|

) <

The University of Osaka
Institutional Knowledge Archive

Title STUDIES ON MACHINE SCHEDULING PROBLEMS

Author(s) |ZH, HBi#

Citation |KFRKZ, 1986, EHIHwX

Version Type|VoR

URL https://hdl.handle.net/11094/1714

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



STUDIES
ON
MACHINE SCHEDULING PROBLEMS

(R AT o2 L) SR o)

TERUO MASUDA



CONTENTS

CHAPTER 1 INTRODUCTION
1.1 Machine Scheduling Problems
1.2 Classification of Machine Scheduling Problems
1.2.1 Jobs
1.2.2 Machines
1.2.3 Optimality Criteria
1.2.4 Representation of Models
1.3 Computational Complexity
1.4 Coping with NP-complete Problems
1.5 Outline of the Thesis
CHAPTER 2 SCHEDULING PROBLEMS ON SHOP TYPE MACHINES
2.1 Introduction
2.2 Solvable Case and Some Bound on Approximation
Algorithm for nIZIFILmax Nonpreemptive
Scheduling Problem
2.2.1 Solvable Case for n‘leleax Nonpreemptive
Scheduling Problem
2.2.2 Bound on Approximation Algorithm for
n|2|F|Lmax Nonpreemptive Scheduling Problem
2.3 A Solvable Case for n|3|O|Cmax Nonpreemptive
Scheduling Problem
2.3.1 Construction of Optimal Schedule
2.3.2 Proof of Validity
2.4 The Mixed Shop Scheduling Problem
2.4,1 Preliminaries
2.4.2 Optimal Algorithms

(1)

O WU &~ P e

10
13
16
17
19
19

21

22

26

30
32
39
46
47
50



CHAPTER 3 SCHEDULING PROBLEMS ON PARALLEL TYPE MACHINES
3.1 Introduction
3.2 Approximation Algorithms for nImII!LmaX
Nonpreemptive Scheduling Problem and Their
Worst Case Bounds
3.2.1 Approximation Algorithm EDD and Its Worst
Case Bound
3.2.2 Approximation Algorithm LPT and Its Worst
Case Bound ‘
3.3 'n|2|Ileax Preemptiﬁe'Scheduling Problem with
" Generalized Due Dates
3.3.1 Construction of Associated Network Flow
Problem
3.3.2 Algorithm for a Feasible Schedule
3.3.3 Minimizing Maximum Lateness
3.4 n‘mIQIlCmax Scheduling Problem
3.4.1 Nonpreemptive Unit Processing Time Schedule
3.4.2 Preemptive General Processing Time Schedule
CHAPTER 4 SCHEDULING PROBLEMS WITH CHANGEABLE MACHINE
SPEED
4.1 Introduction
4.2 A Generalized Uniform Machine System
4.2.1 The Deadline Problem
4.2.2 General Solution Method for the n|m|GU|fmax
Preemptive Scheduling Problem
4.2.3 A Special Class of Cost Functions
4.2.4 Including Setup Costs

4.2.5 NP-hardness

(i1)

67
67

69

70

77

80

81
82
88
90
91
95

101
101
103
106

112
115
120
121



4.3 . Generalized Mixed Shop Scheduling

REFERENCES

4.3.1
4.3.2
4.3.3
4.3.4

4.3.5

Formulation of the Problem

Solution Procedure for
Solution Procedure for
Solution Procedure for

Solution Procedure for

(iii)

Subproblem P
Bt
i

Subproblem P
the Main Problem P



CHAPTER 1

INTRODUCTION

1.1 Machine Scheduling Problems

Machine scheduling problems originally arise from industrial
production systems. In the system, we must perform a number of
jobs by using a number of machines. Each of the jobs consists of
many operations. To perform a job, we must process each of its
operations. The processing of an operation requires the use of a
particular machine during a particular duration, the processing
time of operation. In these situations, a possible solution cor-
responds to a processing order of jobs on each machine. The
goodness of obtained solution is measured by total time or total
cost function reflecting actual purposes. The object of this
thesis is to develop efficient algorithms giving the most prefer-
able solutions in such actual problems.

The scheduling problems also occur under many other circum-
stances. In these circumstances, however, above terminologies
are given more flexible interpretations: jobs and machines

can stand for patients and hospital equipments, classes and
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teachers, ships and dockyards, programs and computers or cities
and travelling salesmen. Each of these situations fits into the
frémework sketched above and thus falls within the scope of ma-
chine scheduling theory. Moreover, in most situations suggested
above, if we choose poor sequencing decisions, we are sure to
incur intolerably long times or large costs. Therefore we need
to develop an efficient method (algorithm) for finding an optimal
or at least sufficiently near optimal schedules of the jobs with
respect to the given cost function (objectivé function).

Usually, the schedules are represented visually. The most
popular visual representation is Gantt chart or timing diagram
illustrated in Fig.l.l. 1In the figure, it is obvious that one
of horizontal lines except for the.topmost line corresponds to
a machine and the topmost line represents time axis. The hatched
areas.in the figure represent idle periods on the machines. In
this way, the Gantt chart is convenient to give an informal but
intuitive notion of a schedule. More formally speaking, a
schedule is defined as a suitable mapping that assigns a sequence
of one or more disjoint execution intervals on each machine to

each job without breaking the foliowing restrictions.

7

Fig.l:1l. Example of Gantt chart.
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(1)

(2)

(3)

(4)

(5)

Each machine can process at most one job at the same
time.

Each job can be processed on at most ome machine at the
same time.

The total length of the intervals assigned to the job
is precisely its processing time.

At least one machine is busy so long as there remains
at least one uncompleted job.

The jobs can be processed independently, that is, there
exists no precedence constraint such that some job must

be completed before other job can begin.

The above restrictions (1)-(5) are assumed throughout this

thesis without being specially mentioned.



1.2 Classification of Machine Scheduling Problems

In the last section, we presented a general model of the
machine scheduling problems. Thus, in a general setting of the
machine scheduling probiems= a set of jobs Ji{Jl,°°',Jn} has to
be processed on a set of machines M={Ml,"',Mm}. Besides the gen-
eral setting, the actual machine scheduling problems occurring
under various circumstances have various characteristics. And,
each problem'can be specified principally by the characteristics
of jobs, machines, and optimality criteria. Thus, we can classi-
fy the machine scheduling problems according to the above charac-

teristics in the subsequent subsectioms.

1.2.1 Jobs
One of the most important characteristics of jobs is the

number n of jobs to be processed. In this thesis, n is aiways
assumed to be an arbitrary positive integer. Further, for éach.Ji,
we should assign the following values.

(1) The number of operations. Each job Ji'consists of
m, operations, each of which has to be processed on the machines
with a particular function for the operatibn.

(i) Processing times. To complete the processing of S
we must process each operation of Ji on a particular machine Mj
depending on each operation during pij time in total. In par-
ticular, if pij does not depend on j, we denote it by ;- Usual-
ly, the processing times are arbitrary positive constants. But
sometimes we deal with the case that the processing times are all

equal to the unit time, i.e., Py or pij=1.
(iti) Due dates. The processing of each job should ideally

be completed by the due dates. These due dates are denoted by
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d, or aij' But, we do not always impose the due dates for the
jobs, depending on the objective.

1.2.2 Machines

One of the dimportant characteristics of machines is the
number ﬁ of available machines. Here, m is an arbitrary positive
integer. Especiaily, the important special cases are the cases
of two and three machines. Thus, given an m machine scheduling

problem, we must develop a solution procedure that works effec-

tively for any m.
Further, we have to classify the scheduling problems by the

types of machines according to the difference in functional ca-
pability and speeds of machines. First, we classify the types
of machines into shop type and parallel type. Moreover, we dif-
ferentiate each of shop and parallel type machines into the par-
ticular types analyzed in the subsequent chapters.

(1) Shop Type Machines

In this type, each job Ji consists of m operations Oii*‘."
-O.m. Each operation 0ij can be processed only on Mj and can not
i
be processed on.any other machines. The processing time of Oij is

pij, Thus, each machine has the distinct functional capability.
For example, in a computer system, an input device and an output
device have clearly the different functional capability. The
shop type machine is classified further into the following types
by the order of processing of operations.

(i) Flow Shop Type Machines (F)

Each operation 0ij of Ji must complete processing on Mj

before starting to process the next operation 0ij+1 on Mj+1 for

j=1,2,++*,m-1. Thus, all jobs must pass through the machines in
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the same order, M1+M2+"'+Mm. (See Fig. 1.2(a).)

(ii) Open Shop Type Machines (0)

Each operation of Ji can pass through the machines in an
arbitrary order, but more than one operations of Ji can not be

rocessed at the same time. (See Fig. 1.2.(b).)
P .

The above characteristics of machines are also the charac-

teristics of jobs. Therefore we may call the jobs to be processed

on the open and flow shop type machines the open shop type jobs
and the flow shop type jobs, respectively. '

The difference of the schedules on the above two shop type
machines is illustrated in Fig. 1.2, where on both types proc—

essing times are taken as pll?l, p12=1, p21=2, p22=1, p3l=3 and

Ml/Jl J /J3 //////// .
AR R/

(a) A schedule on flow shop type machines.

P3g

N

N

0 ‘ 5

/

T

(b) A schedule on open shop type machines.

Fig.1.2. The difference of the schedules on flow and

open shop type machines.
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In the above two shop types, we assume that the machines
(jobs) have only the characteristic of either the flow shop type
machines (jobs) or the open shop type machines (jobs). However,-
it is possible that the machines have the characteristics of both
types simultaneously.

(iii) Mixed Shop Type Machines (MX) .

The machines‘may have the characteristics of both the flow

shop type machines and the open shop type machines simultaneously.
In other words, in a set of jobs the flow.shop type jobs and the
open shop type jobs is mixed.

In the above three shop types, we assumed that the machines
have same speeds. But in some cases, the speed of each machine
can be changeable. Thus, the speed of each machine must be de-

termined together with the schedule.
(iv) Generalized Mixed Shop Type Machines (GMX)
The jobs are the mixed shop type jobs. And, each speed of

the machines is:not a constant but a variable to be determined
together with the schedule in the final solution. The actual
processing time of operation 0ij of job Ji on machine Mj is pij=
pij/sj, where s is a'variable.speed of Mj‘gnd piins an amount
of processing requirement of Ji.‘

Next, we consider the parallel typé machines.

(I1) Parallel Type Machines

Each job consists of only one operation. By the speed of

each machine, we differentiate the parallel type machines as the

following. Here, each machine has the same function and each job

can be processed on any machines.
(v) Identical Parallel Type Machines (I)

Each machine has the same functional capability and same
The

speed, and each job can be processed on any machines.
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processing time Pij of job Ji on machine Mj is equal to Py for j=
1,2, °**,m.

(vi) Uniform Parallel Type Machines (U)

Each job can be processed on any machines. Each machine
has the same functional capability, but its speed is different
and fixed. Thus, the processing time pij of each job Ji on ma-
chine M, is p..=p./q., where q, is the predetermined speed of M,

5 p13 Py qu qJ P P i

and Py the processing requirement of Ji.

The former is identical in both functional capability and
speed. Thus, we may regard the machines as the m identical ma-
chines. On the other hand, the latter is identical in functional
capability, but each machine has a different constant speed.
Thus, some machine can procesé the jobs faster(or slower) than
other machines.

In the following, we extend the case of constant speeds to
the variable speeds. 1In this case, similar to the generalized
open shop case, each speed is to be determined together with the
schedule.

(viil) Generalized Uniform Parallel Type Machines (GU)

In this type, the speed of each machine is not constant but
variable. Therefore we must determine the speed of each machine
together with the schedule. The processing time pij of job Ji on
machine M, is p,.=p./s., where s, is the changeable speed of M,

J. i "1 ] J J
and Py is a processing requirement. The other characteristics

are same to those of the uniform parallel type.

In the above three parallel types, we assume that each ma-
chine can be processed on any machine., In the following type,
we remove that assumption. Thus, job Ji can not be always pro-

cessed on any machine but can be processed only on a predetermined
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subset Qi of M.
(viii) Quasi-Identical Parallel Type Machines (QI)

Each job Ji can be processed only on a predetermined subset
Qi of machine set M. For example, let M={Ml, M2, M3} and Ql={Ml,

MB}' Then, job J and M,, and can not be

1 3
Therefore the processing times of job Ji on ma-

1 can be processed on M

processed on Mz.
chine Mj are Pij=pi if MjeQi and pij=°° if Mj&Qi. The other charac-

teristics are the same as those of the identical parallel type.
1.2,3 Optimality criteria

In the above subsections, we pointed out the characteristics
of jobs and machines to classify the scheduling problems. The
remaining factor is the optimality criterion. In this subsection,
we define the optimality criteria to be chosen. First, we define
the following quantities for each.job Ji.

(a) Completion time; the time Ci at which the processings

of all the operations of job Ji complete, namely Ci= max (C.(i)),
1<j<m

where Cj(i) is the completion time of the processing of operation

o...
1]
(b) Lateness; the difference Li between the completion time

and the due dates of job J.,, namely L.= max (L..), where L,.,=C_~
. i i . ij "i
1<im

d.. is the lateness of job J, on M,.
ij 1 J

Using the above quantities, we define the optimality crite-

ria.

(1) Minimizing Maximum Completion Time (Cmax)

The optimality criterion is to minimize the maximum comple-
tion time Cm = max C.. In other words, we want to complete all

1<i<n

the jobs as soon as possible.



(ii) Minimizing Maximum Lateness (Lmax)‘

The objective is to minimize maximum lateness L __= max L,.
1<i<n

Here, we want to complete each job before the due dates as soon

as possible.

(iii) Minimizing General Cost Function (fmax)

The optimality criterion is to minimize the sum of the cost

concerning the maximum completicn time and the cost incurred by

changing the machine speeds.

1.2.4 Representation of models

To represent symbolically each scheduling problem, we intro-
duce 4-tuple notation aIBIYIG_. The first letter o shows the
number n of jobs to be processed, where n is an arbitrary posi-
tive integer.

The second letter 8 is the number m of machines, where m is
an arbitrary positive integer.

The third letter Y specifies the machine types. We use the

notations as the following table.

Y machine types

F - flow shop
open shop

MX mixed shop

GHMX generalized mixed shop

I identical parallel

U uniform parallel

GU generalized uniform parallel

QI quasi-identical parallel

Table 1.1. The notations specifying

the machine types.
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The last letter § is the optimality criterion, as follows.

S objective
C maximum completion time
max
L maximum lateness
max
£ general cost function
max

Table 1.2. Optimality criteria.

Example 1.1. n|2|Fleag: minimize maximum lateness of n
jobs on two flow shop type machines.

nIZIMXlCmaX: minimize maximum completion time of n jobs
on two mixed shop type machines.

n]mlI]Cmax: minimize maximum completion time of n jobs on
m identical parallel type machines.

Besides this notation, we may use the terminology, 'preemp-
tive" or "nonmpreemptive" scheduling. In a preemptive schedule,
the processing of any operation may be interrupted and resumed
later again. The difference between the preemptive and nonpre-
emptive scheduling of five jobs on three identical machines is

illustrated in Fig. 1.3, where pl=7, p2=5, p3=5, p4=3, and psél.
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(b)  Nonpreemptive schedule

Fig.l.3. Examples for preemptive and

nonpreemptive schedules.
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1.3 Computational Complexity

" In this section, we sball review briefly the theory of com—
putational complexity, especially the NP-completeness theory,
because most of the machine scheduling problems fall into the
-class of NP-complete problems.

Historically, the theory of computability initiated by A.
Turing [26] played an important role to stimulate attention to the
existence of problems in which no algorithm can solve. The fol-

lowing problem is one of the most well-known such undecidable

problems.

Halting Problem of Programs: Given an arbitrary computer

program and an arbitrary input to that program, can we decide
whether or not the program will eventually halt when applied to

that input?

A variety of other problems are now known to be undecidable,
including Hilbert's tenth problem [22] and several problems of
tiling the plane [2].

Note here that an algorithm is said to solve a problem if
it gives a solution within finite steps for any instance of the

probiem.

The complexity of Algorithm: In general, any mathematical

problem can be described in terms of some parameters and free

variables. An instance of the:problem is obtained by given par-
ticular values for problem parameters. For the purpose of com-
puterizafion, the discrete free variables as well as the param-
eters are assumed to be binary encoded in a string which becomes
an input of the computer. The length of the string is called

the input length (or the size of the instance). The complexity

-~13-



of an algorithm is called 0(g(n)), if its running time is always
bounded by a certain function c.g(n), where c is a constant, for
all the values of the input length n. An O(g(n)) time algorithm
is called polynomial fiMe algorithm, if g(n) is a polynomial of n.
The fundamental naturé of the distinction between polynomial
time algorithms and non-polynomial time algorithms has been dis-
cussed by J. Edmonds [3] and others [1], [4]. The polynomial
time algorithms are known to be efficient algorithms by a rule
of thumb. Therefore a problem with a polynomial time algorithm
is called tractable, while a problem with no polynomial time al-
gorithm is called intractable. The theory of NP~completeness
provides a way to determine whether or not a given problem is

intractable .

Nondeterministic Computation: We assume an ordinary sequen-

tial computer appended with the following fictitious instruction,
CHOICE(LL,LZ,"‘,Lk).

When the computer reads this instruction, it jumps to k instruc-
tions with labels Ll,'-',Lk and executes them simultaneously.
This may be considered as a model of parallel computations. How-
ever, in ordinary parallel computation models the number of in-
structions to be executed in parallel is fixed beforehand, while
in the above computation model, each time a CHOICE imstruction

is encoutered, the computation path branches unlimitedly. Such

computation is called nondeterministic computation.

Polynomial Reductbility: 1If the input data of problem A

can be transformed into the input data of another problem B in
polynomial time with respect to the input length of A, and if
the solvability of A is equivalent to that of B, then A is said
to be polynomially reducible to B.

-14-



NP-Completeness: Let class NP be the class of all the

problems which can be solved within the time bounded by a poly-
nomial function, if the nondeterministic computation is allowed.
Similarly, let class P be the class of all the problems solved
by deterministic polynomial time algorithms. It is clear that
PcNP. The equality P=NP is considered to be highly unlikely
for the following reason. P#NP, however, has not yet proved.

A problem is said to be NP-complete if it is in the class
NP and all the problems in NP is polynomially reducible to it.
See references [1l] and [4]. The NP-complete problems are the
hardest problems in NP in the sense that if any one of them were
to have a polynomial time algorithm, then all the problems in
NP will do so. This shows that P=NP if and only if one of the
NP-complete problems has a polynomial time algorithm. So far,
thousands of problems have been ﬁroved to be NP-complete, and
about 300 among them are listed in [4]. The fact that no poly-
nomial time algorithm has been found for them is a strong cir-

cumstantial evidence that P#NP.

-15-



1.4 Coping with NP-complete Problems

Proving the NP-completeness of a given problem is only the
starting point of the analysis of the problem but never is the
terminal point. It is éasy_to»show that most of the machine
scheduling problems we encounter in the real world are NP-com-
plete. In many situations, however, it may be sufficient to
obtain soﬁe good but not optimal solutions. In this section, we
mention some directions to cope with NP-complete problems. They
are of both practical and theoretical importance, and have been

intensively studied'recently.

Iﬁvesiigéiion'oj”Sbme'SoZvabZe Cases of Problems by Imposing

Restrictions: Even if a given problem is NP-complete, it may

contain some cases of practical importance which can be solved
easily. In Section 2.3, we will introduce such an example for

nISIOICmax nonpreemptive scheduling problem.

