
Title
Design and Evaluation of Efficient Algorithms
for Feature Interaction Detection in
Telecommunication Services

Author(s) 中村, 匡秀

Citation 大阪大学, 1999, 博士論文

Version Type VoR

URL https://doi.org/10.11501/3155467

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Design and Evaluation of Efficient

Algorithms for Feature Interaction

Detection in Telecommunication Services

Masahide Nakamura

January 1999

Design and Evaluation of Efficient Algorithms for Feature Interaction De-

tection in Telecommunication Services

Masahide Nakamura

January 1999 Dissertation submitted to the Graduate School of Engineering Science of

Osaka University in partial fulfilment of the requirements

for the degree of Doctor of Engineering

Abstract

Feature interaction is a kind of inconsistent conflict between multiple telecommunication

services, which was never expected from the single services’ behavior. In practical service

development, the analysis of interactions has been conducted in an ad hoc manner by

subject matter experts. This leads to time-consuming service design and testing without

any interaction-free guarantee.

In order to tackle this problem, we discuss the formal approach for detection of feature

interaction. The detection process exists to check if interactions occur or not between

given multiple services, which is one of the most fundamental and important steps in

feature interaction analysis.

In general, the formal method for interaction detection consists of two parts: formu-

lation and algorithm. Formulation includes the definition of service specifications and

the definition of interactions to be detected, while the algorithm determines concrete

procedures for the detection based on the formulation.

A number of formal methods for the feature interaction detection have been proposed

so far. Most of the these methods adopt specification methods fundamentally based on the

state transition model, in which a state consisting of users’ local states successively moves

to a next state in response to the occurrence of user’s events. Then, the interactions are

defined by some undesirable conditions which hold on a certain state within the model.

Unfortunately, most previous research has primarily focused on the formulation using

their respective frameworks, and developing concrete algorithms for efficient interaction

i

detection remains an open issue. Although there are a few exceptions, most conventional

frameworks adopt an exhaustive search method, which explores all possible states using

a reachability graph, in order to identify states at which interactions occur.

The interaction detection algorithm based on the exhaustive search principle is funda-

mentally powerful, in the sense that all interactions are exactly detected. However, when

analysing complex and large-scale services, it suffers from the state explosion problem.

That is, the number of states in the model grows exponentially according to the num-

bers of users and features analysed. Hence, the cost of interaction detection becomes too

expensive, which results in a crucial limitation on its practical application.

The primary goal of this dissertation is to address the problem of how to reduce such

an expensive cost for practical interaction detection. For this purpose, we propose two new

algorithms, called Algorithm SYM and Algorithm PINV, for efficient feature interaction

detection.

The first, Algorithm SYM exploits an equivalence relation, called permutation sym-

metry, for the reduction of the reachability graph. In the telecommunication services,

there exists a specific constraint that all users of a service must be able to use the same

functionality of that service. Under this constraint, the permutation symmetry works as

follows. If we know the possible behavior of user A, then we can infer user B’s possible

behavior, since B can use the service in the same way as A. Hence, we can discard B’s

information from the reachability graph. By exploiting permutation symmetry for con-

struction of the reachability graph, we succeed in reducing the size of the graph while

preserving the necessary information for the interaction detection. As a result, we can

exactly identify all interactions with smaller state space and time.

The second, Algorithm PINV takes completely different approach from that of Algo-

rithm SYM. This algorithm is categorised as a static algorithm in the sense that it does

not explore possible states by means of a reachability graph. Instead of a graph, Algo-

ii

rithm PINV extensively utilizes a P-invariant method, in order to check the reachability

of states. First, we determine the candidate states at which the interaction may occur.

Then we check if each candidate is actually reachable from the initial state by means

of the P-invariant method. This check can only be performed within the structure of

the service specification. Hence, an expensive state search using a reachability graph is

no longer necessary and therefore, drastic cost reduction is expected. Due to the nature

of static algorithms however, Algorithm PINV has a drawback. Since the P-invariant

method’s success is based on a necessary condition of reachability, Algorithm PINV may

not always attain the optimal detection quality.

We have also conducted experimental evaluation through an application to practical

services. We evaluate both Algorithms SYM and PINV from the following viewpoints:

detection quality, performance and scalability.

The results show that Algorithm SYM achieves the optimal detection quality as ex-

pected, and about 80% reduction in space and time for practical interaction detection

problems with three users. Also, it has good scalability with respect to the number of

users. As for Algorithm PINV, it is shown that the detection quality is semi-optimal, com-

parable to optimal, and that both performance and scalability are significantly improved

by several orders of magnitude.

This dissertation is organised as follows. In Chapter 1, we summarize the background

and related topics and describe an outline of the dissertation. In Chapter 2, in addition to

some practical examples of feature interactions, we describe the fundamental definitions

of rule-based service specification and the state transition model. Then, based on those,

we formulate the detection problem. In Chapter 3, we present a conventional detection

algorithm. In Chapter 4, we propose a new detection algorithm, SYM. We give a defi-

nition of permutation symmetry and present theories to implement Algorithm SYM. In

Chapter 5, we propose Algorithm PINV. We first describe a Petri net model and the P-

iii

invariant method. Then, we discuss the candidate generation procedures and Algorithm

PINV itself. In Chapter 6, we perform the experimental evaluation of the proposed two

algorithms. Through the application to practical services, we evaluate their effectiveness

by three metrics: detection quality, performance and scalability. Finally, in Chapter 7,

we conclude this dissertation with a summary and future work.

iv

List of Major Publications

(1) Kakuda, Y., Nakamura, M. and Kikuno, T., “Automated synthesis of protocol spec-

ifications from service specifications with parallelly executable multiple primitives”,

IEICE Trans. Fundamentals, Vol. E77-A No.10, pp.1634-1645, Oct. 1994.

(2) Nakamura, M., Kakuda, Y. and Kikuno, T., “On constructing communication pro-

tocols from component- based service specifications”, Journal of Computer Com-

munications, Vol. 19, No. 14, pp.1200-1215, Dec. 1996.

(3) Nakamura, M. and Kikuno, T., “A new approach in feature interaction testing”,

INTEGRATION, the VLSI journal, Vol. 26, pp.211-223, Dec. 1998.

(4) Nakamura, M. and Kikuno, T., “Exploiting symmetric relation for efficient feature

interaction detection”, IEICE Trans. on Information and Systems. (submitted)

(5) Nakamura, M., Kakuda, Y. and Kikuno, T., “Protocol synthesis from acyclic formed

service specifications,” Proc. of IEEE Int’l. Conf. on Information Networking

(ICOIN’94), pp.177-182, Dec. 1994.

(6) Nakamura, M., Kakuda, Y. and Kikuno, T., “An integration-oriented approach to

designing communication protocols from component-based service specifications,”

Proc. of IEEE Int’l. Conf. on Computer Communication (INFOCOM’96), pp.1157-

1164, Mar. 1996.

v

(7) Nakamura, M., Kakuda, Y. and Kikuno, T., “Analyzing non-determinism in telecom-

munication services using P-invariant of Petri net model,” Proc. of IEEE Int’l.

Conf. on Computer Communication (INFOCOM’97), pp.1253-1260, Apr. 1997.

(8) Nakamura, M., Kakuda, Y. and Kikuno, T., “Petri net based detection method

for non-deterministic feature interactions and its experimental evaluation,” Proc.

of IEEE Fourth Int’l. Workshop on Feature Interactions in Telecommunication

Networks and Distributed Systems (FIW’97), pp.138-152, Jun. 1997.

(9) Nakamura, M., Kakuda, Y. and Kikuno, T., “Feature interaction detection using

permutation symmetry”, Proc. of IEEE Fifth Int’l. Workshop on Feature Interac-

tions in Telecommunication Networks and Distributed Systems (FIW’98), pp.187-

201, Sep. 1998.

(10) Hatanaka, Y., Nakamura, M., Kakuda, Y. and Kikuno, T., “A synthesis method for

fault-tolerant and flexible multipath routing protocols”, Proc. of IEEE Int’l Conf.

on Engineering of Complex Computer Systems (ICECCS’97), pp.96-105, Sep.1997.

vi

Acknowledgements

During the course of this work, I have been fortunate to have received assistance from

many individuals. I would especially like to thank my supervisor Professor Tohru Kikuno

for his continuous support, encouragement, and guidance during this work.

I am also very grateful to the members of my thesis review committee: Professor

Hideo Miyahara and Professor Katsuro Inoue for their invaluable comments and helpful

criticisms of this thesis.

Many of the courses that I have taken during my graduate career have been helpful

in preparing this dissertation. I would like to acknowledge the guidance of Professors

Toru Fujiwara, Masaharu Imai, Nobuki Tokura, Ken-ichi Taniguchi, Ken-ichi Hagihara,

Mamoru Fujii, Toshinobu Kashiwabara and Akihiro Hashimoto.

I also would like to express my gratitude to Professor Yoshiaki Kakuda of Hiroshima

City University who I was directly responsible to for four years in Master and Ph.D

courses.

I wish to thank Kyle Richardson of the School of Computer Science at Birmingham

University for his proofreading of this thesis. His careful comments were invaluble in the

completion of this dissertation.

Thanks are also due to many friends in the Department of Informatics and Mathe-

matical Science at Osaka University who gave me many useful comments. Especially, I

wish to thank Takuro Ikeda, who gave me invaluable assistance with the experiments and

drawing figures. Without his help, I would not have finalized this dissertation.

vii

Contents

1 Introduction 1

1.1 Background . 1

1.2 Main Results . 4

1.2.1 Design of Algorithms . 4

1.2.2 Evaluation of Algorithms . 5

1.3 Overview of the Dissertation . 6

2 Preliminary 8

2.1 Practical Examples . 8

2.2 Service Specification . 10

2.2.1 Notation . 11

2.2.2 State Transition Model . 12

2.3 Invariant Property . 15

2.4 Class of Feature Interactions . 17

2.5 Problem Formulation . 18

3 Conventional Exhaustive Search 21

3.1 Full Reachability Graph FRG . 21

3.2 Interaction Detection Algorithm EXH . 22

4 Exploiting Symmetric Relation 30

viii

4.1 Introduction . 30

4.2 Exploiting Symmetric Relation . 31

4.2.1 Key Idea . 31

4.2.2 Permutation Symmetry . 33

4.2.3 Consistent Symmetry . 36

4.3 Symmetric Reachability Graph SRG . 38

4.4 Interaction Detection Algorithm SYM . 42

4.5 Related Works . 45

5 Static Algorithm using Petri Net Structure 48

5.1 Introduction . 48

5.2 Petri Net Model . 50

5.2.1 Labelled Pr/T Net . 50

5.2.2 Service Specification Net . 56

5.3 P-invariant Method . 60

5.4 Interaction Detection Algorithm PINV . 65

5.4.1 Outline . 65

5.4.2 Candidate Non-deterministic States 66

5.4.3 Candidate Violating States . 70

5.4.4 Algorithm PINV . 72

5.5 Related Works . 75

6 Experimental Evaluation 78

6.1 Introduction . 78

6.2 Service Specifications . 79

6.3 Experimental Evaluation . 83

6.3.1 Detection Quality . 83

ix

6.3.2 Performance . 86

6.3.3 Scalability . 88

6.4 Discussion . 91

7 Conclusion 94

7.1 Achievements . 94

7.2 Future Research . 95

A Calculating P-invariants 106

B Service Specifications 110

B.1 Plain Ordinary Telephone Service (POTS) 110

B.2 Call Waiting (CW) . 111

B.3 Call Forwarding (CF) . 113

B.4 Originating Call Screening (OCS) . 114

B.5 Terminating Call Screening (TCS) . 115

B.6 Denied Orgination (DO) . 116

B.7 Denied Termination (DT) . 117

B.8 Direct Connect (DC) . 118

B.9 Emergency Call (EMG) . 119

x

Chapter 1

Introduction

1.1 Background

Recent advancement of new telecommunication platforms such as IN (intelligent network)

[64] and AIN (advanced intelligent network) [67], enable functional enrichment in telecom-

munication services. As a result, a lot of new services are being developed and deployed

in order to achieve the various requirements of customers.

When such new services are added to the system, functional conflicts can occur be-

tween new and existing services, which may even trigger system down. This conflict is

generally recognised as feature interaction[11], and it becomes a serious obstacle which

prevents the rapid development of new services.

In practical service development, the analysis of feature interactions has been con-

ducted in an ad hoc manner by subject matter experts. However, as the number and

complexity of services grow, the ad hoc analysis does not work in a feasible way, which

leads to time-consuming service design and testing without any interaction-free guarantee.

Therefore, systematic techniques and methodologies for the feature interaction prob-

lem are strongly required today. For the purpose of an essential solution to feature inter-

action, much work has been carried out by researchers and practitioners from academia,

1

research centres and industry [8, 18, 22, 40]. These works include techniques for various

purposes such as detection, resolution, prevention and management of feature interactions

(see an excellent survey [35]).

Among those issues, feature interaction detection is one of the most fundamental steps

towards an essential solution. The detection process exists to identify whether the inter-

action occurs or not for given multiple services.

One of the promising ways to achieve systematic interaction detection is to exploit

formal methods, since they allow the choice of a suitable abstraction level and automatic

verification with proper tool support. In general, the use of formal methods for interaction

detection requires the following two things.

Formulation: Define the notation and model of the target service, which is specifically

called service specification. Then, define the conditions that identify target interac-

tions to be detected.

Algorithm: Determine a detection algorithm based on the formulated service specifica-

tion framework.

A number of formal methods for interaction detection have been proposed so far. Most

previous research has focused primarily on Formulation, that is, they concentrate on

how to define the interactions based on their respective specification frameworks. There

are a lot of service specification methods utilised (or newly proposed) for interaction

detection. For example, Specification and Description Language (SDL)[65, 9, 16], linear

time temporal [5, 6], Object Z [42], SMV language [53], PROMELA [30, 43], LOTOS

[10, 54, 55], FSM-based method [4, 21, 37, 41, 50]), rule-based method [24, 27, 29, 34, 51,

62]. Although there are a few exceptions, the model behind the specification is generally

a state transition model, in which a state consisting of users’ local states successively

moves to a next state in response to the occurrence of user’s events. This is because the

2

behaviour of services can be naturally captured by the finite state machine (FSM) or its

extension. In addition, the interactions are often defined by some undesirable conditions

(e.g., deadlock) that hold on a certain state within the model.

On the other hand, unfortunately, most conventional methods pay little attention

to Algorithm. Except for a few methods, concrete detection algorithms remain open

issues, and the exhaustive search method [31, 59] is utilised for the implementation of the

algorithm in general.

The detection algorithm based on exhaustive search (denoted by Algorithm EXH for

convenience), enumerates all possible states within the state transition model, and then

identifies those states at which an interactions occurs. Algorithm EXH is quite simple,

but powerful in the sense that all interactions defined within the state transition model

are exactly detected. So, it is adopted by most conventional detection frameworks (e.g.,

[4, 16, 21, 27, 37, 43, 51, 54]).

However, due to concurrent characteristics of telecommunication services, the num-

ber of states in the model grows exponentially in accordance with the numbers of users

and features analysed. Therefore, when analysing complex and large-scale services, Al-

gorithm EXH suffers from the so-called state explosion problem [60]. Hence, the cost of

interaction detection becomes too expensive, which results in a crucial limitation on its

practical application. The primary goal of this dissertation is to address the design of ef-

ficient algorithms for feature interaction detection, and their evaluation through practical

applications.

3

1.2 Main Results

1.2.1 Design of Algorithms

By using a rule-based service specification which is similar to the conventional ones [24, 27,

29, 34, 51, 62] as a service description, we first formulate the interaction detection problem

for four typical classes of interactions: (1) deadlock, (2) loop, (3) non-determinism and (4)

violation of invariants [21, 24, 37, 27, 51]. Then, we propose two new algorithms, called

Algorithm SYM and Algorithm PINV for detection of these four kinds of interactions.

The conventional algorithm, EXH, utilises a reachability graph [31, 59] in an exhaus-

tive search, in order to explore all possible states within the state transition model. When

the numbers of users and features increase, the size of the reachability graph grows expo-

nentially. This is the main source of the state explosion problem.

The aim of Algorithm SYM is to reduce the size of the reachability graph in a cer-

tain manner. In order to achieve the reduction, we utilise an equivalence relation called

permutation symmetry with respect to users. The reduction works successfully due to

a specific constraint in telecommunication systems which states that “all subscribers of

a service X are guaranteed to be able to use the same functionality of X”. Under this

constraint, suppose that both users A and B are subscribers of X. Intuitively speaking,

if we know subscriber A’s possible behavior on service X, then we then we can infer B’s

behavior on X from A’s by swapping A and B, because B can use X in the same way

as A. Therefore, we no longer have to store the information about B’s behavior. As a

result, we can discard the relevant state transitions from the reachability graph.

The proposed theory extends this idea to possible permutation of users, and defines

an equivalence relation among states (and transitions), called permutation symmetry. By

extensively exploiting permutation symmetry for the generation of a reachability graph,

we can reduce the size of the graph while completely preserving all necessary information

4

for interaction detection. As a result, Algorithm SYM can achieve exact interaction

detection based on necessary and sufficient conditions, with a reachability graph much

smaller than that of Algorithm EXH.

Algorithm PINV takes a completely different approach from algorithms EXH and

SYM. This algorithm is a so-called static algorithm [32], in the sense that it does not

require reachable state exploration using a reachability graph (Algorithms EXH and SYM

are called dynamic on the other hand). Instead of the reachability graph, Algorithm PINV

exploits the P-invariant method of Petri nets [48, 32, 33] in order to check the reachability

of states. We first generate candidate states at which interactions may occur, and then

check the reachability of each candidate by means of the P-invariant method. Since this

check can only be performed within the structure of the service specification, PINV works

in a static way.

Due to the nature of static algorithms, Algorithm PINV is applied to the detection

of only two classes of interactions: non-determinism and violation of invariants. Also, P-

invariant method is based only on the necessary condition of reachability. This fact implies

that Algorithm PINV may not always attain the optimal detection quality. In other words,

Algorithm PINV may detect some interactions which do not actually occur. However,

incorporating the above drawbacks, Algorithm PINV achieves drastic cost reduction of

interaction detection since the expensive reachability graph is no longer necessary.

1.2.2 Evaluation of Algorithms

Also, we conduct the experimental evaluation of the proposed algorithms PINV and SYM

through application to interaction detection within practical standard services [64, 66].

In the experiment, we evaluate algorithms SYM and PINV from the following view-

point.

Detection Quality: whether the algorithms can exactly identify all interactions or not.

5

Performance: how much time and space are needed for the algorithms.

Scalability: how many users and features can be scaled by the algorithms.

The results show that Algorithm SYM achieves the optimal detection quality as ex-

pected, and about 80% reduction in space and time for practical interaction detection

with three users. Also, it has a good scalability with respect to the number of users.

As for Algorithm PINV, the detection quality is semi-optimal in comparison, in that

non-actual interaction is never identified. This means that the necessary condition of

the P-invariant method, fundamentally worked as a necessary sufficient condition for

practical services prepared in the experiment. Also, it is shown that both performance

and scalability are significantly improved by several orders of magnitude.

As a result, it is shown that both methods are well applicable to practical interaction

detection.

1.3 Overview of the Dissertation

The dissertation is organized as follows: In Chapter 2, after some practical examples of

feature interactions, we describe the fundamental definitions of rule-based service specifi-

cation and the state transition model. Then, based on those, we formulate the detection

problem for four classes of interactions: deadlock, loop, non-determinism and violation of

invariants.

In Chapter 3, we present the conventional detection algorithm, EXH. In the rule-based

service specification, Algorithm EXH utilises a reachability graph called FRG. Hence, we

first define FRG, then Algorithm EXH is presented.

In Chapter 4, we propose a new detection algorithm SYM. We give a definition of

permutation symmetry after explanation of the key idea. Next, we define a new reach-

ability graph called SRG by means of permutation symmetry and give the proof rules

6

for interaction detection. By means of SRG and these proof rules, we propose Algorithm

SYM.

In Chapter 5, we propose Algorithm PINV. First, we define a Petri net model onto

which the rule-based service specification is mapped. We then explain the P-invariant

method of the Petri net. Next, we show the candidate generation procedures for interac-

tions of non-determinism and violation of invariants. Combining these procedures with

the P-invariant method, we present Algorithm PINV.

In Chapter 6, we perform experimental evaluation of the proposed two algorithms.

Through the application to practical services, we show their effectiveness by three metrics:

detection quality, performance and scalability.

Finally, in Chapter 7, we conclude this dissertation with a summary and future works.

7

Chapter 2

Preliminary

2.1 Practical Examples

Before explaining fundamental definitions, we present three practical examples of feature

interactions. More instances can be referred to [13, 14, 25, 57, 61, 63].

Example 2.1 Interaction between Call Waiting and Call Forwarding.

Call Waiting (CW): This service allows the subscriber to receive an additional call

while he is talking. Suppose that x subscribes to CW . Even when x is busy talking

with y, x can receive an additional call from a third party, z.

Call Forwarding (CF): This service allows the subscriber to have his incoming calls

forwarded to another number. Suppose that x subscribes to CF , and that x spec-

ifies z to be a forwarding address. Then, any incoming call to x is automatically

forwarded to z.

Interaction CW&CF : Let A, B, C and D be subscribers of the telephone network.

Assume that A subscribes to both CW and CF . Suppose that (1) A is talking with

B, (2) C is ready to idle, and (3) D is in A’s forwarding address and is idle. Then, if

C dials A, should the call from C to A be received by A’s CW feature, or should it

8

��

��

��

��

���

��

��
����	

���
��

���

���
�����

��
����

���
��

���
��
���
��

����
��������
��

����
����
���

����
����
���

����
����
����

���
�����

��
����

�

�����

�

�����

���
��
���������

���������� ����������

���������

���������

��������������������

���������

���

�

�����

�

�����

�

�����

�

�����

�

�����

�

�����

����

����

����

����

���

�
��� �
����

�

�

����
����

����������	�
����������	�

	��
	��	��	��
	��	��

�
��� �
����

�

�

���
�����
����	

���
��

����
����

���

Figure 2.1: Interaction examples

be forwarded to D by the CF feature? This non-determinism will make A confused,

thus should be avoided (See Figure 2.1(a)). �

Example 2.2 Interaction between OCS service and CF service

Originating Call Screening (OCS): This service allows the subscriber to specify that

outgoing calls be either restricted or allowed according to a screening list. Suppose

that x subscribes to OCS and that x puts y in a screening list. Then, any outgoing

call to y from x is restricted, while any other call to z from x is allowed.

Call Forwarding (CF): The same as the one in Example 2.1.

Interaction OCS&CF Suppose that (1) A is an OCS subscriber who restricts the out-

going calls to C, and (2) B is CF subscriber who sets the forwarding address to C.

