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CHAPTER 1

INTRODUCTION

In this thesis we investigate stochastic versiens of network
problems, such as transportation problem, minimal spanning tree
problem, and facility location problem. Researches on stochastic
programming have made a remarkable development in recent years, and
applicable areas thereof have been extended to a variety of filelds,
e.g., agriculture, finance, marketing, warehousing, etc.. (See [8,
and 14].) Howeyver, research works on stochastic programming have
been mainly devoted to theoretical aspects, so far.

Stochastic programming deals with the methods for incorporating
stochastic fluctuations in the framework of mathematical programming
and for making optimal decisions with respect to certain criterions.
([7,8,9, and 15]) Such stochastic fluctuations may occur in the
objective function and/or the constraints. Various approaches have
been proposed to deal with problems of mathematical programming in
such fluctuating situations, since the initiating papers by Dantzig
and Beale in 1955. There are two main approaches, i.e., the "wait-
and-see" approach and the "here-and-now'" approach named by Madansky
[11]. In the former approach we wait until an observation is made
on random elements and then solve the deterministic problem. On the
other hand, in the latter approach a decision is made before we ob-
serve the stochastic elements. The former approach caused the so-
called distribution problems. Concerning the latter apprbach the
so-called two-stage problems have been studied. (Walkup and Wets
[16] generalized this latter approach to stochastic Programmiﬁg with
recourse,)

Two-stage formulation was considered independently by Beale [1]



and by Dantzig [4]., For example, we consider the following linear
programming problem.

n

Minimize . 2 c.X,
0=l' J J
subject to z a,.x.=b, i i=1,2,...,m, (L.
a1 1373

XJ;O: j=l,2,...,h.

If bi’ i=1,2,...,m, are random variables, then two-stage formulation

is as follows:

m
Minimize 2 ¢ 4%, +El 2 (piyi+qiyi)l

subject to 2 aleJ+y (Y5 —b , 1i/1,2,...,m, (1.2
j=1

xjio, i=1,2,...,n,
+ .
yl’ yi>0 i=1,2,...,m,

where E denotes the expectation, and P;» 4y are penalties for the
positive and negative discrepancies between the right and left side
values of the i-th constraint (1.1).

Charnes and Cooper [3] have also initiated another probabilis~
tic approach, i.e., introduced chance constraints to mathematical
programming prablem. In their approach, the constraints do not hold
necessarily, but they have only to hold with the probability greater
than a given level. For instance we consider the following linear
constraints; |

n

jZlaijxj 2b;, 171,2,...,m. (1.3)
If aij and bi’ i=1,2,...,m; j=1,2,...,n, are random yariables, the
solution set of the above inequalities may be empty. Therefore we

consider the following chance’constraints.



n
Pr{jzlaijxj zb}zoy, 1=1,2,...,m, (1.4)

where o, i=1,2,...,m, are given probability levels, and Pr{a}
means the probability of A,

bBracken and Soland [2] introduced “the value of information"
to stochastic mathematical programming problems, though this con-
cept had been originally considered in [13]. Generally speaking,
additional information may reduce the uncertainty on stochastic
situation. If we can get 'perfect information', then the problem
under uncertainty becomes a problem under certainty. The value of
information is the difference between '"here-and-now" approach and
"wait-and-see! approach for mathematical programming problem. Two
types of values of informpation, 1.e., the expected yalue of perfect
information (EYPI) and the expected value of sample information
(EVSI) are considered, The EVPI is the upper bound to what extent
one would be willing to pay for perfect information. Usually, per-
fect information may not be available, and we haye to take sample.
if we want the more information. Since sampling incurs some. cost,
the EVSI would be helpful in such a situation where we haye to de-
cide whether or not to take sample., Since EVSI is not greater than
EVPI and approaches EVPI as the sample size increases, EVPI is use-
ful as an upper bound for the EVSI.

In chapter 2 we consider a partially chance-constrained E-model
with constraint of a random linear inequality and provide algo-
rithms for solving it, There are few solution algorithms to solve
such a chance-constrained programming problem. To solve this prob-
lem, we first transform the problem into the equivalent determinis-
tic problem. We introduce subsidiary problem and derxiye useful
properties for solving the deterministic problem. The algorithm
is proyided for solving the subsidiary problem with finite number

of iterations. Moreover another type of subsidiarxy problem is



introduced and the properties of the problem are derived. Then we
provide the main algorithm for solving the main problem by utiliz-
ing the above algorithm and properties. Moreover we prove the va-
lidity and finiteness of the algorithm.

In chapter 3 we consider a stochastic transportation problem
with simple recourse. For stochastigmprograms with recourse, there
are few exact algorithms fotr obtaining the optimal solution.

The transportation problem was introduced by F.L. Hitchcock,
discussed in‘details by T.C. Koopmans, and solyed efficiently by
G.B. Dantzig, L.R, Ford, Jr. and D.R. Fulkerson. (See the refer-
ence [5].)

We consider the two-stage formulation of this problem and
derive some useful properties concerning the éptimal solution and
the optimal value., Moreoyer we investigate the behayior of the
objective function and provide an algorithm for obtaining the opti-
mal solution,

In chapter 4 we inyestigate minimal spanning tree problems in
which edge costs are considered to be random yariables. Seyeral
methods, e.g., Kruskal's algorithm [10] and Prim's.algorithm [12],
etc., are available for finding a minimal spanning tree in polyno-
mial time orxder.

We consider two types of problems. One problem is to find an
optimal spanning tree and optimal budget under the chance con-
straint that the probability with which total cost does not exceed
budget is larger than a certain level. Another problem is to find
an optimal spanning tree and.dptimal satisficing probability leyel
under the same chance.constraint. For the first type problem we
propose a parametri¢ type algorithm which finds an optimal spanning
tree in O(mznz), where m and n are the number of edges and the num-
ber of vertices in a given graph respectiyely. And for the second

type problem we propose another parametric type algorithm. Though
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this problem is more complicated than the first one, this algorithm
also finds an optimal solution in 0(m2n2) computational time.

In chapter 5 we deal with single facility location problems
where the weights and/or the locations of demand points are random-
ly distributed. The deterministic single facility location prob-
lems have been investigated so far by many researchers. ([6]) Con-
cerning these deterministic problems, we consider the foliowing
problems specifically and the corresponding stochastic problems in
this thesis. Suppose there are n demand ﬁoints distrxibuted on a
plane, whose coordinates are (ai’bi)’ i=1,2,...,n. Now, let (x,y)
be the location of the facility point and we consider the distance
di(x,y) between the facility point and the-i-th demand point. Now
we consider two types of problems. One is the weighted minisum
problem, i.e,, the prablem to minimize zz=lwidi(x,y) with respect
to x,y, where Wy is the weight by which the distance di(x,y) is
converted in terms of the cost required. Another is the minimax
problem, i.e., the problem to minimize mix di(x,y)'with respect to
Xx,yY. This problem may be applicable to the location analysis of
emergency service facility, for example. We conslider several kinds
of distances, e.g., the shortest Euclidean distance, socalled rec~
tangular distance, i.e., the distance the admissible rectangular
routes, for measuring the distances between the facility and the
demand points; - etc.. Euclidean distance is used to some network
problems, e.g., electrical wiring problems, pipeline design prob-
lems. And rectangular distance is appropriate in urban location-
analysis where we tyavel along an orthogonal set of streets.

The first two problems in this chapter are concerned with the
value of information in facility location. The value of informa-
tion was first introduced by Wesolowsky [17]. He treated the EVPI
in one-dimensional facility location model in which the weights

have a multivariate normal distribution. One problem is to obtain



the expected yalue of sample information. We discuss the model in
which we consider the rectangular distances between the facility
and demand pdints. And each weight is independently distributed
normal random variable with unknown mean and known variance. We
investigate the behavior the EVSI as the function of changing sam-
ple size. In addition, the expected net gain of our sampling and
then the optimal sample size are found. Another problem is to find
the expected value of perfect information in facility location mod-
el in which the distances are rectangular and both the weights and
the locations of demand points are known only probabilistically,

We give an explicit representation of EVPI.

The second problem is the model in which the weights of demand
points are random variables and the distances are 2p distances, i.
€., (lx-ai|+ly—bi]), i=1,2,...,n. Our objective is to find a solu~
tion which maximizes the probability of satisfying the cost re-
striction., Especially the problem whose distances are rectangular
is investigated in detail :and an O(n3) time algorithm is given for
solying the problem.

Finally we deal with a minimax facility location problem under
locational uncertainty. In our model the number of demand points
is assumed to be a random variable with a Poisson distribution and
the location of each demand peint is also random variable with uni-
form distribution on rectangular area or piecewise uniform distri-
bution on the separated two areas. OQur objective is to locate an
emergency service facility, minimizing the reachable distance under
constraint so that the probability of reaching all the lacations of
accidents (demand points) is larger than a certain predetermined
value. First we andlyze the problem parametrically, and provide
the sensitivity analysis with respect to the aspired pyroebability
leyel. Finally an explicit optimal solution of the pyroblem isb

parametrically deriyed.
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CHAPTER 2

AN ALGORITHM FOR A PARTIALLY CHANCE-CONSTRAINED E-MODEL

2.1 Introduction

Many types of chance-constrained programming problems have
been considered [1-5, 7, 9 and 10] since Charnes and Cooper [1] in-
troduced chance constraints into mathematical programming problems.
This chapter considers an E-model having a random linear inequality
constraint and provides an algorithm to solve it. There are few
solution algorithms for solving the problem with stochastic con- |
straints.

In Section 2.2 Problem P, and its deterministic equivalent Prob-

o]
lem P are formulated. In Section 2.3 we introduce subsidiary problem

P(u) parametrized with yu and derives useful relations between P and

P(y). 1In Section 2.4 we give Algorithm 2.1 for solying P(u) based
on the parametric procedure ([5]) and praove yalidity and finiteness

of the algorithm. 1In.Section 2.5 we introduce another type
of the subsidiary problem PR and provide the main Algorithm 2.2 for
solving P utilizing Algorithm 2.1 and properties of PR. The valid-

ity and finiteness of Algorithm 2.2 are also proved. And in Section

2.6 we give an illustrative example.

2.2 Problem Formulation

In this chapter we consider the following problem PO'

PO: Maximize E(ch)

subject to Pr{aTxib}f_a, (2.1)



x >0,

A x;Bl, d

1

where T and E mean transpose and expectation respectively; a =(a1,
a2,...,an)T is an n~-dimensional random vector and distributed ac-
cording to multivariate normal distribution with mean vector E(a )=
(E (al) ,E(az) se e ,E(an))T and variance-covariance matrix Wj; b is
distributed according to a normal distribution with mean E(b) and

variance 0%; a, and b are mutually independent 1i=1,2,...,n; ¢:=(cl,

Cosaen ,cn)T isian n-dimensional random vector with mean E( c)=(E(cl),
E(cz),...,E(cn))T; Al is an m by n matrix; B1 is an m—-dimensional
vector; x=(x1,x2,... ,xn)T is an n-dimensional decision variable
vector; o(>1/2) is a probability level at least with which con-
straint aT x <b must hold.

The chance constraint 'in (2.1) can be transformed into the fol-

lowing form by simple calculations.

{aTx—b-E(at)Tx+E(b) <E(b) ‘E(a)TX}

|/O§+xWx =V0%+xWx

Pr{aTx;b}=Pr >a.

(2.2)

Since a and b are distributed according to N(E(a );W) and N(E(b),

0%) respectively,

a x-b-FE(a)r x+ED)
/069‘+ xTWx

is distributed according to the standard normal distribution N(0,1).

Therefore (2.2) becomes as follows.

E(b) —E(a) . x

>0 (y, (2.3)
VG% + X Wx

- 10 -



where ¢ is the cumulative distribution function of standard normal

distribution. The inequality (2.3) is further transformed into
T /5 T
E(a) x +Ka, o+ xWx <E(b),

where Ka é¢_1(a). E( ch) is equivalent to E( c )Tx by the line-

arity of expectation. Then the problem P_ is equivalent to the

0
following deterministic problem P.

P: Maximize E(c )Tx
. \T o T +
subject to E(a ) x+ K, (07 +x"Wx)2<E(b)

A.x<B

1 x>0,

11
Moreover we assume that the feasible set of P,

A T 2 T 1
S={x|E(a) x+Ka(oa+x Wx)?<E(b), A, x<B , x>0}

1 1’
is not empty and bounded. As is easily shown, S is a convex set

and therefore P is a convex programming problem.

2.3 Subsidiary Problem of P
Let x¥* and p* denote an optimal solution and the optimal value
of Problem P respectively. To solve P we introduce the following

subsidiary problem P(yu).
N T 2 T _é.
P(p): Minimize E{a) x+Ka(oo+x Wx )

subject to E(c)Tx_>_p, A xf_Bl, x> 0.

1

Denoting the optimal solution and the optimal value of P(y) by
x(p) and z(p) respectively. As is easily proved, P(yp) is a strict-

ly convex programming problem, and so x{y) is unique. Then the

- 11 -



following relation between P(u) and P holds.

Theorem2.1 If x(u) satisfies
T 2 T +
E(a) x(p)+Ka(Uo+x(l-l) Wx(p))?=E(b)
T
and E(c) x(p)=uy,

then x(p) is also an optimal solution of P.

Proof: Kuhn-Tucker condition of Problem P (KTP) is as follows
([8]).
Wx

KTP: wv-pE(a)-Kp _L—ATQ=—E(C),
o3 1

(o2+x Wx )2

T T -4
E(a) x+Ka(c§+x Wx)2+so=E(b),

A1x+s=B ’ vTx‘+qu+s p'=0,

1 0

v, x, S, qzo’ sorpz_o,

where v is an n-dimensional vector; s, g are m-dimensional vectors ;

SO’ p are scolors. On the other hand, Kuhn-Tucker condition of
Problem P(u) (KTP(p)) becomes as follows.

Wx T— ==

KTP(u): wv-E(a)-K
u(cﬁ +x Wx )?

T - T -
E(c) X-~s,=1, A1x+s=Bl,

v x+ ;+¢_1T§=O,

o

v, x, s, g20, 5., r>0,

where v is an n-dimensional vector; s, @ are m-~dimensional vectors;

SO’ r are scalars. Let

xtw) = (x5, v, @, T, 5,00, 80"

- 12 -



denote the solution of KTP(u). Since E(c)Tx( u) =y means Eo(p) =0,

r(u) must be positive. By the positivity of r(u) and the condition

T 2 T +
E(a) X(u)+KG(co+X(u) Wx(yu))?=E(b),
the solution of KTP is constructed from X(p) as follows:
v=v()/r(u), p=1/r(u), g=alu)/r(u), s,=0,

x=x(n), s=s(p).

(Indeed this solution satisfies KTP.) Since P and P(u) are strictly
concave programming problem and strictly convex programming problem

respectively, feasible solutions of KTP and K'I:P(p)_ are optimal so- -

lutions of P and P(p) respectively. Therefore x(u) satisfying con-

ditions of this theorem is the optimal solution of P. []

Moreover the following properties of P(u) can be derived.

Property 2.1 z(u) is a convex function of u.

Proof: For p1<p2, O<A< 1 and 3‘-=1—A,
)\Z(ul)+7\Z(u2)"Z(Xul+3:p2)
=xE(a)Tx(u1)+KE(a)Tx(p2)—E(a)Tx()\p1+Kp2)

1 Y
+AKa(o§+x(pl)TWx(p1))2+AKa(0§+x(p2)TWx(p2))_z
— Uy —_ 1
—Ka(of+x()\pvl+ )\pz) Wx(lp1+ ),pz))z
>E(a) Oxp) + 3x(p ) —E(a) Tx(ap, + Tn,)
> x By + AX W)= a) x Xu1+ lpz
fK {02+ (ax(u) + XxGuo ) WO () + Axlu )0 1E
a0°+ ¥y + xuz AX By + A X p2 }

— T - 4.
- 2 2
Ka{ao+x( Ap + xpz) Wx{ Ap + Apz) }

- 13 -



. T £ .
(since (c2+x Wx)? is convex in xX)
0

>0 (by the feasibility of xx(pl)+'1x(p2) and optimality
of x(kp1+ Apz) for P(kpl+xp2)). 0

Property 2.2 z(p) is a nondecreasing function of yu.

Proof: It is clear from the fact that the- feasible region of

P(p) becomes smaller as p increases. O

Theorem 2.2 Without any loss of generality, we can always

assume go(p) =0.

Proof: Assume that there exists a {i such that Eo(ﬁ) > 0. Then

it
z(p) =z(f) and x(u) =x(§i) for any ﬁ+§o(ﬁ)2_p3ﬁ since go(ﬁ)>0

implies
T -~ ~ - A
E(c) x(W)zu+ sy(i) , (2.4)

and (2.4) means that x({i) is optimal for any u among ﬁ+§o(ﬁ)z_u_>_ﬁ
from Property2.2. Convexity of z(u) shows that this occurs only the
first portion of z(p). Since S# ¢ implies z({i) <E(b), this portion
can be excluded from further consideration by Theorem 2.1, That is,

we can assume Eo(p) =0 without any loss of generality. []

From Theorem 2.2 we can assume that E(C)szp in Theorem 2.1. 1In
addition we have z(y) > z(p') for u> ' as a byproduct. Therefore

Property 2.2 is strengthened as follows.

Property 2.2' There exists | such that z(u) is monotonically

increasing function of y for any p>ji.

Now we must check whether u such that z(u)=E(b) exists or not.

For this purpose let

ﬁémax{E(c)Txl AlxiBl’ x> 01}.

- 14 -



Note that } may not exist. If §i exists, then x(u) for p>j does not
exist. Moreover if E(b) > z(y) holds, p such that z(p) =E(b) is not
defined. But in this case, X(ji) becomes an optimal solution of P as

is easily shown.

Property 2.3 pu such that z(p)=E(b) (that is, the optimal value

of P) is unique if it exists.

Proof: This is clear from z(’i})_f_E(b) and Property 2.2'. Note
that z(i) <E(b) is derived from S#¢. [J

2.4 Algorithm for Solving P(u)
In order to solve P(p), we introduce in this section an auxil-

iary parametrized problem PR(p).

PR(p): Minimize RE(a)Tx+%Ka (02 +xTWx)

subject to E(c)Tpr, AlxiBl, x> 0.