Development of Approximation Algorithms and Their Worst

Case Bounds: In many situations, not optimal but good solutiomns
are accepted by practitioners. Thus, it is very important to
develop some approximation algorithms efficiently providing ap—
proximately good solutions. Further, to evaluate the effective-
ness of various approximation algorithms, we have to give their
error bounds for the worst case (worst case bounds). These will

be treated in Sections 2.2 and 3.2.
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1.5 Outline of the Thesis

This theéis consists of four chapters. Chapters 2 and 3 are
devoted to the conventional scheduling problems in which all ma-
chines have the same predetermined machine speeds, while Chapter
4 deals with the scheduling problems‘in which each machine speed
is a variable. 7

Chapter 2 discusses the scheduling problems on shop type
machines. First, we study an nIZIFILmax ﬁonpreemptive scheduling
problem. Since the problem is already known to be NP-complete,
we present a solvable case and propose an approximation algorithm.
Further, the worst case bound is obtained. Second, this chapter
deals with a solvable case for n|3]0lcmax nonpreemptive schedul-
ing problem. Finally, we develop a polynomial time-algorithm -
constructing an optimal schedule of nIZ‘MXlCmaX nonpreemptive
scheduling problem.

Chapter 3 discusses the three scheduling problems on paral-
lel type machines. First, we consider an nlm[I‘Lmax nonpreemp-
tive scheduling problem. This problem is again NP-complete.
Therefore we propose two approximation algorithms, one of which
is based on the earliest due date rule and the other is its re-
finement. And, the worst case bounds for each of them are de-~
orived. Second, we deals with an n‘ZIIleax preemptive scheduling
problem with generalized due dates. For this problem, we develop
a polynomial time algoriﬁhm to minimize maximum lateness. Third,
this chapter deais with n|m‘QI|Cmax nonpreemptive and preemﬁtive
scheduling problems. Since the former is NP-complete, we give a
solvable case in which job Ji has a unit processing time. For

the latter, we develop a polynomial time algorithm constructing
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an optimal schedule.

Chapter 4 is devoted to extending the ordinary scheduling
problems with constant machine speeds to the ones with changeable
machine speeds. First, we discuss an nlmlGUIfmax preemptive
scheduling .problem. This problem is an extension of nlmlUlCmax
preemptive scheduling problem to the case with variable speeds.
Polynomial algorithms are presented to find optimal speed assign-
ments for a variety of cost functions. Further, we show that if
we relax some of assumptions for this problem, the resulting
problems become NP-hard. Second, we deal with an anIGMXIfmax
nonpreemptive scheduling problem, which is an extension of
nIZ!MXIGmaX nonpreemptive scheduling problem to the case with
variable speeds. Fox this problem, similarly, we develop a poly-

nomial algorithm to find an optimal speed assignment.
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CHAPTER 2

SCHEDULING PROBLEMS ON SHOP TYPE MACHINES

2.1 Introduction

In this chapter, we discuss scheduling problems on shop type
machines. When the objective is to minimize the maximum comple-
tion time for two machines in shop, the problems were solved

already as shown below.

Shop m Complexity Reference
flow shop -2 0(nZogn) [15]
open shop 2 0(n) [5]

Johnson's procedure is known as Johnson's rule. Though there'is
no advantage for the preemption in these two machine cases, in
the‘case of more than two machines, the restriction of nonpreemp~
tion makes the problem NP-complete for both shops [9]. On the
other hand, in the preemptive case, Gonzalez and Sahni again de-
veloped optimal algorithms [5]. .

In section 2.2, we consider a nonpreemtive scheduling prob-
lem on the two machine flow shop ﬁhose objective is to minimize

the maximum lateness. (Abbreviated to nIZIFILmax nonpreemptive
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scheduling prohblem according to Section 1.2,) Since this problem
becomes NP-complete, we first present a solvable case where the
relation between due dates and processing times is restricted.
Next, we propose an approximation algorithm based on Johnson's
rule which constructs an optimal schedule for nIZlFICmax sched-'
uling problem, and give its worst case bound.

‘In Section 2.3, we digcuss a nonpreemptive scheduling prob-
lem to minimize the maximum completion time on three machine open
shop, i.e., nIBIOICmax nonpreemptive scheduling problem. This
problem also becomes NP-complete. Therefore we present a solv-
able case which has two kinds of jobs. In this case, each job Ji

has a zero processing time on at least one of M2 and M_, i.e.,

33
p12=0 or p13=0.

In Section 2.4, we deal with a nonpreemptive scheduling prob-
lem minimizing the maximum completion time on two machine mixed
shop, nameiy n|2|MX|Cmax nonpreemptive scheduling problem. For
this problem, we develop a polynomial time algorithm giving an
optimal schedule. ‘ '

For the simplicity of notations, throughout this chapter,
we use a,, bi and ¢, in place of Pi1° Pyo and Ps3s respectively,
11 %2
Further, we assume that machine speeds are the same for all ma-

as processing times of operatioms O and 0i3 of job Ji.

chines.
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2.2 Solvable Case and Some Bound on Approximation Algorithm
for nI2|FILmaX Nonpreemptive Scheduling Problem

The problem dealt with is described as follows; (i) a set of
n jobs Ji{Jl,"',Jn} is to be processed on two machines M1 and M2’
(ii) each job Ji has the two processing times a; and bi corre-
sponding to M1 and M2, (iii) due dates of job Ji are the same for
both machines, i.e., dil=d12=di’ (iv) the processing of Ji must
complete on My before starti?g to process on M,, (v) the objec—
tive is to minimize the maximum lateness.

We assume that dlégzi"'éﬂn.

For the maximum lateness problem on a single machine, Jackson
[13] has obtained an exact algorithm which finds an optimum sched-
ule in a polynomial time of problem size. Furthermore, Lawler [17]
has obtained 0(n?) exact algorithm for the related problem with
arbitrary nondecreasing cost function and-general precedence con-
straints.

With respect to scheduling problems with due dates, however,
very few worst case bounds have been obtained. (See Graham et al.
[9] for details.) Kise et al. have developed effective approxi-
mation algorithms and showed their worst case bounds for the
maximum lateness problem on a single machine. In general, to
evaluate the effectiveness of approximation algorithms, various
measures such as the absolute deviation w-w'(ll) and the relative
deviation (w-w'(1))/w have been customarily used so far, where
w denotes the value for the objective under cosideration for op-
timal schedule and w'(ll) the value for approximate schedule gen-—
erated by the approximation algorithm II. As pointed out by Kise

et al. however, above measures exhibit a shortcoming that they

give different values for two equivalent problems, where equiva-
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lence means that one problem is obtained by applying a simple
transformation to the other, and the optimal and the approximate
schedules are the same in bofh problems. This pathology urges us
to employ the modified relatiﬁe deﬁiation,

w-w' (1)

W ax 0
proposed by Kise et al. as an effectiﬁe measure of approximation
algorithm II, where dmax==max{dili=l,2,---,n}.

In the sequel, we first present a solvable case in the sense
that the optimal schedule can be found easily. Then we propose
an approximation algorithm for general nIZ]FILmaX nonpreemptive
scheduling problem and obtain its modified relative deviation

or its worst case bound.

2.2.1 Solvable case for nI2lFlea
problem

% nonpreemptive scheduling

General n|2|FlLmax nonpreemptive scheduling problem is NP-
complete. Therefore, we first consider a solvable case in the
sense that an optimal schedule can be found easily. We assume

that for 12i,js=n,
< i <mi
(C) di_dj++m1n(ai,bj,)_mln(aj,bi).
EDD rule: EDD rule schedules jobs according to nondecreasing
due dates, i.e., in the order, Jl,J2,°°°,Jn.

Theorem 2.1. 1If the assumption (C) holds, EDD rule comnstructs
an optimal schedule for n|2|F|Lmak nonpreemptive scheduling prob-

lem.

Proof. The completion time C, of job Iy scheduled by EDD

—-22~



fule is given by Johnson's formulation as follows;

u i
C;= max { Y a.+ } b.}
lsusi j=1 J j=y

i
=max{Ci_1, jElaj}+bi.

(See [15].) Then, the lateness Li of job Ji becomes as follows:
L.=C.=~d,
iTiTi

i

= max {Ci—l’ Z

a.tb,~d,.
3 ] i 1

1
Similarly,
Lin1™Ci417 44
i+l
=maX{Ci’ ‘Z aj}+'bi+1_di+1
j=1
i i+l
=max{maX(Ci_l= 'E aj)+bi’ .Z.aj}+b
j=1 J=1
i i+l

+bys .z ayb,, .E a bby~di
j=1 i=1

1417 %41

=max{C,
i-1

Let Li and Li+1 be the latenesses of i-th and (i+l1)-th jobs in
the schedule obtained by interchanging jobs Ji and Ji+1' (In
the resulting schedule, i-th job is Ji+1 and (i+1)-th job is Ji.)
In other words, Li is the lateness of job J;41 In the resulting

schedule and Li+ that of job Ji. Thus we have

1
i-1

t
Li=max{Ci_1, jz

laj+ai+1}+bi+1'di+1’
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' i-1 i+l
| S . . -
Li+1’ max{Ciwl+bi+1, j§1a3+ai+l+bi+l’j§1 aj}+bi di'

First, we show that 7
‘< 4 1
‘ max(Li, Li+l)==max(Li, L! i1l

).
< . .
Since 4, =§ i+1 and mln(a., b. )<m1n(a.+l,

'<
and Li=Li+l Therefore, it is enough to prove L,

Case (i) aiébi+l'

Note that inequalities a,<a,,, and a,<b, also hold in this
i="i+l i="i

\
b.), we have L, <Li+l

+1“‘1+l

case.

Subcase (i-a) Li+l=ci—l+bi+bi+l—di+l'
From d.<d.,,, we have
i=i+1

= < - <L'
Li=Cy 1Py +b1+1 di 1 SCy_y*bytbyg-dy SLi -

(i-b) L, Z ay +b o+, o -d o

i <
Since di=§i+1 and ar=ﬁ1+l’ we prove
)
L,, .=
i+l j=1 j
i-1
<) a,+a, ,+b +b, -d,

=3=l § i+l i Ui+l

& 4
SLie1e

a +bl+bl+l -d, +1

i+l
(i-¢) L., .=
i+l j=1 3j

and a,<b,, we have
i='1i

+by17di1

d.<
By 4:%di41

i+l
1+1 jz 2 +'b1+l

i-1

S 1.1
S 5 Zlaj+ai+l+bi+bi+l di2lin
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Thus if a;<h

Si417

S
.tﬁen.we have Li+lépi+l'

Y anl < ..
Case (ii) b, q<a, ‘
< : . . .
Note that bi+1=Pi+l'and bi+lébi also hold in this case. We

can prove by the similar manner to Case (i). Therefore

!
Liaslin
if mln(ai, bi+l)épln(ai

] L
max(Li, L J.

+1° bi) and d,;<d ., then max(Li, Li+ll;

i+l
Let Cé‘and Li be the completion time and the lateness of job
Jk in the schedule obtained by interchanging jobs Ji and Ji+1'
. . . 1_ 1 + >
For k<i, it is clear that Ck Ck and Lk Lk' . Since Ck_Ck holds
for k>i+l by virtue of Johnson's rule, we have Ling'°

Thus since the relation (€) holds among a3ll jobs and is tran-
sitive, we prove the theorem by repeating the pairwise interchanges

of adjacent jobs. 0

The problem under conaideraéion is NP-complete, so it seems
likely that an efficient algorithm does not exist. Therefore
enumerative methods such as branch-and-bound ones may be the only
available methods for obtaining optimal solution.

One may suspect that we can decrease the number of enumera-
tions by applying Theorem 2.1 to a number of job pairs for some
of which the relation (C) holds. The following example shows

the case that the conjecture fails.

Example 2.1. Let J={J,,J,,3,},
al=2, b1=5, d1=55,
a,=10, b,=1, d,=50,

a3=4, b3=100 and d3=60.

In this example, though min(al, b3)épin(a3, bl) and dl§g3, the
optimal schedule is given in Fig. 2.1. The maximum lateness in

the optimal schedule is L* _ =55,
max
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w W |als Z

Fig. 2.1. An optimal schedule of Example 2.1.

2.2.2 Bound on approximation algorithm for n|2|F|L
' nonpreemptive scheduling problem

In subsection 2.2.1, we showed a solvable case of n|2|F|Lma

max

X
scheduling problem. Unfortunately, general problem is NP-com~

plete. Therefore in this subsection, we give an approximation
algorithm and show how it behaves in the worst case. We call the
algorithm based on EDD rule algorithm FEDD, which assigns the jobs
according to EDD rule for flow shop type machines. We first prove
Lemma 2.1 giving the bound of the maximum completion time when a

set of jobs is scheduled by algorithm FEDD.

Lemma 2.1. Let C' be the maximum completion time of sched-
ule induced by algorithm FEDD and C* that of schedule constructed
by Johnson's rule. {(See [15].) Then we have

Cl
TR <2
Proof. It is clear that
n

‘n
C* > max( Xai, Zbi).
i=1" i=1
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Also it follows that

n - n n .

v H . 4 . . g

cr< J (a;+b;) < 2 .max_(_.Zai, .Zbi);ZC*-
=1 i=1 i=1

Thus we prove

Next, we show that without loss of generality we may assume
that job Jn with a maximum due date determines the maximum late-

ness of algorithm FEDD.

Lemma 2.2. For certain number K, let 3;{31,°'°,3n} be the
minimal job set for which modified relative deviation of FEDD

exceeds K, i.e.,

L(J;FEDD)-L(J;I*)
L(.-f;II*)+dn

>K°

holds. Then, jn determines the maximum lateness of FEDD, L H
FEDD).

Proof. We prove this lemma by contradiction. We assume that
job 31, i<n, determines the maximum lateness of algorithim FEDD.

Let J'={31,32,'°',3n}vbe the subset of J obtained by eliminating

jobs Ji+l’...’Jn from J. Clearly
L(J;FEDD)=L(J";FEDD),
L(J3;3T%) > L(3";T%),

and

d = max d.; max d,=d,
" 1gyen T 1gga

hold. These imply
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L(J;FEDD)-L (J ;II*) < L(J';FEDD)-L(J" ;T%)
L(T;T%)+d_ - L(I"3T*)+d,

K <

Consequently, we have a smaller job set J'. This contradicts the
minimality of job set J. Thus s job jn determines the maximum

lateness of algorithm FEDD. 0
Using these lemmas, we obtain a bound on algorithm FEDD.

Theorem 2.2. Let L'
max

the schedules constructed by applying algorithm FEDD and any op-;

and Lx,ﬁax be the maximum latenesses of

timal algorithm for an nlleleax nonpreemptive scheduling prob-

lem, respectively. Then we have

L' _-L%
max =~ max

L* +d
max n

;1.

Further, this bound is asymptotically the best possible.

Proof. Since the first half of this proof will be proved by
contradiction, it is sufficient to develop a.relationship only
for.the smallest n for which the theorem may be violated. Thus,
we assume that a job set J defines a minimal job set for which
the theorem does not hold.

Now by Lemma 2.2, we may consider only the case L;ax=c'—dn’
where C' is the same as defined in Lemma 2.1. It is clear that

max= n
Thus
1 % 'ed - (Ck-
Lmax I"max <C dn (c dn) _.c 3
L* <4d = C* . C* ¢
max n

Since 2>C'/C* by Lemma 2.1, we prove
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L' -L*
max __ max
L* +d

max n

<1.

The following example shows that this bound is asymptoti-
cally the best possible.
Let al=0, bl

an arbitrary positive constant. For this instance, the approxi-

=K, dl=€(>0), a,=k, b2=€ and d2=0, where K is

mate and the optimal schedules are given in Fig. 2.2(a) and (b),
respectively. Then, we have L' =2K+e-e=2K and L*_ _=K+e-0=K+e€.
max max

Therefore, we prove

L' -L#%

max max _ K-e N .
L* +d T K+2e >1 (e+0).
max =n
This completes the proof of the theorem. i
d2 d1

N/

(a) Approximate schedule.

Y

(b) Optimal schedule

Mz Jl J2

Fig. 2.2. An asymptotically tight example
for Theorem 2.2.
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2.3 A Solvable Case for n|3|0|C Nonpreemptive

Scheduling Problem

max

In this section, we consider a set of jobs J={J1,"°,Jn} to
be processed on three machine open shop. Each job Ji consists
of three operations, which have processing times ai>0, bi;O and
ciZO, respectively. Each job Ji can pass through the machines
Ml’ M2 and M3 in an arbitrary order, but more than one opera-
tions of job Ji can not be processed simultaneously. Further,
each job Ji must be processed nonpreemptively on any machines.
Our objective is to minimize the maximum completion time. In
general, this problem also becomes NP-complete [9]. Therefore
we present a solvable case for n|3|O|Cmax nonpreemptive sched-
uling problem. To give a solvable case, we shall make the fol-

lowing assumptions.
Assumptions

(a) Let
01={J.€O|c.=0},
1 1

02={Ji€0|bi=0, c;#0},

and
0=01U02.
(b) Let Jq and Jr be the jobs such that

b 2 max{a,},
jeO!
and 1
c 2 max {a.},
jeOé
l= . - v oyt
where 0, {Jihollai<bi} and 0, {Jit02|ai<ci}. (Note that

Jq belongs to 0, and Jr to O

1 2')
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If z b.zmax( 2 ai, max (a.+bi)), then we assume

J.€0 J.€0 J.€0
i1 i1 i1
that a +bq§ Y a,. Similarly, if ) c, zmax( ) a;s
c
JiEO1 Ji€O2 Ji\O2
max (a.+c.)), then a_+c_= z a..
7 .€0 i i -
i~ 2 i 2

By the assumption (a), if either Ol or'O2 is empty, this
solvable case reduces to n|2|O|Cmax scheduling problem. For n|2|
OICmax scheduling problem, Gonzalez and Sahni developed an O(n)
time algorithm constructing an optimal schedule. The forms of
optimal schedules generated by Gozalez and Sahni algorithm (G-S
algorithm) are classified into the six types in Fig. 2.2, if we
ignore the processing order on each machine. On the schedules
of types I and I', machine M2 may have an idle period though

there exist uncompleted jobs, but machine M, has no idle period

1
as long as there exist uncompleted jobs. On the other hand, con-

cerning types I, I', II and TI',there exists no idle period on

Ml and M2 except for the first and the last time periods. (Note

1
have an idle period other than the first or the last interval.)

that if we remove the assumption (b), on types I and O'M. may
-In the next subsection, we specify the starting times of °
jobs based on the solution of nIZIOICmax scheduling problem rath-

er than the processing order of jobs on each machine.

