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 CHAPTER 1

TNTRODUCTTON

     Zn this thesis we irrvestigate stochastic versiQns•ojf networ,k

problems, such as transpQrtation problem, minimal spanning tree

problem, and facility location Problem. Researches on $tochastic

progranuning have made a renarkable development in recent years, and
applicable areas thereof have been extended ta a vartety oÅí ftelds,

e.g., agriculture, ÅíÅ}nance, marketing, warehousSng, etc., (See I8,

and l4].) However, research works on stoehastic programming have

been mainly devoted to theoretical aspects, so far.

     Stochastic prQgramming deals with the rpethods fior incorporating

stochastic fluctuations in the Åíramework oÅí matherpattcal prograrruning

and for rnaking optima1 decisions with respect to certain criteriens.
([7,8,9', and 15]) Such stochastic fluctuations may oceur in the

objective Åíunction and!or the constraints. Various approaches have

been proposed tQ deal with problems of mathemattcal progranuning in

such fluctuating situations, since the initiating papers by Dantzig
and Beale in 1955. There are two main approaches, i.e., the 'iwalt-
and-see" appxoach and the 'iehere-and-nowt' approach named by Madansky

[11]. Zn the former approaeh we wait until an observation is made

on random elements and then solve the deterministic problem. Qn the

other hand, in the latter approach a decision is made before we ob-
serve the stochastic elements. The Åíormer approach caused the so-
                                                        'called distribution p..rQblems. Concerning the latter approach the
                   v-'so-called two-stage problems have'been studied. (Wa!kup and Wets
                                                             '                                                      '[16] generalized'this latter. approach to stochastic p.,rograrnming with

recouxse.)

     Dwo-stage fiormulation was considered independently by Beale Il]
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and by Dantzig [4], Eor, example, we consider the following linear

programm.ing problem.

               n
     Minimize •j2-..ICjXj

     subject to jZ.sijxjFbi,• i71,2,...,m, (1.1)
               '                                 '                x. I•'Q, j=1,2,...,n.
                 J -.
:f bi, iFl,2,.,.,m, are randQm variables, then two-stage formulation

                                         'is as follows ;' ''

               nm     m,nintze j;lgjxj+EIiZl(PiYlt+qiY;)]

                .n     subject tQ jElaijxj't'yl't•-y:•tbi, iFl,2,••-•,lr;, , (i.2)

                xjIO, j=1,2,...,n,

                y:•, ylgo, i=i,2,...,m,

where E denotes the expectation, and pi, gi ane penalties Eor the

positive and negative discrepancies between the right and leEt side
values of the i-th cQnstraint (1.1).

     Charnes and CQoper I3] have also initiated another probabilisei

tic approach, i.e., intrQduced chance constraints tQ matheraatical

programming prQblem. In their approach, the consrraints do not hold

necessarily, but they have only to hold with the probability greater

than a given levei. For instance we consider the Åíollowing linear

       ,constramts; •                                '
      n
     j.21aijxj kb.i? iTl,2,•••,; • • (1.3)
                                                     'Zf aij and bi, ix• 1,2,...,m; j=1,2,...,n, are randQm yariables, the
                                                   'solution set of the abQye inequalities may be einpty. ThereÅíore we

cQnsider the following chance;constraints.
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         n     Pr{j i. laij xj lbi} 2L qi, i=1,2,!.• ,.m, ' a.4)

where cti, i=1,2,...,m, are given probability levels, and Pr{A}

means the prQbability oÅí A.

     B:aqken and Soland l2] introdueed ttthe value oÅí inÅíormationii

to stochastic mathematical pTogramming prQblems., though this con--

cept had been Qriginally considered in I13]. Generally speaking,

additionai infQrmation may Teduce the uncertainty on stochastic
situation. !f we can get irperfect infQrmation!!, then the problem

under unce:tainty becomes a problem under certainty. The value oÅí
information is the difÅíerence between "here-and-nQw!t approach and

iiwait-and--see!! approach fQr mathematical programming prQblem. Two

types of yaiues qf informatÅ}on, i.e., the expected yalue of, perfect
information (EVPX) and the expected value oC sample inf,orrnation

(EVSX) are considered, The EVPr is the upper bound tQ what extent

one would be willing to pay for perfect infQrmatiQn. Usually, per-
fect inforcmatiQn may nQt be available, and we haye to take sample.

if we want the paQve information. Since sampling incurs. some-cost,

the EVSI would be helpful in such a situation where we have tQ de-

cide whether or nQt to take $ample, Since EVSI is not greater than

EVPI and approaches EVPi as the sample size increases, EVPI is use-
ful as an upper bound for the EVSI.

     In chapter 2 we consider a partially chance-constrained E-model

with constraint oÅí a random linear inequality and provide algo-
rithm$ for sQlving iti There are few solution algo:ithms to solve

such a chance-constrained prQgrarming problem. To solve this prob-
lem, we first transfQrm the problem intQ the equivalent determinis-

tic problem. We intrQduce subsidiary problem and deri.ve useful

properties for solying the deterministic problem. The algorithm
is provided for solving the subsidiary prQblern wi,th finite number

of iterations. Moreover another type of subsidiary problem is
    '
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introduced and the p,roperties Qf the problem are derived. Then wd

provide the main algorithm for solving the main problem by titiliz-

ing the above algoTtthm and properties. MoreoveT we prove the va-

lidity and finiteness oÅí the algorithm.

     rn chapter 3 we consider a stochastic transportation problem
with simple-recourse. For stochasti6"MPrograms with recourse, there
                                                        '             'are few exaet algQrithms f6'i obtaining the optimal solution.

     The transportatien problem was introduced by F.L. Hitehcock,
dJiscussed in details by T.C. Koopmans, and solved efficiently by

G.B. Dantzig-, L.R. Ford, Jr. and D.R. Fulkerson. (See the refer-

ence I5].)

, We cqnsider the twv-•stage formulation of this problem' and
                                            'derive some useful prQpe:ties concerning the Qptirpal solution and

the Qptimal value. Moreoyer we investigate the behayior of the
objective functipn and prQvide an algorithm for Qbtaining the opti..-

mal solutiQn.
                               '     :n chapten 4 we inyestigate minimal spanning 'tree problems in
                                                      '  '                                                                'which edge cQsts are considered to be random yaria.bles. Seyeral
methods, e.g., Kruskal!s algorithm IIO] and Primts algorithm I12],

etc., are ayailable fqr finding a minimal spanning tree in pQlynQ-

mial time erden'.

     We cpnsider twQ types Qf prQblems. One problem is to Åíind an

optimal spanning tree and optimal budget under the chance con-•

straint that the probability with which•total cest does nQt exceed

budget is larger than Aa certain levei. AnQther problem is to ftnd

an optimal spanning tree and oPtimal satisficing prQbabtlity level

under the same chance constraint. For the Åíirst type p'reoblem we

propese a parametrid type algo.ritim which finds. an optiJnal spanning
tree in o(iq2n2), where m and n are the' number of edges' and the num-
                 'ber of vertices in a given graph respectively, And gor the secQnd
                         'type problem we propo$,e another parametric type algorithm. Thbugh
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this problem is mQre complicated than the first Qne, this algorithm
                                    22also finds an optimal soiution in O(m n ) computational time.

     !n ehapter 5 we deal with single Åíacility location problems

where the weights and/or the locations of demand points are random-

ly distribu•ted. The deterministie single facility location prob-
lems have been investigated so far by inany researchers,. ([6]) Con-

cerning these deterministic prQblems, we consider the following

problems specifically and the corresponding stochastic prQblems in
                                        ttthis thesis.' Suppose there are n demand points distributed Qn a
                                      'plane, whose coordinates are (ai,bi), i=1,2,...,n. Now, let (x,y)

be the location of the facility point and we cQnsider the distance
di(x,y) betwee.n the facUity point and the•i-th demand point. NQw
                                                                'we consider two types oÅí prQblems. One is the weighted minisum
problem, i.e.' , the prQblerp to minimize 22..lwi.di(x,y) with respect

tQ x,y, whepe w• i is the we,ight by which the distanee di(x,y) is

converted in terms Qf the cost required. AnQthex is the minirBax
problem,.i.e., the problem to minimize mk4x di(x,y)'  with respect to

x,y. This problem may be applicable to the location analysis of

emergeney service facility, for example. We consider several kinds
Qf distances, e.g., the shortest Euclidean distance, socalled rec--

tangular di$tance, i.e., the distance the admissible rectangular
routes, forr •measuring the distances between the Åíacility and the

demand pointss etc.. Euclidean distance is used to some network

problems, e.g., electrical wiring prQblen}s? pipeline design prob-

lems. And rectangnlar distance is appropriate in urban location
analysis where we travel along an orthogonal set oÅí streets.

     The first two problems in this chapter are eoncerned with the
   'value of information in facility loeatiQn. The value of informaL

tion was first introduced by Wesolowsky [l7]. He treated the EVPI

in one-dimensional facility location model in which the weights

have a multivariate normal distribution. One problem is to obtain
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the expected value ot seugple inf,QrrpatiQn. We di.scuss the model in

which we consider the rectangular distances between the Åíacility

and demand points. And eaeh weight ts independently distributed

normal random variable with unknown mean and known variance. We

investigate the behavior the EVSI as the function of changing sarn-

ple size. rn addition, the expected net gain of our sampling and
then the optimal sample size are found. Another problem is to find

the expected value Qf perfect information in facility location mod-
el in which the dis.tances are rectangular and both the weights and

the locations of dernand pQints are knQwn only probabilistically,

Vle give an explieit representation of EV?X.