Note that the feasible region of PR(p) coincides with that of P(u).
Let xR(p) and zR(p) denote the optimal solution and optimal value
of PR(p). The objective function of Problem PR(H) is a strictly

, R . .
convex function, and so x (U) is unique.

Theorem 2.3 If xR(p) satisfies R2=c§+xR(p)TWxR(u), then it
is the optimal solution x(u) of P(p).

Proof: FEach PR(p) is a convex programming problem and corre-

sponding Kuhn-Tucker condition KTPR(p) becomes as follows.

KTPR(p): \?—Kan—ATﬁzRE(a),

1

~ T ~
Alx+s=Bl, E{c) x-S,=
~T AT A an - ~“ o~ aA o~
VvV X+8 q+rso=0, v, x, 85, q>0, r, SOZO.

- 15 -



If xR(p) satisfies R2=d§+xR(u)TWxR(p), then X(p) can be
. R A R T ~R T AR ~R
constructed from a solution X (p)2(x (u) ,¥ (w) ,q (u),r (u),
gg(u),ﬁR(u)T)T of KTPR(p) as follows.

X(0): x(p) =x3(w), v(u) =v3(w)/R, alp)=a (u)/R,
T =FR (W /R, 5,0 =83, 3w =8,

Indeed the solution constructed as above satisfies KTP(y) as is

easily checked. ' Therefore xR(p) becomes an optimal solution of
P(u). []

Property 2.4 zR(p) is a monotonically increasing function of .

Proof: We can show it similarly to Property 2.2. []

Property 2.5 E(a)TxR(p) is a nonincreasing function of R.

Proof: For R' <R the following inequalities hold;

RE(a)TxR(p)+%K»a(o§+xR(u)TWxR(u))
<RE(a)Tx" () +3K (of+x" () Ux" (1))

R'E(a)TxR'(p)+%Ka(o§+xR'(p)TWxR'(p))
iR'E(a)TxR(u)+%Ka(0§+XR(u)TW1R(u)),

] 1
since XR(p) and xR (p) are optimal solutions of PR(p) and PR ()

respectively. These imply
T_R T R',
R{E(a) x (p)-E(a) x (u)}

+%Ka{xR(p)TWXR(p) xR (p)TWxR' (W)¥<0, (2.5)
R! {E(a)TxR(u) —E(a)TxR'(u)}

1

SK_ (0w () -x 0T (W12 0. (2:6)

+

- 16 -



From (2.5) and (2.6) we have
R T R!
(R-R') E(a) x () -E(a) x" ()} <0.
Therefore from R' <R

.ﬁ(a)TxR(p)f_E(a)TxR'(u)- O

Property 2.6 xR(u)TWxR(p) is a nondecreasing function of R.

Proof: From the optimality of xR(u) for PR(p) we have
R'E(a)TxR'(p)+%Ka{o§+xR'(p)TWxR'(p)}
<RE(a) X (W) +5(0F +x () W (W)
From this inequality and Property 2.5 we: have
LT 0 < xN 0T . 0

Y
We define R(u) 4 {o§+x(u)TWX(u)}2. The following theorem

provides some useful informations about R(u) even if R#R(u).

Theorem 2.4

(1) R>R(n) « v BP>ofext () Tt ()
(ii) R<R(pn) -+ > R2<o§+xR(p)TWxR(p)
(iii) R=R(p) v RZ =02 4 x () W (w).

Proof: For each xR(p), xR(u)TWxR(u) <o holds since PR(p) has
the same feasible region as P{u) and boundedness of S implies
E(a)TxR(p) > —=, Therefore from Property 2.6 there exists a suffi-
ciently large R such,that xR(p)TWxR(p) is constant for R>R. The
continuity of XR(p)waR(p) with respect to R can be derived from
the continuity of xR(p) with respect to R. Therefore Mean-Value

Theorem, Theorem 2.3 and the uniqueness of x(u) together prove
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Theorem 2.4. []

Now we are ready to solve P(y) by utilizing PR(u). Generally
XR(p) depends upon u and R, which determines a basic matrix B.
Being based on B, there exist constant vectors 4!, e}'3, gé and a

certain interval LB(p)iRi UB(p) determined by the basic matrix B

and u, and so XR(p) can be written as follows.
XR(y) =RA! 4pel+g! (Lo (u) <R<U_(4)).
H BT H® BT &p g/ ="=VptH
Moreover taking x part of XR(p), we can write down as
xR( )=Rd_ +ue_+g

using dB, e_ and gy (x part of d!, e! and g1|3 respectively ). By

B B

the above discussion, the condition
2 R T R
RT=o02+x (u) Wx (u)
is equivalent to the condition that one of roots of the equation

T 2 T T )
(dBWdB— 1)R" + 2(peB+ gB) WdBR+ (ne +gB) W(peB + gB) +02=0
exists on the interval [LB(u) ,UB(p) ]. Hereafter let us refer this

equation to Q-equation. The roots of Q-equation are as follows:

T
(Case a) dBWdB= 1,

T 2
. —(peB+gB) W(peB+gB) -0}
= T ,
2(peB+gB) WdB

T
(Case b) dBWdB £1,

T
- +
(pe}3 + gB) WdB_/D
R= T ,
dBWdB -1

- 18 -



A T .2 T T ,
where D-{(peB+gB) WdB} —(dBWdB—l){(peB+gB) W(peB+gB)+oo}.

Remark 2.1 R>o, only must be checked for R2=o§+xR(p)TWxR(p)
since W is positive definite.
R(]rl)TWxR(p)—R‘e. Then if Kp(LB(u))_>_O and

Let KM (R) =A=c§ +xX
K“(UB(p))io, one root of Q-equation exists in the interval [LB(p),

UB(u)].

Algorithm 2.1 for solving P(u)

Step 1: Set Rg*———co, Ru+—M (M is a sufficiently large positive
number ) and R <——RO (RO is an arbitrary number such that RO
Solve "PR(p) and find B, dB, ey Bp, LB(p) and UB(p). Go to Step 2.
Step 2: If Ku(LB(p))<O, then set Ru+——LB(p) and R+ (Ru+RL)/2'

>0, ).

and go to Step 4. If K“(LB(M))=O, then set x(p)=LB(p)dB+peB+gB
and terminate. If K“(LB(p)) >0, then go to Step 3.

Step 3:_ If KY( UB(p)) < 0, then solve Q-equation, find roots Bl’ B,
and go to Step 5. If KP(UB(p))zo, then set x(p)=UB(p)dB+peB+gB
and terminate. If K“(UB(U)) >0, then set R+ UB(p) and R +— (RJL
+Ru)/2' and go to Step 4.

Step 4: Solve PR(p) and find B, dB”eB’ Eg» LB(p) and UB(p).
Return to Step 2. o

Step 5: If Bl (or 32) belongsv to [LB(p),UB(p)],,then set x(p) =

BldB+pe + & (or x(pu)= BZdB+peB+gB) and terminate.

B

Remark 2.2 (i) 1In Step 5, if didel, then we consider
T 2

_‘(peB+gB) W(peB+gB)+co

B, =B,= .
2 T
2(peB+gB) WdB

(ii) If Ku(LB(p)) < 0 holds, K“(UB(p)) < 0 necessarily holds by
Theorem 2.4. Thus the test for K”(UB(p)) is to be omitted. On
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the other hand if KP(UB(’u)) > 0 holds, then x“(LB(u)) >0 holds and
the test for K“(LB(p)) is also omitted.
1
_ Lon
(ii1) [Lp(w),Ug()) c[Rr,,R ] and Ug(n) Lyw) <5 (R, Rg’) hold
except the first [LB(p),UB(p)].

Theorem 2.5 Algorithm 2.1 terminates after finite iterations,

and upon termination it finds x(u).

Proof: (Finiteness) After each calculation of Step 4, five
cases (a)-(e) as illustrated in Figure 2.la-2.le are possible. 1In

case (d) (or (e)) it is clear that
x(u) =Lp(n)dy + ney + gy (or x(u) =Ug(p)dy +uey +g7)

holds. 1In case (c¢) either Bl or 52 ( but not both ) must belong to
the interval [LB(p),UB(u)]‘according to the continuity and Mean-

Value Theorem with respect to K*(R). Thus in cases (c)-(e), Algo-
rithm 2.1 terminates. In cases (a) and (b), neither 8, nor Bé be-

longs to the interval [LB(p),UB(p)]by Theorem2.4. First note that
Ly(w) < (R +R )/2 U (n) (2.7)

holds as is easily known from the updating procedure of R in Step 2
or Step 3.

Case (a): Ru is set t& LB(u) since Ku(LB(p))<:O.

Case (b): Rm is set to UB(u) since Kp(UB(p))> 0.

In any case it follows from (2.7) that the difference Ru-—Rz is at
least halved except the first excecution of Step 2 and Step 3.
Therefore after finite iterations, case (c), (d) or (e) octurs since
R(u) belongs to a certain interval [LB(p),UB(p)] witilUB(u)—LB(p)>O.
(Validity) Termination condition itself assures validity of Algo-

rithm 2.1. []
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(K¥(Lg(n)) <0) (K¥(Ug(u)) <0)

Figure 2.1a. Case (a) '
Ry Lg(u) (R +R/2 Uglu) R,
(K*(Lg(w)) >0) (K*(ug(u)) >0)
Figure 2.1b. Case (b)
ISR SNNYINA | ] | SN NNNNINNS NN
FTrrrryrrrrrrvry B 13 1 V¢Frrrvrryrrryryryrrrry
Ry Lglu) (Ry+R /2 Uglu) R,
(K(Lg(w)) >0) (K*(Ug(u)) <0)
Figure 2.1c. Case (c)
INREDNENANNY A i ] VLLL L2 2L 2L L L2 L sl
7171777771717 1 1 T 7177117177717 77T7
Ry Lgtu) (R +R))/2 Uglu) R,
(K"(Lg(n)) =0) (K(Ug(u)) <0)
Figure 2.1d. <Case (d)
WONNIENENNSIE H 1l ! NSNS NSNS NN NN
Tryrrirrrirrri T { b T rrrrrvrIrirrrririv
Ry L_B(u) (Rg*+R /2 Uglu) R,
(K (Lg(u)) > 0) (K*(ug(n)) =0)

Figure 2.1e. Case (e)
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2.5 Main Algorithm for Solving P

Let B denote the optimal basic matrix of KTP(u), that is, let
x(u) = B(p)dlB+peB+gB. ( Of course, B(u)=R(u), but for convenience,
we denote R(p) with B(u). ) Now we define

I(B)é{plLB(u)s_ B(1) <UL (n) and x(y)2 O}

Then I(B) is the set of p where B becomes the optimal basic matrix
of KTP(u) and for p on I(B) we can write down x(u) = B(p)dB+peB.+gB.
In other words, the shape of z(p) with respect to y on I(B) is de-
termined. If z(u) crosses z(u)=E(b) on I(B), then the optimal so—

lution will be found. For this purpose, let

hg 2 sup {u| ue 1(B))

and péésup{plpe I(B), z(y) <E(b)}.
|
When pB_p*,
x*=3(p1'3)dB+ p]'aeB+gB

holds. But in case that p}'a< u¥, we have to continue the search for
u¥*. Now define another type subsidiary problem PR with a parameter

R>ag,.
PR: Maximize E(c)Tx
. T
subject to E(a) x_<_E(b)—KaR,

Alx_<_B1, x> 0.

Let xR and pR denote an optimal solution and the optimal value of

PR respectively.

Proposition 2.1 If an optimal solution x°9 of PY° satisfies
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4
E(a) x°° +Ka{o§+ (x°°TWx°°)2}_<_E(b),

then xc" becomes an optimal solution of P.
Proof: Since any x €S satisfies
T 1
K (0d+x Wx)2 >K 0,,
a -"a

Po" is a relaxation problem of P. Therefore by the assumption

x%%¢ S, it is clear that x°° is also an optimal solution of P. O

Proposition2.2 1If xR satisfies

E(a) x" <E(b) -K R,

that is, there exists a gap between. E(b) _KaR and E(a)TxR, then

pR;—E(c)TxR > yu* holds.

Proof: Assume pR<u*, then
T
E(a) x* >E(b)—KaR

holds, for otherwise x* is feasible for P! and pRZ p*:E(c)Tx*

holds. Now consider ;)’ é AxR +1x¥*. Then

E(b) ~E(a) ' x )‘—KaR;- ME (D) —E(a)TxR—KaR)+_i(E(b)—E(a)Tx*—KaR)

=ASR+KS*=X(SR-S*)+S*
holds, where SRéE(b)—E(a)TxR—KQR<O and S*QE(b)-—E(a)Tx*—K R>0.
’ o
If » is taken to be 1>a> —S*/(SR—S*) >0, then E(b)—'E(a)Tx)‘—K R
N a

>0 and Alx)‘ ZBl, x >0, and therefore x)‘ is feasible for PR.

Besides,

E(C)Txx =>\E(c)TxR+;E(¢:)Tx*= XuR-F;p* > uR
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and it contradicts the optimality of xR. Therefore pR_>_u* results.

O

" Property 2.7 pR is a nonincreasing function of R.

Proof: As R increases, the feasible region of PR reduces.

Therefore uR is a nonincreasing function of R. []

Property 2.8 pR is a concave function of R.

Proof: For R, >R, and 1 >1>0, let 'ﬁxﬁ )R, + AR,. Then
T R, = R, ] 3
E(a) (Ax'* +Xx 2) < ME(D) =K R, ) +X(E(b) =K R,)

=E(b)—KaRX’

and Al()\xR‘+3xR2)ixBl+_IB =B )\xR‘+KxR230

171’

R, +-):sz is feasible for PRA.. Since

hold, i.e., Ax

Rl RZ

AU +7‘uRz'=E(c)T( AxR.L+Kx )

and ApR‘ ;r-IuRzi pr=E(c)TxR)~

hold from the optimality of xRX for PR?\. Therefore uR is a concave

function of R. []

A T 2 . . R*
Now let R¥ = (x* Wx* +¢032)%, then x* is feasible for P and so
+*
u¥* < pR follows. By Property 2.8, Property 2.7 is strengthened as

follows.,

Property 2.7' Except a first portion pR is a monotonically

decreasing function of R.

Figure 2.2 and Figure 2.3 show the shapes of z(u) and pR respec—

tively. Note that the optimal value of PR(M)

since x(p) is a feasible solution of PR(M). Now we are ready to

is not less than. p

describe our main algorithm for solving P. In the algorithm, the
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following notations are used.
- A, T v
e current p, u; an upper bound of u¥*, R(x)=(ol+x"Wx)?,
BC; basic matrix corresponding to the current optimal solution,
B current solution of Q-equation, x' Qx(u]'3 ).
' c
Algorithm 2.2
Step O: Calculate p, solve P(f) and find x(yi) and z(u) by using
Algorithm 2.1. If z(§)<E(b), then set x*+ x(ji) and terminate.
Otherwise set pu+— §, R+ o, and ;}C«-—' (-M) (M is a sufficiently
large number ). Go to Step 1.
Step 1: Solve P(pc) and find x(pc), optimal Basis Bc and I(BC).
If p* e I(Bc), then x¥+— Bc(p*)dB +p*¢B + 8 and terminate. If
u¥ »¢I(BC) and EB > u*, then go t& Step g 1f u* e I(BC) and ;B < p*
c

( in this case ;BC = ), then go to Step 3.

t
Step 2: If u >pB , then set W+ g and
c c

(u- L%C)E(b) -Ez(péc) + uécz(E)

u, =
¢ Z(u)—z(ué )
C

and return to Step 1. If _;I_<_EB and R(x') >R, then set R+ R(x'),

(x') R(x')

solve PR and calculate p

. Go to Step 3. If Ei;B and
R>R(x'), then set ¢

(h=ny JE(D) —pz (W) +nt 2(W)
C C

UC*—" -
z(u) -z(ug )
c
and return to Step 1.
Step 3: Solve P(pR(x‘)

z(pR(x')) and

R(x')).

) and calculate z(yu If E(b) >
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(E-ué JE(b) —uz(u) +u} z(n)
C C <

R(x!')
— " )
z(u) —~Z(u]'3 )

C

R(x')

1
then set M, v M and-return to Step 1. If E(b) =z(uR(x ))

]
then set x**——-x(pR(x )) and terminate. Otherwise set

(n - uéC)E(b) —EZ(uéc)& uécz(a)

z(y) —z(ué )
C

and return to Step 1.
Theorem 2.6 Algorithm 2.2 finds x* at finite iterations.

Proof: (Finiteness) Each PR(u) has the same constraint con-
dition KTPR(u) except parametrized right hand side with respect to
R and p. The number of basic matrices satisfying nonnegativity and
complementary condition is finite, and by the theory of parametric
quadratic programming, R(u) corresponds to an optimél basis B=B(u).
That is, p is-divided into I(B)'s determined by basic matrix B.
Algorithm 2.2 searches for u* among those regions I(B) at most once
for each B. Therefore finiteness of Algorithm 2,2 follows from
finiteness of the number of I(B).

(Validity) Theorem 2.2 assures the condition EO(;) =0 in Theorem
2.1. Termination condition that z(u)=E(b) assures validity by

Theorem 2.1. 0

2.6 An Example
We consider the following example PO.

PO: Maximize E(c:lxl + 02x2)

subject to P]:‘{alx1 +a2x2_<_b}_>_0.7,
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3x1+2x <18, x +2x‘2 <10, x.,x,2>0,

1 1'72

2

where E(c)=(8,6)T. E(b) =32, ¢,=4, E(a)=(5,6)T and w=(é 0) :

Po is transformed into the following deterministic equivalent

problem P.
P: Maximize 8x1+6x2
subject to 5x. +6x +O.5(16+x2+x2)-%-< 32
1 2 1 2° - !
3x1+2x2_<_18, x1+2x2_§_10, xl, x2_>_0.

~ A .
Step O: p_max{8xl+6x2|3x1+2x2 <18, x1+2x2_<_10_, X1 XZZQ}—48.

Solve P(p) and find x(j§) and z(y).

L
)2

NN

P(p): Minimize 5x1+6x2+0.5(16+x§+x

subject to 8x1+éx >48 (=y), 3xl+2x2§18,

2

x, +2x, <10, X5, X >0.

1 2 2

Algorithm 1
Step 1: Set RL+—4, Ru<——M and R+ 5,

PR(fi): Minimize R(5x. +6x )+O.25(16+x2+x2)

1 2 1 2

subject to 81»(1 +6x2 >48, 3x1+2x2 <18,
_x1+2x2 <10, Xl’ x2_>_0.

