
Title STUDIES ON MACHINE SCHEDULING PROBLEMS

Author(s) 益田, 照雄

Citation 大阪大学, 1986, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1714

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

 STUDIES
 ON
 MACHINE SCHEDULING
(.JFk iriiLpt 7,is t•. -t) >

 PROBLEMS
i)- pst}A7,,,b,o7ffgig,>z)

'I'ERUO MASUDA

CHAPTER

CHA?TER

 CON'[[`EM'S

1 INTRODUCTZON
1.1 Machine Scheduling Problems

1.2 Classification of Machine Scheduling Probiems
 1'.2.! Jobs

 1.2.2 Machines
 1.2.3 Optimality Criteria
 1.2.4 Representation of Modeis

1.3 Computational Complexity
1.4 Coping with NP-complete Problems

1.5 Outline of the .Thesis

2 SCHEDUL!NG PROBLEMS ON SHOP TYPE MACHZNES
2.1 Zntroduction
2.2 Solvable Case and Some Bound on Approximation
 Algorithm for nl2lFlL Nonpreernptive
 max
 Scheduling Problem
 2.2..1 sozvabie'case for nI2lFlL Nonpr•e-emptive
 max
 Scheduling Problem

 2.2.2 Bound on Approximation Algorithm for
 nl2lFILmax Nonpreemptive scheduling problem

2.3 A solvable case for nl310ic Nonpreemptive
 max
 Scheduling ProbZem

 2.3.1 Construct,ion bf Optimal Schedule

 2.3.2 Proof of Validity

2.4 The Mxed Shop Scheduling Problem
 2.4.1 Preliminaries

 2.4.2 Optimal Algorithms

 (o

1

1

4

4

5

 9

IO

!3

16

17

19

19

21

22

26

30

32

39

46

47

50

CHAPTER

CHA?TER

3

3

3

.

.

3.

3.

4

4

4

.

e

 SCHEDULrNG PROBLE)•rs ON PARALLEL TYPE]![ACHINES

1 Zntroduction
2 Approximation Algorithms for nlmiIILmax

 Nonpreemptive Scheduling Problem and Their

 Worst Case Bounds

3.2.1 Approximation Algorithm EDD and rts Worst
 Case Bound
 '
3.2.2 Approxirnation Algorithm LPT and Zts Worst

 Case Bounq . ,
 ' '3 'nl21rlLmax Preemptive Scheduling problem with

 tt 'Generalized Due' Dates •
 '3.3.1 Construction of Associated Networ' k Flow

 Problem
3.3.2 Algorithn for a ' Feasibie Schedule

3.3.3 Minimizing 1![axirmam Lateness
4 nlmlQIICmax Scheduling Problem

3.4..1 Nonpreemptive Unit Processing Time Schedule

3.4.2 Preemptive General Processing Time Sehedule
 SCHI!)ULrNG PROBLEMS WrTH CHANGEABLE maCHrlSllS

 SPE•ED

1 !ntroduction
2 A Generalized Uniform Machine System
4.2.1 The Deadline Problem
4.2.2 General solution Method for the nlmlGUIfmax

 Preemptive Scheduling Problem

4.2.3 A Special Class of Cost Functions
4.2.4 Including Setup Costs

4.2.5 NP-hardness •

 (ii)

67

67

 69

 70

 77

 80

 81

 82

 88

 90

 91

 95

101

101

103

106

1!2

115

120

121

4.3

 4.3

 4.3

 4r3

 4.3

 4.3

IUIFERENCES

GeneralÅ}zed Mixed Shop

.1 Formula.tion of the.

.2 Solut'ion Procedur'e

.3 SQIution Procedure

.4 Solut'ion Procedur'e

.5 Solution Procedure

Scheduling

Prnh1om- -- VV".Vl"

for Subproblem P
 -hfor Pi
 r.
for Subproblem P

for the Main Problern P

125

126

128

130

l32

133

l35

(iii)

 CHAI)T•ER l

INTRODUCTION

1.1 Machine Scheduling Problems

 Machine scheduling problems originally arise from industrial

production systems. In the system, we must perform a number of
g'obs by using a number of maehines. Each of the jobs consists oÅí

many operations. To perform a job, we must process each of its
operations. The por)oeessing of an operation requires the use of a

particular machine during a particular duration, the p"oeessing
time of operation. In these situations, a possible' solution cor-

responds to a processing order of jobs on each machine. The

goodness of obtained solution is measured by total time or total
cost function reflecting actual purposes. The objeet of this

thesis is to develop efficient algorithms giving the most prefer-

able solutions in such actual problems.

 The scheduling problems also occur under many other cireum-

stances. In these circumstances, however, above terminologies

are given more flexible interpretations: jobs and machines

can stand for patients and hospital equipments, classes and
 '

 -1-

.teachers, ships and dockyards, programs and computers or cities

 and traveiling salesraen. Each of these situations fits into the

 framework sketched above and thus falis within the scope of ma-

 chine scheduling theory. Moreover, in rnost situations suggested

 above, if 'we cboose poor sequencing decisions, we are sure to

 incur intolerably long tirnes or large costs. Therefore we need
 to develop an efficient method (algorithm) for 'finding an optimal

or atleast sufficiently near optitual schedules of the jobs with
respect to the given cost function (objectiv' e function).

 UsualZy, the schedules are represented visually. The most
popular visual representation is Gantt chart or timing diagr.am

iliustrated in Fig.1.l. In the figure, it is obvious that one
 .of horizontal lines except Eor the topmost line corresponds to
a niachine and the toprnost line rep'resents time axis. The hatched

areas in the figure represent idle periods on the machines. :n
this way, the Gantt chart is convenient to give an infotual but

intuitive notion of a scheduie. More forrnally speaking, a

schedule'is defined as a suitable mapping that assigns a sequence

of one or more disjoint execution intervals on each machine to
each job without breaking the foliowing restrictions.

 to

 Ml

 "12

 M3

 Fig.lil. Example of Gantt chart.

 -2-

.

Jl J4 Js J3

J6 J7

Js Jg J10

 (1) Each machine can process at most one job at the same

 time.
 (2) Each job can be processed on at most one machine at the

 same time.

 (3) The total length of the intervals assigned to the job

 is precisely its processing time.

 (4) At least one maehine is busy so long as there remains

 at least one uncompleted job.

 (5) The jobs can be processed independently, that is, there

 exists no preeedence constraint such that some job must

 be compieted before other job can begin.

 The above restrictions (1)-(5) are assumed throughout this

thesis without being specially mentioned.

-3-

 1.2 Classification of Machine Scheduling Problems
 ' ' '
 In the last section, we presented a general modei of the

 machine scheduling problems. Thus, in a general setting of the
 machine scheduling problems, a set of J'obs J={Jl,'•',Jn} has to

 be processed on a set of machines M={.Ml,"',Mm}. Besides the gen-
 . ' eral setting, the actual machine scheduling problems occurring
 ' under various circumstances have various characteristics. And,

 each probJern can be sp.ecified principally by the characteristics

 of jobs, machines, and optimaZity criteria. Thus, we can classi-

 fy the maehine scheduling problems according to the above charac-

 teristics in the subsequent subseetions.

 I.2.1 Jobs

 One oE the most important characteristics of jobs is the

number n of jobs to be processed. In this thesis, n is always

assumed to be an arbitrary positive integer. Further' . .for Each.Ji,

we should assiga the following values.

 (i) The ntenber of operations. Each job Ji'consists oE

mi operations, each of which has to be processed on the machines

with a particular funetion for the operation.
 (li) IFh.oeessing times. To complete the processing of Ji,

we must process each operation of Ji on a particular machine M j
depending On each operation during p.. time in total. rn Par--
 lj
ticuiar, if pij does not depend on j, we denote it by pi. Usual-

ly, the processing times are arbitrary positive constants. But
sometimes we deal with the case that the processing tirnes are all

equal to the unit ti:tie, Å}.e•, pi or pij"1.

 (iti) Due dates. The processing of eaeh job should ideally

be completed by the due dates. These due dates are denoted by

 -4-

d. or d... But, we do not always impose the due dates for the
 lj z
jobs, depending on the objective.

1.2.2 Machines

 One of the -inpor-tant characteristics of machines is the

nurnber m of available machines. Here, tu is an arbitrary positive

 integer. Especially, the irnportant special cases are the cases

of two and three machines. Thus, given an m machine scheduling

probXetu, we must develop a solution procedure that works effec-

tively for any m. '
 Further, we have to cZassi.fy the scheduling problems by the

types of machines according to the difference in functionai ca-

pability and speeds of machines. First, we classify the types

of machines into shop type and parallel type. Moreover, we dif-
ferentiate each of shop and paraMel.type machines into -the par-

ticular types anaZyzed in the subsequent chapters.

 wr(Z)ShoTeNahie
 ' ' In this type, each job Ji cansists of tu eperations Oixse'e,

O . Each operation O.. can be processed only on M. and can not
 IJ im J
be proeess.ed on•any other machines. The processing time of Oij is

p..r• Thus, each machine has the distinet functional capabilitye
 lj
For exarnple, in a computer system, an input device and ap output

deviee have clearly the different functipnal capability. The

shop type machine is classified further into the following types

by the order of proeessing of operations.

 ve()FloShTMchies(F)
 Each operation Oij of Ji must comp2ete processing on Nj

before starting to process the next operation Oij+1 on blj+1 for

j=1,2,"',m-1. Thus, all jobs rnust pass through the machines in

 •-5-

the same order, Ml+M2ÅÄ"'ÅÄMm. (See Fig. 1.2(a).)
 S(EINpt9!ls!LE!}g!l.-!lz2g-!1acUIRgE.)OpShTMh.(O)

 Each operation of Ji can pass through the machines in an

arbitrary order, but moxe than one operations of Ji ean not be

processed at the saeme time. (Seg, Fig. 1.2.(b).)

 The above eharaeteristics of maehines are also the charae-

teristies of jobs. Therefore we may call the jobs to be processed
on the open and flow shop type machines the t;RgR-Elh!gR-!i>m9-jgl2Et e b

andtheurtl ht b,respectively. ' '
 '
 The difference of the schedules on the above two shop type

machines is illustrated in Fig. 1.2, where on both types proe.-.

essing times are taken as plfl, p12=1, p2i2, p22=1, p31=3 and

 05
 Ml

 M2

 (a) A schedule on flow shop type machines.
 ' ' '

 O• 5'
 Ml

 M2

 (b) A schedule on open shop type machines.
 ' '
 Fig.1.2. The difference of the schedules on flow and

 open shop type machines.

 .-6-

Jl J2 J3

'

Jl j2 J3

Jl J2 J3

J2 J3 Jl
.tr

 In the above two shop types, we assume that the znaqhines

(jobs) have only the characteristie of either the flow shop type

machines (jobs) or the open shop type machines (jobs). However,•.

it is possible that the maehines have the characteristics of both

types simultaneously.

 us(zi) MxedShoTypeMachies (MX)
 The rnachines may have the characteristics of both t'he flow

shop type machines and the open shbp type machines simultaneousiy.

In other words, in a set of jobs the flow•shop type jobs and the

open shop type jobs is mixed.

 Zn the above three shqp types, we assumed that the rnachines

have same speeds. But in sorae cases, the speed of each maehine

can be changeable. Thus, the speed of each machine must be de-
termined together with the schedule.
 . .g("L2.-..-S!g!!gEA22&s}sl-!!Psgsl-E!!g2:EzE!L.!I!es!!iRgfi=v)GeneraiizedMixedShoT"fchis(GMX)

 The jobs are the mixed shop type jobs. And, each speed of
the maehines is; not a constant but a variable to be determined

together with the schedule in the final solution. The actual
processing time of operation O.. of job J. on machine M. is p..=
 IJ 1J zJ
pl.j/sj, ss.here sj'is a variable speed of Mj' and plj is an amouttt

of proeessing requirement of Ji.'

 Next, we consider the parallel type machines`
 L/!.!.L!lg!gL!.gUlx2g-bl!ggt!.!.ngsll)P111TMachines

 Each job consists of only one operation. By the speed of

each machine, we differentiate the parai!el type machines as the

following. Here, each machine has the same function and each job

can be processed on any machines.
 L/y)-Is!gnSLgs}!-.!2g:si!J.gLlveg.!lgE!!Lngi)idtiPiiiTMhines(i)

 Each machine has the

speed, and each job can be

same functional capability and same

 processed on any machines. The

 -7-

processing time pij of job Ji on

1,2,.e ",m.

 (vi) Vniform Parallel Type

machine M

Maehines

. is equal
1

(U)

ines. Ea.ch

 speed is

of each job

to pi for j=

 Each job can be' processed on any rnach machine
has the same functionai capability, but its different
 'and fixed. Thus, the processing time pij Ji on ma-
chine Mj is pij=pilqj, where qj is the predetermined speed of Mj

and pi the processing requirement of Ji.

 The former is identical in both functional capabi!ity and

speed. Thus, we may regard the machines as the rr! identical ma-

chines. On the other hand, the latter is identical in functional

capability, but each machine has a different constant speed.

Thus, some machine can process the jobs faster(or slower) than

other machines.

 In the following, we extend the case of constant speeds to

the variable speeds. ' In this case, similar to the generalized
 'open shop case, each speed is to be determined together with the
 ' 'schedule.

 (vti) Generalized Uniform Parallel Type Machines (GU)

 . In this type, the speed of each machine is not constant but
 'variable. Therefore we rrrust determine the speed of each machine
 'together with the schedule. The processing time pij of job Ji on
machine M. is p..=p./s., where s. is the changeable speed of M.
 •J. 13 1J JJand pi is a processing requirement. The other characteristics
 ' 'are sarne to those of the uniform parallel type. ' .

 !n the above three parallel types, we assume that each ma-

chine can be processed on any machine. In the following type,

we remove that assumption. Thus, job Ji can not be always pro--

cessed on any machine but can be processed only on a predetermined

 -8--

subset

 (

 Q.
 -
vdi)

of M.

Quasi-Identical Parallel Type Machines

 Ea'ch job Ji can be processed only on a predetermined

Qi of machine set M. For example, let M={Ml, M2, M

M3}. Then, job Jl can be processed on Ml and M3,

processed on M2. Therefore the processing times of
chine Mj are pij=pi if MjEqi and pij=co if MjKqi•

teristics are the same as those of the identical parallel

1.2.3 0ptimality crSteria .
 ' Xn the above subsections, we pointed out the

of jobs and machines to classify the seheduling problems

remaining factor is the optimality criterion. In
we define the optimality criteria to be chosen. First
the following quantities for each. job ji.

 (a) Completion time; the time C. at which the
 z
of all the operations of job J. complete, namely C
 1 -1
where Cj(i) is the completion time of the processing

 (b) Lateness; the difference L. between the completion
 i
and yhe due dates of job Ji, naMeiY Li= ilt2:?itim(Lij)'

 - ----
dij is the lateness of job Ji on Mj. •
 Using the above quantities, we define the optimality
 , '

 (i) Minimizin Maximum Com letion Time (C)

tion

the

 The

 time

jobs

optimality

 C = max maX 1<i<n

as soon as

criterion is to minimize

Ci. In other words, we

possible.

 -9-

 max
 the max-mum

want to

 (Q!)

 subset,

 3} and Ql={Mi,

and can not be

 job Ji on ma-

The other charac-

 type.

eharacteristics

 . The
this subsection,

 , we define

 processings

.= max (C.(i)),
 lj. sm J

 of operation

 time

where L..=C.-
 IJ X

 . cnte-

 ' comple-
 complete all

 (ii) bfinirnizing ldaximurr} Lateness (Lmax)

 The objectiye is to minirnize rnaximurn latenesS Lmax=ie;.:nLi'

Here, we want to complete each job before the due dates as soon

as possible.

 .!(",2) M C erlCstF ctio (fmax)
 The optimality criterion is to minimize the sum of the cost

concerning the rnaximum completion time and the cost incurred by

changing the machine speeds.

1.2.4 Representation of models

 To represent s>rrnbolically each scheduling problern, we intro-
duce 4•d•tupie notation alBlyl6. . The first •ietter ct shows the

number n of jobs to be processed, where n is an arbitrary posi-

tive integer.
 The second letter B is the number rn of machines, where rn is

an arbitrary positive integer.

 The third letter y specifies the machine types. We use the
notations as the following table.

 -Y hit
 F flow shop
 O open shop
 "A' ntxed shop
 Gxx generalized miy.ed shop
 I identical parallel
 U uniform parallel
 CU generalized'uniform parallel

sutl ident1 lli
 Table 1.l. The notatior!s specifying

 the rnachine types.

 -1O-•

The last letter 6 is

6

the

 o

 optimality

bjective

criterion, as follows.

c
 max'

L
 max
f
 max

 .maxlmum

 .maxlmum

general

completion time

lateness

cost function

 Table l.2. 0ptimality eriteria.

 Example 1.1. nl21FILmaSc: minimize maximum lateness of n

 'jobs on two flow shop type•machines.
 ni21]![KICmax: minimize maximum eornpletion time of n jobs

on two mixed shop typ.e machines.
 nlmlllCmax: minimize maximum completion time of n jobs on

m identieal parallel type machines•
 . Besides this notation, we may use the terminology, "preemp-

tive" or "nonpreemptive" scheduling. In a preemptive schedule,

the processing of any operation may be interrupted and resumed

later again. The difierence between the preemptive and nonpre-

emptive scheduling of five jobs on three identical machines is

il!ustrated in Fig. 1.3, where pl=7, p2=5, p3=5, p4=3, and psii .

-11-

M

M

M

M

M

M

1

2

3

1

2

3

o 5

Jl

J2 J 3

J3 J4 J5

o

(a) Preemptive schedule.

 5

J2 J4

Jl

(b) Nonpreemptive schedu!e

Fig.1.3. Examples for preemptive
 nonpreemptive schedules.

and

•- 12-

 1.3 Computational Cornplexity

 - rn this section, we sball review briefZy the theory of com-'

 putational cornplexity, especially the NP-completeness theory,

 because most of the rnachine scheduling problems fali into the

 class of NP-complete problems.

 Historically, the theory of eomputabiiity initiated by A.

Turing [26] played an isnportant. role to stimulate attentien to the

 existence of probiems in which no algorithm can solve. The fol-
lowing problem is one of the most weli-kno"tn sueh undecidable

problems.

 Haltin Problem of Pro rams: Given an arbitrary computer
program and an arbitrary input to that program, can we decide
whether or not the prograra will eventually halt when applied to

 'that input?

 A variety of other problems are now known to be undecidabZe,
including Hiibert's' tenth problem [22] and several problems of

tiling the plane (2].

 Note here that an algorithra is said to solve a problern if
 .it gives a solution within finite steps for any instance of the
problem.

 The co Zendt o AZ o2.ithm: ln general, any mathematieal
problem cati be deseribed in terms of some parameters and free

variabies. An instance of the problem is obtained by given par-
ticular values for problem parameters. For the pUrpose of comr

puterization, the discrete free variables as weil as the param-
eters are assumed to be hinary encoded in a str'ing whieh becomes

an input of the computer. The length of the string is calied
the input Zength (or the size of the instcri2ce>. Th.e compiexity

 -•13-

of an algorithm is called O(g(n)), if its running time is always

bounded by a eertain function c!-g(n), where c is a constant, for

all the values of the input length n. An Orgrn)) time aZgorithm
is caZled poZynomiaZ Viine aZgorithm, if g(n) is a polynomial of n.

The fundamental nature of the distinction between polynomial

time algorithms and non-polynomial time algorithms has been dis-
cussed by' J•. Edmonds [3] and others [1], [4]. The polynomial

time algorithns are known to be efficient algorithms by a rule

of thumb. Therefore a problem with a polynomial time algorithm
is ealled traetabZe, while a.prpblem with no polynomial time al-

gorithrn is called intTaetctbZe. The theory of NP-completeness

provides a way to determine wbether or not a given problem is

intractable .

 Nbndetendnistie Co u ation: We assume an ordinary sequen-

tial computer appended with the following fictitious instructiop,
 cHOICE(LL,L2,••',Lk)•

When the comp.uter reads this instruction, it jumps to k instruc-

tions with labels Ll,"',Lk and executes thetn simultaneously.

This may be considered as a model of parallel computations. How-

ever, in ordinary parallel computation models the number of in-

struetions to be executed in parallel is f'ixed beforehand, while

in the above computation model, each time a CHO!CE instruction

is encoutered, the conrputation path branches unlimitedly. Sueh

computation is called nondeteministie computation.

 ItZ22uz!g!!!ilg2..Ee!Z n ma Z Red ezb ZTt : !f .the input data of problem A

can be transformed into the input data of another.problem B in

polynomial time with respect to the input length of A, and if
the soivability 6f A is equivalent to that of B, then A is said

to be poZynomiaZly TedueibZe to B.

 -14-

 • gAngT SZ21Z2k2easzPC Zeteness;- Let class IVP be the class of all the ,

prob!ems whieh dan be solved within the time bouAded by a poly-

nomiai function, iÅí the nondeterministic computation is allowed.

Similar!y, let'class P be the class of all the problems solved

by deterministic polynomial time algorithms. It is clear that
PsNP. The equality P=NP is eonsidered to be highly unlikely'

for the following reason. PINP, however, has not yet prove'd.

 A problem is said to be NP--eomplete if it is in the class

NP and all the problems in NP is polynomially redueible to it.

See references [1] and [4]. The NP-complete problems are the .

hardest problems in NP in the sense that if any one of them were
to have a polynomial time algorithm, then all the problems in

NP will do so. This shows that P=NP if and only if one of the
NP-cornplete problems has a polynomial time algorithm. So far,
 .thousands of' problems have been proved to be NP-complete, and
about 300 among them are listed in ['4]. The fact that no poly-

nomial time algorithm has been found for them is a strong cir-
eumstantial evidenee that PiNP.