     The seaQnd problem is the model in whi.ch the w,eights of demand

points are random variables and the distances are 2p distances, i.
e., (lx-ail+ly.-bil), i=1,2,...,n. ,our objecti/ve i,s to Åíind'a 'solu•-'

tion whieh maximizes the probability of satisfying the cQst re-

strictiQn. Especially the problem whQse distances are rectangular
is investigated in detan •and an o(n3) time a,lgo.ri'thm is giyen Åíor

sQlying the problem.

     Finally we deal with a minirnax facility locatiqn prqblem under

locatiQnal uncertainty. rn our modei the number Qf demand points
is assuiged to be a random variable with a ?olssQn distribution and

the location of each demand pQint is also random variable wi,th uni-

Eonm distribution on rectangular a:ea or piecewi,se uniform distript

butiQn on the separated two areas. Our objective is to IQcate an

emergency service facility, minimizing the reachable distance under
constraint so that the prQbability of reaching all the IQcations of
accidengs (demand pQints) is largex than a certain pr,edetermined

vaLue. First we analyze the problem parametrically, and provide

the sensitivity analysis wi,th respect to the aspired prQbability

level. Fina!ly an explicit optimal solution oÅí the problem is

parametrically deriyed.
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                      CHAPTER 2

AN ALGORITHIVI FOR A PARTIALLY CHANCE-CONSTRAINED E-IVK)DEL

2.1 Introduction
     Many types of chance-constrained programming problems have
been considered [1-5, 7, 9 and 10] since Charnes and Cooper [1] in-

troduced chance constraints into mathematical programming probiems.

This chapter considers an E-model having a random linear inequality

constraint and provides an algorithrn to solve it. There are few

solution algorithms for solving the probiern with stochastic con-
straints.

     In Section 2.2 Problem Po and its deterministic equivalentProb-

lem P are formulated. In Section 2.3 we introduce subsidiary problem
P(u) pararnetrized with p and derives useful relations between P and

P(p). In SectiQn 2.4 we give AlgQrithm 2.1 for solving P(p) based
on the parametric procedu#e (I5]) and prQve yalidity and finiteness

of the algorithm.. In SectiQn 2.5 we'•introduce'anpther type
                          Rof the subsidiary problem P and provide the main Algorithm 2.2 for
                                                    Rsolving P utilizing Algorithm 2.1 and properties of P . The valid-
                                     'ity and finiteness of Aigorithrn 2.2 are also proved. And in Section
2.6 we give an iliustrative exarnple.

2.2 Problem Formulation

     In this chapter we consider the following problem Po.

     Po: Maximize E(ÅëTx)

                        T'
          subject to Pr{a x5b}ict, (2.'1)

-9 --



                     Al xgBl, x ,l; O,

where T and E mean transpose and expectation respectively; a =(al,
          Ta2,...,an)            is an n-dimensional random veetor and distrÅ}buted ae-

cording to multivariate normal distribution with mean vector E(a)=
                       T(E(al),E(a2),...,E(an)) and varianee-covariance matrix w'; b is

distributed according to a normal distribution with mean E(b) and
variance o3; ai and b are mutually independent i=1,2,...,n; e=(cl,
          T!i•ilil•l.f?i•E[l•;:•iirsII•:•;i::iiab:xrs!ii:•gx•ii•g:•i•,:l•[!,i.g":iii,i•i:•$.iei"'

vector; ct(>1!2) is a probability level at least beith which con--
straint aTx<b must hoid.

     The ehance constraint •in (2.l) can be transformed into the fol-

lovaing form by simple calculations.

     pr{.aTxgb}=pr{aT"2iltiilil:iSIIsllili, E.( ).)X+E(b);E(Zl,iE.(,aw)i*}ict'

                                                           (2.2)

Since a and b are distributed according to N(E(a),VJ) and N(E(b),
u3) resleetively,

          aT x -- b-E(a)T ix +E(b)

               Moxx

                                                             '
is distributed according to the standard normal distribution N(O,1).
[I]herefore (2.2) beaomes as follows.

                    T          Eiitlllllllilliillllilii=a), E,,,(,w).,X-2:Åë-1(ct)' (2'3)

- 10 -



where O is the cumulative distribution function of standard normal
distribution. The inequality (2.3) is further transformed into'

          E(a)Tx+K.!(u:;71iFlI-o+xwxsE(b),

                                                                'where K 2Åë '-i( ct). E( cT x) is equiva!ent to E( c )['r x by the iine-

arity of expectation. Then the problem Po is equivalent to the

following deterministic problem P.

     p: Maximize 'E( Åë )T x

         subject to E(a)Tx+ K. ('ai+xTwx)t:iE(b)

                                            '
                    Alx.S,Bl, x.)1,O•

Moreover we assume that the feasible set of P,

     sA{ x IE( a )Tx+ K. (u: + xTw x)eEE (b), Al x5 Bl, xZ O}

is not empty and bounded. As is easily shown, S is a convex set
and therefore P is a convex programming problem.

2.3 Subsidiary Problem of P

     Let xee and pee denote an optimal solution and the optimal value

of Problem P respectively. To solve P we introduce the foliowing
subsidiary problem P(p).

     p(p): Minimize E( at )Tx+K (az+xTwx)-lr
                              q,
           subject to E( c )T x2 y, Alx ÅíBl, x 2: O•

     Denoting the optimal solution and the optimal vaiue of P(.u) by

x(p) and z(p) respeetively. As is easily proved, P(v) is a strict-

ly convex programming problem, and so x(u) is unique. Then the

                                                         '
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following relation between P(p) and P holds.

     Theorem2.1 If x(#) satisfies

          E( a )T x(p) +K (o:+x(p)Tw x(u) >t= E(b)
                      a
               [p                x(p) = p,and E( c )

then x(p) is also an optimal solution of P.

     Proof: Kuhn-Tucker condition of Problem P (KTP) is as follows
([8]).

     KTp: v- pE( a ). K.p (;: .Wiw. )" - A: q= -E( C ),

           E( a )Tx+K.( u:+ xTW x )}+ so =E(b),

           Al x+s=Bl, vT x'+ sT q+ sop .o,

           v, x, s, qlO, So,PZO,

where y is an n-dimensional vector; s, q are m-dimensional vectors

so, p are scolors. On the other hand, Kuhn-Tucker condition of

Problem P(p) (KTP(u)) becomes as follows. .
     KTp (u) : v- -E( a ) - K. (.: .W.XTw. tT A: q- = -FE ( C ),.

             E( Åë )Tx- go = y, A: x+ s'=Bi,

             -T -' - -T-             y x+ sor +q s=O,

             y, x, s, qiO, so, rZO,

where vr is an n-dimensional vector; s, q are m-dimensional vec.tors;

--                                                             'so, r are scalars. Let
         x(u) = ( x(p)T, v-:.(u)T, q--(p)T, IF(y), g;o(y), sth(u)T)T

                              -12-
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denote the solution of KTp(u). since E(c)Tx(p)=y means go(,gt)=o,

r(p) must be positive. By the positivity of r(y) and the condition
      '
          E(a)Tx(v)+K (u:+x(v)Twx(p))'l'=E(b),
                      a
                                                     '
the solution of KTP is constructed from X(p) as follows:

      '
          v=v"(p)li;(p), p=11F(p), q=q--(p)IF(p), so=O,
                   '                                    tt t
          x=x(u), s=s(p).

                                           '(Xndeed this solution satisfies KTP.) Since I? and P(p) are strictly

concave programming problem and strict!Y convex Programntng problern

respectively, feasible solutions of KTP and KT,P(y) are optimal so-

lutions of P and P(p) respectiveiy. Therefore x(p) satisfying con-
ditions of this theorem is the optimal solution of P. M
                               '                                         '     Moreover the foliowing properties of P(u) can be derived.

                     '    tP:!9RS2!EX.Z:!r t 21 z(p) is a convex function of p.

     Proof: Eor pl<p2, O<x<1 and5=1-x,

          XZ(P1) + XZ( P2) -- Z(XUI + XP2)

         . xE ( a)Tx( yi ) + "51E ( a)Tx( p2 ) -E( a)Tx(xyi + 5C'p2)

          + xK. (ui + x(pl )Twx( pl) )-t+ 3rK. (u: + x( p2)TWx( y2) )t

                    '          - K. (og + x(xp•i + 'Xp2)Twx(xpi + 'X p2 ) ) 't'

         2:.E(a)T(xx( ui) + 'i[x( vi ) ) -E( a )Tx(xyi + -x p2 )

          + K.{6:+ < xx( pl ) + '5[x<p2) )Tw(xx(p1) + 3r.x(p2)) i"t

                                '          -- K.{o:+ x( xpi + 5[ p2 )TW x( xui + -x' p2 ) }"

                             - 13 --



           (since (u:+xTwx )rÅ}' is convex inx)

          '
         IO (by the feasibility of Xx(yl)+5Ci[(y2) and optimality

      . of x(xyi+Xp2) for p(xui+Tp2))• O '
                          '
     Property 2.2 z(p) is a nondecreasing function of u.
                                       '                                                       '
     Proof: It is clear frorn the fact that the- feasible region of

P(p) becomes smaller as p increases. U

         tt     Theorem 2.2 Without any loss of generality, we can always
assume so(u) = O.