R, ~ A A n A - " o~ A
KTP (p): v,- 0.5x,+8r-3q,-q,=5R, V,-0.5x,+6r-2q,-2q,=6R,

3xl+. 2x2+ sl=18 Xy ¥ 2x2+ 5,= 10, 8x, + 6x2— S4=H (=48)

x1v1+ x2v2+ slq1+ 52q2+ rso=0 ,
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X10 Xor Vya Voo 834 S50 Qg0 Qpe T 3010

xR () is given as follows: x, =i/8, x,=0, ¥, =0, ¥,=9R/4-3ij/64,
§ =18-3W8, §5,=10-7/8, §,=0, 4, =3,=0, F=5R/8+}/128.

Xl V2 Sl 82 r

-2 o o o s :

2

0O 1 0 0 6

. _ {0 - 1/8) (o)
Bl 3 0o 1 0 o ’dB_(O)’eB(O'BO’
1 0 0 1 0O
8 0 0O O O
R 2W/48 (=Lg(w)).
~2 0 a2
Step 2: Ku(LB(ﬁ))=16+PéZ— B 5> 0.
(48)
Step 3: K“(UB(ﬁ)) < 0. Therefore R(u) exists on [Z%,w) and given
as follows.
~ 2 1
R(}) = (16 + 1i°/64)2.
) ~ w8 , .

Step 5: x(u) = 0 . Return to Main Algorithm.

Since z(}) =51/8+0.5/16 +p2/64=30+/13>32=E(b), set p«—48(=y)
and R+—4 (=0,). Go to Step 1.

P(uc): Minimize 5x_. + 6x +O.5»/16+x2+x2

1 2 1 2

subject to. 8X1+6X2_>_pc (=-M), 3x1+2x2i18,

X, +2x, <10, x.,, x

1% ¥ 20.

1 2

. . . 0
Using Algorithm 2.1, we obtain dB = eB = gB = (_O

R - .
Therefore Hg =Hg =0 and z(p)=2 on I(Bc)' g
c c c
Go to Step 3.

) and I(B_) = (=,0).
<u*, i.e., pr £I(B).
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1
Step 3: x':(g) , R(x')=/16=4, pR(x )= p4=p°°=48. Since z(48)>

E(b) =32,
(-;I—ué )E(b)—:z(ul'3 )+pé z(u).
c c

Lo c =45.5616.

z(n) - z(ug )
[¢]

Return to Step 1. ,
Step 1: Solving P(uc), we obtain X(u ) given as follows.

X(pc): X1= uc/8, X2=0, Vl=0, V2=9R/4—3pc/64, Sl=18—3pc/8,

82=10—.pc/8, s _ =0, ql=q2=0, r=5R/8+ uc/128, (R>

0
b /48 =Ly (u ).
R(u_) =16 + u12/64, z(u ) =5y /8+0.5/16+u2/64, d_ =g =(°
c c ’ c c * c ’ Bc Bc 0/’

€g =(168) ’ I(Bc) ={p|0<p< 48}, Obviously p* EI(BC)' Thus we
c

solve

z(p) =5u/8+ 0.5/16+ui/64=32

~ ¥*
and obtain u*=45.62 and x¥* = (“0/8) = (5'070) . (E(c)Tx*= u*.)
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CHAPTER 3

A STOCHASTIC TRANSPORTATION PROBLEM

3.1 Introduction

In this chapter we consider a stochastic transportation problem
with simple recourse. Stochastic programs with recourse have been
investigated by many authors ([4, 5, and 9]), but there are few
papers giving the exact algorithms to obtain the optimal solution
for them.

" The main purpose of this chapter is to derive a new algorithm
for obtaining the optimal solution of stochastic transportation
problem. In the following section, two-stage formulation of this
problem and some properties of its oﬁtimal solution and optimal
value are described. In Section 3.3 we investigate the behavior of
the objective function. In Section 3.4 we give an algorithm for
obtaining the optimal solution. And in Section 3.5 an illustrative

example is given.

3.2 Two-Stage Formulation and ‘Some Properties
Suppose that there are m-sources and n-destinations, then the

following transportation problem TPO is considered.

m n
TP,.: Minimize J oc..x
O L o e,
iz1 j=1 WM
n
subject to' | x,.<a,, i=1,2,...,m, (3.1)
. ij="i
j=1
m
7 x,.>b., j=1,2,...,n, (3.2)
i=1 1] J
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Xx..>0, i=1,2,...,m; j=1,2,...,n,

where

xij is the quantity of items shippihg from source i to destination j.
Cij is the shipping cost per unit from source i to destination j,

ai is the quantity of items suppliedvat source i,

bj is the positive random demand at destination j, whose marginal
distribution function is Fj(-).

Assume that a; and Cij are positive. Sipce gach bj is a random
variable, the constraints (3.2) may not be satisfied. For the dis-
crepancy of each j~-th constraint we impose the penalty pj per unit.
And in addition we consider the penalty for oversupplying to the
j—-th destination, which is denoted by qj. Then the following two

stage problem TP, is considered.

1
m n n +
TP.: Minimize | Jc..x..+E(min § (p,y.+qa.y.)]
1 i=1 je1 ¥0H je1 TJ0 0TI
subject to 50 i=1,2,...,m,

n

X, .<a
321 H=
m +
Elle-ryj-yj==bj, j=1,2,...,n,
+ - . .
xij' yj, yj2CL i=1,2,...,m; j=1,2,...,n,

where y; and yg are the undersupply and the oversupply to the j-th
destination respectively, which are represented as follows; for

j=1,2,¢..,n0,

m m
+ —
y,=b.- ¥ x..and y.=0if b > | x_ .,
3773 5T J NP N
+ L m
. =0 and y . = X..-b. if otherwise.
Y Y i£1 ij 7

Let X* denote the optimal solution of Problem TPl' According to

the well-known results of two-stage programming under uncertainty

- 34 -



([6, and 8]), Problem TP, can be rewritten as the following problem

1
TP2:
m n n
TP_: Minimize | § c..x,.+ § p.1" (b,-u,)dF, (b,)
L L
2 ic1 §e1 ij 1 je1 9 uj J 3 Jd 3
$Y(u, -b,)dF, (b.)}
+q,} J(u,-Db, (b,
qJ - ] J J. J
n
subject to ) x,, <a,, i=1,2,...,m, (3.3)
_ jo1 ij="1i

|l a3 |

xi.Zu., j=1,2,...,n, (3.4)
i=1 7T .

xij_>_0, i=1,2,...,m; j=1,2,...,n.

In the inequalities (3.4) the equalities hold at the optimal solu-
tion. In order to solve Problem TP2, we consider the following

transportation type problem TPB'

m n
TP_.: Minimize ¥ oc..x,.
3 izl jil o
n
subject to § x.,<a,, i=1,2,...,m,
o1 ij="1
m
“ .
L xi.Zu., Jj=1,2,...,n,
. J
i=1

xijZO, i=1,2,. co,m; j=1,2,...,n0,

Let x*(u):(x*{j(u), i=1,2,...,m; j=1,2,...,n) denote the optimal

solution of Problem TP3. Then the following property holds.

Property 3.1 For arbitrarily fixed uj (j=1,2,...,n), Problem

TP, has the same solution as Problem TP..

2 3
Proof: For arbitrarily fixed uj (j=1,2,...,n), the penalty
term of Problem TP2 is a constant., Therefore Problem TP2 is equiv-
alent to Problem TP,. O
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Furthermore we consider the following dual problem TP4 of

Problem TP3.

m n
TP,: Maximize — | a.a, + | uJ.B

4 ii

i=1 j=1 9 J

subject to -—ai+8jicij, i=1,2,...,m; j=1,2,‘...,n,
i

a., Bj >0, i=1,2,...,m; j=1,2,...,n.

Let a*.l*(u), Bg(u) (i=1,2,...,m; j=1,2,...,n) denote the optimal

solution of Problem TP4. Then from the duality theorem of Linear
'Programming ([1]) in case that both the problems TP3 and TP4 have
finite solutions,
m n m n
VoY e x* (m)=-] a,a*(u)+ | u.8%(w) (3.5)
L s s w > A . N .
i=1 j=1 9 i=1 vt j=1 99

holds. Moreover the following Property 3.2, Property 3.3 and
Corollary 3.1 hold.

Property 3.2 The optimal value of Problem TP, is piecewise

4
linear and nondecreasing convex function of uj (j=1,2,...,n).

Proof: For any w' and u'", we define
AA
u =’ +(1-2)u", for 0KA< 1.

From the optimality of (a*(u),ﬂ*(u)).—A.(oﬁl*(u),...,d;(u),ﬁi(u),...,
B;(u))

m n m n
- Jaa¥(u')+ §J ulpg*(u')>-7 a. a*(u) + ) ulps(u')
iz * 1 j=1 39 i=1 vt j=1
m n m n (3.6)
- 1 ao¥(u")+ § ulpg*(u")> - a,a%(u') + ) upt (u)
izp 1t j=1 94 i=1 * j=1
(3.7)

hold. Fpom (3.6) and (3.7)
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m n m
A{~ ] ajof(u)+ § u e*(u )+ (1= 1= ] a af(u") + Z u:}'a*(u")}

i=1 j=1 i=1 j=1
m n
* 1" ¥
>-13 11(u)+z("u3+(1 x)u)s(u)
i=1 j=1
holds. This proves the covexity of the optimal value of Problem TPA'
Now let ui<:u§ for some k, then
m n
2 2 2 2
- ¥ *
L alal(“k)+_2 uij(uk)*'ukBk(uk)
i=1 j=1
#k
m 1 n 1
>— J aa¥(u )+ §J up (u )+u g, (u ")
=27 L
4o 11 k j=1 3T k"k "k
#k
m
>- Z (u )+ z u, 3 (u )+u ﬂ (u )
i=1 j=1 3 |
#K
from the nonnegativity of where ul-—(u u1 u_) and u2F-
m 5 £ Y Bk! k-— 1,--., k,...,n k_
(ul,...,uk,...,un). Therefore the optimal value of Problem TP4 is

nondecreasing function of uj. According to the theory of sensitivi-
ty analysis of linear programming the optimal solution (a*(w),g*(w))
does not change in some region of wm. Hence the optimal value of

Problem TP4 is a piecewise linear function of u. []

Property 3.3 The objective function of Problem TP2 is a convex

function of w. If the distribution of bjis continuous, it is a

strictly convex function of u.
Proof: See the reference [8]. []

Consequently instead of the objective function in Problem TP2
it is sufficiently to consider the following objective function

hereafter.
m n n
Glm) =— Z a. q*(u)+ Z u.p*(u) + Z {P f (b,~u,)dF (b,)
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u,
+qu—£(uj-—bj)dFj(bj)}' (3.8)

Let w* denote the minimum solution of G(w). From Property 3.2 and

Property 3.3, the following Corollary 3.1 holds.

Corollary 3.1 G(wm) is a convex function of w. If the distri-

bution of bj is continuous, it is a strictly convex function of u.

We can solve Problem TP_. because w giving the minimum of G(u)

2
is identical with one giving the minimum of Problem TP Actual

5*

optimal solution may be found by solving Problem TP_ with this u,

) 3
and so we may consider that this u ‘is also the optimal solution

hereafter.

3.3 Behavior of G(u)

In this section we inyestigate the behavior of G(u) in detail.
The domain of w can be divided into several regions so that the
optimal solution of Problem TP4 does not change in.each of them,
Though G(u) is continuous, it is not necessarily differentiable
on the boundary of eacﬁ region. Let A(wm) denote the region in
which a;(u) and B;(u) (i=1,2,...,m; j=1,2,...,n) do not change.
The finiteness of the number of these regions is assured ([1]).
Each boundary may be contained.in several regions. If we choose an
arbitrary uo, the function G(m) is differentiable in the region
A(uo). (If uo is on the boundary, A(uo) is one of the regions

containing the boundary.) Moreover the following function

m n m
0] 0,4 0 0 @
G (usu)=- ] a.a¥(w )+ ] up*(w)+ J{p./ (b.,-u,)dF.(b.)
i1 } i j=1 J j=1 J uj J J J J
u 2
. j(u,~b.)dF.(b, 3.9
+qu_‘5](uJ J) J( JM (3.9)

is differentiable over the whole domain of wm. Then Go(u;uo) coin-
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cides with G{um) in the region A(uo). The partial derivative of
Go(u;uo) with respect to uj is given as follows:
0 0,
G (u;u ) 0
———=g*(u )+ (p,+q,)F (u,)-p.. (3.10)
3Uj J( ) pJ qJ J J pJ
Note that (3.10) is the equation of uj only. Therefore the n-dimen-

sional vector u*(uo) giving the minimum of Go(u;uo) becomes as

follows:
max {u, |uJ€ D.}, if B;(u ) <-q.,
o j-B*(u )
ug(u®) =(minfuy|F ()2 L}, if —q <B*<u )< P,
J J Py*ay J= i’

min{ujlujé Dj}’ otherwise, (3.11)

where ng{ujlx*(u) is feasible}. Then the following theorem holds.

Theorem 3,1 If u*(uo)’belongs to A(uo), then it also gives

the minimum of G(um).
Proof: From the minimality of u*(uo) and the optimality of
(a*(uw),B*{(w)), the following inequalities hold.

Go(u*(uo) ;u’) =S_Go(un;uno)_<_G(u) ,

where the second equality holds at uezA(uO). Since u*(uo) EA(uO),

Go(u*(uo);uo)==G(u*(uO)) holds. Therefore

Go(u*(uo);uo):=minGO(u;uo)§.min G(m)

since Go(u;uo) is a lower approximation function of G(wu). []

By testing whether (u*(u*(uo)),ﬂ*(u*(uo)))=(n*(uo),8*(90))
or not, we can know whether u*(uo) exists in A(uo) or not. Even

. 0 0]
if (a*(ur(u’)),B*(w(u’))) £ (a*(u®),8*(u®)) for any uleD, the
following informations about the optimal solution of G(wu) can be
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obtained from the theory of convex programming ([2]).

Theorem 3.2 If u*(uo) does not belong to A(uo) for any uog D,
then w giving the minimum of G(wu) is attained on one of the bound-

aries.

Proof: Since G(u) is convex and D is closed, there exists an
optimal solution. Suppose that this optimal solution w* does not
exist on any boundary. Then u* belongs to the 1nter10r of some
A(uo). Therefore w* is the minimal solution of G (u;uw ), i.e.,

u*(uo). This contradicts to the above assumption. []

3.4 Algorithm

In.this section we give an algorithm utilizing the results in
previous sections.

From Property 3.2 we obtain an uppérbound for the optimal so-
lution as the following. We define Qj(uj) as follows:

u,
j(u )-pjf (b;i uj)dFJ(bj)+qu_g(uj-bj)dFj(bj). (3.12)

We define the minimum solution of Qj(uj) by u?. Then u? can be
given as follows:
pP.
s J
u, =min{u,|F.(u,)> ——1.
S=mintu ¥ (u,)

- p.+
J p qJ

From (3.8) and (3.12) we have

G(u) =- Z a, a*(u)+ Z us B*(u)+ X Q (u ). (3.13)
j=1 J—l

Then the following property holds.

Property 3.4 For any j, u3*_<_uJ.
Proof: This property is easily proved from Property 3.2 and
the equation (3.13). [
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Now we propose an algorithm based on the above properties.
First we define subgradlent an(J =1,2,...,n) as follows:
0
ac® (w;u+e ) 3G (u;u+ej)

A J .
= <h< 1 ,
BG () {hlel-rl_n:; Ju, g e+J:tn}) u . }

. J
A %

(0,...,0,6,0,...,0).

where €,
J

Algorithm
Step 0: Set uc+—vu* (uT is an arbitrary feasible solution so that
0<ux u°). Solve Problem TP4 with u=u’
Step 1: If every aG (u } contain 0, then u* — u" and go to Step 4.
Otherwise solve Problem TP with w= u*(u ) and go to Step 2.
Step 2: If (a*(u®),g*(u’ ))=( *(w*(u®)), g*(u*(u®)), then u—
uw*(u®) and go to Step 4. Otherwise go to Step 3.
Step 3: For j with the greatest value of m1n{|h| |h- €3G (u%) 3,

c , .C
1,...,uJ lc J’uJ+l'

c
- _1vu j J+1,...,un) and go to Step 1.

Step 4: Solve Problem TP3 with u=u® (for example, by using an

algorithm due to [3]) and terminate.

find uj so that aG (u ceesus ) contalns 0. Sef

c c
u +—-(ul,...,u ',u

Theorem 3.3 This algorithm finds X¥ at finite iterations.
Proof: From the theory of sensitivity analysis the number of
regions A(uo) is finite. And the dimension of wm is finite. There-

fore the algorithm finds X* at finite iterations. []

3.5 An Example
We consider the following problem with 3-sources and 2-desti-
nations (see Figure 3.1):
Minimize c

11%11%%10%127C21%01%C%00% 02731 %31 TC30% 30

j <
subject to X11+X12==6'
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>
X1yt Xp *t %3209

>
Xyot Xoot X352 by

¥
>
X110 X100 ¥pp0 Xopr Xgpr X320,

where /7.3 5.8
(Cij) =1 4.0 3.5 ,
3.2 5.0

and each b, has identical uniform distribution between O and 16.

‘ s s
We assume p1=p2=10 and q1=q2=6. Then (ul,uz) = (10,10).
Step O: uc=(6,6).

(a*(u®),8*(u®)) =(0,2.3,3.1,6.3,5.8).
Step 1: BG (u ) =1{2.3} and aG (u y={1.8}.
u*(u )=1(3.7,4.2) and (@*(u*(u®)), B* (u*(u )))_(o 1.5,0,
3.2,5.0).
Step 2:  (ax(u®), B (u®)) £ (a*(u*(u®)),B* (u*(u®))).
Step 3: ui=5 and hence uc=(5,6).
(a*(u®), B*(u®)) = (0,2.3,3.1,6.3,5.8).
Step 1: 3G, (u®)={h|-1.0< h<1.3} and 36, (u®) =(1.8}. wu*(u’)=
(5,4.2) and (a*(u*(u®)),8*(u*(u’)))=(0,2.3,3.1,6.3,5.8).
Step 2:  (a*(u®),B*(u®)) = (@*(u*(u®)),8*(u*(u®))), therefore
€. (5,4.2). '
Step 4: 0 0.2
X*

[o4)
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CHAPTER 4

STOCHASTIC SPANNING TREE PROBLEMS

4.1 Introduction

Until today the minimal spanning tree problem has been well
studied and many efficient algorithms such as [3, 6, and 7] are
known. -This chapter generalizes it and proposes stochastic versions
of minimal spanning tree problems where edge costs are not ¢onstant,
but random variables.