At this time, if A dials B, the call is forwarded to C, so A will be calling C. This

nullifies A’s call restriction to C (See Figure 2.1(b)) �

9

Example 2.3 Interaction of Emergency call with itself.

Emergency call (EMG): This service is usually deployed on police and fire stations.

In the case of an emergency incident, the call will be held even when the caller

mistakenly onhooks. Suppose that x is a police station on which EMG is deployed,

and that y has made a call to x and is now busy talking with x. Then, even when

y onhooks, the call is on hold without being disconnected. Followed by that, if y

offhooks, the held line reverts to a connected line and y can talk with x again. In

order to disconnect the call, x has to onhook.

Interaction EMGA & EMGB: Suppose that both A and B subscribe to EMG and are

talking to each other. Here, if A onhooks, the call is on hold by B’s EMG. At this

time, if A offhooks, the call reverts to the talking state. On the other hand, if B

onhooks, the call is also held by A’s EMG without being disconnected. Symmetri-

cally, this is true when B onhooks first. Thus, neither A norB can disconnect the

call. As a result, the call falls into a trap from which it never returns to the idle

state (See Figure 2.1(b)). �

2.2 Service Specification

In order to formalise the feature interaction detection problem, we present fundamental

definitions in this section. For the formalisation, we have to first describe services in a

certain way. There are a number of researches concerning service description to formulate

the feature interaction problem. We briefly enumerate them as follows. Specification

Description Language (SDL) [65, 9, 16], linear time temporal [5, 6], Object Z [42], SMV

language [53], PROMELA [30, 43], LOTOS [10, 54, 55], FSM-based method [4, 21, 37,

41, 50]), rule-based method [24, 27, 29, 34, 51, 62]. Each algorithm has its advantage and

disadvantage.

10

In this paper, we adopt a rule-based service specification for a service description

method such as State Transition Rules (STR)[29, 51] and declarative transition rules [24].

Rule-based methods have been widely studied for the practical use since:

• the modularity of the rule facilitates the addition or modification of the new service,

and

• a simple IF-THEN form of each rule enables non-experts to easily design the service

logic[51].

2.2.1 Notation

First, we define the syntax notation of the specification.

Definition 2.4 A service specification S is defined as S = 〈U, V, P,E,R, s0〉, where

(a) U is a set of constants representing service users.

(b) V is a set of variables.

(c) P is a set of predicate symbols.

(d) E is a set of event symbols.

(e) R is a set of rules.

(f) s0 is the (initial) state.

Each rule r ∈ R is defined as follows:

r: pre-condition [event] post-condition.

Pre(post)-condition is a list of predicates p(x1, ..., xk)’s, where p ∈ P ,xi ∈ V and k is

called arity which is a fixed number for each p. Especially, pre-condition can include

11

negations of predicates such as ¬p(x1, ..., xk)’s which implies p(x1, ..., xk) does not hold.

Next, Event is a predicate e(x1, ..., xk), where e ∈ E, xi ∈ V . For convenience, we

represent pre-condition, event and post-condition of rule r as Pre[r], Ev[r] and Post[r],

respectively.

A state is defined as a list of instances of predicates p(a1, ..., ak)’s, where p ∈ P ,ai ∈ U .

We think of each state as representing a truth valuation[47] where instances in the list are

true, and instances not in the list are false.

Example 2.5 Figure 2.2 shows an example of a service specification for Plain Ordinary

Telephone Service (POTS). For example, pots3 means that “Suppose that user x receives

dialtone and y is not idle. At this time, if x dials y, then x will receive a busytone”. State

s0 means that two users A and B are idle. In state s0, two instances idle(A) and idle(B)

are true because they are included in s0. On the other hand, any other instances (e.g.,

dialtone(B) or calling(A,B)) are false since they are not included in s0.

Since a state represents a truth valuation for all instances of predicates, it can also be

described by a Boolean vector {true, false}n. For example, letting true and false denote

1 and 0, respectively, the state s0 in Example 2.5 is written as:

s0 =




i(A) i(B) d(A) d(B) c(A,A) c(A,B) ... t(B,B)

1 1 0 0 0 0 ... 0




where i, d, c and t stand for idle, dialtone, calling and talk, respectively.

2.2.2 State Transition Model

Next, we define the state transition specified by the rule-based specification.

Definition 2.6 Let S = 〈U, V, P,E,R, s0〉 be a service specification. For r ∈ R, let

x1, ..., xn (xi ∈ V) be variables appearing in r, and let θ = 〈x1|a1, ..., xn|an〉 (ai ∈ U) be a

12

U = {A,B}

V = {x, y}

P = {idle, dialtone, calling, busytone, talk}

E = {offhook, onhook, dial}

R = {

pots1 : idle(x) [offhook(x)] dialtone(x)

pots2 : dialtone(x) [onhook(x)] idle(x)

pots3 : dialtone(x),¬idle(y) [dial(x, y)] busytone(x)

pots4 : dialtone(x), idle(y) [dial(x, y)] calling(x, y)

pots5 : calling(x, y) [onhook(x)] idle(x), idle(y)

pots6 : calling(x, y) [offhook(y)] talk(x, y), talk(y, x)

pots7 : talk(x, y), talk(y, x) [onhook(x)] idle(x), busytone(y)

pots8 : busytone(x) [onhook(x)] idle(x)

}

s0 = idle(A), idle(B)

Figure 2.2: Rule-based specification for POTS

13

substitution replacing each xi in r with ai. Then, an instance of r based on θ (denoted

by rθ) is defined as a rule obtained from r by applying θ = 〈x1|a1, ..., xn|an〉 to r.

Definition 2.7 Let s be a state. We say rule r is enabled for θ at s, denoted by en(s, r, θ),

iff all instances in Pre[rθ] take a true value at s (i.e., all instances are included in s). When

en(s, r, θ), the next state, s′ of s, can be generated by deleting all instances in Pre[rθ]

from s and adding all instances in Post[rθ] to s. For convenience, we describe it by

s′ = s − Pre[rθ] + Post[rθ]

where + and − respectively represent addition and deletion operators on the list. These

operators work in the same way as union and subtraction operators on a set, respectively.

At this time, we say a state transition from s to s′ caused by an event Ev[rθ] is defined

on S, which is denoted by s − Ev[rθ] → s′ (or simply s → s′). We say that state s is

reachable from s0 iff s = s0 or a sequence of state transitions s0−e0→s1, s1−e1→s2 , ...,

sn−en→s exists, which is denoted by s0→∗s (reflexive and transitive closure of →).

Example 2.8 Let us consider rule pots1 and state s0 in Figure 2.2. For a substitution

θ = 〈x|A〉, we have pots1θ

pots1θ : idle(A) [offhook(A)] dialtone(A).

Here, en(s0, pots1, θ) holds since idle(A) in Pre[pots1θ] is included in s0. Then, next state

s1 can be defined as follows:

s1 = s0 − Pre[pots1θ] + Post[pots1θ]

= (idle(A), idle(B)) − idle(A) + dialtone(A)

= dialtone(A), idle(B)

As a result, a state transition s0−offhook(A)→s1 is defined, which implies that if A

offhooks at s0, then A receives a dialtone, while B remains idle.

14

Next, let us apply pots4 to s1. For θ′ = 〈x|A, y|B〉, en(s1, pots4, θ
′) holds.

pots3θ
′ : dialtone(A), idle(B) [dial(A,B)] calling(A,B).

Then, the successive next state s2 can be generated as follows:

s2 = s1 − Pre[pots4θ
′] + Post[pots4θ

′]

= (dialtone(A), idle(B)) − (dialtone(A), idle(B)) + calling(A,B)

= calling(A,B)

So, a state transition s1−dial(A,B)→s2 is defined, which implies that if A dials B at

s1, then A is calling B.

2.3 Invariant Property

Practically, service(feature) designers may want to specify some properties which the

target service must satisfy at any time. For example, POTS must satisfy the following

property: “If user x is idle, then x is not busy at any time”. Also, for OCS, the designer

may describe that “If x specifies y in the screening list, then x is never calling y at

any time”. These properties are generally called invariant properties [37, 59]. In our

framework, we describe these properties as follows.

Definition 2.9 Let S = 〈U, V, P,E,R, s0〉 be a service specification. Let p(x1, ..., xk)

with p ∈ P, xi ∈ V be any predicate in S. Then, the invariant formula is recursively

defined as follows:

(a) p(x1, ..., xk) is an invariant formula.

(b) If f and g are invariant formulas, then ¬f (negation), f ∨ g (disjunction) and f ∧ g

(conjunction) are invariant formulas.

15

The invariant formula IS for a service S is intended to be satisfied by S at any time. In

other words, IS is intended to be satisfied at any states reachable from the initial state s0

of S. Next, we define the evaluation of an invariant formula at state s. In the evaluation,

the operators ¬,∨,∧ work in the same way as the logical not, or, and, respectively.

Definition 2.10 Let I be a invariant formula and x1, ..., xn (xi ∈ V) be variables ap-

pearing in I. Let s be a state and let Iθ be a formula obtained by applying a substitution

θ = 〈x1|a1, ..., xn|an〉 (ai ∈ U) to I.

Then, I is satisfied at s for θ, denoted by s, θ � I, iff Iθ takes a true value by applying

the truth valuation of s to Iθ. I is satisfied at s, denoted by s � I, iff s, θ � I for all θ.

Although the invariant formula is a logical formula consisting of predicates (without

quantifiers), its expression power is equivalent to formulas in propositional logic.

Remark 2.11 From Definition 2.10, it is obvious that s � I holds s iff I ′ = Iθ1 ∧ Iθ2 ∧

... ∧ Iθl takes a true value at s, where l is the number of all possible substitutions. The

true or false of any instance of predicates in I ′ is uniquely determined by s, that is, I ′ is

a propositional formula. Therefore, the evaluation of I at each state s is not a difficult

task.

Example 2.12 Let us give a simple invariant formula for POTS. The property “If user

x is idle, then x is not busy at any time”, can be described as

I = ¬idle(x) ∨ ¬busytone(x).

Let us evaluate I in the following state s. We assume here U = {A,B}.

s = idle(A), busytone(B)

For a substitution θ1 = 〈x|A〉, we have

Iθ1 = ¬idle(A) ∨ ¬busytone(A)

16

Now, based on s, we evaluate Iθ1,

Iθ1 = ¬true ∨ ¬false = false ∨ true = true

That is, we have s, θ1 � I. Similarly, for θ2 = 〈x|B〉,

Iθ2 = ¬idle(B) ∨ ¬busytone(B)

= ¬false ∨ ¬true

= true

So, s, θ2 � I. Consequently, s � I, that is, I is satisfied at s.

In general, the invariant formula should be specified manually by the service (feature)

designers. This is because the invariant property for a service must originate from the

semantics of the service, such as requirements and functionalities. Therefore, we assume

that the invariant formula is given by the designer and it will be input of the interaction

detection problem.

2.4 Class of Feature Interactions

In this paper, we focus primarily on the following three types of interactions. These are

very typical cases of interactions and are discussed in many papers(e.g., [21, 24, 37, 27,

51]):

deadlock: Functional conflicts of two or more services cause a mutual prevention of their

service execution, which result in a deadlock.

loop: The service execution is trapped into a loop from which the service execution never

returns to the initial state.

non-determinism: An event can simultaneously activate two or more functionalities of

different services. As a result, it cannot be determined exactly which functionality

should be activated.

17

violation of invariant: The invariant property, which is asserted by each service, is

violated by the service combination.

2.5 Problem Formulation

First, we define the following undesirable states. Each of them corresponds to a class of

interactions discussed before.

Definition 2.13 Let S = 〈U, V, P,E,R, s0〉 be a given service specification, and let IS

be a given invariant formula for S. Then, a state s is said to be a

deadlock state: iff [s0→∗s] and [¬en(s, r, θ) for any r ∈ R and θ].

loop state: iff [s0→∗s] and [there exists such a state s′ that s→∗s′→∗s and ¬(s→∗s0)].

non-deterministic state: iff [s0→∗s] and [there exists a pair of rules r, r′ ∈ R such that

en(s, r, θ) and en(s, r′, θ′), and that Ev[rθ] = Ev[r′θ′]].

violating state: iff [s0→∗s] and [s �� IS].

The above four kinds of states are called undesirable states. The pair (S, IS) is called safe

iff there is no undesirable state for a service specification S and an invariant formula IS .

Example 2.14 We explain the non-deterministic state using an example. Consider the

following two rules cw4 and cf10, and a state s.

cw4 : CW (x), talk(x, y), dialtone(z) [dial(z, x)] CW (x), talk(x, y), CWcalling(z, x).

cf10 : CF (y, z), dialtone(x), idle(z) [dial(x, y)] CF (y, z), calling(x, z).

s = CW (A), CF (A,D), talk(A,B), talk(B,A), dialtone(C), idle(D)

The rules cw4 and cf10 respectively describe the functionality of CW and CF shown

in Example 2.1. Rule cw4 implies CW feature such that “Suppose that x subscribes CW

18

�

�� ���

Figure 2.3: Classification of states

feature, x is talking with y and z receives a dialtone. In this situation, if z dials x, then

x receives an additional call from a third party z”.

On the other hand, rule cf10 implies CF feature such that “Suppose that y subscribes

CF feature and pre-sets the forwarding address to z, z is idle, and x receives a dialtone.

In this situation, if x dials y, then the call to y is forwarded to z and x is calling z”.

Also, the state s means that: user A has both a CW feature and a CF feature with

forwarding to D, A is talking with B, C receives a dialtone, and D is idle. Now, we

suppose that s is reachable from the initial state s0. Let θ1 = 〈x|A, y|B, z|C〉 and θ2 =

〈x|C, y|A, z|D〉. Then, en(s, cw4, θ1) and en(s, cf10, θ2), and Ev[cw4θ1] = Ev[cf10θ2] =

dial(C,A). This is exactly the non-deterministic behavior explained in Example 2.1.

Note that each condition of the undesirable states in Definition 2.13 is formed by a

conjunction of the reachable condition s0→∗s and the undesirable condition such as s �� IS .

Let UND be a set of all states satisfying such an undesirable condition, and let RS be a

set of all reachable states from s0. Also, let U be a set of all states. Figure 2.3 shows

a classification of states schematically. Then, the set of undesirable states is just the

intersection of UND and RS, depicted by the shaded part.

19

Next, we define a combined operator of two service specifications. Because of the

good modularity of the rule-based specification, we can easily combine two specifications

as follows.

Definition 2.15 For two specifications S1 = 〈U1, V1, P1, E1, R1, s10〉 and S2 = 〈U2, V2, P2, E2, R2, s20〉,

we define a combined specification S1 ⊕ S2 = 〈U, V, P,E,R, s0〉 such that U = U1 ∪ U2,

V = V1 ∪ V2, P = P1 ∪P2, E = E1 ∪E2, R = R1 ∪R2 and s0 = s10 + s20 where + denotes

the addition operator in Definition 2.7.

Now, we are ready to define the feature interaction on the rule-based service specifi-

cation.

Definition 2.16 Let S1 and S2 be given service specifications, and let IS1 and IS2 be

given invariant formulas for S1 and S2, respectively. Then, we say S1 interacts with S2 iff

(a) both (S1, IS1) and (S2, IS2) are safe, and

(b) (S1 ⊕ S2, IS1 ∧ IS2) is not safe.

Consequently, the feature interaction detection problem is defined as follows:

Definition 2.17 Feature Interaction Detection Problem

Input: Two service specifications S1 and S2, and their invariant formulas IS1 and IS2.

Output: True (detected) or False (not detected) for “S1 interacts with S2”

In terms of the classification of states shown in Figure 2.3, the feature interaction detection

problem is to identify the intersection of RS and UND for S1 ⊕ S2 and IS1 ∧ IS2.

20

Chapter 3

Conventional Exhaustive Search

3.1 Full Reachability Graph FRG

Most of the conventional feature interaction detection frameworks (e.g., [4, 16, 21, 27, 37,

43, 51, 54]) adopt the exhaustive search method, which explores all possible reachable

states. An exhaustive search is generally performed by means of a reachability graph.

For a given service specification S = 〈U, V, P,E,R, s0〉, the rule applications from

initial state s0 construct a finite state machine(FSM) consisting of all reachable states

from s0, in which a state moves to the next state by the occurrence of an event. Since

an FSM can be described by a labelled directed graph, here we directly define such an

FSM as a directed graph [1]. In the following, we represent a directed edge from s to s′

labelled by e as a triple (s, e, s′).

Definition 3.1 A labelled directed graph is defined as G = 〈N,L, T 〉 where:

(a) N is a set of nodes.

(b) L is a set of labels attached to the directed edges.

(c) T ⊆ N × L × N is a set of directed edges.

21

For any directed graph G, a directed path ρ is a sequence of directed edges: ρ = (s1, e1, s2),

(s2, e2, s3), ..., (sn, en, sn+1). For this, the node s1 is called the head node of ρ, while sn+1

is called the tail node of ρ. n is called a length of ρ. A directed path is a directed cycle iff

its head node and tail node are identical. A node is called a terminal iff it has no outgoing

edge.

Definition 3.2 Let S = 〈U, V, P,E,R, s0〉 be a service specification. A full reachability

graph for a given S is a labelled directed graph FRG(S) = 〈N,L, T 〉 such that:

(a) N = {s|s0→∗s}.

(b) L is a set of all instances of events.

(c) T = {(s, Ev[rθ], s′)| s−Ev[rθ]→s′ }

In FRG, each node represents a reachable state s, and each arc outgoing from s

represents a state transition which occurs at s. The algorithm in Figure 3.1 constructs an

FRG for a service specification S. In the algorithm, we define waiting as a set of nodes.

Example 3.3 Figure 3.2 shows a full reachability graph for the POTS specification in

Figure 2.2. We can see that there are 12 reachable states (represented by ovals) and 30

state transitions (represented by directed arrows).

3.2 Interaction Detection Algorithm EXH

Using the full reachability graph FRG, we can easily identify the undesirable states in

Definition 2.13 as follows.

Proposition 3.4 The following properties are satisfied for FRG(S) and given IS .

(a) there exists a terminal s ⇔ s is a deadlock state.

22

FRG Construction Algorithm

Input: S = 〈U, V, P,E,R, s0〉

Output: FRG(S) = 〈N,L, T 〉

Procedure:

waiting = N := {s0}; L = T := ∅;

repeat {

select s from waiting ;

for any r ∈ R s.t. en(s, r, θ) for some θ {

generate the next state s′ by applying r to s;

add Ev[rθ] to L ;

if (s′ �∈ N) then {

add s′ to N ;

add s′ to waiting;

}

add (s, Ev[rθ], s′) to T ;

}

delete s from waiting ;

}

Until waiting = ∅

Figure 3.1: FRG construction algorithm

23

������	
��

���������

�����	
��

���������

�����	
��

��������� �����	
��

���������
�����	
��

���������

�����	
��

���������

������	
��

���������

�����	
��

���������

������	
��

���������

����
����

���������

�����	
��

���������

������	
��

���� ����

������	
��

���� ����

����
����

���������

�����	
��

���������

�����	
��

���������

�����	
��

���������

!"#"��

��
$%&�'(((((((��
$%&�'

��
$%&��)&�'((��
$%&��)&�'

������*�
�����+,��*�

������	
��

�����	
��

����
����

����
��������
����

����
����

�����	
��

�����	
��

�����	
��

�����	
��

������	
��

�����	
��

������	
��

���"
���
���"
��

-�����#
����

����+��"
���
���"
��

���"
���
./,)+��"
��

����+��"
���
./,)+��"
��

����+��"
���
����+��"
��

+��	
�����
+��	
����

./,)+��"
���

./,)+��"
��

���"
���
����+��"
��

./,)+��"
���
����+��"
��

-�����#
����

./,)+��"
���
���"
��

���������

���������

���������

���������

���������

���������

���������

���������

���������

���������

���������

����0����

����0����

1�(�21�(�2

�2

��

��

�� �0

���

�

��2

��

�3
�� ��

Figure 3.2: FRG for POTS specification

(b) there exists a directed cycle starting from s, and there exists no directed path from

s to s0 ⇔ s is a loop state.

(c) there exists a node s which has a pair of outgoing edges (s, e1, s
′) and (s, e2, s

′′) such

that e1 = e2 ⇔ s is a non-deterministic state.

(d) there exists a node s such that s �� IS ⇔ s is a violating state.

Proof: Straightforward from Definitions 2.13 and 3.2. �

According to Proposition 3.4 undesirable states except for violating state in Definition

2.13 are easily identified from the structure of FRG. In order to detect the violating state,

we have to evaluate s �� IS , where IS = IS1 ∧ IS2 for each reachable state s. For this, we

recall Remark 2.11. From this, s �� IS holds iff

¬I ′
S = ¬(ISθ1 ∧ ISθ2 ∧ ... ∧ ISθl)

= ¬ISθ1 ∨ ¬ISθ2 ∨ ... ∨ ¬ISθl

24

s �� IS Evaluation Procedure

function eval(s, IS)

/* ¬IS = t1 ∨ t2 ∨ ... ∨ th */

for each ti = p1 ∧ p2 ∧ ... ∧ pq

for each θ

if (some pjθ is false at s) then break;

else return(true);

return(false);

Figure 3.3: Evaluation procedure

takes true value at s. Without loss of generality, we assume that ¬IS is described as

sum-of-product form [1]: ¬IS = t1 ∨ t2 ∨ ... ∨ th, where ti = p1 ∧ p2 ∧ ... ∧ pq and pi is a

predicate pi(x1, ..., xk) or its negation. Then, we have

¬I ′
S = ¬ISθ1 ∨ ¬ISθ2 ∨ ... ∨ ¬ISθl

=
∨
i

(t1 ∨ t2 ∨ ... ∨ th)θi

=
∨
i,j

tjθi

¬I ′
S take true value at s iff at least one tjθi takes a true value at s. So, s �� IS holds

iff s, θi � tj holds for some tj and θi. Consequently, in order to detect the violating

state s, we apply the procedure eval(IS , s) in Figure 3.3. In the algorithm, we assume

¬IS = t1 ∨ t2 ∨ ... ∨ th is given.

Example 3.5 Consider again the service specification for POTS in Figure 2.2. Let us

evaluate the following invariant expression I saying that “If x receives dialtone, then [x

25

is not busy] and [x is not idle]”

I = ¬dialtone(x) ∨ (¬idle(x) ∧ ¬busytone(x))

= (¬dialtone(x) ∨ ¬idle(x)) ∧ (¬dialtone(x) ∨ ¬busytone(x))

Hence, we obtain ¬I as follows.

¬I = dialtone(x) ∧ idle(x) ∨ dialtone(x) ∧ ¬busytone(x)

Consider the following state s:

s = idle(A), busytone(B), dialtone(A)

The term dialtone(x)∧ idle(x) of ¬I is true for θ1 = 〈x|A〉. So, we can conclude s �� I. If

s is reachable from the initial state s0, then s is a violating state ∗ . Note that it is not

necessary to all possible substitutions and all predicates in I when s �� I holds.