                                                '                                                    '     Proof: Assume that there exists a p" such that so(p")>O. Thbn
z(p) =z(fi) and x(y)=x(p") for any p"+so(p")lplp" since so(p")>O

irnplies

                                '          E(c)Tx(fi)z, fi+ l;o(y"), '(2•4)
                                                 '
                                                            ':".g.(;.'g,'.:2e",R,Eh2g..X.(SiSS.;P::?'.,fO.:.a2X.:2:2•:g.g.'.go.`PA.kX'1-,"".

first portion of z(p). Since SlÅë irnplies z(p")sE(b), this portion

can be excluded from further consideration by Theorem 2.1. That is,
we can assurne so(p)=O without any loss of generality. D

From Theorem 2.2 we can assume that E(Åë)Tx=y in Theorem 2.1. In

additiori we have z(y)> z(p') for p> p' as a byproduct. Therefore
Property 2.2 is strengthened'as follows.

                                e-     Property 2.2' There exists p such that z(p) is monotonically
                       '                                   --increasing function of p for any u)p.
                                              '                                             '
. Now we must check whgther p such that z(p)=E(b) exists or not.
For this purpose let

          "2max{E(c)Txl Aix5Bi, XZ,O}'

                          '

                               - l4 -



Note that il rnay not exist. If g exists, then X<p) for p>fi does not

exist. Moreover if E(b)> z(g) holds, p such that z(p)=E(b) is not
defined. But in this case, x(il) becoines an optimal solution of P as

                                              '
     Property 2..3 p such that z(p)=E(b) (that is, the optimal value

of P) is unique if it exists. .
    .Proof: This is clear from z('il')<E(b) and Property 2.2'. Note
                                   "
that z(il')5E<b) is derived frorn Sftp. []

                                        '
2.4 Algorithm for Solving P(pt)

     In order to solve P(u), we introduce in this section an auxii-
iary parametrized probiem pR(p).

     pR(p): Minimize RE( a )T x + ll Ka (u: + xTw x)

                              '             subject to E(c)Tx2p, Alx5Bl, Xi O.

                     'Note tha' t the feasible region of pR(u) coincides with that of p(p).

Let xR(y) and zR(p) denote the optimal solution and optimal value
of pR(p). .. dihe objective function of probiem pR(p) is a strictiy

convex function, and so xR (p) is unique.

     Theorem 2.3 if xR(u) satisfies R2=oi+xR(p)TwxR(p), then it

is the optimal solution x(p) of P(u).

     proof: Each pR(u) is a convex programming problem and corre-

                           .R                                  (p) becomes as follows.sponding Kuhn-Tucker condition                              KTP

     KTpR(p): O-K.wx-A:q=RE(a),

              Alx+g=Bl, E(c)T.-go. p,

               A[Y A[PA AA A -A AA              y x+s q+rso=O, v, x, s, qiO, r, so)O.

                                                      '
                                               '
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     rf xR(p) satisfies R2 = u' :+ xR(p)Tw xR(p), then x(p) can be

constructed from a solution xR(u)4(xR(p)T,"R(p)T,aR(p),fR(p),

goR(y),gR(p)T)T of KTpR(p) as fonows.

                                         '     x(p): x(p)=xR(,p), v-(u)=ii}R(u)IR, q-(y)=iiR(p)IR,

          '
           i;(u)•=fR(v)iR, g;o(p).gg(u), ."-(p).gR(p).

Indeed the solution constructed as above satisfies KTP(y) as is
easily checked. ' Therefore xR(p) becomes an optimal solution of

p(p)• V
                           '                                              '     pro' er 2.4 zR(p) is a monotonicaiiy increasing function of

     Proof: We can show it sirnilarly to Property 2.2. M

                     TR     Property 2.5 E(a) x (p) is a nonincreasing function of R.
                                   '
     Proof: For R'<R the following inequalities hold;
                                    '
     RE(a )T xR(p) + 21 K.( o:+ xR(p)Tw xR(p)) '

                        S RE( a )T xR'(p) + 21 K. ( uz+ xR'(y)Tw xR'(p))

     R'E( a )T xR'(p) + 21 Ka (o: + xR'(p)Tw xR'(u))

             '                        .:i, R'E( a)TxR(y ) +l K. ( u:+ xR(p)Tw xR(p)) ,

since xR(y) and xR' (p) are optimai soiutions of pR(y) and pR' (p)

respectively. These imply

    R{E(a)TxR(p)-E(a)T.R'(p')}

                  +21K.{xR(p)TwxR(p)-xR'(p)TwxR'(p)}.so, (2.s),

            TR                        T R,    R'{E(a) x (p)-E(a) x                            (y)}
                  +SK.{xR(p)Tw xR(p) - xR ' (u)Tw xR' (p) }. Io.                                                          (2;6)
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From <2.5) and (2.6) we have

          (R-R' ) {E(a)T xR(p) -E(a)T xR ' (p) }so.

          '                                          'Therefore from R'<R

         'E(a)TxR(p):iE<a)TxR'{p). v
     '
      proper.ty 2.6 xR(p)TwxR(p) is a nondecreasing function of R.

     proof: From the optimaiity of xR(v) for pR(u)we have

     R'E(a)T xR'(y) + ll K. {o:+ xR'(u)Tw xR'(p)} .

             . sR'E(a)T xR(p) + ll {u: + xR(p)Tw xR(u) }..

From this inequality and Property 2.5 we, have

          xR'(p)TwxR'(p).sxR(y)TwxR(p). V

     we` define R(u)g{ug+x(u)Twx(y,)}-;'. The fo!lowing theorem

provides some useful informations about R(p) even if RfR(p).

     Theorem 2.4
                     '
(i) R>R(p) pt R2>o:+xR(p)Tw.R(p)
(ii) R<R(p) e R2<uz+xR(u)TwxR(u)
(iii) R=R(p) " R2=ai+xR(p)TwxR(p).
     proof: For each xR(u), xR(v)TwxR(v)<co hoids since pR(y)has

the same feasible regioh as 'P(p) and boundedness of S. implies
    TR     x (p)>-a. Therefore from Property 2.6 there exists a suffi-E(a)
ciently iarge R such,that xR(p)TwxR(p) is constant for R>R. The
continuity of xR(p)TwxR(y) with respect to R can be derived from

the continuity of xR(u) with respect to R. Therefore Mean-va!ue

Theorem, Theorem 2.3 and the uniqueness of x(p) together prove

                                      '
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Theorem 2.4• a '
     Now we are ready to solve p(u) by utilizing pR(u). Generany

xR(u) depends upon u and R, which determines a basic matrix B.

Being based on B, there exist constant vectors dth, eB, gS and q

Certain  interva ll LB(p)5R5UB(p) determined by the basic matrix B

and p, and so X (p) can be written as foliows.

         xR(p) = Rdg + p. es + gb ( LB (p) .S R .S UB(P) )'

Moreover taking x part of xR(u), we can write down as

         .R(p).RdB+peB+gB' '
using dB, eB and gB (x part of dib, e" and gl5 respectively). By

the above discussion, the condi-tion

         R2 = uz+ xR(y)TwxR(p)

is equivalent to the condition that one of roots of the'equation

     (dE'wdB - 1)R2 + 2(peB + gB)TWdBR + (ye + gB)TW(peB + gB)+ u: = O

exists on the interval [LB(y),UB(p)]. Hereafter le't us refer this

equation to Q--equation. The rgots of Q-equation are as follows:

(case a) dEWdB=1, '
           -(peB + gB)TW(peB + gB)- uZ

         R- T '              2(peB+gB) WdB

(Case b) diilWdBf1,

            -(peB + gB)TvidBÅ}!D

         R=                  T'                 dBWdB - 1

                            -l8-



where D g {(peB + gB )TwdB}2 - (d:WdB - i){(peB + gB)TW(p eB + gB) +ui}•

    'Remark 2.1 Rzu, only must be checked for R2=cr:+xR(p)TwxR(p)

since W is positive definite.

     Let KP(R)go:+xR(p)TwxR(u)-R2. Then if KP(LB(p))2:o and

KY(UB(p))sO, one root of Q-equation exists in the interval [LB(u),

lt!ggl21!}!!L-2.:.LÅíg!sg!,!L!ug2!u-lgomthm21forsolvmgPO

Step 1: Set R2-u,, Ru-e-M (M is a sufficiently large positive
number) and R-Ro (Ro is an arbitrary number such that Ro2:o, ,).
solve 'pR(p) and find B, diB, eB, gB, LB(y) and UB(p)• Go to Step 2.

step 2: If KU(LB(p))<O, then set Ru -- LB(p) and R+- (Ru+R2)/2,
and go to Step 4. !f KP(LB(u))=O, then set x(p)=LB(u)dB+peB+gB
and terminate. If KP(LB(p))>O, then go to Step 3. .
Step 3:. If KP( UB(p))<O, then soive Q--equation, find roots Bl, B2

and go to step s. If KP(UB(p))=O, then set x(v)=UB(u)diB+peB+gB

and terminate. If KP(UB(v))>O, then set R- UB(u) and R-(Rft

+Ru)/2, and go to Step 4. •step 4: solve pR(u) and find B, dB, eB, gB, LB(F) and UB(p)•

Return to Step 2.
                                              '                      '                         'Step 5: If Bl (or B2) belongs'  to [LB(p),UB(p)],.then set x(y)==
BldB + peB + gB ( Or x(p) = B2 diB +p eB + gB ) and terminate.