Consider the construction of a communication network which con-
nects some cities each other directly or indirectly. If each con-
struction cost of line between one city and other city is determin-
istic, the problem becomes the minimal spanning tree problem as is
well known. In reality, however, those costs vary with time, and
so they can be considered as random variables., In this chapter we
consider two types of problems. One problem is to find an optimal
spanning tree and optimal budget under the condition that the prob-
ability with which total cost excéeds budget is below a certain
level. Another problemvis to find an optimal spanning tree and
optimal satisficing probability level under the same chance con-
straint.

In Section 4.2 we consider the first type problem and propose
a parametric type algorithm which finds an optimal spanning tree in
O(mzng), where m and‘n are the number of edges and the number of
vertices in a given graph G respectively., In-:Section 4.3 we consid-
er the second type problem and propose another parametric type algo-

rithm. Though the problem is complicated, the algorithm also finds
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. . . 22 . .
an optimal solution in Q(m'n”) computational time.

4.2 Problem Formulation

Let G=(N,E) denote undirected graph consisting of vertex set
N={vl,v2,...,vn} and edge set E={el,e2,...,em}f_NxN. Moreover
cost cj is attached to each edge ej. Spanning tree T= (N,S) of G
is a partial graph satisfying the following conditions. (See [2]

for details.)
(a) T has the same vertex set as G.

(b) SgE and |S|=n-1, where |S| denotes the cardinality of
set S.

(c) T is connected.

Then T can be denoted with 0-1 variables Xy xz,..., X as

m
follows:

T: x.=11if e, €8S,
1 1
x.=0 if e, ¢5S.
1 1 -

Conversely, if {eilxizl} becomes a spanning tree of G with vertex
set N, x::(xl,x2,...,xm) is also called spanning tree hereafter in
this paper.

Ordinary minimal spanning tree problem is to seek a spanning
c.x.. In many real situations, however, |

17375

C e m
tree x minimizing Zj
cj's are not constant but random variables. So we consider the

following two types of stochastic minimal spanning tree problem.
Type (I): Specified Probability Level Model
Minimize f
m

subject to Pr{ | c.x_<f} >aq,
=1 0T
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%j=0 or 1, x: spanning tree,
Type (IL): Variable Probability Level Model

Minimize f- o

m

subject to Pr{ Z c,x,<f}>a,

Jd
%j=0 or 1, x: spanning tree,
where each ¢

j is assumed to be distributed according to the normal

distribution with mean “j and variance o? and they are mutually

independent. We assume that 1/2<a<1.

The chance constraint which is common to both problems is
transformed as follows, if ZT_ p?x?#(). ([1, 7, 10

and 11}).
le(cJ—p )x f—JZ “JXJ
Pr{ < }2a, (4.1)
/ z c /? 242
501 5%

Since Z (c — )X, /(ZJ 1oJxJ)2 is a random variable according to
the standard normal dictribution, (4.1) is further transformed into

the following deterministic inequality.

————————3@_1((:), (4.2)

where ¢(°*) is the distribution function of standard normal distri-

bution. Therefore (4.2) is rewritten as follows.

) (4.3)

m i)
£> Zu.x.+K/202.x2
j=j- J J @ j=l J J
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where Kaé¢—l(a) >0 (since 1/2<a <1). By using (4.3) the problems
of Type (I) and Type(IL) is transformed into the following deter-
ministic equivalent problems respectively.

Type(I)
m

SP: Minimize wox, +K (

m 1
I o%x)?
j=1 J=

0.X.
193

subject to xj =0 or 1, x: spanning %ree.

Type(II)
m mo, oy

VP: Minimize [ u.x . +K ( § 05x.)? -26(K )
PPN IS RN a

subject to xJ. =0 or 1, x: spanning tree;

Note that the fact x?:xj is used in the above transformation.

4.3 Chance Constrained Spanning Tree Problem with Specified
Probability Level
In this section we treat tne problem of Type (I), i.e., Problem
SP in detail. 1In order to solve SP, the following auxiliary problem
SP(R) with a positive parameter R is introduced.

m m

SP(R): Minimize R | u.x,+K 7§ 02.x.
R M IR T
j=1 j=1

subject to xj=0 or 1, x: spanning tree.

Problem SP(R) is an ordinary minimal spanning tree problem with
each edge cost Ruj +Ku°2" Let xR denote an optimal solution of

SP(R) and

m m

R 2 R,--
X, +K ( X.)2,
E Y% e .E 95%;)

z(R)é
‘ 1 j=1

J

Then the following properties hold.
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Property 4.1 Z?—lujx§ is a monotonically nonincreasing func-

tion of R> 0.

Proof: For §3>R3>0! from the optimality of xR and xR for

P(R) and SP(R),

m m = m

2
R ] W, xR-+K Z okt <R Z . xR-+K Z o xR, (4.4)
m = = m m
B ouaxs +K Z csz<RZ u xR+Ka ZoZR, (4.5)

hold respectively. Therefore from the above two inequalities we

have
m m —
= R = R
(R-R) ] wo; S(R-R) | wx, .
Since §3>R, we have
m m -
R R
I > lwx, . 0O (4.6)
j= 1 J J j=1 J J
¢m 2R . . .
Property 4.2 Lj—lajxj is a monotonically nondecreasing func-

tion of R.

Proof: Let R>R>0. From (4.4) and (4.6)

since K_> 0. O

1
Now let D(x)::(z oixJ)2 for each spanning tree x and let x*

denote an optimal solutlon of Problem SP. Moreover, for conven-

ience, D(x*) is denoted D¥ simply. Then the following lemmas hold.

Lemma 4.1 For R <2D¥ and any spanning tree x such that D(x)

> D*,
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m m m m

RJ u.x.+K_ J o5x.>R J u.x*+K_ ] o x*
j=1 J J aj:l J J j=1 J J aj:l J J

holds.

Proof: From the optimality of x* for Problem SP,

mo, o 4o0om mo,_ 4
I otx%)2< Zp.x.+Ka( Zajxj)2 (4.7)

m
1 ou.x*+K (
j J * j=1 J J=1 J Jj=1

j=1 J

holds. Multiplying both hands of (4.7) by R such that 2D*> R> 0

and rearranging appropriately, we have

m mo, m L
RJ p.x*+K J o x.*<R ] ux.+K ] o7x.+K ¢,
RPN R B T S B B j Tt a
j=1 J=1 J=1 j=1
where
m mo_ mo, i m N
el ) o2x% = ) 02.x.+R‘{( ) oz.x,)z—( ) oz.x*?)z}.

Then it is sufficient to prove €< 0. Using D* and D(x), € is re-

written as follows.
€ =D*2—D(;)2+R(D(x) ~D*)=(D*-D(x))(D* +D(;) -R).

Since D* < D(x) from the assumption of this lemma and D¥ +D(x) -R >

2D*-R >0, €< 0 is deduced. []

Lemma 4.2 For R >2D* and any spanning tree. x such that D(x)<
D*, ’
m m m m
R J “'§'+Ka ) o2%. >R T oux*+K ¥ oox*

j=1 J 3 j=1 J j=1 J J Gj=1 J J

holds.

Proof: We assume

m mo, m mo,
RJuX.+K J o"X.<RJ px*+K [ o x*. (4.8)

J'=l J J aj=’1 J J= j"l J aj=l J J
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From the optimality of x*, the inequality

Zux*+K(Zox*)-é-<Zux+K(Zcx)2 (4.9)

jop 473 o1 jop 373 jop 39
holds. Then from the assumption D(x)< D¥ and (4.9) we have

m m
Z HL.xX¥< Z M. (4.10)

Therefore (4.8) can be rewritten as follows.

T2
K, ( T ooTx* - Z o2
je1 93 gop *5)
R< (4.11)
- m m
ZuJ j .Z
Jj=1 J=1
Since
m m m m
-
y pJ 5 ¥ prjix ) cix*)z—( ) c?xj)z} (4.12)
J=1 j=1 j= j=1

holds from (4.9), (4.11) and (4.12) together imply

no2
K (] o,x%- Z o2
ajzlaaleJ
R<
- m
K, {( Z UJX*)Z—( 1o
J= J=

2; 1}
£°373

2 .2
¥* —_ -~
D -D(X) _pe,p(x)< 2D* .

-D(x)
This contradicts the assumption R>2D*. Thus this lemma holds. []

From Lemma 4.1 and Lemma 4.2 the following theorem holds.

¥#*
Theorem 4.1 An optimal solution of SP(2D*), i.e., x2D , is

also optimal for Problem SP.
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Therefore we must find 2D¥. The following theorems give some in-

formations to find R* =2D*,

Theorem 4.2 If O<R'< 2D(xR ), then either
R|
R* >2D(x ) or R*<R!'

holds.

Proof: From Property 4.2, for R such that R' <R <2D(fo),
p(x"' ) <D(x")
holds. Therefore
R<2D(x" ) <2n(x)

) '
holds. This means R* does not exist on the interval [R' ,2D(xR ))

[
by Theorem 4.1. Thus either R*ZZD(xR ) or R*<R'. []

1]

Theorem 4.3 If R'> 2D(xR ), then either
RI
R¥ > R' or R* <2D(x )

holds.

Proof: For R such that Rf_>_R>2D(xR'),
D(x") <D(x")
holds from Property 4.2, This implies
2D(xR) £2D(xR' ) <R.

. [}
Thus R* does not exist on the interval (2D(xR JsR'], i.e., either

'
R*>R' or R*iZD(xR ). O

Now define R,, for e., e, (i< j) as follows.
1] 1 J
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2 2
A o -0
R, =K — | (i,j=1,2,...,m, i<3j) (4.13)
ij e ou, -,
j i
Moreover let xL (xU) denote a minimal spanning tree (maximal spann-
ing tree) of G with each edge cost o?, and my (MD) denote its value
respectively. Rearranging Rij such that 2/mD_§_ Rijiz'(MD in ascend-
ing order of magnitude, let

< L -vee 2
R1 R2 Rk’

where k is the number of different Rij's belonging to the interval
[2/mD,2/MD]. ~

Theorem 4.4 An optimal solution xR of SP(R) for ﬁez[Ri,Ri+
is also optimal for all SP(R), R¢€ [Ri,Ri

1]

+1]' _
Proof: Let T(R) be a corresponding spanning tree of xR, i.e.,

T(R) consists of N and edge set E(§)é kﬁlx?:].h Then from the

optimality of xR

= 2 _= 2

Rut+KaotiRur+Kacr (4.14)
must hold for any et§ E(R) and ert££(et,T(R)), where £(et,T§)=
{erl edge et is contained in the loop in {er}UTﬁ}. By the defini-

tion of Ri’ i=1,2,...,k, the order of edge length does not change
Thus once (4.14) holds for a certain

(4.14) also

among- the interval [R,,R. .].

_ > _ i"7i+l
€

R such that R —IRi’Ri+1]’ then for any R €[Ri,Ri+

holds, i.e., x is optimal for SP(R). []

1]

Let
m m
1
z(R) & ) p,x3+K () c?xB)Z
j=1 ¢ j=1 JJ
m m
. 1
and L2 ) p.XP+K ) o2x)7,
j21733 T e 5%
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Now we are ready to construct our algorithm.

Algorithm 4.1
Step:1: Calculate R
Go to Step 2.

Step 2: If i=k, then go to Step 4. Otherwise, set R f—(Ri-fRi+l)
/2 and solve SP(R). If Z(R)<c, then set x° — xR and c+— Z(R). Go
to Step 3.

Step 3: Set i+—max[min{q-1|Rq_>_2D(x
Step 4: Set R*——Z/ﬁg_and‘solve SP(R).‘ If Z(R) <c, then set x*+—

R.,....R and set i +1, xC+«—x", and c«2ZG

1’ 72 k

R)},i+l] and return to Step 2.

R ; . c -
x and terminate. Otherwise, set x* «—x~ and terminate.

Theorem 4.5 The above algorithm finds an optimal solution x*

in at most O(m2n2) iterations.

R R, can

1’ 2ttt Tk
be done in at most O(mzlog m). For each R, x can be found in at

Proof: First note that the éalculation of R

most O(n2) if using Prim's algorithm [9] or Kruskal's one [8].
Clearly the number of xR checked in the above algorithm'is at most
m(m-1)/2+2 in order to find x*. Thus in at most O(n?r? ) iterations,

the algorithm finds x*. []

Example

Consider the following graph G given in Figure 4.1.

Figure 4.1. Graph in Example
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For G each cost is given in Table 4.1.

‘ 2 .
Table 4.1 Edge costs of G (N(pj,qj)denotes a normal distribu-

tion with mean uj and variance o?)

edge edge cost distribution
e, N(16,0.6)

e, N(49/3,0.1)

ey N{(14,1)

e, N(44/3,0.7)

ey N(15,0.2)

g N(43/3,0.2)

Then the problem of Type (I) is as follows.

Minimize f
6

subject to Pr{ | c.x,<f}>0.8413
j=1 9

xJ.:O or i, j=1,2,...,6, x:spanning tree.

Since F—1(0.8413) =1.0, SP and SP(R) become as follows.

6 6
R 2. %
SP: Minimize [ nu.x.,+1.0( J o%x,)?
j=1"Y j=1 JJ
subject to xJ.:O or 1, j=1,2,...,6, x:spanning tree.
6 6 5
SP(R): Minimize R J u.x.+1.0 J o x,
j=1 9 j=1 94

3

subject to xJ.:O or 1, j=1,2,...,6, x:spanning tree.

Then xL and xU are shown in Figure 4.2. Therefore mD=O.5 and
MD=2.3.
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s

Figure 4.2(a). x

Since 2vm_

Figure 4.2(b).

=1.414 and 2/M_=3.033, R,
D ij

Step 1: D
4,2, Based on zhese quantities, R1(=R12=R45)=1.i, R2(=R
k=2, i+1, x«— (0,1,0,0,1,1) and c+— 46.3(=Z").
Table 4.2 Rij’ 1<i<j<6 (Encircled figures constitute Rg')
2 3 4 5 6
1 1.5 0.2 | 0.3/4 | 0.4 | 1.2/5
2 2.7/7 1.8/5 0.3/4 0.05
3 0.9/2 0.8 @
4 (1;§> -1.5/2
5 0
Step 2: Since i=21#2=k, set R«—-(Rl-fRz)/2==1.95 and solve
P(1.95). Then xR=(O,O,1,l,O,1). (See Figure 4.3.)

44,378 < c (=46.3), set c+ 44.378.

Figure 4.3.

Go to Step 3.

1.95

Spanning tree x
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Step 3: Since k=2, i+ 2. Return to Step 2.

Step 2: Since i=k =2, then go to Step 4.

Step 4: Set R+—3.033 (=2/M];) and solve SP(R). Again xR=(O,O,1,
1,0,1) and so x*+ (0,0,1,1,0,1) (=xc). Terminate.

4.4 Chance Constrained Spanning Tree Problem with Variable
Probability Level
In this section we consider the problem of Type (II),

A M m
VP: Minimize g(x,q)= ] wn.x,+q( J

J J

2 1
o.x.)* =x0(q)
j=1 j=1 79

subject to xJ.:O or 1, j=1,2,...,m, x:spanning tree,

where qéKaztb—l(a) (>0). First we introduce the following sub-
problem vP? in order to solve VP.

m mo,
vP%: Minimize [ u.x.+q( J o5x.)2
=133 =13

subject to Xj =0 or 1, x:spanning tree.

Let x° denote an optimal solution of VPq, X(q) set of all x? and

(x*,g*) an optimal solution of Problem VP. Further we define

T A
E(x)= J| p.x, and D(q) = {D(xq)lxcl €X(q)} .
j=1 J J

Then the following property holds.

Property 4.3 D(xq) is a monotonically nonincreasing function

of q.

Proof: From the optimality of x4 and xq2 (q1< q2), the fol-
lowing inequalities hold,

m q m
) ujle+q1( J o

Q. &
x.2)%, (4.15)
j=1 j J
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m 1 m m 2 1
Z p.x32 4 g ( o2xq2)2 < ¥ px4q (] o=x31)2, (4.16)
JJ 2 JJ - JJ 2", J3
j=1 j=1 j=1 j=1

From (4.15) and (4.16) we have

m m
2 q. 2 g%
- < - . .
(q; -a,)( I ojle) < (g -a,)( ) oijZ)

J=1 Jj=1
Therefore we have
m 4 m 1
D(x%1) = ( § 02812 > ( ] o°x%2)7 =p(x%2)
j=1 75 j=1 9
Q. -q. <0.
because q, -q, <0 O

In order to solve VPq, we consider an auxiliary problem VPq(R)
with positive parameter R as follows.
m mo,
vPY(R): Minimize R | p.x,+q 7 o%x.

jep 39 Tyop 973

subject to xj==0 or 1, x:spanning tree.

Let x%(R) denote an optimal solution of vP3(R). This problem is
the same as Problem SP(R) because q::Ka. Therefore Property 4.2,

Lemma 4.1 and Lemma 4.2 hold by rewriting x(R) and x* as x3(R) and

x4 respectively.

Remark 4.1 All optimal sqlutions of VP?(2D(x?)) have the
same value with respect to D(°*) and E(*). Thus they have the same

value with respect to g(°*,q).
From Lemma 4.1 and Lemma 4.2 the following theorem holds.

Theorem 4.6 An optimal solution of Problem VPq(ZD(xQ)), i.e.,
xq(ZD(xq)), is also .optimal for Problem vpY,

Now let define R?j as follows.

Rij8a(os- o)/, -wp) (1,3=1,2,.00m, 1 <5).
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Rearranging Rcil. such that 0< R?j <@ in ascending order of magnitude,

let

qa_.9_ ... q )
R1<R2< <RkandRo—O,

where k is the number of different R?j's belonging to the interval
(0,»). Note that the order of R?, i=0,1,...,k, and the number k

are independent of value q.