2.3.1 Construction of optimal schedule

We present a construction method of optimal schedule under
the assumptions (a) and (b). To determine any schedule, it is
sufficient to specify either the processing order or the starting
times of jobs on each machine. 1In this subsection, we specify
the starting times of jobs on each machine. Now, if either subset

O1 or 02 is empty, the problem reduces to.n|2|0|Cmax scheduling
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fype I

type II

JA T
M, k é M,

- type I
(ak+bk=m?x(ai+bi»

Fig. 2.2. The forms of optimal schedules for n]2|0|Cmé

scheduling problem.
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problem. So let Ff (F;) be a value of optimal schedule con~
structed by applying G-S algorithm for the jobs in 011(02). Fur-
ther, let sj(i) be the starting time of job Iy (€0) on machine Mj

in the schedules constructed by G-S algorithm. By Gonzalez and

Sahni [5], the possible values of Fi and F§ are max (Al, B, ak+bk)
and max(Az, c, ak,+ck,), where Al= Z a;s B= z bi’ ak+bk= max (
J, €0 J.e€0 J.e0
il i1 i1
a.+b.), A,= z a,, C= 2 ¢, and a, ,+c, ,= max (a,+c.). Then,
ii 2 7. €0 i 7. €0 i k' "k J. €0 i i
i "2 i "2 i 2
the combinations of Fi and F§ are only the following nine pairs.
% %
F1 3
1 A,
(2) B A,
(3) ak+bk A2
) Ay c
&) B C
(6) ak+bk C
(7) Al ak,+ck,
(8) B ak.+ck,
9 ak-i--bk ak,+ck,

However, since (4), (7) and (6) are reducible to (2), (3) and (8),
respectively, by the appropriate exchange of notations, e.g., M2

and MB’ we can focus on the following six cases.

* *

Case F1 Fz
Al A2

B v A2

a b, Ay
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Case F* jix

1 2
4 B C
5 B ak,+ck,
6 a_k+bk ak,+ck{

For these six cases, we present the starting time,. sj(i), of

job Ji on machine Mj in our solvable case,

Fo= K=
Case 1. Fl Al and F2 A,

For this case, G-S algorithm generates a schedule of either
type I or I' for both 0, and 0,. The schedule of type (1",
however, can be transformed to type I'(I) by reversing the proc-
essing order of jobs on each machine, since on open shop type
machines any job can pass through machines in an arbitrary order.
Therefore without loss of generality we may assume that the op-
timal schedules for 04 and 0, are the schedules of type I and I',
respectively. Then we present the starting times of job J, on

i

nachines M. M2 and M3 as follows.

1’
]
. sl(i) for Jieo1
sl(l)= '
s1(1)+A1 for JieO2
t fe
. Sz(l) for Jisol
s2(1)=
0 for J,e0
i 2
0 for Jieol

s3(i)= {

In this case, the constructed schedule is the one illustrated in
Fig. 2.3..

t /2
s3(1)+Al for JieO
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" ,////7/%///
E ///////

Fig. 2.3. The typical schedule for Case 1.

k= S
Case 2. F1 B and FZ AZ

For this case, we may assume that the schedule for Ol is
type I and that for 02 is type I'. Then we define the starting

times of each job Ji on machines M_, M, and M3 as follows.

1’ 72

V! (4 s -0
Sj(l) Sj(l) for j=1,2 and J €0,

Vet (4 _ P ‘
sj(l) sj(1)+max(A1, B A2) for j=1,3 and JieQz

The typical schedules characterizing this case are illustrated in

Fig. 2.4.

: k= =
Case 3. Fl ak+bk and FZ A2

We have the schedule of type II' for the job in 0l and of
type I' for the job in 0,. Here, we define trhe starting times
as follows.

sj(i)=s3(i) for j=1,2 and Jigo1

sj(i)=sé(i)+max(A for j=1,3 and J; €0

10 3 thAy)
-.35_
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N

(a) BZA +A

M, | 0, | /// o,
W
() B> A1+A2.

Fig. 2.4. The typical schedules for Case 2.

The representative schedules for this case are illustrated in
Fig.2.5.

- %= ne. T
Case 4. Fl B and 32 c

In this case, let the schedule for O, be type Il and for O2

1
type I'. Then we set the starting times for each job Ji’on

M., and M, as follows.

machines Ml’ ) 3
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M 3J - O" O b

7
n J
M, ////// ol x

/

S

< . (0"=0_ - .
(@) ap+b, sA 44, (07=0,- {3, 1

on // 0
Y I 1 g 2
/7 .
w VA oo
/

N\

700

Fig. 2.5. Thebtypical schedules for Case 3.

t V= ! . s —
Sj(l) Sj(l) for j=1,2 and Jisol

SNl (3 - - 1= €
Sj(l) sj(1)+-max(Al+A‘2 C, 0, B~C) for j=1,3 and Ji O2

We have three typical schedules illustrated in Fig. 2.6 for this
case.
K= x=
Case 5. F¥=B and F3 a e,

For this case, the schedules for the jobs in O1 and O2 are
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w0

(a) A1+A2 2z max(B, C).

Ml O1 7A o

3

M, //A )

(c) B> max(A1+A2, c).
Fig. 2.6. The typical schedules for Case 4.
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those of type I and type II, respectively. We set the starting

times for each job Ji as follows.

2 Y= ] . *
Sj(l) Sj(l) for j=1,2 and J;€0;

sj(i)=s5(i)+max(B—(ak,+ck,), A1+A2—(ak,+ck.), 0)

for j=1,3 and Jieoz

Those typical schedules charactefizing this case are illustrated

in Fig. 2.7.

%= F=
Case 6.Fl a, +b, and Fi=a, .+c ,
For this case, the types of schedules for the jobs in 0l and

02 are type II' and type ILI, respectively. Then the starting

times for job Ji are set as

Vel (1 s —
Sj(l) Sj(l) for j=1,2 snd Jieo1

and
s V\ead (3 — - )
Sj(l) sj(1)+max(Al+-A2 (ak,+ck,), (ak+bk) (ak,+ck,), 0)
for j=1,3 and fieoz.
The typical schedules for this case are illustrated in Fig. 2.8.
In the next subsection, we prove the validity of the start-
ing times given in this subsection, such that the schedule based

on the above starting times becomes an optimal schedule.

2.3.2. Proof of validity
We prove the validity of the starting times presented in
the last subsection.

If either 0l or O2 is empty, then the vaiidity is trivial.

So we assume that both 0, and 02 are nonempty.

1
To prove the validity, we must show that the constructed
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(a)

(b) -

(c)

Fig.

v

Jk'

Bz max(A1+A2, ak,+ck,)

zf{Jk'}')

0, o; T
0
s ~
v % w U
A1+A22max(B, ak,+ck,).

k'

0

Jk'

\\\\

ak '+Ck '

>-max(A1+A2, B).

2.7. The typical schedule for Case 5.
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11 1}
M J of 0 Ty

M, ?i:;:;:;; o; I : C;’
M :;E:: T 0y /{;25

(o"uo —{J }, 0" 02 {Jk,} )

(a) A1+A2__max(a +bk ak,+ck,).

/

(2] 1) -
Ml Jk O1 / .02 _ Jk'

NN
L\\

O"
M, "/ ‘i 2
(b) ak+bk==max(A1+A2, ak'+ck,).
1" 1 .

M I o} /j;2 oy I

7 B

" !

M, g 0} | I . ;;;::
My T 9, V/;;;
(¢) ak,+ck,3>max(A +A2, ak k)

Fig. 2.8. The typical schedules for Case 6.
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schedule is feasible, i.e., Cl(i)gsz(i) or Cz(i)ésl(i) for JiEO
and C1(1)§s3(1) or C3(i)§52(1) for Ji€0

9 where Cj (i) is the '
completion time of Ji on Mj’ and the value of that schedule is
the minimum of the completion times.

(1) Feasibility.

To show the feasibility of the schedule, it is sufficient

to show that'for‘job Ji in 0., either

1
n (3 < .
Cl(l) =52(1) or
Cz(i) ;sl(l).
holds, and for job Ji in 02, either
o N < 3
Cl(l) =53(1) or

C, (1) <5, (1)
holds.

Now in the schedules generated by G-S algorithm, we have

: ¢y (1) <s,(i) or
(2.1) { for Jieol
Cé (1) ;Si (1)
aﬁd
¢y (1) ;sé(i) or
(2.2) { for J_ <0,
Cé (1) ;s]'_(i)

where Ci(i), Cé(i) and Cé(i) are the completion times of those
schedules for job Ji on Ml, M2 ‘and M3, resPectively. From the

setting of start times, we have

's.(i)=s! (i) and .
(2.3) J J for j=1,2 and J <0,
Cj(i)=03(i)

and
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for j=1,3 and Jieo

s, (1)=s! (i)4+K
(2.4) { J J 9

C, (1)=C; (1)4K
3 3

where K={fA1 for Case 1,

max(Al, B—Az) for Case 2,

max (A +bk—A2) for Case 3,

1° %k
max(A1+A2—C, 0, B-C) for Case 4,

max(B—(ak.+ck,), A1+A2-(ak,+ck,), 0) for Case 5,

Lmax(Al+A2—(ak,+ck,), (ak+bk)—(ak’+ck')’ 0) for Case 6.
Consequently, by substituting (2.3) and (2.4) into (2.1) and

(2.2), respectively, we can prove the feasibility.

Optimality.

Here, we prove the optimality of schedule based on the start-
ing times set in the last subsection, i.e., that the schedule has
the minimum value of maximum completion time, C;ax' Gonzalez and
Sahni showed the lower bound of C* _, LB, for nImIOIC sched-

max’ - max
uling problem as follows.
) )
C* _>LB=max(max ) p,,, max ) p..)
max = i j=1 13° i =1 ij
where pij is the processing time of operation Oij° For our solv-

able‘case, this lower bound is reduced to
LB=max(Al+A2, B, C, ak+bk,'ak.+ck,).

Further, corresponding to each case, this lower bound is rewrit-

ten as,
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A1+A2 for Case 1
max(A1 s B) for Case 2
Lae max(Al ak+bk) for Case 3,
max(Al , B, C) for Case 4
max(A 2, B, ak,+ck,) for Case 5

max(A1+A2, a +b for Caseb.

k k’ akl+ckt)
In the sequel, we will prove that this lower bound is achiev-

able in all cases. Let C,, C, and C, be the maximum completion

1° 72 3
times on machines Ml’ M and M3
Since, as we assumed both 0l and O2 are nonempty, for Jieol

and Ji,eo we have s (1)+a <s, (i') in all cases. Then, the max-

2
mum completion tlmes on the machlnes are

Cl=Jm:g (sl(l)+a )
i 72

(2.5) C,= max (s
J 601

C.= max (s (1)+C )
3
J, €02

Also, let Ci and Cg be the maximum completion times of the sched-
ule generated by G-S algorithm for 02 on M1 and MB’ respectively,
and C' be that for 0, on M, .

Substltutlng (2. 3) and (2.4) 1nto (2.5), we have

2(1)+b )

C,= max (s! (1)+a )+K=C'+K

1 7. 602 1 1
(2.6) CZ— max (s (1)+b )= C'
J.e0
i1 .
CB= max (s3(1)+c )+K—CB+K.
J. 602

Thus, from (2.6) we have

b=



2.7) Cmax=max(C1, Cz, C3)
=max(C:'L-f-K, c!, C:'3+K)
=max (max (C!, C§)+K, Cé).
Now since in our construction Cé§A1<Ci+K if F’1‘=A1 and Cé=max(B,
. * . ] 1Y Tk
ak+bk) if Fl#Al, and since max(C!, C3) FZ’ we have

= *.
Cmax max(F2+K, B, ak+bk).
Further, since in each case it holds that
A
B >max (ak_+b

2max (ak+bk, B), if F’i?Al s

o B if F%=B,

a, +b, >max (A , B), if F#=a +b

1%k k?
A, _Z_max(ak.+ck:’ c), if F§=A2’

'C;max(Az, ak,+ck,), if F§=C,_
ak.+ck, ;max(Az, c), |if F§=ak,+ck,,

these inequalities and the definition of K together show that

'A1+A2 for Case 1,
max(Al+A2, B) _ _ for Case 2,

¢ - max(A1+A2, ak+bk) for Case 3,
max- max(Al+A2, B, C) for Case 4,
max(Al+A2, B, ak,+ck,) for Case 5,

6.

max(Al+A2, ak+bk’ ak,+ck,) for Case

Therefore we have proved that Cmax equals the lower bound in all

cases.
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2.4 The Mixed Shop Scheduling Problem

We consider a set of jobs J={1,2,'-',n}+to be processed
nonpreemptively on two machine mixed shop. Job i has processing

times ai§0 and bi;O on machines M, and MZ’ respettively. The

job set J comsists of two disjoint subsets F and 0, i.e., J=Ful
and FnO=¢. .Each job i in F must complete the processing of op-
eration Oil on M1 before starting to process Oi2 on MZ’ i.e.,

F is a set of flow shop type jobs. On the other hand, O is a
set of open shop type jobs. Thus each job i in O must complete
the processing on Mk before starting to process on Mj’ where
j,k=1,2 and j#k.

Let Cj(i) be the completion time of jdb i, and Sj(i) be the
starting timg of job i on machine Mj for j=1,2. Further, let
|F|=n1, |0|=n2 and n=nl+n2. Then, for any ie¢F, Cl(i)ész(i) must
hold and for any i€0 either Cl(i)ész(i) or Cz(i)ésl(i) must hold.
The schedule is nonpreemptive. The objective is to find the

schedule minimizing the maximum completion tims max(Cl(i),
| o ieJ
Cz(i)); (Abbreviated to nl21MX|Cmax nonpreemptive scheduling

problem.) When O is empty, this problem is reduced to the two
machine flow shop problem solved by Johnson [15]. 1In this spe-
cial case, the solution procedure obtaining the optimal schedule
is known as Johnson's rule; if min(ai,bj)§min(aj,bi), then the
processing of job i precedes the processing of job j. The case
which has only open shop type jobs has been solved by Gonzalez
and Sahni [5]. PFurther, Jackson [l4] has solved the two machine

+In this section, we use job "i'" instead of job "Ji" for

the simplicity of notationm.
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scheduling problem with two distinct job sets such that the proc-
essing order of jobs must be Ml to M2 or M2 to Ml' In our problgm,
the flexibility of processing order for some jobs, however, is
taken into account, which is more complicated than that of Jackson.
An extension of the algorithm to Jackson type of mixed shop never-
theless would be interesting. Also it seems unlikely to solve our

problem by straightforward extension of the Jackson's method.

2.4.1 Preiiminaries
We prove some lemmas needed for the proof of optimality of
algorithms.

Let AB z a;s F= E b., A z a; and B 2 b Further, let
jer * ieF * jeo * - 160
LF=(f,,f,,°" ,fni) be the list such that the jobs in F are or-

dered according to Johmson's rule, i.e., for 1<i<j<n,, min(a. ,
g == £4

bs )émin(af ,bg ). For job fi’ CF*, Ci(i) and,Sé(i) are the ﬁax—
. s ¥

J J . , ; : .
imum completion time, the completion time on M, and the starting

1
time on M2 in the schedule constructed by ordinary Johnson's pro-
cedure, respectively. Let Ii be the idle time between adjacent

. . . =t (3 Q' (s_1\—h 1
job pair £, and fi’ i.e., Ii 82(1) 82(1 1) bti—l for 1<i<n

i-1
where Sé(0)=0 and Il=afl. Then

1’

C' 1)= 2 as »
§=1 1
i-1 i
S5 (1)= ] bg + 2 I.,
j=1 3 =14
and n ng n
CF*= ] by + ) I,=Bgt ) I .
j=1 k| J~1 ij= =1 J
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Lemma 2.3. The following inequalities hold. for each f .
i-1
C1 (1) £83() <CF*-B LT
j=1 k|

Proof. By virtue of the ordinafy Johnson's procedure, it
is clear that C'(i);ﬁ'(i) for each f,. Since

n
i-1 i-i

| CF*-B+ 2 bg =) be + ) I,
j=1 3 j=1 J j=1 j

and

we can prove that

i-1 i-1
CF*-B_t+ 1 bg > ) b+ 2 I=8;(1). |
j=1 Jj =173 —1

Now, we define job sets O1 and 02 as follows.

ol={ieo]aizbi},
02={1c0[ai<bi}.
Further, we choose r and 7 to be any two distinct jobs in O such

that

b_2> max (a,),
jeO2

a; 2 max (b.).
jeOl

Then let LO=(s ‘,snz) be the list of jobs in O such that

l’sz’..
sl=Z, sn2=r,

3
&3

s:€0;-{Z,r} for 2<j<k and asj»ligs_ for 3<j<k,
-1 %3

-1 and b <b_. for k+2<j<n
2 551~ 85 ==

602—{Z,r} for k+1<j<n ~-1.

2
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Lemma 2.4.

If A argﬁo-bz, then the following inequality
holds.
n, n,-1
’ bS, =>= 2 as,'
j=i4l 3 3=i 3
Proof. For i<k, we have
o, 2—1 l
[ bs,- zas;s-zbs zas
j=i+1l j=i =1 j=i
. i i-1
—Bo—b -(Aya -3 bg .+ Y ag
j=2 ®3 j=1 ]

: 1—1
-B b (A -3 )+ (a; -b ).
. r ng 85 Sj+l
Now, since B -b,>A ~a , ag.=a.> max (b, ) and a_ >a >bg.
’ 0 "0 Tyt 7E Togi<k 3 $4= S341~ °j+1
for Zgj;k—l, we can prove that '
n2—1
Fo o3

j=i+1 %37 §=1 3°
(Note that for 2=J;k, sjeol.) For i>k+l, since s, _=r, b_>

max (ag ) and bsjip

, ,Jag, _ for k+2<j<n
k+l<isn,-1 d S5-1"%3-1 -

2—1, we have
J—
l n,
2 bg Xa = 2 (bg,-ag, ) >0.
Joi1 %3 321 S geier o3 S3-1 i
Lemma 2.5. 1f Ao a >B0 bZ’ then we have
i-1

i
b+ 2 a ,g=2 bs -
l =1 55 5510°3
Proof.

We can prove this lemma similar to Lemma 2.4 and so
it is omitted. 0
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Lemma 2.6. Let C;ax.be‘the optimal value of the maximum

completion time. Then the following inequality holds.

* >
C x==m_ax(AF+-AO,

*
o +Bo, CF*, max(ai+bi)).

ie0
Proof. Clearly the righthand side of the above inequality

B
F
is a lower bound of C* .
. max i

2.4.2. Optimal algorithms

We give an exact algorithm for each of the following cases.

1 AF;BQ’
(2) Ap<B, and B_2A.,
(3) A <By and B <A

0 F 0’

In the following, we use the same notations C, and C_, to

1 2

denote the maximum completion times on M, and M2 of the schedule

1
constructed by the algorithm given for each case. Further, let

Cmax=max(cl’ CZ)’

i.e., Cmax is the maximum completion time of that schedule.

Case 1: AF;B0
We give the algorithm for the case of AF;PO'

-Algorithm I

(1) On Ml, process the jobs in F successively according to
Johonson's rule from time 0. Then, process the jobs in
0 successively .in an arbitrary order from time AF after
processing all flow shop type jobs.

(2) On Mz, process the jobs in O successively in an arbi-
trary order from time 0. Then, process the jobs in F

according to Johnson's rule from time max(Bo, CF*—BF).
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The typical cases of the schedule constructed by algorithm

I are illustrated in Fig. 2.9.

Lemma 2.7. 1f AngO’ then algorithm I constructs an optimal

schedule.