                                    T     Remark 2.2 (i) In Step 5, if dBWdiB=1, then we consider

                 ( ueB + gB)Tw(ueB + gB) + ug

          Bl= B2= T •                    , 2(peB+gB) WdB

                                                             '(ii) If KV(LB(y))<O holds, KP(UB(u))<O necessarily holds by
Theorern 2.4. Thus the test for KU(UB(p)) is to be omitted. On
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the other hand if KP(UB(y))>O hoids, then KP(LB(p))>O holds and

the test for KV(LB(p)) is also ornitted.
g;:'IB, :kg(;l.;g?(:lg,SR,&i7:],?nd UB(p)-L,(p)si(R.-R.,) hoid.

     Theorem 2.5 Algorithm 2.1 terrninates after finite iterations,

and upon termination it finds x(y). ' '
     Proof: (Finiteness) After each caiculation of Step 4, five
cases (a)-(e) as illustrated in Figure 2.la-2.!e are possible. In

case (d) (or (e)) it iS clear that

       tt
          x(y) = LB(p)dB + yeB + gB (or x(p) = UB(p)d.B + peB + gB)

                                                          '                                     'holds. In case (c) either Bl or B2 (but not both) must belong to
the interval [LB(v),UB(p)]•according to the continuity and Mean-
Value Theorem with respect to KU(R). Thus in cases (c)-(e), Algo-

rithm 2.1 terminates. In cases (a) and (b), neither 31 nor B2 be-

longs  to the lntervai [LB(p),UB(p)]by Theorem2.4. Eirst note that

          LB(p) .S (Rk+ R.)12 5UB(p) (2.7)
          '                                     '
holds as is easily known from the updating procedure of R in Step 2

Case (a): Ru is set t6 LB(u) since KP(LB(p))<O. '
Case (b): Rk is set to UB(y) since KP(UB(p))>O• .

I:.g:y,greg,ig.ggslo:fi.f;o,:.i2szl.g::l.:hg,dgEgsr:":x,Rg,-,c2,ls at

Therefore after finite iterations, case (c), (d) or (e) ocei'urs since

R(p) belongs to a cer,tain interval [LB(u),UB(u)] with UB(u)-LB(v)>O•

(Va!idity) Termination condition itself assures validity of Algo-
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RÅí     LB(Y) (RÅí+R,)/2

(KP(LB(1.t))<O)

FigUre 2.la. Case (a)

  UB(v) R,
( K14(UB(u)) < O)

RÅí     LB(IJ) (Rsl, "R,)/2

(KP(LB(1.i)) >O)

Figure'  2.'lb. Case (b)

  UB(P) Ru
(KP(UB(p)) > O)

R2     LB(l't) (RÅí'R,)/2
 '( KU(LB(l.i)) > O)

Figure 2.Ic. Case (c)

  VB(1.i)

(Kv(uB(v)) g

Ru

o)

R2

Figure

    LB(u)

(KiJ(LB<v}>

2.ld. Case

(Rst, ' Ru )/2

=o>

(d)

  UB(p) R,
(KU(VB(1.t>) <O>

RÅí     L.B(U) (RÅí+R,)/2

(Kii(LB<v)) >O)

Figure 2.Ie. Case (e)

  UB(P)

( Kii<UB(v)) =

R
 u
o)
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2.5 Main Algorithm for Solving P

     Let B denote the optimal basic matrix of KTP(p), that is, iet
X(P) = B( p)dB + ueB + gB. ( Of course, B( u) = R(p), but for convenience,

we denote R(p) with B(p).) Now we define •
                                             '          i(B) II> {plLB(p) .S B('p).sUB(y) and x(p)3:. O}•

Then !(B) is the set of y where B becomes the opt!mal basic matrix

of KTp(p) and for p on I(B) we can write down x(v)= B(p)dB+veB+gB.

In other words, the shape of z(v) with respect to p on I(B) is de-

termined. If z(p) crosses z(p)=E(b) on r(B), then the optimal su-

lution will be found. For this purpose, let

                              '                  '          ilB 2sup {ul vE i(B)} '•

                  'and yl54sup {ulpE I(B), Z(p) sE(b)}.

                                tt                                      '                 'When pth=", . ,•
                   '          x- = B( eg)dB + theB + gB

                             '              '             '
holds. But in case that pb<", we have to continue the search for
". Now define another type subsidiary problem pR with a parameter

R)Oe•
                      '     '       '     pR: Maximize E(Åë)Tx

          subject to E(a)TxsE(b)-KaR,

                              '                         ttt                                '                                       '                     A x<B                            , x> O.                      1-1 --
Lftt xR and uR denote an optimal solution and the optimal value of

                                                   '                         '         '     Proposition 2.1 If an optimal solution xOO of PUO satisfi.es

                                                     '
                            '        '                                     '                                                      '                                                      '                                                '
                             '                               -22- •



          E(a)T.UQ + K {o:+ (xOa TwxUa )t} < E(b),

                     a ""
then xaO becomes an optimal solution of P.

     Proof: Since any xGS satisfies

      . Ka(u;+xTwx)ez,Kctuo, . .
pUO is a relaxation problem of P. Therefore by the assumption
xUOE s, it is clear that xaO is also an optimal solution of P. J

                                     '     proposition2.2 if xR satisfies - ,

                                                '          E(a)TxR<E(b)-K R, '
                          a
                                                'that is, there exists a gap between E(b)-K R and E(a)TxR, then •

pR.E(c)TxR>p" holds. •' ct '
            -
                     R                      <", then •     Proof: Assume p

                                  '          E(a)Tx" >E(b)-K.R '
holds, for otherwise x- is feasible for pR and pR> p-=E(c)Txee
holds. Now consider i-[X4xxR+5rxsc. Then -

     E(b) -- E<a)Ti X-• K.R = x(E(b) -- E(a)TxR-bK.R)+'5[(E(b)---E(a)Tx'-K.R)

                       -- xsR + 'Xs sc = x( sR -- sce ) + sN '

2;ils;. .w2g:g.Si/" E,(.b l;E, ga ue ;,:cte,iO, ."g? :," /".E iR tse ,( ?kT\;KKe R, '8

>O and AlxX)Bl, xX)O, and therefore xX is feasible for pR. a

                                                             '
     E(c)TxX =xE(c)TxR+IX'E(c)Txsc=xuR+5rpce> uR '
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and it contradicts the optimaiity of xR. Therefore pR>p- resuits.
                                                     i-- Ll
                                                            '
   ' property 2.7 pR is a nonincreasing function of R.

 , Proof: As R increases, the feasiblg region of pR reduces.

Therefore vR is a nonincreasing fun.ction of R. O ,
           '     property 2.s yR is a concave function of R. /

                                     tt                          '     Proof: For R,>R, and1z,x),O, let iifxgxRl +5'R2. Then

                                                          '                                    '                                               '     E(a)T(x xRl. +5 xR2) s x(E(b)-K.Ri')+5 (E(b) '- K.R 2.) ' .,

                                -•                    ' =E(b)-KaRx' ' '' .

and Al(xxRi+XxR2)sxBl+XBI=Bl, )LxRZ+XxR2io '
                                          '              tthoid, i.6., xxRi +5rxRi is feasibie for pi[x.. since

     xpRi + -x uR 2LE(c)T( xxRF+ 15 xR2)

and xpRi45rpR2spfix,.E(.)T.iEx

                                                          '                       'hoid from the optimaiity of xRx for pFx. Therefore yR is ' a concave

function of R• O
       t'L"/ '/     Now iet R-4(xFwxee+qg)2P, then xsc is feasibie for pR' and so

;giglll.Sollows. By Property 2.8, Property 2.7 is strengthened as

           '     property 2.7i Except a first portion pR is a monotonicauy

decreasing function of R. . '
                           'Figure 2.2 and Figure 2.3 show the shapes of z(p) and pR respec-
tively. Note that the optimal value of pR(P) is not less than.p

                                     R(p)since x(p) is a feasible solution of P . Now we are ready to
describe our rnain algorithm for solving P. !n the algorithrn, the

                                                      '
                                                     '                                              '                           '                                      '
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foUowing notations are used. .
                                                           '     pc; current. p, ir; an upper bound of yce, R(x)4(a:+x'Twx)t,'

                                                           '
     B ; basic matrix corresponding to the current optimal solution
      c
     Bc; current solution of Q-equation, x'Sx(Sc).

         '                                '                                               'Algorithm 2.2 •• '                                           'Step O: Calculate fi, solve P(il) and find x(il) and z(g) by using

Algorithm 2.1. If z(g)5E(b), then set x"-x(il) and terminate.
Otherwise set u+-- g, B- o, and ye- (-M) (M is a sufficiently

large number). Go tp Step l. ' '
Step 1: Solve P(#c) and find x(uc), optimal basis Bc and 1(Bc).
If pscEr(Bc), then xee-t--- Bc(y")dlB +ptteB +gB and'ter'minate. !f
pN ÅëI(B.) and iTB >p-, then go toC Step 2Åí. IE pscfI(B.) and iB <pce

(in this case irBC= uB ), then go to Step 3. . C
step 2: rf ir >irE;,theCn set ir--VB and '
                 cc                (p - lg.)E(b) - yz(pg.) + pb.z(p)

          Yc- -                          z(y)-z(pth )
                                   c
                                     'and return to Step 1. IfVsilB and R(x')>B, then set !!.-R(x'-),
solve pR(X') qnd caicuiate pR(Xg): Go to step 3. it'iTLtVB and

                                                     •cR>R(x'), then set .-- Ir:=                                                      '                                                         '                                            '                 . -. L                (u-p" )E(b)-pz(p)+pb z(u)

                     cc                                    '          p --           c z(V)-z(ub)
                                   c
             '                                   'and return to Step l., 'Step 3: solve p(uR(X')) and calculate z(pR(X')).                                                  If E(b) >
   R(xt)        ) andz(p

'
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     (u-pg )E(b)-pz(p)+pb z(p)
           C c <pR(x'),
               z(p) -• z(pg )
                         c
then set'  p6-pR(X') and-return to step i. if E(b)=z(uR(X')),
then set x"-,-x(pR(X')) and terminate. otherwise set

                 (p-yls )E(b)-pz(pg )+pils z(p)

          p....- c c c           c z(V)-z(ub)
                                    c
and return to Step 1.
                     '                                               '     Theorem 2.6 Algorithm 2.2 finds xsc at finite iterations.

     proof: (Finiteness) Each pR(u) has the same constraint con-

dition KTpR(u) except parametrized right hand side with respect to

        'R and p. The number of basic matrices satisfying nonnegativity and

complementary condition is finite, and by the theory of parametric
                                                    'quadratic programming, R(p) corresponds to an optimal basis B=B(y)

That is, p istdiv'jded into I(B)'s deterrnined by basic matrix B.