Theorem 4.7 For R é {R?,Rgﬂ_], x3(R) is also an optimal solu-
tion of all VPY(R) for R € [Rg’R?+l] so long as the latter interval

includes R.
Proof: Let Tq(ﬁ) be a corresponding spanning tree of xq(ﬁ),

i.e., Tq(ﬁ) consists of N and edge set Eq(ﬁ) = {ei|x§(§) =1}. Then
from the optimality of xq(ﬁ), ‘

= -2 = =2
Ru, + Qo >Ry +qo (4.17)

must hold for any et€Eq(§) and erﬁ £(et,Tq(§)). By the definition
of R;l, 2=1,2,...,k, order of edge cost does not change among the
interval [Rcil,Rcil+1]. Thus once (4.17) holds for a certain R such

that R ¢ [R?,Rcil+l], including R, (4.17) holds,

i.e., x4(R) is optimal for PA(R). 0

qa -4
for any R on [Ri’Ri+1]
'I_'heorem 4.8 g(x,q) is a convex function with respect to q > 0.
Proof: For gq>0

2
-4 >0.

2
o g(x,q9) _ _9q

2
aq x|
This inequality shows the convexity of g(x,q) with respect to g> O.

0

By Theorem 4.8, the optimal gq=q(x) for each spanning tree x be-

comes as follows.
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log(-———)‘T——-—-) A > /2D (x)
a(x) = on ) o?xj
j=1
0 A< /21D(x).

Based on q(x), transformation T{(q) with respect to gq> 0 is defined

as follows.

‘ 2
/log( A 5 ) )\_>_/2—11—D(xq)
2r (D(x%))
T(q) =
0 A< /Z_nD(xq).

Note that T(q) is not necessarily unique, but the followings hold.

Property 4.4 T(g) is a nondecreasing function of q.

Proof: By Property 3,

)\2
log( 5 )
2n(D(xY))

is nondecreasing function of q. Therefore this property holds. []

Theorem 4.9 (x*,g*), an optimal solution of @, satisfies
*
q*=T(g*), x3 = x*, (That is, .g* is a fixed point with respect to
T(*).)
3
Proof: If gq*#T(q*), then q*;éq(xq ). Therefore from the
definition of q{(x) we have

g(xq*,q(xq*)) <g(xq*,q*)-

This contradicts the optimality of gq*. []

Theorem 4.10 For q, and q2=T(q1)

- 60 -



*
9, > a, ——q* £ (a,,q,]
and q; <Q, T—q* k4 [ql.qz)

hold.

Proof: If q,>q,, for any q¢€ [a,,q,]
T(q) -q <T(q) -a, £T(q;) ~a5=0

holds from Property 4.4. Therefore a does not satisfy the necessa-

ry condition of g*. 1In case of q1< Adp» the proof can be done simi-
larly. []

Now we are ready to construct our algorithm, In the algorithm,

we use the following simplified notations.

LA L Uua
q =q(x") and q =q(xU)-

Algorithm 4.2

Step 1: Set gq+—1 and calculate Rq,...,RE. Then set c+—-g(xL,qL),
;*—-xL, a<*-qL and i +—0. Go to Step 2.

Step 2: Set R*—-%(ng+R§+l), find xq(R) and calculate g(xq(R),
a(x¥(R)). If > g(x?(R),a(x?(R))), set c+— g(x¥(R),a(x(R)),

x+— x}R) and a+—-q(xq(R)), and go to Step 3. Otherwise, go to
Step 3 directly. _

Step 3: Set i+—i+1, If i=k, go to Step 4. Otherwise return to
Step 2.

Step 4: If g(xu;qU)< c, set x*+—-xU and q¥*+— qu, and terminate.

Otherwise, set x*+— x and q¥+— a and terminate.

Theorem 4.11 The above algorithm finds an optimal solution

(x*,q%*) in at most O(m2n2) iterations.

*
Proof: (Validity) By Theorem 4.9, x*¢ s Holds where‘Sq
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3
is the set of all optimal solutions of PY . Moreover by Theorem
q* N q* q* q* q* . .
4.6, S* ©.8* (2D? ) holds, where S* (2D° ) is the set of all opti-
* ¥*
mal solutions of Pq (2Dq ). Above discussion and Theorem 4.7 to-

gether show that x* is included among x3(R)'s for (a,R) such that

R € [R},RY ], i=1,2,...,k, R<R} and R >R}, because of Remark 4.1.
i’Ti+l 1 k
Further the order of Rq and k are independent of q. The algorithm

tests all these candidites and finds a minimal solution of them.
(Complexity), First note that the calculation of Rq,...,Rg can be
done in at most O(mzlog m). For each (q,R), xq(R) can be found in
at most O(n2) if using Prim's algorithm [9] or Kruskal's one [8].
Clearly, the number of xq(R) checked by the algorithm is at most
m(m-1)/2+2 in order to find (x*,q*). Thus in at most O(m2n2) com—

putational time, the algorithm finds (x*,q*). TJ
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CHAPTER 5

STOCHASTIC FACILITY LOCATION PROBLEMS

5.1 Introduction

Up to now, there are stochastic facility location problems are
investigated in many papers [1,2,5-7,10,11,15,17, and 20]. In this
chapter we deal with four types of single facility location problems
in which the weights and/or the locations of demand points are ran-
dom. The first two problems refer to the value of information in .
facility location. The value of information was discussed in the
reference [16] and introduced to stochastic linear programming by
Bracken and Soland [2] and to facility location model by Wesolowsky
[16]. Generally speaking, additional information may reduce the
uncertainty on stochastic situation. If we can have ''perfect infor-
mation'", that is, we can know the realization of random elements in
advance, then the stochastic problem becomes deterministic one.
Therefore perfect information has some value, which is so called
“"the expected value of perfect information (EVPI)". The EVPI
is the upper bound on what one ‘'would be willing to pay for perfect
information about the random variables. Usually, perfect informa-
tion is seldom available, and so we must take a sample if>we want
to obtain more information. Since sampling incurs some cost, it
would be helpful for deciding whether or not to take a sample to
know the worth of sample information, i.e., the expected ﬁalue of
sample information (EVSI). EVSI is not greater than EVPI and ap-
proaches EVPI as the sample size increases. Therefore EVPI is usa-

ble as an upper bound for the EVSI, though perfect information can
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not be received. 1In the other problem, we are interested in find-

ing the optimal location.
In Section 5.2 we investigate the EVSI in facility location.

We assume each weight is normally distributed independent random
variable with unknown mean and known variance, and a distance be-
tween the facility and each demand point is rectangular. The EVPI
of facility location problem with random weights is investigated
in [11] and [20]. They deal with the case where the weights have
a multivariate normal distribution with known means and a known
covariance matrix. We evaluate the EVSI by utilizing the computa-
tional method developed in [20]. Moreover we investigate the be-
havior of the EVSI as the sample size changes and provide the opti-
mal additional sample size maximizing the expected net gain of sam-
pling.

In Section 5.3 we evaluate the EVPI in facility location model
under locational and weighted uncertainties. In the references [6,

and 15}, the locations of demand points are assumed to be identical,

independent distributed (i.i.d.) random variables. But there are
few papers in which the locations and the weights of the demand
points are random variables. We assume that the locations of demand
points are i.i.d. random variables and the weights of demand points
are also i.i.d. normal random variables, and the distances between

a facility and demand points are rectangular. We evaluate the EVPI
and give its explicit representation.

In Section 5.4 we find an optimal facility location which maxi-
mizes the probability satisfying the cost restriction. We assume the
weights of demand pointsg are mutually independent ndrmal random
variables and distanées are lp ones. Especially in the rectangular
distance case, we construct an algorithm which finds an optimélv
solution in O(ns) time, In stochastic programming problems, some

polynomial time algorithms are developed (e.g., [12, 13, and 14]).
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However there are few as for stochastic facility location problems.
In Section 5.5 we consider a minimax facility location problem
under locational uncertainty. When a demand call appears, e.g., an
accident héppens in a certain point, we rush a relief squad from
emergency service facility to the ‘scene. In this case we:cannot know
certainly a priori when and‘where an accident happens. If we cannot
restore the scene to the original state in a restricted time, it
may not be relieved. Moreover the reachable distance in a restrict-
ed time depends on the ability of facility. Therefore we minimize
the reachable distance so that the probability to relieve all of
the accidents is larger than a certain value. In this section the
locations and number of demand points are assumed to be random,
that is, the former are random variables with uniform distribution
on rectangular area or piecewise uniform distribution on separated
two areas, which are independent and identical, and the latter is a
random variables with a Poisson distribution. We derive -some useful
properties to solve the problem and give an explicif optimal solu-

tion of the problem by parametrically,

5.2 Expected Value of Sample Information in Facility Location

under Probabilistic Weights

Let (ai’bi)’ i=1,2,...,n, denote the lodations of n demand
points on a plane, and wi the weight which conver'ts the distance
between the i~th demand point (ai’bi) and the facility into cost.
We assume the distances . are reqtangular and wi (i=1,2,...,n) have
independent normal distributions with unknown means Mi and - known
variances 1/ri.(parameter r. is called the precision of wi). And
we assume that the prior distribution of Mi is a normal distribu-
tion with a positive mean My and a positive variance 1/Ti. The

parameter T is the precision of Mi'

- 66 -



If the minimum expected cost is used as a criterion of opti-
mality, the problem is as follows.

n
Minimize E[ } wi(|x-ai|-+ly-—bi|)],
Xy i=1
where (x,y) is the location of the facility. We define (X,y) to be

a solution which is optimal under the prior distribution, i.e.,

n n
‘ ~ ~ o v _ _

.Z ui(|x—ai|-+|y—bi|)..m1n p ui(lx ai|+-|y biJ). (5.1)

i=1 X,y i=1

Now suppose that wil),...,wﬁki) are random samples of Wi,

where k., is the number of samples. Then the posterior distribution

of M, when W§J)=‘”ij (§=1,2,...,k;) is a normal distribution with
mean ui and precision Ti-+kiri (see [8]), where
a TiW RNy

ui: TR T s (wi: sample mean). (5.2)
1 1 1

Under the posterior distribution determined by the sample mean Gi’
the problem reduces as follows.

n
)

Minimize ] p{(lx—ai|-+|y-bi|).
X,y i=1
Then the conditional value of the sample information (CVSI) is de-

fined as follows. (See [16].)

n
-_— — A T ~ "~
cvsx(wl,...,wn)=‘L pi(lx—ai|+ly—-bi!)
i=1
n

-min ¥ - -
min § ui(lx-a, |+ ly-b_|). (5.3)
X,y i=1

The CVSI cannot be evaluated until Wi's are known, but we can com-

pute the expected value of sample information (EVSI) before w.'s
i

are known:

EVSI =E[

1

o~ 3

n
Z, (|%-a;|+|§-b, |)-min 1z, (x-a,|+ly-b, D], (5.4)
1 X,y i=1
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where
u, +k.r W,
éTlul-Fklrl i

i T.+KkK,.r, (5.5)
1 1 1

Z

Here each Zi has an independent normal distribution with mean By
and variance 1/Ti-1/(ri-+kir}).

It will be useful to separate the EVSI as follows:

EVSI =EVSI_+EVSI_, (5.6)
X y
A n n
where EVSI_=E [ ] 2, |%x-a,|-min | Z,|x-a.|], (5.7)
X . 1 1 . 1 1l
i=1 x i=1
A n n
and EVSI_ =E[ ] Z.|y-b,|-min | z,|y-b.]|]. (5.8)
y . i i . i i
i=1 y i=1

Because it is easy to treat one dimensional case at a time, we
shall deal only with finding EVSIX hereafter. EVSIy qan be calcu-
lated similarly.

The equation (5.7) can be reduced to

n n
Evsrx=.Z M, |X-a, |-E[min 'Z z, Ix-a |]. (5.9)
i=1 X i=1
To evaluate the second term in the right hand side of (5.9), we

define x*(Z) (z8 (Zl,ZZ,...,Zn)) to be the optimal solution of the

following problem P(Z).

n
P(Z): Minimize | Z.|x-a,}.
. i i
X i=1
Then we obtain

n

i Y -
E[min § Zilx ail]

X i=1

n
J 1[i£1j'“zi'aj—ailpr{zi=zilx*(Z)zaj}dzi]Pr{x*(Z)=aj}

S s 3

n
* — +#* — —
L jzlf_wzilaj ailPr{x (Z)_ajlzi-zi}gi(zi)dzi, (5.10)
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where gi(') is the p.d.f. of Zi. The first equality holds because
Pr{x*(z);éaj for j=1,2,...,n}=0, and the second one is derived
from Bayes' theorem ([8]).

Now we rehumber a; s i=1,2,...,n, according to the nondecreasing

order of magnitude and assume a 5a25"°_<_ a . For practical pur-

1
poses, we will place restrictions, e.g., piz_S/ri, i=1,2,...,n, on

My and T, 80 that we can neglect the probability of getting a nega-
tive value of each Zi' Then the probability that x*(Z)::aj becomes

as follows([20]).

j-1 n J n
Prix*(Z)=a,}=Pr{{ [ 2.2 JZ,}n{ JZ,> | 2.}
J . i=_ & "1 . i, & i
i=1 i=j i=1 i=j+1
~-u, + Y. -u,-—-u
= ¢t——i———i)-¢(——l———l), (5.11)
"2 v
where ¢(°*) is the standard normal distribution ,
Aj—l n
i=1 i=j+1
AT 1
and v==_z ( T T T TR ). (5.13)
i=1 i i i1
Similarly, if i< j,
“U.+U ,~Z,+H, —-U .=l ,—Z. +}l,
Prix*(Z)=a_|Z;=2.} = o( J_J T 1y g L= %),  (5.14)
J- V. V.
i i
and if i> j,
-U,+|.+2,— |, ~U,-H,+Z,. -},
Prix*(Z)=a |2, =2.] = o J J L oy _q—dJd T Ly (5.15)
J /v, /v,
i i
where
n
A 1! 1
it 1O T, ) (5.26)
j=1 i i i’i

#i
Therefore substituting (5.14) and (5.15) into (5.10), we obtain.
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n
. v -
E[min ) Zi|x ail]

X i=1
n i-1 —U_ +H.+2Z,~}, U=l .+2. -},
o 1 X 1 1
= z j_oozi[ Z (ai—a.){<l>( J J, : ) = o )}
i=1 j=1 J v, A
n =Uu.+U.~2Z2.+U. U, ,~y.—Z,.+U.
i i

£ ] (a-a ) {e(——=——) -0 %)} e, (2,)dz;

j=i+1 vi vi

(5.17)

The integrals in the right-hand side of (5.17) can be calculated by
numerical integration such as Simpson's rule. Evaluating EVSIy
similarly, we can find the EVSI by (5.6).

Considering the function EVSI(k) of sample size vector k=(k1,

k kn), we shall derive some properties, treating each ki as if

AREEE
it were a continuous variable.

n n n
EVSIx(k)z.X ui|x-ai|—f_m"'f;w{min ) Zilx—ai|}.n {gi(zi)dzi}.
i=1 x i=1 i=1

(5.18)
Now we have the following property.

Property 5.1 EVSI(k) is a nondecreasing function of each ki.

To prove this property, we first show the following lemma.

Lemma 5.1 Suppose- that ¥{(x) is a concave function of x and
the random variable X has a normal distribution with mean y and
variance 02. Then the expected value of ¥(X), i.e., E[¥(X)] is non-

increasing with respect to g¢.

Proof: Considering E[¥(X)]as a function of ¢,

L(o) éE[‘l’(X) ]=j::’y(x) 1 exp(—__—(x" p)? )dx

Y 2n0? 202
1 x2
= [y (ox+p)+¥ (—ox+p) texp (-5 )dx.
/om0 2
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For O<01<U and x> 0, we have

2

L(cl)-—L(oz)

2

= ;} f;[{W(olx+u)+w(401x+u)}-{W(02x+p)+w(—02x+p)}]exp(—-gj)dx
0,-0, o W(—olx+p)—w(—02x+u) Y(02x+u)—w(clx+p) )3

- [ x{ - lexp (- —=)dx
/5 ¢} (—clx+u)—(—02x+u) (02X+u)—(01X+u) 2

> 0 (by the concavity of ¥(x)). [J
Now we are ready to prove Property 5.1.

i
Proof of Property 5.1 Let k=(k1’k2""’ki""’kn) and k =(k1,

..,ﬁi,...,kn), i.e., k'  has the same components as k except i-th

k2,.

one. Moreover we assume Ei> ki. Then by (4.1) we have

i e w2y 1
EVSI (k') -EVSI_(k)=/" +++[” H. (= )j]il(gj(zj)dzj),
41
where
H'(z(i) éfm min g z |x-a.|g, (z.)dz.~ /" min : z.|x-a,lg.(z,)d
i et R Lt R R R R Y T AR L s Ehs
X j=1 X j=1
(i)a
Z )1

=(zl’""Zi-l'zi+l""’zn

gi(-) and gi(°) are the density functions of normal distribution
with the same mean yu, but different variances l/Ti—l/(Ti+kiri) and

1/ri—l/(ti+kiri) respectively. Let

n
f(q)émin{ ) (z.lx—a.|+qlx—ai|)}.
gk 30T
#1

Then it is easily shown f(+) is concave. By Lemma 5.1,

/7 £z, (2, )dz,

is nondecreasing with respect to the standard deviation (or vari-
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ance) of Zi' Since

1 1 1 1
(___ )..(--—.....__..-_-__)>0,
. . k.r.
i ia&gri T Tl + lrl

Hi(z(l)LzO results. Therefore

EVSI (k') -EVSI (k)> O.
X X —

As to EVSIy, we can also obtain similar results. []

We define the expected value of perfect information (EVPI):

EVPI::EVPIX-PEVPIy, (5.19)
. n n
v 2o |—El[mi AR .
where EVPL = ] pi|x ai| E[min .Z Zilx ai|], (5.20)
i=1 x i=1
n n _
EVPI = | u,|y-b,|-E[min | Z, |y-b,|], (5.21)
. i i . i i
i=1 y i=l1

S

and assume each i has independent normal distribution with mean

and varianée-l/wi. Then the following corollary holds.

Corollary 5.1 0 <EVSI <EVPI.