Thus, in order to detect the interactions between given two specifications S1 and S2,

we first construct FRG(S1 ⊕ S2), then identify the undesirable states using Proposition

3.4.

The interaction detection algorithm based on exhaustive search, denoted by Algorithm

EXH, is summarized in Figure 3.4. Consider again Fig 2.3. Since the set RS of reachable

states is the set of nodes in FRG, we can see that EXH works as shown in Figure 3.5.

The following proposition characterizes Algorithm EXH.

Proposition 3.6 The following property is satisfied for Algorithm EXH:

S1 interacts with S2 ⇔ EXH returns “Detected′′.

Proof: Straight forward from Proposition 3.4. �

Although interaction detection using the FRG is quite simple and powerful, it may

suffer from the state explosion problem [60]. That is, the size of the FRG (i.e., the size

∗ In fact, we can see that s is not reachable since it does not appear in the FRG shown in Figure 3.2.

26

of RS in Figure 3.5) exponentially grows when the number of users and the number of

rules in the specification become large. For example, consider the POTS specification in

Figure 2.2. As we vary the number of users from 2 to 5, then the number of nodes in the

FRG grows as 12, 54, 270, 1458. For the number of edges, it increases exponentially as

30, 234, 1728, 12690. We will show more practical evaluation in Chapter 6.

27

Detection Algorithm EXH

Input: S1,S2, IS1, IS2

Output: “Detected” or “Not detected”

Procedure:

S = S1 ⊕ S2; IS = IS1 ∧ IS2;

Phase 1: Construct FRG(S1 ⊕ S2);

Phase 2: Detect undesirable states using Proposition 3.4;

If (detected) then return(“Detected”);

else return(“Not detected”);

Figure 3.4: Detection Algorithm EXH

28

�

�

�� ���

�

��

Figure 3.5: Conceptual overview of EXH

29

Chapter 4

Exploiting Symmetric Relation

4.1 Introduction

The straightforward way to circumvent the state explosion problem in Algorithm EXH is

to reduce the size of the full reachability graph FRG (which is also called state space[31])

in a certain manner. In this Chapter, we try to propose a new interaction detection

algorithm, called Algorithm SYM, which attains efficient state space reduction without

losing any necessary information for interaction detection.

In order to achieve the reduction, we utilise an equivalence relation called permutation

symmetry with respect to users. The basic idea of permutation symmetry is originally

proposed in other research fields such as Petri net verification[32]. However, here we

show that the state reduction is successfully achieved by means of a specific constraint on

telecommunication services.

In telecommunication systems, there exists a specific constraint that “all subscribers

of a service X are guaranteed to be able to use the same functionality of X”. Under

this constraint, suppose that both users A and B are subscribers of X. If we know A’s

possible behavior on X, then we can infer B’s behavior on X from A’s, because B can use

X in the same way as A. Therefore, we can discard the state transitions for B’s behaviors

30

since they can be reproduced from A’s. Based on this idea, we define an equivalence

relation symmetrical on the states and transitions for the state reduction. Then, we

define a new reachability graph, called the symmetric reachability graph, SRG, in which

all symmetrical states are grouped into one node. Finally, by using the SRG, we provide

a new algorithm, SYM, for the detection of all four types of undesirable states: deadlock,

loop, non-deterministic and violating states.

Permutation symmetry is well suited for the constraints of telecommunication ser-

vice. Therefore, the state reduction by permutation symmetry preserves effectively all

information stored in the FRG. As a result, Algorithm SYM attains the optimal (exact)

interaction detection based on a necessary and sufficient condition in the same way as

Algorithm EXH, with much smaller state space.

The remainder of this chapter is organised as follows. In the next section, we define

the permutation symmetry after explanation of the key idea. Then, we define a particular

permutation symmetry, called consistent symmetry, which guarantees the reachabiltiy of

symmetrical states. In Section 4.3, we present a new reachability graph, SRG, and then we

propose Algorithm SYM. Finally, Section 4.5 summarizes the related interaction detection

methods using reduction techniques.

4.2 Exploiting Symmetric Relation

4.2.1 Key Idea

Here we explain the key idea in more detail by means of an example. The key idea to

achieve this reduction is to utilise a relation between states called permutation symmetry.

There exists the following specific constraint in telecommunication services:

Constraint: All subscribers of service X must be able to use functionality of X in the

same way.

31

For example, let us consider that A uses POTS’s dialing functionality to B: “Suppose

that A receives a dialtone and B is idle. At this time, if A dials B, then A will be calling

B”. Similarly, when B uses this functionality, the situation is: “Suppose that B receives

a dialtone and A is idle. At this time, if B dials A, then B will be calling A.” We can

easily convince that two situations are symmetrical with respect to users, that is, the

one can be inferred from the other only by swapping A and B. In terms of our service

specification, we can observe the symmetry on states and state transitions.

Example 4.1 Consider the following states s1 and s2:

s1 = dialtone(A), idle(B), busytone(C)

s2 = dialtone(C), idle(A), busytone(B)

We see s1 and s2 are symmetrical, in the sense that s2 is obtained from s1 just by substi-

tuting A for C, B for A, C for B. In other words, letting U = {A,B,C}, there exists a

permutation φ : U → U such that φ(A) = C, φ(B) = A, φ(C) = B from s1 to s2. Now,

let us apply the following rule to s1 and s2:

pots3 : dialtone(x), idle(y)[dial(x, y)]calling(x, y).

Then, for θ1 = 〈x|A, y|B〉 and θ2 = 〈x|C, y|A〉, en(s1, pots3, θ1) and en(s2, pots3, θ2).

pots3θ1 : dialtone(A), idle(B) [dial(A,B)] calling(A,B).

pots3θ2 : dialtone(C), idle(A) [dial(C,A)] calling(C,A).

As a result, the following next states s′1 and s′2 are obtained from s1 and s2, respectively.

s′1 = calling(A,B), busytone(C)

s′2 = calling(C,A), busytone(B).

Now, we can observe that there also exists the same permutation φ from s′1 to s′2.

Roughly speaking, this fact implies that state transition s2−dial(C,A)→s′2 can be re-

produced as φ(s1)−φ(dial(A,B))→φ(s′1) from s1−dial(A,B)→s′1. Therefore, we need no

longer store either states s2, s′2 nor transition s2−dial(C,A)→s′2 in the reachability graph.

32

From this example, we reach a hypothesis in the general case, that if we have a state

transition s−e→s′, then we also have φ(s)−φ(e)→φ(s′) for any permutation φ on U . If

the hypothesis is true, then it is sufficient to have only s−e→s′ in the reachability graph,

since we can infer symmetric state transitions from s−e→s′. As a result, the reduced

reachability graph will preserve the all information of the original FRG.

4.2.2 Permutation Symmetry

In this section, we formally define the permutation symmetry. Throughout this section,

we assume that a service specification S = 〈U, V, P,E,R, s0〉 is given unless otherwise

specified. First, we define all permutations with respect to users.

Definition 4.2 Let Perm(U) denote a set of all permutations φ : U → U . Each element

φ of Perm(U) is called a permutation symmetry.

Example 4.3 Let U = {A,B,C}. Then, Perm(U) =





A B C

A B C







A B C

A C B







A B C

B A C







A B C

B C A







A B C

C A B







A B C

C B A







Each permutation symmetry of Perm(U) specifies a bijection φ from U to U . For example,


A B C

C A B


 specifies a bijection φ such that φ(A) = C, φ(B) = A, φ(C) = B.

Next, we extend φ ∈ Perm(U) for states, rules and substitutions as follows.

Definition 4.4 Let φ ∈ Perm(U) be a permutation symmetry. Then, for any instance

p(a1, ..., ak) of a predicate with p ∈ P, ai ∈ U , we define φ(p(a1, ..., ak)) = p(φ(a1), ..., φ(ak)).

At this time,

(a) For any state s, we define φ(s) to be a state obtained by applying φ to each instance

of predicate in s.

33

(b) For any instances rθ of rule r ∈ R, we define φ(rθ) to be an instance of rule obtained

by applying φ to each instance of predicate in rθ. Similarly, we define φ(Pre[rθ]),

φ(Post[rθ]) and φ(Ev[rθ]).

(c) For any substitution θ = 〈x1|a1, ..., xn|an〉, xi ∈ V , ai ∈ U , we define φ(θ) =

〈x1|φ(a1), ..., xn|φ(an)〉.

(d) For any instances Iθ of invariant formula I, we define φ(Iθ) to be an instance of the

invariant formula obtained by applying φ to each predicate in Iθ.

Two states s and s′ are symmetrical, denoted by s ≈ s′ iff φ(s) = s′ for some φ ∈

Perm(U) ∗ .

Example 4.5 Consider again Example 4.1. Then, for a permutation symmetry φ =


A B C

C A B


 , we can see that (a) φ(s1) = s2 and φ(s′1) = s′2, (b) φ(pots3θ1) = pots3θ2,

and (c) φ(θ1) = 〈x|φ(A), y|φ(B)〉 = 〈x|C, y|A〉 = θ2.

Before showing the main theorem, we present the following lemma. Intuitively, Lemma

4.6 implies that it does not matter whether we use a permutation symmetry φ before or

after the instantiation of the rule r (and invariant formula I) based on the substitution θ.

Lemma 4.6 Let a permutation symmetry φ ∈ Perm(U) be given. Then, for any rule

r ∈ R and any substitution θ, φ(rθ) = rφ(θ) holds. Also, φ(Pre[rθ]) = Pre[rφ(θ)] ,

φ(Post[rθ]) = Post[rφ(θ)] and φ(Ev[rθ]) = Ev[rφ(θ)] hold. For any invariant formula I,

φ(Iθ) = Iφ(θ)

Proof: Suppose that φ =




a1 a2 ... a|U |

b1 b2 ... b|U |


 ∈ Perm(U), ai, bi ∈ U be given.

∗ The relation ≈ is an equivalence relation on states, since (i) s ≈ s (reflexive), (ii) s ≈ s′ implies s′ ≈ s

(symmetric) and (iii) s ≈ s′ and s′ ≈ s′′ imply s ≈ s′′ (transitive).

34

Let p = pm(xm1, xm2, ..., xmk) be any predicate in rule r. If we apply θ = 〈x1|ai1, ..., xn|ain〉

to r, then p in r is instantiated to an instance p′ = pm(aim1, aim2, ..., aimk) in rθ. Next,

we apply φ to rθ. Then p′ in rθ is transformed into the following instance p′′ in φ(rθ):

p′′ = pm(φ(aim1), φ(aim2), ..., φ(aimk)) = pm(bim1, bim2, ..., bimk)

On the other hand, if we first apply φ to θ, we obtain φ(θ) = 〈x1|φ(ai1), ..., xn|φ(ain)〉 =

〈x1|bi1, ..., xn|bin〉 Next, by applying φ(θ) to r, then we get the following instance p∗ of p in

rφ(θ): p∗ = pm(bim1, bim2, ..., bimk) = p′′ Thus, for any predicate p in r ∈ R, two instances

p′′ in φ(rθ) and p∗ in rφ(θ) are identical. Hence we conclude that φ(rθ) = rφ(θ). By the

same discussions, we can prove that φ(Pre[rθ]) = Pre[rφ(θ)], φ(Post[rθ]) = Post[rφ(θ)]

and φ(Ev[rθ]) = Ev[rφ(θ)].

Also, for the invariant formula, by applying the same discussions to each predicate in I,

we have φ(Iθ) = Iφ(θ). �

Now, we are ready to provide the main theorem for a state transition.

Theorem 4.7 For any permutation symmetry φ ∈ Perm(U),

s−Ev[rθ]→s′ ⇔ φ(s)−φ(Ev[rθ])→φ(s′).

Proof: (⇒) Assume that the state transition s−Ev[rθ]→s′ is defined on S. Since en(s, r, θ),

all predicates of Pre[rθ] are included in s from Definition 2.7. From Definition 4.4, all

predicates of φ(Pre[rθ]) are clearly included in φ(s). From Lemma 4.6, all predicates of

Pre[rφ(θ)] are included in φ(s). This implies en(φ(s), r, φ(θ)). Hence, from Definition 2.7

and Lemma 4.6, the next state s∗ of φ(s) is obtained as follows:

s∗ = φ(s) − Pre[rφ(θ)] + Post[rφ(θ)]

= φ(s) − φ(Pre[rθ]) + φ(Post[rθ])

= φ(s − Pre[rθ] + Post[rθ])

= φ(s′)

35

Therefore, a state transition φ(s)−Ev[rφ(θ)]→φ(s′) is defined on S. From Lemma 4.6,

φ(s)−Ev[rφ(θ)]→φ(s′) = φ(s)−φ(Ev[rθ])→φ(s′), as required.

(⇐) Assume that s∗−e∗→s′∗ = φ(s)−Ev[rφ(θ)]→φ(s′) is defined on S. Since φ is a bijec-

tion, there exists an inverse φ−1 ∈ Perm(U). By applying φ−1, we have φ−1(s∗)−φ−1(e∗)→φ−1(s′∗)

= s−Ev[rθ]→s′. Hence, we show that if a state transition s∗−e∗→s′∗ is defined on S,

then φ−1(s∗)−φ−1(e∗)→φ−1(s′∗) is defined on S. However, it directly follows from ⇒. �

Theorem 4.7 clearly explains the hypothesis discussed in Section 5.1 is true. That is,

if we have a state transition s−e→s′ on S, then we can confirm that all of its symmetric

transitions φ(s)−φ(e)→φ(s′)’s are defined on S. Theorem 4.7 is easily extended for the

sequences of state transitions.

Corollary 4.8 For any permutation symmetry φ ∈ Perm(U), the following properties

hold.

(a) s1 − e1 → s2 − e2 → ... → sn ⇔ φ(s1) − φ(e1) → φ(s2) − φ(e2) → ... → φ(sn)

(b) s0→∗s ⇔ φ(s0)→∗φ(s).

Proof: Property(a) follows by repeated use of Theorem 4.7. Property(b) is a direct

consequence of Property(a). �

Thus, if we have only one transition sequence τ on S, then we can confirm the existence

of all sequences symmetrical with τ by Corollary 4.8.

4.2.3 Consistent Symmetry

For a state transition defined on S, Theorem 4.7 and Corollary 4.8 guarantee the existence

of its symmetrical transitions for all permutation symmetry φ ∈ Perm(U). However, they

never guarantee the reachability of symmetric states from the initial state s0 of S. That

is, even if s0→∗s, we cannot generally conclude s0→∗φ(s) since Corollary 4.8 only says

36

φ(s) is reachable from φ(s0). In order to assure the reachability of symmetric states, we

must put a restriction on φ so that φ(s0) = s0. We define such a permutation symmetry

φ as a consistent symmetry.

Definition 4.9 Let S = 〈U, V, P,E,R, s0〉 be a given service specification. A permuta-

tion symmetry φ is a consistent symmetry iff φ(s0) = s0. Let CS(U, s0) denote a set of

all consistent symmetries, i.e.,

CS(U, s0) = {φ|φ ∈ Perm(U) ∧ φ(s0) = s0}

Two states s and s′ are consistently symmetrical, denoted by s≈cs
′, iff φ(s) = s′ for some

φ ∈ CS(U, s0). For a given state s, the symmetric class of s, denoted by [s], is defined as

[s] = {s′|s≈cs
′}. For [s], s is called a representative of [s].

Remark 4.10 Note that all theories in the previous section are still valid for the consis-

tent symmetry φ since CS(U, s0) ⊆ Perm(U), and that the relation ≈c is an equivalence

relation on states as discussed in ≈.

Additionally, the consistent symmetry provides the following theorem, which guaran-

tees the reachability from initial state s0.

Theorem 4.11 Let φ ∈ CS(U, s0) be any consistent symmetry. Then, s0→∗s ⇔ s0→∗φ(s).

Proof: It follows from Corollary 4.8(b) assuming φ(s0) = s0. �

Example 4.12 Consider the following initial state s0.

s0 = CW (A), CW (B), idle(A), idle(B), idle(C)

Now, we suppose U = {A,B,C} Then, the set of consistent symmetries is

CS(U, s0) =







A B C

A B C







A B C

B A C







37

s0 means all A,B and C are idle and A and B are subscribers of CW . Assume that the

following state s is reachable from s0.

s = CW (A), CW (B), talk(A,B), talk(B,A), CWcalling(C,A)

in which A is receiving CW calling from C. Now, we apply a permutation symmetry φ

such that φ(A) = C, φ(B) = B, φ(C) = A to s. Then,

φ(s) = CW (C), CW (B), talk(C,B), talk(B,C), CWcalling(A,C)

C was not a CW subscriber at s0. Therefore, it is inconsistent that φ(s), in which C

is receiving CW calling, is reachable from s0. This is justified by a fact that φ is not a

consistent symmetry, i.e., φ(s0) �= s0.

4.3 Symmetric Reachability Graph SRG

Based on theories for permutation symmetry presented in the previous section, we define

a new reachability graph called the symmetric reachability graph, SRG.

Definition 4.13 Let S = 〈U, V, P,E,R, s0〉 be a service specification. A symmetric

reachability graph for a given S is a labelled directed graph SRG(S) = 〈N,L, T 〉 such

that:

(a) N = {[s]|s0→∗s} (that is, N is a partition of the set of all reachable states),

(b) L is a set of instances of events, and

(c) T = {([s], Ev[rθ], [s′])| s−Ev[rθ]→s∗ ∧(s∗≈cs
′)}

In SRG, each node represents a symmetric class [s] with a representative (state) s, and

each arc outgoing from [s] represents a state transition which occurs at the representative

s. Also, from Theorem 4.11, each node [s] in SRG(S) implies that all states belonging

38

to the class [s] are reachable from the initial state s0. Figure 4.1 shows the construction

algorithm for an SRG, for a service specification S. In the algorithm, we define waiting

as a set of nodes.

Example 4.14 Figure 4.2 shows a symmetric reachability graph, SRG for the POTS

specification in Figure 2.2. Each of nodes N4, N5, N6 and N7 represents a symmetric

class with two states, while each of other nodes represents a class with only one state.

For example, N4 actually represents two symmetrical states dialtone(A), idle(B) and

dialtone(B), idle(A), while N0 does one state idle(A), idle(B). Compared with FRG in

Figure 3.2, SRG has smaller number of nodes(8 nodes) and edges(20 edges) (though it

may be a small reduction in this example).

As for SRG(S), the following proposition holds:

Proposition 4.15 The following properties are satisfied for SRG(S).

(a) Each directed path ρ in SRG(S): ρ = ([s1], e1, [s2]), ([s2], e2, [s3]), ..., ([sn], en, [sn+1])

has, for each state s∗1 ∈ [s1], a corresponding sequence of state transitions τ on S:

τ = s∗1 − e∗1 → s∗2 − e∗2 → s∗3 − ... → s∗n − e∗n → s∗n+1, where si≈cs
∗
i (1 ≤ i ≤ n + 1).

(b) Each sequence of transitions τ on S: τ = s1 − e1 → s2 − e2 → s3 − ... → sn −

en → sn+1, where s0→∗s1, has a corresponding directed path in SRG(S): ρ =

([s∗1], e
∗
1, [s

∗
2]), ([s

∗
2], e

∗
2, [s

∗
3])), ..., ([s

∗
n], e∗n, [s∗n+1]), where si≈cs

∗
i (1 ≤ i ≤ n + 1).

Proof: We prove this proposition by means of induction over the length n of ρ/τ .

Property(a): When the length of ρ is zero, property(a) is clearly satisfied from Defi-

nition 4.13(a). Next, assume that property(a) is satisfied when the length of ρ is n, and

assume that we have a directed path ρ′ such that ρ′ = ([s1], e1, [s2]), ..., ([sn], en, [sn+1]),

([sn+1], en+1, [sn+2]). From the inductive hypothesis, it follows that, for each state s∗1 ∈ [s1],

39

SRG Construction Algorithm

Input: S = 〈U, V, P,E,R, s0〉

Output: SRG(S) = 〈N,L, T 〉

Procedure:

waiting = N := {[s0]}; L = T := ∅;

repeat

select [s] from waiting ;

for any r ∈ R s.t. en(s, r, θ) for some θ {

generate the next state s′ by applying r to s;

add Ev[rθ] to L ;

if ([s∗] �∈ N s.t. s∗≈cs
′) then {

add [s′] to N ; add [s′] to waiting;

add ([s], Ev[rθ], [s′]) to T ;

}

else add ([s], Ev[rθ], [s∗]) to T ;

}

delete [s] from waiting ;

until waiting = ∅

Figure 4.1: SRG construction algorithm

40

������	
�� �����	
��

���������

�����	
��

���������

�����	
��

���������

�����	
��

���������

������	
��

���������

������	
��

���� ����

����
����

���������

�����	
��

���������

�����	
��

���������

!"#"��

��
$%&�'(((((((��
$%&�'

��
$%&��)&�'((��
$%&��)&�'

������*�
�����+,��*�

������	
��

�2

��

��

��

��

����
������

����
����

�

�0 ����
����

�����	
��

�����	
��

�����	
��

�����	
��

������	
��

�����	
��

����"
���
���"
���

�-�����#
�����

�����+��"
���
���"
���

����"
���
./,)+��"
���

�����+��"
���
./,)+��"
���

�����+��"
���
����+��"
���

�+��	
�����
+��	
�����

�./,)+��"
���
./,)+��"
���

���������

���������

���������

���������

���������

���������

���������

���������

���������

����0����

����0����

1�(�2

Figure 4.2: SRG for POTS specification

41

there exists a sequence of state transitions: s∗1 − e∗1 → s∗2 − ... → s∗n − e∗n → s∗n+1.

From Definition 4.13(c) and the edge ([sn+1], en+1, [sn+2]) of ρ′, there exists a transi-

tion sn+1−en+1→s′n+2, where s′n+2 ∈ [sn+2]. From Theorem 4.7, for φ ∈ CS(U, s0)

such that φ(sn+1) = s∗n+1, there exists φ(sn+1)−φ(en+1)→φ(s′n+2). Let s∗n+2 = φ(s′n+2)

and e∗n+1 = φ(e′n+1). Since sn+2≈cs
′
n+2, sn+2≈cs

∗
n+2. Thus, there exists a transition

s∗n+1−e∗n+1→s∗n+2. This means that s∗1 − e∗1 → s∗2 − ... → s∗n − e∗n → s∗n+1 − e∗n+1 → s∗n+2 is

a sequence of transitions with the requested properties.

Property(b): When the length of τ is zero, property(b) is clearly satisfied from Defini-

tion 4.13(a). Next, assume that property(b) is satisfied when the length of τ is n, and

assume that we have a directed path τ ′ such that τ ′ = s1 − e1 → s2 − ... → sn − en →

sn+1 − en+1 → sn+2, where s0→∗s1. From the inductive hypothesis, it follows that there

exists a directed path: ([s∗1], e
∗
1, [s

∗
2]), ([s

∗
2], e

∗
2, [s

∗
3])), ..., ([s

∗
n], e∗n, [s∗n+1]) and sn+1≈cs

∗
n+1.