-15-

1.4 Cop i. ng wi th NP--c ompl ete Pro- bl ems

 Proving the NP-completeness of a given problem is only the

starti,ng point of the apalysis of the problem but never is the

terminal point. rt is easy.to show that most of the maehine

scheduling prob4ems we encgunter in the real world are NP-com-

plete. Ip many situations, however, it may be sufficient to

obtain sonie good but not optimal soiutions. Zn this section, we

mention some directions to cope with NP-complete problems. They
are of both practical and theoretical importanee, and have bben
 ttintensive'ly stuaied recently.
 ' ' ttt t- Xnvesti'ation'o 'Some'SoZvabZe Cases o llpobZems b I osin
Rest?ietions: Even if a giveh problem is NP-eonrplete, it may

contain some cases of prqctlcal importance which can be solved

easily. rn Section 2.3, we will introduce sllch an example for
nl31olc nonpreemptive seheduling problem.
 max
 DeveZo ment o A moximation AZ o7,ithms and TheiT, Worst

Case BoUnds: ln many situations, not optimal but good solutions

are aecepted by practitioners. Thus, it is very iirportant to

develop some approximation algorithms etfficiently providing ap--

proximately good solutions. Further, to evaluate the effeetive-

ness of various approximation algorithms, we have to give their

error bounds for the worst case (worst case bounds). These will

be treated in Sections 2.2 and 3.2.

-!6-

 l.5 Outline of the Thesis

 This thesis consists of four chapters. Chapters 2 and 3 are
devoted to the conventional scheduling problerns in which all ma-

chines have the same predetermined machine speeds, whi!e Chapter

4 deals with the scheduling problems in which each machine speed

is a variable.
 ' ' Chapter 2 discusses the scheduling problems on shop type
 'machines. First, we study an nl21FILinax nonpreemptive scheduling

problem. Since the problem is already known to be NP-complete,

we presenta,solvable ease and propose an approximation algorithm.

Further, the worst case bound is obtained. Second, this chapter
deals with a solvable case for nl3101cmax nonpreemptive schedul-

ing problern. Finally, we develop a poZynom'ial tinfe'algorithin''
constructing an optimal sehedule 'of nl211![xlcmax nonpreemptive

scheduling problem.

 Chapter 3 discusses the three scheduling problems on paral-
lel type machines. First, we eonsider an nlml!ILmax nonpreemp-

tive scheduling problem. This problem is again NP-complete.

Therefore we propose two approximation algorithms, one of which

is based on the earlies't due date rule and the other is its re-

finement. And, the worst ease bounds for each of them are de--
'rived. second, we deals with an nl21IILmax preemptive scheduling
pro6Zem with generalized due dates. For this problem, we develop'

a polynomial time algorithm to minirnize maximum lateness. Third,
this chapter deals with nimiQZICmax nonpreemptive and preemptive

 scheduling problems. Since the former is NP-complete, we give a

 solvable case in which job Ji has a unit processing time. For

 the latter, we develop a polynomial time algorithm constructing

-17-

an optimal schedule.

 Chapter 4 is devoted to extending the ordinary scheduling

problems with constant machine speeds to the ones with changeable
machine speeds. First, we discuss an nlmlGulfmax preemptive

scheduling.problem. Th.i$ probiem is an extension of nimlUICmax

preemptive scheduling problem to the ease with variable speeds.

Polynomial algorithms are presented to find optima1 speed assign-

ments for a variety of cost functions. Further, we show that if

we relax some of assumptions for this problem, the resulting
problems become Nl?--hatd. Second, we deal wtth an nl21GMXIfmax

nonpreemptive scheduling problem, which is an extension of
nl211y"CICmax nonpreemptive scheduling problem to the case with

variable speeds. Foer this prbblem,similarly, we develop a poly-

nontal algorithm to find an optirnal speed assignment.

-18-

 CHAPTER 2

SCHEDULING PROBLEMS ON SHOP 'liYPE MACHINES

2.1 Introduction

 In this chapter, we discuss scheduling problems on shop type

maehines. When the objeetive is to minimize the maximum comple-
tion time for two machines in shop, the probiems were solved

already as shown below.

 Shop m Complexity Referenee
 t'low shop -2 O(nlogn)' [15]
 open shop 2 O(n) [5]
Johnson's procedure is known as Johnson's rule. Though there'is

no advantage for the preemption in these two machine cases, in

the case of more than two machines, the restriction of nonpreemp•-

tion makes the problern NP-complete for both shops [9]. On the

other hand, in the preemptive case, Gonzalez and Sahni again de-
veloped optimal algorithms [5].

 In sec.tion 2.2, we consider a nonpreemtive seheduling prob"

lem on the twe machine flow shop whose objective is to minimize
the maximum lateness. (Abbreviated to nl21FIL nonpreemptive
 max

 -19-

schedult,ng problem aecordi,ng to Section 1,2,) Since this problem

becomes NPvcomplete, we first present a solvable ease where the

relatiop between due dates and processing times is restricted.

Next, we propose an approximation algorithm based on Johnson's
rule which constructs an optimal schedule for nl21FICmax sched-

uling problem, and give its worst case bound.

 Zn Seetion 2.3, we discuss a nonpreemptive scheduling prob-

lem to minimize the maximum completion time on three machine open
shop, iee., nl3IOICmax nonpreemptive seheduling problem. This

problem also becomes NY-complete. Therefore we present a solv-
abl.e case which has two kinds of jbbs. rn this case, eaeh job Ji

 tthas a zero processing time on.at least one ot- M2 and M3, i.e.,
 ' ' 'pi2=O or pi3=O. -
 In Section 2.4, we deal with a nonpreemptive scheduling prob-

lem minimizing the maximum completion time on two maehtne mixed
shop, namely nl21Mxlcmax nonpreemptive scheduling problern. For

 'this problem, we develop a polYnomial time algorithn giving an
 'optimal schedule.' ' " -' '
 For the simplicity of notations, throughout this chapter,
 ' 'we use ai, bi and ci in place of pil, pi2 and pi3, respectively,

 'as processing times of operations Oil, Oi2 and ei3 of job Ji.

Further, we assurne that machine speeds are the same for all ma--

chines.

-20-

2.2 Solvable Case and Some Bound on Approximation Algorithm
 for nl21FILmax Nonpreemptive Scheduling problem

 The problem deait with is deseribed as follows; (i) a set of
n jobs J={Jl,"',jn} is to be processed on two machines Ml and M2,

(ii) each job Ji has the two proeessing times ai and bi corre-

sponding to Ml and M2, (iii) due dates of job Ji are the same for

both machines, i.e., dil=di2=di, (iv) the processing of Ji must
complete on Ml before starti,pg to process on M2, (v) the objec-

tive is to minimize the maximum lateness.

 we assume that dBd2E"'Ed.•
 For the maximum lateness problem on a single maehine, Jackson
[13] has obtained an exact aigorithm which finds an optimurn sched-
ule in a tiolynonial time of problem size. Furthermore, Lawler [17]
has obtained O(n2) exact algorithm for the related problem with
arbitrary nondecreasing cost function and' general precedence con-
 'straints.

 With respect to scheduling problems with due dates, however,
very few worst case bounds have been obtained. (See Graham et al.

[9] for details.) Kise et al. have developed effective approxi-

mation algorithms and showed their worst case bounds for the

maxÅ}mum lateness problem on a single machine. In general, to

evaluate the effectiveness of approximation algorithms, various
measures such as the absolute deviation (D-cot(ll) and the relative

deviation ((D-co'(li))/co have been customarily used so far, where

tu denotes the value for the objective under eosideration for oP-

timal schedule and co'(ll) the value for approximate schedule gen-

erated by the approximation algorithm ll. As pointedJout by Kise

et al. however, above measures exhibit a shortcoming that they

give different values for two equivalent problems, where equiva-

 -21-

lence means that one problem is obtained by applying a simple

transformation to the other,,and the optimal and the approximate

schedules are the same in both problems. This pathology urges us

to employ the modified relative deviation,

 '' co-al' (n) - ' cL}+d ,• . max
proposed by Kise et a!. as an effective measure of approximation
algorithm ff, where dmax=max{dili=1,2,"',n}.

. In the sequel, we first present a solvable case in the sense
that the optimal schedule can be found easily. [Vben we propose
an approximation algorithm for general nl21FILmax nonpreemptive

scheduZing problem and obtain its modified relative deviation

or its worst ease bound.

2.2.1 Solvable case for n[21FILmax nonpreemptive scheduling

 . Genera! nl2IFILmax nonpreernptive scheduling problem is Np-

complete. Irherefore, we first eonsider a solvable case in the

:fi::efg:a:s:.:-j;Pn!imal schedule ean be found easily. we assume

 ' ' ' (C) d.f.d.onin(a.,b.,);`=min(a.,b.).
 ,z J IJ 31
 E-tD rule: EDD ruZe schedules jobs according to nondecreasing

due dates, i.e., in the order, Jl,J2,"',Jn.
 '
 Theorem 2.1. Zf the assumption (c) holds, EDD rule cortstructs
an optimai schedule for nl21FILmak nonpreemptive scheduling prob-

lem.

 Proof. The completion time Ci of job Ji scheduled by EDD

 ' --22- .

fule is given by Johnson's formu!ation as fo!lows;

 ui
 Ci=,e..ax-..,{jZiaj+jZ.bj}

 i
 =max{ ci-is j .2i aj }+b i•

 <See [!5].) Then, the lateness Li of job Ji becomes as follows

 ' L•=C•-'de . 111 '
 e. = max {ci-k, jliaj}+bi-di•

 Similarly, '
 Li+1=Ci+1-di+!

 i+1
 =max{Ci, jZ.iaj}+bi+i-di+i

 ' i' i+! ' =max{rnax(ci-is jZ.iaj)+Pi, jiiaj}+bi+i"di+i

 i i+1
 -rrnax{Ci-i+bi, jZ.iaj+bi, jZiaj}+bi+i"di+z•

 ' '
 Let Ll. and Ll.+1 be the latenesses of i-th and (i+!)-th jobs in

 the schedule obtained by interchanging jobs Ji and Ji+1• (rn
 the resulting schedule, i-th job is Ji+1 and (i+1)-th job is Ji
 In other words, Ll. is the lateness of job Ji+1 in the resulting

 schedule and Ll.+1 that of job Ji. Thus we have

 'i-1
 ' Ll• =rnax{Ci-i, jZiaj+ai+!}+bi+i-di+i,

 '
 -23-

;

.)

 i.•:•1 ' i+1
 L;• +i = mak {ciT.i+bi +i s ij .Ei aj +ai+i+b i+i ,'j ii aj l+b

First, we show that '
 . max(Li, Li+i)E max(Li•, Ll•+i)•

Since qigdi+1 and min(ai, bi+i)Emin(ai+1, bi), we have L

and LFLi+1. Therefore, it is enough to prove Li+ISLI.+1

 case (i) ai.<=bi+1'

 Note that inequalities ai5ai+l and ai=<bi also hold

case.

 subcase (i-a) Li+1=Ci.1+bi+bi+1"di+1'

 From di:;di+1, we have

 - Yi+!=Ci- 1+b i+b i+1-d i+l g Ci- 1+b i+b i+1-di 5Ll• +1 •

 iL.
 (i-b) Li+1=jZlaj+bi+bi+1-di+1•

 Since di5di+1 and aiSai+!, we prove

 i
 L i+1=jilaj +b i+b i+1-di+1

 i-1
 Ej ilaj +ai+1+bi+b •s +1-di.

 gLi+1'

 i+1
 - (i-c) Li+r-J.ilaj+bi+1"-di+1•

 By digdi+1 and ai5bi, we have '
 ' i+1
 Li+i=jEiaj +b i+rd i+i

 ' i-1
 -< jE1aj +a i+1+bi+b i+1-di ÅíLl• +1

 -24-

.- d
1

.<L
1=;'

.

.In

--1

t

i+l

this

 T.hus..if ai5Pi.,ty then we have Li+l.SX•+lt

 case 'Cii) bi+i<%' '• '
 ' Note that .bi+IEai+1.and bi+1Sbi also hold in this case. We
can prove Li+1::Ll.+1 by the Similar m4nner'to Case gi). Therefore

 i, bi+i)---<min(ai+i, bi) and diSdi+i, then max(Li, Li+i);:;if min(a
 'max(Ll•, Ll• +1)' '' ' '
 Let Ci!.and Lk be the completion time and the lateness of job

Jk in the schedule obtained by interchanging jobs Ji and Ji+1.
For k<i, it is clear that Clk=Ck and Li2==Lk. ,Since CklCk holds

for k>i+1 by virtue of Johnson's rule, we have Lil)-Lk..

 Thus since the relation (e) holds among all jobs and is tran--

sitive, we prove the theorem by repeating the pairwise interchanges

 'of adjacent jobs. g.
 ; The problem under conq,ideration i,s NP-complete, so it seems

likely that an effieient algorithm does not exist. Therefore
enumerative methods such as branch•-and-bound ones may be the only

available methods for obtaining .optimal solution.

 One may suspeet that we can decrease the number of enumera-
tions by applying Theorem 2.1 to a number of job pairs for some

of whieh the relation (C) holds. The follopifing example shows

the case that the eonjecture fails.

 Example 2•1• Let J"{Ji,J2,j3},

 ai2, bz=5, dl=55,

 a2=10, b2=1, di50,
 a3=4, b3=100 and d3=60.

In this example, though min(al, b3);9.min(a3, bl) and dl;:;d3,'the

optimal schedule is given in Fig. 2.1. The maximum lateness in

the optimal schedule is LiXax "55.

 --25-

Ml

M2

Fig. 2.1. An

d2dld3
J3 J2Jl ..'

J3 J2 Jl

optimal schedUle of Example 2.1.

2.2.2 Bound on approximation algorithm for nl2iFILmax

 nonpreemptive scheduling problem
 !n subsection 2.2.l, we Showed a solvable case of nl21FIL
 max
scheduling problem. Unfortunately, general problem is NP--com-

plete. Therefore in this subsection, we give an approximation

algorithm and show how it behaves in the worst case. We call the

aZgorithm based on EDD rule algorithm FEDD, which assigns the jobs

according to EDD ruie for fiow shop type machines. We t`irst prove

Letma 2.1 giving the bound of the maximum colnpletion time when a

set of jobs is scheduled by algorithm FEDD.

 Lerma 2.1. Let C' be the u!axtmum eompletion tirne of sched--

ule induced by algorithm FEDD and C* that of schedule constructed

by Johnson's rule. <See [15].) Then we have - '
 '
 -S2.': <2.
 c*=
Proof. Zt is clear that

 ' n •n c* i max (iiaii, iibii) '

-26--

Also,it foilQw-s,,that

 c! ss i:/l(ai+bi) gl;2•max(ie/li, i:/bli) E 2c*t

Thus we prove

 'gi ;s,2• •,

 Next, we show that without loss of generality we may assume

that job Jn with a maximum due date determines the maximum late--

ness of algorithm FEDD.

 Lemma 2.2. For certain nurnber K, let J""'={51s"',jn} be the

minimal job set for whieh modified reiative deviation of FEDD

exceeds K, i.e.,

 wwL(JFEDD)L(Jll*) >K•
 L(J;llrk)+d
 n
holds• Then, Jn determines the maximum lateness of FEDD, L(J;
 'FEDD).

 PrOof. We prove this lemma by contradiction. We assume that

 -,job Ji, i<n, determines the maximurn lateness of algorithn FEDD.
 'Let J'"{31,52,"',3n} be the subset of 3 obtained by eZimtnating

jObS Ji+1,"',Jn from J. Clearly
 '
 L(J;FEDD)=L(Jt;FEDD),

 'L(3;il*))L(J';n*),

and

 d= max d.> max d.=d.
 n IJ< ':<n 3== ljt si J i

hold. These imply

-27-

 Kk L(J;FEDD)-L(J;fi*) k L(J';FEDD)-•L(J,;ff*)

 L(j;fi*)+dn L(J';fi*)+di.
Consequently, we have a smaller job set J'. This contradicts the

minimality of job set J. Thus, job Jn det'ermines the maximum

lateness of algorithn FEDD. n
 '
 Using. these lemmas, we obtain a bound on'algorithm FEDD.

 Theorem 2.2. Let L' and L* be the maximum latenesses of
 max max
the schedules construeted by applying algorithm FEDD and any op-,
timal algorithn for an nl21FILmax nonpreeraptive scheduling prob-

lem, respectively. Then we have

 Lthax - Lthax
 Lde +d ;Sl•

 .maxn . ' 'Further, this bound is.asymptotieally the best possible.
 ' Proof. Since the first half of this proof will be proved by

contradiction, it is sufficient to deve!op a relationship only

for the smalldst n for which the theorem may be violated. Thus,
we assume that a job se't J defines a minimal job set fbr which

the thebrem does not hold.
 Now by Lemma 2.2, we may consider only the case L!liax"C'-'dn,

where,C' is the same as defined in Lemma 2.1. Tt is clear that

 L* >C*--d.
 max= u
Thus

 L$x-IIiesiax s••- .C'"dn-c.(C*"dn.) . cc.' . -i.

 max n
Since 24C'IC* by Lerrmta 2.1, we prove
 ' '

 -28-

 L' -- Lrk
 max max kl.
 L* +d == max n
 The foilowing example shows that this bound is asymptoti-

cally the best possible.,

 Let afO, biK, dl=e(>O), a2=K, b2=e and d2=O, where K is

an arbitrary positive constant. For this instance, the approxir-
mate and the optimal sehedules are given in FÅ}g. 2.2(a) and (b),
i:SePr2;torig?li:5 pTr":3Il' We haVe Lthax=2K+e-Åí"2K and Likax=K+e-o=K+e.

 ' '
 L' -• L*
 max max K-e ' L* +d '= K+2E -.1 (e"O).
 max n
This eompletes the proof of the theorem. g

 Ml

 M2

 (a) Approximate sehedule.

 Ml

 M2

 (b) Optimal schedule
 '
 Fig. 2.2. An asymptotically tight example

 for Theorem 2.2.

 -29-

dd21
J2

J2 Jl

dd1
J2 1

J2

2.3 A Solvable Case for n13101Cmax Nonpreemptive

 Scheduling Problem

 ' In this section, we cgnsider a set of jobs J={Jl,"',Jn} tO
 'be processed on three machine open shop. Each job Ji consists

of three operations, which have processing times ai>O, bilO and

cilO, respectively. Each job Ji can pass through the machines

Ml, M2 and M3 in an arbitrary order, but more than one opera- ,.

tions of job Ji can not be processed simultaneously. Further.,

each job Ji must be processed nonpreemptively on any machines.

Our objective is to minimize the maximum completion time. Zn

general, this problem also becomes NP-complete [9]. Therefore
 'we present a solvable case for n131olc nonpreemptive sched-
 ' max
uling problem. To give a solvabZe case, we shall make the fol-

lowing assumptions.

 Assumptions

 (a) Let
 oi{ JiEo l ci=o} ,

 02={JiEO1bi=O, cifO},

 and

 O=OlU02'

 (b) Let Jq and Jr be the jobs such that

 tt b l max {a.},
 q j,oi 3
 and
 c l max {a.},
 r j, oi J

 where oi={JiGOilai<bi} and Oi={JiE021ai<ci}• (Note that
 Jq belongs to Ol and Jr tO 02•)

 ' ' ' -30-

 !f 2 bikmax(2 ai, max (ai+bi)), then we assume
 jiEOI JiEOI JiEOI
 that aq+bq-<=Ji2oiai. SimiiariY' ifJiio2Ci='=MaX(Jiio2ai'

 JIEaxo2(aitci))•, then ar+crSJiZo2ai. '

 ' By the assumption (a), if either Ol or '02 is empty, this
solvable case reduces to nl21olcmax seheduling problem. For nl21

OICmax seheduling problem, Gonzalez and Sahni developed an O(n)

time algorithm constructing an optimal schedule. The forms of
optimal sehedules generated by Gozaiez and S'ahni algorithm (G-S

algorithrn) are classified into the six types in Fig. 2.2, if we

ignore the processing order on each machine. On the schedules
of types I and I', machine M2 may have an idle period though

there exist uneompleted jobs, but. machine Ml has no idle period

as long as there exist uncompleted jobs. On the other hand, eon-
cerning types ll, E', M and IIIr,there exists no idle period on

Ml and M2 exeept for the first and the last time period$. (Note

that if we remove the assumption (b), on types ll and ['Ml ,may

have an Sdle period other than the first or the last interval.)

 -rn the next subsection, we specify the starting times of'
jobs based on the solution of nl21olCmax scheduling problem rath-

er than the processing order of jobs on eaeh machine.

2.3.1 Construction of optimal ' schedule

 We present a construction method of optimal schedule under
the assumptions (a) and (b). To determine any sehedule, it is

sufficient to specify either the processing order or the starting

times of jobs on each machine. In this subsection, we speeify

the starting times of jobs on each maehine. Now, if either subset
Ol or 02 is empty, the problem redpces to•nl2101Cmax scheduling

 '
 ' -31-

M

M

1

2

.Ml

M2

type I type I'

M

M

1

2

Ml

M2

type IZ typelT'

M

M

1

2

.

k

k

Fig.

(a

2

type
 +bkk
.2.

 Ml

 M2

 m
=mlx (ai+b i))

 The forms of optimal

 scheduling problem.

k
.

k

type M'

schedules for nI2lOlCmax

-32-

problemt So let Fi (FS) be a value of optimal schedule con-
stxucted by appiying G-S algorith!n for the jobs in Ol,(02). Fur-
ther, let sj. (i) be the starting time of job Ji (EQ) on rllachine Mb.

in the sehedules constructed by G-S' algorithm. By Gonzalez and
sahni E5], the possible values of Frk1 and F5 are max (Al, B, ak+bk

and max(A2, c r ak,+ck,), where AiJiioiai, B=Jiioibi' ak+bk--'Jl:.2iii

ai+bi), A2=JiEo2ai, C=Jio2ci and ak,+ck,=JI;.l2z;2(ai+ci).. Then,

 '
the combinations of F* l and Fg are oniy the fo11owing nine pairs.

 Ff F*, '
 (1) Al A2
 (2) B A2
 (3) ak+bk A2
 (4) Al C
 (5) B C
 '(6) ak+bk C
 (7) Al akt+ekt
 (8) B akt+Ck,
 (9) alk+bk ak,+Ck,
However, since (4), (7) and (6) are reducible to (2), (3) and (8)

respectively, by the appropriate exchange of notations, e.g., M2

and M3, we can focus on the following six cases.

 Case Ff FE
 i A A 12
 2 B A2
 3 ak+bk A2

 -33--

)

(

'

 Case Ff FE
 4 B C
 5 B akt+ckt
 6 41k+bk ak t +Ck t.

For these six cases, we present the starting time) s j(i), of

job Ji on machine Mj in our soivable case.