Proof: By (5.4) and the definition of (X,y), the first ine-
quality holds. Furthermore, as the sample size ki increases, the
variance of random variable Zi approaches to the variance Zi, i.e.,

1/11. Thus Theorem 5.1 implies the second inequality. E]

This corollary shows that the EVPI gives an upper bound of EVSI.
The EVSI is the value of sample information without éonsider—
ing sampling cost. On the other hand, if the sample information
involves some costg, this sampling cost, CS(k)=2?=1cjkj+b, should
be subtracted from the EVSI, where each cj is a unit cost taking
one sample about the i-th location and b is a fixed charge taking
the sample, Then the net result called the expected net gain of

sampling (ENGS) becomes as follows:
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ENGS(k) =EVSI(k) -CS(k). (5.22)

The optimal vector sample size is defined as the vector size k
which maximizes ENGS(k).

In the following example, we consider the optimal sampling in
which all kl’ k2,..., kn are restricted to the same value k. If we
define c=Z?=lcj, then the sampling cost reduces to the following

scalar function:
CS(k)=ck+b, (5.23)

Now the ENGS is determined by the value of k, and so the functioﬁ
of k. Therefore the optimal sample size k* is defined as the size
k which maximizes ENGS(k). In the following we give an example and

find its optimal sample size.

Example 5.1 We want to locate a wholesale store in the town where
there are 5 retail stores. Let (ai'bi) and Wi denote the location
of i-th retail store and the random amount sold in a week there
respectively. When the location of wholesale store is (x,y), the
distance between the wholesale store and the i-th retail store is
|x-—ai lf-iY"bi,I kilometers. We assume that W, is mutually inde-
pendent normal random variable with unknown mean Mi.and known
variance 1/ri. And we assume that the prior distribution of Mi is
a normal distribution with mean My and variance l/Ti' ((ai’bi)’ r.,
My and T are given in Table 5.1.) We assume the transportation
cost per kilometer and ton is 1000 yen. Thén the-optimal location
under the prior distribution becomes (8,6). If we assume that all
k

sample sizes k kn have the same value k, the EVSI and the

l! 2"")
ENGS as a function of sample size k are shown in Figure. 5.1. 1In

Figure 5.1 we assume the sampling cost (x1000 yen) is as follows

CS(k) =0.02k + 5.
Then the optimal sample size is about 60 and ENGS(60) is 2240 yen.

- 73 -



Table 5.1.  Data for Example 5.1.
i 1 2 3 4 5
(ai’bi) (3,2) (4,9) (8,12) (12,1) (14,6)
r, 0.01 0.01 0.01 0.01 0.01
W, 50 38 30 35 25
T 0.1 0.1 0.1 0.1 0.1
10 - (x1000 yen )
9 - EVSI
g - Cs
7 4
6 ~
5 -
4 -
3 ~
9
1 - ENGS
0 T .
0 50 k* 100 1::',0 Sample Size
Figure 5.1. EVSI and ENGS of Example 5.1.
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5.3 Expected Value of Perfect Information in Facility Location

under Locational and Weighted Uncertainties

There are n demand points in the plane and both their locations
and weights are known probabilistically. Let (Xi,Yi) and Wi denote
the location and the weight of i-th demand point respectively., "We
assume that Xi’ Yi (i=1,2,...,n) are identical, pairwise independent
random variables with density function f(°,*) and cumulative distri-
bution function F(+,*), and Wi (i=1,2,...,n) are identical, inde-
pendent , normally distributed random variables with mean p and
variance 02. We assume that we can neglect the occurrence proba-
bility of negative Wi (e.g., p>30). Further we assume the dis-
tances between a facility (x,y) and the demand points (Xi’Yi)’ i=1,

2,...,n, are rectangular. Then the cost function is as follows:

0
Cix,y;X,Y,W)= 7] wi(|x—Xi|+|y—Yi|), (5.24)
i=1

where x;:(xl,x ""’Xn)’ Y::(Yl,Y ""Yn) and W==(wl,w2,...,wn).

2 2’
Now we consider the expected value of perfect information

(EVPTI). We define the EVPI as follows (see [207):

EVPI =min E[C(x,y;X,Y,¥)] -E[min C(x,y;X,Y,W)], (5.25)
X,y X,y

where E stands for the mathematical expectation. We can transform
(56.24) into the separate form with respsct to X-coordinate and Y-

coordinate as follows:

C(x,y;X,Y,W)scx(X;X,W)+Cy(y;Y,W), (5.26)
n
where Cx(x;X,W)z.Z wilx—XiI
|l=l
n
and Cy(y;Y,W):iﬁlWi|y—Yi|.

Therefore it can easily be shown that equation(5.25) becomes as
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follows:

EVPI =EVPI + EVPI , (5.27)
X y
where EVPIx=ndn E[Cx(x;X,W)]—E[min Cx(x;X,W)],
x X
and EVPI =min E[C_(y;Y,¥)] -E[min C_(y;¥,W)] .
y y y y y

Because it is easy to consider one dimension at a time, in what
follows we have only to consider either EVPIx or EVPIy. Without
any loss of generality, we shall find EVPIx hereafter. The EVPIy
can be found similarly.

Now we consider two types of problems. One is as follows:

EP: Minimize E[Cx(x;x,W)],
X

and the other is as follows:

P(x,w): Minimize Cx(x;x,w),
x

o)
—_ — *
where x—(xl,xz,...,xn) and w_(wl,wz,...,wn). Let x and x*(x,w)
denote the optimal solutions of problems EP and P(x,w) respective-

ly.

Define T(x) as follows:

T(x)ﬁE[cx(x;x,W)]. (5.28)
Then T(x) can be rewritten as follows:

T(x) =n{[* n(x-t)f(t)dt+ f:p(t-x)f(t)dt},
where f(t)éffmf(t,u)du; Differentiating T(x), we have

dT(x)

I =n{2F(x) -1}y,

A
where F(x)==ffmf(t)dt. Therefore the optimal solution x° of Problem
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EP is obtained from the convexity of T(x), i.e.,
x°=FY(1/2). (5.29)

Now we consider the second type of problem, i.e., Problem
P(x,w). Since Xi’ i=1,2,...,n, are i.i.d. random variables, the
expected optimal value of Problem P(x,w) is as follows:

n
E[m:;n c, (x;X,w)] =n!E[m)1{ni§1W'i|x-Xi| |X <" e<x JPr{xX <eee<xX }.

This equation can be rewritten by using x*(X,W) as follows:

n i-1 n
E[min C_(x;X,W)] =nt | [~ wi | EP, .(w)- J EP, . (w)ldw, (5.30)
b . e ij .5 ij
b4 i=1 j=1 J=1i+1

where

= - <o * = =
EPij(w) E[xi lexl_ X . ox (X,W) xj and W, w]
xPr{wi=w, x*(X,W):Xj and lej"jxn}. (5.31)
Rewriting the equation (5.31), we have
EP, (w) =/ xP.. . (w,x)dx-[" xp 5.32
ij f_m 311( ) f_mx jij(w,x)dx, ( )

where

= oo ¥* = = =
Pijk(w’x) Pr{Xl_ ixn’ x*(X,W)=X W.=w and X, =x}.

i* Ui k
Now we define
A
Ai(x)=Pr{Xli ixnle"}' (5.33)
A j—l n J n
B, (W)=Pr{ J W< JW and [JWwW> ] W |w =w}, (5.34)
H k=1 K koj K k=1 K g=js1 K 1
_ {w=p)?
2
and g(w)—_é—l——— e 20
Y 2n0?2

Since Xi, i=1,2,...,n, are i.i.d. random variables, the equation
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(5.33) becomes as follows:

1
(i-1) ! {n-i)!

i-1 i
A (x) = F(x)} T a-F(xN"
If we can neglect the probability of negative wj, the equation
(5.34) becomes as follows:
j-1 n

(w).-Pr{ 7 W, < ) W IW =w}-Pr{ Z Wk§ X W |W =w}.
k=1 k=j k= k= J+l

By standardizing them, we have

(w)__¢(w+(n—23+l)p) w+(n—2j—1)p) if i, (5.35)
n-1lg¢ Yyn-1la
B, (w) o WH(n=2343)u) o ~wr(n=2§+luy 4oy (g (5.36)
+J /n-1ag /n-=lo

where ¢(°*) stands for the cumulative distribution function of a

standard normal variate. We simply denote the functions (5.35) and

(5.36) as Vj(w) and Vj(w) respectively. Then PJ .(w,x) and P (w,

ji
x) can be rewritten as follows:

Pjii(w’x) =Ai(X)f(X)Bij(w)g(W) ,

P.. . (w,x)=A_(x)f(x)B, .(w)g{w).
jij v ) J ) ij el
Substituting these two equations into the equation (5.32), we have

EP, (W) = ]‘;?x{Ai(x) -4, (x)I1B (W (x)g(w)ax.

Therefore the equation {5.30) becomes as follows:

E{min Cx(x;X,W)]==n!ffmwfimx{Hl(x,w)-HZ(x,w)}f(x)g(w)dxdw,
X

(5.37)
n i-1

where L HCRDER ) A, (x)—A () W (w),
i=1 j=1

- 78 -



n n
A
H (x,w)= | 7oA, (x)-A_(x)}Vi(w).
2 P01 jeisl T J J

Since ¢(-x) =1~ ¢(x), we have

( w+{n—2(n—j+l)+l}p) Y w+{n-2(n-j+1)-1}u )

Vt(w) =9
J Yn-1lo vyn-1o¢o

=V (w).

n-j+1

Hence by simply rewriting summation, we have

n i-1 .
H2(x,w)= I 1A

i=1 j=1 n"i+l(x)—An_j_'_l(x)}vj(w).

Therefore the equation (5.37) becomes as follows:

_ n i-l1
E[min Cx(x;X,\W)]=n!.Z '[ (Li-Lj)Mj,
X i=1l j=1
n i-1
=n! J L.{ ] M, ~(n-1i)M,},
i=1 i j=1 J .
A ,
where Li=f_mx{Ai(x)—An_i+1(x)}f(x)dx,
and Mjéffmwvj(w)g(w)dw.

(5.38)

(5.39)

(5.40)

Rewriting the equation (5.40) by using the density function of

standard normal variate_ ¢(*), we obtain
MJ. =cf°imwvj'(wo+p)¢(w)dw+uf°_°mvj(wo+p)¢(w)dw.
Now we define T1 and T2 as follows:

T, =f:wvj(wo+ u) ¢(w)dw,

and Tzzfimvj(wc+p)¢(w)dw.

(5.41)

Then by the integration by parts, T, can be rewritten as follows:

1
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1

T 1 ffm¢(w){¢(w°+(n'25+2)“)-¢(w°+(“‘23)“)}dw.

n-1 /n-10o n-lo

By the simple integral calculation, we have

S dna
T = 1 e % e 2, (5.42)
Y21n
where u =in=2j+2)u
J /no
And T2 is rewritten as follows:
co t
T,=/_ 1 e(t)e(w)dtaw,
tj+1
w+ /nu,
where t.:———————i .
J vn-1
Transforming (t,w) into (t',w') by
. 1 vn-1
W' =—— W t,
/n /n
t' = n-1 w+—l—t,
/n /n
=% (- -&(- . .
we have T, ( uj+1) o ( uj) (5.43)
Therefore from the equations (5,41), (5.42) and (5.43), we obtain
i-1 o —u$/2 —u?/Z
§ M. = (e -e )+p{¢(—ui)—¢(—u1)}.
j=1 3 v n

Hence substituting this equation into (5.38), we have

n
Emin C (x;X,¥)]=n! [ [~ x{A;(x)-A__. . (x)}£(x)dx
X i=1 7% -
2 2 2
—u, /2 —-u., /2 -, /2
x[ ? le —(n-i+l)e b +(n-i)e **1
YZmn
+u{(n—i+l)<!>(—ui)—¢(~ul)—(n—i)¢(—ui+l)}]‘.
(5.44)
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The integrals in right hand side of the equation (5.44) can be cal-

culated by numerical integration.

Special Case

If the distribution of Xi is symmetric, then we can set the

center of symmetry to O by a suitable translation. Then we have

«©

7 %A (R)E(x)dx==]"_xA. (x)f(x)dx. (5.45)

Therefore the equation (5.44) becomes a slightly simple form. 1In
the following example we show that the EVPI can be represented by
elementary functions and normal distribution functions if each Xi

has a uniform (therefore symmetric) distribution.

Example 5.2 We assume the distribution of Xi is uniform on (-h,h).
Then the optimal solution x° of Problem EP is 0. Therefore the

optimal value of Problem EP is

T(x%) =n{/0_u(-t)f(t)dt +JSute(t)dt)
_ph
-

And from the equations (5.39) and (5.45), we have

_ 2h 3 i+j-1
Li—(i—l)!(n—i)! Zln—icj( 1) (i+j)(i+j+1)°
Therefore
o j o i+j-1
E[min C_(x;X,W)] =2h § i- z (-1)°
x X ioq n i =ln 1,3 (i+j3) (i+j+1)
2
. —u1/2 —u§/2 —u§+l/2
x[ —{e —-(n-i+l)e +(n-i)e }
Y2nmtn

+p{(n—i+1)4>(—ui)—¢>(-ul)—(n—i)»@(—uiﬂ)}

We calculate the EVPIx for various r (QLVO) and n. (See Table 5.2.)}
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Table 5.2. Calculation of the EVPI

n r EVPI ( X ph)
3.0 0.52070
4.0 0.50547

’ 5.0 0.50132
6.0 0.50028
3.0 0.53362
4.0 0.51073

10
5.0 0.49377
6.0 0.49107
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5.4 Stochastic Facility Location Problem under Aspiration Level

Criterion

There are n demand points (ai,bi), i=l1,2,...,n, on a plane.
Let (x,y) be the location of the facility on the plane and let
di(x,y) be the 1p distancerbetween the ‘facility and the i-th demand
point . We assume each weight Wi, which converts the distance
di(x,y) into cost, is the independent normal random variable with
positive mean u. and positive variance o?.

If we use the aspiration-level criterion, then the problem is

as follows:

APO: Maximize Pr{.g Widi(x,y)ic:h
i=1
where di(x,y):=(|x—ai]p+]y—bi]p)1/p, p>1.
Let (x*,y*) denote an optimal soclution of Problem APO. In this
paper we assume that
n
c> iglpidi(x,y) for some (x,y). (5.46)

This assumption is not so restrictive because maximum probability

should be larger than 1/2 usually. Then Problem AP0 is equivalent

to the following deterministic problem AP. (See [197.)

C_. luidl(x’y)
AP: Maximize V(x,y)é = .
n
2 2
.X ci(dl(x,y))
i=]1

i~ 3

The optimal value of'Problem AP is denoted by »*. Then the assump-
tion (5.46)implies »*> 0., In order to solve the fractional problem

AP, we consider the following parametric subproblem AP(A}.
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2

| a3

02(d, (x,y))

n
AP(A): Minimize F(x,y;}\) = z uidi(x,y) +>\/
: i=1

i=1

Let (xx,yl) be the optimal solution of Problem AP(A). Then the
following properties hold.

Property 5.2 F(x,y;}) is a convex function of (x,y) for r»>0.

Proof: The first term in the objective function of Problem
AP()) is convex because it is positively weighted sum of convex

functions di(x,y). Now define

n
Dex,y) = /1 oia, (xy)?, (5.47)
i=1 .

then for 0<a <1 we can show

— > _ _
{GD(xl ,yl)+aD(X2,y2)} —{D(ax1+ax2’ayl+ay2) }2
- ¥ — _ _ _
—ifloi[ {adi(xl’yl),m‘di(xz’yz)} {d, (ax; +ax,,ay +ay,)}

n n
+2a3[/z o?(di(xl,yl))z/z o?(di(x2,y2))2
i: i=1

2 - A
.oidi(xl,yl)di(xz,yz)]g_o (a=1-a)

| 133 B

i=
by using the convexity of di(x,y) and Cauchy's inequality. Since

D(x,y)>0 and A»>0, this property holds. []

Property 5.3 Let FléF(xA',yk;x), then F)\ is continuous and

strictly monotone increasing function of A, and

F, <C +———— XA <),

A
F}\:C«————-———y)\z)\*’
F_> > ¥

A C A> A%,

Proof: See [9]. []
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From Property 5.3, we can derive the followings.

i) There exists an unique A such that Fx==c.

ii) If Fx=c, then (xx,yx) is the optimal solution of Problem AP,
and if Fxfc, then we replace current value of A by a better one,
NLZRE .
Further we consider the following auxiliary problem AP of

e.g., A=V(x

subproblem AP(A).
R n S o2 2
AP": Minimize G(x,y,;R)=R | u.d,(x,y)+ ] o5(d,(x,y))".
: . ivi . iti
i=1 i=1
Let (xR,yR) denote the optimal solution of this problem. Then the
following properties hold. '

Property 5.4 For R>0, G(x,y;R) is a convex function of (x,y).

Proof: The first term is convex for R> 0 as well as Property
5.2. The convexity of (di(x,y))2 is ensured as follows:

Fm*Oiail,(g=Ld)
a(d, (x,,y ))2+E(d (x,,y ))2-(d, (ax. +ax oy, +ay 1)2
it71vYl iT2e i 1 2771 2
>a(d, (x,,y.))%+a(d, (x,,y,))°(ad; (x,,y, )+ad, (x,,y,))°
- i'7171 iT2W2 it71'1 itt2’e
(by the convexity of d,(x,y))

=Ga(di(x )-dl(xzayg))zzo'

1791

Thus G(x,y;R) is convex because it is the positive sum of convex

functions. []

Property 5.5 Suppose nyéai and yRﬁbj, i=1,2,...,n; j=1,2,.4.,

n. Then (xR,yR) is. an optimal solution of Problem AP(A) if and
only if AR:ZD(XR,yR).

Proof: For x#ai, y#bj, i=1,2,...,n; j=1,2,...,n, both F(x,y;A)
and G(x,y;R) are differentiable, then
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3F(x;y3A) _3G(x,y;R)

= R =0,
ax X=X , y=y 90X X=X , ¥y=Y
aF(x,z;A)l R R = 3G(x, y,R)I R =0,
ay X=X , ¥y=¥ x‘x y Y=Y

if and only if AR#ZD(XR,yR). Therefore (xR,yR) is an optimal solu-
tion of P(A) by Property 5.2 and Property 5.4. []

If szam or yR=bm for some m, then the above property cannot be
used to solve the problem. So we consider the following restricted

problems.

n o P
AP (X): Minimize ] pidi(x,bm)+x//jé oy (d;(x,b ))

X,m
! i=1

R 2
AP : Minimize G(x,b ;R)=R E wd; (x,b )+ Zo (4, (x,b )

’ i=1 ©oi= l
n A 5
. . - » ‘\ v

APy,m(A). Minimize P “idi(am’y)+k//(L Gi(di(am’y))

i=]1 i=1
R n T2 2
. e e \RV_R ¥ v
APy’m. Minimize G(am,y,R) Rifluidi(am'y)+i£1°i(di(am'y))

Then the following corollary of Property 5.5 holds.