Algorithm 2.2 searches for " among those regions I(B) at most once

for each B. Therefore finiteness of Algorithm 2.2 foilows from
finiteness of the number of I(B>.
                                         '                                               --(Validity) Theorem 2.2 assures the condition so(p)=O in Theorem
2.1. Termination condition that z(y)=E(b) assures validity by

2.6 An Example
     We consider the ,following example Po.

     po: Maximize E(CIXI+C2X2)

          subject to Pr{alxl+a2x25b})O•7,
            '

.
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                  3xl+2x2 s18, xl+2x2 510, Xl,X2iO,
 '

where E(c)=(s,6)T, E(b)=32, o,=4, E(a)=(s,6)T and w= (8 9).

Po is transformed into the following deterministic equivalent

probiem P. .                              ttt tt
                                                '    p: Maxirnize 8xl+6X2 . '
' subject to 5xl + 6x2 + O.5( 16 + xi + x22 )S E 32, .'

                  3xl + 2x2 518, xl + 2x2 510, xl , X2)O.
      '
Step O: il -A max {8xl + 6x2l3xl + 2x2 518, xl + 2x2 SIO, xl, x2 2 P} = 48•

Solve P(il) and find x'(uN) and z(g).

    P( il ) : Minimize 5xl + 6x2 + O.5( 16 + xi + x; )'l'

          subject to 8xl + 6x2 i48 ( = fi) , 3xl + 2x2 518,

                 '
                    xl+2x2 •510,.- Xl, X2 iO. '

Algorithm 1

Step 1: Set R2+-4, Ru-M and R-5. .

 . pR( v'V); Minimize R(5xl + 6x2) + O.25(16 + Xi + XZ)

           subject to 8xl+6k2 Z48, 3xl+2x2 51'8,

         . .xl+2x2 EIO, xv x2ZO. .
    KTpR(il):' Vl- O.5xl+8f-3qi-q2=5R, <}2-O•5x2+6f-2ql-2q2=6R,

                     AA                                               A       . 3xi+2x2+sl=18, xl+2x2+s2=10, 8xl+6x2-so=il(=48) .

               A A AA AA M             xlvl+ x2v2+ slql+ s2q2+ rso= O,

                   '

                         -28-



                     AAAAAAAA              xl, x2, vl, v2, sl, s2, ql, q2, r, soiO.

                                        'xR(p) is given as foUows: xl=il18, x2=O, <}1==O, {}2=9R/4-3il164,
gl = i8 -3 ill8, g2 = 10 - il/8, go =O, ql = q2 =O, f= 5R/8 + il1128.

             A. AAA                ssr         xv          1212
        "l•o o o s
          2.
         0 1 0 0 6    BL- 3 p i o o , diB=(g) ., eB= (!68) , gB =( 8),

                                    '         10010 ••
         80000
    R 2 i/48 (=LB(g))•
                     N2 N2
step 2: KY(LB(fi))=i6+lg7i' (Ils)2'O'

step 3: KU(uB(il))<o. Therefore R(i',"J) exists on [71tlT,co) and given

as follows.

         R( il ) . (16 . il2/64)'}.

step s: x(fi)= (PNo/8) . Return to Main Aigorithm.

Since z( il) =5 fi/8 +O.5 16 + il 2/64 = 30 + !i5 > 32 =E(b) , set V- 48( =il )

                                         'and R-4(=u,). Go to -Step 1.
   -
        '    P( pc): Minimize 5xl + 6x2 + O.5 16 + xi + x22

            subject to. 8xl + 6x2 2L pc (= -M), 3xl + 2X2 .:S 18,

                              '
                      xl+2x2510, xl, x2iO•

Using Algorithm 2.1, we ob tain dB = eB = gB = (8) and I(Bc) = (-oe ,O)•

Therefore pB =u" =O and z(p)=2 on I(Bc). pTB <p", Le., "EI(Bc

                                'Go to Step 3.

).
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step 3: xt.(g)

E(b) = 32,

         p ---          c

Return to Step 1

Step 1: So!ving

    X(Pc): Xl=
      '            A          '            S2

R(P.) = 16 + p./64

eB =(i68) , i(Bc

  c
solve

and obtain N

, R(x')=ra16=4,

(P-PIIs )E(b)-pz(p
     c
    '

 R(x')

   '

6 )+pB
 c

p4.pge.4s

 z(V)-

                  z(p) - Z( VS.)

         .
         P(pc), we obtain X(pc) given

                     AA          pc18, X2 = O, vl = O, v2 = 9R14 - 3pc/64,

        =lo-p.ls, go=o, ql=q2=o, f=sRls+y

                                       '                                    '      pc148=LB(P.))'. ' '
izslg-;: , .(pc).sp.ls.o.s 16.ug/64,

         ) = {p 105p: 48 }. Obviously psc E I(B

                        tt
   z(p) = 5p18 + O.5 16 + y2164 = 32
                      c                                   '       '
    y"=4s•62 and xee= (Y"o18) . (5b70) .

    . Since z(48)>

= 45.5616.

as follows.

       A       sl = 18•-3 pc !8 ,

                 '       1128, (RZ,,
      c
            '

 dBc= gBc= (8) '

     ). Thus we
    e
        '      '    '
        '
           '

      T (E(c)       xsc= pee.)
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                             CHAPrLR 3

                    '                A STOCHASTIC TRANSPORTATION PROBLEM
                                   '

3.1 Introduction'
                                                        '
     In this chapter we consider a stochastic transportation problem

 with simple recourse. Stochastic programs with recourse have been
investigated by many authors ([4, 5, and 9]), but there are few

papers giving the exact algorithms to obtain the optimal solution
for them.

                     tt                      tt
     The main purpose of this chapter is' to derive a new algorithm

for obtaining the optimal solution of `stochastic transportation .

problem. In the following section, two-stage formulation of this

problem and some properties of its optimal solution. and optimal

value are described. In Section 3.3 we investigate the behavior of

the objective function. In Sectiori 3.4 we give an algorithm for

obtaining the optimal solution. And in Section 3.5 an illustrative
exarnple Å}s given.

                                           '3.2 Two-Stage Formulation and •Some Properties

     Suppose that there are m-sources and n-destinations, then the
                                     'following transportation problem TPo i.s considered.

                   m ,n
    Tpo: mnimize iEl jglCijiij

                     n                                                    '          subject to' 2 x..<a.., i=1,2,g..,m, (3.1)
                    j.1 iJ "" i
                                                    '                     m
                    iglXijlbj, j=1,2,•••,n, • (3.2)
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                     x..'> O, i=1,2,...,m; j=1,2,...,n,
                      iJ t-

where
       '
xij is the quantity of items shi`pping from source i to destination j.

c.. is the shipping cost per unit from source i to destination j,
al.Jis the quantity of items suppiied at source i,

b. is the positive random demand at destinatioh j, whose marginal
 J
                                                   'distribution function is F.(.). ' ' ' .                          J
     Assume that a. and c.. are positive. .Since each b. is a random                  1 IJ ,Jvariable, the constraints (3.2) may not be satisfied. For the di.s-

erepancy of each j--th constraint we impose the penalty pj per unit.

And in addition we consider the penalty for oversupplying to the
j-th destination, which is denoted by q.. Then the following two
                                      J
stage problem TPI is considered.

                     mn .n     Tpi: ' mnimize ik'jkcijxij+E[minj2i(pjy:• +qjY3•)-]

                      n
           subject to jglxijÅíai,.i=1,2,•..,m,

                      rn                      liXij +y3• -y3• =bj, j--i,2,...,.,

                     x.., yt, yT > O, i=1,2,...,m; j=1,2,...,n,
                       IJ J                               J-
where y:. and y3. are the undersupply and the oversupply to the j-th

destination respectively, which are represented as foilows; for
                                          '                                                        'j=1,2,...,n,
                       .t.                  m-m  '          yS• =bj-iSlxij and y3• =O if bj >itLlxij,

                    ,m          y3• =O and y]=igixij-bj if otherwise.