 ' .Case 1. Fi=Al and F"2"A2

 For this ease, G-S algorithm generates a schedule of either
type r or r' for both Ol and 02. The schedule of type Z(I'),

however, can be transformed to type I'(I) by reversing the proc-

essing order of jobs on each machine, since on open shop type

machines any job ean pass through maehines in an arbitrary order

'rherefore without loss oÅí generality we may assume that the op-

timal sehedules for Ol and 02 are the sehedules of type I and !'

respectively. Then we present the starting times of job Ji on

machines Mi, M2 and M3 as follow$.

 s,(i)-<:l,[li.., i.Oiliigl

 s2a)=<gi(-) iO.r. l;E,Ool

 s3(-)-{gi.,.., igill[,Ol

ln'this case, the constructed schedule is the one illustrated in

Fig. 2.3.

.

'

-34-

 Ml

 M2

 M3

 Fig. 2.3. The typical sehedule fotr Case lo

 Case 2. Fi=B and Fg=A2

 ' For this case, we may assume thatt' the scheduie for Oz is
 tttype ll and that for 02 is type r'. .then we define the starting

times of each job Ji on machines Ml, M2 and M3 as follows•

 sj (i)=sS (i) for j--'i,2 and Jf'91

 sj(i)=sS(i)+max(Al, B-A2) for j=1,3 and Jf92

'rhe typical schedules characterizing this case are iZiustrate' d in
Fig• '2•4e

 Case 3. Fkl--ak+bk and Fg=A2

 ' We have the sehedule of tmpe M' for the job fin Ol and of
type I' for the job in 02. Here, we define zhe starting times
 '

 ' s.(i)=s:(i) J J fOr j=l,2 and Ji.E' ol
 ' sj(i)=sS. (i)+max(Ai , ak+bk-A2) for j=1,3 and JiE02

 --3S-

Ol 02

Ol

06`

Ml

M2

M3

(a)

Ol'

Ol
--

'

.

02

 +A.B<A =-12

Ml

M2

M3

(b)

Fig•

Ol 02

02

 +A.B>A 12
2.4. The typical schedules for Case 2.

The representative schedules for this case are illustrated in

Fig.2.5.

 -- Case 4. Frki-B and F"2=C

 Xn this case, let the schedule for Ol be type rand for 02
type E'. Then we set the starting times for each job J. 'on
 i
machines Ml, M2 and M3 as follows.

 -36-

 Ml

 M2

 M3

 (a) ak+bkS- Al+A2• (O!'=Ol- {Jk})

 Ml

 :,2

 (b) ak+bk>Al+A2• '

 Fig. 2.5. The tYpical schedules for Case 3.

 sj(i)=sS(i) for j=1,2 and JiEOI

 Sj(i)=SS(i)+max(Al+A2--C, O, B-C) for j=1,3
 ,
ll:s2eve three typicai scheduies inustrated in Fig. 2

 case 5. Fi"B and FS=ak,+Ck,

 For this case, the schedules for the jobs in O
 1

 -37-

02

L

02

Jk of,
1 02

o('
! Jk

02

 and J.EO 12
.6 for this

 '

and 02 are

Ml

M2

M3

(a) Al+A22-

Ol 02

Ol
.

02

max (B, C) .

)11

M2

M3

(b)

oi 02

Ol

02

•C).i max (A !+A2, B).

Ml

M2

M3

(c)

Fig.

B> max(Al+A2, C)•

2.6. The typical schedules

 -38-

for Case 4.

those of type ll and type M, respectively. 'We set the starting
times for each job Ji as follows.

 sj(i)=sS(i) for j=l,2 and JieOl

 sj (i)=sj. (i)+max(B-(akt+ck:), A"A2-(akt+Ck,), O)

 for j=1,3 and JiE02

Those typica! schedules eharacterizing this case are illustrated

in Fig. 2e7.

 Case 6.Frk1=ak+bk and Frk2=aki+Ckg

 For this case, the types oS schediules for the jobs in Ol and
G2 are type M' and type EEZ, respectively. Them the starting

times for job Ji are set as

 sj(i)=s3(i) for j=ls2 snd JiEOI

 '
 '
 sj(i)=s3(i)-knax(Al+A2-(ak,+ckt), (ak+bk)-(akt+Cky), O)

 for j=ls3 andi :iE02e

The typicai scheduies for this case are illust'vated in Fig. 2.8.

 In the next subsection, we prove the validity of the start-

ing times given in this subsection, such that the schedule based

on the above starting times. becomes an optimal schedule.

 '
2.3.2. Proof of validity '
 We prove the validify of t.he starting times presented in'

the last siubsection.

 'If either Ol or 02 is empty, then the vaiidity is trivial.

So we assume that. both Ol and 02 are nonempty• '
 To prove the validtty, we must show that the constructed

 -39-

Ml

M2

M3

(a)

Ol otl
2

Jk'

'lojII

.

Jk' o}.t

2
-

B l max (Al+A2,

Ml

M2

M3

(b)T AI+A2

ak,+ck,) (o >, --02--{ Jk , } •)

Ol O'r

2
Jk'

Oit
2 Jk'

Ml

M2

M3

(c)

Fig.

l max (B, akt+ckt).

Ol Orf
2

Jki

Jk' ott
2

ak,+ck, > max (A1+A

2.7. The typical

 , B).
2

 schedule for

 -40-

Case 5.

Ml

M2

M3

(a)

Jk olt
1

e'•'Jki2

oll
1 Jtkl

o"Jk!2

A1+A2 >-- max(akÅ}bk, ak,+ck,). <o lt -Oi-{ Jk}, o't=o

22-{J
.k f

}•)

Ml

M2

M3

(b)

Jk Or.f
1

ott
2 Jk'

ot,
1

' Jkt
o!-}

2

ak+bk --> max (A1+A2, akt+Cki)'

Ml

M2

M3

(c)

Fig.

Jk ott
1

o'•t J•t

o"'
1

lJk,

Jki Ovr

ak,+Åëk, > max(Al+A2, ak+bk).

2.8• The typical scheduleS for Case 6.

-- 41-

schedule is feasible, i.e•, Cl(i)Ss2(i) or C2(i)$sl(i) for JiEO

and Cl(i)Ss3(i) or C3(i)$$2(i) for JiE02, where Cj(i) is the

completion time of ji on)f j, and the value of that schedule is

the minimum of the completion times.
 .g/,LEgeE!.!2!!d!.!bl:-1)Fb1t

 To show the feasibility of the schedule, it is sut'ficient
to show that'for' job Ji in Ol, either

 ' Cl (i) 5s2 (i) or

 c2 (i) g sl (i),

holds, and for job Ji in 02, either

 Cl(i) -Ss3(i) or

 C3 (i) 5sl (i)

holds.

 Now in the schedules generated by G-S algorithm, we have

,,.,, {:i,[g/f.:11[l.lo',..,.,,,

aridi

(2.2) {t' l,[l]i.g,i[llor ,..,,,,

where Ci(i), CS(i) and CS(D are the corrrpletion times of those

schedules for job Ji on Ml, M2 'and M3, respectively. From the

setting of start times, we have

(2.3) <Zl.[ll:111.[l)) a"d f.. j=1,2 and JiEol

and

 -42-

1

(2t4) {Zj. ((il.)):Zl.' [IB++K.K for •j=i,3 and Jiqo2,

 33
where K= Al for Case 1,
 max(Al, B-A2) for Case 2,
 Max(Al, ak+bk-A2) for Case 3,

 MaX(Al+A2-C, O, B-C) for Case 4,
 max(B-(ak,+ckr), Al+A2-(akt+ekt), O) for Case 5,
 max(Al+A2-'(ak,+ek,), (ak+bk)-(ak,+ck,), O) for Case 6.
Consequently, by substÅ}tuting (2.3) and (2.4) into (2.1) and

(2.2), respectively, we ean prove the feasibiiity.

 9tRpm!l-!itmalt

 Here, we prove the optimality of schedule based on the start-

ing times set in the last subsection, i.e., that the schedule has

the minimum value of maxiinum completion time, CiXaxe Gonzalez and
Sahni showed the lower bound of C{llax, LB, for nlmlOICmax sched-"

uling problem as follows.
 mn ' Ci:..4' LB=MaX(M:XjilPij' .MleXilPij>

where. pij is the processing time of operation Oij- For our so!v-

able case, this lower boundi is reduced to

 L'B=max(Al+A2, B, C, ak+bk, ak,+Cke)'

Further, eorresponding to each case, this lower-bound is rewrit-'

ten as,

-43-

 Al+A2 for Case l,
 max(Al+A2, B) for Case 2,
 max(Al+A2, ak+bk) for Case 3,
 LB= max(Ai+A2, B, C) ' for Case 4
 max(Al+A2, B, ak,+Cki) . for Case 5,

 . max(Al+A2, ak+bk, ak,+Ckt) for Case6.

 In the sequel,.we will prove that this lower bound is aehiev-

able in all cases. Let Cl, C2 and C3 be the maximum completion

times on maehines Ml, M2 and M3..

 Since, as we assumed, both Ol and 02 are nonempty, for JiEOI
and Ji,E02 we have sl(i)+aiEsl(i') in all cases. Then, the max-

mum completion times on the maehines are
 ' cf max (sl(i)+ai) ' JiE02

(2.5) C2m max (s2(i)+bi)
 JiEOi

 C3=Jl 2g2 (S3 (i)+Ci)

Also, let Ci and C5 be the maximum completion times of the sched-

ule generated by G-S algoritim for 02 on Ml and M3, respectively,

and CS be that for Oi on M2. '
 Substituting (2.3) and (2.4) into (2.5), we have

 Cl=Jl:. e52 (Si (i) +ai) +K=Ci+K

(2e6) ' CiJm2g (sS(i)+bi)=Ci

 il • C3"J:. 2g2 (SS (i) +ci)+K=c5+K. .

Thus, from (2.6) we have •
 '

 -44-

(2t7) Cmax=MaX(Ci, C2, C3)
 =max(citK, C5, C5+K)

 =max(max(Ci, C5)+K, Ci).

Now since in our construction C55Al<Ci+K if Ff=Al and CE

ak+bk) if FifA!, and since max(Cl, C5)=Fse2, we have

 Cmax=max(FS+K, B, ak+bk).

Further, since in each case it holds that

 A1 4max(ak+bk, B), if F*i-Als
 Blmax(ak+bk, Al), if F*i-B,
 ak+bk => max(Al, B), if F*1=ak+bk,

 A2lmax(aki+ckt, C), if F*2=A2,
 ' C;;max(A2, akt+ek,), if FS=C,.
 ak,+ck,;max(A2, C), lf Fg=akt+ck:,

these inequalities and the definition of K together show

c
max•

Therefore we

eases.

have

Al+A2
max (Al+A

max (Al+A

max (Al+A

max (Al+A

max (Al+A

 proved

2, B) .

2, ak+bk)

 , B, C)
2
2, B, akt+ck,)

2, ak+bk, akt+ck
 '
that Cmax equals

 Ni2

 the

for

for

for

for

for

fot

Case

Case

Case

Case

Case

Case

lower

1,

2,

3,

4,

5,

6.

-.max (B,

that

bound in all

-45-

 2.4 The Mixed Shop Scheduling Problem
 '
 We consider a set of jobs J={1,2,'..,n}tto be processed

nonpreemptively on two machine mixed shop. job i has proeessing

times ai)-O and bilO on machines Ml and M2, respectively. The

job set J consists of two disjoint subsets F and O, i.e., J=FuO

and FnO=O. Each job i in F must coTnplete the processing of op-

eration Oil on Ml before starting to process Oi2 on M2, i.e.,

F is a set of flow shop type jobs. On the other hand, O is a

set of open shep type jobs. Thus eaeh job i in O must complete
the proeesslng on Mk beÅíore starting to process on Mj, where
j,-k=1,2 and jlk.

 Let Cj(i) be the compZetion ti!ne of job i, and Sj(i) be the

i;r::legisl2fi,og.lo:=:,[:'i,yac\tz:,"l'.io:.;=l$l ,i?:.iE.gil,lell..,

hold and for any iEO either Cl(i)-`S2(i) er C2(i)SSI(i) must hold•

The $ehedule is nonpreemptive. The objective is to find the
schedule minimizing the maxiTmim completion tims max(Cl(i),

C2(i))L (Abbrevfated to nl2111XICmax nonpreemptive scheduling

problepa.) When O is empty, this problem is reduced to the two

machine flow shop problem solved by Johnson [15]. Zn this spe-

cial case, the soiution procedure obtaining the optimal schedule

is known as Johnson's rule; if min(ai,bj)Smin(aj,bi), then the

processing of job i precedes the processing of job j. The case

which has oniy open shop type jobs has been solved by Gonzaiez

and Sahni [5]. Further, Jackson [!41 has solved the two machine

 t In this section, we use job "i" instead of job "Ji" for

the sinplicity of not.ation.

-46-

scheduling problem with two distinct job sets such that the proc•-

essing order of jobs must be Ml to M2 or M2 to Ml• Zn our problgm,

the flexibility of processing order for some jobs, however, is .
taken into account, which is more eomplicated than that of Jackson.

An extension of the algorithm to Jaekson type of mixed shop never-
theless would be interesting. Also it seems unlikely to solve our

problem by straightforward extension of the Jackson!s method.

2.4.1 Preliminaries
 'aigoX.:hllg?Ve SOMe ie!iiMaS needed for the prgof of optirnaiity of

 ' Let AB,=iiFai, BF=iiFbis Ao=iEoai apg Bo=iiobi• Further, iet

LF=(fl,f2,"',fnl) be the list such that the jobs in F are or--
dered according to Johnson's rule, i.e., for IEiJt ;Åínl, Min(afl,

B•k'IE2:' 51gz';•gfiill•..EO:,l92.liii;l.S\•:A':i•E:'.:ngiSg::'',:r.e.l::, :X,-"

time on M2 in the schedule constructed by ordinary Johnson's pro-

cedure, respeetively. Let ri be the idle time between adjacent
job pair fi.1 and fi, iee•, Ii=SS(i)-Si(i'1)"bfi-1 fgr 1.ti.<.nl,

where Si(P)=O and Zfafl. Then •

 i
 ci(i)--.jilafj,

 i-1 i.
 si(i)-jiibfj+jEIij,

and
 nl nl . nl..
 cF*fj .2ibfj +j iij =BF+j .XIIj •

 -47-

 Lemma 2.3. The followlng /re:qualities hold,for each fi,.

 Ci(i) sS.S> Ci) Åí..CF*-BF+ 2 bf..

 j=1 J
 '
 Proof. By virtue of the ordinary Johnson's procedure, it
is clear that Ci(i)gS5(i) for each fi. Since
 -i-1 i...i nl
 ' . cps-BF+j .21bfj =j ilbfj -l:j iij

 1-. >O, '
 j= '
we .can prove that .
 ' ' i--i i-1 i'
 cF*-BF+j F2 1b fj gj .2 1b lrj +j ;1 Ij=s5 (i) • o

 Now, we .define job sets Ol and 02 as follows.

 Ol={iEo l a;b" ,

 ' o2={ic-olai<bi}•

Further, we choose r and Z to be any two distinct jobs in O such

 t. b.ljRilox2 (aj), 1

 azlbt,oXi(bj)' '
Then let LO=(sl,s2,"',sn2) be the list of jobs in O sueh that

• • sl=Z, snir, .
 • sj.EOI--{Z,r} for 2jt gk and asj-llasj for 3jt Ek,

 sjE02-{Z,r} for k+IEtjSn2-1 and b.j"IEb.j for k+2jt En2-1

 -48-

'

 Lemma 2.4. If Ao-ar;gPo-bz, then the foilowing inequality

holds.

 n2 n2-i
 '2 bs ')..E as.' '
 j=i+1 j j=i J

 Proof. For iSk, we have

 n2 n2-1 i n2-1
 j.i.+ibsj- jii asj"Bo-j.Eibsj- j-.2i a.j

 . i i-1 =Bo-bsi- (Ao- ar)-j Z2bsj +j Eiasj

 - . .i•-l . =Borb z- (Ao-at)+j• il (asj "bsj +1)'

Now, since Bo-bzg>sAo-ar, asi=az.)21t!:ai<:k(bsj) and asjlasj+ikbsj+i

 . 'for 2j< Ek-1, we can prove that

 n n-1' 22 j.i+ibsj 4 j..--2i asj .

 '(Note that for 2jt Ek, sjEOI.) For ilk+1, sinCe sn2"r, brl,

k+i3t.a--.<X.2-i(asj) and bsj-)-bsjdt?Jasj-i for, k+2tsjEn2-i, we have

 n n-1 n 22 2
 j.i. +ibsj - .j .2i asj =j .-. ;. +i (bsj -asj .i) ">. O; o

 '
 Lemma 2.5. Tf Ao-ar>Bo-bz, then we have

 .i-1 i
 bz+j .Eiasj ljEibsj'

 Proof. We can prove this lemma similar to Lemma 2.4 and

it is omitted. fi
 -49-

so

 Lemma 2.6. Let Cthax be the optimal value of the maximum

completion time. Then the following ineqinality holds.

 Ci:aS,lmax(AF+Ao, BF+Bo, CF*, m'ax(ai+bi)). •
 ieO
 Proof. ...Clearly the righthand side of the above inequality

is a lower bound Of Cfiax' o

2.4.2. 0ptimal algorithms •
 We give an exact algorithm for eaeh of the foliowing cases.

 ' (1) A >B o.' F==
 (2) AF < Bo and BF "I Ao,

 (3) A).<Bo and BF<{}o•
 In the following, we use the same notations Cl and C2 to

denote the maximum completion times on Ml and M2 of the schedule

constructed by the algorithm given for each case. Further, let

 Cmax=max(Cl, C2),

i.e., Cmax is the maximum eompletion time of that scheduie.

 casel: AFIBo
 We give the algorithn for the case of \Bo.

 •At!ggpt!l!!!!-.!.1 it I

 (1) dn Ml, process the jobs in F successively according to

 , D'ohonson's rule from time O. Then, process the jobs in

 O successively in an arbitrary order from time AF after

 processing alZ flow shop type jobs.

 (2) On M2, process the jobs in O successively in an arbi-

 trary order from time O. Then, process the jobs in F
 according to Johnson's rule frorn time max(Bo, CF*'-BF)•

 -50-

 The typical cases of the schedule constructed by' a.lgorithm

I are illustrated in Fig. 2.9.
 ' Lemma 2.7. rf \Bo, then algoritim I constructs an optimal

 PrOOf. (i) Case CF*-Bi"IBo. For any iEO, clearly

 C2 (i) ;:L Bo

and

 Sl (i) IA];

hold. From the above ineqQalities and the assumption AkL-->Bo, we

have C2(i)-.--<Sl(i)• i i"
 sinee for any fiEF, Cl(fi)=jElafj and S2(fi)=CF*-BF+jElbfj,

by Lemma 2.3 we have Cl(fi)5S2(fi). Further, the facts that the

idle time •on Ml is zero and the id!e time on M2 is only the time

interval between time Bo and CF*-BF show Cl=AF+Ao and C2=Bo+
(CF*-BF-Bo)+BF=CF*. Thus we obtain Cmax=max(C!, C2)=max(AF+Ao,

CF*).

 (ii) Case CF*-ISF<Boe FoT any iEO, si!nilar to the case (i)

we ce",.p.rO.'".,e ;i[;),-S-gi.(:lt. 6,(f?:iiafj and s2(fi)=Bo'IT;/lbfjl

since Bo<CF*-BF,

 i-1 i-1
 Cl (fi) ECF*•-BF+jilbfj < Bo+j .21bfj=S2 (fi)

holds also in this case. -''
 No idle time exists on Ml and M2, and this means Cl=AF+Ao
and C2=Bo+BF. Thus, Cmax=max(AF+Ao, Bo+BF).

 -51•-

Ml

M2

(a)

f

.

l'f2, "e-. ,fn
 1

o•

o fl'f2, "" 'fnz

fl,f2, "" ,fnl o

o fl,f2, "' ' ;fn
 1

 > CF*Bo= and Alt+Ao ,ll! BF+Bo ' (b) B > CF*-B
o== F

and %+Ao< BFtBo'

l

uNt
Ml

M2

(c)

fl,f2, --e ,fn
 i

o

o fl'f2' ""fnl

fl,f2, "' ,fnl o

o 'fl' ""fnl

Fig.

B

2

o

.

< CF*•-B
 F
9. The

and CF*ilAlt+Ao'

typical schedules for Case 1.

(d) B < CF*-•B and CF* <A +A.FO

 Consequently, if AIIBo, by Lemma 2.6 we can show that the

s.chedule constructed b.y qlgorit'nm I is an optimal schedule. fi

 Note that for the above case, we can obtain the optimal .'
 '>A or B <A .schedule regardless of B F=iO FO
 Case 2: BFIAo and AF<Bo

 we develop the algorithm for BlpkAo and AF<Boe

 ' lt!!ggrt!bgL!l-1 thn '
 (l) On Mi, proeess the jobs in F succgssively in an arbi•-

 trary order from time O. Then, process the jobs in O
 successively in an arbitrary order frorn time Bo.

 (2) On M2, process the jobs in O first and next the jobs

 in F successiveiy in an arbitrary order from time O.

 !n this case, the typical sc'he6ule is the one illustrated

in Fig. 2.10.

 Ml

 M2

 Fige 2.10. The typieal schedule for Case 2.,

 Lenuna 2.8. !f Bl"IAo and AtF<Bo, then algoritl}m ![constructs

an optimal schedule.

 Proof. For any iEF, it is clear that Cl(i)SAF and S2(i)lBo

Since AF<Bo, we have Cl(i)<S2(i). For any iEO, we obtain C2(i)E

Be.<,ESI(i). Moreover, it is elear that Cl=Bo+Ao and C2=Bo+BF.

'Sinee AoSBF, we get Cmax=Bo+B).• Thus, from Lemma 2.6, algorithm

 ' --53-

F ' o

o F

.

11

constructs the optimal schedule. ll

 case 3: BF<Ao and AF<Bo

 We divide this ea.se into some subcases and develop the

algorithm for each subcase. .
 (I) Ao-a"SBo-bz •
 . Let O'=O-{r}, Aot=iE2o,ai, TfBo'-Aoi and T2"ar.

 "-1) subcase 1: Tl$AF

 AIgorithm M

 (1) On Ml, process the jobs in F successively in an arbi-

 trary order from time O. Then, process the jobs in O
 '
 successively in the order sl,s2,"',Sn2-1 and Sn2

 from time A . F
 (2) On M2, Process tha jobs in O successively in the order

 Sl,S2,"•,Sn2-l and Sn2 from time O. Then, process
 the jobs in F successively in an arbitrary order from

 time B .