Corollary 5.2 Suppose x #a , i=1, 2,...,n then xR is an opti-

mal solution for Problem APx m(l) if AR= 2D(x ,b ). And suppose

yR#bj, j=1,2,...,n, then y is an optimal solutlon for Problem

. R
m(x) if XR=2D(am,y ).

Proof: This corollary can be easily proved by the similar

manner to Property 5.5. 0]

Now we rearrange a; 's and b 's according to the ascending
< <.oo< < Koo
order such as a1 a2 aJ and b b2 bk respectively,
where j and k are numbers of dlfferent ai's and b.'s3 And we

divide the area A={(x,y)|§1ixigj’ b <y<b) into three types of
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areas Sh,m"T

each other.

ﬁ,m and Th,m' and point sets Uh,m which are disjoint

A —_
S m={(x,y)lah< x

b < <b h= seseyd-l
h, b y bmll i 1,2 -0 d

.-
%h+1’ °m
m=1,2,...,k-1,

A

m {(tx,y) |a, < x

<5£+1’ y=Em}, h=1,2,...,j-1; m=1,2,...,k,

X
h
ind i«xynmé b <y<b_ .}, h=1,2,...,j; m=1,2,...,k-1
h,m ? h! m m+1 1} ] H4 ? ’ y ¥ 1

Eﬁ)}, h=1,2,...,j; m=1,2,...,k.

The optimal solution of Problem APR, i.e., (xR,yR), is contained in
only one of the above sets. Therefore we concentrate the search on
one set at a time.

[Area Sh,m]

We consider (x,y) contained in the area Sh n' Define the fol-
*

lowing disjoint index sets:

AL, - Py
Il(h,m)={1|(ai,bi)6 (—W,ah]x(—‘”,bm]},
Ig(h,m)é{il(ai,bi)6 [gh+l,“)x(-“,5m]}:

I (h,m) 2i](a,,b,) e (==,3 ]x[B_ , =)},

h m+1’

A, . -
I4(h,m) ={ lI (al,bl) € [ah+11°°)x[bm+l9°°)}s

where x denotes the Cartesian product. Then we can easily find
Il(h,m) Ulz(h,m)‘JIB(h,m)lJI4(h,m)=={l,2,...,n}.

For (x,y) eSh o’ We can differentiate G(x,y;R) as follows:

3G(x,y;R)
N ;R = ——— — - - .
gx(x v;R) o R(M1 M2)+2(Sl+52)x+2(81 Sz)y 2(H1+H2),

(5.48)
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3G(x,¥;R)

gy(x,y;R): 5y =R(M1+M2)+2(Sl—SZ)x+2(Sl+SZ)y—2(H1—H2),
(5.49)
where M1=Izui—12pi,
1 4
- Yy -
MZ-IL ui Iz Pi:
2 3
S, = Zc?+ Zo?,
1 T i 1 i
1 4
S =20?+Zo?,
2 T i I i
2 3
_ 742 v 2
Hl-IXoi(ai+bi)-+f o (a;+b;),
1 4
o 2 2
HZ—IX o (a; bi)+IZ°‘i(ai b, ),
2 3
and Ii stands for Ii(h,m), i=1,2,...,4. Let (xh,m(R)’yh,m(R)) de~
note the solution of the following equations:
g, (x,¥;R) =0, (5.50)
gy(x.y;R)=0. ; (5.51)
Then xh’m(R) and yh’m(R) are as follows:
_ —(M182—M281)R+2(H182+H281)
xh m(R)= ’
! 48132 _
(5.52)
_ - (M S,+M S, )R+2(H,S,-H S, )
Yy, o (R) = ,
a 4s_s
12
where 5182 > 0. since o?, i=1,2,...,n, are positive. If for R> O the

above solution satisfies the following inequalities;b
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- _ - = < T
a <x m(R)< a and bm yh,m(R) bm

h~ *h, h+l +1’

R

R .
then it is the optimal solution of APR, i.e., (x ,y ); otherwise,

(xR,yR) does not exist in S . Now we define the area of R,

h,m

={R>0|a_<x, <a b <y, <b_ .1

Rh,nx R >O|ah <xh,m<ah+1 and bm yh,m(R) bm+1}
R R . .
From Property 5.5, when x #ai, y #bj, i=1,2,...,n; j=1,2,...,n,
% 2 R R 2

AR=2 ] ci(lx —ai|+|y —bil) ’ (5.53)

i=1

if and only if (xR,yR) is an optimal solution of Problem AP(A). 1In
addition from Property 5.3,

F(xR,yR;A)=C. (5.54)

if and only if (xR,yR) is an optimal solution of Problem AP. There-
fore if there exist the parameters A and R satisfying the above two
equatiohs (5.53) and (5.54), then (xR,yR) is an optimal solution of
Problem AP. Multiplying (5.54) by R and substituting it into (5.53),

we have
n n
R 2 R R 2
R J pi(!x —ail+|y—bi|)+22 o;(|x -a,|+ |y ~b,|)  =cR.
. - i i i
i=1 i=1
This equation is rewritten as follows:
R R R.2 R.2
R{(Ml—M2)X +(M1+M2)y —A1}+2(Sl+52){(x Y +(y )7}
R_R R R R R
+4(Sl—52)x y —4H1(x +y )—4H2(x -y )+2A2=CR, (5.55)

where Al and A_ are defined as follows:

2

Y - ¥ - - v
Al‘IL b (a;+0,) p nj(ay bi)+iz nj(a;=by) £ uila;+b,),
1 2 3 4
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2 2 2 2 2 2 2 2
Y - v - .
A2"Lci(ai+bi) +g oi(ai bi) +f oi(ai bi) +3;ai(ai+bi)
Il 2 3 il

While equations (5.50) and (5.51) are rewritten as follows:
R(M, M, )+2(S. +5_)xF+2(S. -5, )yR-2(H. +H_) =0 (5.56)
12 1 72 172 12 ’
R(M, +M,)+2(S. =S, )x"+2(S, +S_ )y =2 (H, -H,)=0. (5.57)
12 1 72 1 72 12
From (5.55), (5.56) and (5.57), we have
2(H, +H,.)x 42 (H, -H_)y + (A, +C)R~2A =0 (5.58)
172 1772 1 o="" 8.

If Rh o #¢, for RE‘Rh m xR and yR are given by (5.52). Therefore
1} ’

the equation (5.58) is linear in R. Then if we define R satisfying

the equation (5.58) as R', R' is given as follows:

2. .2
HZS_+HSS. ~2A_S.S
Rro—t2 21 212 . (5.59)

H1M152—H2M281—8182(A1+c)

1 1 »
If R'e Rh n’ then (xR ,yR ) is an optimal solution of Problem AP.

X
[Area Th,m]
If the optimal solution does not exist in any area Sh n’ then

it exists on T> , yed or U . At first we consider the case
“h,m xh,m h,m
that it exists on Th o' Then the following property holds.

Property 5.6 For some R (>0), if

- <F T S E
yh,m(R)--bm’ yh,m—l--bm’ (5.60)
gx(ah,bm;3)< 0 and gx(ah+1,bm;R)> 0, (5.61)

then the optimal solution of Problem APR exists on T; m
’

Proof: From (5.61) the minimum solution of G(x,bm;R) exists

(o]

in (ah’ah+1) and it is denoted by Xh,m

Now consider sufficiently
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small neighborhood of x
o
NGy )" Sy men

line segment between (xh,m—l

o o
h,m denoted by N(xh,m)' For any (i,y)e
let (x‘,bm) denote the intersection of T and

h,m
(R) (R)) and (x,y). Then

’yh,m—l
G(x,y;R) >G(x',5m;R) (by the convexity of G(x,y;R))

o

' [
> G(xh b ;R) (by the definition of xh,m

9y
,m’ m

).

L . o
Similarly for any (x,y) eN(xh’m)(\Sh,m,

o —
G(x,y;R) > G(xh’m,bm;R) .

Therefore (xg m’Bm) is a local optimal solution of Problem APR.
, . : .
Since G(x,y;R) is convex, (xg m’bm) is a global optimal solution. []

If (5.60) holds, we define X m(R) as follows:

h
~R(M,-M_)-2(S.-S._)b +2(H_+H_)
% (R)= 1 2 1 22m 1 27 (5.62)
2(s,+5,)

Then R satisfying the condition (5.61) is

X — -~ o
= > < .
By, (R>Ola <x (R)<ay 3
X
g,m:¢’, .
in (ah,ah+1); otherwise, Xh,m(R) is the optimal solution of Problem

If R then the optimal solution of Problem APR does not exist

AP, 1.e., x =§h m(R). From Corollary 5.2, if

n
AR==2///Z og(lxR-a.|-+|5 —b.|)2,
joq & i mo

then (xR,Eh) is the optimal solution of APx m()}). In addition,

. . R — . . .
if and only if (x ,bm) is an optimal solution of Problem AP. From
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the above two equations, we have

R

R — T 2 R — 2
' ui(lx —ail+|bm-bi|)+2,z oi(lx —ai|+|bm-bi|) =cR.
l —

1 i=1

| 13

This equation is rewritten as follows:

R = R.2 -2 - R
R{(Ml—Mz)x +(M1+M2)bm—A1}+2(Sl+Sz){(x ) +bm}+4(Sl-SZ)bmx

R — R —
- - _ —CR. 5.63
4Hl(x +bm) 4H2(x bm)+2A2 cR ( )
Since (xR,Em) is the solution of (5.50), we have
R ' -
R(Ml_M2)+2(Sl+SZ)x +2(Sl—82)bm—2(H1+H2)=O. (5.64)
From (5.63) and (5.64) we have
-_— R —
2{H1+H2—(Sl—82)bm}x +{A1—(M1+M2)bm+c}R
(5.65)

) —
—2{(Sl+32)bm—Z(Hl-Hz)bm+A2}=O.

h,m

?
fore substituting ﬁh.m(R) into xR and solving the linear equation,
?

we have the following solution R".

If RE m# ¢, for Re RX (5.65) is a linear equation of R. There-

2 - —2
2{(H1+H2) +4(H152—H281)bm-48182bm—A2(Sl+Sz)}

(H1+H2)(M]‘_-Mz)—-(Al+c)(Sl+52)+2(SlM2+Sle)bm

. (5.66)

R" =

If R" is contained in RE m’ then (xR,Bm)'is an optimal solution of
’
Problem AP. In case of Tz m ve have the following corollary of

?

Property 5.6.

Corollary 5.3 For some R (>0), if

_ = = _ .
Xy m(R) <8y, Xh,m-1" 2n* (5.67)

a ,b R) > 0, (5.68)

a ,b ;R)< .
gy( L R) < 0 and gy( WL
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then the optimal solution of Problem APR exists on Tz e

Proof: We can prove it similarly to Property 5.6. O

In addition §h (R) and R" are given as follows.
’

~R(M,+M_,)-2(S.~S. )a, +2(H -H,_)
-~ : h 1 2
j, (R)-—>2 1 2 , (5.69)
1}
2(Sl+52)
2 - -2
2{(H,-H.)"+4(H.S, +H_.S, )a, -4S.S_a_ -A_(S_.+S_.)}
A - 172 1727721 P %% e P

(Hy~H, ) (M +M, )=(A +c) (S +8, )—2(51M2-s2Ml )Eh

[Point Set Uh,m]
If the optimal solution does not exist in the above areas,

then it exists in Uh m’ The following property holds.

Property 5.7 If for some R>O0

|

- <z ~
xh’m(R)__ah and Xh—l,m(R)

v
o

h
(5.71)

’”~ <—' ~ —
or yh,m(R)-—bm and yh,m_l(R)zbm,

then (gh’Bm) is the optimal solution of Problem APR.

Proof: X ’m(R) is defined only when yh’m(R)<<bm and yh,m—l(R)

h
> Em hold. Therefore (gh’gm) is the optimal solution of Problem AP

by the convexity of G(x,y;R). [J

LA
Let B =R >0| R satisfies (5.71)}.

Now we obtain the algorithm by using the above properties.

Algorithm

Step 1: Rearranging a, and bi(i=1,2,...,n) in ascending order of
magnitude respectively. Set h+—[j/2], m+—{k/2] and go to Step 2.
Step 2: Consider Problem APR in the area Sh,m' If Rh,m* ¢, then
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go to Step 3; otherwise go to Step 4.
- - ] 3 - t .
Step 3: If R'e Rh'm, then x**——xh’m(R )y ¥ <—yh’m(R ) and stop;
otherwise go to Step 4.
Step 4: If §h (R) (or §h m(R)) is not defined, then go to Step 6;
' 1
otherwise go to Step 5.
Step 5: If there exists R satisfying (5 60) (or (5.67)), then go
to Step 7; otherwise go to Step 6.
. < ) a % > L ht +—h=1
Step 6: If Xh,m(R )5ah (or Xy (R ) ah 1), tEen h <—-—h—,_ h
(or h«—h+1, h'+—h) and return to Step 2. If Y m(R')itml(or
tY> b [ - [
yh’m(R )-bm+1)’ then m'<+—m, m+—m-1 (or m+—m+l, m'+—m) and
return to Step 2.
; R
Step 7: Consider Problem APR '(OP AP ) in the area Thl , (or
Tﬁ,’m,). if Rh' ,=¢ (or Ry m ,=¢), then go to Step 9; otherw1se
go to Step 8.
Step 8: If R" eﬂi m (or R" eRy ), y**——b (or x*+~—5h) and x*+—
h (R") (or y*«—-yh (R")) and stop, otherwise go to Step 9.
Step 9: If xh (R")<ah (or §h (R")<<S ), h'+—h, he—h-1 (or m'
’ —
- "y > '
+—m, m+—m-1). If x (R )__ hel (or yh (R )-bm+1)’ h+<—h+1, h
«—h (or m+—m+l, m'«—~m). If the condition (5.71) is satisfied,
then go to Step 10. Otherwise, return to Step 2.

Step 10: Set x**——gh,, y*+——€m, and stop.
Theorem 5.1 The above algorithm finds an optimal solution in

at most O(ns) time.

Proof: The number of areas is at most (n—1)2+2n(n—1)+n2 and-
the computational time necessary to search each area is 0{(n).
Therefore this algorithm finds an optimal solution in at most O(n3)

time. []

In the following, we give some toy examples illustrating the

above algorithm.
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. 2
Example 5.3 The location (ai,bi) and the mean My and variance o5

of weight Wi are given in Table 5.3. And the available cost c is

1000.
Etep 1: a1=0, a2=1, a3=3, a4=4, a5=7, b1=—3, b2=—1, b3=2, b4=3,
b5=4, h=2 and m=2.

Step 2: 322={(x,y')[ 1<x<3, -1<y<2}. R,,=0.
Step 4: Neither ?ch
Step 6:. XZZ’ZS’ and therefore h=3 and h'=3.

Step 2: 832={(x,y)\ 3<x<4, -1<y<2} and R32;4¢.

Step 3: R'=13.82 and Rh,m={Rl 9.04 <R<18.09}, therefore R' ¢R
x*=3,53 and y*¥*=1.32.

,m(R) nor yh,m(R) are not defined.

h;m'

Example 5.4 (ai,bi) and ¢ are the same as in Example 5.3. My and
o? are given in Table 5.4.
Step 1, Step 2, Step 4 and Step 6 are the same as in Example 5.3.

Step 2: 332={(x,y)| 3<x<4, -1<y<2}and R

327%"

Step 4: §h m(R) is defined.

Step 5: The condition (5.67) is satisfied for some R (e.g., R=5).
. y _ - < < y

Step 7: T32_{(3,y)| 1<y<2} and R32#¢.

Step 8: R"=28.13 and R§2={R| 0O <R <48}. BSince R"€ Rgz, x¥*=3 and

y*=1.32.

Example 5.5 (ai,bi) and c are the same as in Example 5.3. My and
o? are given in Table 5.5.

The first seven steps are advanced in the same way as in Example
5.4.

Step 7: TV _={(3,y)| -1<y<2} and RY_=¢

—_—— 32 ’ 327" ,

Step 9: Since y32(R)>-2, m=3 and m'=3. The condition (5.71) is
not satisfied.

Step 2: 333={(x,y)| 3<x<4, 2<y<3} and R, =¢.
Step 4: XSS(R) is defined.

Step 5: The condition (5.60) is satisfied for some R.
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X ' X
Step 7: T33={(x,2)| 3<x<4}and R =¢.

Step 9: Since X,5(R) <3, h'=3 and h=2. The condition (5.71) is
not satisfied.

Step 2: 823={(x.y)| 1<x<3, 2<y<3} and R
Step 4: §33(R) is defined.

Step 5: The condition (5.67) is satisfied for some R.

Step 7: T§3={(3,y)| 2 <y <3} and Rgs=¢.

Step 9: Since §33(R)<<2, m'=3 and m=2. The condition (5.71) is

23~ ¢

satisfied.

Step 10: x*=3 and y*=2.
The above examples show the three cases whose optimal solutions are
in S

Y .
h,m’ Th,m and Uh,m respectively.
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Table 5.3. Data for Example ‘5.3.

i (a,,b;) My o
1 (0,2) 22 18
2 (1,4') 28 11
3 (3,-3) 24 21
4 (4,3) 35 12
5 (7,-1) 55 17

Table 5.4, Data for Example 5.4.

1 2 3 4 5
My 22 32 52 50 47
0; 12 11 21 12 17
Table 5.5. Data for Example 5.5.

1 2 3 4 5
My 25 32 46 35 30
o? 10 8 9 12 5
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5.5 Chance Constrained Minimax Facility Location Problem

There appears some demand points in the plane and their loca-
tions and the number are known only probabilistically. Let (xi’Yi)
and N denote the location of i-th demand point and the number of
demand points respectively. We assume that (Xi’Yi) are independent,
identically distributed (i.i.d.) variates and that N has a Poisson
distribution with positive parameter 8.

