal1ed “ phase parameter". Then the solution of eq. (A.3) and (A.4) is expressed B Characteristics of Magnetic Cores 
as 

V(z) = l{l e一円 +K2cγz

l(z) = 去W7Z K2ぷ
(A.6) 

(A.7) 

(A.8) 

In the past, rf cavities almost loaded with ferrite cores due to the suitable characteristics 

such as low rf losses on a few MHz rv decades MHz frequency range. On the other hand, 

some kind of core made of magnetic alloy(MA) have very different characteristics from 

the ferrite one. 

In order to generate high voltage at the rf cavity, it is required for the magnetic cores 

that the impedance of them should be stable under the magnetic field of large amplitude. 

The Figure B.l shows that the measurement results of the μQ f product for some magnetic 

co民s. As shown clearly, the μQ f product falls down drastically with some ferrite cores 

such as SY-2 如d 4M3 under the magnetic field of large amplitude , whereas it is still 

constant with some MA such as FT3M and Metglas. These results show that MA has a 

possibility to generate very higher voltage than ferrite. 

where Kl and K2 訂e constant defined by the boundary condition and Zo is called “ char

acteristic impedance 

Zo 二 (A.9) 

Furthermore, the equation (A.6) and (A.7) becomes as follows when the voltage and the 

cuπent at z = 0, which V(O) = l"l and 1 (0) 二 Iぃ are already known , 

v'(z) = ，ぺ cosh γz -ZOlt sinh ,z 

ル卦inh "(z +川γz
(A.I0) 

(A.l1 ) 

Since G = 0 in the rf cavity, the phase p訂ameter and the characteristic impedance 

1f T> , r ¥'  ﾊ'f 1 r7 fR+jwL 
becomes γ= ゾ(R+jωL)jωじ and Zo = υ ， respectively. If the line is shorted 

V ¥ - ' -' - 1-' - - V V jωC 

at the position z = l , that is V(l) = 0, then the impedance measured at z = 0 becomes 

Z「 2 二 Zo tanh ,l (A.12) 

Let us use this transmission line as γl << 1, then 
.J_ 

Zin さ R+jwL. (A.13) 

Usually, the cavity has a capacitance Cg at the cavity gap 

as shown in Fig. A.2, then the resonant condition is apｭ

peared at wr = 方;

zo= 丹十jωL G ~ 

z=1 z=O 
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Figure B.l: The measurement of various magnet兤 cores under the rf magnet兤 f�ld of 

large ampl咜ude. 

F刕ure B.3: The measurement for Cut Core of MA at measurement bench. 

F刕ure B.2: The cut core of 恥1A.

From the view point of the beam insta-

On the other hand, MA has a 

results of the measurement for the cut core of 

MA  are shown 匤 Fig. B.3 , where Q was con-

In the 

past, it is limited around ten or higher with 

very low Q around one, and can control it by 

usmg “ Cut Core" as shown in Fig. B.2. The 

bílíties, Q of the cores is important. 

ferrite cores. 



C APPROXIMATION OF WAKE FIELD CALCULATlON 

C Approximation of Wake Field Calculation 

Substituting folJowing relations 

ゆ 1 ，n+ 1 ーゆ2 ，m = ゆ 1 ，n+1 ゆ2 ，n+1 + ゆ2 ，n+1 ーゆ2 ，m

ゆ2 ，π+ 1 ーゆ1 ，m ゆ2 ，η+1 ーゆ1ρ+1 +ゆ1 ，n+1 ーゆ1 ，m

into (4.20) and (4.18), we get 

ムE1 = eV sin 4> 1 ，川 1 ーがo cosﾓ 
v 忌 -Q{ ~ l.nγ1!!!:.+(九十l-m)h出

-e VbO ) e l Wrf ' Wrf J 

m=l 

1-f 4)1川l 一ゆ1m I 1 ， ， 2π ) , 1 
x cos 1 1ω { 十 ，Tn + (η+ 1- 刈hー ~-61 

I l lωAμノr々げf ωrげf J I 

α吋{ 引Øl ， n川叫+1-一r:
一寸ev凡もoe '-'1. 

j ゆ 1 ，n+1 一ゆ2 ，n+1 IL 1¥27r) x cosω ~ 1f'1,n+1 - 1f'2,n+1 _ (k -1) ー}
l Wrf Wrf J 

÷ Aーα{ φ2 山;φ2m巾+l-m)h ~ラ )
x ) e l 

I ~ f ゆ2 ，九+1 ーゆ2，m I 1 \ , 2介 ) ,1 x cos 1 ω ~ ., ", n ,.1 _ ., ",11< + (η+ 1-m)h=-~ -� 
I l ωrfωrf J I 