From a transition sn+1−en+1→sn+2 of τ ′, we know s0→∗sn+2. From Definition 4.13(a),

there exists a node [s∗n+2] in SRG(S) such that s∗n+2≈csn+2. Moreover, from Theorem

4.7, for such that φ(sn+1) = s∗n+1, there exists a transition s∗n+1−φ(en+1)→φ(sn+2).

Since sn+2≈cs
∗
n+2, φ(sn+2)≈cs

∗
n+2. Hence, from Definition 4.13(c), there exists an edge

([s∗n+1], φ(en+1), [s
∗
n+2]). This means that ([s∗1], e1

∗, [s∗2]), ..., ([s∗n], e∗n, [s∗n+1]), ([s
∗
n+1], e

∗
n+1, [s

∗
n+2])

is a directed path in SRG(S) with the required properties. �

4.4 Interaction Detection Algorithm SYM

Using the symmetric reachability graph, SRG, we can identify the undesirable states in

Definition 2.13 as follows:

Proposition 4.16 The following properties are satisfied for SRG(S) and given IS .

(a) there exists a terminal [s] ⇔ each s∗ ∈ [s] is a deadlock state.

42

(b) there exists a directed cycle starting from [s], and there exists no directed path from

[s] to [s0] ⇔ each s∗ ∈ [s] is a loop state.

(c) there exists a node [s] which has a pair of outgoing edges ([s], e1, [s
′]) and ([s], e2, [s

′′])

such that e1 = e2 ⇔ each s∗ ∈ [s] is a non-deterministic state.

(d) there exists a node [s] such that s �� IS ⇔ each s∗ ∈ [s] is a violating state.

Proof:

Properties (a)(b): They directly follow from Proposition 4.15 and Theorem 4.11.

Property (c) : (⇒) Assume that there exists a pair of the edges ([s], e, [s′]) and ([s], e, [s′′])

in SRG(S). From Definition 4.13(c), there exists a pair of transitions s−e→ss′, s−e→ss′′

such that s0→∗s, ss′ ∈ [s′],ss′′ ∈ [s′′]. From Theorem 4.7, for any φ ∈ CS(U, s0), there

exists a pair of transitions φ(s)−φ(e)→φ(ss′), φ(s)−φ(e)→φ(ss′′). Since s0→∗s, s0→∗φ(s)

from Theorem 4.11. Hence, from Definition 2.13, s∗ = φ(s) ∈ [s] is a non-deterministic

state, as required.

(⇐) Since s∗ is a non-deterministic state, there exists a pair of transitions s∗−e→ss′,

s∗−e→ss′′ such that s0→∗s∗. From Definition 4.13(a), there exists a node [s] such that s =

φ(s∗) in SRG(S). From Theorem 4.7, there exists a pair of transitions φ(s∗)−φ(e)→φ(ss′),

φ(s∗)−φ(e)→φ(ss′′) on S. From Definition 4.13(c), SRG(S) has a pair of edges ([φ(s∗)], φ(e), [s′]),

([φ(s∗)], φ(e), [s′′]), where φ(ss′) ∈ [s′],φ(ss′′) ∈ [s′′]. Thus, SRG(S) has a pair of edges

([s], e∗, [s′]), ([s], e∗, [s′′]), as required. �

Property (d): (⇒) For each s∗ = φ(s) ∈ [s] with φ ∈ CS(U, s0), s0 →∗ s∗ holds by

Theorem 4.11 and Proposition 4.15. Since s �� IS , there exists a substitution θ such that

s, θ � ¬IS . This means ¬ISθ takes true value at s from Definition 2.10. Clearly, φ(¬ISθ)

is true at φ(s) from Definition 4.4. From Lemma 4.6, ¬ISφ(θ) is true at φ(s). Hence,

φ(s), φ(θ) � ¬IS . This means φ(s) = s∗ is a violating state.

43

(⇐) Since s∗ is a violating state, s0 →∗ s∗ holds. So, there exists a node [s] in SRG such

that s = φ(s∗) ≈c s∗ from Definition 4.13(a). Since s∗ �� IS , s �� IS holds by the same

discussion as ⇒. �

Thus, in order to detect the interactions between two specifications S1 and S2, we first

construct SRG(S1 ⊕ S2), then identify the undesirable states using Proposition 4.16.

The interaction detection algorithm using the symmetric reachability graph SRG,

denoted by Algorithm SYM, is summarized in Figure 4.3. Again, we recall Fig 2.3. Now,

let [RS] (and [UND]) be a partition of RS (and UND, respectively) based on the relation

symmetrical ≈c. Then, the set [RS] corresponds to the set of nodes in the SRG. Therefore,

we can see that SYM works as shown in Figure 4.4.

The following proposition characterizes Algorithm SYM.

Proposition 4.17 The following property is satisfied for Algorithm SYM:

S1 interacts with S2. ⇔ SY M returns “Detected′′

Proof: Straight forward from Proposition 4.16. �

For a state s, the SRG groups all states symmetrical with s together by means of

the relation ≈c, which enables the state reduction of the FRG as shown in Example

4.14. Also, by using the constraint in telecommunication services, the backbone theories

based on permutation symmetry succeed in preserving all information required for the

interaction detection. As a result, the interactions are detected by both necessary and

sufficient conditions. This fact means Algorithm SYM achieves the optimal interaction

detection quality. As for the state reduction ratio, we look at a simple example here. As

an example, consider the POTS specification in Figure 2.2. As we vary the number of

users from 2 to 5, then the number of nodes in the SRG grows as 8, 16, 30, 50. For the

44

number of edges, it increases 20, 72, 204, 482. These are linear in the number of users.

The more practical evaluation will be presented in Chapter 6.

Detection Algorithm SYM

Input: S1,S2, IS1, IS2

Output: “Detected” or “Not detected”

Procedure:

S = S1 ⊕ S2; IS = IS1 ∧ IS2;

Phase 1: Construct SRG(S1 ⊕ S2);

Phase 2: Detect undesirable states using Proposition 4.16;

If (detected) then return(“Detected”);

else return(“Not detected”);

Figure 4.3: Detection algorithm SYM

4.5 Related Works

There are several interaction detection methods exploiting some kinds of reduction tech-

niques.

Cameron et al. [15] proposed the tool CADRES-FI which utilizes a state abstraction

technique. This method abstracts the details of users behavior not concerning to the in-

teraction detection by means of heuristics. Due to its heuristical characteristics, detection

quality and coverage deeply depends on knowledge of the verifier.

Lin et al. [44] also proposed an industrial service creation environment and its funda-

mental framework, which is an extension work from [15]. In this method, they define an

equivalence relation similar to ours by focusing input/output (READ/WRITE) relations

45

�

�

�

����

���������

Figure 4.4: Conceptual overview of SYM

46

among events. Since this relation is, however, based on heuristical observation, it does

not achieve the optimal detection as is in Algorithm SYM. As a result, it needs a decision

from subjective experts to identify, following the detection process.

Nitsche [50] demonstrated how the homomorphisms of FSM can be used for interaction

detection. In this method, the homomorphism replaces certain events in FSM with empty

word ε, which results in the abstraction of state space. However, since the homomorphism

is given manually, the optimal interaction detection is not always guaranteed.

In other research fields, there are also several techniques for the reduction of state

space such as stubborn sets [59, 60], partial order [30, 31] and symbolic model checking

[47]. They are expected to apply to further improvement of Algorithm SYM, as discussed

in our future works.

47

Chapter 5

Static Algorithm using Petri Net

Structure

5.1 Introduction

The interaction detection algorithms presented so far enumerate the reachable states

first by using their own reachability graphs, and then check for each state producing an

undesirable condition (such as deadlock). This type of verification, using a reachability

graph is generally called dynamic verification [32], in the sense that it traces the system’s

reachable behaviors in all execution sequences, based on a system description such as the

service specification. Dynamic verification has an advantage, in that it can verify any

property defined on the reachable states (a so-called dynamic property). In this sense,

the properties satisfied on the undesirable states are dynamic properties (see Definition

2.13). However, the cost for exploring all reachable states by means of a reachablity graph

may be too expensive when the verified system becomes very large.

On the other hand, verification using some extra information but not using reachable

state exploration is generally called static verification. Since it does not require costly

reachability analysis, it can be applied to large-scale problems. However, static verification

48

cannot always cover all dynamic properties in general.

Both verification approaches have their own advantage and disadvantage, and the

relationship is clearly trade-off. Therefore, these cannot be directly compared with each

other and should be chosen for different purposes.

In this Chapter, we propose a new static interaction detection algorithm, called Algo-

rithm PINV, which extensively utilises the structural information of the service specifica-

tion, instead of exploring the reachable states. Concretely, we first extract the structure of

the service specification as a Petri net structure, and then apply the P-invariant method

[48, 32, 33] of Petri net to the interaction detection.

The outline of Algorithm PINV is as follows. We first construct a logically equivalent

Petri net model for a given rule-based service specification, then determine the set of

undesirable candidate states based on only the structure of the rules. Next, we identify all

candidates in the set which are not reachable from the initial state using the P-invariant

of the Petri-net, and delete them from the set. Let us see again the classification of states

shown in Figure 2.3 in Chapter 2. Intuitively, Algorithm PINV first identifies the set

UND as a set of candidates, then tries to obtain the intersection of that set by means of

the P-invariant method.

Due to characteristics of static algorithms mentioned above, there are two limitations

on Algorithm PINV. Firstly, since the definitions of the undesirable states are based

on dynamic properties, Algorithm PINV cannot cover all types of undesirable states.

Therefore, we focus on only non-deterministic and violating states. Secondly, P-invariant

gives only the necessary condition for reachability. Thus, undesirable candidates may

not actually be reachable, theoretically speaking. This means that Algorithm PINV may

detect some interactions which do not actually occur, but it will never miss interactions

which actually occur.

However, even incorporating the above limitations, Algorithm PINV achieves great

49

gains. First, since the P-invariant method works in a static way without costly reachable

state exploration, Algorithm PINV is expected to achieve the drastic cost reduction for

the interaction detection. Second, it is applicable to large-scale services with many users,

to which the dynamic verification cannot be applied. It is also used to narrow the scope

of possible interactions since Algorithm PINV never misses the actual interactions.

This rest of this chapter is organised as follows. In the next section, we present a Petri

net model onto which the rule-based service specification is mapped. Section 5.3 shows

the P-invariant method of the Petri net model. Then, in Section 5.4, we explain how

to apply the P-invariant method to interaction detection, and propose Algorithm PINV.

Finally, Section 5.5 concludes this chapter with related works on static methods and Petri

net based methods for feature interaction detection.

5.2 Petri Net Model

5.2.1 Labelled Pr/T Net

In this section, we define a kind of Petri-Net which is a simple extension of predicate

transition nets(Pr/T Nets)[48]. However, it is still a subclass of High Level Petri net (or

Coloured Petri net).

Definition 5.1 A labelled Pr/T net N is defined by N = 〈U, V, P,E, T, F,H, La, Lt,M0〉,

where

(a) U is a set of constants.

(b) V is a set of variables ranging over U .

(c) P is a set of places.

(d) E is a set of predicates, and each element is represented by e(x1, ..., xn), xi ∈ V .

50

(e) T is a set of transitions, and P ∩ T = φ.

(f) F ⊆ (P × T) ∪ (T × P) is a flow relation. Each element of F is called arc.

(g) H ⊆ (P × T) is a set of inhibitor arcs.

(h) La is the arc labelling function which attaches a label 〈x1, ..., xk〉, where each xi ∈ V ,

to the arc or the inhibitor arc, and k is called arity of the arc. For any input/output

arc of each place p ∈ P , its arity k is a unique constant associated with p.

(i) Lt is the transition labelling function which attaches the element of E to each tran-

sition.

(j) M0 is an initial marking (Marking will be defined in Definition 5.5).

In(t) = {p|(p, t) ∈ H ∪ (F ∩ (P × T))} and Out(t) = {p|(t, p) ∈ F ∩ (T × P)} are called

input places and output places of transition t, respectively.

Remark 5.2 The differences between our labelled Pr/T net and Pr/T net are that (1)

our model includes the inhibitor arcs to represent the negation of predicates(see Definition

2.4) and (2) the label is attached to each transition.

Example 5.3 Figure 5.1(a) shows a labelled Pr/T net. The arities of places idle, dialtone,

calling are 1,1,2, respectively. Figure 5.1(b) shows schematic representation of the labelled

Pr/T net.

Remark 5.4 In the following, we use schematic representation(as shown in Figure 5.1(b))

rather than algebraic representation(as shown in Figure 5.1(a)).

Next, we define the marking of labelled Pr/T net.

Definition 5.5 Colour set of place p, denoted by C(p), is the set of all constant k-tuples

〈a1, ..., ak〉, where each ai ∈ U and k is the arity of p. Each element of C(p) is called a

51

����
%�)�������	
%�

���"

����+��" -�����#
+�

$%'

$%' $%' $%�)'

$)'$�'

$�'

+�

.�

��

�(
(4��(�5
6(
(4%�()5
7(
(4���"�(����+��"�(-�����#5
�(
(4������	
%��(����
%�)�5
1(
(4+��(+�5
8(
(4
���"�(+���(
+��(����+��"��(
����+��"�(+���
((((((((
+��(-�����#��(
���"�(+��(5
9(
(45
!�:(!�
���"�(+��(
(!�
+��(����+��"�
(!�
����+��"�(+��
($%'�
((((((!�
+��(-�����#�
$%�)'�(!�
���"�(+��
$)'
!+:((!+
+��(
(������	
%��(!+
+��(
(����
%�)�
;2:((;2
���"�(
(4$�'�($�'5

Figure 5.1: An example of labelled Pr/T net

52

coloured token(or simply a token) and it can be allocated to a place p. The allocation of

the tokens to each place p ∈ P is called marking and it is defined as a mapping function

from P to the multiset over C(p).

A marking M can be also expressed in terms of a vector: M = (M(p1), ...,M(pm)).

Let Q(t) be a set of variables that occur at the incident arcs of t and at the predicate

on t. Let x1, ..., xl ∈ V be an arbitrary (but fixed) sequence of all variables in Q(t). Then,

the colour set of transition t, denoted by C(t), is the set of all constant l-tuples 〈a1, ..., al〉

obtained by substituting each xi in the sequence by a constant in U . Thus, each colour

c = 〈a1, ..., al〉 ∈ C(t) can be interpreted as a substitution such that 〈x1|a1, ..., xl|al〉. We

represent this substitution by θ(c).

Example 5.6 Consider again the labelled Pr/t net shown in Figure 5.1. At first, we

explain the colour set of place. Since the arities of both places idle and dialtone are

1, C(idle) = C(dialtone) = {〈A〉, 〈B〉}. Next, since the arity of place calling is 2,

C(calling) = {〈A,A〉, 〈A,B〉, 〈B,A〉, 〈B,B〉}. The tokens 〈A〉 and 〈B〉 are allocated in

idle and no token is allocated in any other place. This marking M0 is denoted by

M0 =

idle dialtone calling

({〈A〉, 〈B〉}, ∅, ∅).

Next, we explain the colour set C(t) of transition t. Consider the transition t2. Since two

variables x and y are attached on the incident arcs (idle, t2), (dialtone, t2),(t2, calling)

and on the transition label dial(x, y), Q(t2) = {x, y}. Consider an ordering x, y for Q(t2).

Then, C(t2) = {〈A,A〉, 〈A,B〉, 〈B,A〉, 〈B,B〉}. For example, consider 〈A,B〉 ∈ C(t2).

This colour represents a substitution θ〈A,B〉 = 〈x|A, y|B〉. (If we consider the order of

y,x, then the substitution is considered as θ〈A,B〉 = 〈y|A, x|B〉).

Definition 5.7 Consider t ∈ T , c ∈ C(t), and a marking M . For La(p, t), define

La(p, t)θ(c) be a constant tuple obtained by substituting the variables in La(p, t) according

53

to θ(c). Then, t is enabled for θ(c) under M iff

∀p ∈ In(t) {La(p, t)θ(c)} ⊆ M(p) · · · if((p, t) ∈ F ∩ (P × T))

{La(p, t)θ(c)} /∈ M(p) · · · if((p, t) ∈ H)

If t ∈ T is enabled for θ(c) under M , then t can fire. Firing of t changes the current

marking M into the next marking M ′ as follows:

∀p ∈ P ; M ′(p) = M(p) − {La(p, t)θ(c)} + {La(t, p)θ(c)}

where + and − are the union and difference operations defined on multisets[48].

A marking M is called reachable from M0 iff M = M0 or there exists at least one

sequence of marking M0,M1, ...,Mn = M such that Mi+1 is a next marking of Mi.

Example 5.8 We explain the firing of transitions using Figure 5.2. Consider the marking

M in Figure 5.2(a), which is also specified by

M =

idle dialtone calling

({〈B〉}, {〈A〉}, ∅).

For example, take transition t2 and θ〈A,B〉 = 〈x|A, y|B〉. Then In(t2) = {dialtone, idle},

and {La(dialtone, t2)θ〈A,B〉} = {〈A〉} = M(dialtone) and {La(idle, t2)θ〈A,B〉} = {〈B〉} =

M(idle). Thus, t2 is enabled for θ〈A,B〉 under M .

Now, suppose that t2 fires for θ〈A,B〉 under M . Then, tokens 〈A〉 and 〈B〉 are re-

spectively removed from places dialtone and idle, since La(dialtone, t2)θ〈A,B〉 = 〈A〉 and

La(idle, t2)θ〈A,B〉 = 〈B〉. Moreover, a new token 〈A,B〉 is allocated to place calling, be-

cause La(t2, calling)θ〈A,B〉 = 〈A,B〉. As the result, M is transformed into the following

next marking M ′, which is also shown in Figure 5.2(b).

M ′ =

idle dialtone calling

(∅, ∅, {〈A,B〉})

54

����
%�)�������	
%�

���"

����+��" -�����#
+�

$%'

$%' $%' $%�)'

$)'

$�'

$�'

+�

��

����
%�)�������	
%�

���"

����+��" -�����#
+�

$%'

$%' $%' $%�)'

$)'

$���'

+�

.�

Figure 5.2: An explanation of firing

55

5.2.2 Service Specification Net

Here, we define the particular labelled Pr/T net for a service specification S.

Definition 5.9 Let S = 〈U, V, P,E,R, s0〉 be a service specification. Then, a service

specification net N (S) = 〈U ′, V ′, P ′, E ′, T, F,H, La, Lt,M0〉 for a given service specifica-

tion S is a labelled Pr/T net which satisfies the following conditions.

(a) U ′ = U

(b) V ′ = V

(c) P ′ = P

(d) E ′ is a set of events e(x1, ..., xk) with e ∈ E, xi ∈ V .

(e) For each rule ri ∈ R, there is exactly one transition ti ∈ T such that Lt(ti) = Ev[ri].

(f) For each predicate pij(xi1, ..., xim) in pre-condition of rule ri ∈ R, exactly one arc

with a label 〈xi1, ..., xim〉 exists from place pij to transition ti.

(g) For each predicate ¬pij(xi1, ..., xim) in pre-condition of rule ri ∈ R, exactly one

inhibitor arc with a label 〈xi1, ..., xim〉 exists from place pij to transition ti.

(h) For each predicate pij(xi1, ..., xim) in post-condition of rule ri ∈ R, exactly one arc

with a label 〈xi1, ..., xim〉 exists from transition ti to place pij.

(i) If the initial state s0 includes p(c1, ..., cm), then the initial marking M0(p) = 〈c1, ..., cm〉.

According to Definition 5.9, we can easily understand that (1) the pre(post)-condition

of a rule corresponds to the input(output) places of a transition, (2) the event of a rule

corresponds to the predicate attached to a transition, (3) the initial state corresponds to

the initial marking.

56

Note that any state s of S uniquely described as a marking M on N (S). That is, if a

predicate p(a1, ..., an) holds(that is, takes a true value) on state s, then place p has a token

〈a1, ..., an〉 under M . Also, from the structure of N (S), we can describe an application of

rule ri as a firing of the corresponding transition ti.

Example 5.10 Consider a service specification S = 〈U, V, P,E,R, s0〉 in which U, V, P,E, s0

are the same as the POTS specification in Figure 2.2, but R contains only pots1 and pots4.

pots1 : idle(x) [offhook(x)] dialtone(x)

pots4 : dialtone(x), idle(y) [dial(x, y)] calling(x, y)

Then a labelled Pr/T net shown in Figure 5.1 is a service specification net for the

service specification S. Now we explain in detail the correspondence between rule pots4

and transition t2. Since pots4 has two predicates idle(y) and dialtone(x) in Pre[pots4],

t2 has two input places idle and dialtone, and has two arcs, (idle, t2) with a label 〈y〉

and (dialtone, t2) with a label 〈x〉. Similarly, for a predicate calling(x, y) in Post[pots4],

t2 has an output place calling, and has an arc (t2, calling) with a label 〈x, y〉. Next, for

dial(x, y) of Ev[pots4], t2 is attached with a label dial(x, y).

Next, consider the following two states:

s = dialtone(A), idle(B)

s′ = calling(A,B)

Then, markings M and M ′ in Example 5.8 (thus two markings in Figure 5.2(a) and (b))

respectively represent these two states s and s′, that is, M ≡ s and M ′ ≡ s′. The state

transition from s to s′ by rule pots4 is already explained in Example 2.8. For this state

transition, we can correspond a firing of t2 for θ〈A,B〉 = 〈x|A, y|B〉 which transforms M

into M ′ (this firing is already explained in Example 5.8).

From the above observations, we can see that the following lemma holds.

57

���"

����+��"

-�����#./,)+��"

+��	

����
%�)�����
%�)�

������	
%�

������	
)�

�����	
%�

�����	
%�

�����	
%�

�����	
%�

$%'

$%'

$%�)'<$)�%'

$%'$%'

$�'
$�'

$)'

$)'

$%'

$)'

$%'

$%'<$)'

$%'

$%'

$%'

$%�)'<$)�%'

$%' $%�)'

$%�)'

$%�)'

��+,�

��+,�

��+,� ��+,�

��+,�

��+, ��+,0

��+,�

Figure 5.3: Service specification net for POTS specification

58

Lemma 5.11 For a given service specification S and a service specification net N(S) for

S, there exists one-to-one correspondence between a set of reachable markings of N (S)

and a set of reachable states of S.

Proof: Let SS be a set of all states on S and MS be a set of all markings on N (S). Then,

define a bijection τ : SS → MS such that for s ∈ SS and M ∈ MS, 〈a1, ..., ak〉 ∈ M(p)

iff s includes p(a1, ..., ak). Now, we prove Lemma 5.11 by induction.