                                                               '                                                    'Let X" denote the optimal solution of Problem TPI. According to

the well-known results of two-stage programming under uncertainty

                             '                            '                                  '                                         '

                               - 34 -



([6, and 8]), Problem TPI can be rewritten as the foliowing problern

TP :

                           '                     mn n     TP2: Minimize iEl j.glcijxij+jSl{pj'I.coj(bj-uj)dFj(bj)

                                         u•                                   . + qj 1• -J.( uj - bj)dFj(bj )}

                       n                                              '           subjegt to j91xij5ai, i=i,2,•••,m, (3•3)
                                                              '                      m•                       E x..>u., j=1,2,..e,n,                                                            (3.4)
                      i.1 1J-J .
    . . xijZO, i=1,2,...,m; j=1,2,...,n.

In the inequalities (3.4) the equalities hold at the optimal solu-

tion. rn order to solve Problem TP                                     we con$ider the following                                  2 '.
transportation type probieTn TP3. .'

                    rnn •     Tp3: Minimize ili jliCijXij

                      n
           subject to jkxij5ai, i=1,2,...,rn,

                                           /.                     •m
                      iE!xij -> uj, j=i,2,...,n,

                     x..> O, i=1,2,...,m; j=1,2,...,n.
                       IJ- ,

Let xce(ns)=(xt.(u), i=1,2,...,m; j=1,2,...,n) denote the optimal
             iJ
solution of Problem TP                         Then the following property holds. ,                     3'

     Property 3.1 For arbitrarily fixed uj (j=1,2,...,n), Problem

TP has the same solution as Problem TP .

     Proof: For arbitrarily fixed uj (j=1,2,...,n), the penalty

term of Problem TP2 is a constant. Therefore Problem TP2 is equiv-

alent to Problern TP3. 0 '
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     Furthermore we consider the following dual problem TP4 of
                                                        'Problem TP. ' '
                      rn n
     Tp4: Maxirnize -iSiaiai+jkUjBj

                 '                                .., i=1,2,...,rn; j=1,2,...,n,           subject to -'ori+Bj5CiJ .
                                         '                                                      '                                              tt
                      ai, Bj 2:O, i=1,2,...,rn; j=1,2,...,n.

    '                                     'Let al,(un), BS.(uz) (i=1,2,...,m; j=1,2,...,n) denote the optimal

                       . Then from the dualitY theorem of Linearsolution of Problem TP                      4
Programming ([1]) in case that both the problems TP3 and TP4 have

finite solutions, • ' '                                     tt                                       '                   '           mn' m n          ill jilCijXl':j(U)f-iE.laict l• (n]) +jSlujB:;(ui) (3.s)

holds. Moreover the following Property 3.2, Property 3.3 and
Corollary 3.1 hold.
                 '     Properby 3.2 The optirnai value of Problem TP4 is piecewise
linear and nondecreasing convex function of u. (j=1,2,...,n).
                                            J
     Proof: For any u' and Ea", we define

          uXe xu,+(1-x)an", for o<x< 1.
                                 -- -                         '
                                                             'Frorn the optimality of (a-(im),as ee(nn)) =A (ctl(un),...,ctms(u),Bl(nn),...,

                                     tt                                         '            m n. m n          -,S,aia: (U' ) +jS,u3 B3( op ' )) -,E,aia: (uX ) +l,u3 B3(mpX )

                                                            (3.6)            mn mn          -ikaia: (u") +jkub'BS• (u")l --llaiar• (uA ) +jglu3B3(uA )

                                                   - (3.7)

hold. Fpom (3.6) and (3.7)
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     X{-iilaia: ( U) ' ) + jSIU3 B3( an ' )} + (1- x) {-bi.Xlaialli (u") +jilu3{ B3( ugtt ) }

        mn     Zt "iSl ai ct li•I ( uX ) +j gl ( xu3 + ( 1- x) u3i ) Bli ( .x )

holds. This proves the covexity of the optimal value of Problem TP4.
     Now iet uit<uii for some k, then

                     '                 '            mn          -iilaia:• (uft) +jglujBj (uft) t uftBk(uft)

                        fk •
                '             mn         i'illaia: ( uft ) +jgluj Bj ( anft ) + uftBk (`enkt )

                         fk
                                        '             m' n         i-iglaia r• ( anft ) +j gluj Bj ( uft ) + uiak ( uft )

                  ' #k '
                                 'frorn the nonnegativity of Bk, where uit=(ul,...,Uit,...,Un) and Uii'=

(Ul,...,Ui,...,Un). Therefore the optimal value of ProPlem TP4 is

nondecreasing function of u j. According to the theory of sensitivi-
ty ana!ysis of linear programming the optimal solution (a'e(k-),Bce(u))

does not change in some region of u. Hence the optimal value of
Problem TP4 i$ a piecewise linear function of ui. O

     Properby 3.3 The objective function of Problem TP2 is a convex

function of an. !f the distribution of b.is continuous, it is a
                              •J
strictly convex function of an.

     Proof: See the reference [8]. M

                   '     Consequently instead of the objective function in Problern TP2,
                    iit is sufficiently to consider the following objective function
                                                     '                               'hereafter.

             mnn                                         co     G( iut ) = -i-reZ laia l• ( iut ) +jllujBli• (u) +jll{Pj f.j (bj-uj ) dFj(bj )
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                     . +qj f`li,2(Uj-bj)dFj(bj)}. (3.8)

Let u- denote the minimum solution of G(un). From Property 3.2 and

Property 3.3, the foilowing Corollary 3.1 holds.

     Corollary 3.1 G(im) is a convex function 6f u. If the distri-
bution of bj is continuous, it is a strictly'cohvex function of an.

     We can solve Problem TP2 because an giving the minirnum of G(u)

is identical with one giving the minirnum of Problem TP2. Actual

optimal solution may be found by solving Problem TP3 with this u,
and so we may consider that this u ffs also the optimal solution

hereafter.

3.3 Behavior of G(u) .
     In this section we inyestigate the behavior of G(u) in detail..

The domain of u can be divided into several regions so that the

optimal solution of Problem TP4 does not change in each of them.
Though G(ull) is continugus, it is not necessarily differentiable

on the boundary of each region. Let A(an) denote the region in.
which ct:(ui) and eS.(nn) (i=1,2,...,rn; j=1,2,...,n) do not change.

The finiteness of the number of these regions is assured ([11).

Each boundary may be contained•in several regions. If we choose an
arbitrary enO, the function G(an) is differentiable in the region

A(nnO). (If uO is on the boundary, A(uO) is one of the regions

containing the boundary.) Moreover the foilowing function .

                 mn     GO (u; unO ) 4> -i i, ia,.. a: ( uO ) +jgiuj BJee. ( utO ) +j l/llpj fco.j (bj --uj ) dFj (bj )

       . . . ' +qjfl j; (uj -bj)dFj(bj )} if3.9)
                   '
is differentiable over the whole domain of ui. Then GO (aa;uO) coin-

                                        '                                                   '                                                              '
                                                      '
                               -38- '
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cides with G(im> in the region A<uO). The partial derivative of

GO(u;enO) with respect to uj is given as follows:

                        '                    '                              '          aGOi al.' ;. i"LO). Bs(,nO).(pj + qj )Fj(uj)-pj. <3•10)

                                                    '                                      '
Note that (3.10) is the equation of u. only. Therefore the n-dimen-
siona! vector ues(uO) giving the rninirnJ um of GO' (u;axO) becornes as

follows: .                                   '                                              '       • ... {.j luj E Dj },pif ss. i,8g?) ` '-qj'

     u3.(anO)= min{uj1Fj(uj)l Llj;Tdi-ij.qj }, if -qjs,Bj",(uaO)<pj,

      ' min{u.lu.ED.}, otherwise, (3.11)
                      JJ                   J
where Dje{ujlxX(un) is feasible}. Then the following theorem holds.

     Theorem 3.1 If uasc(unO) belongs to A(unO), then it also gives '

the minimum of G(an).

     Proof: From the minimality of u"(unO) and the optimality of

(aee(a]),B-(u)), the following inequalities hold.

          GO(ui-(uO);utO)5GO(nn;nnO).SG(aiL),

where- the second equality holdS at uEA(uO). Since u-(uO)EA(uO),
GO(u.(anO);i]O)--G(u-(ttpO)) holds. Therefore -S

          GO(imsc(imO);anO) =min GO(ut;uO).E min G(uz)

since GO(im;uzO) is a lower approximation function of G(u). Z
                                                                '                                              A                    ..-.     By testing whether (a" (uce ( uzO ) ) ,B sc ( eE sc ( ttzO ) ) ) . ( cx sc ( ugO) , es "( q.O) )

or not, we can know whether gaee(nnO) exists in A(uO) or not. Even

if (cst}(Ra"(uO)),B"<uee("iO)))f(cnne(uO),B"(imO)) for any uOE D, the

following informations about the optimal solution of G(in) can be
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obtained from the theory of convex programming ([2]).

     Theorern 3.2 rf u-(anO) does not belong to A(uO) for any nzOc D,

                         'then ui giving the minimum of G(u) is attained on one of the bound-

                                     '  'arles.                     '                                               '
     Proof: Since G<u) is convex and D is closed, there exists an

optimal solution. Suppose that this optimal solution uce does not

exist on any boundary. Then llzsc beiongs to the ir}terior of some
A(uO). Therefore u- is the minirnal solution of GO(an;uO), i.e.,

ensc(anO). This contradicts to the above assumption. V

3.4 Algorithm
     Int.thts sectiQn we give an algQrithm utilizing the results in
                                   'previous sections. ' • '                                                   '                                                  '                                '     From Property 3.2 we obtain an upp'erbound for the optirnal so-

lution as the following. We define Qj(uj) as follows:

                            '                                                               '          Qj(uj)epjf.eOj(bj-uj)dFj'(bj)+qjf:gL(uj-bj)dFj(bj). (3.12)

we define the rninimum solution of Q.(u,) by u9•. Then u9 can be
                                  JJ                                            JJgiven as foilows:' '•
                               p.          "JS• =Min{Uj IFj .( uj )i p .,.Jq . }•

             • JJ
From (3.8) and (3.12) we have

                  mnn          G(U])=-iE.laia1•(u)+jilujBS(i")+jlQj(uj)• . (3•13)

                               ttThen the following property holds.