Proof. (i) Case CF*—BFzBO For any ie€0, clearly

C (i) <B0

i) >
§; (1) 245
hold. From the above inequalities and the assumption AFiPO’ we

have C (1)<S (i). i-1

Slnce for any f;eF, C; (f )= 2 af and 8, (f )=CF*-BF+ ) bg 5
j=1 j=1 ]

by Lemma 2.3 we have Cl(fi)§§2(fi). Further, the facts that the

and

idle time on M, is zero and the idle time on M, is only the time

1 2
. < nl = - =
interval between time BO and CF BF show Cl AF+A0 and C2 BO+
(CF*—BF—BO)+BF=CF*. Thus we obtain Cmax=max(C1, C2)=max(AF+AO,
CF*),
(ii) Case CF*—BF<BO. For any i€0, similar to the case (i)
we can prove C (1)<S (i). = i-1
.For any f ¢F, we have C; (f )=J af and S, (f ) =B+ ) bf .
j=1 J-l
Since BO<CF*-BF,
i-1 i-1
Cy(£,) SCF*-Bo+ | by <B+2bf-s (£;)
j=1 "] j=1

holds also in this case.

1

and C2=B0+BF. Thus, Cm -max(AF+A B +B )

No idle time exists on M, and M2’ and this means CléAF+A0
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Fig. 2.9. The typical schedules for Case 1.
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Consequently, if AFiﬁo’ by Lemma 2.6 we can show that the
1]

schedule constructed by algorithm I is an optimal schedule.
Note that for the above case, we can obtain the optimal

> <A .
schedule regardless of BF=AO or BF AO

Case 2: BF;A0 and AF<BO

> i A_<B_.
We develop the algorithm for BF=A0 and AF BO

Algorithm II

(1) Om Ml’ process the jobs in F successively in an arbi-
trary order from time 0. Then, process the jobs in O
successively in an arbitrary order from time BO.

(z) Onmn M,, process the jobs in O first and next the jobs

in F successively in an arbitrary order from time O.

In this case, the typical schedule is the one illustrated
in Fig. 2.10.

" ’ WA VJ

4
M 0 F
2 /

Fig. 2.10. The typical schedule for Case 2.

.8. >
Lemma 2.8 If BF——AO

an optimal schedule.

and AF<BO, then algorithm II constructs

Proof. For any ieF, it is clear that Cl(i)éﬁF and Sz(i);ﬁo.
Since AF<BD’ we have Cl(1)<82(1). For any iecO, we obtain Cz(llé

<S. (i). it i = = .
B0=§l(1) Moreover, it is clear that Cl Bo+-A0 and C2 BO+BF

+BF. Thus, from Lemma 2.6, algorithm TT

i L) < =
Since AO=BF’ we get Cmax BO
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constructs the optimal schedule.u

Case 3: BF<A0 and AF< B0

We divide this éase into some subcases and develop the

algorithm for each subcase.

Fig.

(1) Ao-a =B0 -b

Let 0'=0-{r}, A_,= } a, 4+ T;=By=Ag, and T

o' . L, 120 %0
i€0
(I-1) Subcase 1: TlgAF'

=a L]
2 r

Algorithm HI

(1) On Ml

trary order from time 0. Then, process the jobs in O

» process the jobs in F successively in an arbi-

successively in the order sl,sz,'°',sn2_1 and sn2
from time AF'

(2) Omn M2, process tha jobs in O successively in the order
812895 *»8n,y-1 and Sny from time O. Then, process

the jobs in F successively in an arbitrary order from

time BO'

The schedules characterizing this case are illustrated in

2.11,

Lemma 2.9. 1If A -a_ <B bZ and T <:AF then the schedule

generated by algorlthm BI is an optimal schedule.

and

Proof. Since for any i€F, we get
i) £
C (1) = Ap

iy >
82(1) 2 BO’

from the assumption AF<BO we can prove Cl(i)<SZ(i). Further,
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1 F sl,sz, oo ,snz

2 81589 P ,snz F. ////
(a)

> .
AF+A 0= BF+B 0

Ml F Sl?sz’ it ,sn2 /i;<;;:
Z
M2 Sl’sz’ oo ,sn2 F

N\

(b) AF+A0 <-BF+

Fig. 2.11. The typical schedules for Subcase 1
i
for any sleO, it is easy to show CZ(Si)= 2 bs. and S, (s.)=A_+
j=1 1]
1 as, - i
=] J

By arranging the equation of S (s ), we have

i-1 By
S1(s)=Agt ) a P T 1 a
j=1 j=i

)

)
=Ap~ By~ o')+Bo‘jZ.
n2-1

=AF"T1+BO" jgi asj .

Thus we obtain
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n, -1 i

' 2
§1(8;)<Cy(s;)=A-T - ] ag +B~ ] bg_
j=i J J=1 J

Consequently, from AFijl and Lemma 2.4 we can show that Sl(sil;
CZ(Si)' On the other hand, there exists no idle time between
2=BF+B o
Therefore, since the maximum completion time is Cmax=(AF+A ,

BF+BO)’ Lemma 2.9 follows from Lemma 2.6. 0

consecutive jobs. Thus, it is clear that C1=AF+-A0 and C

(I-2) Subcase 2: T,>A; and T,<B;

Note that in Subcase 1, we can obtain an optimal schedule

regardless of TZépF or T2>BF.

Algorithm N

(1) Om Ml’ process the jobs in F continuously in an arbi-
trary order from time O. Then, process the jobs in O
successively in the order sl,szg"‘,snz_l and sn2 from
time Tl.

(2) On MZ;

the order sl,sz,°",sn2_1 and snz. Next, process the

process the jobs-in O without interruption in

jobs in F continuously in an arbitrary order from time

Bo.

The only typical schedule for this case is shown in Fig. 2.12.

-a_<B -b,, T.> < i
Lemma 2.10. If Aj-a <B-b,,’ T, >A; and T,<B,, then the

schedule constructed by algorithm W is an optimal schedule.
Proof. For any sieo, it is easy to show
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A % | 777
Ml F 4//i Sy °°',sn-2_l Sn2 /Cjzijj

2 | sy o, | F

N

N\

Fig. 2.12. The typical schedule for Subcase 2..

i
C,(s,)=] bg,
iil iil
S.(s,)=T.+ ) a_ =B -A + ) ag,
19847707 £ #sy ™00 L e

and

- n2-
=B0— z as..
j=i J

From LemmaZ.4 we have Sl(si);pz(si). "For any i¢F, we can show
1)<T.< i). - = -
that C,(i)<T,<B <8,(i). On the other hand, we have C =T +Aj

= = . ¢ > =
Bo+ar B0+-T2 and C2 BO+BF Since BF=?2’ we can show that Cmax

BO+BF. Therefore, Lemma 2.10 follows from Lemma 2.6. 0

E and T2>BF

(I-3) Subcase 3: T] >A
Algorithm V

(1) On M,, process the jobs in O' successively in the order
ces i . . th
Snz—l’SnZéZ’ 38, and 8, from time O Then, process e
jobs in F successively in an arbitrary order from time
AO,. Finally, process job r from time max(A0,+AF, br)'
(2) On M2, process the jobs in 0'successively in the order
of_snz,snz_]_,'",s2 and 51 from time 0. Then, process
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the jobs in F without interruption in an arbitrary
order from time B, ’

- The typical schedules in this case are illustrated in Fig. -
2. 13.

Lemma 2.11. 1If A,-a <B0 bZ’ T, >A; and T2>BF, then algo-

rithm V constructs an opt1ma1 schedule,

Proof. (i) When Ay tASb , it is easy to show C,(1)2b <
Sz(i) for any 1€0'UF. When i=r, we get Cz(r)=br and Sl(r)=br'

Moreover, we have C.=a +b 'and C =B _+B Thus, C___=max(a_+b_,
1 0 F° max r r
BytBy ). n,-1
(ii) Wwhen A0'+AF>b , we obtain C (s )= Zi.asJ and S (s )=
i=
"2

j=§+§sj for any sieo'. By Lemma 2.4, we can prove Cl(si);ﬁz(si).

Further, for s8,=F, we have Cz(r)=br and Sl(r)=A0‘+AF' Thus the

assumption A +AF>br implies_Cz(r)<Sl(r). For any ie¢F, we also

ol
have Cl(i)éA +A and 8y (i)>B . Since AO,+AF<A 1+T,=B,, we have
Cl(i);Sz(i). Further, 1t is clear that C +AF and C2 BO+BF
Consequently, C -(A +AF BO+B ) for thls case, Thus from Lemma
2.6, (i) and (11) together the proof of this lemma is completed. 0
- >
(11) A a, B

0 0Pz

Hereafter, we change the definitions of 0', A ,, T. and T, as

1 2
follows; 0'=O—{Z},AAO.=A0-a s T and T,=A -B,,, where B,=B/
-b

177 2"% 0"
A |
(II-1) Subcase 4: T, <A

This subcase is the same as Subcase 1 except for the above
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na-1? ’ / n.~-1» ’ r ///
1 2 1 é 2 1 ’ A
Mé r snz—l’ see »81 F ’// T Snz—l"°' F ;2:
> < '
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Fig. 2.13. The typical schedules for Subcase 3.



change of some definitioms.

(11-2) Subcase 5: T.l >AF and TZ;BF

The optimal schedule for this subcase can be obtained in the
same way as for Subcase 2 except for the above change of some
definitions.

- Sy : > '

(11-3) Subcase 6: T AF and T,>Bp
Algorithm VI

(1) On Ml’ process the jobs in F successively in an arbi-
trary order from time 0. Then, process the jobs in 0'

continuously in the order sn',sn2_1,°",s and s, from

3
time AF. Finally, process job sl(=Z) from time max(

by A.F+A0,).

(2) Omn MZ’ process job I from time O. _Then, process the
jobs in F without interruption in an arbitrary order
from time bZ' Finally, process the jobs in 0' succes-~
sively in the order snz,"',s3 and 5, from t1me.bz+-BF
. N .

1f bo2A A, AGtT,) if by<

AGHA -
The typical schedules characterizing this case are illus-

trated in Fig. 2.14.

¢s or from time max(bZ+BF,

Lemma 2.12. 1If Ao-ar>Bo—bZ, 2>BF, then the

schedule constructed by algorithm VI is an optimal schedule.

Tl'>AF and T

Proof. (i) When bEiAF+AO" we can easily show that for any
ieF, Cl(i)gﬁF§?l=bb§§2(i) holds. further, it holds that for any
o 4
sieo ’ Cl(si)§§F+A0,§pZ and 82(81);PZ+BF' Thereforg we have
Sz(si)ggl(si). Moreover, for si=Z, CZ(Z)+bZ and Sl(Z)=bZ hold.

Also, it is easy to show that Cl=aZ+bZ and C2=BO+BF. Accordingly,
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(a) by 2 A A, and a;tby <B B,
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2 ] ?
M, 1 F&sn,"' .
A2 Z

(c) by <AgtA,, and A tA) > B +B.

Snz,...’sz

Q\\

(b) b'Z > AF+AO' and aZ+b

> .
17 BotBp

s, |1 7/

A\

N\

(d) bZ < AF+A0' and AF+AO <B_+B

Fig. 2.14., The typical schedules for Subcase 6.
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Cmax=max(ai¥bz, BO+BF)

(ii) When bZ<AF+ , and b _AF+T , we get C (1)<AF <T —bzé
Sz(i) for any i€F. Further, for any si€OY, we have
b3 i-1 i-1
Cl(si)=AF+.Z.aSj=AF+A I ag =AptT, 8o, ] 255
=i j=1 3 j=1
and

$,(s;)=B b+ _§+lb B8 -lebsj+bZ
i
=B +b,+B - ) bg +b.
=13
Thus i-1
5,(8,)-C, (s,)=(B +bz) (A+T, )+bZ+ Z 255 glb 3
holds. Therefore from Lemma 2.5 and the assumption AF+T <BF+bZ’
we can prove that Sz(si)zcl(si). For si=Z, since CZ(Z)=b and
S (Z) A 0" clearly CZ(Z)ésl(Z) holds. On the other hand, it is
obtalned that C =AF+A '+aZ=AF+A and C bZ+BF-i--BO,—BF+BO Since
b +B >A+T _AF+ 1» we have B +BFZ o Accordingly, Cmax=
BO+BF.
(iii) When bz=<AF+AO, and bZ+BF<AF+T2’ for any ieF we can
easily show that Cl(i)éﬁFépzfsz(i). Also for any sieO', we get

"y

C,(sy Y=Agt Z ag ~AF+A - Z 255

and
n, n

2
So(s,)=Ap+T + Z b +A ~B .+ ) b
2 jeitl 3 oo jei+l

=AF+AO_ 2 bg j+bZ
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Thus the equality
i-1 i
sz(si)-clcsi)=bz+’§ as.—.z.bs.
j=1 J j=i J
holds. Therefore from Lemma 2.5, we can prove Sz(si)ggl(si).
Further, for si=Z, we have CZ(Z)=bZ<AF+AO'=Sl(Z)' Also, since

-~ = = = +A.
C1 AF+Ao and 02 T2+AF+BO' AO+AF, we have Cmax AF o

(i), (i) and (iii) prove this lemma. 0

. Consequently

We present the complete scheduling algorithm before our main

theorem.

Complete Algorithm

Step 0. Set AF=iZFai, BF=i§Fbi, Ao=iZoai and Bo=i§0bi.

Step 1. If Ango, then go to Step 2. Otherwise go to

Step 3.

Step 2. (1) On Ml’ process the jobs in F sﬁccessively ac-
cording to Johnson's rule from time 0. Then
process the jobs in O successively in an arbi-
trary order from time AF after processing all
flow shop type jobs.

(2) On MZ’ process the jobs in O successively in
an arbitrary order from time O. Then, process
the jobs in F according to Johnson's rule from

0’ CF*—BF). (Algorithm I)

Step 3. 1If BF;AO’ then go to Step 4. Otherwise go to Step 5.

time max(B

Step 4. (1) Om Ml’ process the jobs in F successively in an
arbitrary order from time 0. Then, process the
jobs in O successively in an arbitrary order
from time B,.

0
(2) Om MZ’ process the jobs in O first and then the
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Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

jobs in F successively in an arbitrary order
from time 0. (Algorithm I )

Find any two distinct jobs r and 7 in O such that
erPax(aj) and aZZPax(bj). If Ao—aréBO—bZ, then
J€02 Jeol
set 0'=0-{r}, A ,=Ao—ar, T

=B0—Ao, and T =a_.

1 2
Otherwise, set 0'=0-{1}, A,,=A,-a;, B,,=B,-b

-b,,
T_=bZ and T.,=A -B

1 2% o'
If TléAF then go to Step 7. Otherwise, go to
Step 8.

(1) On Ml’ process .the jobs in F successively in
an arbitrary order from time 0. Then, pro-
cess the jobs in O successively the order Sy

8,5

(2) On Mz, process the jobs in O successively in

..-,snz_l and sn2 from time Ag.

the order sl,s2,°°',sn2_1 and sn2 from time

0. Then, process the jobs in F successively

in an arbitrary order from time B0

(Algorithm II)

1f TzéBF, then go to Step 9. Otherwise go to

Step 10.

(1) Omn Ml’ process the jobs in F continuously in
an arbitrary order from time 0, Then, pro-
cess the jobs in O successively in the order

sl,sz,..-,snz_l and sn2 from time Tl'

(2)> On M2, process the jobs in O without inter-

ruption in the order s "’Snz-l and sn2

1 ? sz 3 *
from time 0. Next, process the jobs in F
continuously in an arbitrary order from time
B0 . (Algorithm W)
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Step 10.

Step 11.

Step 12.

If A -a <B bZ’ then go to Step 11. Otherwise,

g0 to Step 12,

1

(2)

(1)

(2)

On Ml’ process the jobs in O' successively
in the order snz_l,snz_z,"',s2 and S1 from
time 0. Then, process the jobs in F succes-
sively in an arbitrary order from time AO"
Finally, process job r from time max(A0,+AF,
br)'

On MZ’ process the jobs in O successively in
the order of snz,snz_l,“',s2 and 5, from
time 0. Then, process the jobs in F with-
out interruption in an arbitrary order from
time B.. (Algorithm V)

0]
On M,, process the jobs in F successively in

s
an aibitrary order from time O. Then, proc-
essvthe jobs in O' continuously in the order
of snz,snz_l,"',s3 and S, from time AF.
Finally, process job sl(=Z):from time max(
by Apthge).

On M,, process.job 1 from time O. Then,
process the jobs in F without interruption
in an arbitrary order from time bZ' Finally,
process the jobs in Q' successively in the
order sn'2,°",s3 and 8, from time bZ+BF if

b >AF+A0' or from time max(bZ P AF+T2) if

bZ<AF+AO" (Algorithm VI)

Using Lemmas 2.7-2.12, the next main theorem is deduced.

Theorem 2.3.

If in a two machine scheduling problem there
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are flow shop type jobs and open shop type jobs, then above Com-—
plete algorithm (or algorithms I-VI) gives an optimal schedule

minimizing the maximum completion time. 0
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CHAPTRE 3

SCHEDULING PROBLEMS ON PARALLEL TYPE MACHINES

3.1 Introduction

In this chapter, we consider scheduling problems for a set
of jobs J%{Jl,Jz,“‘,Jn} to be processed on parallel type machines.
The following three problems are dealt with.

1) n]mlIleax nonpreemptive scheduling problem: Each job
Ji consists of single operation which can be processed on any
machine and has an equal processing time on each machine, i.e.,
Pij=pi’ and so machines are identical parallel type. Further,

each job Ji has a same due date on each machine P%, i.e., d,.=d,.

The processing of Ji should ideally be completed within thelguel'
date. The schedule must be nonopreemptive and the objective is
to minimize maximum lateness.

(ii) nIZIIILmax preemptive scheduling problem with gener-
alized due dates: Each job Ji is to be processed on two identical
parallel machines. On machine Ml(Mz)‘Ji must be completed by the
due date dli(dZi)' The objective is to minimize maximum lateness.

(iii) nlleIlCmax scheduling problem: Each job J, can be
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processed only on a given subset of machine set M, Qi={Mj|jeIi},
where Ii={hi(l),---,hi(ki)}gI={l,2,~-°,m}. The processing time
of J; on machine Mj is P;37Py if MjeQi and pij=°°if Mj&Qi. The
objective is to obtain a preemptive or nonpreemptive schedule
minimizing the maximum completion time.

For the nohpreemptive scheduling on parallel type machines,
above three types of problems are NP-complete except for the
cases that each job has unit processing time or the objective is
to minimize total completion time 21210;' For the preemptive

case, the following facts are already known.

machine type objective complexity reference

single Lméx 0(nlogn) [11]

identical Cmax 0(n) [23]

. . 2

identical Lmax 0(n%) [10]

uniform Cmax 0(n) [6]

uniform L 0(n?): [25]
max

In Section 3.2, we propose two approximation algorithms for
n|m|I|Lmax nonpreemptive scheduling problem, which is NP-complete,
and show their worst case bounds.

In Section 3.3, we present a polynomial time algorithm to
construct a schedule minimizing maximum lateness for n|2|IlLmax
preemptive scheduling problem with generalized due dates.

_ Finally, in Section 3.4, we show a solvable case of nim[QII
Cmax nonpreemptive scheduling problem and present a polynomial
time algorithm for n{m|QI‘Cmax preemptive scheduling problem.
In such a solvable case, we assume that each job Ji has unit

processing time. .
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3.2 Approximation Algorithms for n|m|[I[L_.  Nonpreemptive
Scheduling Problem and Their Worst Case Bounds

In this section, we discuss an n!mlIleax nonpreemptive
scheduling problem. In this problem, each job Ji(GJ) has an
equal processing time Py and an equal due date di on each machine
Mj(eM). The objective is to construct a schedule minimizing
maximum lateness.

Unfortunately, this problem belongs to a class of NP-complete
problems. Therefore, we propose two approximation algorithms
and obtain their worst case bounds. Concerning the worst case
bound, we use the form of modified relative deviation defined in
Section 2.2.