Qur objective is to decide the reachable distance r in a re-
stricted time and the location (x,y) of facility to solve the fol-
lowing problem.

MPO:~ Minimize r

subject to Pr{ max Di(x,y)ir}zu,
i

A
where Di(x,y)=|Xi-x|+|Yi—y| (5.72)

and 0<a<1l. Now let {(x*,y*),r*} denote an optimal solution of
this problem.
To solve the problem, we introduce the following subproblem

MP(r) with nonnegative parameter r.

MP(r): Maximize Pr { max Di(x,y)ﬁ.r}.
i

The optimal solution and the optimal value of this problem P(r) are
denoted by (xr,yr) and f(r) respectively. Then the following prop-
erty holds.

Property 5.8 Let r!' émin{rl f(r)>a, r>0}, then {(x];,,yr,),

r'} is an optimal solution of MPO.
Proof: The chance constraint of Problem MPO is satisfied by
{(xr‘,yr,),r'}. And f(r) is a nondecreasing function. Therefore

if r* <r', then by the definition of r' we have f(r*)<qg. It con-
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tradicts that r* is feasible for Problem MP Hence r#*=r', []

o
Since (Xi,Yi) are i.i.d. variates, Di(x,y) are also i.i.d.

variates. Thus we have

Pr { max Di(x,y)i rlN:n}:(Pr{D(x,y)ir})n for n>1, (5.73)
: .

where we drop the subscript of Di(x,y). If there are not ainy demand
points, i.e., n=0, then the maximum distance between the facility

and demand points is zero, hence

Pr{max D, (x,y) <r|N=0}=1. (5.74)
i

Therefore we have

Pr{max Di(x,y)ir}z ] Pr {max Di(x,y)ir|N=n}Pr{N=n}
i n=0 i

= ) (Pr{D(x,y) ir‘})nﬁne— 8/1’1!
n=0

(by (5.73) and (5.74))
=exp[BPr{D(x,y)< r}-g]. (5.75)
Now we consider the following problem MP'(r).
MP'(r): Maximize VPr{D(x,Y) <ril.

Then Problem MP(r) is equivalent to the above Problem MP' (r) from
(5.75). Thus if we define the optimal value of MP'(r) by g(r), we

have

f(r)=exp{gg(r)-a8}. (5.76)

If a<e” B, then from (5.75) the chance constraint of Problem MP
holds for any {(x,y),r}, r> 0. Thus we consider the nontrivial

case o> e P hereinafter.

- 99 .



Now we consider the case that the demand points are uniformly
distributed in a rectangular area Ué{(x,y)l O<x<a, O<y<b}. We
assume a>Db without any loss of generality. Then the following

property holds.

Property 5.9 For any x, y and r, the following inequalities

hold.

Pr{D(x,b/2) <r}> Pr{D(x,y) <r},

Pr{D(a/2,y) <r}> Pr{D(x,y) <r}.

Proof: The probability Pr{D(x,y) <r} is in proportion to the
area of intersection of the rectangular U and the rotated square
area V(x,y) (see Figure 5.2), where V(x,y)g{(x‘,y')l|x'—x|+|y'—y|
ZXr}. Therefore the proof of this property is easily done. []

<

0

a

A\

Figufe 5.2. Intersection of U and V.(Shaded area.)

From this property, it follows that (a/2,b/2) is an optimal
location of the problem MP'(r). Therefore we have only to consider
three cases. (See Figure 5.3.) If r> (a+b)/2, then we can cover

the area U with the area V entirely. Therefore we have

g(r) =1, (5.77)
and by (5.76)

£(r)=1, ' (5.78)

that is, we can reach any point of the rectangular area U with prob-
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A N
b b </\

AN /

D

0 a 0 N a 0 v a
. b a . a atb
(1) 0sr<2 (1) 2<red (111) F<rg2

>Figure 5.3 Three cases.

ability 1. Hence from Property 5.8 we do not consider the case r >

(a+b)/2 anymore.

The optimal value of Problem P'(r) in three cases of Figure 5.3

are
( )——2-1;2 (5.79)
glr) = ab 5.
4r-b
g(r) = 55 (5.80)

(a+b-—2r)2

“5ab (5.81)

g(r) =1-

respectively. Therefore from Property 5.8, (5.79), (5.80) and (5.

81) we have

_ ab(1l+1ln o/ ).

- 1 ’ (5.82)
r*=:2a(l+lZ(VB)+b, (5.83)
o _ atb=/ —gab 1n o/8 (5.84)

respectively for the cases (i), (ii) and (iii) in Figure 5.3.
Transforming the intervals of r into corresponding ones of a, we -

obtain the parametric solutions. (See Table 5.6.)
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Table 5.6. Parametric solution in the uniform case.

Interval of o (x*,y%) rk
ca b
0<ace® (2,2 0
b
-B(1- +— a b
eBcaze 2a (3,3 (5.82)
~B(1- 3= ) -2 2 b
e <a<e 2,2 (5.83)
b
‘%a- (2 ._bl)
e < ai 1 2,2 (5.84)

Next we partition a rectangular region U into two subregions

Ulé{(x,y)l O<x<a,, O<y<b} and UZQ{(x,y)I aj<xxa, 0<y<b} in

1’ _
which the demand points have uniform distributions with densities
a; ( >0) and a, (>0) respectively. Then the following equation

holds.
albql+(a—al)bq2=l. (5.85)
In this section we do not assume as>b. But we assume a, > a, > 0

without any loss of generality. Then we obtain the following prop-

erty.

Property 5.10 The following inequalities hold.

(1) Pr{D(x,b/2) <r}>Pr{D(x,y)< r},

(ii) Pr‘{D(al/Z,b/Z) _f_r}_>_Pr{D(x,b/2)5_r‘} for r< a1/2,
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(iii) Pr {D(r,b/2) <r}>Pr{D(x,b/2)< r} for r> a1/2 and x>r

(iv) Pr{D(al—r,b/Z)ir} > Pr{D(x,b/2)<r} for r> al/2

and x< al-r .

Proof: Let A(*) denote a function which represents the size

of areas on R2. Then we have

Pr{D(x,y)<r} =qlA(V(x,y)nU1') +q2A(V(x,y)nU2) s (5.86)

where V(s,t)={(x,y)}|x-s|+|y-s| < t}.
The equation (5.86) can be rewritten as follows:

PriD(x,y) <1} = (a,-a,)AV(3,¥)0U )+a A (V(x,¥)a0) . (5.87)

(i) Both of the areas Uland U, are considered separately. There-

fore we can prove this inequali—ty similarly as Property 5.9.

(ii) 1If r_<_a1/2, then (x,y):(al/Z,b/Z) maximiz\es A(V(x,y)nUl) and
A(V(x,y)nU). Therefore this inequality is proved from (5.87).
(iii) For r> a1/2 and x >r, both A(V(x,b/2)nU1) and A(V(x,b/2)nU)

are nonincreasing in x. (See Figure 5.4.)

N\ U; (or 1)

Figure 5.4. r>—i—, X>r,

(iv) For r>al/2 and x {a. -r, both A(V(x,b/2)nU1) and A(V(x,b‘/2)n

1
U) are nondecreasing in x. (See Figure 5.5.) [J
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pAN U, (or V)
7

b
r =~
<éé (x> )
AN

0 \\v/] a; (or a)

a

Figure 5.5. T>5 x__<=al—r,

From this property it follows that we have only to consider the

twelve cases. (See Figure 5.6.) The optimal values and the opti-

mal solutions of Problem MP'(r) in the above twelve cases are as

follows:

Case

Case

Case

Case

Case

(1)

(ii)

(1ii)

(iv)

(v)

g(r)=2q,r’
(xrs yr)=(al/2, b/2)
q,(q,-9,)
1'71 *2 2
g(r)=2q r?-—5———(2r-a,)
1 qu 9, 1
(q.-q,)a.,+q,r
1 %2771 "2
= 2
(x_, y )=( 23,1, » b/2)
q,(q,~-q,)
171 "2
g(r)=2q,ri+——"—a
2 » q2 1
q,-q
1 *2
= (= + 2
(xr, yr) ( qz al T, b/2)
- 4r-b
g(r)=_q§(q} q2)(2r—a1)2+q1b(2r )
9,79
(¢,-9,)a,+q,T
1 %2771 %2
(x_, y_)=( — , b/2)
r’ r’ 2q1 9,
q,(3q,-q,)

g(r)=2q,br+(q;-q,)a b- i b?

1
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(iii)

(ii)

(1)

(vi)

(v)

(iv)

N
(ix)

(xii)

(xi)

(x)

Figure 5.6 Twelve cases
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Case (vi) g(r)=-
112

(ql-qz) (2r-b) +2q2a
2(q,+q,)

(x_, y)=( , b/2)
q,(q,-q,)

Case (vii) g(r)=—l—-—-l———g—.az+q b(2r-P—)

q, 1 %2 2

ql'qza

q, 1

(xr. yr)=(— +r, b/2)

q, (q,-9,) q
Case (viii) g(r)=-2q2r2+2(%+q2b)r-— 2qlb2+ 1 ql 2 ai 22,
2 2

1
(o y)=(505 » /D)

2
Case (ix) g(r).-_-ql(zrz_,ﬁ:'z_r%b_)__)
(x_» yr)=(a1/2, b/2)
' q,(q,-q,)
Case () g(r)=-2q)T542(§+q b)7- ZQibz- : qll :

2 4 2
(a-al) '—T‘b

=( =1

2r 1 1,(qy-q,)

. = ——— - - 2
Case (xi) g(r)==% qubz 1, (a al)
(x_, y)=(52+, b/2)

r’ ’r 2qlb ’
C2r 1 9(979))
Case (xii) g(r)= - 2q2b2 + % ai

(1
(x_, y)=( 24,5 ° b/2)

~ 106 -



From Property 5.8 and (5.76) we have the following optimal solu-.
tions for Problem MP, in cases (1)-(xii) respectively.

(5-1) rr= /l’—'i—:‘;ﬁ . (x*, y9=(a, /2, b/2)

-2q,(q,-q,)a,+ Jﬁql(qu—qz){ql(ql—qz)ai+q2(l+lnG/B)}
29,4,
(qy-9y)a;+q,r*
(X*, Y*)""( 2q1_q2
“
. —ql(ql-qz)al+q2(1+1na/6)
r¥= 2q2

(5-2) rk=

» b/2)

(s-3)

q,-q
(x*, y*)=(- 1q zal+r*, b/2)
2

[ b 1+lno/B _
(5-4) rk= 4-+ qub if 9,74, >

2q,(q;,-9,)a;+1; (24;-9,)b~ /D
4q,(q;-q,)

if otherwise,

where D=ql(2ql-q2){qlqzbz+4q1(q1-q2)alb—4(ql—q2)(l+lna/3)}
- *
(9;-q,) 2, +q,r

(X*, Y*)=( — s b/2)
24,1,
: q,-9 3q,-4q
1?2 1 %2, , 14+1n®/B
5-5 *= a, + b+
(8-5) r 2q, 1 8q; 24,
-q
(x*, y*)=(r*- 2y , b/2)
9
I~ a/B
(5-6) r¥= ﬂ-lj (ayrap o
: 2 2 q.4
192
‘ 2qza+(q1—q2)(2r*-b) /-
* x)= N b 2
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Zqu 1 4 2q2b
q -qz

(s=7) r¥*=-

(x*, y*)=(- a; +r*, b/2)

2 3
ay(a-a;)+agbta aya - [24,4;5(ay-a,)8)-2q,1n0/B

(5-8) r¥ 242
2
9,74
(x*, y9)=( 2-—=2—2a , b/2)
12
b , 1+1n®/B
(5-9) rk= Z-+——-2—q-;b——"

(x*, y*)=(a,/2, b/2)
1/b+q,b- [2{-q,(a;-q,) (a-a))*~q; 1na/B}

(s-10) Tk

2q1
1
(x*, y*)=( 290 ° b/2)
1
142b" {q,(q,-q,) (a=a)) 24q; (1+1na/B))
(s-11) r*= e
1

(x*, y*)=( 7&‘1;6 . b/2)

1—2b2{ql(ql-qz)ai—q2(1+lna/8)}

(s-12) r*= 4q2b
q,-4d

(%, y9)=( §-—j—a . b/2)
2

Now all the cases are shown in.Table 5.7. Table 5.8 shows the

parametric solutions.
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Table 5.7. All the cases of b and al

b a; policies
O;al;qzb/qu Table 5.8 (i)
0<b<2a/3 qzb/2q1<al;b Table 5.8 (ii)|
b<al;a-b/2 Table 5.8 (i)
a-b/2<a <a Table 5.8 (iv)
O;al;qzb/qu Table 5.8 (1)
2a/3<b<a q2b/2ql<al;a-b/2 Table 5.8 (i_i)
a-b/2<a; <b Table 5.8 (v)
b<a <a Table 5.8 (iv)
+ | 0=<=a:L 24, (b-a)/(ql"qz) Table 5.8 (vi)
a<b;2qla/(ql+q2) qz(b—a)/(ql—qz)‘<al;;q2b/2q1 Table 5.8 (1)
’ qzb/2ql < al;a—b/2 Table 5.8 (ii)
a-b/2 <~al;a Table 5.8 (v)
2q,a/ (q1+q2) <b O;al;qza/(qlﬂlz) Table 5.8 (vi)
q,a/(q,*q,) <a; <a Table 5.8 (wil)

t In this 9 is not equal to a,-
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- OTIT =

Parametric solutions

Table 5.8.
(i)
Interval of a solution
-8
0<ac<e (5-0)
q,a’
-8 -8(1-~5")
<a<fe : (s-1)
2
q,a q,(3q,-q,)
-80--51) 8- ——2—2a%)
e <a<e L)) (s-2)
q,(3q,-q,) q,(q,-q,) q
8 (1- 1771 72 i) 8(1- 1Y 72 i 22b2)
e 12 <a<e 2 (s-3)
ql(q1 qz) %y, ql(q1 qz) , 92,
-B(1- 1~ 3P ) -B (- 1P ob )
e 92 <a<e 1 (s-7)
ql(q1 qz)' , Y9, ql(ql-qz) ,
-B( a1+—i—b ) B 1
e LY <a<e 1, (s-8)
a8 ql(ql-qz) ,
e B leaca - (5-6)




- I1T -

(ii)

Interval of a

solution

0 éla é:e—s
2
q.a
iy -8(1--134)
e < q ;:é
2
q,a q,(q,-q,)
-8(1-—2) B+ 5oy (b-a;) =5 b?)
e <a<e 9,79,
q,(q;-q,) q q,-q
1'9179 2 A1, 2
-B(1+ =~———= (b-a. ) *-—==b*) -Bq,b(a~a,-
. 2(29;-9,) ) A cace 2 1" 4q;
q,-q q,(q,+q,)
~Bq,b(a-a ~——2b) 8212 2
e q1 <azle q1
q,(q;+q,)

(5-0)

(5-1)

(8-2)

(5-4)

(s-5)

(5-6)




(iii)

= ¢CIT -

Interval of a solution
0<ag e_B (5-0)
2
q,b
-8 -B(l-—"i'—)
e <a<e (s-1)
) qlb2 qlb2
-B(1-- 3 ) ‘ —B(l-qlalb+——-2——)
e <a<e ) ' (5-9)
q;¥ 9,79,
—6(l-q1alb+-———2——) —qub(a—al- 3 b)
e <a<le 4 (S-4)
q,-q q,(q,+q,)
~Bq,b(a-a;~——=b) e
e 91 <ac<e 4 (8-5)
9,(d,+4,)
-B 4—b
e gl <a<1 (5-6)




= ¢IT -

(iv)

Interval of «o solution
0<acx e B (5-0)
q,b?
i -8(1-——)
e <ac<e (s-1)
q,b* q,b*
-8(1-—; -) —B(l—qlalb+—-2-—)
e <a<e (5-9)
q,b*
~B(1-q,a . b+—~—+—)
. 1°1 2 ca<
(q,-9.)° B (4,-2q,)
1 2 <2 2 1 727,
-R( ————(a-a, ) “+(q,-q,) (a-a ,~b) "= ————Db°)
(q,~-q,)° (q,-2q,)
1 72 2 2 1 2" .2
- (————(a-a,) “+(q,-q,) (a~a,-b) ‘= —————b")
e 43 1 172 1 2 <a<
q,(q.+q,)
_5_2__];_:2_(8_31)2
| e 9 (S-10)
q,(q.+q,)
-8 2 %1 72 (a_al)z
e 9 <a <1l (5-6)




= Y11 -

(v)
Intervai of a solution
0<acx e™® (5-0)
2
q,a
" -8(1-—2)
-e <a<e (s-1)
-8(1- ) -B(1+ (b-a,)“-—=-b*)
e 2 <a<e Z(qu_qZ) 1 2 (5-2)
-8 (1+ == (b-a_) 2= ==b?)
e 2(2q1—q2) 1 2 <a<
(9;-9,) a,-2q,
B (——"—(a-a,) %+(q,~q,) (a-a ~b) 2= ——=—=1b?2)
e 9, 1 1 7*2 1 2 (5-4)
(q4-9,) q,-2q
R —L 27 . 32 - en _py2__1 2.2
. B( T (a al) +(q1 qz)(a a; b) 5 b%) Cq<
q,(q,-q,) -
_ 2°7'1 2 (a al)z
e 9 (S-10)
(s-6)

q,(q,-q,)
211 12 (a-al)2

_B ql

e

<

o

hs




- STT -

(vi)

Interval of a

solution

(5-0)

(s-1)

(s-2)

(s-3)

(5-12)

(s-8)

(s-6)




- 911 -

(vii)
Interval of o solution
0<a ﬁ_e—B (5-0)
2
q.,a
e_B <a<e (s-1)
. \ ) )
1% 29179, 9 (979))
e <o <e 99 (s-2)
e 29,79, qy(a;-9y) 22 4,(q,-4,) (ay?)
e 2q,q,8 1, LA q "1 (s-11)
| 1 9p0a39,) » q,(a,+9,)
B+ (a-a))?),
e ql ql < q (5—10)
qz(ql‘rqz) ,
-B-————-———-(a-al)
e | <a<l (5-6)

In the above tables, the solution (S-0) is as follows:

(8-0)

r.*=0, (X*,Y*)=(al/2,b/2) .
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