 The schedules characterizing this case are illustrated in

 Lemrna 2.9. Zf Ao--arSBo-bz and T!SAF, then the schedule

generated by algorithm IZ is an optimal schedule.

 Proof. Since for any iEF, we get

 Cl(i)$AF '
and

 S2(i)IBo, ,

from the assumption AF<Bo we can prove Cl(i)<,S2(i). Further,

 • -54- •

 Ml

 M2

 (a)

 Ml

 M2

 (b)

 Fig.

 any

as.e
.J

F Sl,S2, -et sSn 2

Sl,S2, ee-)Sn 2 E

AF+A >B +B . FOo=

F Slls2, .e. ,Sn2

Sl'S2' e-e pSn 2 F

for

i-1
2

j=1

Thus

 AF+Ao S BF+Bo'

 2.11. The typical schedules

 ' tt
 siEO, it is easy to show C2(si

 By arranging the equation of

 n •-l i-1 2
 si (si) =AF+j Eiasj =AF+Ao,- jii a

 n -1 =Ai!- (Bo-'Ao ,) +B6-- j2gi a.j

 ' n2-1
 "AF-Ti+Bo- jEi. asj '

 '
we obtain

 --55-

for Subcase 1.

 'i
)" jZlbsj and si(si

 '
Sl(Si), we have

sj

).AF+

 n -1 '2 i si (si) vC2 (si) =AF'Ti"" jEi-asj+Bo'j Ei bsj

 ' n n--1 • 22 '=AF'T i+j .i. +ibsj - jEi asj '

Consequently, from \Tl and Lemma 2.4 we can show that Sl(si)l
C2(si). Oh the other hand, there exists no idle time between

consecutive jobs. Thus, it is clear that Cl=AF+Ao and C2=BF+Bo.
Therefore, sinee the maximum completion time is Cmax=(AF+Ao,

BF+Bo), Lemma 2.9 follows from Lemma 2.6. o

 '
 ' il[i>thitUbCi:Sg.b2.:..T.ii>,A' l•l.a! .TgtSt:5•. an optimai scheduie

regardiess of T2SBF Or T2>BF. •
 !t!!.ggti!!!!!!!.-!!Cl thmW

 (i) On Ml, proeess the jobs in F continuously in an arbi-

 .trary order from time O. Then, process the jobs in O

 $uccessively in the order sl,s2,"',Sn2-1 and Sn2 frOM

 time Tl. '
 (2) On M2, process the jobs'in O without interruption in

 the order si,s2,"',sn2-1 and sn2. Next, process the
 jobs in F continuously in an arbitrary order from time

 Bo' ''
 The only typical schedule for this ease is shown in Fig. 2.

 '
 Lemma 2.10. If Ao-ar :; Bo-bz,' Tl > AF and T2 E B.F, then the

sehedule constructed by algorithn N is an optimal schedule.

 Proof. For any sieO, it is easy to show

 ' -56.-

l2.

 Ml

 M2

 Fig. 2.12. The typieal schedule for Subease 2..

 i
 C2 (s i)=j ;lbsj

 Si (si)=Ti+j .XS.j =Bo-Ao t +j .2iasj

 '
 n2-1
 LtBo"' jii asj'

 i
From Lernma2.4 we have Sl(si)IC2(si). Fer any iEF, we can show

that Cl(i.)EIrlEBoES2(i).• On the other hand, we have Cl=Tl+Ae=

Bo+ar=Bo+T2 and C2=Bo+BF. Sinbe Bke2;T2, we can show that Cmax=

Bo+BF. Therefore, Lemma 2.10 foilows from Lanma 2.6. fi

 (I•-3). Subcase 3: Tl >AF and T2>BF

 lt!!.ggrt!i!!!!!-}LlrthV

 '
 (1) On Ml, process the jdbs in O' successively in the order

 Sn2-1'Sn2.2''",S2 and Sl frOM tiMe O. Then, process the

 jobs in F successively in an arbitrary order from time
 Ao,. Finally, process job r from time max(Ao,+AF, br).

 (2) On M2, proeess the jobs in O'successively in the order

 Of Sn2,Sn2-1,"',S2 and sl from.time O. Then, process
 ' '

 -57-

F sl,"',Sn' 2-1 sn2

sl,s2,"',Sn2
.F

 the jobs in F without interruption in an arbitrary

 order from time B . o
2. 13Irhe typiCal Sehedules in this case are iuustrated in Fig.

 '
 Lemma 2.11. !f Ao-arEBo-bz, Tl>AF and T2>By,, then algo-

rithn V constructs an optimal schedule.

 Proof. (i) When Ao,+AbÅíbr, it is easy to show Cl(i);Sbr;!

S2(i) for any iEO'vF. Ithen i=r, we get C2(r)ttbr and Sl(r)=br.

Moreover, we have Cl=ar+br and C2"Bo+BF. Thus, Cmax"MaX(ar+br,

 (ii) When Ao,+AF>br, we. obtain Cl(si)=.jEiasj and S2(si)=

 n2
j.-.i+lzsj Åíor any sfO'. By Leu!ma 2.4, we can prove Cl(si)SS2(si).

 .ttFurther, for sii, we have C2(r)=br and Sl(r)=Ao,+All. Thus the

assumption Aot+AF>br implies C2(r)<Sl(r). I'or any iEI', we also

have Cl(i)SAot+AF and S2(i)ZBo: Since Ao,+AF<Ao,+TiBo, we have

Cl(i):S2(i). Further, it is clear that Cl=Ao+AF and C2=Bo+BFe
Consequently, Cmax=(Ao+AF, Bo+BF) for this case. Thus from Lemma

2.6, (i) and (ii) together the proof of this lernma is completed. B

 '
 (!I) Ao-ar ' Bo-bz

 . Hereafter, we ehange the definitions of O', Aot, Tl and T2 as
follows; o'=o-{Z},. Ao,tAo-a , Tl=b.z and T2=Ao--Bo,, where Bo,=Bo

-b l'

 <u-1) subcase 4: TISAF

 This subcase is the same as Subease 1 except for the above

 -58-

Ml

M2

(a)

Sn2-1, "' ,Sl 'F r

r Sn2-1' --e ,S 2,Sl F

Aot+AF>b and A +A >B +B OFF==

Sn2-1""'ft F r

r eeen2-1, F
.

(b) bt > Ao,+AF and a +b
 r

 >B +Br OF

t

uot Ml

M2

(a)

Fig.

Sn2"1' ... ,S l F r

r s n2-1' -e- ,S l F

Aot+AF

2.13.

>b
== r

 The

and A +A
 o
typical

 <B +BFO F
schedules for Subcase 3.

Sn2-l,"',s F r

r Sn2-l,"'F

(d) b rlAo,+AF and a +b
 r

 <B +Br OF

ehange of some definitions.

 (II-2) Subcase 5: Tl>AF and T2;SBF

 The optimal scheduie for this subcase can be obtained in the

same way as for Subcase 2 except for the above change of some

definitSons.
 '

 (n-3) subcase 6: Tl>AF and T2>BF

 !t!!ggpttr!!!LYLI thvr

 (1) On Ml, process the jobs in F successively in an arbi-

 trary order from time O. Then, process the jobs in Q'

 eontinuously in the order sn2,sn2-1,"',s3 and S2 frOM
 ,,,' g.II'l'i/,'"S%i'l:Zi]ll lrii::S,i.ji08 S,l`"li.iiO:.glM.:.Mlli

 jobs in F without interruption in an arbitrary order
 from time bz. Finally, process the jobs in O' sueces-

 sively in the order sn2,"',s3 and s2 from time bz+BF
 if bge>iAF+Aot, or from time max(bl+BF, Ale+T2) if bz<

 A:F+Ao, '

 '
 The typical schedules characterizing this case are illus-

trated in Fig. 2.14.

 Lemma 2.12. !f Ao-ar>Bo-bl, Tl>Al? and T2>BF, then the

schedule constructed by algorithm V[is an optimal sehedule.

 PrOOf. (i) When bl4AF+Ao,, we can easily show that for any
iEF, Cl(i);gA}"STfblES2(i) holds• Further, it holds that for any

SiEO', Cl(Si)gg\}+AotEbz and S2(si)lbz+BF. Therefore we have

S2(si)ICI(si). Moreover, for si=Z, C2(Z)+bz and Sl(Z)=bz hold.

Also, it is easy to show that Cl=az+bz and C2=Bo+BF. Accordingly,

 '
 -60- -

Ml

M2

(a) b

F sn2,"',S2'

l F sn2""'

zl;AF+Ao, and az+bzÅíBo+BF•

F sn2;",S2 z

z F

(b) bzkAv+Aot and az+bz > Bo+BF'

l

cr
H1

Ml

M2

(c)

Fig.

F Sn2,"•,s2Z
Z F sn2,"',S2

F s• n2' --- ss 2
z

z F Sn2' e--)s 2

bz ` AF+Ao,

2.14. The

and A +A +B >B Oe F O=F
typical schedules for Subcase

(d)

6.

bz ` AF+Aot and AF+Ao<BF+Bo•

Cmax=Max(az+bz, Bo+BF).

 (iÅ}) When bz<A]l+Aot and bz+BF>-AF+T2, we get Cl(i)SAFSTI=bz`--

S2(i) for any iEF. Further, for any siEO', we have

 n2. -1 i-1
 Ci (si) =AF+j it. asj =AF+Ao'j .Eiasj mAF+T 2+Bo,-j .2iasj ,

.and
 n2 i
 S2 (si) =BF+b z+j .i. +lb sj =BF+Po-j i1bsj +bz

 i'
 eBti+bz+Bo,-jilbsj+bl' ,

 'ThUS s2 (.i) .-ci(si)= (BF+b z)- (AF+T2) +b z+i. ;/lasj -;/'ib s'j

h.O.id .S.hpT.h.e.r.eftOi.etfsr 20(MsiL)lillPia(.2
i'

ia"Fd..th.ei.aiS,SU.MiP.t.Z.O"c2I>lzl;1-ii2iBF.+.bdi'

Sl(Z)=AF+Aot, clearly C2(Z)SSI(Z) holds. On the other hand, it is

obtained that Cl=AF+Ao,+az=Al?+Ao and C2=bz+BF+Bo,=BF+Bo. Since
bz+Bi"liA"+T2=Ai}+Ao-Bot, we have Bo+Bpe>Ait+Ao. Accordingly, Cmax=

Bo+BF'

 (tii) Wrient7;<A!e+Aoi and bz+BF<AF+T2, for any kF we can

easiJ-y show that Cl(i n)/f\blSS2(il:l Also for any SiEO', we get

 , ci (si) =AF+j Eiasj =Aii+Ao-j iiasj ,

and
 n2 n2
 S2 (Si) 'Ai}+T 2+j ri. +ib sj "Ai}+Ao'-Bo t +j .i. +ib sj

 i 'AF+Ao'j iibsj +bz'

 -62-

Thus the equality

 i-1 i
 s2 (si)dCi (si)"b z+j E i,asj -j ;ib sj

holds. Therefore from Lama 2.5, we can prove S2(Si)2;Cl(Si).

Further, for siZ, we have C2(Z)=bz<AF+Ao,=Sl(l). Also, since

Cz"AF+Ao and C2"T2+AF+Bo,=Ao+AF, we have Cmax=AF+Ao. Consequent.ly

(i), (ii) and (iii) prove this lemma. D .
 We present the complete scheduling algorithm before our main

theorem.

 !t}g!!ll!!g!g-!!!gg!zi!!!!!!letAlth

Step O.

Step Z.

Step 2.

Step 3.

Step 4.

Set AF=ikai, BF=iiFbi, Ao'-iioai and Bopiiobi.

If \Bo, then go to Step 2. 0therwise go to

Step 3. •(1) On Ml, process the jobs in F sticeessively ac-

 cording to Johnson's rule from time O. Then

 process the jobs in O successively in an arbi--

 trary order Crom time AF after processing ail

 f!ow shop type jobs.
(2) On M2, prpcess the jobs in O suceessively th

 an arbitrary order from time O. Then, process
 the jebs in F according to Johnson's rule frorn

 time max(Bo, CF*--BF). (Algorithm I)

If BISkAo, then go. to Step 4. 0therwise go to step 5.

(1) On Ml, process the jobs in F suceessively in an

 arbitrary order from time O. Thgn, process the

 jobs in O successively in an arbitrary order

 from time B . o
(2) On M2, process the job,s in O first and then the

 -63-

step 5.

step

Step

Step

Step

6

7

8

9

.

.

.

.

 jobs in F successively in an arbitrary order

 . from time O. (Algorithm ll) '
Find any two distinct jobs r and Z in O such that
br>-' JM.,aoX2(•aj) and az)' JM.,aoXi(bj)• Zf Ao-arS-Bo-bz, then

set O'=O-{r}, Ao,=Ao'ar, Tl=Bo-Ao, and T2=ar.

otherwise, set O'=O-{Z}, Ao,=Ao-az, Bov=Bo'bz,

Ti=bz and T2=Ao-Bot.

Zf TIA< F then go to Step 7. Qtherwise, go to

Step 8. •
(1) On Mls process the jobs in F successively in

 an arbitrary order from time O. Then, pro-

 cess the jobs in O successively the order sl,

 S2,"',Sn2-1 and Sn2 from time AF.

(2) On M2, process the jobs in O successively in

 'the order sl,s2,"•,sn2-.1 and sn2 frOM tiMe

 O. Then, process the jobs in F successive!y

 in an arbitrary order from time Bo.

 (Algorithm M)

:f T2S-BF, then go to Step 9. 0therwise go to

Step 10.

(1) On Ml, process the jobs in F continuously in

 an arbitrary order from time O. Then, pro-•

 cess the jobs in O successively in the order

 Sl,S2,"',Sn2-1 and Sn2 from time Tl.

<2) On M2, process the jobs in O without inter--

 ruption in the order s!,s2,"',Sn2-1 and Sn2

 from time O. Next, process the jobs in F

 continuously in an arbitrary order from time

 Bo. (Algorithm N)'

 -64--

step

Step

Step

10.

il.

12.

Using Ler!mias

Theorem 2.3.

!f Ao-arSBo-bz, then go to Step 11. 0therwise,

go to Step l2. .
(1) On Ml, process the jobs in O' successively

 in the order sn2.pl,sn2-2,"',s2 and Sl frOM

 time O. Then, process the jobs in F succes-
 sively in an arbitrary order from time Aoi.

 Nnally, process job r from time max(Ao,+AF,
 br)'

(2) On M2, process the jobs in O successively in

 the order of sn2,sn2-.1,"',s2 and Sl frOM

 time O. Then, proeess the jobs in F with-
 out interruption in an arbitrary order from
 time Bo. (Algorithm V)

(1) On Ml, proc.ess the jobs in F successively in

 an arbitrary order from time O. Then, proc-
 ess the jobs in O' continuously in the order

 Of Sn2,Sn2-1,"',S3 and s2 from time AF.
 FinaUy, proeess job sl(=l) from timevmax(
 bi, AF+"o')'

(2) On M2, process job l from time O. Then,

 process the jobs in F without interruption

 in an arbitrary order from time bz. Finally,
 process the jobs in O' successively in the

 order sn2,'•',s3 and s2 from time bz+BF if

 bz2AF+Ao, or from time max(bl+BF, AF+T2) if

 bz<AF+Ao,• (Algoritim v[)

 2.7-2.12, the next main theorem is dedueed.

 ' '
 Zf in a two machine scheduling problem there

 ' ' -65-

are flow sbop type jobs and open shop type
p!ete algorithn (or' algorithms I-•V[) gives
 'minimizing the maximum corrrpietion time. D
 '

jobs, then
an optimal

above Com-

schedule

-66-

SCHEDULING

 CHAPTRE 3

PROBLEMS ON PARALLEL TYPE MACHINES

3.1 Introduction

 In this chapter, we consider" scheduling problems for a set
of jobs J={Jl,J2,"',Jn} tD be processed on parallel type machines

The following three problems are dealt with.
 a) nlmlilL nonpreemptive seheduling pToblem: Each job
 max
Ji consists of single operation which can be processed on any

machine and has an equal processing time on eaeh machine, i.e..,

p..=p., and so machines are identical parallel type. Further,
 13 ;
 'each job Ji has a same due date on each machine Mj, i.e., dij=di.

The processing of Ji should ideaUy be completed within the due

date. The schedule must be nonopreemptive and the objective is
 ,to minimize maximum lateness.
 (ii) nl21ilL preemptive scheduiing problem with gener--
 max
alized due dates: Eaeh job Ji is to be processed on two identical
parallel machines. On machine Ml(M2) Ji must be completed by the

due date dli(d2i). The objective is to minimize maximum iateness.
 (iii) nlmlQrlCmax scheduling problem: Eaeh job Ji can be

 -67-

.

processed only on a given subset of inachine set M, Qi={MjljEIi},

where li={hi(1),.ee,hi(ki)}s!I={1,2,..•,m}. The processing time

of Ji on machine Mj is pij=pi if rtljEQi and pij=coif }ljkQi• The

objective is to obtatn.a preemptive or nonpreemptive schedule

minimizing the maximum completion time. •
 ' For the nonpreernptive scheduling on parallel type machines,
above thre.e types of problems are NP-complete except for the

cases that each job has unit processing time or the objective is
to mintmize totaz eoinpletion tiTne 2i:cl.. For the preemptive

case, the following facts are already known.

 machine t e objective com lexity reference

single

identicai

identical

uniform
uniform

L-
 max
c
 max
L
 max
c
 max
L
 max

O (nZogn)

O (n)

O(n2)

O(n)

O(n2),

[11]

[23]

[10]

[6]

[2S]

 In Section 3.2, we propose two approximation algorithms for
nlmlZILmax nonpreemptive scheduling problem, which is lsll?-complete,

and show their worst case bounds.

 Zn'Section 3.3, we present a polynomial time algorithm to
construct a schedule minimizing maximum lateness for n121IILmax

preemptive scheduling problem with generalized due dates.
 ' Finally, in Section 3.4, we show a solvable case of nlmlQri
 '
Cmax nonpreemptive scheduling problem and present a polynonial
time algorithm for nlrnlQzlcmax preemptive scheduling problem.

Zn such a solvable case, we assume that each job Ji has unit

processing time..

 -68-

3.2 Approximation Algorithms for nlmlllLmax Nonpreemptive

 Scheduling Problem and Their Worst Case Bounds .

 !n this section, we discuss an nlmlllLmax nonpreemptive

schedulÅ}ng problem. In this problem, each job Ji(EJ) has an

equal processing time pi and an equal due date di on each machine

M.(EM). [he objective is to construct a schedule minimizing
 J
maximurn lateness.

 Unfortunately, this problem belongs to a class of NP-complete
problems. Therefore, we propose two approximation algorithms

and obtain their worst case bounds. Concerning the worst case
bound, we use the form of modified relative deviation defined in

Section 2.2.

 . Our first algorithm EDDrEaT,Ziest Due Date) is a iist sched-
uling and the second algorithm LP.TrLongest Proees$ing Time) is

its refinement.
 ' .
 List Scheduling:. A Zist seheduZing produces a schedule of

jobs based on a list as follows. When one of the rnaehines be-

comes available, first unprocessed job on the list is assigned

to this machine. '
 ' '
 . Zn the list scheduling, the resulting sehedule is influenced

by the ordering of jobs on the list. [therefore we have to spec-

ify an ordering in advance. R. L. GrahaTn [7] [8] obtained the

following result with respect to a nonpreemptive schedule mini-

mizing maximum compZetion time on m identical parallel machines
(nlmlllCmax nonpreemptive seheduling problem). .

 ' ' Lemma (Graham [7] [8]). For nlrnlzlc.ax nonpreemptive sched-

uling problern, let Cthax be the maximum completion time of any

list scheduling and Cthax that of optimal scheduling. Then, the

 '
 -69•- •
 '

inequality

 c' l max < 2- - C* r= .m. max

holds [71. Further, for the list on which the jobs are ordered
in nonincreasing order of processing times, we have

 Cthax 4 1
 <-- crk = 3 3m
 max
([8]).

 For the job set J, the maximum lateness of the sehedule con-
structed by some algorithm T '(approximation or exact) is defined

by

 L (J ; r) =ll.EaiXs.{.Ci(T) -'di} ,

where C.(r) is the corresponding completion time of J. in that

schedule. Especially, hereafter, the notations L(J;EDD)7 L(J;LPT)

and L(J;or*) are used to denote the maxiTirum latenesses for EDD, LPT

and a certain optimum aZgorithm T*, respeetively.

 '3.2.1- Approximation algorithm EDD and its worst case bound

 ' We present an approximation algorithm EDD and give its worst
 'ease bound (or modified relative deviation). Here, without any
 'loss of generality, we can assume dlSd2S"'Sdn•
 ' ' ' ALYI!sgnt.!2!g!-.!i!i!!2th EDD: Assign the jqbs to machines in the order,

 ttJrJ2,"',Jn' '
 '
 Theorem 3.1. For any job set J, the inequality

-70-

 L(J;EDD)-L(J;"") s.1-l
 L(J;T*)+dmax M

holds, where dmax=dn from the above assumption. Moreover, this

bound is the best possible.

 Proof. We assume that ajob set J is the smallest one for
whieh the theorem may be violated. And, it is enough to consider

only the case that job Jn determines the maxinmm lateness of the
schedule constructed by algorithm EDD, i.e.,

(3.1) L(J;EDD)=C (EDD)-d .
 nn
Since algorithm EDD is a list scheduling in which the jobs on the
list are ordered in the nondecreasing order oC due dates, Graham's

Lemma shows that

 C (EDD)'
(3.2) :(-..) S2- t',

wh.ere ;ft is a certain exaet algorihm minimizing maximum compZetion

time and C(fi*) is its maximun completion time. From (3.2), the in-

 '(3•2)' c (EDD)s(2 -• -IL.)c(fi*)

 n '- m
holds. Substituting (3.2)t into (3.1), we obtain

(3.3) L(J;EDD) !-(2-i)C(fi*)-d .
 "m n
 On the other hand, we have

(3•4) L(J;""))'C(1")-d.'
 '
Hence (3.3)'and (3.4) imply that

 t.71-

 i--(3•S) L(J;EDD)'L(J;n")5(2- 'il-)C("")-d.-(C(T")-dn)

 =(i- L)c(E*).
 m
 ' '
Since drnax"dn, (3.4) and (3e5) together show that

 (i- l)c(E*)
 E{]•\.?D.likitt"")..=MlliiiFi---,., fi-i•

ehis contradicts our assumption. Thus, we have the desired wor$t

 To see that this bound is the best possible, we can consider

three examples depending on m (mod 4).