Our first algorithm EDD(Farliest Due Date) is a list sched-
uling and the second algorithm LPT(Longest Processing Time) is

its refinement.

List Scheduling: A Iist scheduling produces a schedule of

jobs based on a list as follows. When one of the machines be-
comes available, first unprocessed job on the list is assigned

to this machine.

'In the list scheduling, the resulting schedule is influenced
by the ordering of jobs on the list. Therefore we have to spec-
ify an ordering in advance. R. L. Graham [7] [8] obtained the
following result with respect to a nonpreemptive schedule mini-
mizing maximum completion time on m identical parallel machines

(nImIIICmax nonpreemptive scheduling problem).

Lemma (Graham [7] [8]). For nlmlIICmax nonpreemptive sched-
uling problem, let C&ax be the maximum completion time of any

list scheduling and C;ax that of optimal scheduling. Then, the
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inequality

Cl
max

C*
max

A

. L

. m
holds [7]. Further, for the list on which the jobs are ordered
in nonincreasing order of processing times, we have

4 1
23 "5

(rsh.

For the job set J, the maximum lateness of the schedule con-

structed by some algorithm 7 (approximation or exact) is defined
by

L(J;m)= max {C,(m)-d,},
1<isn o *

where Ci(n) is the corresponding completion time of Ji in that
schedule. Especially, hereafter, the notations L(J;EDD), L(J;LPT)
and L(J;n*) are used to denote the maximum latenesses for EDD, LPT

and a certain optimum algorithm 7%, respectively.

3.2.1 Approximation algorithm EDD and its worst case bound

We present an approximation algorithm EDD and give its worst
case bound (or modified relative deviation). Here, without any
loss of generality, we can assume dlédzg---édn.

Algorithm EDD: Assign the jobs to machines in the order,

JngZ,f“’Jn.

Theorem 3.1. For any job set J, the inequality
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L(J;EDD)-L(J;m*)
L(J;m%)+d
max

<1- L
m

holds, where dmax=dn from the above assumption. Moreover, this

bound is the best possible.

Proof. We assume that a job set J is the smallest one for
which the theorem may be violated. And, it is enough to consider
only the case that job Jn determines the maximum lateness of the

schedule constructed by algorithm EDD, i.e.,
(3.1) L(J;EDD)=Cn(EDD);dn.

Since algorithm EDD is a list scheduling in which the jobs on the

list are ordered in the nondecreasing order of due dates, Grahanm's

Lemma shows that
Cn(EDD) ). 1

(3.2) —
c(m*) B o

A

where 7* is a certain exact algorihm minimizing maximum completion
time and C(ﬁ*) is its maximum completion time. From (3.2), the in-

equality
(3.2)'  C_(EDD)<(2 - =)C(T*)
n m
holds. Substituting (3.2)' into (3.1), we obtain

(3.3) L(J;EDD)<(2 - _—i—)c(ﬁ*)-dn.
On the other hand, we have
(3.4) L(J;m*)2C(m*)-d_.
Hence (3.3) and (3.4) imply that
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(3.5 L(J3EDD)-L(I3m%)(2- ) G(%)-d_~(C(7%)-d )

=<1--%;)c(§*>.

Since d =d_, (3.4) and (3.5) together show that
max n

(1- Dy

L(J;EDD)-L(J;m%) <

=1- L
sk
RAGH )+dmax m

C(m*)
This contradicts our assumption. Thus, we have the desired worst
case bound.

To see that this bound is the best possible, we can consider
three examples depending on m (mod 4).

Example 1. Let n=2m+l and m=2r. The processing times are
given by

_ _ ,rH+(i-1) for lsisr
P23-17P2s™ {4r(i41) for r+lsisor

and p4r+1=4r, and the due dates are di=d(=const.) for 1=2i<2m+l.
Since all the due dates are equal, we may assume that the i-th
job assigned by algorithm EDD, 1=£i£2m+l, is job Ji. Then, we
obtain the schedule shown in Fig. 3.1(a). Because the optimal
schedule by some exact algorithm 7* becomes as shown in Fig.3.1(b),

and L(J;7*) is 2m-d, we have

L(J;EDD)-L(J;7%) -1

L(J;n*)+d 2r m.
max

.Example 2., Let n=2mt+l and m=4r+l and let the processing
times be given by
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2r+2(f%1—1 for 1gis4r,

4r for i=4r+

P;= 8r—2[3£i1+1 for 4r+2£i<8r+1,
4y for i=8r+2,
8r+2 for i=8r+3,

where [x] is minimum integer not less than x, and the due dates
be di=d for 1sis2m+l.

The approximate and. the optimal schedules for this case are
illustrated in Fig. 3.2(a) and (b), respectively. Similar to
Example 1, we obtain L(J;EDD)=16r+2-d and L(J;7*)=8r+2-d. Thus,

we have

L(J;EDD)-L(J3m*) _ 8  _, 1
L(J;-n*){-d 8r+2 m.
max

Example 3. When n=2m+l and m=4r+3, let the processing times

and the due dates are given by

r+F%—1 for 1£ig4r,

2r+1 for i=4r+1,4r+2,4r4+3,8r+4,8r+5,8r+6,
Py~ i

4r+2—[7;- for 4y+42i<8r+3,

4r+3 for i=8r+7,

where [x] is maximum integer not greater than x, and di=d for
1€is2m+1.

The approximate and the oﬁtimal schedules are illustrated
in Fig. 3.3(a) and (b), respectively. Again, similar to Examples
1 and 2, we have L(J;EDD)=8r+5-d and L(J;7*)=4r+3-d. Hence, we
get

L(J;EDD)-L(J5m*) _ 4rd2 . 1
L(J;m%)+d 4r43 m .
max

This completes the proof of Theorem 3.1.
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Fig. 3.1. An example giving the tight bound of Theorem 3.1 in case m=2r.
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Fig. 3.3. An example giving the tight bound of Theorem 3.1 in case m=4r+3.



3.2.2 Approximation algorithm LPT and its worst case bound

The worst case examples in the last subsection show that when
the number of distinct due dates is small, the algorithm EDD is
not so effective. 1In such a case, the maximum lateness may be
greatly influenced by the maximum completion time rather than
the due dates. Now, we propose another approximation algorithm
LPT which is more effective in such a situation, and give the
worst case bound. Algorithm LPT is a hybrid algorithm which

consists of a mixture of LPT and EDD rules.

Algorithm LPT:

Step 1. Assign the jobs to each machine according to the
list such that the jobs are ordered in the non-
increasing order of processing times. (LPT rule)

Step 2. On each machine, reorder the assigned jobs according

to the nondecreasing order of due dates. (EDD rule)

Next Theorem 3.2 gives a worst case bound of algorithm LPT.
But probably algorithm LPT has a better worst case bound than

that of Theorem 3.2 in some cases.

Theorem 3.2. Let L(J;LPT) and L(J;7*) be the maximum late-
nesses of the schedules constructed by algorithm LPT and some
exact algorithm 7% for job set J, respectively. Then,

4 1 P

i _ _ min
3 3m P
L(J;LPT)-L(J;n%) PN
LT e I | +m(dn d;)
3 3m P

aB:!
holds, where p__. = min p, and P=). .p..
min | . . 21—1 i

Proof. Let 7* be any exact algorithm minimizing maximum
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completion time for job set J and C(m*) the maximum completion
time of m*.

It is clear that the inequality
(3.6) L(J;w*)gc(E*)—dn
holds. Also, we have
3.7) L(J;LPT)éC(LPT)—dl,

where C(LPT) is the maximum completion time of the schedule con-

structed by algorithm LPT. From (3.6) and (3.7), we have

. — . Y= d -d
(3.8) Lé“}j‘fi$§+ﬁ<~""*> ccarn-ca |, %
. ? max C(n*) C(TT*).
Since
C(LPT) _ 4 1
(3.9 <3
C(;*) 3 3m

by Graham's Lemma and C(7*)2P/m, it holds that

L(J;LPT)~L(J37%)
L(J;n*)4+d
max

1 1 m
(3.10) éT - 3m + ?(dn_dl) .

Further, let L{(J;LPT)=C
job J
that

-dk, where C, is the completion time of

k k

K in the schedule obtained by algorithm LPT. It is clear

sR) 2 -
(3.11) L(J;m )=pmin dk'
Since Ck§C(LPT), (3.9) and (3.11) imply that

. “TAT7*Y<C ~d -
L(J;LPT)-L(J ;™) 5C, ~d, ~(p

- < - »
‘min dk)_C(LPT) pmin

4 1, .=
S5 = 3 O™ Py,

From (3.6), we obtain
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4 1. -
L(J;LPT)-L(J;m%) _ G = 300 Py

) = -
L(3;m >+dmax C(m%)
_ 4 1 p_min
3 3m C(;*)
c 4 1 ™nmin
-3 3m P
Thus, we prove Theorem 3.2. 0
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3.3 n[2§I|LrnaX Preemptive Scheduling Problem with
Generalized Due Dates

In this section, we consider an nIZlIILmaxpreemp;ive sched-
uling problem with generalized due dates. This problem is charac-

terized as follows; (i) a set of jobs J={J1,J ---,Jn} is to be

2’

processed on two identical parallel type machines M, and M2, (ii)

1
processing time of each job Ji on M, or M, is P> (iii) each job

Ji has a definite due date dij for ;achinz Mj (j=1,2), in other
words, the processing of job Ji on Mj must be completed by the
due date dij’ (iv) preemptions for the jobs are admitted, and (v)
our objective is to minimize the maximum lateness. (Note that
di1=di2 is not necessary.)

In the last section, we proposed two approximation algorithms
and obtained their worst case bounds for n|m|I|Lmax nonpreemptive
scheduling problem. In that problem and other traditional sched-
uling problems with due dates, we assume that each job Ji must
have a same due date on each machine, that is, dij=dij' for j#3j'
and 15j,j'sm. However, each job does not always have the same
due date on each machine. For example, let A be a factory uti-
lizing products by the completed job Ji' Then, the transportation
times of goods by Ji from machines to A may differ and the actual
due date is not a date to complete Ji on some machine but a date
of delivery to A. Thus, the practical due date on each machine
must differ for each machine. Therefore we generalize the idea
of the due date in the sense ‘that each job may have different
due dates for each machine,

We consider the problem of obtaining a feasible schedule for

given due dates.
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Feasible Schedule: A feasible schedule for a job set is one

such that all the jobs are completed by their due dates.

In the following subsections, we show how to reduce a problem
of obtaining a feasible schedule to network flow problem and

develop an efficient algorithm to get a feasible schedule.

3.3.1 Construction of associated network flow problem

We will construct a network flow problem corresponding to
the feasible schedule for our present problem.

Let Di’ 1=2isk, denote the distinct values of due dates,
where D1<D2<--'<Dk and ks2n. And, let Ii=[Di_1,Di], 15i<k, and
D0=0.

Now, we construct a network N with n+3k vertices, 2k of
which are source vertices with labels mji’ j=1,2, i=1,2,¢++,k,
corresponding to machines and time intervals Ii. The maximum
possible amount of supply from each source mji is si=Di—Di_l.
And, n vertices are sinks with labels Jl"'.’Jn corresponding
to the jobs. Each sink Ji has the demand P, 1€is=n. The remain-
ing k vertices are intermediate ones labeled v

cee v Further,

1° .
the network N contains three types of directed arcs. kThe first
type is the arcs connecting source vertices to sink vertices.

The second type is the ones from intermediate vertices to sinks.
The last type is the ones from sources to intermediate vertices.,

I1f 4,.2D, and d,.<D, ., arc (m,.,J.) connects vertex m to J,.
jl i iz i- 1i°73 3j

1
>
If dj1<Di—1 and de"Di’ arc (mZi,Jj) connects vertex m

1i

2i
And if 4,.”>D, and d,.>D,, arc (v.,J.,) connects vertex v, to J,.
jiI="1i j2="1 i’7] i 3j

to J,.
J

Finally, for j=1,2 and 1s5isk, arc (mji,vi) connects vertex mji
to v, . Moreover, the above all arcs have the same capacity
si=Di—Di_1. Note that if job Jj, 1£jsn, can not be processed on

either or both of two machines in some interval Ii, 1gisk, then
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there exists no arc connecting vertices mli’ m and vi to vertex

2i
Jj on the above reduced network.

Feasible Flow: A feasible flow is the one that the flow

from each of sources mii and m,. is equal to or less than S:>

1sizk, and the flow into sink Jj is exactly pj, 1<j<n.

3.3.2 Algorithm for a feasible schedule

.We develop an algorithm which constructs a feasible schedule
whenever such one exists.

Let F(ei,ej) denote the flow through arc (ei,ej). Further,
we also use F(°i,Jj) to denote the total time length during which
job Jj can be processed in the interval Ii’ where the unit flow

corresponds to the unit time iength.

Algoritm FS

Step 1. Reduce a gi&en scheduling problem to a corresponding
network flow problem and then find a feasible flow.
If there exists such flow, then go to Step 2. Oth-
erwise stop. In this case, there exists no feasible
schedule.

Step 2.. Construct a schedule for the time interval Ii’ 1sizk,

as follows.

(1) Find some job Jh(i) such that
§ h(i%-l
F,= F(m,.,J.)+ F(v,,J.) < s,
i j=1 11°75 j=1 i’73 i
and
Fi+F(vi’Jh(i))> Si’

where 1zh(i)Zn.
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(2) Processing on machine M For 1l£jsn, process

1¢
job Jj during the time length F(mli,Jj). Next,
for 1=2j£h(i)~1, process job Jj during F(vi,Jj).

Last, process job J during si—F..

h(i) i

(3) Processing on M First, process job Jh(i)

X
during the time length F(vi,Jh(i))+Fi—si. Next,
for h(i)+12jsn, process job Jj during F(vi,Jj).

Last, for ls£jsn, process job Jj during F(mZi,Jj).

The processing order of jobs on M1 and M2 is

arbitrary except for job J i) which must be

h(

processed last on M1 and first on M2.

Step 3. 1Iterate Step 2 for each time interval Ii'

Example 3.1. We consider the following scheduling problem.
(p19d113d12)=(6,2’7)

(p29d219d22)=(4’!593)

1=1, D2=2, D3=3, D4=5, D5=7 and D6=8, we have

six time intervals, Il=[0’1]’ Iz=[1,2], 13=[2,3], I4=[3,5], 15=

Then, since D

[5,71, I6=[7,8]. We can construct the corresponding network as
Fig. 3.4.

For the resulting network, the nonzero flow values related
to the constructon of the actual schedule are F(vl,J1)=1, F(VI’JB)
=1, F(vz,J1)=1, F(vz,J2)=1, F(v3,J2)=1, F(m13,J3)=1, F(m24,J1)=2
F(ml4,J2)=2, F(mlS,J3)=2, F(mZS,J2)=2 and F(ml6,J3)=l. Thus,
there exists a feasible flow as in Fig. 3.4 and we can obtain

the feasible schedule as Fig. 3.5.
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i v ’
m . ‘ The numbers
22 © \ 2,2 attached to
‘ each arc
W indicate its
M3 O 1 ‘ capacity and
. w | 1 nonzero flow

in this order.

Fig. 3.4. The reduced network and its feasible flow.
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Fig. 3.5. The feasible schedule.

Now, we have the relation between a feasible schedule and

a feasible flow.

Theorem 3.3. There exists a feasible schedule if and only

if there exists a feasible flow on the reduced network.

Proof. (a) We assume that there exists a feasible schedule.
Now, let tij(tij) be the time length that job Jj is processed on
Ml(Mz) in the time interval Ii' Let the reduced network be N=
(V,E), where V is the set of vertices and E is the set of arcs.
Then, at most ome arc among (mli’Jj)’ (m2i,Jj) and (Vi,Jj) for
each.sink (job) Jj and interval Ii belongs to E for léjép and
1<i<k. We define the flow through each arc(e¢E) as follows.

(i) VWhen (mli’Jj) € E, we set at

F(mli’Jj)=tij'
Note that in this case t£j=0'
(ii) When (mZi’Jj) ¢ E, we seF at

e
F(mZi’Jj) tij.

Note that in this case tij=0.
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(iii) When (vi,Jj)e E, we set at
= U
F(vi,Jj) tij+tij’

F(m .sV.)= 2 t,.
1174 (Vi,J.)GE ij,
and J
F(m .’V.)= X t!.-
2171 (vi,Jj)eE +J
Since there exists a feasible schedule, for 1s£isk and 1£jn, we
have
)
= )(t,,+t!.),
i=p 1343
n
L g5 SDDy s
j=1
%
t!.sD,~D, .,
j=1 ij i“"i-1
and

t,.+t!.sD,-D, ..
ij i3 i i~1

Since Si’ which is a capacity of arc (- 5 *), is equal to D, —D i-1°
the flow through each arc does not exceed its capacity. And the
flow into sink JJ for 1<j<n is Y. _1(F(m1 sJ . )+F(m2 ,J )+F(v J =
21-1 +ti.)=p « Thus the demand of each 31nk is satlsfled ex-

actly. Further, the flows from sources m and m, for 1sigk are

1 n
= <
jzl(F(mli,Jj)+F(mli,vi)) jzltij..si,

21<F(m2 I )HE(my v ))= 2 t!
j=

Thus, the flow from each source is not more than the possible

j‘

supply value 8- Consequently, we prove that whenever there
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exists a feasible schedule, there exists a feasible flow in the
reduced network. _

(b) We assume that there exists a feasible flow. Then, we
can show that our algorithm FS constructs a feasible schedule.

In the case Di>dj1’ neither (mli,Jj) or (vi,Jj) belongs to
the arc set E, and thus F(mli’Jj)=F(vi’Jj)=o' Similarly, if Di>
dj2’ then F(mZi’Jj)=F(vi’Jj)=o' Thus, it is clear that by algo-
rithm FS no job is assigned to unavailable time intervals, i.e.,
intervals after its due datgs. And, the flow into each sink Jj
is pj for 1<j<n, from.the existence of a feasible flow. There-
fore it is sufficient to prove the validity of our algorithm for
each interval Ii’ 1<i<k.

For the time interval Ii’ let Tl(Tz) be the amount of busy
periods assigned to Ml(MZ) by our algorithm. Then, if algorithm
FS finds a job J at Step 2-(1), we have

% h(i%+1
T,= F(m ,,J,)+ L
1 =1 1i?7j j=1
n h(i)-1
- ,J.
(ZlF(mli,JjH jzl F(v;53,))

h(i)

F(‘vi,Jj)+si

=Si = Di—Di—l .

On the other hand, if a job Jh(i) can not be found by algorithm

FS, it is clear that Tléﬁi' Thus, we get
n h(i%—l
= - +
Ty=F (Vo9 (1)) Si+(j_§§ (my5595)

n n
+. Z F(vi’Jj)+.z F(mZi,Jj)
j=h(i)+1 j=1

-

j=1

4 F(vi,Jj))

(F(mli,Jj)+F(vi,Jj)+F(m2i,Jj))-si.
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Because the first three terms of the right hand side are the sum
of flows from sources my and W, » it holds that

(F(mli’Jj)+F(Vi’Jj)+F(m2i’Jj))=izsi'

)
;-

Thus we have T2§§i. Further, in the interval Ii, the only one job

1

c . fo s )<s.
to be pro;eesed on both machines is job Jh(i)’ and F(vi,Jh(l))==sl

from the capacity comstraint. Similarly, we can prove the validity
of algorithm FS in any other time intervals. Thus the theorem has

proved. 0

Remark. If network flow problem with |V| vertices is solved
by any algorithm with computational time O(f(IV[)), our present
scheduling problem can be solved in 0(nlogn+kn+f (3k+n)) time,
where n is the number of jobs and k is the number of distinct due
dates, for the following reasons.