                    ,     property 3.4 For any j, ut<u9..
                            .J-J ,
                                                 '     Proof: This property is easily proved from Property 3.2 and
the equation (3.13). ll
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     Now we propose an algorithm based on the above properties.

F'r ?t,le,,i:fS'?:,:,1]B,Lggodii,i.i.".Gg,(j2ig2es'',n,'o,a,,S,,,.tf,ei.l,?ISl

                   .        A xl)t 'where E.=(O,...,O,e,O,...,O).
       J

                 'step O: Set anC-wt (ut is an arbitrary feasible solution so that

O:iaR:Åí"nS). Solve Problern TP4 with im=imC. .

Step 1: !f every aGj(u]C) contain O, then c n]sc +-- uC  and go to Step 4.
                                u=an-(u ) and go to Step 2.Otherwise solve Problem                           with                       TP4
Step 2: If (a'(mpC),esee(diC))=(aN(usc(enC)),essc(u-(uC)), then uC-

un-(imC) and go to Step 4, Otherwise go to Step 3.

Step 3: For j with the greatest value of min{lhllh'rEaGj(iiC)},

:l"IEL:tl:fi9.YnZt s.-IG,{1,",gcL.ll;'.YS.':L.63s:Ce'+z.''wgn2.',cg".tai"s o• set

                                   cStep 4; Solve Problem TP3 with u]=u (for example, by using an
algorithm due to [3]) and terminate.
                                             '
     Theorem 3.3 This algorithm finds X" at finite iterations.

     Proof: Frorn the theory of sensitivity analysis the number of
regions A(iuLO) is finite. And the dimension of u is finite. There-

fore the algorithm finds Xee at finite iterations. O

3.5 An Example •.
                              '     We consider the following problem with 3-sources and 2-desti-
nations (see Figure 3.1):
                    i

     Minirnizec x +e x +e x +c x +c x +c x                                      22                                          31                  11               11                      12                         12                               21                                   22                            21                                             31                                                 32                                                    32

     subject to xn+.XÅ}2:6,
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               X21+ X22 E4,

               X31+ X32 55,

                    '               x +x +x >b                        31-- 1'                    21                11
                   '
               x +x +x >b                             2'                        32--                    22                12

               Xll, Xli, X21, X22,' X31, X32iO,
                                  '                                             '                                          '                '                '               ttwhere 7.3 5.8
         (Cij)= 4.0 3.5 ,
                 3.2 5.0

and each b. has identical uniform distribution between O and 16..
We assume Sl=p2=10 and ql=q2=6. Then (u:,u:)=(10,10).

                             'step o: anC=(6,6).
                               tt
      , (enve(uC),as ee(uC)).(O,2.3,3.1,6.3,5.8).

Step 1: aGl(imC)={2.3} and aG2(unC)={1.8}. .
        ua}(uC) =(3.7,4.2) and (c"sc(an"(uC)),B"(ansc(uC)))=(O,1.5,

3.2,5.0). .                   ttStep 2: (asc(uC), er(uC))f(cues(ansc(uC)),asN(.sc(.C))).

     'Step 3: ui=5 and hence tuC=(5,6).
        (at sc (anC), Bee (enC)) = (O,2.3,3.1,6•3,5•8) •

Step 1: eGl(uzC)={h1-1.02h:S1.'3} and aG2(nnC)={1.8}. tusc(enC) =
                                      '(5,4.2) and (a"(u-(uC)-),as"(uee(uC)))=(O,2.3,3.1,6.3,5.8).

Step 2: (cx-(unC),B ee(a]C))= (a ee(ez"(wC)),B sc(enes(uC))), therefore
                         .t.lit.. .uC.(5,4.2). ' ' '' '                                  '                   t'
 '         X-= O 4 .
               50

o '
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                             CHAPTER 4

                 STOCHASTIC SPANNING TREE PROBLEIVIS

4.1 Introduction

     Until today the minimal spanning.tree problem has been well
studied and many efficient algorithms such as [3, 6, and 7] are

known. •This chapter generalizes it and proposes stochastic versions

of minimal spanning tree problems where edge costs are not constant,

but random variables. • '                                             '
     Consider the construction of a communication network which con-
                                       'nects some cities each othdr directly or indirectly.'If each con-

struction cost of line between one city and other city is determin-
istic, the problem becomes the minimal spanning tre.e problem as is

well known. In reality, however, those costs vary with time, and
so they can be considered as random variables. In this chapter we
consider two types of problems. One problern is to find an optirnal

spanning tree and optimal budget under the condition that the prob-
ability with which total cost exceeds budget is below a certain
level. Another problem is to find an optimal spanning tree and

optimal satisficing probability level under the same chance con-
                                                         tt                                                        '                                     '           'straint. '
     In Section 4.2 we consider the first type problerp and propose

a parametric type algorithm.whieh finds an optimal spanning tree in
o(m2n2), where m aRd,n are the number of edges and the number oÅí '

vertices in a given graph G respectively. In:;Section 4`3 we qonsid-'

er the second type prQblem and prQpQse another parametric type algo-

rithm. ThQugh the problem is cemplicated, the algorithm also finds
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an Qptimal sQlution in Q(m2ri2) computatiQnal time.

                                         '4.2 Problem Formulation

     Let G=(N,E) denote undire,cted graph consisting of vertex set

N={Vl,V2,...,vn} and edge set E={el,e2,...,e !n}:NxN. Moreover
cost c. is attached to each edge e.. Spanning tree T= (N,S) of G
;grad:2gll:l)graPh Sat!SfYing the follQwing conditions. .(see [2]

                                  '
     (a) T has the same vertex set as G.

     (b) SsE and ISI=n-1, where ISI denotes the cardinality of

          set S.
     (c) Tis connected. ' ' '
fono(:g?.n T Can be denoted with O-l. variab!es xi, x2,..., xm as

     T: x.=1 if e.ES,          11
         xfo if ei K,s•
                                       '
Conversely, if {eilxi=1} becomes a spanning tree of G with vertex

Set N, x=(xl,x2,...,xm) is also called spanning tree hereafter in

this paper. '     Ordinary minimal spanning'tree problem is to seek a spanning
tree x minimizing EY..lcjxj. In many real situations, however,

cj's are not conistant but random variables. So we consid'er the

following two types of stochastic minimal spanning tree problem.

     Type (I): Specified Probability Level Model

                                       '         Minimize f
                          '
                        rn
          subject to Pr{ E c.x.< f} >a,
                       j.1 JJ- -
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                     x.=O or 1, x: spanning tree,
                      J

     Type (ff): Variable Probability Level Model
              '                                    '        '
          Minimize f- Xct

                         m
          subject to Pr{jglcjxj5f}2a,

                     xj=O or 1, x: s"p'anning tree,

       'wPere each cj is assumed to be di?tributsd according to the normal

             with mean y. and variance u.distribution                                         and they are mutually                        JJ                                              'independent. We assume that 1!2 < ct < 1.
                                   -
     The chance constraint which is common to both problerns is
transformed as foilQws, if 7:.lpi.xi. fO. ([1, 7, 10, and 11]).'

         m, rn •     p. {jgi(Cj ' Pj )Xj < El:,J'2ELIi21iilE "JXJ} >., (4. o

        7E..'Mzq.x.-
          j.1 JJ .j..1 JJ
                                 '                                      'Since 2:.1(cj-pj)xj/(E:.luixi.)t is a random variable according to

the standard normal dictribution, (4.1) is further transformed into
                                                     'the following deterministic inequality.

             m
          f- E u.x.
            j.I JJ.Åë-1(.), (4.2)
          kE..-
            j.1 J J

    '
where Åë(') is the distribution function of standard normai distri-
                    `bution. Therefore (4.2) is rewritten as foilows.
                            ' ' f2 jl/ "jxj +K. /j l/liuixi•, (4.d)
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where K A=o'-1 (a)>o (since 1/2<a<O. By using (4.3) the problems
of Type (I) and Type(I[) is transformed into the following deter-

ministic equivalent problems respectively.

     Type(I)
                                       '                    m • rn     sp , Mi.imize js"j xj + K. (jg16 e. xj )-I'

                                            '          subject to xj=O or 1, x: spanning l:re.e.
            '                                                 '     Type(E)
                    mm     VP: Minim ize jSlpj xj + K. (jiloi xj )Tl' -XO(Ka)

                                          '                                                 '          subject to xj=O or 1, x: spanning tree.

Note that the fact x4=x. is used in the above transformation.
                    J j'

4.3 Chance Constrained Spanning Tree Problem with Specified
     Probability Level

     In this section we treat tne problern of Type (I), i.e., Problem

SP in detail. In order to solve SP, the following auxiliary problem
SP(R) with a posi•tive parameter R is introduced.

                        m .m     sp(R): Mipimize RjSiUjXj+KajSi,Oi'Xj

             subject to x.=O or 1, x: spanning tree.
                         J

     Problem SP(R) is an ordinary minimal spanning tree problem with

                      2R •each edge cost Ry,+Ko.. Let x denote an                                           optimal                                                   solution of
                 J ct J
SP(R) and

     z(B) gjl/!,pjx5• + K. (,E/,ui• x5• )S•

                  '
Then the following properties hold.
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     Propertx' 4.1 2tiFlp'jkli. is a monotonically nonincreasing func.