 Example 1. Let n=2m+1 apd m=2r. The processing times are

 p2i-i=P2i {Z:Sl;'ll) Igi lilll's.2r

and p4r+1=4r, and the due dates are di=d(=const.) for 1.<.i.<.2m+1.

Since all the due dates are equal, we may assume that the i-th

job assigned by algorithm EDD, 15iS2m+1, is job Ji. Then, we

obtain the schedule shown in Fig. 3.1(a). Because the optimal

schedule by some exact algorithm urk becorRes as shown in Fig.3.1<b),

and,L(J;u*) is 2m-d, we have

 Li{i\'?""kLiJ..;"*' =i- "' ='- 'lt'

 •Ebtample 2, Let nn2m+1 and m=4r+1 and let the proces'sing

times be given by

-72-

 2r+2ffl-1 for lSi$4r,

 4r for i=4r+1,
 pi= sr-2fiZll+1 for 4r+2sissr+1,

 4r for i=8r+2,
 8r+2 for i=8r+3,
 '
where fxl is minimum integer not less than x, and the due dates

be d =d for ISiS2m+1. i
 The approximate and•the optimai schedules for this case are

illustrated in Fig. 3.2(a) and (b), respectively. Similar to

Example 1, we obtain L(J;EDD)=16r+2-d and L(J;g'AV)=8r+2-d. Thus,

we have

 LiE{ li ?. ?R)) i:Lii (J ;Trk) - sil;2 -1 - k.

 max
 Example 3. When n=2m+1 and m=4r+3, let the proeessing times

and the due dates are given by '
 r+ f-il-1 for ISi$4rs

 2r+1 for i=4r+1,4r+2,4r+3,8r+4,8r+5,8r+6,
 p•= • i 4r+2-ttl for 4r+4#S8r+3,

 4r+3 for i=8r+7,

where txj is maximum integer not greater than x, and d.=d for
 i

 The approximate and the optimal schedules are illustrated
in Fig. 3.3(a) and (b), respectively. Again, similar to Examples

1 and 2, we have L(J;EDD)=8r+5-d and L(J;T*)=4r+3-d. Hence, we
 'get

 LE{i\.?D.]'lill`J`""' - 2r.: -' i--:t.

 max
This completes the proof of Theorem 3.1. D

 -73-

l

N)1'

d

4r

d

Ml

M2

M3

M4

M
 m

r

r

3r--2

3r--2

r+1

r+1

3r-3

3r-3

.

•-

.

2r-2

2r-2

2r

2r

2r--1

2r--1

2r-1

2r-1

(a)

Fig.

Approximation algorithm

3.1. An example giving the tight bound

r r+1 2r-1

r 2r-1

2r 2r

2r-Z 2r+1

2r-Z 2r+1

...

r+2 3r-2.

r+2 3r-2

'4r'
 (b) Optimal

of Theorem 3.1 in

schedule

 case rn=2r.

I

Nut

d d

Ml

M
 m

r+1

r+1

r+1

r+1

6t-1

6r-1

6r-1

6r•-1

.

.

.

4r-1 4r+l'

4r 4r

8r+2 tt

(a)

Fig.

Approximation schedule.

 3.2. An example giving the tight bound

2r+1 2r+1 4r

2r+1 2r+1 4r

2t+3 6r-1

2r+3 6r•-1

2r+3 .6r-1

2r+3 6r--1

4r-1- 4r+3

4r+1 4r+1

4r+1
.

4r+1

8r+2
,

 (b) Optimal

of Theorem 3.1

 schedule.

in case m=4r+1.

l

"ol

Ml

M
 m
(a)

Fig•

d

r+1

r+1

r+1

r+1

3r+1

3r+1 .

3r+1

3r+1

r+2 3r

.

.

.

2r+1

2r+1

2r+2

2r+2

4r+3

Approximation schedule.

3.3. An example giving the tight bound of Theorern

d

'r+1 r+1 2r+Z

r+1 r+l 2r+l

r+2 3r+1

r+2- 3r+1

r+2 3r+1

r+2 3r+1

r+3 3r

G..

2r+1 2r+2

2r+1 2r+2

4r+3

(b)

 3.1

Optimal
.m case

schedule

m=4r+3.

3.2.2 Approximation algorithm LPT and its worst case bound

 The worst case examples in the last subseetion show that when

the number of distinct due dates is small, the algorithm EDD is

not so effective. !n such a case, the maximum lateness may be
greatly influenced by the maximum completion time rather than

the due dates. Now, we propose another approximation algorithm
LPT which is more effective in such a situation, and give the

worst case bound. Algorithm LPT is a hybrid algorithm which
consists of a mixture of LPT and EDD rules.

 .!tAlgs2iL!Z!!!!.LR[[1oth LPT:

 Step 1. Assign the jobs to each machine according to the
 list such that the jobs are ordered in the non-
 increasing order of processing times. (LPT rule)

 Step 2. 0n each machine, reorder the assigned jobs according
 to the nondecreasing order of due dates. (EDD rule)

 Next Theorem 3.2 gives a worst ease bound of algorithm LPT.

But probably algorithm LPT has a better worst ease bound than

that of Theorem 3.2 in some eases.

 Theorem 3.2. Let L(J;LPT) and L(J;Trk) be the maximum late-

nesses of' the schedules constructed by' algorithm LPT and some
exact algorithm T7'c for fob set J, respectivel: . Then,

 mp . 1 mm
 3m P L(J;LPT)-L(J;T*) L(J;T*)+dmax 5Mi"' .- 31m +M(dnp-dl

ho!ds, where pmin= ieti.etnPi and P=2i:iPi'

 ' Proof. Let i* be any exaet algorithrn minimizing maximum

 -77-

4
3

1

3

completion time for job set J and C(fi*) the ;:taximum completion

time of T*.

 It is clear that the inequality

 '(3.6) 1) (J ;Tk) IC(i?*) -d
 n '
holds. Also, we have

(3.7) L(J;LPT)5C(LPT)-dz,

where C(LPT) is the maxiTrrum completion time of the schedule con-

structed by algorithm LPT. From (3.6) and (3.7)., we have

(3..s
.) LS{ik.;:l#Littpl) sc(L,p(T-.).-)c(ff*) .2?I.d.}.

Since

 ' C(LPT) .-fL 1(3'9) c(E.) ==3 3m

 ' -by Graham's Lemma and C(7*)IPIm, it holds that

(3.io)' • L illgl.IP.T.l;La(J;"k) s{l- - 3i. +-l;-(d.-d!)•

 max
Further, let L(J;LPT)=Ck--dk, where Ck is the completion time of

job Jk in the schedule obtained by algorithm LPT. !t is clear
 'that •
(3•11) L(J;"*)IPmin"dk'

Since CkS-C(LPT), (3.9) and (3.11) imply that

 ' L (J;LPT) -L (J;"") S'Ck-dk- <P.in"dk) S'C (LPT) -Pmin

 '
 '
 4 1- S(3 '- 3m)C(T")-Pmin.

From (3.6), we obtain

 -78-

L(J ;LPT) -L (J ;Tsk)
 (g-
s.

l

3m)C(T*)-P min
L(J;T*)+d

max

4
3

C(T*)

1

3m
Pmin

 4s-3
 1
" 3m -

c (Ex•)

 mPmin
P

Thus, we prove Theorem3.2. g

-79--

3e3 ni21IILmax Preemptive Scheduling Problem with

 Generalized Due Dates

 ' rn this section, we consider an nl2!rlLmaxp.reempctve sched-

uling problern with generalized due dates. This problem is charac-
 'terized as follows; (i) a set of job.s J={Jl,J2,'",Jn} is tO be
 'processed on two identical parallel type machines Ml and)I2, (ii)

processing time of each job Ji on Ml or M2 is pi, (iii) each job

Ji has a definite due date dij for machine Mj (j=1,2), in other

words, the processing of job J. on M. must be completed by the
 iJ
due date dij, (iv) preemptions fdr the jobS are admitted, and (v)

our objective is to mininize the maximum lateness. (Note that

dil"di2 is not necessary.)
 In the last section, we proposed two approximation algorithms
and obtained their worst case bounds for nlmlzlLmax nonpreemptive

scheduling problem. In that problem and other traditionaZ sched-

uling problems with due dates, we assume that each job Ji must

have a same due date on each machine, that is, dij=dijt for jlj'

and ISj,j'S-m. However, each job does not always have the same

due date on eaeh machine. For example, let A be a factory uti-

lizing products by the completed job Ji. Then, the transportation

times of goods by Ji from machines to A may differ and the actual

due date is not a date to complete Ji on some machine but a date

of delivery to A. Thus, the practical due date on each machine

must differ for each machine. Therefore we generalize thg idea

of the due date in the sense'that eaeh job may have different

due dates for eaeh machine.

 We consider the problem of obtaining a feasible schedule for

given due dates.

 -80-

 FeasibZe SeheduZe; A feasibZe seheduZe for a job set is one

such that all the jobs are completed by their due dates.
 '
 In the following subsections, we show how to reduce a problem

of obtaining a feasible schedule to network flow problem and

develop an efficient algorithm to get a feasible scheduie.

3.3.1 Construction of associated network flow problem

 We will construct a network flow problem corresponding to

the feasible schedule for our present probiem.

 Let D., 1:.-iS-k, denote the distinct values of due dates,
 -
where Dl<D2<...<Dk and kS2n. And, let Ii=[Di-1,Di], IEiS-k, and

D =O.o
 Now, we eonstruct a network N with n+3k vertices, 2k of

which are souree vertices with labels m.., j=1,2, i=1,2,e..,k,
 Jl
corresponding to machines and time intervals Ii. The maxinvm
possible amount of supply from each source m ji is siDi-Di-1.
JAnd, n vertices are sinks with labels Jl,...,Jn eorresponding

to the jobs. Each sink Ji has the demand pi, ISiSn. The remain-
ing k vertices are intermediate ones labeled vl,"',vk. Further,

the network N contains three types of directed arcs. The first
type' is the arcs connecting source vertices to sink vertices.

The second type is the ones from intermediate vertÅ}ces to sinks.

The last type is the ones from sources to imtermediate vertices.
!f d jl)-Di and dj2<Di-ls arc (mli,Jj) connects vertex mli to Jj.

If d jl<Di-1 and dj2-->Dis arc (m2i,Jj) connects vertex m2i to Jj.

And if d jl;IDi and dj2kDi, arc (vi,Jj) connects vertex vi to Jj.

Finally, for j=1,2 and ISi=<k, arc (mji,vi) eonnects vertex mji

to vi. Moreover, the above all arcs have the same capacity

si=Di-Di-1. Note that if job Jj, ISjS-n, can not be processed on

 ., 1<=iSk, theneither or both of two machines in some interval 1
 i
 -81-

Jth.erone ::eiS go:Oe arg3u:Oendnfi:"gikYertiCeS mii, m2i and vi to vertex

 J
,... gga.g`gie.gk;w.s. k,f.eg:k'bk:,f.z•zw.::.;h:.og: :2gg I:.e.f:iy

IEiSk, and the flow into sink J. is exactly p., ljt Sn.
 j J-'
gAllisCkiiligp:lg:lil.i:;.2::hSlbll'liihCh2do;l2ructs a feasibie scheduie

 Let F(ei,ej) denote the flow through arc (ei,ej). Further,

we also use F('.,J.) to denote the total time length during whieh
 i3
job Jj can be processed in thg interval Ii, where the unit flow

corresponds to the unit time length. .
 Algoritm FS ' • . g'tepi'•ii:iiik.:fl•li.:iggi:•ili"x!g:::,i2.i:igfz,.:gi:•lgeisp;"tg,,ll•g

 erwise stop. Zn this case, there exists no feasible

 schedule.

 SteP 2. :Zn:ot;;tgwts? scheduie Eor the time intervai :i. i$is.k

 ' (1) Find some job Jh(i) such that

 n h(i).-1
 Fi=j;IF(mli,Jj)+ j2.1 F(vi,Jj)ssi

 and

 Fi+F(vi,Jh(i)) > Si,

 where IS.h(i)ta<n.
 '

 '
 '-82--

'

 Step 3.

 Example 3
 J= {J

 (Pl.

 (p2,d21sd22)

 (p3,d31,d32)

 Thens since
six time intervals,

[S,7], I6=[7,81

Eig• 3.4.

 FoT the resulting network, the nonzero flow values related

to the constructon of the actual schedule are F(vl,Jl)=1, F(vl,J3)
 ,=1, F(v2,Jl)=!, F(v2,J2)=1, F(v3,J2)=1, F(m13,J3)=1, F(m24,.Tl)=2

F(m14,J2)"2, F(mls,J3)=2, F(m2s,J2)=2 and F(m16,J3)=l. Thus,

there exists a feasible flow as in Fig. 3.4 q.nd we can obtain

the feasible schedule as Fig. 3.5.

(2) Processing on rnachine lv(1: For IS-jSn, process
 ' job Jj during the time iength F(mli,Jj). Next,
 for IS-jS-h(i)-1, process job Jj during F(vi,Jj).

 Last, process job Jha) during si-Fi. '
(3) Processing on M2: First, process jOb Jh(i)

 during the time length F(vi,jha))+Fi-Si• NeXt,
 for h(i)+ISjSn, process job Jj during F{vi,Jj).

 Last, for IS-j$n, process job Jj during F(m2i,Jj)e

 The processing order of jobs on Ml and M2 is

 arbitrary except for job tJh(i), which must be

 processed .last on Ml and first on M2.

Iterate Step 2 for each time interval Ii.

.1. We consider the foilowing scheduling probZem.
IsJ2,J3}

dll,d12)=(6,2,7)

 =(4,5,3)

 =(5,8,1)

 Dl"1, D2=2, D3=3, D4=5, Ds=7 and D6=8, we have

 !1=(O,ll, I2=[1,21, T3=[2,3], !4=[3,5], rs=

 . We ean construct the Åëorresponding network as

-83-

m 11

1,i

1,!

m 21

m 12 1,1

Z' 1

v1

v2

.m 22

m 13

m 23

1

l

1,1

22

1,1
V3 '

m i4
2

2

v4

1,1

2,2

1,l 1

l,1

22

m 24
t

m 15

1,1

2

1

1,1

Jl

The numbers
attached to
each arc
indieate its
eapacity and
nonzero flow
in this order.

J2

m 25

2 V5
2,2 .

i,l
Jb

m 16 1 V6
1

tu 26

Fig. 3.4. The reduced network and its feasible flow.

-84-

Ml

M2

1 31

Jl J1 J3 J2 J3 J3

J3 J2 J2 J'1

,

Fig.

d32 d22
 3.5. The feasible schedule.

d 12

 Now, we have the relation between a feasible schedule and

a feasible flow.

 Theorem 3.3. There exists a feasible schedule if and only

if there exists a feasible flow on the redueed network.

 Proof. (a) We assume that there exists a feasible schedule.
Now, let tij (tl.j) be the time length that job Jj is processed on

Ml(M2) in the tirne interval Ii• Let the reduced network be N=

(V,E), where V is the set of vertices and E is the set of arcs.

Then, at most one are among (mli,Jj), (m2i,Jj) and (vi,Jj) for
each .sink (job) Jj and interval Ii belongs to E for IJt En and

15i5k. We define the flow through each arc(EE) as follows.

 (i) When (mli,Jj)EE, we set at

 F(mli,Jli)=tij • .

Note that in this case t!'.=O.
 Ij
 (ii) "Then (m2i,Jj)EE, we se.t at

 F(m2i,Jj)=t;j.

Note that in this case t..=O•
 IJ

 -85-

 (iii) When (vi,Jj)E E, we set at
 F(v.,J .) =t..+tl., •
 IJ zJ zJ

 2 t.. F(Tr}1i,Vi) =(v..,J.)EE 1]'

 . 1 Jand
 Z ,!.. F(M2i'Vi)=(v.,J.)EE X]

 iJ
Since there exists a feasible schedule, for ISi$k and ISj5n, we

 k
 Pj=,ZEti,+tl,)•

 '
 n jZitÅ}j' -<- Di--Di-1,

 ' n j .71t {• j S Di--D i-.i,

and

 tij +t l. j S D i-D i-1• .
 '
since si, which is a capacity of arc ('i,'), is equal to Di-Di..1,

the flow through each are does not exceed its capacity. And the
!lg\,:",].o,i,1:.k,l.1 f;,r.:g`,'ig :2.i:iig:`:ktiJg•l. :(:giggJd.g;ig,i•g,rl)=

actZy. Further, the flows frorn sources mli and m2i for 1$iSk are

 n n• '. jil(F(mli,Jj)+F(Fili,Vi).)=jiltij S- si,

 ' nn jil(F(m2i,Jj)IF(m2i,vi))#j .21tl•j -< si• . .

[lhu$, the flow from each source is not more than the possible

supply value si. Consequently, we prove that whenever there

 -86-

exists a feasibie s.chedulet thete exis,ts a Åíeasible flow in the

 ttreduced network..

 (b) We assume that there exists a feasible flow. Then, we

can show that our algorl,thrp FS censtructs a feasible schedule.

 In the case Di>djl, neither (mli,Jj) or (vi,Jj) belongs to

the arc set E, and thuS' F(mli,Jj)=F(vi,Jj)=O, Similarly, if Di>
dj2, then F(m2i,Jj)=F(vi.,Jj)=Oe Thus, it is clear that by algo--

Tithm FS no job is assigned to unavailable ti!ne intervals, i.e.,

intervals after its due datgs. And, the flow into each sink Jj
is p. for ljt Sn, from the existence of a fehsible flow. [rhere-
 J --fore it is suffieient to prove the validity of our algorithm for

each interval T., 1<i<k. . 1 ====
 For the time interval Ii, let Tl(T2) be the amount of busy
periods assigned to Ml(M2) by our algorithm. Then, if algoritlm

FS finds a job Jh(i) at Step 2-(1), we have

 n h(i)-1
 Tl=jilF(mli,Jj)+ ji! F(vi,Jj)+si.'

 n h(i)-l
 -(jilF(Mli,Jj)+ j.E2 F(vi,Jj)) .

 ' =s =D --D . i i i--1
On the other hand, if ajob Jh(i) can not be found by algorithm

FS,,it is clear that T"si. Thus, we get

 ' T 2=F (vi,Jh (i))-s i+ (j :/g (mii,Jj)+h (]i. IIiF (vi,Jj))

 nn +j .h(i.)+IF (Vi,Jj)+j EIF (m2i,Jj)

 n
 =j E1 (F (mli,Jj)+F (vi,Jj)+F (m2i,Jj))-si.

 ' -87-

Because the first three terms of the right hand side are the sum

 and mof flows from sources m it holds that 2i' li

 ' 'n j .El (F (mli,Jj)+- F (vi,Jj)+F (m2i,Jj)) E 2si.

Thus we have T2;;si. Further, in the interval Zi, the only one job

to be processed on both machines is job Jh(i), and F(vi,Jh(i))SSi

frorn the capacity constraint. Simi!ar!y,we can prove the validity

of algorithm FS in any other time intervals. Thus the theorem has

proved• o '
 Remark. If network fiow problem with lvl vertices is solved

by any algorithm with computational time o(f(lvl).), our present

scheduling problem can be solved in O(nlogn+kn+f(3k+n)) time,

where n is the number of jobs and k is the number of distinct due

dates, for the following reasons.
 (i) Serting the due dates requires O(nlogn) time.

 (ii) The reduced network consists of 3krtn vertiees, i.e.,

 .. 2k source vertices, k interrnediate vertices and n sink

 vertiees.
 (iii) Since seheduling the jobs in each of k time intervals
 requires O(n) time, we require O(kn) time to obtain

 the whole schedule.

3.3.3 Minimizing maximum lateness

 !n the last subsection, we proposed an algorithm to con-

struct a feasible schedule if such one exists. We desire to min-

imize the maximum lateness. In the original probelm, if there
exists no feasible schedule, we construct a new problem with pl.=

pi, dh"dil+L and dl.2=di2+L for ljiSn, where L is some positive

constant, i.e., a p'roblern with prolonged due dates. Let L* be

 ' --88-

the minimum value of L such that there exists a feasible schedule

for the new problem. Then it is clear that L}'c becomes the mini-

mum value of maximum lateness for the original problem. Since -
for a fixed L, algorithm FS can construct a feasible schedule

whenever there exists such one and the possible range of L is
 n
OS'LS-iilPi, we can show, by applying a binary search technique,

that an optimal algorithm has a computational time with O(g(n)'
 n
 Zog 2 pi), where g(n) is the computationa! time of algorithm Fs.
 i=1
 '

-- 89--

3•4 nlmlQIlCmax Scheduling Problem

 In this section, we deal with nimlQIICmax scheduling problem.

A set of jobs J={Jl,J2,"',Jn} is to be processed on a set of m

quasi-identical parallel type machines M={Ml,M2,e'",Mm}. Unlike

the problems dealt with in Sections 3.2 and 3.3, each job Ji is
not always processed on any machine. Now let I={l,2,...,m} be

the index set of maehines. Job Ji can be processed only on a sub-
set of machines Qi={Mjljc"!i}, where Ii={hi(1),"',hi(ki)}(EI) is

an index subset and OS,--kiSm. Processing time of job Ji on machine

J
 Jpi for MjEQi'
 Pij=Nco for "tjkQi' . '
Our objective is to minimize the maxirnum completion time. :f

nonpreemptive schedule is desired, this problem belongs to a

class of NP-complete problems. But if preemption is admitted,

this problem is tractable. For nonpreemptive csae, we propose

a solvable case, in which each job Ji has a unit processing time

on Qi, that is,
 p.,-<: igi :J,i:i.