(i) Sorting the due dates requires O(nlogn) time.

(ii) The reduced network consists of 3k+n vertices, i.e.,
2k source vertices, k intermediate vertices and n sink
vertices.

(iii) Since scheduling the jobs in each of k time intervals

requires 0(n) time, we require O(kn) time to obtain

the whole schedule.

3.3.3 Minimizing maximum Tateness

In the last subsection, we proposed an algorithm to con-
struct a feasible schedule if such one exists. We desire to min-
imize the maximum lateness. In the original probelm, if there
exists no feasible schedule, we construct a new problem with p;=
P> di1=dil+L and di2=di2+L for 1<i<n, where L is some positive

constant, i.e., a problem with prolonged due dates. Let L* be
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the minimum value of L such that there exists a feasible schedule
for the new problem. Then it is clear that L* becomes the mini-
mum value of maximum lateness for the original problem. Since
for a fixed L, algorithm FS can construct a feasible schedule

whenever there exists such one and the possible range of L is
OéLé'E P, We can show, by applying a binary search technique,
thatl;i optimal algorithm has a computational time with O(g(n)-
Zog.glpi), where g(n) is the computational time of algorithm FS.
i=
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3.4 nImIQIICmaX Scheduling Problem

In this section, we deal with nlm[QI!Cm scheduling problem.

A set of jobs J={J1,J

ax
'°,Jn} is to be processed on a set of m

2"

quasi-identical parallel type machines M={M1,M2,"°,Mm}. Unlike

the problems dealt with in Sections 3.2 and 3.3, each job Ji is

not always processed on any machine. Now let I={1,2,**+,m} be

the index set of machines. Job Ji can be processed only on a sub-
) P -E = LI [t i

set of machines Q {P%IJ Ii}, where I, {hi(l)’ ,hi(ki)}(_I) is

an index subset and Oékiém. Processing time of job Ji on machine

) pi for Mngi

o for Miji.

M, is
J

Qur objective is to minimize the maximum completion time. If
nonpreemptive schedule is desired, this problem belongs to a
class of NP-complete problems. But if preemption is admitted,
this problem is tractable. For nonpreemptive csae, we propose
a solvable case, in which each job Ji has a unit processing time
on Qi, that is,
1 for M_eQ,
by Jte
o for ijQi
For preemptive case, on the other hand, each job Ji has an equal
but arbitrary processing time on Qi
On the conventional multi-parallel-machine scheduling prob-
lems such as the problems dealt with in Sections 3.2 and 3.3, we
assume that each job can be processed on any machine. In the
real situations, however, it may happen that each machine can not

always process all of given jobs, though the potential capability

of machines is equal. For example, a computer program which is
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executable on some computer can not always be executed on the
other same type computers because of the difference of their ad-
ditional operating systems and so on. Strictly speaking, the
machines as mentioned above are not identical but identical
in the sense that the capability of machines for executable jobs
is identical. So we call them quasi-identical parallel type ma-
chines

In the following subsections, we propose an efficient algo-~
rithm to construct a feasible schedule for each of nonpreemptive
unit processing time case and preemptive arbitrary processing

time case. A feasible schedule is defined as follows.

Feasible Schedule: Given a time limit D(20), a feasible

schedule is the one that all jobs are completed by the time D.

In next subsection, we show how to reduce the problem ob~-
taining a feasible schedule of nonpreemptive unit processing time
case to a maximum cardinality matching problem on a bipartite
graph, and develop an efficient algorithm to construct a feasible
schedule. Then we show how to minimize the maximum completion
time. Similarly, in Subsection 3.3.2, we first show how to reduce
the problem obtaining a feasible schedule of preemptive arbitrary
processing time case to a network flow problem, and present an
efficient algorithm to generate a feasible schedule. Then we

show how to minimize the maximum completion time.

3.4.1 Nonpreemptive unit processing time schedule

In this subsection, we assume that each job Ji has a unit
processing time Pi=1 on Qi and is to be processed nonpreemptively
on Qi' Our objective is to minimize the maximum completion time.
Given an arbitrary time limit D, we propose an algorithm gener-

ating a feasible schedule whenever there exists such one. Since
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Pi=l for each job Ji’ without loss of generality we may assume
that the time limit D is integer. For the above purpose, we ex-
ploit the solution of maximum cardinality matching problem on a

bipartite graph B=(X,Y,E), which is constructed as follows.

Construction of Bipartite Graph
X={vj(k)|j€I, 1<k<D}:

vertex set corresponding to machines
and time limit.
Y={v(i)|i=1,2,***,n}:
B={(v, (i) ,v(1)) |3e1,,

vertex set corresponding to jobs.
1<k<D}: edge set comnecting vertices
vj(k) and v(i) if machine Mj

can process job Ji.

Example 3.2. Let n=4, m=3, D=3, Ql={Ml,M2}, Q2={M2,M3},
Q3¥{M3} and QA#{Ml}. Then we have
X={v, (1), v;(2), v (3), v,(1), v,(2), V,(3),
V3(1)’ V3(2), V3(3)},
Y={V,\l)’ V(Z), V(3)s V(A)},

E={ (v, (1),v(1)), (v;(2),v(1)), (v;(3),v(1)),

(v, (1),v(D)),
(v,(1),v(2)),
(v4(1),v(2)),
(v3(1),v(3)),
(v, (1),v(4)),

(v, (2),v(1)),
(v,(2),v(2)),
(v5(2),v(2)),
(v5(2),v(3)),
(v4(2),v(4)),

(v,(3),v(D)),
(v,(3),v(2)),
(v4(3),v(2)),

(v3(3),v(3)),
(v1(3),v(4))}.

- The.resulting bipartite graph is illustrated in Fig. 3.6.

It is clear that the size of matching on the bipartite graph
is at most n. Next, we present an. algorithm constructing a fea-
sible schedule from the solution Qf'maximum cardinality matching

problem on a bipartite graph.
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v(1l)

v(2)

v{(3)

v{(4)

Fig. 3.6. The resulting bipartite
' graph for Example 3.Z.

Algorithm Feasible-1 (F-1I)

Step 1.

Step 2.

Construct a bipartite graph corresponding to the
scheduling problem and find a maximum cardinarity
matching on that bipartite graph. If the obtained
matching has size n, then go to Step 2. Otherwise
stop. In such a case, there exists no feasible
schedule.

If edge (vj(k),v(i)) belongs to the matching ob-
tained in Step 1, process job Ji on machine Mj'
And, the processing order of jobs assigned to each

machine is arbitrary.

The following theorem shows that whenever there exists a matchingv

of cardinality n, the above algorithm F-I constructs a feasible

schedule.
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Theorem 3.4. Given an integral time limit D, there exists
a feasible schedule if and only if there exists a matching of

cardinality n on a bipartite graph as comnstructed above.

Proof. (i) We first assume that there exists a matching
of cardinality n. Then it is sufficient to show that algorithm
F-I constructs the feasible schedule. For that purpose, we must
show that in a schedule constructed by algorithm F-I, every job
is assigned to a suitable machine and the processing of jobs is
finished by time D.

Now since edge (Vj(k),v(i)) does not belong to E if M.&Qi,
no job is assigned to the unexecutable machine. Also since lY!=n,
all jobs are assigned to a sujtable machine. Further, since there
exist at most D vertices corresponding to an index of each machine,
Step 2 assignes at most D jobs to each machine. Thus algorithm
F-1 can construct a feasible schedule, whenever there exists the
matching of cardinality n.

(ii) Next, we assume that there exists a feasible schedule.

Then let the jobs processed on machine Mj be le""’Jj- accord-

.

ing to the processing order. Since there exists a feasible sched-

m
ule, we have 1§kj§p and 2 kj=n. Now, as the member of matching
A j=1

we set fhe edges (vj(l)’v(jl))’...’(vj(kj)’v(jk-)) for 1<j<m.

J
Then we have the desired matching, that is, the matching of car-
dinality n. Thus there exists the matching of cardinality n,

whenever there exists a feasible schedule. ]

As mentioned above, given some integral time limit D, we can
construct a feasible schedule whenever there exists such one.
Next, we must construct an optimal schedule, completion time of

which is a minimum value of time limits when a feasible schedule
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exists. Similar to the last section, we can find out such time
limit by applying a binary search method. To get an optimal
schedule, it is sufficient to solve maximum cardinality matching
probleﬁ at most log,n times or to iterate Step 1 in algorithm F-T
at most log,n times, since Oépéiizlpi=n. (Note that it is not
necessary to iterate Step 2 in algorithm F-I log,n times by vir-
tue of Theorem 3.4.) Here, the matching problem can be solved

in polynomial time [18]. Further, tHe time complexity of Step 2
is 0(n). Thus we can construct the optimal schedule in O(Zog,n®
f(n(mtl))4n) time, where £(x) is the computational time to obtain
a maximum cardinality matching for any bipartite graph with x

vertices. ( Of cource, f(x) is a polynomial as is already known.)

3.4.2 Preemptive general processing time schedule

We assume that each job Ji has an equal but arbitrary proc-
essing time on Qi' Further, preemptions are admitted. Our objec-
tive is to minimize the maximum completion time again. First, we
show how to reduce the problem of obtaining a feasible schedule
to a network flow problem. The reduced network N=(V,E), where
V is a vertex set consisting of two disjoint subsets S and T, and

E is a directed arc set, is constructed as follows.

Construction of Reduced Network

3

(i) S={sjlj=l,2,'-°,mh .a set of source'vertices, in which
each source has a maximum possible
amount of supply D.
(i) T={ti|i=1,2,~°',n}: a set of sink vertices, in which
each sink ti has a demand Ps
(iii) E={(sj,ti)|MjeQi, 1<j<m, Lg;ép}: a set of directed
arcs, in which each arc is directed

from sj to ti and has a capacity D.
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Note that a source vertex Sj corresponds to a machine Mj
and a sink vertex ti to a job Ji. Also, we may assume that D>

max p,, since our present objective is to obtain a feasible
i<i<n

schedule.

Example 3.3. Let n=4, m=3, D=5, le{Ml,Mz}, Q,={M,1,

Qu={M;}, Q,={m;,M,,M.3}, p.=3, p,=1, p4=3 and p,=2. See Fig. 3.7.

supply demand
t, 3 Each arc has
5 s 1
1 a capacity 5.
t2 1
5 S,
5 t3 3
3
t4 2

Fig. 3.7. The reduced network
for Example 3.3.

We define a feasible flow in the above network as follow=.

Feasible Flow: A feasible flow is the following,

(i) the flow from each source is no more than D,
(ii) the flow into each sink ti is exactly P>

(iii) the flow through each arc is at most D.

Next, when there exists a feasible flow, we construct a so-
lutibn<1fn|m|0]Cmax preemptive scheduling problem based on the
feasible flow on the above network. This problem can be solved
efficiently by Gonzalez and Sahni algorithm (G-S algorithm) [5].
Our algorithm exploits the schedule generated by G-$ algorithm
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to obtain the feasible schedule of our problem. Let F(sj,ti)

be the amount of flow on arc (Sj’ti)’ and

J'={J','°~,J;}: a set of open shop type jobs,

M'={Mi,---,M&}: a set of open shop type machines

0..: operation of job Ji to be processed on machine Mg,

1]

pij=F(sj,ti): processing time of operation Oij'

For n]m]OlCmaX preemptive schedule, Gonzalez and Sahni also
showed that the maximum completion time Cﬁax of the schedule
generated by their algorithm meets the lower bound showed in
Section 3.3, that is,

n m

C* = max( max 2 pP..s max z p.;).
max j =1t Y 4 5= M

Algorithm Feasible I (F-II)

Step 1. Construct the reduced network and find a feasible
flow. If there’exists no feasible flow, then
stop. (In such a case, there exists no feasible
schedule.) Else, go to Step 2.

Step 2. Let F(Sj’ti) be the amount of flow through arc
(sj,ti) in the obtained feasible flow. Based on
this flow value, construct a corresponding nlmlO,
Cmax preemptive scheduling problem and solye that
problem.

Step 3. Replace machine M3 and operation Oij in the above
scheduling problem with machine Mj and job Ji in

an original scheduling problem, respectively.

This schedule is the desired feasible schedule.
In the following theorem, we prove that the existence of
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feasible flow is equivalent to that of feasible schedule through

algorithm F-T .

Theorem 3.5. Given a time limit D, there exists a feasible

schedule if and only if there exists a feasible flow.

Proof. (i) We.assume that there exists a feasible flow.
Then, we must show that algorithm F-I always constructs a feasi-
ble schedule. Now, since no operation of job Ji in open shop
problem is processed at the same time, no job in our original
problem is processed on several machines. It is clear that each
machine processes at most one job at the same time. Further,
since, by virtue of the construction of our network, arc (sj,ti)
does not belong to the arc set E of network if Mj&Qi’ no job
is assigned to the nonexecutable machines. Therefore it is
left to show that all jobs are completed by time D.

By Gonzalez and Sahni, the maximum completion time, C* ,

max
of schedule constructed in Step 2 is

n m
* =
Ghax ~Pax(max ] pygomax 1
j i=1 i j=1

ij)'
Since pij=F(sj,ti), for each source sj the total amount of flow
out of sj in the feasible flow is

n n
PRICIILY)

P..-
i=1 i=1 *J

Thus we have

n
<
majtx 2 pij <D,
i i=l

since the possible supply of source sj is D. Also the total

amount of flow into each sink ti in the feasible flow is
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m
PRICHILINS

Pose
1
j=1 b 3

1

Then, since in the feasible flow the demand of sink ti is exact-

ly Pys we get

m
max z P.. =max P,.
A . i
i j=1 i

On the other hand, since we assume that max piéD, we have
i

m
max z”pi.éD.
i j=1 4

Consequently, we have

C* £D.
max

{(ii) We assume that there exists a feasible schedule. Let

pij be the amount of processing of job Ji on M,. Then we fix

the flow value through arc (Sj’ti) at F(Sj’ti)=p£j' Now since
there exists a feasible schedule, we have F(sj,ti)éD. Thus the

capacity constraint for each arc is satisfied. Also we have

7
Pi.=P
=1 ij i
and

b

1
P;. <D.
j=1 13

Accordingly our current flow becomes a feasible flow.

I

As mentioned above, given a time limit D we can costruct a
feasible schedule whenever there exists such one. Next we must

construct a schedule to minimize the maximum completion time.
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Then similar to the last subsection, we can find out a desired
schedule, i.e., optimal schedule, by exploiting a binary search

technique. Since the possible ranges of maximum completion time

- n
C and time limit D are max p.<C (or D)g_z pP.», We can con-
max . i="max = i
i i=1
n
struct an optimal schedule by solving Zog2 Z Py network flow
i=1

problems. Further, since both a network flow problem and n[mlol
Cmax preemptive scheduling problem are solved in a polynomial
time, an optimal schedule can also be constructed in a polynomi-

al time.
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CHAPTER 4

SCHEDULING PROBLEMS WITH CHANGEABLE MACHINE SPEED

4.7 Introduction

In this chapter, we extend ordinary scheduling problems with
constant machine speed to the cases with changeable speed.

The first one is an extension of nimlU|Cmax scheduling prob-
lem in which each machine Mj has a constant speed qj. In the
extended problem, each machine speed sj of machine Mj is a con-
tinuous nonnegative variable. Our objective is to determine both
the optimal speeds of machines and an optimal preemptive schedule
with.respect to some cost function fmax' Thus, the problem is an
nImIGUIfmax preemptive scheduling problem.

The second is an extension of anlMX!Cmax scheduling problem
as analyzed in Section 2.4. In this extended problem, again each
machine speed Sj is a continuous nonnegative variable. The ob-
jective is to determine both the optimal speeds of machines and
an optimal nonpreemptive schedule with respect to some cost func-
tion fmax' This problem is an niZIGMXIfmaX nonpreemptive sched-

uling probiem.
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In the traditional scheduling problems, each machine has a
predetermined machipe speed qj including a unit speed qj=1; For
nlmlU]Cmax preemptive scheduling problem, Gonzalez and Sahni [6]
presented a polynomial time algorithm to construct an optimal
schedule. Concerning—shop type machine, on the other hand, only
the problem with unit machine speeds have been analyzed.

In Section 4.2, polynomial time algorithms are presented to
find the assignments of optimal speeds to each machine for a va-
riety of cost functions. Further, we show that if we relax some
of assumptions, then the resulting problems become NP-hard.

In Section 4.3, we deQelop a polynomial time solution proce-
dure to determine both the optimal speeds of machines and an op-

timal schedule for the generalized mixed shop scheduling problem.
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4.2 A Generalized Uniform Machine System

We consider a scheduling problem determining both the opti-
mal speeds of machines and an optimal preemptiﬁe schedule on par-
allel type machines.

Most scheduling problems considered in the literature at-
tempt to schedule with a given set of jobs and one or more ma-
chines with constant speeds. In this section, we will assume that
we are able to determine both the machines available and the
schedule. Our assumption is that it is possible to change the
machine speeds, and to raise up the speed takes more cost.

This model is reasonable for the real time systems that must
complete a given set of jobs within a specified time.

Our model is an extention of nImIUICmax preemptive sched-
uling problem. Now, for a given machine speeds, we are able to
find an optimal schedule using the uniform machine algorithm of
Gonzalez and Sahni [6]. The properties of this algorithm are
quite flexible in choosing the optimal machine speeds.

In the following, we give a more formal description of the
problem. We consider a generalized uniform machine system (GUM

system) that has the following properties.

1. There is a set of jobs J={J1,'°‘,Jn} to be processed and
each job Ji has an amount of processing requirement Py

2. There is a set of m parallel type machines M#{Ml,"',Mm}
available, and the speed of each machine is a continuous
nonnegative variable. If machine Mj has speed Sj’ a
cost fj(sj) is incurred.

3. Preemptions are allowed.

For a system of machines with speeds S=(sl,...,sm), the
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m
machine cost is Z fj(sj)- Our objective is to find a vector
31

m
(sl,“',sm) that minimizes fmax=fo(T)+jZlijsj), where fo(t) is

a completion cost incurred for finishing the last job at time t
and T is the minimum value of maximum completion time for the
given speed vector. Thus the problem is an n[mlGU]fmax preemp-
tive scheduling problem. We first show how to find a GUM system
with minimum machine cost which can complete all jobs by the
time D, given a deadline D. This problem is called a Deadline
Problem. Then we show how to use the solution algorithm for the
deadline problem to solve the original problem.

In order to find an optimal solution to these problems, we
will make the following assumptions about the machine cost func-—
tions fl,fz,"°,fm:

(1) £;(0)=0. |

(ii) fj(x) is positive and strictly increasing for x>0.

(i) fj(x)éfj+l(x) for all j=1,2,°**,m-1 and x>0.

(iv) fg(x), the derivative of fj(x), is continuous and in-

creasing for x>0.
A set of machines with properties (i)-(iv) will be called an or-
dered machine system.

Intuitively, these restrictions represenf a system of ma-
chines that are ordered with respect to cost, so that the more
fast the machine speed, the more cost incurred. Assumption (iii)

implies that there is always an optimal solution with s ipzi--{;

1
s Without loss of generality, we can assume that the proc-
essing requirements are sorted as plipzi°'°gpn.