By Definition 5.9(i), it is clear that τ(s0) = M0.

Then, suppose that there exists a pair of sequences s0, s1, ..., sn of reachable states on S

and M0,M1, ...,Mn of reachable markings on N (S) such that τ(si) = Mi(0 ≤ i ≤ n).

Next, let sn+1 be the next state of sn generated by an application of rule ri based on a

substitution θ to sn. Since en(s, ri, θ) and τ(sn) = Mn, for any instance p(c1, ..., ck) in

Pre[riθ], 〈c1, ..., ck〉 ∈ Mn(p) holds. So, according to the enable condition of Definition 5.7

and Definition 5.9, transition ti of N (S) is surely enabled for θ under Mn. Let p(c1, ..., ck)

and q(d1, ..., dm) be any instances in the Pre[riθ] and Post[riθ], respectively. Suppose that

ti fires for θ under Mn and that the next marking Mn+1 is generated. From Definition 5.7

and Definition 5.9, Mn+1(p) = Mn(p)−{〈c1, ..., ck〉} Mn+1(q) = Mn(q)+ {〈d1, ..., dm〉}, so

〈c1, ..., ck〉 �∈ Mn+1(p) and 〈d1, ..., dm〉 ∈ Mn+1(q). On the other hand, by Definition 2.7,

the application of ri to sn based on θ removes p(c1, ..., ck) from sn, and adds q(d1, ..., dm)

to sn. Considering this, it is clear that sn+1 includes p(a1, ..., ak) iff 〈a1, ..., ak〉 ∈ Mn+1(p).

Hence, τ(sn+1) = Mn+1. By the induction, for any reachable state sn, there exists exactly

one marking Mn such that τ(sn) = Mn. �

Remark 5.12 For a pair of a state s and a marking M , we use the notation s ≡ M iff

the relation τ(s) = M holds.

Lemma 5.11 implies that N (S) is logically equivalent with respect to reachability

analysis. We can completely simulate the behavior of the service specification on this net

model.

59

Thus, we succeed in extracting the structural information of rule-based service speci-

fication as a Petri net structure.

Example 5.13 Figure 5.3 shows a service specification net obtained from the service

specification of POTS in Figure 2.2.

5.3 P-invariant Method

After mapping the rule-based description into the Petri net, we can utilise the powerful

analysis method of Petri net, called the P-invariant method ∗ . Intuitively, the P-invariant

method is used to find equations that are satisfied for all reachable markings (i.e., states)

of a considered Petri net. The basic idea is that we first assign a weight to each place,

and then make a weighted sum of tokens on all places. If the weights are nicely chosen,

the weighted sum of the tokens is equally reserved before and after the transition firing.

This forms an invariant which always holds on all reachable states. In the coloured Petri

nets, the weight on each place is specified in terms of linear function.

Before explaining the P-invariant method, we introduce the notion of weighted-sets[32]

over the colour sets.

Definition 5.14 [32] Let p be a place of N (S), and C(p) be a colour set of p. Then a

weighted-set w over C(p) is defined as w =
⋃

c∈C(p) w(c)c, where w(c) is an integer specified

for each c. The set of all weighted-sets of C(p) is denoted by C(p)ws. For w1, w2 ∈ C(p)ws,

w1 = w2 iff ∀c ∈ C(p) w1(c) = w2(c).

Addition and subtraction of weighted-sets are defined in the following way, for any

w1, w2 ∈ C(p)ws:

∗ We must distinguish the term P-invariant from the invariant property or the invariant formula defined

in Chapter 2. The invariant formula should be given manually based on the knowledge of the designer,

while the P-invariant is mathematically calculated from the Petri net structure.

60

(i) w1 + w2 =
⋃

c∈C(p)(w1(c) + w2(c))c

(ii) w1 − w2 =
⋃

c∈C(p)(w1(c) − w2(c))c

For transition t, the weighted-set over C(t) and C(t)ws are similarly defined.

Example 5.15 Consider place idle in Figure 5.3. Then C(idle) = {〈A〉, 〈B〉}. A

weighted-set over C(idle) can be described as w1 = {2〈A〉,−3〈B〉}, or w2 = {−3〈A〉, 3〈B〉}.

Then, w1 + w2 = {−〈A〉}, and w1 − w2 = {5〈A〉,−6〈B〉}.

Definition 5.16 [32] Let N (S) be a service specification net with u places and v tran-

sitions, and let p ∈ P , t ∈ T with (p, t) /∈ H. Then, W (p, t) (or W (t, p)) is a linear

function [C(t) → C(p)] such that ∀c = 〈x1, ..., xl〉 ∈ C(t), W (p, t)(c) = La(p, t)θ(c) (or,

W (t, p)(c) = La(t, p)θ(c), respectively). In our discussion, we consider only four kinds of

linear functions defined as follows:

(a) identity function id: id〈α, β〉 = 〈α, β〉 and id〈α〉 = 〈α〉.

(b) zero function o: o〈α, β〉 = 0 and o〈α〉 = 0.

(c) projection functions p1 and p2: p1〈α, β〉 = 〈α〉, p2〈α, β〉 = 〈β〉.

(d) reverse function r: r〈α, β〉 = 〈β, α〉

We assume that for any linear function f except for zero function, f ± o = o ± f =

f, f · o = o · f = o · o = o, id · f = f · id = f . Also, we assume that for the reverse function

r, p1 · r = p2 and p2 · r = p1, since p1(r(〈α, β〉)) = p1(〈β, α〉) = 〈β〉 = p2(〈α, β〉), and vice

versa.

Then the incident matrix A of N (S) is the u × v matrix defined as follows.

A[p, t] = W (t, p) − W (p, t)

Then u-dimensional vector Y such that Y ∗ A =0 is called P-invariant of N (S), where ∗

is a formal product operation of matrix[48, 32].

61

Example 5.17 Consider the service specification net shown in Figure 5.3. Then the

incident matrix A of this net is

pots1 pots2 pots3 pots4 pots5 pots6 pots7 pots8

idle

dialtone

A = calling

busytone

talk




−id id o −p2 p1 + p2 o p1 id

id −id −p1 −p1 o o o o

o o o id −id −id o o

o o p1 o o o p2 −id

o o o o o r + id −r − id o




For example, let us consider place idle and transition pots1. For any colour, for example

〈A〉 ∈ C(pots1), it is clear that La(idle, pots1)θ〈A〉 = 〈A〉, and that La(pots1, idle)θ〈A〉 =

0. Therefore, W (idle, pots1) = id and W (pots1, idle) = o, and thus A[idle, pots1] =

W (pots1, idle)−W (idle, pots1) = o− id = −id. Next, consider place dialtone and transi-

tion pots4. For any colour, for example 〈B,D〉 ∈ C(pots4), La(dialtone, pots4)θ〈B,D〉 =

〈B〉, and La(pots4, dialtone)θ 〈B,D〉 = 0. Hence, W (dialtone, pots4) = p1 and W (pots4,

dialtone) = o, and thus A[dialtone, pots4] = W (pots4, dialtone) − W (dialtone, pots4) =

o − p1 = −p1.

The following vector Y is a P-invariant of N (S) since a relation Y ∗ A =0 holds.

Y =

idle dialtone calling busytone talk

(id id p1 + p2 id p1)

Y ∗ A = (id · −id + id · id + (p1 + p2) · o + id · o + p1 · o,

id · id + id · −id + (p1 + p2) · o + id · o + p1 · o,

· · · · · ·

, id · id + id · o + (p1 + p2) · o + id · −id + p1 · o)

= (−id + id + o + o + o, id − id + o + o + o, · · · , id + o + o − id + o)

= (o, o, · · · , o) = 0

62

We should note that the P-invariant can be obtained from the incident matrix that

depends on only the net structure(i.e., it can be obtained independently of the marking).

Remark 5.18 The the calculation of the P-invariants is not an easy task[3, 32] for a

general coloured Petri net. However, as for our service specification net which is a subclass

of the general one, there exists a relatively simple calculation method. The brief algorithm

can be found in Appendix A.

The following theorem for the P-invariant is a well-known theorem to be used for

checking reachability.

Theorem 5.19 [32][48] Let Y be a P-invariant of the service specification net N (S). If

a marking M is reachable from the initial marking M0, then Y ∗ M t = Y ∗ M t
0.

In Y ∗M t, P-invariant Y makes a weighted sum of tokens by assigning a weight specified

by a linear function to tokens on each corresponding place under M . With respect to this

weighted sum, Theorem 5.19 implies that Y prescribes an equation which always holds

for any reachable marking M from M0.

Using the contraposition of Theorem 5.19, we can check the reachability of any arbi-

trary state s by the following rule:

Proposition 5.20 Let s and s0 be states of the service specification S, and let M and

M0 be markings of the service specification net N (S), where s ≡ M and s0 ≡ M0. Then,

Y ∗ M t �= Y ∗ M t
0 ⇒ ¬(s0 →∗ s)

Remark 5.21 The equation Y ∗ M t = Y ∗ M t
0 is only a necessary condition for any

reachable marking M . Hence, even if Y ∗ M t = Y ∗ M t
0 holds, we cannot conclude, in

general, that M is reachable from M0.

Using Proposition 5.20, we can check the reachability of any arbitrary state s. That

is, if the P-invariant equation does not hold, then we can conclude that s is not reachable

63

from s0. Note that this checking can be performed in a static way without generating

any reachability graph.

Example 5.22 Consider again the service specification net in Figure 5.3 and its P-

invariant Y .

Y =

idle dialtone calling busytone talk

(id id p1 + p2 id p1)

Also, consider the following markings M0 and M . Note that M is reachable from M0. We

can easily demonstrate this in the same way performed in Example 5.8.

M0 =

idle dialtone calling busytone talk

({〈A〉, 〈B〉} ∅ ∅ ∅ ∅)

M =

idle dialtone calling busytone talk

(∅ ∅ {〈A,B〉} ∅ ∅)

Let us evaluate Y ∗M t
0. In the evaluation, we make a weighted sum of tokens by applying

each linear function to tokens in the corresponding place † .

Y ∗ M t
0 = id{〈A〉, 〈B〉} + id∅ + (p1 + p2)∅ + id∅ + p1∅

= {id〈A〉, id〈B〉} + ∅ + ∅ + ∅ + ∅

= {〈A〉, 〈B〉}

Similarly, as for Y ∗ M t,

Y ∗ M t = id∅ + id∅ + (p1 + p2){〈A,B〉} + id∅ + p1∅

= ∅ + ∅ + {p1〈A,B〉} + {p2〈A,B〉} + ∅ + ∅

= {〈A〉} + {〈B〉}

= {〈A〉, 〈B〉} = Y ∗ M t
0

† In [32], the definition of linear functions is extended for the weighted-set. For any linear function f ,

we define f({〈α1, β1〉, ..., 〈αk, βk〉}) = {f〈α1, β1〉, ..., f〈αk, βk〉}.

64

Next, we consider the following marking M ′:

M ′ =

idle dialtone calling busytone talk

({〈A〉, 〈B〉} ∅ ∅ 〈A〉 ∅)

Then,

Y ∗ M ′t = id{〈A〉, 〈B〉} + id∅ + (p1 + p2)∅ + id{〈A〉} + p1∅

= {〈A〉, 〈B〉} + ∅ + ∅ + {〈A〉} + ∅

= {2〈A〉, 〈B〉} �= Y ∗ M t
0

So, we can conclude M ′ is not reachable from M0 according to Theorem 5.19.

5.4 Interaction Detection Algorithm PINV

5.4.1 Outline

Here, we discuss how to apply the P-invariant method to interaction detection. As men-

tioned before, the P-invariant method allows the reachability checking of a state. There-

fore, if it is possible to determine the undesirable candidates in Definition 2.13. Then

we can apply the P-invariant method to the candidate states to check their reachability.

Based on this scheme, we try to implement the detection algorithm called PINV.

Figure 5.4 shows the approach, schematically. In the figure, U , RS and UND are the

same as those in Figure 2.3, and the set PEQ denotes the set of all states (i.e., marking)

M satisfying the P-invariant equation Y ∗M t = Y ∗M t
0. Note that PEQ is a superset of

RS (See Remark 5.21). First, we construct the set UND as the candidates of undesirable

states. Then, we delete states not satisfying Y ∗ M t = Y ∗ M t
0 from UND since such

states are guaranteed to be unreachable by the P-invariant. This approach requires no

state space generation using a reachability graph, therefore, we expect a drastic cost

reduction for interaction detection.

65

However, there are two drawbacks. Firstly, the detection result will not be optimal,

whereas Algorithms EXH and SYM guarantee optimal detection. That is, since the P-

invariant method gives us only a necessary condition, Algorithm PINV may identify some

interactions which do not actually occur. Secondly, it is not always possible to determine

undesirable candidate states UND nicely. This means that Algorithm PINV may not

cover all classes of interactions.

Taking these issues into account, we propose Algorithm PINV for the following two

classes of interactions: non-determinism and violation of invariant (See Chapter 2).

5.4.2 Candidate Non-deterministic States

We consider how to construct the candidate non-deterministic states. It is not necessary

here to care if the candidate states are reachable from the initial state. Instead, we pay

an attention to the structure of the rules.

The non-deterministic interactions arise when two or more rules are simultaneously

enabled on a state with respect to an identical instance of event. Let S = 〈U, V, P,E,R, s0〉

be a service specification, and let ri, rj ∈ R be a pair of rules which have the same event

symbol e ∈ E. By Definition 2.13, if a state s is a non-deterministic state, s requires the

following condition with respect to ri and rj.

Condition NDT: There exists a pair of substitution θi and θj such that

(a) Ev[riθi] = Ev[rjθj] and

(b) s includes both Pre[riθi] and Pre[rjθj] (i.e., both Pre[riθi] and Pre[rjθj] are

true at s.).

By means of Condition NDT, we generate s as a candidate in the following way.

Procedure P1 :

66

�

�

��
���

�

���

7�=

Figure 5.4: Conceptual overview of PINV

67

Step1: Select any pair of rules ri and rj which have the same event symbol.

Step2: Apply a pair of substitution θi and θj such that Ev[riθi] = Ev[rjθj] to ri

and rj, respectively.

Step3: Let s be a conjunction of Pre[riθi] and Pre[rjθj], that is s := Pre[riθi] ∧

Pre[rjθj].

The resultant s clearly satisfies Condition NDT.

Example 5.23 Let us apply Procedure P1 to rules pots1 and pots6 in Figure 2.2 whose

event symbols are identical to offhook:

pots1 : idle(x) [offhook(x)] dialtone(x)

pots6 : calling(x, y) [offhook(y)] talk(x, y), talk(y, x)

In order to make both instances of the event identical, we apply θ1 = 〈x|A〉 to pots1 and

θ2 = 〈x|B, y|A〉 to pots6. Then, by combining both pre-conditions, we obtain a candidate

non-deterministic state s, as follows:

s = idle(A), calling(B,A)

This situation is: “ Suppose that A is idle, and B is calling A. At this time, if A

offhooks, then should A receive dialtone or talk with B?” If s is reachable from s0, s is a

non-deterministic state.

Due to the negations in pre-condition, some rules ri and rj cannot become enabled

simultaneously. We define such a pair of rules ri and rj to be mutually exclusive.

Definition 5.24 Let ri and rj be rules with the same event symbol, and let θi and θj be

substitutions such that Ev[riθi] = Ev[rjθj]. Then, ri and rj are mutually exclusive iff for

all θi and θj, there exists an instance of predicate p(a1, ..., ak) such that p(a1, ..., ak) is in

Pre[riθi] and that ¬p(a1, ..., ak) is in Pre[rjθj].

68

The rules ri and rj which are mutually exclusive never become enabled simultaneously

with the same instance of event. Thus, Condition NDT never holds with respect to ri

and rj. Hence, we need not generate the candidates from such ri and rj.

Example 5.25 Consider a pair of rules pots3 and pots4 in Figure 2.2:

pots3 : dialtone(x),¬idle(y) [dial(x, y)] busytone(x)

pots4 : dialtone(x), idle(y) [dial(x, y)] calling(x, y)

No matter how nicely we choose the substitutions θ and θ′ such that Ev[pots3θ] =

Ev[pots4θ
′] = dial(a, b), where a, b ∈ U , both Pre[pots3θ] and Pre[pots4θ

′] never take

true value simultaneously. Since ¬idle(b) ∈ Pre[pots3θ] and idle(b) ∈ Pre[pots4θ], pots3

and pots4 are mutually exclusive.

Although any state s obtained by Procedure P1 satisfies Condition NDT, all other

states s′ in which s is true also satisfy Condition NDT. Let us consider again s =

idle(A), calling(B,A) in Example 5.23. Then, all of the following states also satisfy

Condition NDT.

s = idle(A), calling(B,A)

s1 = idle(A), calling(B,A), dialtone(A)

s2 = idle(A), calling(B,A), idle(B), dialtone(B)

s3 = idle(A), calling(B,A), calling(A,B)

s4 = idle(A), calling(B,A), talk(A,B), talk(A,B)

· · ·

In order to deal with such states efficiently, we define the notion of wildcard. Intuitively,

it regards instances of predicates other than those in s to be don’t care.

Definition 5.26 Let S = 〈U, V, P,E,R, s0〉 be a service specification. For each predicate

symbol p ∈ P , a wildcard of p, denoted by Σp(x1, ..., xk), xi ∈ V , is defined to be a set of

69

any instances p(a1, ..., ak), ai ∈ U ’s. A wildcard extension of a state s, denoted by WX(s)

is defined as a state obtained by combining s and Σp(x1, ..., xk), xi ∈ V for all p ∈ P .

Example 5.27 Let us consider states s, s1, s2, s3 and s4 in the above example. We can

describe all states in which s is true by means of the wildcard extension:

WX(s) = idle(A), calling(B, A), Σidle(x), Σdialtone(x), Σcalling(x, y), Σbusytone(x), Σtalk(x, y)

For example, using WX(s), we can represent s4 by regarding that

Σtalk(x, y) = {talk(A, B), talk(B, A)}

and others are empty sets.

Finally, we present the candidates decision procedure in Figure 5.5. The output of

Procedure NDT is the set CNDT of candidate non-deterministic states.

5.4.3 Candidate Violating States

The candidate violating states are easily determined as the states at which the given

invariant formula IS is not respected. In other words, it is identified as a set of states

satisfying ¬IS . As shown in Chapter 3, we assume that ¬IS is given by the sum-of-product

form:

¬IS = t1 ∨ t2 ∨ ... ∨ th

where ti = p1 ∧ p2 ∧ ... ∧ pq and pi is a predicate pi(x1, ..., xk) or its negation. If at least

one of terms ti’s is satisfied at s for some θ, then we can conclude s �� IS . Therefore, we

determine a candidate for each ti. By applying possible substitution θ’s to each ti, we

can obtain a set of candidates s’s such that s = p1θ, p2θ, ..., pqθ. After that, we apply the

wildcard extension to s as in the candidate non-deterministic states.

We present the candidates decision procedure in Figure 5.6. The output of Procedure

VLT is the set CV LT of candidates violating states.

70

Candidate Decision Procedure NDT

Input: S = 〈U, V, P,E,R, s0〉

Output: CNDT = {WX(s)| s satisfies Condition NDT }

Procedure:

CNDT := ∅;

for each ri, rj ∈ R with the same event symbol e {

if (ri and rj are mutual-exclusive) then break;

else

for all θi, θj s.t. Ev[riθi] = Ev[rjθj] {

s := Pre[riθi], P re[rjθj];

add WX(s) to CNDT ;

}

}

Figure 5.5: Candidate decision procedure NDT

71

Example 5.28 Consider again the invariant formula I in Example 2.12.

I = ¬idle(x) ∨ ¬busytone(x)

Then we have its negation of I.

¬I = idle(x) ∧ busytone(x)

By applying possible substitutions θ1 = 〈x|A〉 and θ2 = 〈x|B〉 to ¬I, we can obtain two

candidates s and s′ as follows:

s = idle(A), busytone(A)

s′ = idle(B), busytone(B)

Clearly, s �� I and s′ �� I hold.

5.4.4 Algorithm PINV

Now, we are ready to present Algorithm PINV. For given service specifications S1,S2 and

invariant formulas IS1, IS2, we first construct the service specification net N (S) according

to Definition 5.9, and then calculate P-invariant Y ‡ . Next, we obtain candidates of

non-deterministic and violating states by means of Procedures NDT and VLT.

After that, for each candidate, we check its reachability by evaluating the P-invariant

equation. Note that each candidate forms a wildcard extension WX(s) of a state s. So,

we first define the wildcard extension of a marking M .

Definition 5.29 Let N (S) = 〈U, V, P,E, T, F,H, La, Lt,M0〉 be a service specification.

For each place p ∈ P , a wildcard of p, denoted by Σ〈x1, ..., xk〉, xi ∈ V , is defined to be

‡ In general, there may be several basis Y ’s of some P-invariants from which any P-invariant can be

constructed by means of their linear combinations[32][48]. In such a case, apply the following for each

basis Y of some P-invariants.

72

Candidate Decision Procedure VLT

Input: S = 〈U, V, P,E,R, s0〉, IS

Output: CV LT = {WX(s)| s �� IS }

Procedure:

/* ¬IS = t1 ∨ t2 ∨ ... ∨ th */

CV LT := ∅;

for each ti = p1 ∧ p2 ∧ ... ∧ pq {

for all θ {

s := p1θ, p2θ, ..., pqθ;

add WX(s) to CV LT ;

}

}

Figure 5.6: Candidate decision procedure VLT

73

a set of any tokens 〈a1, ..., ak〉, ai ∈ U ’s. A wildcard extension of a marking M , denoted

by WX(M) is defined as a marking M ′ such that M ′(p) = M(p) ∪ {Σ〈x1, ..., xk〉} for all

p ∈ P .

Then, for each WX(M) such that M ≡ s, we explain how to evaluate the P-invariant

equation Y ∗WX(M)t = Y ∗M t
0. Let ρ be any function which assigns a set of tokens to each

wildcard of WX(M). If we can find no such ρ that makes the equation Y ∗ WX(M)t =

Y ∗M0 hold, we conclude Y ∗WX(M)t �= Y ∗M0 by Proposition 5.20. That is, any state

s characterized by WX(s) is not reachable from s0. So, we can conclude that interaction

is not detected for such states. Therefore, we delete WX(s) from the candidates.

Otherwise, if we find such ρ, we cannot derive any decision on reachability of s’s

characterized by WX(s) (See Remark 5.21). So, we should say that interaction is suspected

for some states characterized by WX(s).