For preemptive case, on the other hand, each job Ji has an equal

but arbitrary processing tirne on Qi

 On the conventional multi-parallel-machine scheduling prob-

lerns such as the probZems dealt with in Sections 3.2 and 3.3, we

assume that each job can be processed on any machine. Xn the

real situations, however, it may happen that each machine can not

always process all of given jobs, though the potential capability

of rnachines is equal. For example, a computer program which is

 --90-

executable on some computer can not always be executed on the

other same type computers because of the differenee of their ad-
 'ditional operating systems and so on. Strictly speaking, the •
machines as mentioned above are not identical but identÅ}cal

in the sense that the capability of machines for executable jobs

is identical. So we call them quasi-identical paraUel type ma--
 '

 !n the following subsections, we propose an efficient algo-

rithm to construct a feasible schedule for each of nonpreemptive

unit processing time case and preemptive arbitrary processing

time case. A feasible schedule is defined as follows.

 FeasibZe SeheduZe: Given a time 1imit D(IO), a feasibZe
seheduZe is the one that all jobs are completed by the time D.

 !n next subsection, we show how to reduce the problem ob-
taining a feasible schedule of nonpreemptive unit processing time

case to a maxinmTn eardinality matehing problem on a bipartite

graph, and develop an efficient algorithm to construct a feasible

sehedule. Then we shori how to minimize the maximum completion

 time. Similarly, in Subsection 3.3.2, we first show how to reduee
the problem obtaining a feasible schedule of preemptive arbitrary

processing time case to a network flow problem, and present an

efficient algorithm to generate a feasible schedule. Then we

show how to minimize the maximum completion time.

3.4.1 Nonpreemptive unit processing time schedule

 In this subsection, we assume that each job Ji has a unit

processing time pi=1 on Qi and is to be processed nonpreemptively

on Qi. Our objective is to minimize the maximum completion time.

Given an arbitrary time limit D, we propose an algorithm gener-

ating a feasible sehedule whenever there exists such one. Since

 -91-

pi=i for each job Ji, without loss of generality we may assume

that the time limit D is integer. For the above purpose, we ex-

ploit the solution of maximum cardinality matching problem on a

bipartite graph B=(X,Y,E), which is constructed as follows.

 St2gng!i!zys2:!!g!!-g!Z-!}U2g!!z!!ie.-g!2gR!!tt fBttGh

 X={v.(k)IjEI, 1.<k-<D}: vertex set corresponding to machines
 J '-. and time limit.
 Y={v(i)li=1,2,"',n}: vertex set corresponding to jobs.
 E={(vj(k),v(i))ljEIi, 15k.<=I)}: edge set connecting vertices

 v.(k) and v(i) if machine M.
 3J can process job Ji.

 !E2sg!!!R.!.g..g:.1 32 Let n=4, m=3, D=3, Qi{Ml,M2}, Q2={M2,M3},

Q3={M3} and Q4={Ml}. Then we have

 X={vl(1), vl(2), vl(3), v2(1), v2(2), V2(3),

 v3(1), v3(2), V3(3)},

 Y={v<1), v(2), v(3), v(4>},

 E={(vl(1),v(1)), (vl(2),v(1)), (vl(3),v(1)),

 (v2(1),v(1)), (v2(2),v(1)), (v2(3),v(1)),

 (v2(1),v(2)), (v2(2),v(2)), (v2(3),v(2)),

 (v3(1),v(2)), (v3(2),v(2)), (v3(3),v(2)),

 (v3(1),v(3)), (v3(2),v(3)), (v3(3),v(3)),
 (vl(1),v(4)), (vl(2),v(4)), (vl(3),v(4))}.

The.resulting bipartite graph is illustrated in Fig. 3.6.

 rt is elear that the size of matching on the biparttte graph

is at most n. Next, we present an- algorithm constructing a fea-
 'sible schedule from the solution Qf maximum cardinality matching

 'probiem on a bipartite graph.

-92-

vi(1)

•v l(2)

vl(3)

v2(1)

v2(2)

v>'(3)

v3(1)

v3(2)

v3(3)

Fig. 3.6.

v(1)

v(2)

v(3)

v(4)

'Ihe resulting bipartite

graph for Example 3.2.

t. AL!ll!.ggnt.!!!!!L!:gth F bl 1(FI>

"Step 1.

Step 2.

The following

of cardinality

schedule.

 Construct a bipartite graph eorresponding to the

 scheduling problem and find a maximum eardinarity

 matching on that bipartite graph. !f the obtained
 matching has size' n, then go to Step 2. 0therwise
 stop. rn such a case, there exists no feasible
 ' schedule. '
 If edge (v.(k),v(i)) belongs to the matching ob-
 J
 tained in Step 1, process job Ji on machine Mj.

 And, the processing order of jobs assigned to each

 machine is arbitrary. ' -
theorem shows that whenever there exists a matching

 n, the above algorithm F-I constructs a feasible

 -93-

 . Theorem 3.4. Given an integral time iimit D, there exists

a feasible scheduie iÅí and only if there exists a matching of

cardinality n on a bipartite grap"n as constructed above.

 Proof. (i) We first assume that there exists a matehing

of cardinality n. Then it is sufficient to show that algorithm

F-I constructs the feasible schedule. For that purpose, we must
show that in a schedule constructed by algorithm F-Z, every job
is assigned to a suitable machine and the proeessing of jobs is

finished by time D. '
 Now since edge (v.(k),v(i)) does not belong to E if M.kQ.,
no job is assigned to J the unexeeutabie machine. Aiso sine3 e lll=n,

ali jobs are assigned to a suitable machine. Further, $ince there
exist at mo-stD vertices corresponding to an index of each machine,

Step 2 assignes at most Djobs to each machine. Thus algorithm

F-Z can construct a feasible schedule, whenever there exists the

matching of cardinality n. . . ' '
 ' (ii) Next, we assume that there exists a feasible sehedule.

Then let the jobs processed on machine Mj be jjl,"',J)- k. aceord-
ing to the pvecessing ordfir. Since there exists a feasigle sched-

l.lel.:e,:a.":, ijf•e.,1:g,gi:.il'tll..v7'j.,,as.,t,ef.,::.??ei.;f,l.li?;;?i"g

 that we have the desired matching, theThen of car- is, matching

dinality n. Thus there exists the matehing of cardinality n,
whenever there exists a feasibie schedu!e. B

..,.,S:.:e2t;2".:i,:20g2A.g:\2n.:2:2.::t:il::: gXg,:i::[,Ds.g? ca"

Next, we must construct an optimql schedule, cornpletion time of

which is a mznzmurn value of tzm-eg41tmits when a feasible schedule

exists. Similar to the last section, we can find out such time

limit by applying a binary search method. To get an optimal

schedule, it is suffieient to solve maximum cardinality matching

problem at most log2n times or to iterate Step 1 in algorithm F-r
at most log2n times, since OEDS2i:lpin. (Note that it is not

necessary to iterate Step 2 in algorithm F--I Zog2n times by vir-

tue of Theorem 3.4'.) Here, the matehing problem ean be solved

in polynomial tirne [18]. Further, the time complexity of Step 2
is O(n). Thus we can eonstruct the optimal schedule in O(Zog2n'

f(n(m+1))+n) time, where f(x) is the computationaZ time to obtain

a maximum cardinality matehing for any bipartite graph with x
vertices. (Of cource, f(x) is a polynomial as is already knowne)

3.4.2 Preemptive general processing tirne schedule

 . We assume that each job JÅ} has an equal but arbitrary proc-
essing time oR qi. Further, preemptions are admitted. Our objec--

tive is to minimize the maximum eompletion time again. First, we
show how te reduce the prob!em ot' obtaining a feasible schedule

to a network flow problem. The reduced network N=(V,E), where
 'V is a vertex set consisting of two disjoint subsets S and T, and

E is a directed arc set, is constructed as follows. '

 Consttuction of Reduced Network
 ' (i) S={s.lj=1,2,..',m>. a set of source vertices, in which

 3 •. eaeh source has a maximum possible

 . amount of supply D. /
 ' (ii) T={tili=1,2,"',n}: a set of sink vertices, in whi• eh.

 . each sink ti has a demand pi
 E={(sj,ti)IMjEQi, 1;tEjgm, 15iSn}: a set of directed (iio
 arcs, in which each arc is directed

 from sj to ti and has a capaeity D'.

 -95-

 Note that a source vertex s. corresponds to a machine M.
 JJand a sink vertex ti to ajob Ji. Also, we may assume that DZ
le2.inPi, SinCe OUr PreSent Objective is to obtain a feasible

. = ==I

schedule.
 '
 E2sg!!ll2[1!.g-9.:.9.:e 3 3 Let n=4, m=3, D=5, .Qi{Ml,M2}, Q2"{M2},

Q3L{M3}, Q4={Ml,M2,M3}, pl=3, p2=l, p3=3 and p4=2. See Fig. 3

 ' supply demqnd
 t1 3 Each arc has

 5

 5

 5

Fig.

s

s

s

.

1

2

3

7

 a capaeity 5.
 t2 1

 t3 3

 t4 2

network
3.3.

above network as follow:•

.7.

 3 . The reduced

 for Example

 ' We defineafeasible flow in the . .
 ' ' '

 FeasibZe FZow: A feasibZe fZow is the fol!owing,

 (i) the tlow from each source is no more t"nan D,
 (ii) the flow into each sink ti is exactly pi,
 (iii) the flow through each arc is at most D.
 tt ' ,Next, when there exists a feasible flow, we construct a so-
 ' ' 'lutibn ofnlmlOICmax preerrrptive sch.e. duling problem based on the

 'feasible f!ow on the above network. This problem can be solved .
efficiently by Gonzaiez and Sahni algorithm (G-S algorithm) [5].
 'Our algorithm exploits the schedule generated by G-S algorithm
 '
 -96-

to obta.in the feasibie schedule of our problem. Let F(sj,ti)

be the amount of flow on arc (s.,t.), and
 • J 1.
 J'={Ji,".,Jfi}: a set of open shop type jobs,

 M'={Mi,"',Mth}: a set of open shop type machines .
 Oij: operation of job Ji. to be processed on machine M3.,

 pij=F(sj,ti): processing time of operation Oij.

 For nlm]OICmax preemptive sehedule, Gonzalez and Sahni also

showed that the maximum completion time CSax of the schedule

generated by their algorithm meets the lower bound showed in

Section 3.3, that is, • .
 nm ' ci:..= max(mja.x i;iPij, M2.XjZiPij)'

 Algorithm Feasible ll (F-ll)

 Step 1. Construct the redueed network and find a feasible

 flow. !f there exists no feasibZe flow, then

 stop. (In such a case, there exists no feasible

 . schedule.) Else, go to Step 2.
 Step 2. Let F(sj,ti) be the amount of flow through arc

 (sj,ti) in the obPained feasible flow. Based on
 this flow value, construct a eorresponding nlmlol

 Cmax preemptive scheduling problern and solve that

 problem.
 Step 3. Replace machine MI and operation O.. in the above
 J -j
 scheduling problem with machine Mj and job Ji in

 an original scheduling problem, respectively.

 This schedule is the desired feasible schedule.

 In the following theorem, we prove that the existence of

 --97--

feasible flow is equivalent to that of feasible schedule through
 ' 'algorithm F-ll. ' '
 Theorem 3.5. Given a time limit D, there exists a feasibie

schedule if and only if there exists a feasible flow.
 ' '
 Proof. (i) We.assume that there exists a feasible flow.
 ' 'Then, we must show that a!gorithm F•-ll always constructs a feaSi-

ble schedule. Now, since no operation of job J{. in open shop'
 'problem is processed at the same time, no job in our original
 'problem is processed on several machines. It is clear tbat each.

machine processes at most one job at the same time. Further, '
since, by virtue of the construction of our network, arc (sj,ti)
does not belong to the arc set E of network if MjkQi, no job

is assigned to the nonexeeutable machines. Therefore it is
 ' 'left to show that all jobs are completed by time D. '.
 .By Gonzalez and Sahni, the maximum cornpletion time, Cl:ax,

of schedule constructed in Step 2 is

 nm cl:.k = max(mJa.X iilPij ' Ml, X j;IPij)'

 ' ' 'Since pij=F(sj,ti), for each source sj the total amount of flow

out of s. in the feasible flow is
 J
 np iilF(sj,ti)=iilPij• •.

Thus we have

 n
 MJa.Å~ iilPij $- D,

since the possible supply of source s. is D. Also the total
 'j
arnount of flow into each sink t. in the feasible flow is
 1. ' ' ' ' ' -98--

 rn pa j ..2. I F (sj s t i) =j i lP ij • .

 ' t tttThen, since in the feasible flow the demand of sink ti..is exact--

 'm rn2.XjE,pij i' ma,x pi"

On the other hands since we assume that max p.S-D, we have
 eZ z

 m max 2" p.. S- D.-
 i j.l ZJ

Consequently, we have

 C* SD. max •
 (ii) We assume that there exists a feasible schedule. Let
 '
pl.j be the amount of processing of job Ji on Mj. Then we fix

the fZow value through arc (s.,t.) at F(s.,t.)--pl.. Now since
 XJI iJ j
there exists a Eeasible schedule, we have F(s.,t.).SD. lhus the
 Jl
capacity eonstraint for each arc is satisfied. Also we have
 ' m. ' j ilP l• j = p i .

and
 n
 2 p!. sD•
 i=1 iJ -

Aceordingly our current flow becomes a feasible flow. B

 As mentioned above, given a time linit D we can costruct a

feasible schedule whenever there exists such one. Next we must

construct a schedule to minimize the maximum eompletion .Fime.

 -99-
 '

Then simiZar to the last subsectlon, we can find out a desired

scheduZe, i.e., o.ptimal scheduie, by exploiting a binary search

technique. Since the possible ranges of maximum completion time
 -n•
Cmax'and time !imit D are m 2.x piE-ICmax(o,r D)gi.EiPi, we Can conth

 ' nstruct an optimal schedulg by solving Zog2iilpi netWork f19W

 'problems. Further, since both a network flow problem and nlmlol

Cmax preemptive scheduling problem are solved in a polynomia!

time, an optimal schedule can also be constructed in a polynomi-

al time.

-100-

SCHEDULING PROBLEMS

CHAPTER 4

WIT•H CHANGEABLE MACHINE SPEED

 4.1 Introduction
 '
 In this chapter, we extend ordinary scheduling problerns with
eonstant rnachine speed to the cases with changeable speed.
 ' The first one is an extension of nlmlulcmax sehedyling prob--

lem in which each machine M. has a constant speed q.. In the
 J3extended problem, each machine speed s. of machine M. is a con-
 JJ
tinuous nonnegative variable. Our objective is to determine both

the optimal speeds of machines and an optimal preemptive sehedule

with respect to some cost function fmax. Thus, the problem is an
nimIGulf preemptive schedu!ing problern.
 max The second is an extension of ni21bOclCmax schCeduling problem

as analyzed in Section 2.4. Iri this extended problem, again each

machine speed sg is a continuous nonnegative variable. The ob-
jective is to deterrnine both the optimal speeds of machines and

an optirnal nonpreemptive schedule with respect to some cost func-
tion fmax• This problem is an nl21GlyD<lfmax nonpreemptive sched-

uling probiem.

 ' -!Ol-

 In the traditipnal seheduling problems, each machine has a

predetermined machine speed gj including a unit speed qj=1. For
nlmlUICmax preemptive scheduling problem, Gonzalez and sahni [6]

presented a polynomial time algorithm to construct an optimal

schedule. Concerning shop type machine, on the other hand, only

the problem with unit machine speeds have been analyzed.
 ' ' !n Section 4.2, polynomial time algorithrns are presented to

find the assignments of optimal speeds to each machine for a va-

riety of eost functions. Further, we show that if we relax some

of assumptions, then the resulting problems become M?-hard.

 In Section 4.3, we develop a polynomia! time solution proce-

dtire to determine both the optimal speeds of machines and an op-

timal schedule for the generalized mixed shop scheduling problem.

-102-

4.2 A Generalized Uniform Machine System

 We consider a scheduling problem determining both the opti-

mal speeds of machines and an optimal preernptive schedule on par-

 'allel type machines. • . ' Most scheduling problems considered in the literature at-

tempt to sahedule with agivenset of jobs and one or more ma-

chineswithconstant speeds. In this section, we will assume that
we are abÅ}e to determine both the machines available and the

schedule.. Our assumption is that it is poss'ible to change the

machine speeds, and to raise up the speed takes more cost.

 This model is reasonable for the real time systems that rnust
complete a given set of jobs within a specified time.
 our model is an extention of nlmlUICmax p.reemptive sched-

uling problem. Now, for a given machine speeds, we are able to
find an optimal schedule using the uniforrn maehine algorithm of

Gonzalez and Sahni [6]. The properties of this algorithm are

quite flexible in choosing the optimai maehine speeds.

 In the fol!owing, we give a more formal description of the
problem. We consider a generalized uniform maehine system (GUM
system) that has the Åíollowing properties. ' ''
 ' ' 1. There is a set of jobs J={Jl,"",Jn} to be proeessed and

 each job Ji has an amount of• processing requirement pi.
 2. There is a set of m p4rallel type machines M={Ml,"',Mm}

 available, and the speed of each machine is a eontinuous

 nonnegative variable. rf maehine M. has speed s., a
 JJ cost f.(s.) is inCurred. '' . '
 JJ
 3. Preemptions are allowed.
 tt
 For a system of maehines with speeds S=(sl,...,sm), the

 tt ' ' ' ' . •• -103- . .'

 m•machine cost is • j.21fj (sj)• Our objecti ;:e is to find a vector

(sl,"',sm) that minimizes fmax=fo(T)+ jElfj(sj), where fo(t) is

a completion cost incurred for finishing the last job at time t

and T is the Tfiinir[}um value of maximum coTrrpletion time for the
given speed veetor. Thu$ the problem is an nlmlGUIfmax preemp-

tive seheduling problem. We first show how to find a GUM system

with minimum machine cost whieh ean complete all jobs by the '
time D, given a deadline D. T'his problem is called a PeadZine

PieobZem. Then we show how to use the solution algorith!n for the

deadline probiem to so!ve the original problem.

 rn order to find an optimal solution to these problems, we

will make the following assumptions about the machine coJct fune-

tions fl,f2,""fm: '
 ' ' ' ' f.(o)=o. . . (i>
 (ii) 1 fJJ. (x) is positive and strictiy increasing for x>o.

 (SÅ}i) fji(x)Åífj+1(x) for all j=1,2,"',m-1 and x>O. •
 (iv) fS. (x), the derivative of fj (x), is continuous and in-

 ereasing for x>O.
A set of maehines with properties (i)--(iv) wili be called an oT-

deceed maehine system. . .
 ' Intuitively, these restrictions represent a system of ma-

chines that are ordered with respect to cost, so that the more
fast the machine speed, the more cost incurred. Assumption (itt)

implies that there is always an op.timal solution with sllLS21;"'21;

sm. Without loss of generality, we can assume that the proe-

essing requirements are sorted aS P12> 2l;"'?> n'

 . We need not the explicit form of cost functions but we can

get the values of '
 ' ' --104-- '

 (a) f.(x) for j=1,2,"',m and x>O,
 'j
 fl(x) for j=1,2,"e,m and x>O, (b)

 (c) the solution x of fS(x)=fj+1(y) for any given y>O and
 ' j=le2s'e'sm-1. .
 Once the speed vector is specified, a schedule minimizing
the maximun completion time can be found in O(m'log2m+n) time

using the G-S algorithm. We now briefly review the relationship

between the machine speeds and the minimum value of maximum com-

pletion times. Horvath et al. [11] have shown that the maximum
 'cornpletion time Cm.ax of an optimal preemptive schedule was given

as follows.

 ' P. P
(4.1) c.ax=max{i:.Ja.l..{t. }' s:},

 --where Pj=kllpk, j=1,2,"',n, 'and sj=k2'lsk, j=1,2,'..,m. .Thus,

the deadline problem is equivalent to the following problem:

 m minimize 2 f.(s.)(4.2)
 j.I J J

(4-3') subject to S.)-P.ID j=1.,2,'ee,m-1
]J

 S IP /D.
 mn
Any speed vector S that satisf' ies.(4.3) is said to be feasabZe.

 rn Subsection 4.2.1, we show how to solve the deadline

problem using the derivatives of the rnachine functions. Zn

Subsection 4.2.2, we shQw how to use the solution algorithm for
the deadline problem to solve the nlrnlculf preemptive sched-
 max
uling problem. Subsection 4.2.3 gives a fast implementation for

 -105-

a raore restricted class of cost functions. Subsection 4.2.4

discusses an extension of the cost model which includes setup

costs. !n Subsection 4.2.5, we show that several versions of

this problem are NP-hard.

 ' '4.2.1 The deadline problem
 ' Our algorithm can construct an optimal speed vector succes-

sively.'First an optimal speed vector to complete job Jl by

time D is found, and then the algorithm proceeds to an optimal

vector to eomplete Jl and J2 by time D. Finally, we wili find

an optimal vector to compiete aii jobs by time D. Each speed

vector we find will be a lower bound on ail future speed vectors.

The next gpeed vector can be•obtained successively by increasing

the element of precedent one whose marginal cost (the derivative

of the cost function evaluated at its current speed) is smallest.

We now preve several properties of this solution technique.

 Lemma 4.1. For k<m, there exists an optimal vector (sl,s2,

'.. ,s) that completes the first k iarge jobs by time D and has
 m ' ' ' 'the following three properties:

 (i) sk+1=sk+2=..e---sm=O,

 (ii) sk=Pk/D, '
 (m) fi(s!)lfi(s2))-•••Zfk(sk)• .
 ' ' Proof. Property (i) follows the assumption f.(x)Sf (x)
 .and the fact that eaeh job can run on at most one machine at

the same time.' ' '' •,
 To prove (ii), we note that if Sk<Pk!D, we can not complete

all k jobs by time D, and if Sk>Pk/D, we can reduce the speed of

the slowest rnachine with nonzero speed and get a new vector that

is feasible and has lower cost.

 -106-

 To prove (di), we note that if fj.(sj)<fj.+1(sj+1), for sOTne

 by e, and obtain a e>O we can increase s. by e, decrease s J j+1
 'new feasible vector of lower eost. D. ' '.
 Corollary 4.l. For mS-k$n, there exists an optimal solution

VectOr (Sl,s2,"',sm) that completes the first k large jobs by
 time D and has the following two properties:

 (ii)' S.=PklD,

 (iii), fi(s1)Zfi(s2).l•..)fth(s.)•

 '
 In this subsection, we will consider onlY optimal speed

vectors that satisfy properties (i) (ii) and (iif) in Lemmq 4.1

 and have sl)-s21"'2-Sm.