α { Øl ， n+l-fh+l 一 (k-1)託 }+elbOe <.L1. Wrf \~ "lwrfJ 

j ゆl川+1 一伊川+1 fL 1¥27r) xsmω~ "'-.1, 'L ,.1 ",-",,., .1 _ (k -1)ー }

l Wrl WrlJ 

÷ Aーα{向山;42m巾+l-m)九三)x ) e l 

m=l 

XSlll ト (ペプ2~+山- m)引 -s] 

C-l 

(C.l) 

(C.2) 

(C.3) 
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ムι = eV sin Ø2 畔1 -ト1 bO ぐos

寸YbO 玄 fα(htrf 42 川 + (η…)崎)
m=l 

I ~ f ('P2，n+1 ーゆ2 け 2π 1 J い ~ -r L ,1L-r ~ . 't'L. ,m + (η 十 I-m)fz- } -d l
L l ωrfωrf J 

-e1も〆一α { 4> 2 ， n+口l ，n+ l ー ( h- k刊誌)

;-7 f Ø2川+1 - ゆ ，n+1 11 , . ¥ 27r � 
i ω T- (h-k+1)- j 
1.. Wrfωrf J 

× b-α(川;~
m=l 

[w{ ペプl.m , . 2つ l~ -r l ，n -r~， 't' l ,m + (η+1- 刈hー ~ - � 
l Wrfωrf J I 

十eVb〆一α( φ山口i 叫!_ -(川十l)35)

;-7 J ゆえη+1 - Ø1川+1 11 " ~ \ 2 7r ì • dTl-(h-k+l)- j 
l Wrfωrf J 

× 主汁川ナ+(…)九年)
mニ 1

C-2 

トド11プ1 ，m + (n + 1 _州市 -� 仰)
Since the configuration at the surnmation te口ns in eq.(C. 3) 如d (C.4) is same one 

except the suffix, we consider it without the suffix. Supposing that the range of the sumｭ

mation is restricted from η -N to n because the wake field does not affects over so many 

C APPROXrMATION OF WAKE FIELD CALCULATION 

tums, then we obtain 

会-何色+(附l-m)味)

[w悼+何十 1-吋}-� 
or 

sin [w {円ヂ +(η 十 1- m)h計-� 

1ニn -N

( ∞s [w {円ヂ +(η+ 1-m)h計-� 
× く or

l sin [w {円ヂ +(η+1-m)hZ } -64l 
= tιιε/一ベαベ( ゆhルn叫寸+

(十ωω叶Oωs [ベルl ーと'+ n - N ー (m' -N -1)h去 } -� 

C-3 

x ~ or (C.5) 

い [w { 仇+l -2'+π- !:!_ - (m' -N -1) h去}-� 
Furthermore, using m' -N <<η， which means that N has a slightly smaller value than 

仏 the relation between 仇+ 1 一仇 and 仇+1 一ゆm'刊-N becomes 

ゆれ十 l ー ゆm' +n- N = (仇+ 1 一仇) + (仇一仇-1) +・・+(ゆm'+n-N+l ーゆm'+n-N)
I 仇-ゆm'+η-N I

= (仇+ 1 仇) |1+ T |
l 仇+1 一仇 j 

主ー (m' -N -1)(仇+1 一仇) • (C.6) 

Substituting eq.(C.6) into (C.5), we get 

-α(N+1) ( 4> n +1 φm'+ト町 +h 21r � 
S=e 、， \ ωrf 凶/

× bmF(hf子11 刊誌)

(∞s [-wm' (時ヂ+ぽ) + w(N + 1) (円子 + hZ)-6]
x ~ or (C.7) 

l sin [ -wrn' (時ヂ + hZ ) リ(N + 川叫ヂ+明) -8] 
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ゆn+l -仇 2πSupposing I 'f'n+，ωrf| 《 h広~ on the exponential term in the eq.(C.7) , we get in the 

end 

N 

S 二 e α(N+l)味 X L e川元
m'=O 

ベ一両， (ペプη+任) +削+ 1) ( 仇+

ﾗ 

sin [-叶ぺJhZ)+削+1)(ペプ~引-5] 

Using the formula for the sumrnations as 

ι m 1-αcos x -an+1 cos(η + l).T + ♂+2 COS 'TI.T 
予 α-cos r.九x=
ム~ 1-2α cosx + α2 
m=O 

÷ mαsin x -an+1 sin(n + 1)1、+♂十2 siu n:r 
〉 αSlilmx = 
ム~ 1-2αCOS ;1: +α2 
m=O 

(C.IO) 

(C.ll) 