Example 5.30 Let us evaluate WX(s) in Example 5.27, which is a candidate non-

deterministic state. Based on this, we get the following W (M):

WX(M) =

idle dialtone calling busytone talk

({〈A〉, Σ〈x1〉}, {Σ〈x2〉}, {〈B,A〉, Σ〈x3, x4〉}, {Σ〈x5〉}, {Σ〈x6, x7〉})

Now, let us apply the following P-invariant Y in Example 5.17

Y =

idle dialtone calling busytone talk

(id id p1 + p2 id p1)

We recall from Example 5.17:

Y ∗ M t
0 = {〈A〉, 〈B〉}

Next, evaluate Y ∗ WX(M)t as follows:

Y ∗ WX(M)t = id({〈A〉, Σ〈x1〉}) + id({Σ〈x2〉}) + (p1 + p2)({〈B,A〉, Σ〈x3, x4〉}) +

74

id({Σ〈x5〉}) + p1({Σ〈x6, x7〉})

= {〈A〉, Σ〈x1〉} + {Σ〈x2〉} + p1({〈B,A〉, Σ〈x3, x4〉}) +

p2({〈B,A〉, Σ〈x3, x4〉}) + {Σ〈x5〉} + {Σ〈x6〉}

= {〈A〉, Σ〈x1〉} + {Σ〈x2〉} + {〈B〉, Σ〈x3〉} + {〈A〉, Σ〈x4〉} +

{Σ〈x5〉} + {Σ〈x6〉}

= {2〈A〉, 〈B〉, Σ〈x1〉, Σ〈x2〉, Σ〈x3〉, Σ〈x4〉, Σ〈x5〉, Σ〈x6〉}

For this, no matter how nicely we choose the assignment of tokens such as 〈A〉, 〈B〉

to Σ〈xi〉’s, the equation Y ∗WX(M)t = Y ∗M t
0 never holds. Therefore, we can conclude

that no state characterized by WX(s) is reachable from s0, and that they are not non-

deterministic states, actually. Note that this checking is performed without generating a

reachablity graph. Thus, Algorithm PINV achieves a static verification.

As for the interaction of non-deterministic states and violating states, the following

proposition characterizes Algorithm PINV.

Proposition 5.31 The following properties are satisfied for Algorithm PINV:

S1 interacts with S2. ⇒ PINV returns “Suspected′′

S1 does not interact with S2. ⇐ PINV returns “Not detected′′

Proof: Straight forward from Lemma 5.11, Theorem 5.19 and Proposition 5.20. �

Remark 5.32 Note that Algorithm PINV never misses any interaction which actually

occurs. However, it may identify some interactions which do not actually occur.

The evaluation of Algorithm PINV will be presented in Chapter 6.

5.5 Related Works

There are several static methods proposed for interaction detection. Kimbler proposed a

notion of interaction filtering [38] that makes a rough pre-evaluation of the interaction-

75

Detection Algorithm PINV

Input: S1,S2, IS1, IS2

Output: “Suspected” or “Not detected” (only for non-deterministic and violating states)

Procedure:

S = S1 ⊕ S2; IS = IS1 ∧ IS2;

Phase 0: Construct N (S1 ⊕ S2);

Calculate P-invariant Y of N (S1 ⊕ S2);

Phase 1: Obtain CNDT and CV LT by Procedures NDT and VLT;

C := CNDT ∪ CV LT

Phase 2: For each WX(s) ∈ C

If Y ∗ WX(M)t �= Y ∗ M t
0 s.t. M ≡ s;

then delete WX(s) from C;

If (C = ∅) return(“Not detected”);

else return(“suspected”);

Figure 5.7: Detection algorithm PINV

76

prone service combination before the detection process. Keck [35] presented a tool that

identifies interaction-prone service scenarios based on heuristical criteria. Thomas [55]

and Heisel [28] also proposed heuristical methods to find overlapping guards for non-

deterministic interactions. All of the static methods above are heuristic-based methods.

Hence, the detection quality and coverage of the methods deeply depend on the knowledge

of the verifier or the knowledge database in the verification environment. Yoneda et al. [62]

presented a guideline of static verification using description method State Transition Rules

(STR)[29][27]. However, no evaluation has yet been conducted for detection coverage and

redundancy.

Also, there are some Petri net based methods for interaction detection. Capellman

et al.[16][17] proposed a service description method by means of Product Nets, a high-

level variant of Petri net. In order to avoid the state explosion, Nitsche [50] proposed an

abstraction method of reachable state space by means of homomorphisms for Capellman’s

framework. Kawarazaki et al. [34] proposed a method using T-invariants of Petri nets

[48] for the guided search of the reachable state exploration. Note that these Petri net

based approaches are dynamic algorithms that examine the reachability analysis.

77

Chapter 6

Experimental Evaluation

6.1 Introduction

In order to evaluate the effectiveness of the proposed algorithms, we have conducted the

experimental evaluation through interaction detection for practical services.

We evaluate the algorithms by the following three metrics: (a) detection quality, (b)

performance and (c) scalability. In the detection quality measurement, we investigate

whether the algorithms can detect the interactions correctly or not. Then, in perfor-

mance measurement, we measure the space and time needed for each algorithm. Finally,

scalability measurement is conducted in order to evaluate how many users and features

the algorithms can scale.

The rule-based service specifications are prepared based on ITU-T recommendations

[64] and Bellcore’s documents [66]. We have selected eight services, and perform the

interaction detection for any pair of services.

Also, we have developed a software, called Service specification VALidator— SVAL in

short, for the experiment. Software SVAL is written in the C language, comprises about

7000 lines of code, and can execute automatic interaction detection based on any of the

algorithms EXH, SYM and PINV for a given rule-based service specification. When the

78

interaction occurs, that is, some undesirable states are detected, SVAL returns not only

“detected” (or “suspected”) but also the execution trace to the undesirable state. It also

outputs the number of states, the number of edges, and amount of execution time elapsed.

SVAL can quit its execution as soon as an undesirable state is identified, (i.e., so-

called on-the-fly verification [30]), however, we do not use the on-the-fly mode. We want

to perform the worst case analysis, which is independent of the searching strategy and so

on.

The rest of this chapter is organised as follows: In the next section, we explain the

service specifications prepared for the experiment. In Section 6.3, the evaluation experi-

ment is conducted. In Section 6.4, we summarize the results and discuss characteristics

of the three algorithms EXH, SYM and PINV.

6.2 Service Specifications

We prepare the rule-based service specifications for the experiment. From ITU-T rec-

ommendation [64] (ITU-T Recommendations Q.1200 Series — Intelligent Network Ca-

pability Set 1 (CS1)) and Bellcore’s feature standards [66] (Bellcore — LSSGR Features

Common to Residence and Business Customers I, II, III), we have selected the following

eight services (features):

CW: Call Waiting

CF: Call Forwarding

DC: Direct Connect

DO: Denied Origination

DT: Denied Termination

OCS: Originating Call Screening

79

TCS: Terminating Call Screening

EMG: Emergency call

For each of the eight services, we have created a rule-based service specification (We

present them written in the SVAL language in Appendix B). In the following, we describe

the fundamental functionality of each service, and then we attempt to provide a reasonable

invariant property intended to be satisfied.

Call Waiting (CW): This service allows the subscriber to receive an additional call

while he is talking. Suppose that x subscribes to CW. Even when x is busy talking

with y, x can receive an additional call from a third party z.

From this fundamental functionality, there is no invariant property respected for

CW . Therefore, we give an invariant formula ICW = true.

Call Forwarding (CF): This service allows the subscriber to have his incoming calls

forwarded to another number. Suppose that x subscribes to CF and that x specifies z

to be a forwarding address. Then, any incoming call to x is automatically forwarded

to z.

From this fundamental functionality, there is no invariant property respected for

CF . Therefore, we give an invariant formula ICF = true.

Originating Call Screening (OCS): This service allows the subscriber to specify that

outgoing calls be either restricted or allowed according to a screening list. Suppose

that x subscribes to OCS and that x puts y in the OCS screening list. Then, any

outgoing call to y from x is restricted, while any other call to z from x is allowed.

Suppose that x receives dialtone. At this time, even if x dials y, x receives busytone

instead of calling y.

80

From this fundamental functionality, a reasonable invariant property is considered

to be “If x puts y in the OCS screening list, x is never calling y at any time”.

Therefore, we give an invariant formula IOCS = ¬OCS(x, y) ∨ ¬calling(x, y).

Terminating Call Screening (TCS): This service allows the subscriber to specify that

incoming calls be either restricted or allowed according to a screening list. Suppose

that x subscribes to TCS and that x puts y in the TCS screening list. Then, any

incoming call from y to x is restricted, while any other call from z to x is allowed.

Suppose that y receives dialtone. At this time, even if y dials x, y receives busytone

instead of calling x.

From this fundamental functionality, a reasonable invariant property is considered

to be “If x puts y in the TCS screening list, y is never calling x at any time”.

Therefore, we give an invariant formula ITCS = ¬TCS(x, y) ∨ ¬calling(y, x).

Denied Origination (DO): This service allows the subscriber to disable any call orig-

inating from the terminal. Only terminating calls are permitted. Suppose that x

subscribes to DO. Then, any outgoing call from x is restricted. Even if x offhooks

when the terminal is idle, x receives busytone instead of dialtone.

From this fundamental functionality, a reasonable invariant property is considered

to be “If x subscribes to DO, x never receives dialtone at any time”. Therefore, we

give an invariant formula IDO = ¬DO(x) ∨ ¬dialtone(x).

Denied Termination (DT): This service allows the subscriber to disable any call ter-

minating at the terminal. Only originating calls are permitted. Suppose that x

subscribes to DT. Then, any outgoing call from x is restricted. Even if another user

y dials x, y receives busytone without calling x.

From this fundamental functionality, a reasonable invariant property is considered

to be “If x subscribes to DT , y is never calling x at any time”. Therefore, we give

81

an invariant formula IDT = ¬DT (x) ∨ ¬calling(y, x).

Direct Connect (DC) This service is a so-called hot line service. Suppose that x

subscribes to DC and that x specifies y as the destination address. Then, by only

offhooking, x is directly calling y. It is not necessary for x to dial y.

From this fundamental functionality, there is no invariant property respected for

DC. Therefore, we give an invariant formula IDC = true.

Emergency call (EMG): This service is usually deployed on police and fire stations.

In the case of an emergency incident, the call will be held even when the caller

mistakenly onhooks. Suppose that x is a police station on which EMG is deployed,

and that y has made a call to x and is now busy talking with x. Then, even when

y onhooks, the call is on hold without being disconnected. Followed by that, if y

offhooks, the held line reverts to a connected line and y can talk with x again. In

order to disconnect the call, x has to onhook.

From this fundamental functionality, there is no invariant property respected for

DC. Therefore, we give an invariant formula IDC = true.

In the experiment, we put the following assumption.

Assumption 6.1 The following properties are assumed in the experiment.

(a) All users can subscribe to all services.

(b) At the initial state, all users are idle and no user subscribes to any service yet.

This assumption is quite reasonable for telecommunication services. In order to achieve

Assumption 6.1(a), a pair of rules for the subscription registration and its withdrawal is

added to each service specification. Also, as for Assumption 6.1(b), we specify the initial

state as follows:

s0 = idle(a1), idle(a2), ..., idle(an), yetX(a1), yetX(a2), ..., yetX(an),

82

where n is the number of users verified, and the predicate yetX(a1) means that user ai

does not subscribes to supplementary service X yet.

6.3 Experimental Evaluation

For the service specifications prepared in the previous section, we perform the feature

interaction detection using three algorithms, EXH, SYM and PINV. The experimental

evaluation is performed from the following three viewpoints.

Detection Quality: whether the algorithms can exactly identify all interactions or not.

Performance: how much time and space are needed for the algorithms.

Scalability: how many users and features can be scaled by the algorithms.

The experiments have been performed by the software package SVAL on the UNIX

workstation Sun SS-UA1 with 334Mb memory.

6.3.1 Detection Quality

The primary objective here is to evaluate the detection quality. That is, we see the

proposed algorithms can exactly identify all interactions.

As shown in Chapter 3, it is clear that Algorithm EXH surely detects all interactions

since it enumerates all possible reachable states. Hence, we can regard the interactions

detected by Algorithm EXH as the correct answer. By comparing the detection result

obtained by each of the algorithms SYM and PINV with those by Algorithm EXH, we

evaluate the detection quality of the algorithms. The closer to the correct answers the

result is, the higher quality the algorithm has.

According to Proposition 4.17, the detection quality of Algorithm SYM is expected to

be optimal. That is, it is expected that Algorithm SYM detects all interactions correctly.

83

On the other hand, Algorithm PINV performs the interaction detection based on only a

necessary condition of the P-invariant method. According to Proposition 5.31, Algorithm

PINV identifies all correct interactions as suspected interactions, however, it may identify

some interactions which do not actually occur, theoretically speaking. So, our interest

here is how many such interactions are wrongly suspected by Algorithm PINV.

Now, we start the evaluation. First, we check if each of eight specifications prepared

in the previous section is safe by applying Algorithm EXH. As a result, we have found

that all services except EMG are safe, while EMG contains the loop states as shown in

Example 2.3 which is interaction of EMG with itself. Next, we have combined each pair

of the remaining seven services, then tried to detect the interactions between any two

services by means of the three specified algorithms. For all specifications, the number of

users is assumed to be three.

Table 6.1 summarises the result. In the table, the columns DLK, LOP, NDT and

VLT respectively show whether deadlock, loop, non-deterministic or violating states are

identified (detected or suspected) or not (none). Since Algorithm PINV does not work

for deadlock and loop states, the corresponding columns appear as not available(N/A).

As is expected, Algorithm SYM achieves the optimal interaction detection. That is,

it detects all undesirable states detected by Algorithm EXH. Moreover, it returns none

for any states not detected by Algorithm EXH.

It is interesting that all undesirable states suspected by Algorithm PINV are actual

ones. It never wrongly suspects interactions which do not actually occur. This means that

the necessary condition for Algorithm PINV works as if it is a necessary and sufficient

condition for these practical service specifications. From this, we conclude that Algorithm

PINV attains semi-optimal detection quality.

84

Table 6.1: Result for detection quality

��1

�/,�"-+"�

���"

�/,�"-+"�

���"

�/,�"-+"�

�/,�"-+"�

���"

�/,�"-+"�

���"

�/,�"-+"�

�/,�"-+"�

���"

�/,�"-+"�

���"

���"

���"

�/,�"-+"�

�/,�"-+"�

���"

���"

�/,�"-+"�

���"

�!>

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

!@7

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

�?�

6!1

���"

���"

�/,�"-+"�

���"

�/,�"-+"�

�/,�"-+"�

���"

�/,�"-+"�

���"

�/,�"-+"�

�/,�"-+"�

�/,�"-+"�

���"

�/,�"-+"�

�/,�"-+"�

���"

���"

���"

���"

���"

���"

���"

��#�A�+�B(7C�6

�!>

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

!@7

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

�"+"-+"�

��1

�"+"-+"�

���"

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

���"

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

���"

�"+"-+"�

���"

���"

���"

�"+"-+"�

�"+"-+"�

���"

���"

�"+"-+"�

���"

6!1

���"

���"

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

���"

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

���"

���"

���"

���"

���"

���"

���"

��#�A�+�B(�D;�"A��-"

��"-E(�

FG<F8

FG<�F

FG<�1

FG<�@

FG<@F�

FG<1F�

F8<�F

F8<�1

F8<�@

F8<@F�

F8<1F�

�F<�1

�F<�@

�F<@F�

�F<1F�

�1<�@

�1<@F�

�1<1F�

�@<@F�

�@<1F�

@F�<1F�

�;H

�!>

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

!@7

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

���"

�"+"-+"�

��1

�"+"-+"�

���"

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

���"

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

���"

�"+"-+"�

���"

���"

���"

�"+"-+"�

�"+"-+"�

���"

���"

�"+"-+"�

���"

6!1

���"

���"

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

���"

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

�"+"-+"�

���"

�"+"-+"�

�"+"-+"�

���"

���"

���"

���"

���"

���"

���"

��#�A�+�B(�I9

85

6.3.2 Performance

Next, we evaluate the performance of the algorithms. For each of the three algorithms, we

investigate how much space and time is needed to perform the interaction detection. The

measurement is performed in the same setting as in the previous experiment of detection

quality.

As the metric of space for algorithms EXH and SYM, we adopt the numbers of nodes

and edges of the reachability graphs FRG and SRG, respectively. This is because the

size of the reachability graph is the dominant factor of space for both algorithms. As

for Algorithm PINV, we select the number of undesirable candidate states determined in

Phase 1 of Algorithm PINV.

On the other hand, the time is measured as the execution time of software SVAL. Since

the execution time may depend on the implementation of SVAL, we specifically devised

the programming so that Algorithm EXH can give the best performance, by means of

several techniques such as data compression and hash searching [1, 30].

Table 6.2 shows the result. In the table, |N | and |T | respectively represent the number

of nodes and the number of edges in the reachability graph. |C| shows the number of

candidates determined in Phase 1 of Algorithm PINV.

Firstly, we discuss the result of Algorithm SYM. It is seen that Algorithm SYM attains

about 80% reduction over Algorithm EXH in both space and time (e.g., as for the number

of nodes in CW +CF , 1−17610/102746 = 0.83). In general, the construction of the SRG

needs more overhead than that of FRG. Because for each generation of the next state s,

it may check all its symmetric states to determine if it already exists or not. However,

this overhead appears to be cancelled since the total number of states to be explored

is reduced by the SRG. From these, we can say that Algorithm SYM attains adequate

performance.

Secondly, we investigate the result of Algorithm PINV. Since it needs no costly reach-

86

Table 6.2: Result for performance

��#�A�+�B(7C�6

0 0��

 ���

0�02

����

��3��

��3�2

��32�

��203

�3�

������

�����2

�3�

��2�

����3

�����

�3�

3�3�

3 �

����

����

�3 ��

 �2

3��E�

��E

��E3

�2E0

���E0

��2E�

���E�

3�E�

�0

���E0

���E3

�0

��E�

 �E0

 �E�

�E3

�0

�0E0

��E�

��E�

3�E�

�E�

�0 �2

� ��

����

 �

�2��

�2��

 �

�2�0

3��

��� �

��� �

3��

��2

�3��

�3��

�22

����

����

0�2

0�2

��2�

��

&(�(&((((((((((&(1(&(((((((1�B"((
,� &F&

���

�30

���

���

���

���

33

�2�

0�

�2�

�2�

��

�0

��

��

��

��

��

�2

�2

�2

��

1�B"(
,�

�E�

�E�

�E0

�E0

�E0

�E3

2E

2E

2E�

2E

2E0

2E�

2E�

2E�

2E�

2E�

2E�

2E�

2E�

2E�

2E�

2E�

��#�A�+�B(�D;�"A��-"

��"-E(�

FG<F8

FG<�F

FG<�1

FG<�@

FG<@F�

FG<1F�

F8<�F

F8<�1

F8<�@

F8<@F�

F8<1F�

�F<�1

�F<�@

�F<@F�

�F<1F�

�1<�@

�1<@F�

�1<1F�

�@<@F�

�@<1F�

@F�<1F�

�;H

�2�0�

3�3�

0��2

���2

���0�

���0�

 ���2

�����

�000�

��2���

��2���

��32

� ��

�0���

�0���

���2

020�

020�

���2

���2

�����

���

�� ���

�����

�32�

� � 2

�� 33

��023�

����0

�2 � �

�2���

02�022

02� ��

�0��2

���32

3����

3��3

3��2

���2�

�����

�����

��3�2

�0��0

�0

�02 E�

�02E�

��0E�

�3E�

02�

0�2E

����E�

�22 E�

��0E

�3�2E�

�3��E

 3E

�0E3

� �E3

�0�E�

��E0

�2�E�

�2�E�

�3E0

 2E�

� 0E�

�E�

��#�A�+�B(�I9

&(�(&((((((((((&(1(&(((((((1�B"((
,�

87

ability graph generation, it attains extremely effective performance. For example, let us

see the case of CW + CF . Total time needed for (1)construction of Petri net, (2)calcula-

tion of P-invariant, (3)generation of candidates and (4)evaluation of P-invariant equation

costs only 3.5 seconds. The performance is about 1340 times that of Algorithm EXH, and

about 260 times that of Algorithm SYM. Moreover, space is also reduced by several orders

of magnitude. This is justified by the following two reasons. The first one is that the

P-invariant calculation and the candidate generation are performed from only structure

of rules (i.e., Petri net structure) independently of states. The second reason is that the

characterising several states by wildcard extension of one state works efficiently.

6.3.3 Scalability

In order to investigate the applicability of the algorithms to complex services with many

users, we evaluate the scalability of the algorithms. We discuss the following two kinds

of scalability:

(a)scalability w.r.t. # of users: impact of the number of users on the algorithms.

(b)scalability w.r.t. # of features: impact of the number of features on the algorithms.

As the metric of scalability, we adopt state space needed for each algorithm, since it

is the most dominant factor in determining the cost of the algorithms. For algorithms

EXH and SYM, we measure the numbers of nodes in the FRG and SRG, respectively.

For Algorithm PINV, we measure the number of undesirable candidate states determined

in Phase 1.

First we compare the scalability w.r.t. # of users. Concretely, for a fixed service

specification, we observe the growth of state space by varying the number of users. In

order to measure as many cases as possible, we select the POTS specification in Figure

2.2. , which is the simplest one. Then, we vary the number of users from 2 to 8.

88

Figure 6.3.3 shows the result. In the graph, the vertical axis shows the number of

states, while the horizontal axis represents the number of users. Note the logarithmic

scale on the vertical axis.

Firstly, we discuss the results of Algorithm SYM. It can be seen that, for the increase

of the number of users, the state space of Algorithm EXH exponentially grows. And

finally, we could not construct FRG with 8 users due to the memory overflow. On the

other hand, the state space of Algorithm SYM grows much more slowly than that of

Algorithm EXH (almost linear in this case). The larger the number of users is, the more

Algorithm SYM attains the significant reduction. From this, we can say that Algorithm

SYM is much more scalable than Algorithm EXH with respect to the number of users.

Secondly, we discuss the results of Algorithm PINV. Similarly to the results of Algo-

rithm SYM, the number of states grows almost linearly according to the number of users.

It is not surprising that the two curves for Algorithms SYM and PINV are crossed in the

small number of users, since the number of candidates determined by Algorithm PINV

has nothing to do with the number of reachable states in the SRG. As the number of

users increases, Algorithm PINV achieves further reductions than Algorithm SYM. Even

for the case of 100 users, Algorithm PINV completes in a very short time (86.44 sec.) and

smaller space (800 states). This fact implies that Algorithm PINV has more scalability

than Algorithm SYM with respect to the number of users.

Next, we evaluate the scalability w.r.t.# of features. For this, we first prepare the

POTS specification and fix the number of users (here we set it to be three). Then, by

incrementally adding the specifications DO, DT, DC, EMG to POTS in this order, we

observe how the state space grows for each addition of the service.