 Lemma 4.2. Given an optimal vector S=(Sl,s2,"',Sm) fOr
 the first k large jobs, there exists an optimal vector g=(gl,g2,

"' ,s m) for the k+1 large jobs sueh that sjlsj for j=1,2,..e,m.

 Proof. Suppose g is an optimal vector that violates the
 lemana. Let j be the least index such that gj<sj. Since rtk)-Pk/D

=Sk, there must be some gz>sz for Z$k. Let Z be the least of
 such index. Let A=min(gz-sz, sj-gj). Let S* be. the vector ob-

 - -- -p- -- . tained frorn s by replacing sj by sj+A and replacing sz by sz-A.

 the vector s* is a feasible solution for the first k+1 large

jobs. We now show that the maehine cost of Slt, which we write
 C(srk), is not greater than thb machine eost of s, which we write
 C(g). By the construetion of above s*, we have

 (4 .4) c(s*) =c (g)+(fj (gj +A)-Ej (gj)) --.(fz (gz) -fl(gz--A)) •

 ' ' 'We consider Fhe vector g pbtained from s by replacing sj by sj--A

 --- - andszby sz+A. Note that gjZsj and gzS-sz. If Z<j, then g is

 -!e7-

clearly feasible for the first k jobs. If Z>j, then since Z is
the !east index with gz>sz, we know that "sittgi, i=1,2,e.e,Z--!.

Thus it holds that .
 ' ' •- 9i)-S;Pi/D for i=1,2,...,Z-1, •

 '
 . g;Si)-Pi/D for i=Z,Z+1,..e,k.
 '
[glpl2ri:Oir,e"egm :tffiaavS:bie for the first k iarge jobs. Since S is

 tt ' ' -(4.5) C(g) -C (s)s(fz(sz+A) -fz(sl)) -- (fj (sj)-fj ($j -A))IO.

Since fZ snd f3 are increasing and gzls-'z+A, 5j$sj-A="sj., we have

(4.6) fz (sl+A)-fz (sz)sfz (gz) --fz (gl-A) •

and ' '
 t- •(4 .7) fj (sj) -fj (sj -A))-fj (sj +A) --fj (sj) •

 . Combining equations (4.5)-(4.7), we have

(4•s) (fz (gz). -Lfz (gz-L)) -(fb• ! gj +A) -fj (gj)) ->-- o

From (4.4) and (4.8) we know that C(sle')S-C(i). [Irhus, by succes-

ively applying the transforrn we used to get s* from g, we will

obtain an optimal veetor that satisfies the lemma. This vector
also satisfies properties (i) (ii) and (ttt) of Lemma 4.1. B

 Lemma 4.3. If s is an optLrnaZ vector for jobs with pro-

cessing requirements pllp2>--""--pk (kS-m) and f2-1(sz.1)>f2(sz)"

f2+1(Sz+1)="'=fi2(sk), then for any set of values Az, Az+1,...,

J

 (i) pk+D(Az+Az+i+"'+Ak)Spk-i and '
 (ii) f2-1(sz-1)2fZ(sz+Az)=f2+1(sl+1+Az+1)-"•-fik(sk+Ak),

the vector (s1,"',sz-1,sz+Az,'",sk+Ak) is an optima1 vector

 ' -108--

for jobs with processing requirements pl,P2,"',Pk-lsPk+D(Az+ '-

)....+A k
 Proof. Let g be such that

 gi= k..,, i::i:l;i;;;::1;i'

If g is not optimal, then there exists a vector s* whose eost is

less than g. By lemma 4.2, we can assume that s*)s. for i=1,
 -1
e.. ,k. Thus there must exist indices j and r such that sJ*•>"sr

si<g. and r>=Z. If jZZ, we have fS(gj)=f"(S.) and if j<Z, fj Gj)

lfl(Asr). Sinee• the derivatives are increasing, it is possible

to increase s* and decrease s*, and obtain a new vector that is r3feasib!e and has cheaper cost than S*. This conclusion contra-
dicts our assumption that s*- is optimal. Consequently, no vec-

tor can be cheaper than g. o '
 We are ready to describe the algorithm for the deadline

problem. In this algorithm, we can treat the smaU n-m+1 jobs
 'as a single job with precessing requirement p- m=2in.,rnpi. We also

have 5i=pi for i=1,2,e..,m--1. '
 Algorithm DL

 Step 1. Set sipl/D, si=O for i---2,...,m and k=2

 Step 2. Zf Sk-->PklD, then go to Step 5.

 step 3. Let Z be the sma'llest index with f2(sl)=f2+1(Sz+1)

 =...=fil,(sk) for ZSk. Find values Az, Az+1,"', Ak

 such that
 f2.-1(s z-1) lf 'z(sz+A z) -f-L' +1 (s z.1+4 z+1)='''=fl! (sk+4 k)

 and

 -109-

 ' k Z-1
 (jZ[z(Sj+Aj)+j,2.iSj)rP-k!D. !f no such vaiues exists,

 then find values such taht f2.1(sl-1)==f2(Sz+Al)=

 ••e-fil,(sk+Ak)' ' '
 Step 4. Set sj=:sj+Aj for j=Z,"',k. Return to Step 2. '

 Step 5. Return to Step 2 setting k to k+1. •

 ' ' ' ' ' '
 Example 4.1. Let n=6, m=3, D=1, pl"10, p2=6, P3"4, P4=2s
Ps=2, P6=2, fl(x)=x2, f2(x)=2x2+4x and f3(x)=3x2+6x. Then, we
have p- !=10, p- 2=6, p- 3=iO, fl(x)=2x, fi(x)=4x+4 and f5(x)=6x+6.

Figure 4.1 gives a sainple execution of algorithm DL for this

 The computational time of algorithm DL is dominated by Step

3. Since the value of Z in Step 3 nmst decrease with execution

of Step 3 except for the last. Step 3 is executed at most O(m)

times for each k. Zf the.va!ues Az, Az+1,'", Ak can be com-
puted in time O(d)., where d depends on the types of actual eost

functions, the total running tirne is O(m(m+d)). ' .

 ' Theorem 4.1.' The algorithm DL computes a minimum cost vec-

tor which complete jobs with processing requirements pl, p2,

"' ,' Pn bY time D. . .
 • Proof. Zt is clear that SklP-k/D for k==!,2,..',m. So the

vector is feasibZe. Consequently, the initial vector con--

structed in Step 1 is optimal for Jl. By Lemmas 4.2 and 4.3,
2trParSgZ'jZbg?d 4o PrOdUCe a vector' that is optimai for the first

 -110--

l

'Hp1

Variables 's
1 S2 ls

3
z Al A2 A3 Cornments

rnitial .vaiues 10 .
k=2 10

. 34/3

4

14/3
-
-

2

1 4/3

4

213

fi(10)-20-fi(4)

fi(3413)-6813-fi (14/3)

k=3' 34/3
(168/!1)

14/3

73/11

2S/9

45/11

3

1 130/33 65/33

(2S/9)

130/33

fi

Åíi

fi

(2S/9)=6813

(1681il)=336/11=

(73111) ----f5 (45/11)

Ftgure 4.1. A sample exeeution
 4

of DL.

4.2.2 General solution method for the nlmlGUIf
 max
 ' preemptive scheduling problem •

 ' For any fixed rnaximun completion time, T, we can use the

algorithm DL to find a minimum cost vector that completes all

jobs by T. If we decrease the completion tirne to T-A, we can

reduce the completion eost by fo(T)•-fo(T-A), but the optimal

vector to complete all jobs by T-A is more expensive. Now, we

wilZ compare the completion cost and the machine cost. We as-
sume that the completion cost fo(t) has a derivative which is

continuous and nondecreasing for t>O. We show that the magni--
tude of the change in the cost of speed vector is decreasing in

T.
 .
 • We define •
 ' ' . F(t)A=cost of an optimal speed vector for D=t

Let s be an optimal vector for maximum compietion time T. We

 ' ' .t tt ' SilPilT for i=1,2,...,m-1, .'
 '

 ' S=P IT • mn .- -Z" OPt`Mai ,I.ii",7i,i,IOr,:IXI. :T,f?Tll:li?n time T-'e• we have

 '• g=p /(T-e). • mn •
 Lemma 4.4. For any t and e'such that e>O and t-2e>O, it

holds that . '
 F(t--2e)-F(t-e)>F(t-e)-F(t). '

 '

 -112-

 Proof. Let S, g, and 9 be optimal vectors for deadlines of

t, t-e and t-2E. Without loss of generality, we may assume that
S, ' s and g are vectors constructed by the algorithm DL. We know
that s" ilgil;si for i=1,2,`e',m.

 Let gi=s"Ai and s"i=gi+-Ai for i=1,2,e",m. Further, let

il<i2<"'<ik<M be the indices such that

 s. =p. /(t-e).
 1. 1. JJ
 Because of the properties of the a!gorithm DL, we have

 i• fi(gl)-fS(g2)-"'=fl•i(gii),

 '
 2• fl• z+1 (gil+1) '-'fl• 1+2 (giz+2)= " '=f l• 2 (gi2)'

 I

 k• fl• k- 1+1 (gik- 1+1)" " '"f {' k (gik)'

 k+1 • fl• k+1 (gik+1)= '."=fth (gM) '

 '
The properties 1 through k+1, and the fact that the derivatives

are increasing, imply that

(4.g) F(t-e)--F(t)<(Al+A2+...+Ai)fl• (gi)
 11 -.1

 +(Ail+1+... .+Ai2)fl• 2 (Si2)

 :.

 +(Ai +i+'"+Am)fili(gm)'
 k
and

-113--

(4. io) F (t-2 E) -F (t -- e) > (-Ai+'A- 2+ " '+'A- i)f l• (5i)

 li l

 +(Al l+1+. " +Ai2)fl• 2 (S i2)

 11

 +(Aik+1+ " ' + Am) fili (Sm) '

Now we have

 (Al+A2+...+Ail)=Pil/(t-e)-Sil

 <P. 1(t-e) - P. /t
 == 11 11
 = Pi lt'(t-e)
 l
and

 (-Al+'A-2+e"+-Ai1);IPill(t-2e) - Pil/(t-e)

 ' >p. /t'(e-e). 11
Thus it holds that A +e..+A <A +..i+-A 1 il 1 il' ZnaSimilar way,
show that

 --(4.u) zi .Yez<zi,S-jz2sz for j=i,2,"',k and

 mm zEi"z ` zE,Zz•

Thus, since fl•1(gil)lfl•2(gi2)2;"';lfth(g.), from (4•g), (4•lo)

(4.11) we have
 '
 -114-

we

and

 F (t-2 e) -F (t-6) > F (t-e)-F (t). []

 i' ' . tt Since F(t)"il/l!fi(5i), kiJl -s-k=pijlt for j=l,2,'..,k and

 ' mkilgk=Pn/t, frOM the prOperties l through k+1 ln above lemma, we

 'have •

 Ft(t)=- l, Ipifl•1(gi!)+"""+(P.-Pik)fth(g.)]•

 '
And by this lerma, F'(t) is decreasing. Thus, since the deriv'-

ative of fo is nondeereasing , the unique value of D which mini-
Ill6?.:.Eo]gi?g:E.,l!?] is the soiution of f6(D)=-F'(D)• (Note thae fo(o)

 ' ' tt '
4.2.3 Aspecial class of cost functions '
 We consider machines with costs
 ' k fj(x)=cjx for j=1,2,"',m with CISC2;:;"';SCm,

where k(l1) is a constant. We first give a fast'implbmefitation

for the deadline problem and then show how to find the minimum

(optimum) value of maximum compleeion times.

 !n the a!gorithm DL, we repeated!y found a group of machines

that had the same marginal cost, and increased the speeds of all

the machines. We t4ke advantage of the fact that, if for any

in.termediate:.speedvector two machines have the sarne marginal cost,

they have the same marginal cost in the final solution. Using

this property, we combine all machines with the same marginal
cost into a single eomposite maehine. The speed of the composite

machine is the sum of the speed-snoi-its ind-vzdual machmes, but

themargina!cost is the same as its individual machines. In the
following iemma, we show how to form an appropriate cost function

for a composite machine.
 '
 '..6 ,te,:M,/l.2."i", .i2 t,ZO. :;C.2ik2eZ,hZV.2 C.;Sg.tU,"2t,'g2"2ii.il l?Ct,Zk,,

are assigned to each machine, then we have . .
 ' [kcl c2(sl+s2)k-1]/(cll/(k-1)+c21/.(k-1))k-1.fi(.1)

 '' ' =fS (s2)•
 proof. By the assumption, we have fi(sl)=kclsl:-lfkc2sll71r

Solving for cl, we get cic2(s2/sl)k-1. substituting this value

into the left hand side of the equation of this lemma, we obtain

 kCi

 =kc 2

 =kC2S2

 Note that

(4.i2) C=

then we have

(4.13)

tlhus we can

 s

 s

 s

 -S

k-i

 if

k-1
2

1

2.
 (si

=fS (s2)

 we set

s +s' 12
 (s2/sl)c21/ (k-i)+.2 11 (k-1)

 ' k-1 'Sl+S2 ,
21sl)+1

=fi(Sl)' tl

 '

CIC2

k-1

 '
 (cll/(k-1)+e211(k'1))k-1 ,

 ' kc(sl+s2)k-l=f'(sl+si), where

 ' kf(x)=Cx . • .
 replace any two machines with a

 -116--

single composite

machine whose coefficient is as in (4.12). As long as the speed

of the composite maehine is the sum of the speeds of the individ-

ual machines, its marginal cost is the same as that of the indi-

vidual machine. Since the composite machine has the same type
of cost function as the original machines, formula (4.12) can be

applied to any member of machines and the resulting machines

still have the sarne marginal coste

 We are now ready to describe the algorithm! The algorithm
produces a vector of eomposite machines. Associated with the '

i-th eomposite machine are
 ' ' (i) Li= list of indices of the original machines that were

 combined; . '' ' (ii) EÅ}= eoefficiept .of its cost function;

 (lii) gi= sum of the speed o.f all the combined original

 • machines`
 • -- k-1Thus all maehines in the list Li have their marginal eost kcisi .

And if machine M j is in this composite machine, we find its speed

sj=gi(Eilcj)1/(k-i) by soiving '

(4•i") .kcjsjk'-i=kEigik-i..

 After proeessing the first Z large jobs, the algorithm con--

structs a list of composite machines that corresponds to an opti-
mal solution for this Zjobs. .The algorithm again forms a new
list for the Z+1 large jobs as follows. Let gj for j=l,2,...,i

be the speeds of the i coiltposite machines forming an optimal
solution for the Z large jobs, and let 'e' j for j=1,2,"',i be the
coefficients of their cost funetions. We initially assume that
(i+1)eh composite machine is the originai machine Mz+1 with speed

 -117-

gi+1= PZD+l , atid cost coefficient Ei+l=cz-. This 'vector is

optimal for the Z+1 large jobs, if

 '(4.ls) kcz+lg\.;l -EkEiglr.'1.

Zf the condition (4.15) does not hold, then machine M and all l+1
machines ig composite machine i have the same marginal cost in

the optimal veetor. Thus we can merge composite machines i and

i+1. Further, we eompare the new marginal eost of composite ma-
chine i with the marginal eost of i-1. We continue the merging

process untill we have j composite maehines and the marginal cost

of eomposite machine j is not.greater than the marginal cost of

j-1.

 Zn•the following, we present a formal description of the al-

gortthn. We again assume that the n-m+1 small jobs are merged so
that

 5j"pj for j=1,2,"',m--1

 P-m"Pm+Pm+1+"'+Pn'

 '
 !A!!.ggpts!!!!!-!!!glthMc

 step 1. Set go=co, Esco, Elxcl, ElnPl/D, Lf{Ml}, i=1 and

 - Zs2. - '
 Step 2. Update i, Li, Ei and gi as follows.

 ' (1) i=i+1, '•
 (2) Lim{Z},,
 (3) E"cz.
 (4) Eip-z/D'

-118-

 --k-1 - -k-1 Step 3. If CiSi > ci.lsi..1, then go to Step 4. Else go to

 Step 5. .
 Step 4. Update Ei-1, gi.-1, Li-1 and i as followg

 (1) Ei-i(EiEi-1)1(Eil/(k-1).Eil<(k-1))k-1,

 (2) gi-fgi+gi-z,

 (3) Li-iLi.-IULi,

 (4) i=i-l.

 Return to'Step 3. ..
 Tf Z->-rn, then stop. Otherwise, return to Step 2 Step 5.
 setting Z to Z+1.

 The eomputational tirpb of algorithm MC is dominated by the

loop of Steps 3 and 4. Each execution of the loop decrements i.

We increment i by one (m-1) times in Step 2-(1), and i ean not be-
 come smaller tban bne. Thus, this'loop is executed at most (m-i)

tines. Thus the loop takes time O(m) if we count each of the
 .numerieal operattons and the set operations as a unit time. Fur--

ther all other steps in the algorithm can be taken with time O(m),

and thus the aetuai speeds of the, original machines can also be

computed with time O(m). On the other hand, to find the first m

large proeessing requirements and sort them in adirance, we re--
qairetimeO(n) andtime O(-rnZOg2ni),respectiveiy. Consequently,

the total time to construct an optiarnl sehedule is O(mlog2m +n),

since the actual schedule is constructed in time O(mZo.g2rn-'n) by

using the G-S algerithm.

 The validity of algorithm MC follows from Lemna 4.5 and the

 ' '
 .--ll9-

fact that if the condition in Step 3 is satisfied, all the ma--

chines in composite machine i and i-1 must have the same marginal

cost in an optimal vector.

 Now, we show hom t.o solve the original problem for this

class of cost functions. 'i-n the algorithm MC, each machine speed
 -1is propotional to D and the corrparison of Step 3 does not de-
pend on D... Thus the same corrrposite machines are always formed

regardless of the vaiues of D. Therefore the opti nal speed can

be represented as

 sjguj/D for j=1,2, ,m,

where-uj is the optimal speed when Dsl. Moreover, the total ma-

chine cost is

 jl/!lej (uj /D)k.u/Dk,

where Vs;/lejujk. Then the total cost fmax is

 ' k(4'16) 'f...Sfo(t)+Ult '

With regard to cost functions fo,'it is easy to find a t that

minimizes fmax. Especially, regarding the siilrplest cost function

fO(t)'Cet ill.rd (Lliilsi:2f OPtinai soiution has

4.2.4 lncluding setup costs

 Often it is useful to consider machine eost functions of the

form

-i20-

 rvi+fi(x) x>o,
 . gi (X)• "- Xo .=o, ' '
where fi(x) has the property given in the beginning of this sec-

tion. Thus v. is a fixed setup eost incurred by using machine
 z

 ' z - !f VIEV2g"'EVm, then we ean soive the problem as follows.

The optimal speeds have s12s21"'21sk>sk+1="'"srn"O fOr SOMe kSM.

 •k
Zf k is fixed, the total setup cost is always Ev.. Thus the
 j=I J .

setup costs are ignored. Therefore the problem including the
setup costsis reduced to the original probZems with k machines.

Then an optimal veetor is found with m calls for the algorithm
 .
 'DL.

 '
4.2.5 NP-hardness

 We show that if we relax some oE our assurfiptions about the

cost functions, the resulting problems become NP--hard. Infdrmally,

a problem, whether a member of NP or not, is NP-hard if we caR

transform an NP-eornplete problem to it and it ean not be solved

in polynomial time unless P=NP. Thus, in an intuitive sense, the
NP-hard problems are at least as hard as the NP-complete probiems.

For the formal definition of IS[P-hard, refer to Garey• and Johnson

[41. We first consider arbitrary setup costs and then machines

with discrete speeds. We use the NP-complete theory for a Subset

Sum problem [4] defined as follows.
 '
 Subset Szvn llr)obZem: Given S=.{al,a2,"',an} and b, where

a'1,"',an and b are integers, is there a subset gss such that

 aiig ai=b ?

 .-121--

 We show that if we have cost functions of ghe form fi(x)=vi

+e.x2 for x>O and f.(O)=O, then the problem to find a minimum
 ' 'cost solution for a given deadline is NP.hard. .Given. a solution

for the subset sum problem, we can construct a solution of the

deadline problem as follows: We make n+k jobs with processing

requirements,
 P1=P 2= " '=Pn" tb/nj ,

 ' ' Pn+1="'=Pn+k=1, Where k=b-nlblnl.

 ' 'Thus we h.ave Pn+k=b. Also there are n machines whose cost func--

tions are

 vi=ai ,

 ' Ci"1/ai for i=1,2,e..,n.

!n 'this case, the deadline is D=1;

 Lemma 4.6. There exists a solution for the subset sum prob-
 'leni if and only if the deadline problem has a solution wSth cost
 ' ' 2b.

 Proof. (i) Suppose that there is a solution g for the sub-
 'set sum problem. Then the speed vector with sfai if aiES' and

siO if aikg has cost

 ..E,g(ai+ aii (ai)2)=2b.

 i
From the construction of the proeessing requirements, any solu-
tion STr-..>b is feasible, where SiElie.lsj. Therefore the deadline

problem has a solution with cost 2b.

 (ii) Suppose that.there exists a solution S with cost for

-122-

a deadline probletu. Then we know -that Sp=b, and show that si>O

Z:Pfli::s si=ai. Coneerning the machines with nonzero speeds, we

 . i,.,.(aitsila-).g.l ;/ll•.

Now we have • - '
 ' ' a'. s. sl + al •=2 if ai"si
 ii '
and
 '
 '' k + k >2'if ags,•
 x=
since the overaU ratio of eost to speed is (2blSn)=2, each ri

::s:,2axe.mse.i. 1 . ?h.:: :agg,:2i g:r:.s::2d.:g.2a,s."..'i;;.gls.?"d ,

 ' Theorem.4.2. The deadline problem with arbitrary setup costs

is NP-hard.

 Proof, Lemma 4.6 shows that we can a subset 'sum problem by

a transforrn into a corresponding deadllne problem. The transfor-

mation can be achieved polynomially. Therefore we have proved

the tbeorem. fi ,
 Next we consider a discrete version of' our maehine system in

which each machine Mi can take only two possible speeds O or qi.
V:eS2glligl)ri?.t,2.i.i.Z,,S.e.i';e:.,tie.i.iod,,,Z,Z.".e..,p.".obZemisNp-hardeve.f...