We need not the explicit form of cost functions but we can

get the values of
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(a) fj(x) for j=1,2,**+*,m and x>0,

(b) fj(x) for j=1,2,¢**,m and x>0, |

(¢) the solution x of f%(x)=fj+l(y) for any given y>0 and

j=1,2,°°*,m-1.

Once the speed vector is specified, a schedule minimizing
the maximuﬁ completion time can be found in O(m'Zogzm+n) time
using the G-S algorithm. We now briefly reﬁiew the relatiomship
between the machine speeds and the minimum value of maximum com-
pletion times. Horvath et al. [1l1] have shown that the maximum
completion timechax:Of an optimal preemptive schedule was given
as follows.

P

P.
= S N S
4.1) Corax max{ max {-g- }s 3 },
1£jsm 73 m

where P.= % P, j=1,2,**°,n, and S.= %’s s j=1,2,*¢+,m. Thus,
I k=1 Jg=1 K

the deadline problem is equivalent to the following problem:

(4.2) minimize 2 £f.(s.)
L33
J
(4.3) subject to SjZPj/D j=1.,2,*°°,m-1
>
Sm=Pn/D.

Any speed vector S that satisfies (4.3) is said to be feasible.
In Subsection 4.2.1, we show how to solve the deadline
problem using the derivatives of the machine functions. 1In
Subsection 4.2.2, we show how to use the solution algorithm for
the deadline problem to solve the nImIGUlfmaX preemptive sched-

uling problem. Subsection 4.2.3 gives a fast implementation for
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a more restricted class of cost functions. Subsection 4.2.4
discusses an extension of the cost model which includes setup
costs. In Subsection 4.2.5, we show that several versions of

this problem are NP-hard.

4.2.1 The deadline problem

Our algorithm can construct an optimal speed vector succes-
sively. First an optimal speed vector to complete job Jl by
time D is found, and then the algorithm proceeds to an optimal

vector to complete J. and J2 by time D. Finally, we will find

an optimal vector to}complete all jobs by time D. Each speed

vector we find will be a lower bound on all future speed vectors.
The next speed vector can be.obtained successively by increasing
the elemeht of precedent one whose marginal cost (the derivative
of the cost function evaluated at its current speed) is smallest.

We now prove several properties of this solution technique.

Lemma 4.1. For k<m, there exists an optimal vector (sl,sz,
°'°,sm) that completes the first k large jobs by time D and has
the following three properties:

(1) 841 Spa2™" " 78500
(ii) sk=Pk/D’

(iii) fi(sl)zfé(sz);---zfé(sk).

Proof. Property (i) follows the assumptioF fj(x)éfj+1(x)
and the fact that each job can run on at most one machine at

the same time.

To prove (ii), we note that if Sk<Pk/D’ we can not complete

all k jobs by time D, and if S >Pk/D, we can reduce the speed of

k
the slowest machine with nonzero speed and get a new vector that

is feasible and has lower cost.
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1
j+1
£>0 we can increase sj by €, decrease Sj+1 by €, and obtain a

2o : 1 <
To prove (iii), we note that if fj(sj) £ (sj+l)’ for some

new feasible vector of lower cost. 0

Corollary 4.1. For msksn, there exists an optimal solution
vector (sl,sz,'°-,sm) that completes the first k large jobs by
time D and has the following two properties:

PRPENE =
(id) Sm Pk/D’

(ii)’ fi(sl)zfé(sz)z--°zfé(sm).

In this subsection, we will consider only optimal speed
vectors that satisfy properties (i) (ii) and (#ii) in Lemma 4.1
> Seee> .
and have $,2852° 028

Lemma 4.2. Given an optimal vector S=(sl,s ---,sm) for

2!
the first k large jobs, there exists an optimal vector §=(sl,sz,

:";Em) for the k+l1 large jobs such that Estj for j=1,2,°*°,m.

Proof. Suppose s is an optimal vector that violates the
lemma. Let j be the least index such that §j<sj. Since §k£Pk/D

=S there must be some §Z>sZ for 12k. Let 7 be the least of

s
suih index. Let A=min(§z—sz, sj—Ej). Let S* be the vector ob-
tained from S by replacing Ej by §j+A and replacing EZ by EZ—A.
The vector S* is a feasible solution for the first k+l large
jobs. We now show that the machine cost of S*, which we write
C(s*), is not greater than the machine cost of S, which we write

C(s). By the construction of above S*, we have
’ *=_ - — = - ——. ——
(4.4) C(s*) C(s)+(fj(sj+A) fj(sj)) (fZ(SZ) fZ(SZ A)).
We consider the vector § obtained from § by replacing sj by sj—A
A a4 >a /\S_. . .
and s, by SZ+A. Note that Sj=Sj and §,5s, If 71<j, then § is
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clearly feasible for the first k jobs. If 7>j, then since 7 is
the least index with §Z>sz,'we know that %iigi, i=1,2,°%+,7-1.

Thus it holds that

§.25.2P./D for i=1,2,°*°,l-1,
i1 1 1

§.25.2P,/D for i=l,l+1,***,k.
iTid :

Therefore, § is feasible for the first k large jobs. Since S is

optimal, we must have
(4.5) c<§)-c<s)=(fz(sZ+A)-fz(sz))—(f.(s.)-f.(s.-A))zo.

Since fi snd f! are increasing and SZ=SZ s s <s,-A=5,, we have
J ' ] 3

(4.6) £, (s,40)~£; (5,)5E, (5,)~£,(5,-D)
and
(4.7) £,(s,) =, (s,-D)2E, (s, )£, (5 ).

Combining equations (4.5)-(4.7), we have

(4.8) (fl(sl) ~f (s ~L))~ (f (s +A) - f (s ))=20

From (4.4) and (4. 8) we know that C(S*)<C(S) Thus, by succes-
ively applying the transform we used to get S* from 5, we will
obtain an 6ptima1 vector that satisfies the lemma. This vector

also satisfies properties (i) (ii) and (di) of Lemma 4.1. 0

Lemma 4.3. If S is an optimal vector for jobs with pro-
cessing requirements plszZ"°Zpk (kSm) and fi-l(sl—1)>fi(sl)=
‘ 3 LI 1 ‘
fZ+1(SZ+1) fk(sk)’ then for any set of values AZ’ A

Z+1’l..’
Aj such that ‘

(1) p#D(A +h,  +eeth )Sp | and
(11) fZ—l(SZ-1)=fZ(SZ+AZ) “F1 (S =i )

the vector (sl,"‘,sz_l,sZ+AZ,"',sk+Ak) is an optimal vector
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for jobs with processing requirements pl,pz,-

et )

--,pk_l,pk+D(AZ+ =

Proof. Let § be such that

~
sS.=

s, for i=1,2,++-,7-1,
i

s,+A, for i=l,l+1,+++,k
idi

If § is not optimal, then there exists a vector $#* whose cost is
less than §. By lemma 4.2, we can assume that siZsi for i=1,
«ss k. Thus there must‘exist»indices j and r such that S§>§j’
s§<'s‘r and r2l. If j2l, we have f%(éj)=f;(§f) and if j<Z, f%(gj)
Zf;(gr). Since the derivatives are increasing, it is possible
to increase s? and decrease s?, and obtain a new vector that is
feasible and has cheaper cost than $*. This conclusion contra-
dicts our assumption that S* is optimal. Consequently, no vec-

tor can be cheaper than §. 0

We are ready to describe the algorithm for the deadline
problem. 1In this algorithm, we can treat the small n-m+l jobs

as a single job with processing requirement 5m=5.n

: p.. We also
“J=m" i

have §i=pi for i=1,2,°**,m-1.,

Algorithm DL

Step 1. Set sl=El/D, Si=0 for i=2,+++,m and k=2
Step 2. If Sszk/D, then go to Step 5.
. s 3 ' = '
Step 3. Let . be the smallest index with fZ(SZ) fZ+1(SZ+1)
=eee=Ff"? < . i s
fk(sk) for Isk. Find values AZ’ AZ+1’ , Ak
such that
' v -y —eoee=F"?
£ 1 (g 3yl =] L (S (st

and
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7-1
( 2 (s, +A )+ ) 8 )—P /D. If no such values exists,

=1 j=1 1
then find values such taht f' (sZ 1) =f (s +AZ)—
ooo_f (S k)

Step 4. Set sj—sj+-Aj for j=l,*°*,k. Return to Step 2.
Step 5. Return to Step 2 setting k to k+l1.

Example 4.1. Let n=6, m=3, D=1, p1=10, p2=6, p3=4, p4=2,
pSéZ, p6=2,.f1(x)=x2, f2(x)=2x2+4x and f3(x)=3x2+6x. Then, we
have p,=10, p,=6, P;=10, f](x)=2x, fj(x)=4x+s and £](x)=6x+6.
Figure 4.1 gives a sample execution of algorithm DL for this

example.

The computational time of algorithm DL is dominated by Step
3. Since the value of 7 in Step 3 must decrease with execution
of Step 3 except for the last. Step 3 is executed at most O(m)
times for each k. 1If the values AZ, AZ+1’...’ Ak can be com~
puted in time 0(d), where d depends on the types of actual cost

functions, the total running time is O(m(mid)).

Theorem 4.1. The algorithm DL computes a minimum cost vec-
tor which complete jobs with processing requirements Pys Pys

s Py by time D.
Proof. It is clear that SkZP /D for k=1,2,¢++,m. So the
vector is feasible. Consequently, the initial vector con-

structed in Step 1 is optimal for J By Lemmas 4.2 and 4.3,

1
Steps 2, 3 and 4 produce a vector that is optimal for the first

k large jobs. I
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Variables 8 s, |8, l A1 A2 A3 Comments
Initial values 10 — _— —_ — -—
— — s ' = =f!
k=2 10 4 2 4 f1(10) 20 f2(4)
. 34/3 14/3 —_ 1 4/3 2/3 — fi(34/3)=68/3=fé(14/3)
k=3 34/3 14/3 25/9 3 —_— -_— (25/9) f5(25/9)=68/3
(168/11) 73/11 45/11 1 130/33 65/33  130/33 fi(168/11)=336/11=

fé(73/11)=f5(45/11)

Figure 4.1. A sample execution of DL.



4.2.2 General solution method for the n|m|GU|fmax
preemptive scheduling problem

For any fixed maximum completion time, T, we can use the
algorithm DL to find a minimum cost vector that completes all
jobs by T. If we decrease the completion time to T-A, we can
reduce the completion cost by fo(T)—fo(T—A), but the optimal
vector to complete all jobs by T-A is more expensive. Now, we
will compare the completion cost and the machine cost. We as-
sume that the completion cost fo(t) has a derivative which is
continuous and nondecreasing for t>0. We show that the magni-
tude of the change in the cost of speed vector is decreasing in
T.

We define
F(t)écost of an optimal speed vector for D=t

Let S be an optimal vector for maximum completion time T. We

have

SiZPi/T for i=1,2,¢¢¢,m-1,

and
Sm=Pn/T
In optimal vector S for maximum completion time T-e, we have

§i;Pi/(T-e) for i=1,2,¢++,m-1,
and

§méPn/(T—e).

Lemma 4.4. TFor any t and e such that >0 and t-2e>0, it
holds that

F(t—2€)—F(t—e)>F(t—e)—F(t).k
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Proof. Let S, S, and § be optimal vectors for deadlines of
t, t-€ and t-2e, Without loss of generality, we may assume that
s, s and € are vectors constructed by the algorithm DL. We know

that §.>s.>s. for i=1,2,***,m.
i=i=i

Let s,=s.+A, and §,=s +A, for i=1,2,°**,m. Further, let
ioii iii

il<i2<"’<ik<m be the indices such that

Si.=Pi,/(t_€)'
J J

Because of the properties of the algorithm DL, we have

tro -—f ! - =% o= ! s
1. fl(sl)-fz(sz) £ (si,),
1 1
2. £ (s, )=f! (5. ,)=cc++=f! (5, ),
11+1 11+l ] 1l+2 1l+2 12 i,
k. f£' . .. (s, Y=eee=f! (s, ),
1k_l+l 1k_1+1 1k 1k

1) = =sese_f1 P
e £ By )= G
The properties 1 through k+l, and the fact that the derivatives

are increasing, imply that

4.9) F(t—e)—F(t)<(Al+A2+---+Ai )fi (si )
1 1 1

s e A P
+(Ail+l+ . +Aiz)fiz(siz)

* o0 ‘ -
+(Aik+l+ +Am)fm(sm),

and
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(4.10) F(t-2€)-F(t-€) > (A +B_+***+b. )f' (5. )
v 1 2 i i i

1 1 1
+(A, 4eee4B, DE! (s, )
11+l ] i, 1, 1,

A L I ) A ' -
+(Aik+l+ + Am)fm(sm).

Now we have

(B +By ke oetb, )=P, [(t-€)-5;

2 1 1 1

<P, /(t-e) - P, /t

1 1
=P, [/t (t-€)
4
and
A -v-oo- > . - - -
(A1+A2+ +Ai )=yi / (t-2¢€) Pi / (t-€)
1 71 1
> o (-
P, /te(t-€).
1
Thus it holds that A +°**+A <A +*+*+A, . In a similar way, we
1 i, 1 i >
1 1
show that

i, i,
(4.11) f AZ<< f ZZ for j=1,2,***,k and
1=1 1=1

I ~p8

2
A< V.
N

. 1 ra SEY (G ce o V(o
Thus, since fil(sil)=fiz(siz);: gﬁm(sm), from (4.9), (4.10) and

(4.11) we have
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F(t-2e)-F(t-g) > F(t-e)-F(t). N

i,

m i_

Since F(t)= ) f,(s,), ) s,=P, /t for j=1,2,+++,k and
. i i k "4,
i=1 k=1 3

m
z Ek=Pn/t, from the properties 1 through k+l in above lemma, we
k=1

have

1
t<

F'(t)=- [Pilfil(sil)+---+(Pn—Pik)fé(sm)].

And by this lemma, F'(t) is decreasing. Thus, since the deriv-
ative of f0 is nondecreasing , the unique value of D which mini-
mize £,(D)+F(D) is the solution of £;(D)=-F'(D). (Note that f,(0)

=0_and F(0)==.)

4.2.3 A special class of cost functions

We consider machines with costs

fj(x)=cjxk for j=1,2,**+*,m with ¢ Sepltecle s

m
where k(2 1) is a constant. We first give alfast’implémeﬁtation
for the deadline problem and then show how to find the minimum
(optimum) value of maximum completion times.

In the algorithm DL, we repeatedly found a group of machines
that had the same marginal cost, and increased the speeds of all
the machines. We take advantage of the fact that, if for any
intermediate;speedvéctor two machines have the same marginal cost,
they have the same marginal cost in the final solution. Using
this property, we combine all machines with the same marginal

cost into a single composite machine. The speed of the composite

machine is the sum of the speeds of its individual machines, but
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the marginal cost is the same as its individual machines. 1In the
following lemma, we show how to form an appropriate cost function

for a composite machine.

Lemma 4.5. If two machines have cost functions fl(x)=clxk
e ok _ A
and fz(x)fczx , and the speeds 51 and 5, such that fl(sl)—fz(sz)
are assigned to each machine, then we have

| k-1 1/(k=1),  1/(k-1) k-1 _,
[kc1 cz(sl+sz) ]/(c1 +c, ) -fl(sl)
—t !
—fz(sz).
Proof. By the assumption, we have f!(s.)=kec sk_l=kc sk—l.
- Y P > 1'°1 1°1 TF%2%2

Solving for c., we get cl=c2(52/sl)k_l. Substituting this value

1
into the left hand side of the equation of this lemma, we obtain

k-1 _ k-1
s s_+4s
ke |52 D D)
2 175 - k-1
1 (szlsl)c2 +c,
k-1
e s2 sl+s2
2 .s;  (sy/sp)Hl

k-1

=i —£? =f!
=ke, s, fz(sz) fl(sl)' i

Note that if we set

c,C
(4.12) c= L2
~(cll/(K_l)+czl/(K_l))k_l

]
th have kC(s.+s.)< 1=f'(s.+s.), wher
en we ave Sl 32 = Sl S2 s where

(4.13)  £(x)=Cx~.

Thus we can replace any two machines with a single composite
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machine whose coefficient is as in (4.12). As long as the speed
of the composite machine is the sum of the speeds of the individ-
ual machines, its marginal cost is the same as that of the indi-
vidual machine. Since the composite machine has the same type
of cost function as the original machines, formula (4.12) can be
applied to any member of machines and the resulting machines |
still have the same marginal cost.

We are now ready to describe the algorithm. The algorithm
produces a vector of composite machines. Associated with the

i-th composite machine are

= list of indices of the original machines that were

(i) Li
combined;
(ii) Ei= coefficient of its cost function;
(ift) §i= sum of the speed of all the combined original

machines.
Thus all machines in the list L have their marginal cost kE s k 1
And if machine M, is in this composite machine, we find its speed

=s,(c,/c )ll(k_l)

j 14¢47¢4 by solving

(4.16)  keys K7leke5 7

After processing the first I large jobs, the algorithm con-
structs a list of composite machines that corresponds to an opti-
mal solution for this I jobs.  The algorithm again forms a new
list for the I+1 large jobs as follows. Let Ej for j=1,2,¢°*,i
be the speeds of the i composite machines forming an optimal
solution for the 7 large jobs, and let Ej for j=1,2,¢°°,i be the
coefficients of their cost functions. We initially assume that

(i+1_)th composite machine is the original machine MZ with speed

+1
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- P

;41" and cost coefficient ¢

i+1=c2+1. This vector is

optimal for the I+1 large jobs, if

k-1 = =k-1
1415141 5k° i%1 -

If the condition (4.15) does not hold, then machine M

(4.15) ke

741 and all
machines in composite machine i have the same marginal cost in
.the optimal vector. Thus we can merge composite machines i and
i+l. Further, we compare the new marginal cost of composite ma-
chine i with the marginal cost of i-l. We continue the merging
process untill we have j composite machines and the marginal cost
of composite machine j is not.greater than the marginal cost of
j-1.

In-the following, we present a formal description of the al-
gdrithm. We again assume that the n-mt+l small jobs are merged so
that

§j=pj for j=1,2,°°°,m-1
P Py Pt Py

Algorithm MC

Step 1. Set so=°, c;“, c

i=2,

Step 2. Updaté i, Li’ Ei and ;i as follows.

1 Cy sl P1/D L= {M }, 1=1 and

(1) i=i+41,
2) L ={Z},
3) ¢ §7¢7
(4) si=pZ/D.
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= —k-1_ = k-1

Step 3. If ;8 5 15i-1° then go to Step 4. Else go to
Step 5.

Step 4. Update c 1° Si-1° Li-l and i as follows
. _= = - 1/(k-1) - 1/(k-1) k-1
(1) ey _q=(e e, 4/ (e, +e 3 )T

(2) 8;_17S +s:.L
(3) . Li—1=Li—lULi’

Return to Step 3.
Step 5. If I>m, then stop. Otherwise, return to Step 2
setting 7 to Z+1.