Figure 6.2 shows the result. Unfortunately, for the increase of the number of features,

the state space of Algorithm SYM exponentially grows in line with that of Algorithm

EXH. However, it can be seen that Algorithm SYM constantly achieves more than an

89

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

2 3 4 5 6 7 8
of users

of

 s
ta

te
s

EXH
SYM
PINV

Figure 6.1: Result for scalability w.r.t. # of users

1.0E+00

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

1 2 3 4 5

of features

of

 s
ta

te
s

EXH
SYM
PINV

Figure 6.2: Result for scalability w.r.t. # of features

90

80% reduction over Algorithm EXH (e.g., as for the number of nodes with 5 features,

1 − 58832/348868 = 0.83). This is justified by the fact that permutation symmetry does

not contribute to the different services since it is defined only for the permutation of

users. As a result, Algorithm SYM is slightly more scalable than Algorithm EXH with

respect to the number of features.

As for Algorithm PINV, the state space grows comparably slowly to the scalability

with respect to the number of users. So, we can conclude that Algorithm PINV is much

more scalable than other two algorithms.

6.4 Discussion

According to the results, we summarise the characteristics of the three algorithms in Table

6.3.

Although the conventional Algorithm EXH has an advantage in its simplicity and

optimal detection quality, it is difficult to apply it to practical interaction detection. For

example, we recall that we set the number of users in the interaction detection to be only

three. Actually, in the case of four users, Algorithm EXH cannot work because of the

state explosion. Due to its poor performance and scalability, the application of Algorithm

EXH is limited to relatively simple services with a small number of users.

Algorithm SYM is a suitable example which achieves good state reduction by focusing

on a constraint of telecommunication services. That is, all users of a service X can use X in

the same way. Based on the backbone theory of permutation symmetry, Algorithm SYM

succeeds in improving the performance while completely preserving the optimal detection

quality of Algorithm EXH. Also, it is very scalable for an increase in the number of

users. The only disappointing aspect is that the scalablity with respect to the number

of features is poor. However, it is not surprising, since permutation symmetry is defined

only on users, not on features. Thus, it does not contribute any state reduction when new

91

features are added. The other reason is that we assume in the experiment that all users

can subscribe to any service dynamically, as in Assumption 6.1. The dynamic subscription

and withdrawal may cause combinational explosion of the user’s subscription cases. One

of the promising ways for improving the scalability is to divide the original problem into

smaller subproblems, in each of which the users’ subscription cases is statically fixed. We

are now studying it as future work.

Algorithm PINV takes a completely different approach from other two algorithms in

the sense that it performs a static verification. Based on mathematical foundation of the

P-invariant method of a Petri net, it extensively utilises the structural information of rule-

based service specifications. As a result, Algorithm PINV achieves excellent performance

and scalability, which are well applicable to practical settings. For example, even in the

case of CW&CFV , which is the most difficult case in the experiment, with 40 users, we

confirm that Algorithm PINV definitely works, and its execution is finished within an

hour. This is sufficient enough even for industrial settings.

However, we cannot directly compare Algorithm PINV with the other two algorithms,

because Algorithm PINV does not solve the exact interaction detection problem, strictly

speaking. In compensation for its excellent performance and scalability, there are mainly

two drawbacks. Firstly, the detectable interaction classes are limited. This is because we

do not always have nice techniques for generating undesirable candidate states, automat-

ically. Although there is a deadlock detection method using the P-invariant method in

[3], the proof of deadlock free is performed by manually for each given system or speci-

fication, so it is difficult to implement. In our work, we specifically select two classes of

non-deterministic states and violating states, and propose the automated candidate gen-

eration procedures for them. We are now studying the generation procedures for other

types of undesirable states.

The second drawback is that the detection quality achieved by Algorithm PINV should

92

Table 6.3: Characterictics of Algorithms

;"+A�-,

6"A���-�+���
1)�"

��-	.��"
1�"�A)

�"+"-+�.�"
8C(F��,,",

=/���+)

7"A��AB��-"

�-���.���+)(JEAE+E

K(��(/,"A,�

K(��(�"�+/A",�

��#�A�+�B(�I9

�)��B�-

"%��/,+��"
,"�A-�

���

��+�B��

�"A)(���A

�"A)(���A
�"A)(���A

��#�A�+�B(�D;

�)��B�-

�"AB/+�+���
,)BB"+A)

���

��+�B��

#���

�"A)(#���
���A

��#�A�+�B(7C�6

,+�+�-

7"+A�(�"+
7L����A���+

��A+���

,"B�L��+�B��

"%-"��"�+

"%-"��"�+
"%-"��"�+

be semi-optimal, but not optimal theoretically speaking. This is clearly explained because

the P-invariant method guarantees the reachability of states by only a necessary condition.

However, the experimental evaluation shows that the detection quality is comparative to

optimal for the practical interaction detection. The reason why the necessary condition

essentially worked as both a necessary and sufficient condition is now being investigated.

This is one of the most interesting and important issues for future research.

After all, although it can be from Table 6.3 seen that the proposed algorithms SYM

and PINV are involved in a kind of trade-off relation, we believe that both of the pro-

posed algorithms successfully extend the applicability of formal verification methods to

interaction detection. As a result, we conclude that both algorithms are applicable to the

interaction detections of more practical services with many users.

93

Chapter 7

Conclusion

7.1 Achievements

In this dissertation, we addressed research on algorithms for efficient feature interac-

tion detection. Also, we have conducted experimental evaluation through application to

practical services. We formulated interaction detection problems for the four classes of

interactions: deadlock, loop, non-determinism and violation of invariants.

We first proposed Algorithm SYM. By focusing on a constraint of telecommunication

services that “All users of service X can utilise X in the same way”, we define a rela-

tion called permutation symmetry of users. Based on this relation, we have defined a

reachability graph, called symmetric reachability graph (SRG). By means of the SRG, we

have successfully reduced the state space needed for the conventional exhaustive search

(Algorithm EXH), while completely preserving necessary information for all four classes

of interactions. As a result, Algorithm SYM performs the optimal interaction detection

based on the necessary and sufficient conditions with a smaller space and time.

Next, we proposed Algorithm PINV which extensively utilises the P-invariant method

of Petri nets for interaction detection. Algorithm PINV is a static verification method in

the sense that it does not employ the reachability analysis by means of graphs, which lim-

94

its the detectable interaction classes to only non-determinism and violation of invariants.

However, because Algorithm PINV works in a static manner without expensive reacha-

bility analysis, significant cost reduction for the interaction detection can be achieved.

The experimental evaluation of the proposed algorithms demonstrated their respective

effectiveness. We have prepared service specifications for practical services, and evaluated

the proposed two algorithms by the following metrics: detection quality, performance and

scalability.

From the results, we have confirmed that Algorithm SYM achieves the optimal de-

tection quality as shown in backbone theories. Also, it was shown that Algorithm SYM

attains relatively good performance and significantly good scalability with respect to the

number of users. As for Algorithm PINV, it was interesting that it has attained semi-

optimal detection quality in the sense that all interactions suspected by Algorithm PINV

are correct ones. The performance and scalability of Algorithm PINV were excellent for

the practical settings.

From these, we conclude that both of the proposed algorithms successfully extend the

applicability of formal verification methods to feature interaction detection.

7.2 Future Research

Several important issues are left open for future study.

The first issue concerns the extension and improvement of the detection algorithms.

Concerning the dynamic algorithm such as the proposed Algorithm SYM, we consider

there to be room for improvement. As mentioned before, a potentially promising direction

for scalability improvement with respect to the number of features is to divide the original

problem into smaller subproblems based on the user’s subscription conditions. Also,

there are powerful verification methods for dynamic verification, such as stubborn sets[59,

60], partial order[30, 31], and symbolic model checking[12, 47], in other research fields.

95

Introducing these methods to the interaction detection will produce further improvement

of dynamic analysis.

Also, as for the Petri net based algorithm PINV, we have to continue further study.

The most important thing is to extend the feasible interaction classes. To do this, we

have to develop good candidate generation procedures for other classes. Also, in the Petri

net field, there are still other excellent structural methods such as T-invariants, siphons

and traps [48, 49], which are expected to be applicable to static verification. Examination

of other structural methods is an interesting issue.

A secondary issue is with respect to the numbers of users and features such like:

(a) “How many users should be taken into account in order to guarantee an interaction-

free pair of services?”

(b) “How many combinations should be investigated for given n services.”

There are two ways to tackle the above (a). The problem is that if we confirm that the

case with n users is interaction-free, then can we also assert the case with n + 1 users to

be the interaction-free? From a theoretical viewpoint, we have to employ the proof with

induction [47]. The induction is not fully automatic — some human input is required in

general. From a practical viewpoint, we should set some upper bound with respect to

the number of users. To determine the upper bound, extensive knowledge by subjective

experts is necessary. The problem (b) can be viewed as follows. Suppose that three

services SA, SB and SC are given, and that we have confirmed the combinations SA ⊕SB,

SB ⊕ SC and SC ⊕ SA to be interaction-free. Then, should we perform the interaction

detection for SA ⊕ SB ⊕ SC? This kind of proof is a challenging issue for the significant

cost reduction of the interaction detection process. The fundamental framework for this

kind of problem is recently proposed by LaPorta et al. [41].

In this dissertation, we addressed only four classes of interactions, that is, deadlock,

loop, non-determinism, violation of invariants. However, there still exist some other

96

classes of interactions. For example, Ohta et al. [52] presented other classes of interactions

called semantics interactions, such as appearance of abnormal states, and disappearance

of normal transitions. Also, there are some other interactions which we may be unable

to define explicitly within the state transition model, such as those caused by billing,

terminology [51, 61]. Examination of these other classes is an important issue as a future

work.

As is discussed to date in the previous Feature Interaction Workshops [8, 18, 22, 40],

the feature interaction problem has been most thoroughly documented in public telecom-

munication systems. However, it occurs in other systems as well. Magill and Tsang et

al. formulate the feature interaction problem in multimedia systems [45, 57]. Interest-

ing examples include such interaction between an Email service and vacation programs,

and interaction between video-on-demand and video-conference. The application of the

proposed algorithms to multimedia services is also a challenging issue.

97

Bibliography

[1] Aho, A.V., Hopcroft, J.E. and Ullman, J.D., “The Design and Analysis of Computer

Algorithms,” Addison-Wesley, 1974.

[2] Aggoun, I. and Combes, P., “Observers in the SCE and the SSE to detect and

resolve service interactions,” Proc. of Second Workshop on Feature Interactions in

Telecommunications Systems, pp.1-23, IOS Press 1997.

[3] Alla, H., Ladet, P., Martinez and J., Silva-Suarez, M., “Modelling and validation

of complex systems by coloured Petri-nets: Application to a flexible manufacturing

system,”Lecture Notes in Computer Science, Vol 188, Springer-Verlag, pp.215-233,

1985.

[4] Au, P.K. and Atlee, J.M., “Evaluation of a state-based model feature interactions,”

Proc. of Fourth Workshop on Feature Interactions in Telecommunications Systems,

pp.153-167, July, 1997.

[5] Blom J., Bol, R. and Kempe, L., “Automatic detection of feature interactions in tem-

poral logic”, Proc. of Third Workshop on Feature Interactions in Telecommunications

Systems, pp.1-19, IOS Press 1995.

[6] Blom J., Bol, R. and Kempe, L., “Using temporal logic for modular specification of

telephone services,” Proc. of Second Workshop on Feature Interactions in Telecom-

munications Systems, pp.197-216, IOS Press 1994.

98

[7] Blom J., “Formalization of requirements with emphasis on feature interaction de-

tection”, Proc. of Fourth Workshop on Feature Interactions in Telecommunications

Systems, pp.61-77, July, 1997.

[8] Bouma, W. and Velthuijsen, H. eds. “Feature Interactions in Telecommunications

Systems II”, IOS Press, 1992.

[9] Bouma, W., Levelt, W., Melisse, A., Middelburg, K., amd Verhaard, L., “Formal-

ization of properties for feature interaction detection: Experience in a real-life sit-

uation,” Lecture Notes in Computer Science, Vol.851, Springer-Verlag, pp. 393-405,

1994.

[10] Boumerzbeur, R. and Logrippo, L., “Specifying telephone systems in LOTOS”, IEEE

Communication Magazine, Vol.31,No.8, pp.38-45, 1993.

[11] Bowen, T.F., et al., “The feature interaction problem in telecomunication systems,”

Proc. 7th Int’l. Conf. on Software Eng. for Telecommun. Switching Sys., pp.59-62,

July 1989.

[12] Cabodi, G. and Camurati. “Symbolic FSM Traversals based on the transition rela-

tion”, IEEE Trans. on Computer-Aided Design of Integrated Circuit and Systems,

Vol.16, No.5, May 1997.

[13] Cameron, E.J. and Velthuijsen, H., “Feature interactions in telecommunications sys-

tems,” IEEE Communication Magazine, Vol.31, No.8, pp.18-23, 1993.

[14] Cameron, E.J., Griffeth, N.D., Lin, Y-J., Nilson, M.E., Schnure W.K. and Velthui-

jsen, H., ”A feature interaction benchmark for IN and Beyond,” Proc. of Second

Workshop on Feature Interactions in Telecommunications Systems, pp.1-23, IOS

Press 1994.

99

[15] Cameron, E.J., Cheng K., Lin, F-J, Liu, H. and Pinheiro B, “A formal AIN service

creation, feature interactions analysis and management environment: an industrial

appliction”, Proc. of Fourth Workshop on Feature Interactions in Telecommunica-

tions Systems, pp.342-346, July, 1997.

[16] Capellmann, C., Combes, P., Pettersson., J., Renard, B. and Ruiz, J.L., “Consistent

interaction detection - A comprehensive approach integrated with service creation”,

Proc. of Fourth Workshop on Feature Interactions in Telecommunications Systems,

pp.183-197, July, 1997.

[17] Capellmann, C., Demandt, R., Galvez-Estrada, R., Nithsche, U., Ochsenschlager,”

“Case study: Service interaction detection by formal verification under behavior

abstraction”, Proc. of Computer Aided Verification, pp.466-469, 1996.

[18] Cheng, K.E., and Ohta, T. eds. “Feature Interaction in Telecommunications III”,

IOS Press, 1993.

[19] Cortadella, J., “Combining structual and symbolic methods for the verification of

concurrent systems”, Proc. of Int’l conf. on Application of Concurrency to System

Design, pp.2-7, 1998.

[20] Desel, J., Neuendorf, K. -P. and Radola, M. -D, “Proving nonreachability by modulo-

invariants”, Theoretical Computer Sciences, Vol. 153, pp.49-64, 1996.

[21] Dssouli, R., Some, S., Guillery, J.W., and Rico, N., “Detection of feature interactions

with REST”, Proc. of Fourth Workshop on Feature Interactions in Telecommunica-

tions Systems, pp.271-283, July, 1997.

[22] Dini, P., Bautaba, R. and Logrippo, L. eds. “Feature Interaction in Telecommunica-

tion Networks IV”, IOS Press, 1997.

100

[23] Fristsche, N. “Runtime resolution of feature interactions in architectures with sepa-

rated call and feature control”, Proc. of Third Workshop on Feature Interactions in

Telecommunications Systems, pp.43-64, 1995.

[24] Gammelgaard, A. and Kristensen E.J., “Interaction detection, a logical approach,”

Proc. of Second Workshop on Feature Interactions in Telecommunications Systems,

pp.178-196, 1994.

[25] Griffeth, N.D. and Lin, Y-J, “Extending telecommunications systems: the feature-

interaction problem”, IEEE Computer, Vol.26, No.8, pp.14-18, 1993.

[26] Hall, R. J, “Feature combination and interaction detection via

foreground/background models”, Proc. of Fifth Workshop on Feature Interactions

and Software Systems, pp.232-246, IOS Press 1998.

[27] Harada, Y., Hirakawa, Y., Takenaka, T. and Terashima, N., “A conflict detection

support method for telecommunication service descriptions”, IEICE Trans. Com-

mun., Vol. E75-B, No.10, Oct., 1992.

[28] Heisel, M. and Souquires, J., “A heuristic approach to detect feature interactions in

requirements”, Proc. of Fifth Workshop on Feature Interactions and Software Sys-

tems, pp.165-171, IOS Press 1998.

[29] Hirakawa, Y. and Takenaka, T., “Telecommunication service description using state

transition rules,” Proc. of IEEE Int’l Workshop on Software Specification and Design,

pp.140-147, Oct. 1991.

[30] Holzmann, G.J., “The model cheker SPIN”, IEEE Trans. on Software Engineering,

Vol.23, No.5, pp.279-295, May 1997.

101

[31] Holzmann, G.J., Godefroid P. and Pirottin, D., “Coverage preserving reduction

strategies for reachability analysis”, Proc. of IFIP Protocol Specification, Testing

and Verification , XII, pp.349-363, 1992.

[32] Jensen, K., “Coloured Petri Nets,” EATCS Monographs on Theoretical Computer

Science, Vol1-2, Springer Verlag, 1992.

[33] Jensen, K. and Rozenberg, G., “High-level Petri Nets”, Springer-Verlag, 1991.

[34] Kawarazaki, Y. and Ohta, T., “A new proposal for feature interaction detection and

elimination,” Proc. of Third Workshop on Feature Interactions in Telecommunica-

tions Systems, pp.127-139, IOS Press 1995.

[35] Keck, D.O. and Kuehn, P.J., “The feature interaction problem in telecommunications

systems: A survey,” IEEE Trans. on Software Engeering, Vol.24, No.10, pp.779-796,

1998.

[36] Keck, D.O., “A tool for the identification of interaction-prone call scenarios”, Proc.

of Fifth Workshop on Feature Interactions and Software Systems, pp.276-290, IOS

Press 1998.

[37] Khoumsi, A., “Detection and resolution of interactions between services of telephone

networks”, Proc. of Fourth Workshop on Feature Interactions in Telecommunications

Systems, pp.78-92, July, 1997.

[38] Kimbler, K., “Addressing the interaction problem at the enterprise level”, Proc. of

Fourth Workshop on Feature Interactions in Telecommunications Systems, pp.13-22,

July, 1997.

[39] Kimbler, K., Capellmann, and Velthuijsen, H., “Comprehensive approach to service

interaction handling”, Computer Networks and ISDN Systems, Sept. 1998.

102

[40] Kimbler, K. and Bouma, L.G. eds. “Feature Interaction in Telecommunications and

Software System V”, IOS Press, 1993.

[41] LaPorta, T.F., Lee, D. and Lin, Y-J., “Protocol feature interactions”, Proc. of IFIP

FORTE XI/ PSTV XVIII, pp. 59-74, Nov. 1998.

[42] Lee, A., “Formal specification — a key to service interaction analysis”, Proc. of

SETSS, pp.62-66, 1992.

[43] Lin, F. J. and Lin,Y-J., “A building block approach to detecting and resolving feature

interactions”, Proc. of Second Workshop on Feature Interactions in Telecommunica-

tions Systems, pp.86-191, 1994.

[44] Lin, F. J., Liu, H. and Ghosh, A., “A methodology for feature interaction detection

in the AIN 0.1 framework”, IEEE Trans. on Software Engeering, Vol.24, No.10,

pp.797-817, 1998.

[45] Magill, E.H., Tsang S. and Kelly, B., “The feature

interaction problem in networked multimedia services: past, present and feature”,

http://www.comms.eee.strath.ac.uk/ fi/fimna.html, Oct. 1996.

[46] Marsan, M.A., Balbo, G., Conte, G., Donatelli, S. and Feanceshinis G., “Modelling

with Generalized Stochastic Petri Nets”, John Wiley & Sons, 1995,

[47] McMillan, K.L., “Symbolic Model Checking”, Kluwer Academic Publishers, 1993.

[48] Murata, T. and Zhang, D., “A predicate-transition net model for parallel inter-

pretation of logic programs,” IEEE Trans. on Software Engineering, Vol.14, No.4,

pp.481-497, Apr. 1988.

[49] Murata, T., “Petri nets: properties, analysis and applications,” Proc. of IEEE,

Vol.77, No.4, pp.541-580, Apr.1988.

103

[50] Nitsche, U., “Application of formal verification and behavior abstraction to the

service interaction problem in intelligent networks”, J. Systems Software, North-

Holland, Vol.40, pp.227-248, 1998.

[51] Ohta, T. and Harada Y., “Classification, detection and resolution of service interac-

tions in telecommunication services,” Proc. of Second Workshop on Feature Interac-

tions in Telecommunications Systems, pp.60-72, 1994.

[52] Ohta, T. and Krischen, F., “Formal definitions of feature interactions in telecommu-

nication software”, IEICE Trans., Vol.E81-A, No.4, pp.635-638.

[53] Plath, M. and Ryan, M., “Plug-and-play features”, Proc. of Fifth Workshop on Fea-

ture Interactions and Software Systems, pp.150-164, IOS Press 1998.

[54] Stepien, B., and Logrippo, L., “Representing and verifying interactions in telecom-

munication features using abstract data types”, Proc. of Third Workshop on Feature

Interactions in Telecommunications Systems, pp.141-155, IOS Press 1995.

[55] Thomas, M., “Modelling and analyzing users vires of telecommunication services,”

Proc. of Second Workshop on Feature Interactions in Telecommunications Systems,

pp.168-182, IOS Press 1994.

[56] Tomioka, M., Tanaka, Y. and Mizuno, O., “Service interaction prediction method for

customized specification”, Proc. of second Asia-Paciffic Conference on Communica-

tions, pp.123-127, June 1995.

[57] Tsang, S., Magill, E.H. and Kelly, B., “An investigation of the feature interaction

problem in networked multimedia services”, Proc. of Third Communication Networks

Symposium, pp.58-61, 1996.

104

[58] Ueda, Y., Takura, A. and Ohta, T., “A fast verification method of the reachability

set on discrete event systems” (in Japanese), Technical Report of IEICE, CST95-10,

pp.29-34, 1995.

[59] Valmari A., “Stubborn sets for reduced state space generation”, Lecture Notes in

Computer Science, Vol.483, Springer-Verlag, pp. 491-515, 1991.

[60] Valmari A., “The state explosion problem”, Lecture Notes in Computer Science,

Vol.1491, Springer-Verlag, 1998 (to appear).

[61] Wakahara, Y., Fujioka, M., Kikuta, H., Yagi, H. and Sakai, S., “A method for detect-

ing service interactions,” IEEE Communication Magazine, Vol.31, No.8, pp.32-37,

1993.

[62] Yoneda, T. and Ohta, T., “A formal approach for definition and detection of feature

interactions”, Proc. of Fifth Workshop on Feature Interactions and Software Systems,

pp.165-171, IOS Press 1998.

[63] Zave, P., “Feature interactions and formal specifications in telecommunications,”

IEEE Computer, Vol.26, No.8, pp.20-30, 1993.

[64] ITU-T Recommendations Q.1200 Series., “Intelligent Network Capability Set 1

(CS1)”, Sept. 1990.

[65] ITU-T Recommendations Z.100, “Specification and Description Language (SDL)”,

1993.