 ' -l23-

 Again, we start with a subset sum problen) and construct a

solution for the discrete deadline problem with n+k job$ and n

machines as follows:
 P!'P2"" '"P." Ib!nj ,

 Pn+1= "'"Pn+k=1, Where k =b!.ntb/nj

 qi=ai for i=.1,2,...,n

 ' '1 Ci" a. fOr i=l,2,"',n
 z' '• '
 D=Z.

 Lemma 4.7. There is a solution to the diserete deadline
 ' ' problem with cost b if and only if the subset surn problem has a

 solution. ' ' ' ' ' ' ' Proof. Similar'to Lemma 4.6.
 8
 ' ' tt ' ' Theorem 4.3. The discrete version of the deadline problem
 ' is NP-hard.. .• . ' '. .'
 ' Proof. Analogous to Theorern 4.2. o
 ' ' Corollary 4.2. The discrete nlmlGUIfma. scheduling problem
 ' ' ' ' i's NP-hard.

 Proof. Given a solution of subset sum problern, convert it

 to a corresponding discrete deadline problem as in Lemma 4.6.
 ' Instead of a deadline, we use a completion eost fo(t)=bt and
 ' ' •tOtal cOst bt+Sm)-bt+Pn+k/g=b(t+1/t). This cost fynction is nini-
 mized when there is a sdlution to subset sum problem and t=1.

 Thus eompletion cost has a eost 2b if and only if subset sum

 problem has a solution• o

 ' -124--

4.3 Generalized Mixed Shop Scheduling
 '
 In this section, we consider an extension of n1211YO<ICmax

nonpreemptive scheduling problem to the changeable speed case.
 'This problem is specified as follows. •
 (1) There is a set of njobs J={1,2,•",n} to be processed

 on two machines Ml and M2.

 (2) Each job i consists of two operations, one of which is

 to be processed on Ml and the other on M2.

 (3) 1'he job set J consists of two disjoint subsets F and Oo

 F is a set of flow shop type jobs and O is a set of
 open shop type jobs.
 (4) ,•A spe'ed of each machine is a variable. Processing re-

 ' quirements of each job i' on Ml and M2 are ai and bi,

 respectively.
 (5) No preemption is allowed.
 (6) The objeetive is to determine an optimai speed of each

 machine and an optimal schedule to minimize the total

 Cost fmax associated with the maximum completion time

 and the speeds of machines. '
This1is an ni2iGl)IXlfmax nonpreemptive scheduling problem.

 In this problem, the actual $chedule can be construeted by
the algorithm for the ordinaly nl2ily[XICmax nonpreemptive sched-

uling problem discussed in Seetion 2.4. So we can focus on ob-

taining the optimal speeds. .
 !n Subsection 4.3.i, we formulate the main problem P. The
 --problem P can be divided into two subproblems P and P. In order
to solve i, we introduce auxiliary (or supplementary) problems.

Similarly for P, supplementary problems are introduced. In Sub-

section 4.3.2, we develop a polynomial time solution procedure

 -125-

for the main problem P and clarify its time eomplexity.

4.3.1 Formulation of the problem .

 Let sl and s2 be the speeds of machines Ml and M2, respec--

tively. Then the proeessing times of job i become ai!sl on Ml

and bi!s2 on M2. Further, let Cmax be the maximum completion

time of an optirnal schedule as the function of the tnachine speeds.

 The following problem P is the main probiem considered in•'

.this section. '. '' p: Minimize. fmax=coc:gx +cis:2+c2sg2

 ' ' '
 . subject to sl,S2>O,
 'where co, cl and c2 are positive constants and , ql.and q2 are
positive integers• The problem P is divided int'o subpfoblems P-
 -and 'P as follows. ' ' ' ' ' V: Minimize coc::i+cis;2+c2s:2

 '
 .. 'subject to AFIs!IBo/s2 and sl,S2>O, '

 where AF= 2' ai and Bd= 2bi. '
 iEF iEO
 F: Minimize cockx+cS:2+c2sg2

 ' ,' subject to AF/sl<Bols2 and sl,s2>O•
 ' ' 'Note that i corresponds to Case 1 in Section 2.4 and i to other

cases. T'hus in the problem P- we have

(4•19) C.a.=MaX(CF*, (AF+Ao)ISI, (BF+Bo)/S2), .
 .Wh9re .Ao=iioai, BF=iiFbi and CF* is Fhe maximum compietion time

 ' 'of an optimal schedule when only jobs in F are considered subject

to machine speeds sl and s2. • .,
 ' -126-

 An optimal schedule givi.ng CF* is determined b.y the foilow-

ing binary transitive rule Ro, which. is the variation of Johnson's

 ' Ro: lf min(siaj,s>bk) gmin(siak,sSbj), where si=11sl and .

s5=1/s2, then the processing of job j precedes that of job k.

 . Ro is equivalent to the following relation R, since si and

sS are strietZy positive.

 R: lf min(Yaj,bk)Emin('yak,bj), then the processing of job

j precedes that of job k, where Y=si!s>• ' '

 rthe relation R Å}mplies that the candidate points of y, where
an optimal sehedule changes, are yjk=bk!aj for j,kEF, wl]ere tf

aj=O,.then "yjk is set to co. Considering finite.Yjkl;Bo!AF

and sorting the different yjk's in an •increasing order, let
 ' YoA'Bo!AF`Yl`Y2< " '`Yp`Yp+IAM, '

 'where M is a sufficiently large number and p is the cardinality
 'of different yjk's. Note that 1;<p;:Sni, where nl-'IFI.

 Theorem 4.4. !f we have

(4.2o) min(9aj,'bk)4min(Yak,bj) for Yi`Y`Yi+1,

 N N dV(4. 21) min (yaj ,bk) ;E; min (Yak,bj) fOr Yi SY5Yi+1

 Proof. First note that the foUowing cases are possible.

 Case 1. Vaj5bk and YatKbj

 -- Cas'e 2. yaj>bk and Yakg<bj

 '
 -127-•

 Case 3.' y-ajSbk anq y-ak>bj

 ' case 4. y-aj>bk and y-ak>bj

 tt
 case 1. y-aj-`bk and y-akSbj•

 Fro:n (4.20), it holds that
 ' '(4.22) min(y-' aj,bk)=y'"aj S min(y-ak,bj)=i ak or aj5ak•

 ' ' 'From definition of yi, yi+1 and the assumption, we have

 ' 'VEyi+IS-min(bk!ajsbj!ak)•

 ' tt Thus m;n(Vaj,bk)x'y"aj and min(Yak,bj)=Nyak hold. Combination

of (4.20) with (4.22) shows that min(Vaj,bk)=="y"aj5-Vyak=min(Vak,bj),

that is, we have (4.21). -
 Proofs of other cases can be done in the same way a$ in this

case, and so it is omitted. o
 tt ' Theorem 4.4 means that an optimal schedule for sorfie yE(y.,
 z
yi+1) is also optimal foranyyE[yi,yi+1]. Aecordingly, CF* can
be expressed on the interval [yi',yi+1] as follows.

 ' ' ' ' '
 ' .n cF ee=sii smJt.=x. i (Ty ll,g. ia [k] +lil]Jl.b [k]) ',

 'where y'=(yi"tyi+1)12 and [k] denotes the k--th job index correspond-

 'ing to this y'. . • .
4.3.2 Solution procedure for subproblem P
 tt -• . From the expression of CF*, the feasible region of F, {(si,
sS)lsi,s5>O, y"si/sPtBo/AF} is divided into the subregions {(si,
 'sS)lsi,sS>O, 'YE[Yi,'yi+1]} for i=l,2,"',p• Each subregion.must

be divided further as follows.
 ' ' ' -•128-•

 First,
functions y i

 y i

where

 on the interval [yi,yi+1] we consider (ni+2) linear

 of Y,

 =yAi+Bi, for i=1,2,tt.,nl+2,

 i
 kila[k] fOr i=1,2,.1.,nl,

 AF+Ao for i=nl+1,Ai=

 o for i=nl+2,

 nl
 ' k.2ib[k] for i=1,2,".,nl,

 o for i=nl+l,Bi=

 BF+Bo for i=nl+2,

 [k] denotes the k-th job index of F in an optimal
 ' tO Y'=(Yi"+'Yi+1)l2• ' Let y be the function

 maximum value of y.'s for each y, i.e., y= max
 z ISSnl+2
 suppressed notation. By utilizing Megiddo's algo-

 can be determined in at most O(nlZognl) time, and y

 linear increasing convex Åíunction. Arranging the

 of y in an increasing order, we have
 m. m.+1 ' <yl.<"'<yhi<'"<yil•<yii =yi+i,

 -h - the following subproblems Pi of P for hptO,

YE[Yi,Yi+1] and

schedule corresponding

defined by the

Yi) if uSing a

rithm [24], y

is a piecewise

breaking points

 o
 y.=y. 11
where 1$miEnl.

 Now we introduce

 . and i=O,1,...,p.1,...,m
 i

(

-129-

 ph..: Minimize 6e.=co(siAct+.sBct)ql+.1.:2-' +.2sq22

 ' ' ' . . . subject to y=silsS [y\.,y2.+i] and si,s2>O,

wll2rie`ct is the index of yor that gives y on the subinterval [yR.I

y.].
 i By soiving aii p-hi's and choosing the best soiution among

optirnal solutions of ie., P- can be solved. Therefore an optimal

speeds and an optimal schedule can be found.

4.3.3 Solution procedure for Pe• • •' • •

 By the farnous inequality between arithmetic and geometric

means, it holds that '
 - '6R•"eo(siAct+s>Bct)9i+cis12 +c2s;2 '

 tt ;/e,2:l:,ii\R21Z:l;i,;:.i:liiqlYqlli',:i]qi,L,,,,,,q21.i}qi]i!`qi"q2'

 ' -where the equality occurs if and only if •
 '

Thus,

 h"Yi of

on the
(sYi,s

 t- S2'-
 tt
 '

in order

 '

 f(y)=

 interval
2,) of ig.

 q2 ciy-q2+.2 ii(qi+q2)

 ". .coql (yAct+B.)ql '

to solve i\., it is sufficient to

(yAor+Bct)qlq2(.iy-q2' +.2)ql

 [yg.,yg.+i]. once ye.* is found,

 is eonstructed as follows.

 • --130-

 find a mzmmzer

 '

an optimal solution

.p

 . . hde •-q2' ll(ql+q2)
 ,h- q2 Cl(Yi) +e2
 S2i-' coql '. (yll.rkAct+Bct)ql

 ' ' '
 ,h h* ,h
 SISYi S2i'

Differentiating f(y) with respect to y, we have

 f' (Y) =qlq2Actc2 (yAct+Bct)qlq2-l (.ly'q2+.2)q!'-' !y-(q2+1)

 ' x{yq2+i -(BctcilActc2)}•

 tt h*.Since f'(y) changes its sign at most once, "yi zs determined as
 '
 (i) !f (ye.)q2+l. (Bctci)!(Actc2)', then yhs"tyl2.e

 ' (ii) !f (ye.+1)q2+l (Bct.l)/(Aor.2), then ylz.rktyl:.+1.

 ' aio iÅí (ye.)q2+i< (Bcte!)!(A.c2)< (y\.+i)q?+i, then y\."=

 '
 ' ' ' ' '
 (Xg:;)-i/(q?+i)

]n order to solve i, we must cornpute

 6k•:(sig•:•ssg•:)-e.I:(6g•(sig••sse•))•.

Then for P-, machine speeds gl and g2 are determined as 11sihi:

 ' 'and 1/si?.:, respectively and an optimal schedule is constructed

 • -131-

by applying the algorithm in Section 2.4, where the processing

times of job j are aj!sl on Ml and bjls2 on M2•

 =4.3.4 Solution procedure for subproblem P
 Frorn the xesults of Section 2.4, slAl;siBo implies

 ' '
 c.a.=max(si(AF+Ao), si(BF+Bo), I:.,axo(siai+Sibi))

 =simax(.y(AF+Ao), BF+Bo, l.:,axo(Yai+bi))• .

Now we define the (n2+2) linear functions ofy as follows, where

n2=lol• . ' . ' '
 ' . zjÅ}yXj+Ej'for j=1.,2,"',n2+2, .
 --where A=aj, B- j=bj for j=1,2,"•,n2 corresponding to job jEO, and

An2+1"AF+Ao' B-n2+1"O, An2+2"O and B'n2+2=BF+Bo. Then if we define

 ' z= max (z.),
 1 ISiS-n2+2

we have Cmax=siz. This z is just same form as y, and can be ob-

tained by Meggido's algorithm in at most O(n210gn2) computa--

tional time. Arranging the breaking points of z on the interva!
(O,Bo/AF] in an increasing order, we get the sequence

 Y6=e<Yl` "' `YP,`Y6,+1=Bo/AF, where
 ' '
e is a sufficiently small positive value and pt is the number

of breaking,points on (O,BolAF]• Note that for YE[Yl.,Y{.+1], We

have z=zB for a certain B, IS-BS-n2+2. Then the following sub-
problems i' i of P= for i=O,1,..e,n2+2 are introduced. '

 '
 ' ' ' ' ' ' ' ' •-132--
 '

 Fi: Minimize =ci=co(si?IB+ssEB)qi+cisli!2+c2s;2

 tt subj e et to y= (sl/sS) e[y l• ,y l• +1], si,si>O,

 .t
where B is the subscript of zB that giv.es z on this interval.

Again, solving all Pi and choosing the best solution among opti-
mal solutions of P., P can be solved, i.e., each optimal speed . 1 .-and an optimal sehedule ean be found. Solution proeedure for Pi
is quite same as that for ih i and so it is orpitted.
 Now, we denote a minimal solution of "Ci with (sk,sSi) by

 ' 6ik(sk.,sii.)= i:.e.l.e.p,(Ei(sii,SSi))'

--

 --Then optimal speeds gi and g2 are determined l/siist and 11s>irk,

respectively. Further, the correspQnding optimal schedule can
be found by solving the ordinary nl21MXICmax nonpreemtive sched-
uling problem with processing times aj/gl and bjlg2 for jEO.

4.3.5 Solution procedure for the main problem P

 It is clear that the optimal speeds si and s: of the main
 '
probiem p can be found by comparing Eh i:(sill.:,sSl}.**) wirh 6i"(siik,

s>irk)• Using s*1 and s*2, an optimal schedule can be found by the

algorithm in Section 2.4, where the processing times of job j are
aj/si on Ml and bjlsti on M2•

 Theorem 4.5. The above solution procedure finds the optimal
 'speeds of Ml and M2, and an optimal schedule in at most o(n3Zog2n)

computational time for given ql and q2, if any power and root can

be computed on O(1) time.

-l33-

 Proof. The validity of our procedure is proved already from

the precedi.ng discussions., , Therefore we show only the complexity
 ' ' 'of our procedure, ' . The computatio" of yi takes O(niZognl) time, since the num-

ber of yjk is at most O(ni) and sorting O(ni) elements takes O(

niZognl) tirne. Next, an optimal schedule of jobs in F on some

interval [Yi,Yi+1] is determined in O(nlZognl) time. Once an
2:•Steal,::gei.i,iS:;,i.i:i2::',gh2g.K,CI:ge,.:,2.tg;'1::d,l.:.g`"iZog"i)

 Similarly its eomplexity for i is O(n2Zogn2), since p' is at

most O(n2). Finally an optimal schedule can be construeted in
O(nZogn) time. Consequently, the complexity' of our solution pro-
 ficedure for the main problem P is O(n"Zogn). .. a '

-- 134-

[!]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

 References

A.V.Aho, J.E.Hopcroft and J.D.Ullman, The Design mi AnaZy--

sis of Conrputer AZgo?ithms, Addison-Wesley, Reading, Mass.

(1974).

R.Berger, The Undecidability of the Domino Problem (Mem.

American Math. Soc., No.66), Ame"iean MathemataeaZ Soeiety

Providenee, R!.(1966).

J.EdTnonds, Path, Trees and Flowers, Canctdaan cT. Math., Vol.

i7s 449-467(1965)•

M.R.Garey and D.S.Johnson, Cormputers and lntr)aetahiZity;

A Guide to the Theoir,y oj' IVP-eompZeteness, W.H.Freeman and

Company, San Francisco(1979).

T.Gonzalez and S.Sahni, Open Shop Scheduling to Mnimize
Finish Time, cT. Assoe. Comput. Maeh., Voi.23, 665-679(1976).

T.Gonzalez and S.Sahni, Preemptive Scheduling of Uniform
Processor Systems, J. Assoe. Comput. Mach., Vol.25, 92-iOl

(1978).

R.L.Graharns Bounds on Certain Multiprocessing Anomalies,

BeZl System Teeh. ef., Vol.45, !563-1581(1966).

R.L.Graham, Bounds on Multiprocessing Timing Anomalies,
Sfav 0. AppZ. Math., Vol.17, 263-269(1969).

R.L.Graham, E.L.Lawler, J.K.Lenstra and A.H.G.Rinnooy Kan,

Optimization and Approximation in Deterministic Sequeneing
and Scheduling: A Survey, AnnaZs of Diserete Math., Vol.5,

287-326(1979).

W.A.Horn, Sorne Simple Schedu'ling Problerns, ATcvvaZ Res. Logist.

(2z4ccr)t., Vol.21, 177-185(1974).

-135-

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

 E.C.Horvath, S.Lam and R.Sethi, A Level Algorithms for Pre-

 emptive Scheduling, a. Assoe. Comput. imeh., Vol.24, 32-43
 (1977) .

 H.Zshii, C.Martel, T.Masuda and T.Nishida, A Generalized
 Uniform Processor System, Qpeveations Res., Vol.33, 346•-362

 (l985).

 J.R.Jackson, Scheduling a Production Line to Minimize Max-
 imum Lateness, ReseccT7eh Repo?t 43, Management Seienee P"og'-

 eet, Univ. of California, Los Angels(l955).

 J.R.Jackson, An Extension of Johnson's Results on Job Lot
 SeheduZing, NavaZ Res. Logist. (2zzar7t., Vol.3, 201-203(1956).

 S.M.Johnson, Optimal Two-- and Three-Stage Production Sched-
 ules with Setup Times Zncluded, ATaval Res. Logist. C2ztctrt.,

 Vol.1, 61--68(1954).

 H.Kise, H.Ibaraki and H.Mine, Performance Analysis of Six

 Approximation Algorithms for the One-Machine Maxirnum Late-

 ness Scheduling Problem with Ready Times, eT. Ope?ations Res.

 Soe. gapan, Vol.22, 205-224(1979).

 E.L.Lawler, Optimal Sequencing of a Single Machine Subject

 to Precedence Constraints, Management Sci., Vol.19, 544•-

' 546(1973).

 E.L.Lawler, CombinatoTiaZ Optinization: AIetuorks and Matr,-

 oids, Hglt, Rinehart and Winston, New York(1976).

 T.Masuda, H.Ishii and T.Nishida, Some Bounds on Approxima-
 and n12/FIL tion Algorithms for nlmlUL Scheduling
 max max
 Problems, J. 0peMations Res. Soe. Japan, Vol.26, 212-224

 (1983).

 T.Masuda, H.Ishii and T.Nishida, Two-Maehine Scheduling
 Problem for Jobs with Generalized Due Dates, Math. eTaponiea,

 VOIe30, 1!7-125(1985)e

 -136-

[21]

[22]

[23]

[24]

[25]

[26]

T.Masuda, H.Ishii and T.Nishida, The Mixed Shop Scheduling
Prob!em, Dise?ete AppZ. Math., Vol.11 175-186(1985).

Y.V.Matijasevic, Enumerable Sets are Diophantine, DokZ.

Akad. Alauk SSSR, Vol.191, 279-282(1970), in Russian, English

Translation in Soviet Math. DokZ., Vol. 11, 3S4-357.

R.McNaughton, Scheduling with Deadlines and Loss Functions,
Management Sci., Vo1.6, 1-12(1959).

N.Megiddo, Combinatorial Optimization with Rational Objec-
tive Functions, Math. Operations Res., Vo!.4, 414-424(1979).

S.Sahni and Y.Cho, Scheduling Independent Tasks with Due
Times on a Uniform Processor System, e7. Assoc. Comput. Mach.,

Vol.27, 550-563(1980).

A.Turing, On Computable Numbers, with an Application to the
Entscheidungs Problem, PToc. of the Londen Math. Soc. Ser.

2, Vol.42, 230-265(1936).

-137-

[1]

[2]

[3]

[4]

[5]

[6]

[7]

 LI.ST OF PUBLIICATIONS

Some Bounds on Approximation Algorithms for n!mll/L and
 max .
n/21r/Lmax Scheduling Problems, eTouorveaZ of the 0peTations

Resecti?eh Soeiety of Japan. Vo'1.26, 212-224(1983).

Two-1!iachine Scheduling Problem for Jobs with Generalized

Due Dates, Mathematiea Japonica. Vol.30, 117-125(1985).

A Generalized Uniform Proeessor System, qperations Reseaych.

Vol.33, 346-362(1985).

The Mixed Shop Scheduling Problem, Dilserete AppZied Mathe-

matics. Vol.Zl, 175-186(1985).

Two Machine Mixed Shop Scheduling Problem with Controllable
hachine Speeds. (submitted).

A Solvable Case of Three IY[achine Open Shop Scheduling to Min-

imize IY[aximm Cogrpletion Time. (in preparation).

Scheduling to Minimize Maximum Completion Time on Quasi-

Identical Parallel Machines. (in preparation).

-138-

 ACKNQWREDGEMIENTS

 '
 First Qf ail, Lhe author would Zike to express his sincere

appreciation to Professor T. Nishida for supervising this thesis.

His continuous encouragement and invaluable comments have helped

to accomplish the thesis. ' .
 The author also wishes to acknowledge Professor H. Sugiyama,

Professor M. Yamamoto and Professor Y. Tezuka for their useful

advices and helpful comments for improving the thesis.

 The author is also indebted tg Associate Professor H. Ishii

who guided the author to the present study and has been giving
 'the continuous encouragement and invaluable comments to compiete

the thesis. ' The author also wishes to thank Associate Professor Y.

Tabata for his eontinuous encouragement and useful suggestions.

 Furtherrnore, the author would like to express his heartfelt

gratitude to Professor N. Hagiwara of Osaka Prefecture University,

who gave the author innumerable advices and comments for correct-
 'ing some of grarmatical errors and improving the author's poor•

English in the first draft of the thesis.

 Finally, the author wishes to thank Dr. F. Ohi, Dr. S. Shiode,

and the members of Nishida's Laboratory of Osaka University for

their continuous kindness and friendship.

-139-