The computational timé of algorithm MC is dominated by the
loop of Steps 3 and 4. Each execution of the loop decrements i.
We increment i by one (m-1) times in Step 2-(1), and i can not be-
come smaller than one. Thus, this loop is executed at most (m-1)
times, Thus thé loop takes time O(m) if we count each of thg
numerical operations and the set operations as a unit time. Fur-
ther all other steps in the algorithm can be taken with time O(m),
and thus the actual speeds of the original machines can also be
computed with time O(m). On the other hand, to find the first m
large processing requirements and sort them in advance, we re-
quire time O(n) and time O(mlog,m), respectively. Consequently,
the total time to construct an optiaml schedule is O(mlog,m +n),
since the actual schedule is constructed in time O(mlog,mtn) by
using the G-S algorithm. "

The validity of algorithm MC follows from Lemma 4.5 and the
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fact that if the condition in Step 3 is satisfied, all the ma-
chines in composite machine i and i-l1 must have the same marginal
cost in an optimal vector.

Now, we show how to solve the original problem for this
class of cost functions. 1In the algorithm MC, each machine speed
is propotional to D—1 and the comparison of Step 3 does not de-
pend on D. Thus the same composite machines are always formed
regardlesélof the vaiues of D. Therefore the optimal speed can

be represented as

sj=uj/D for j=1,2, oM,

w'he.re;,uj is the optimal speed when D=1, Moreover, the total ma-
chine cost is

m
Y ¢, (u /D)*eu/D%,
=1 33
T ok ,
where Uhjzlcjuj. Then the total cost f__  is

k
(4.16) £ =£ ()40/t5

With regard to cost functions foyitis easy to find a t that
minimizes fmax' Especially, regarding the simplest cost function
fo(t)-cot and k=2, the optimal solution has

1/3
-2y
0

4.2.4 Including setup costs
Often it is useful to consider machine cost functions of the

form
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v +f (x) x>0,
8 (x)= '
\ x=0,

where fi(x) has the property given in the beginning of this sec-

tion. Thus v is a fixed setup cost incurred by using machine
M,v
i

If vléyzi---éym,-then we can solve the problem as follows.

The optimal speeds have slg§2>" >Sk>sk+1 . '=sm=0 for some k<m.

If k is fixed, the total setup cost is always X vj. Thus the

setup costs are ignored. Therefore the problem including the
setup costs is reduced to the original problems with k machines.
Then an optimal vector is found with m calls for the algorithm
DL.

4.,2.5 NP-hardness

We show that if we relax some of our assumptions about the
cost functions, the resulting problems become NP-hard. Informally,
a problem, whether a member of NP or not, is NP-hard if we can
transform an NP-complete problem te it and it can not be solved
in polynomial time unless P=NP. Thus, in an intuitive sense, the
NP-hard problems are at least as hard as the NP-complete problems.
For the formal definition of NP-hard, refer to Garey and Johnson
[4]. We first consider arbitrary setup costs and then machines
with discrete speeds, We use the NP-complete theory for a Subset

Sum problem [4] defined as follows,

Subset Sum Problem: Given Sq{al,az,-

ai,f-°,an and b are integers, is there a subset ScS such that

*+,a } and b, where
n

Z a,=b ?
a,e§
i
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We show that if we have cost functions of the form fi(x)=vi

+cix2 for x>0 and'fi(0)=0, then the problem to find a minimum
cost solution for a given deadline is NP-hard. Given a solution
for the subset sum problem, we can constrﬁct a solution of the
deadline problem as follows: We make nt+k jobs with processing
requirements,

py=P,=***=p=Ib/n],

Pn+1=...=pn+k=1’ where k=b-n|b/nj.

Thus we have Pn+k=b' Also there are n machines whose cost func-

tions are
ViT2y
ci=1/ai for i=1,2,***,n.

In this case, the deadline is D=1.

Lemma 4.6. There exists a solution for the subset sum prob-

lem if and only if the deadline problem has a solution with cost
2b.

Proof. (i) Suppose that there is a solution S for the sub-

if a,eS and

set sum problem. Then the speed vector with s;=a,; 1

s,=0 if a_ XS has cost
i i

1 28 e
z_(ai+ v (ai) )=2b.
aieS i

From the construction of the processing requirements, any solu-

tion S_>b is feasible, where § =zun s.. Therefore the deadline
n= . n 4j=1"]

problem has a solution with cost 2b.

(ii) Suppose that .there exists a solution S with cost for
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a deadline problem. Then we know .that Sn=b, and show that si>0'
implies s;=a,. ;Concerning.the‘machines'With nonzero speeds, we
define
2
+s
p @yFs /a) e, s,
T,= = +

1 ’ 8, S, a,
1 1 1

Now we have

a, s
sl + =2 if ai=si
i
and
ai si :
- + . >2 if ai#si.
i i

Since the overall ratio of cost to speed is CZbZSn)=2, each xr,

must have value 2. Thus each nonzero speed s, has value a,, and

i
so the nonzero si's form a solution to the subset sum problem. -

0
Theorem.4.2. The deadline problem with arbitrary setup costs
is NP-hard.

Proof. Lemma 4.6 shows that we can a subset sum problem by
a transform into a corresponding deadllne problem. The transfor-
mation can be achieved polynomially. Therefore we have proved

the theorem. 0

Next we consider a discrete version of our machine system in
which each machine Mi can take only two possible speeds 0 or q, -
We show that the discrete deadline problem is NP-hard even for

the following cost functions:

fi(x)=cix2 for i=l’2’0-o,m.
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Again, we start with a subset sum problem and construct a
solution for the discrete deadline problem with n+k jobs and n
machines as follows:

P1=P2="'=Pn=lb/n},

Pn+1= e =pn+k=1, where k =b?\n lb/nj

q;=a, for i=1,2,++*,n
1

i a,
i

for i=1,2,°**,n
D=1.

Lemma 4.7. There is a solution to the discrete deadline
problem with cost b if and only if the subset sum problem has a

solution.

Proof. Similar to Lemma 4.6. 0

Theorem 4.3. The discrete version of the deadline problem
Is NP-hard. ‘

Proof. Analogous to Theorem 4.2. 0

Corollary 4.2. The discrete nlmlGUlfmax scheduling problem
is NP-hard.

Proof. Given a solution of subset sum problem, convert it
to a corresponding discrete deadline problem as in Lemma 4.6.
Instead of a deadline, we use a completioﬁ cost fo(t)=bt and
total cost bt+Sm2bt+Pn+k/t=b(t+1/t). This cost function is mini-
mized when there is a solution to subset sum problem and t=1.
Thus completion cost has a cost 2b if and only if subset sum

problem has a solution. 0
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4.3 Generalized Mixed Shop Scheduling

In this section, we consider an extension of anIMXlCma

X

nonpreemptive scheduling problem to the changeable speed case.

This problem is specified as follows.

(1)

(2)

(3)

(4)

(5)
(6)

There is a set of n jobs J={1,2,*++,n} to be processed
on two machines Ml and M2'

Each job i consists of two operations, one of which is
to be processed on Ml and the other on M2.

The job set J consists of two disjoint subsets F and O.
F is a set of flow shop type jobs and O is a set of

open shop type jobs.

-A speed of each machine is a variable. Processing re-

quirements of each job i on M1 and M2 are a, and bi,
respectively.

No preemption is allowed.

The objective is to determine an optimal speed of each
machine and an optimal schedule to minimize the total
cost fmax associated with the maximum completion time

and the speeds of machines.

This is an anIGMX{fm_aX nonpreemptive scheduling problem.

In this problem, the actual schedule can be constructed by"

the algorithm for the ordinaly n|2]MXICmaX nonpreemptive sched-

uling problem discussed in Section 2.4. So we can focus on ob-

taining the optimal speeds.

In Subsection 4.3.1, we formulate the main problem P. The

problem P can be divided into two subproblems P and P. In order

to solve P, we introduce auxiliary (or supplementary) problems.

Similarly for 5, supplementary problems are introduced. In Sub-

section 4.3.2, we develop a polynomial time solution procedure
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for the main problem P and clarify its time complexity.

4.3.1 Formulation of the problem

Let 81 and s, be the speeds of machines M1 and M2, respec-

tively. Then the processing times of job i become ai/sl on M1

and b,/s, on M,. Further, let C be the maximum completion
i'72 2 max

time of an optimal schedule as the function of the machine speeds.
The following problem P is the main problem considered in

this section.
4 9 9

+c,.8

P: Minimi =
Hoize fmax cOCmax +Clsl 272

subject to Sl’s2>0’

where c and c, are positive constants and , ql_and q, are

c

0’ "1 2
positive integers. The problem P is divided into subpfoblems P .
and P as follows.
B: Minimize cC Lite.s Zbc,s. 2

: 0 max 1°1 T¢2%2

4 > >
subject to AF/sl==Bo/s2 and s,,s, o,

where AF=,Z a, and BO=.Z bi.
jie€F ie0
q q.- q
NP 1 2 2
Minimize COCmax+clsl +c232

avll}

; >
subject to AF/sl<Bo/s2 and 158, 0.

Note that P corresponds to Case 1 in Section 2.4 and P to other

cases. Thus in the problem P we have
: = * |
(4.19) Cmax max (CF*, (AF+AO)/sl, (BF+BO)/SZ)’
where A = Z a,, B = z b, and CF* is the maximum completion time
0 . i F | i
ieO ieF
of an optimal schedule when only jobs in F are considered subject

and s_.

to machine speeds S1 5
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An optimal schedule giving CF* is determined by the follow-
ing binary transitive rule RO’ which is the variation of Johnson's

rule.

R : If min(s! a,,s

o ) < mln(s ,52 .), where s 1/s and

2k
Sé=l/52’ then the processing of job j precedes that of job k.

RO is equivalent to the following relation R, since Si and

are strictly positive.

.
T

$2

R: 1If mln(Ya,,b ) <m1n(Yak,b ), then the processing of job
j precedes that of job k, where Y—sl/s2

The relation R implies that the candidate points of 7y, where
an optimal schedule changes, are ij=bk/aj for j,keF, Wbere if

- . . . s >
aj 0, .then ij is set to « Considering finite ij=§0/AF
and sorting the different ij's in an ‘increasing order, let
A JAY
= <y <y <see < =
Yo Bo/ Ap<Yy <Yt Y Y M

where M is a sufficiently large number and p is the cardinality

of different ij's. Note that lﬁpépi, where n1=lF].

‘Theorem 4.4. If we have
(4.20) min(?aj,bk)épﬁn(?ak,bj) for Yi<?<Yi+l’
(4.21) min(Yaj,b )'<m1n(Yak,b ) for Yiéyéyi+l
holds.

Proof. First note that the following cases are possible.

Case 1. —a,<b and vya. <b.
Y = Y k=3

k
PP va > y
Case 2. Yaj bk and yaképj
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va < va. >
Case 3. Yaj_bk and yak bj

and ?a

k

Case 4. yaj>b K

>b,
J
ya.< va. sb..

Case 1. Yaj_bk and Yak_bj
From (4.20), it holds that

. ~ =— < 1 v =— <
(4.22) mln(Yaj,bk) Yaj__mln(yak,bj) Yak or aj_ak.

From definition of Yi’ Y and the assumption, we have

i+l

vy <m3
y=yi+1_m1n(bk/aj,bj/ak).

Thus min(?aj,bk)=7aj and min(?'ak,bj)='?'ak hold. Combination
: . N ~ = g\l = ~
of (4.20) with (4.22) shows that mln(Yaj,bk)-Yaj_Yak mln(Yak,bj),
that is, we have (4.21).
Proofs of other cases can be done in the same way as in this

case, and so it is omitted. 0

Theorem 4.4 means that an optimal schedule for some Ye(Yi,

Yi+l) is also optimal foranyye[yi 1. Accordingly, CF* can

Vi1
be expressed on the interval [Yi;yi+1] as follows.

oy

CF*=s, max (y'i a ., .+) b

)s
1sjsn; k=l [kl oy [K

where y'=(yi+yi+1)/2 and [k] denotes the k-th job index correspond-

ing to this y'.

4.3.2 Solution procedure for subproblem P

From the expression of CF*, the feasible region of P, {(si,
sé)lsi,sé>0, Y=si/ségp0/AF} is divided into the subregions'{(si,
sé)lsi,sé>0, Ye[yi,Yi+l]} for i=1,2,**+,p. Each subregion must
be divided further as follows.
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. o s +2 -
First, on the interval [Yi’Yi+l] we consider (nl ) linear

functions vy of v,
=YA_+B

where

%
a
k=1 LK

= (A_+
A= (A

0

“Yb
k=1 K

BF+BO

Ye[yi,yi+1] and [k] denotes the k-th job index of F in an optimal

for i=1,2,%*+,n

for

for

for

for

for

for

i=1,2’ooo

i=nl+l,

i=nl+2,

i=1,2’ see

i=nl+l,

i=nl+2,

1

+2,

’nl’

’nl’

schedule corresponding to y'=(yi+Yi+1)/2.

Let y be the function

defined by the maximum value of yi's for each v, i.e., y= max

yi) if using a suppressed notation. By utilizing Megiddo's algo-

rithm [24], y can be determined in at most O(nllognl) time, and y

1§i§n1+2

is a piecewise linear increasing convex function. Arranging the

breaking points of y in an increasing order, we have
m, m,+l

0

where 1sm.=n..
il

1 i
= < <o o e <o o <
Yi Yi Yi Yi Yi Y.

1

=Yi+1°

Now we introduce the following subproblems 5? of P for h=0,

1,+++,m, and i=0,1,++,p.
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P.: Minimize Eh=c (s'a +s!'B )ql+c Sq2'+ 9
P : 1=C0 (514 4¥55B,) 151- *¢,8,

- h _hil
. R
subject to Y——sl/s2 [Yi,Yi ] and Sl’sz>°’
where '0 is the index of Yo that gives y on the subinterval [Y?,
Il +

Y
i
By solving all P?'s and choosing the best solution among

optimal solutions 6f §?, P can be solved. Therefore an optimal

speeds and an optimal schedule can be found.

h

4.3.3 Solution procedure for 51

By the famous inequality between arithmetic and geometric

means, it holds that

q, 1,

Eh=c (s!A 4s'B )q1+ s 2 +
i “0°°1%a"%2%) TC1%1 725,
q q q q
o 1, % 2
o5 (YAa+Bu) +32 {cl(lly) +c2}

1/(q;+q,)

q
11
I ,

q 9,49 q. q
2(ap+a,) [(eglay) 2 (a8~ 2(1/a) Hey(/y) e,

where the equality occurs if and only if

c Y-qz+c l/(q1+q2)
9, 1 2

q q
071 . 1
(YAa+Ba)

Thus, in order to solve 5?, it is sufficient to find a minimizer
*
y? of
QY T Y
E(N=(YAFB,) — “(e;¥ “4ey)
h htl

h*
on the interval [Yi,Yi ]. Once Yi is found, an optimal solution

(sh.,sh.) of f? is constructed as follows.
1i’7 24 i
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-q 1/(q,+q.,)
. (Yh*) 2+c2 1772

a1
(Yi Aa+Ba)
h*
l V
®11i’ Yl 2i
Differentiating f(y) with respect to Y, we have

q,9,"1  -q,  ay=1 ~=(q,+D)
£1(v)=q,9,A c, (YA +B ) (cyy “Hey) T Y

x(y32* -~ c /A ).

, . h#*, .
Since f£'(y) changes its sign at most once, Yi is determined as

follows.
+1
) h, 92 ~_ _h*_h
(i) 1f (Yi) P4 (Bucl)/(Aacz), then Yi =Yi'

q,+l
(1) 1f 0iH s e/ (Ac,), then vo =t

q +1 *
< Be/ye)< (FTH 2T, then vi =

ol
(\Aacz )

In order to solve P, we must compute

q.,+1
(141) If (v)) 2

—h* _ h* _ h#
Cin(S14w2S24x

)—mln(C (s! 1h ))—
h

1i° 21

Then for P, machine speeds s, and s, are determined as 1/s!

*®
1 2 li*

and 1/s *, respectively and an optimal schedule is constructed
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by applying the algorithm in Section 2.4, where the processing

times of job j are aj/s1 on M, and bj/s2 on M,.

4.3.4 Solution procedure for subproblem P
N 1 < [} . s
From the results of Section 2.4, SlAF=82B0 implies
= 1 '
Cmax max(sl(AF+A0), sz(BF+BO), ?ax(s
ic0
=a!
szmax(y(AF+Ao), BF+B0, ??g(yai+bi)).
Now we define the (n2+2) linear functions of vy as follows, where

| \j
lai+52bi))

n2=|0!.

zj=yij+§. for j=1,2,++*,n.+2,

J
where K=aj, §.=bj for j=1,2,°**,n

2

corresponding to job jeO, and

3 2
An2+1=AF+AO’ Bn2+1=0’ An2+2=0 and Bn2+2=BF+B0. Then if we define
z= max (z.,),
1§i§n2+2

2
tained by Meggido's algorithm in at most O(nzlognz) computa-

we have Cmax=s z. This z is just same form as y, and can be ob-

tional time. Arranging the breaking points of z on the interval

(O,BO/AF] in an increasing order, we get the sequence
Yg=e<Y< o0 <Y;.<Y;'+1=BO/AF, where

€ is a sufficiently small positive value and p' is the number

1 : [ IEVA
of breaking points on (O,BO/AF]. Note that for Ye[Yi,Yi+l], we
have Z=ZB for a certain B, 1§B§n2+2. Then the following sub-

problems ﬁi of P for i=0,1,"°,n2+2 are introduced.
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—1 q q,

= . _ 2
Pi. Minimize C- =c, (s! AB+s BB) +cls1 +c,8,

subject to Y=(s'/sz)e[y Yool Sl’s’>0

i+l

where B is the subscript of zg that gives z on this interval.
Again, solving all Pi and choosing the best solution among opti-
mal solutions of Pi’ P can be solved, i.e., each optimal speed
and an optimal schedule can be found. Solution procedure for Pi
is quite same as that for 5? and so it is omitted.

Now, we denote a minimal solution of Ei with (Sii’séi) by

={% =1
C (s!,,,s!. )= min (C(s!.,s!.)).
( 1i* 21ﬂ) léiép'( ( 1i’ 21))

. = = . ' '
Then optimal speeds s, and s, are determined 1/s{44 and l/s21*,
respectively. Further, the corresponding optimal schedule can

be found by solving the ordinary n]?[MX[C .x Dompreemtive sched-

uling problem with processing times aJ/s and b /s for j€O.

4.3.5 Solution procedure for the main problem P

It is clear that the optimal speeds s%* and sg of the main

1
, h* h*
problem P can be found by comparing C «(8 11*,82 *) with C ( i.*,
i

séi*). Using si and SZ’ an optimal schedule can be found by the
algorithm in Section 2.4, where the processing times of job j are

and bj/s* on M

%
aj/sl on M 5 9

1

Theorem 4.5. The above solution procedure finds the optimal
speeds of M1 and Mz, and an optimal schedule in at most O(nalogzn)
computational time for given 9 and 495 if any power and root can

be computed on O(1l) time.
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Proof. The validity of our procedure is proved already from
the preceding discussions. .Therefore we show only the complekity
of our procedure.

The computation of Yy takes O(nzlogn ) time, since the num-
ber of v, ik is at most O(n ) and sorting O(n ) elements takes O(

Zognl) time. Next, an opt1ma1 schedule of jobs in F on some
interval [Y s Y. +1] is determined in O(n Zogn ) time. Once an
optimal order 1s determlned then y can be obtained in O(n Zogn )
time. Thus (sll*,s2 *) can be found in O(nslognl) time.

Similarly its complexity for P is O(nzlognz), since p' is at
most O(nz). Finally an optimal schedule can be constructed in
O(nlogn) time. Consequently, the complexity of our solution pro-

cedure for the main problem P is 0(n’Zogn). 0
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