C APPROXIMATION OF WAKE FIELD CALCULATION 

fHhos (u仙1) (ペプη+ hZ)-6)
1 一目 cos { -w ( ~ゆ仇η叶℃+

x [卜卜1トい一イe♂片α

eαN十吟 CωO州S

一寸e♂川川α叫刷仙山……(似川山川N叫M山山+叫叫州2勾伽)川h去 C∞osN {-w ( ペプ + 任)}] 
f(N+l)h元 sin(U(N+rrn+hZ)-6)
1 一川 C∞OSイ←(十ド一Jベw (仇+

x [片 sin {ベペ;仇+吃)}
J吋叩+l){ベゆ Wrf 吃)}

味 s叶ベペ;仇+引}]

C-5 

(C.12) 
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and the equation (C.9) can be rewritten as 

味 c中N+rrn+ lLZ) -6)

一同 cos {ベペプ~+任)} +川
×川田n {ベペプ~+hZ))
e )川h出hh元ι訂S引釦11小 1リ){-w ( 仇ぺ~+二二;ι;プゆ仇~η~+吋hZ引刊)リ) 
J4町

奇弘hS引i川nパ{い何U可(N + 1り) ( ゆ仇叫川川+1 ー ゆ~+β) -0 ~ 
+ ~ 一、 f 、 、 f 〆 j

h35 < -u ( n+1 -m 十九三土 ll +F2Mz:7

[1 -e吟 cos {ベφ1 ゆη+引 )

JHh糾1) {ベペ;仇+4))
Jはh

C-6 

(C, 13) 

After above mentioned approximation for the summation , eq. (C.3) and (C.4) 訂e

simplified as follows 

ムE1 二 eV sin ゆ1附1-le140COS5-e14oSI ，cos
2 

α(ト 1)年一 / ゆl附l ーの，11+l π \ -e~もOeωrf COSω I '1' 1 ,1,, 1 '1'''',H , l - (k -1)-=-:":_ ) . S2,cos 
\ ωrfωrf / 

α(kー 1) ， ~7r， _:_  ~ ( ゆ1 ，η+1 ーゆ2，れ+l π \ 
+e九oe ' 'Wrf S山J l -(k-1)- 1 315in 

¥ Wrfωrf / 

ムE2 = eV sin ゆい+1-leV凶 COS c5 -e VbOS2,cos 
2 

-eVbOeα(hー糾味 COS W ( p_山 - Ø1 ，n+~-(h -k+1)引 Sl ,co 

\ ωrf ωrf / 

α (h-k+ l ) ，~7r， _:_  ~ ( ゆ2川+1 ーゆ1 ，11+ l π \ +e VbOe <A\ " -n., . / Wrf sin ω I 't' Lo , n , 1 't' J ,n, 1 - (h -k + 1)-=-:":_ ) . Sl ,sin , 
\ ωrfωrf / 

(C.14) 

(C.15) 

C APPROX1MATlON OF WAKE F1ELD CALCULATION C-7 

where S1 ,cOS and S2 ,cos express the case that the suffix 1 and 2 are attached on ゆ terrns

in eq.(C.12),respectively, and S1 ,sin and S2,sin express the case that the suffix 1 and 2 are 

attached on ゆ terms in eq .(C.13),respectively. 

Let us consider more simplification for eq.(C.12) and (C .l 3 ) ・ Supposing eαh元>> 1, 

S1 ,sin , S2,sin, Sl ,cOS and S2 ,cos are simplified, then we obtain 

ムE1 = eV sin ゆ1 ，n+1 - e九o cos 0 

v α(h k+ l)年 f -( ゆ 1 ，11+1 一ゆ1η. 1 2π \ , ) 
-evbOe 、 ''''rf COS く ω l 十九一一 J - 0 ~ 

l \ ωげ ωrf / J 

(h-k+1)主 I ~ f ゆ 1 ， 11+1 一ゆい+1 ゆ1 ，n+1 ーゆ1 ，n /] 1 -1，\ 2πl ﾅ I -eVbOe α ， n- IC 1- 1 ) ωri cos 1 ω ~ '+'1 ,111- 1 '+'''::,n1- 1 + 'f' I ,rt-r 1 
'f' I ,n + (h _ k + 1)= ~ -01 

l ωrfωrfωrf J I 

(C.16) 

ムE2 = eV sin ゆ2 ， 11+1 -eVbO COS � 

ーα(k-1)k f _ ( ゆ2 ，n+1 ーの，n , L 27f ¥ .¥ 1 
-e九Oe 、 Jωrf COS く ω I ' w ," ' . , w ," + h- 卜け

e-o(k叶 COS ト { ~2161n+l 十 621h+(k-引 -�] 

(C.17) 
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