[66] Bellcore, “LSSGR Features Common to Residence and Business Customers I, II, III,”

Issue 2, July 1987.

[67] Bellcore, “Advanced Intelligent Network (AIN) Release 1, Switching Systems Generic

Requirements,” Bellcore Technical Advisory TA-NWT-001123, May 1991.

105

Appendix A

Calculating P-invariants

It is not an easy task to obtain a P-invariant of general coloured Petri nets. However,

regarding our service specification net, there exists a relatively simple method for easy

calculation of the P-invariant.

The service specification net possesses a specific structure, that is, each transition in

the net always move the same number of tokens along a given arc, independently of the

firing substitution. This kind of Petri net is called a uniform coloured Petri net [32].

A uniform coloured net has an underlying (colourless) Petri net structure [58, 48].

Since the P-invariant of colourless Petri nets is easily calculated by integer matrix op-

erations (e.g., [20]), we extensively utilise the underlying colourless net for P-invariant

computation of the service specification net. There are many articles and text books of

the colourless Petri nets (e.g., [48, 46]), hence, the details are omitted here.

Intuitively, the underlying colourless net UPT (S) of N (S) is obtained by removing

all arc labels 〈x1, ..., xk〉, and by counting the number of tokens in each place p (regardless

of tokens’ colour) [58]. Here, we use the following notations.

• For any weighted set(or multi set) w, |w| denotes the cardinal number of w over

weighted sets (or multi sets, respectively). For example, for w = {2〈A〉, 3〈B〉},

|w| = 5.

106

• For any linear function f , |f | denotes the multiplicity of f . For example, |o| = 0,

|id| = |p1| = |p2| = |rv| = 1, |5 · p1 + 3 · p2| = 8 and so on.

The incident matrix of UPN(S) is obtained from A[p, t] of N (S) by replacing each

entry A[p, t] by |A[p, t]|, thus we let it be |A|. Then, a P-invariant of UPN(S) is an

integral vector X such that X ∗ |A| = 0 [48]. At this time, the following theorem holds.

Theorem A.1 [32]

Y is a P-invariant of N (S) ⇒ |Y | is a P-invariant of UPN(S).

Theorem A.1 allows us to narrow the scope for finding unknown Y ’s, that is, we can

discard any vector Y such that |Y | �= X from candidates of the P-invariant of N (S).

After all, in order to obtain the P-invariant of N (S), we perform the following steps.

Step1: Calculate the P-invariant X of UPT (S).

Step2: Construct candidate vectors Y ’s such that |Y | = X

Step3: Check if each of candidates is the P-invariant or not by evaluating Y ∗ A =0.

Step 1 is carried out by a method like Gaussian Elimination [20] in polynomial time,

and Step 3 is a trivial task. To implement Step 2, we use a heuristical method. Suppose

that a P-invariant X of UPT (S) is given as follows. X =

p1 p2 ... pu

(x1 x2 ... xu) , where

pi ∈ P and xi is a non-negative integer. Also, suppose that Y =

p1 p2 ... pu

(y1 y2 ... yu) is

the target P-invariant of N (S), where yi is some linear function. Let ari(pi) be the arity

of place pi. Then, for requirement of |Y | = X, we use the following rule for linear function

assignments.

yi :=




xi · id · · · (if ari(pi) = 1)

e1 · proj1 + e2 · proj2 + ... + ek · projk (e1 + ... + ek = xi) · · · (if ari(pi) = k ≥ 2)

107

where ei is a non-negative integer, id is the identity function, and proji is a projection

function such that proji〈a1, a2, ..., ak〉 = 〈ai〉. By the above rule, clearly we have |Y | = X.

Although there may exist other rules to determine vectors Y ’s such that |Y | = X, we have

confirmed heuristically that the above rule works well for obtaining good P-invariants of

N (S).

To illustrate the technique, let us compute a P-invariant of N (S) in Figure 5.3. From

the incident matrix A of N (S) in Example 5.17, we have the following |A|, which is the

incident matrix of UPN(S).

ps1 ps2 ps3 ps4 ps5 ps6 ps7 ps8

idle

dialtone

|A| = calling

busytone

talk




−1 1 0 −1 2 0 1 1

1 −1 −1 −1 0 0 0 0

0 0 0 1 −1 −1 0 0

0 0 1 0 0 0 1 −1

0 0 0 0 0 2 −2 0




where psi = potsi. Then, by using a computation method in [20], we have the following

P-invariant X of UPT (S).

X =

idl dlt clg bst tlk

(1 1 2 1 1)

According to the rule of linear function assignments, we have the following P-invariant

candidates. Note that arities of idle, dialtone, calling, busytone and talk are 1, 1, 2, 1

and 2, respectively.

Y1 = (id id 2 · p1 id p1)

Y2 = (id id 2 · p1 id p2)

Y3 = (id id p1 + p2 id p1)

Y4 = (id id p1 + p2 id p2)

108

Y5 = (id id 2 · p2 id p1)

Y6 = (id id 2 · p2 id p2)

where pj represents a projection function projj. Clearly, we can see that |Yi| = X. Finally,

by evaluating Yi ∗ A =0 for each Yi, we confirm that Y3 and Y4 are the P-invariants of

N (S).

109

Appendix B

Service Specifications

We present service specifications prepared for the experiment in Chapter 6, which are

expressed in the SVAL language.

B.1 Plain Ordinary Telephone Service (POTS)

Specification POTS;

User: A, B, C;

Var: x, y;

Predicate: idle(x), dialtone(x), calling(x,y), path(x,y), busytone(x);

Event: onhook(x), offhook(x), dial(x,y);

Init: idle(A), idle(B), idle(C);

Rule:

pots1: idle(x) [offhook(x)] dialtone(x).

pots2: dialtone(x) [onhook(x)] idle(x).

pots3: dialtone(x) & idle(y) [dial(x,y)] calling(x,y).

pots4: dialtone(x) & ~idle(y) [dial(x,y)] busytone(x).

pots5: calling(x,y) [onhook(x)] idle(x) & idle(y).

110

pots6: calling(x,y) [offhook(y)] path(x,y) & path(y,x).

pots7: path(x,y) & path(y,x) [onhook(x)] idle(x) & busytone(y).

pots8: busytone(x) [onhook(x)] idle(x).

pots9: dialtone(x) [dial(x,x)] busytone(x).

B.2 Call Waiting (CW)

Specification CW;

User: A, B, C;

Var: x, y, z;

Predicate: idle(x),dialtone(x),calling(x,y),busytone(x),path(x,y),

m-cw(x),cw-calling(x,y), path-passive(x,y), cw-regconfirm(x),

RS-cw(x),passive-state(x), CW(x), cw-mode(x);

Event: offhook(x), onhook(x), dial(x,y), flash(x), reg-cw(x), wdraw-cw(x) ;

Init: idle(A), idle(B), idle(C), RS-cw(A), RS-cw(B), RS-cw(C);

Rule:

pots1: idle(x) [offhook(x)] dialtone(x).

pots2: dialtone(x) [onhook(x)] idle(x).

pots3: dialtone(x) & idle(y) [dial(x,y)] calling(x,y).

pots4: dialtone(x) & ~idle(y) & ~CW(y) [dial(x,y)] busytone(x).

pots5: calling(x,y) [onhook(x)] idle(x) & idle(y).

pots6: calling(x,y) [offhook(y)] path(x,y) & path(y,x).

pots7: path(x,y) & path(y,x) & ~cw-mode(x) & ~cw-mode(y)

[onhook(x)] idle(x) & busytone(y).

pots8: busytone(x) [onhook(x)] idle(x)

pots9: dialtone(x) [dial(x,x)] busytone(x).

cw1: CW(x) & path(x,y)& dialtone(z) & m-cw(x) & ~cw-mode(x) & ~cw-mode(y)

111

[dial(z,x)] CW(x) & cw-calling(z,x) & path(x,y) & cw-mode(x).

cw2: CW(x) & cw-calling(z,x)& path(x,y)& path(y,x) & cw-mode(x)

[onhook(x)] CW(x) & calling(z,x)& busytone(y) & m-cw(x).

cw3: CW(x) & cw-calling(z,x)& path(x,y)& path(y,x) & cw-mode(x)

[onhook(y)] CW(x) & calling(z,x) & idle(y) & m-cw(x).

cw4: CW(x) & cw-calling(z,x) & cw-mode(x)

[onhook(z)] CW(x) & idle(z) & m-cw(x).

cw5: CW(x) & cw-calling(z,x) & path(x,y) & path(y,x)

[flash(x)] CW(x) & path(x,z) & path(z,x) & path-passive(x,y).

cw6: CW(x) & path(x,z) & path(z,x) & path-passive(x,y)

[flash(x)] CW(x) & path(x,y) & path(y,x) & path-passive(x,z).

cw7: CW(x) & path-passive(x,y) & passive-state(x) & cw-mode(x)

[flash(x)] CW(x) & path(x,y) & path(y,x) & m-cw(x).

cw8: CW(x) & path(x,z) & path-passive(x,y) & cw-mode(x)

[onhook(y)] CW(x) & path(x,z) & idle(y)& m-cw(x).

cw9: CW(x) & path(x,z) & path(z,x) & path-passive(x,y) & cw-mode(x)

[onhook(x)] CW(x) & calling(y,x) & busytone(z) & m-cw(x).

cw10: CW(x) & path(z,x) & path(x,z) & path-passive(x,y) & cw-mode(x)

[onhook(z)] CW(x) & passive-state(x) & idle(z)

& path-passive(x,y) & cw-mode(x).

cw11: CW(x) & path-passive(x,y) & passive-state(x) & cw-mode(x)

[onhook(x)] CW(x) & calling(y,x) & m-cw(x).

cw12: dialtone(x) & RS-cw(x)

[reg-cw(x)] cw-regconfirm(x) & m-cw(x) & CW(x).

cw13: dialtone(x) & m-cw(x) & CW(x)

[wdraw-cw(x)] cw-regconfirm(x) & RS-cw(x).

112

cw14: cw-regconfirm(x) [offhook(x)] idle(x).

B.3 Call Forwarding (CF)

Specification CFV;

User: A, B, C;

Var: x, y, z;

Predicate: idle(x), dialtone(x), calling(x,y), busytone(x), path(x,y),

m-cfv(x), confirmation(x),

pingring(y,x), cfv-regconfirm(x), m-regcfv(x,y),

RS-cfv(x), CFV(x);

Event: dial(x,y), offhook(x), onhook(x), ccfv-code(x),

cfv-code(x), reg-cfv(x), wdraw-cfv(x),

timeover_m-Rcfv(x,y), timeover_pingring(x,y),

timeover_m-Rcfv2(x,y);

Init: idle(A), idle(B), idle(C),

RS-cfv(A), RS-cfv(B), RS-cfv(C);

Rule:

pots1: idle(x) [offhook(x)] dialtone(x).

pots2: dialtone(x) & ~CFV(x) [onhook(x)] idle(x).

pots3: dialtone(x) & idle(y) & ~CFV(x) & ~CFV(y) [dial(x,y)] calling(x,y).

pots4: dialtone(x) & ~idle(y) & ~CFV(x) & ~CFV(y) [dial(x,y)] busytone(x).

pots5: calling(x,y) [onhook(x)] idle(x) & idle(y).

pots6: calling(x,y) & ~CFV(x) [offhook(y)] path(x,y) & path(y,x).

pots7: path(x,y) & path(y,x) [onhook(x)] idle(x) & busytone(y).

pots8: busytone(x) [onhook(x)] idle(x).

pots9: dialtone(x) [dial(x,x)] busytone(x).

113

cfv1: CFV(x) & dialtone(x) & idle(y) & m-cfv(x) & ~m-regcfv(y,*)

[dial(x,y)] CFV(x) & calling(x,y) & m-cfv(x).

cfv2: CFV(x) & calling(x,y)& m-cfv(x)

[offhook(y)] CFV(x) & path(x,y) & path(y,x) & m-regcfv(x,y).

cfv3: CFV(x) & dialtone(x) & m-cfv(x) & m-regcfv(y,z)

[dial(x,y)] CFV(x) & busytone(x) & m-cfv(x) & m-regcfv(y,z).

cfv4: CFV(x) & dialtone(x) & m-cfv(x) & ~idle(y) & ~m-regcfv(y,*)

[dial(x,y)] CFV(x) & busytone(x) & m-cfv(x).

cfv5: CFV(x) & dialtone(x) & m-regcfv(x,y)

[ccfv-code(x)] CFV(x) & confirmation(x) & m-cfv(x).

cfv6: CFV(x) & confirmation(x) [onhook(x)] CFV(x) & idle(x).

cfv7: CFV(y) & dialtone(x) & idle(y) & idle(z) & m-regcfv(y,z) & ~m-cfv(x)

[dial(x,y)] CFV(y) & calling(x,z) & pingring(y,x) & m-regcfv(y,z).

cfv8: CFV(y) & dialtone(x) & ~idle(y) & idle(z) & m-regcfv(y,z)& ~m-cfv(x)

[dial(x,y)] CFV(y) & calling(x,z) & m-regcfv(y,z).

cfv9: CFV(x) & pingring(x,y) [timeover_pingring(x,y)] CFV(x) & idle(x).

cfv10: CFV(y) & dialtone(x) & m-regcfv(y,z) & ~idle(z) & ~m-cfv(x)

[dial(x,y)] CFV(y) & busytone(x) & m-regcfv(y,z).

cfv11: dialtone(x) & RS-cfv(x)

[reg-cfv(x)] CFV(x) & m-cfv(x) & cfv-regconfirm(x).

cfv12: CFV(x) & dialtone(x) & m-cfv(x)

[wdraw-cfv(x)] cfv-regconfirm(x) & RS-cfv(x).

cfv13: cfv-regconfirm(x) [onhook(x)] idle(x).

B.4 Originating Call Screening (OCS)

Specification OCS;

114

User: A, B, C;

Var: x, y;

Predicate: idle(x), dialtone(x), calling(x,y), path(x,y),

busytone(x), OCS(x,y), RS-OCS(x);

Event: onhook(x), offhook(x), dial(x,y), reg-ocs(x,y), wdraw-ocs(x);

Init: idle(A), idle(B), idle(C),

RS-OCS(A), RS-OCS(B), RS-OCS(C);

Rule:

pots1: idle(x) [offhook(x)] dialtone(x).

pots2: dialtone(x) [onhook(x)] idle(x).

pots3: dialtone(x) & idle(y) & ~OCS(x,y) [dial(x,y)] calling(x,y).

pots4: dialtone(x) & ~idle(y) & ~OCS(x,y) [dial(x,y)] busytone(x).

pots5: calling(x,y) [onhook(x)] idle(x) & idle(y).

pots6: calling(x,y) [offhook(y)] path(x,y) & path(y,x).

pots7: path(x,y) & path(y,x) [onhook(x)] idle(x) & busytone(y).

pots8: busytone(x) [onhook(x)] idle(x).

pots9: dialtone(x) [dial(x,x)] busytone(x).

ocs1: idle(x) & RS-OCS(x) [reg-ocs(x,y)] idle(x) & OCS(x,y).

ocs2: idle(x) & OCS(x,y) [wdraw-ocs(x)] idle(x) & RS-OCS(x).

ocs3: dialtone(x) & OCS(x,y) [dial(x,y)] busytone(x) & OCS(x,y).

B.5 Terminating Call Screening (TCS)

Specification TCS;

User: A, B, C;

Var: x, y;

Predicate: idle(x), dialtone(x), calling(x,y), path(x,y),

115

busytone(x), TCS(x,y), RS-TCS(x);

Event: onhook(x), offhook(x), dial(x,y), regist-tcs(x,y), wdraw-tcs(x);

Init: idle(A), idle(B), idle(C),

RS-TCS(A), RS-TCS(B), RS-TCS(C);

Rule:

pots1: idle(x) [offhook(x)] dialtone(x).

pots2: dialtone(x) [onhook(x)] idle(x).

pots3: dialtone(x) & idle(y) & ~TCS(y,x) [dial(x,y)] calling(x,y).

pots4: dialtone(x) & ~idle(y) & ~TCS(y,x) [dial(x,y)] busytone(x).

pots5: calling(x,y) [onhook(x)] idle(x) & idle(y).

pots6: calling(x,y) [offhook(y)] path(x,y) & path(y,x).

pots7: path(x,y) & path(y,x) [onhook(x)] idle(x) & busytone(y).

pots8: busytone(x) [onhook(x)] idle(x).

pots9: dialtone(x) [dial(x,x)] busytone(x).

tcs1: idle(x) & RS-TCS(x) [reg-tcs(x,y)] idle(x) & TCS(x,y).

tcs2: idle(x) & TCS(x,y) [wdraw-tcs(x)] idle(x) & RS-TCS(x).

tcs3: dialtone(y) & TCS(x,y) [dial(y,x)] busytone(y) & TCS(x,y).

B.6 Denied Orgination (DO)

Specification DO;

User: A, B, C;

Var: x, y;

Predicate: idle(x), dialtone(x), calling(x,y), path(x,y),

busytone(x), DO(x), RS-do(x);

Event: onhook(x), offhook(x), dial(x,y), reg-do(x), wdraw-do(x);

Init: idle(A), idle(B), idle(C),

116

RS-do(A), RS-do(B), RS-do(C);

Rule:

pots1: idle(x) & ~DO(x) [offhook(x)] dialtone(x).

pots2: dialtone(x) [onhook(x)] idle(x).

pots3: dialtone(x) & idle(y) [dial(x,y)] calling(x,y).

pots4: dialtone(x) & ~idle(y) [dial(x,y)] busytone(x).

pots5: calling(x,y) [onhook(x)] idle(x) & idle(y).

pots6: calling(x,y) [offhook(y)] path(x,y) & path(y,x).

pots7: path(x,y) & path(y,x) [onhook(x)] idle(x) & busytone(y).

pots8: busytone(x) [onhook(x)] idle(x).

pots9: dialtone(x) [dial(x,x)] busytone(x).

do1: idle(x) & RS-do(x) [reg-do(x)] idle(x) & DO(x).

do2: idle(x) & DO(x) [wdraw-do(x)] idle(x) & RS-do(x).

do3: idle(x) & DO(x) [offhook(x)] busytone(x) & DO(x).

B.7 Denied Termination (DT)

Specification DT;

User: A, B, C;

Var: x, y;

Predicate: idle(x), dialtone(x), calling(x,y), path(x,y),

busytone(x), DT(x), RS-dt(x);

Event: onhook(x), offhook(x), dial(x,y), reg-dt(x), wdraw-dt(x);

Init: idle(A), idle(B), idle(C),

RS-dt(A), RS-dt(B), RS-dt(C);

Rule:

117

pots1: idle(x) [offhook(x)] dialtone(x).

pots2: dialtone(x) [onhook(x)] idle(x).

pots3: dialtone(x) & idle(y) & ~DT(y) [dial(x,y)] calling(x,y).

pots4: dialtone(x) & ~idle(y) & ~DT(y) [dial(x,y)] busytone(x).

pots5: calling(x,y) [onhook(x)] idle(x) & idle(y).

pots6: calling(x,y) & ~CFV(x) [offhook(y)] path(x,y) & path(y,x).

pots7: path(x,y) & path(y,x) [onhook(x)] idle(x) & busytone(y).

pots8: busytone(x) [onhook(x)] idle(x).

pots9: dialtone(x) [dial(x,x)] busytone(x).

dt1: idle(x) & RS-dt(x) [reg-dt(x)] idle(x) & DT(x).

dt2: idle(x) & DT(x) [wdraw-dt(x)] idle(x) & RS-dt(x).

dt3: dialtone(x) & DT(y) [dial(x,y)] busytone(x) & DT(y).

B.8 Direct Connect (DC)

Specification DC;

User: A, B, C;

Var: x, y, z;

Predicate: idle(x), dialtone(x), calling(x,y), path(x,y),

busytone(x), DC(x,y), RS-DC(x);

Event: onhook(x), offhook(x), dial(x,y), reg-dc(x,y), wdraw-dc(x);

Init: idle(A), idle(B), idle(C),

RS-DC(A), RS-DC(B), RS-DC(C);

Rule:

pots1: idle(x) & ~DC(x,*) [offhook(x)] dialtone(x).

pots2: dialtone(x) [onhook(x)] idle(x).

pots3: dialtone(x) & idle(y) [dial(x,y)] calling(x,y).

118

pots4: dialtone(x) & ~idle(y) [dial(x,y)] busytone(x).

pots5: calling(x,y) [onhook(x)] idle(x) & idle(y).

pots6: calling(x,y) [offhook(y)] path(x,y) & path(y,x).

pots7: path(x,y) & path(y,x) [onhook(x)] idle(x) & busytone(y).

pots8: busytone(x) [onhook(x)] idle(x).

pots9: dialtone(x) [dial(x,x)] busytone(x).

dc1: idle(x) & idle(y) & RS-DC(x) [reg-dc(x,y)] idle(x) & idle(y) & DC(x,y).

dc2: idle(x) & idle(y) & DC(x,y) [wdraw-dc(x)] idle(x) & idle(y) & RS-DC(x).

dc3: idle(x) & idle(y) & DC(x,y) [offhook(x)] calling(x,y) & DC(x,y).

dc4: idle(x) & ~idle(y) & DC(x,y) [offhook(x)] busytone(x) & DC(x,y).

B.9 Emergency Call (EMG)

Specification DT;

User: A, B, C;

Var: x, y;

Predicate: idle(x), dialtone(x), calling(x,y), path(x,y),

busytone(x), EMG(x), RS-emg(x), emg-hold(x,y);

Event: onhook(x), offhook(x), dial(x,y), reg-emg(x), wdraw-emg(x);

Init: idle(A), idle(B), idle(C),

RS-emg(A), RS-emg(B), RS-emg(C);

Rule:

pots1: idle(x) [offhook(x)] dialtone(x).

pots2: dialtone(x) [onhook(x)] idle(x).

pots3: dialtone(x) & idle(y) [dial(x,y)] calling(x,y).

pots4: dialtone(x) & ~idle(y) [dial(x,y)] busytone(x).

pots5: calling(x,y) [onhook(x)] idle(x) & idle(y).

119

pots6: calling(x,y) [offhook(y)] path(x,y) & path(y,x).

pots7: ~EMG(y) & path(x,y) & path(y,x) [onhook(x)] idle(x) & busytone(y).

pots8: busytone(x) [onhook(x)] idle(x).

pots9: dialtone(x) [dial(x,x)] busytone(x).

emg1: idle(x) & RS-emg(x) [reg-emg(x)] idle(x) & EMG(x).

emg2: idle(x) & EMG(x) [wdraw-emg(x)] idle(x) & RS-emg(x).

emg3: path(x,y) & EMG(x) [onhook(y)] emg-hold(x,y) & EMG(x).

emg4: emg-hold(x,y) & EMG(x) [offhook(y)] path(x,y) & EMG(x).

120