                       '                             'tion of R>O. '
                -- • RR     Proof: For R>R>O, from the optimality of x and x for
                        -               '                                                        'SP(R) and SP(R),

     RJ :/ "J xit + KaJ :/luixltl, 5RJ mM/. "Jxli + K. J/loexli , (4 4)

     iiJliUJXS+KctJ<i!UixS :LRJIipJxS+K.liogxS , (4.s)

hold respectively. Therefore from the above two inequalities we

have

                m m-          (R-i) E p.xB<(R -- fi) E p,x}i .
               j--1 J J - j.I J J
                          '
Since fi>R, we have

           m m-           L" y.xli ,l, Zu.xli.O (4•6)
                       JJ              JJ          j=1                   j=1
                        '                                     '     Property 4.2 L"Mj=lui.x5. is a monotonicqlly nondecreasing func-

                                                          'tion of R.

                                    '     Pr.oof: Let R>R>O. From (4.4) and (4.6)
                                          '          ,S,uf•xS• •::,/L, ,o'ixi•

since Ka>O• O ,
     Now iet D(x)A- (E T..iuixj )•"I' for each spanning tiree x and iet x-

denote an optimal solution of Problem SP. Moreover, for conven-
                    ,ience, D(xsc) is denoted Dsc simply. Then the following lemmas hold

                   '                                                 '     Lernma 4.1 For RS2Dee and any spanning tree i such that D(i)
     '> Dsc,

.
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     RjSiPj3Ej "K ajSiUilj ' RjSiPjXS' ' KajkOi'XS

       '
holds.

     Proof: From the optimality of x"for Problem SP,
                                                '                       '                          mm     mm     •jl"jXS'Ka (j.giui• xS )t:S jSiyj9j +K. (jgioi• IEj )t ' (4•7)

                                   '                                                 '                       '
holds. Muitiplying both hands of (4.7) by R such that 2D"2 R> O

and rearranging appropriately, we have ' .
      m• m m -m     RjliPjXS' ' KajliO'S'Xjti RjiiPjiEj ' KctjSiUi'5Ej ' Kqe'

-where
     e 2 J:/ loixS - J:/ lugSiJ + R {(Jl/ loi5EJ )Tl' - (J:/ luixJce )-!'} •

            '                                   '                                                  ttThen it is sufficient to prove e<O. Using Dee and D(ii), e is re-

written as follows.

                           '           '     e .Dsc2-D(i)2+R(D(x) -D") = (D" -D(x))(D' +D(i) '- R) •

                     '                                    '            '                                                     '
Since DN < D( x"" ) fr om the assumption of th is lemma and Dsc + D( x'- ) -- R >

2Dce-RZO, e<O is deduced.. O ' '
             '              '     Lemma 4.2 For R2:2Dsc and any spanning tree 2 such that D(2)<

Dee,-

      mm                         mm    RjS,pj2j + K.jS,ug•2j ' RjS,ujxS• + KajS,ui•xS•

             '
                                 'holds.

    Proof: We assume

      rn rn                         mm    Rj liyj2j +K. l.iui2j iS Rj gipjxS• +K.jSiui• x3• (4•s)
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From the optimality of xsc, the inequality
                                                   '     j2/iujxg + K. (j:/ i6i• xg )t:s j:/ iuj2j + K.(jl/1iug• 2j )-t" ' (4•g)

                        'Aholds'  Th :'{/illlg';:I';<t!i/ll::;'::'Tptlon D(x)<Dve and (4 9) we have (4'lo)

Therefore (4.8) can be rewritten as follows. .
             Ka (j :/ ia i• XS -j!/ iU i• 2j) ' • ' '

          RSm m ' .(4'il)              jll,pj51j d- j.E,pjxS• • .
                                                               '                                             '
Since '
                                                             '     j:/IPj ftj - j:/ "jX3 2: K.{(jSIO i• XS )t -(j:/ lui• 9j )-t} (4. 12)

holds from (4.9), (4.11) and (4.12) together imply

                 mm                   o4' xt - 2 u?2 .)             Ka(j Sl J J j.1 J J

         R<          - M2i M 2. i            K.{(jS,lujxS)2 - (jgiujxj)2}

          .D.2-D(i)2 ,.D..D(Åí)< 2Dee •

                  A'            D" -- D(x)

This contradicts the assumption Ril 2Dsc. Thus this lemma holds. U

                                                                '     From Lemma 4.1 and Lemma 4.2 the following theorem holds.

                                                        2D" .. 'aiso iil]::•:::I f:.i pS:b22:illl:l SOi"tiO" of SP(2D"), i.e., x , .p

                  '                                                     '
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Therefore we must find 2Dce. The following theorems give some in-

formations to find RX=2D".

     Theorem 4.2 If O<R'< 2D(xR'), then either

                  R,                    ) or Rce < R'          R,t- >2D(x
             -

holds.

     Proof: From Property 4.2, for R such that R,<R<2D(xR'),
                                                  '
          D(xR') < D(.R)
                -

holds. Therefore

          R < 2D(xR') < 2D(xR)
                     .
                                                            Rtholds. This means R" does not exist on the interval [R',2D(x                                                               ))
by Theorem 4.1.' Thus either Ree2:2D(xR' ) or Rsc<R'. O
     Theorem 4.3 rf R'>2D(xR'), then either

          R" > R' or R" < 2D(xR')
                      "

holds.

     Proof: For R such that Ri>R>2D(xR'),
                              , s-
          D(xR) < D(xR')
               "

holds from Property 4.2. This implies

          2D(xR) < 2D(xR') < R.
                -
                                           R,Thus Ree does not exist on the interval (2D(x                                             ,),R'], i.e., either
                  RtRce > R' or Ree < 2D (x            - )• o
     Now define Rij for ei, ej (i<j) as follows.
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                   22                  U-U •          R..2K i j . (i,j=1,2,...,m, i<j) (4•13)
                a y.-           IJ                      p.                   Jl
Moreover'  iet xL (xU) denote a minimal spanning tree (maximal spann-

ing tree) of G with each edge cost oi.,.and mD (MD) denote its value,

                     'respectively. Rearranging Rij such that 2VmD::Rij52(MD in ascend-
ing order of magnitude, let

          Rl < R2 <-dt. < Rk ,)

where k is the number of different R..'s belonging to the interval
                                    IJ
[2 /mD,2! MD ]•

                                                          '     Theorem 4`4 An optimal solution xR of SP(ii) for ifE [Ri,Ri+1-]

is also optimal for aU SP(R), R( [Ri,Ri+1]•

                          --     proof: Let T(R) be a 6orresponding spanning tree of xR, i.e.,
T(fi) consists of. N and edge set E(R)S {eilxi =i }. . Then from the

               Roptimality of x

          iiUt'KacrZ-SRP"'KaO; (4.14)
rnust hold for any etg E(R) and erEÅí(et,T(R)), where 'Åí(etlTfi)=

{erl edge et is contained in the loop in {er}UTR}. By the defini-

tion of. Ri, itl,2,...,k, the order of edge iength does not change

                       t tttamong•the interval [Ri,Ri+1]. Thus once (4.14) holds for a certain
    'R such that ii (!R-[Ri,Ri+1], then for any RE[Ri,Ri+1] (4.14) also

holds, i.e., x is optimal for SP(R).                                      o
                              '               '                               .t
Let

                mm          z(R) Ajs,pjx5• +K.(jS,ffiXli• )t

and
 zL g J:/iyJxJL + K.(Jl/liuixJL)'t•
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Now we are ready to construct our algorithm.
               '                                '
        '!A-ggnE-ln!!Lf!:.l,1ithm41

                                           '                                         . cL LStep.1: Calculate Rl, R2,.,..jRk and set i+--1, x ex i'and c-Z.
                       'Go to Step 2.- ' '                '                                     'step 2: If i=k, then go to Step 4. 0therwisg, set R-(Ri+Ri+1)
12 and solve SP(R). !f z(R)<c, then set xC-xR andc--z(R). Go
                       '

step 3: set i--max[min{q-11Rq)2D(xR)},i+1] and return to step 2.

Step 4: Set R+--2!MD and solve SP(R).. If Z(R)•< c, then set x--
xR and terminate. otherwisei set xee -xC and terminate.

                                                 tt                                                          '     Theorem 4.5 The above aigorithm finds an optimal solution x-
in at most o(m2n2) iterations. S
                          '                                 '   . proof: FirsV note that the calculation of Rl, R2,..., Rk Can
be done in at most o(m2iog m). For each R, xR can be found in at

most o(n2) if using prim's aigorithm [g] or Kruskar's one [s].

Clearly the number of xR checked in the above algorithm is at most

m(rn-1)/2+2 in order to find xce. Thus in at most o(rren2) iterations,

the algorithm finds xsc. O

Example
               '
     Consider the follovling graph G given in Figure 4.1,

         `

Figure 4.1.

e

e2

e le    6

 e3

   es

Graph

     ,

in Example
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For

tion

G each

 Tabie

 with

 cost

 4.1

mean

 is given in Table 4.1.

u].dgXdCvOaSrtSia:cfeGoi,V(pJ'qJ2, )denotes a
normal distribu--

edge edgecostdistribution

el N(16,O.6)

e2 N(49/3,O.1)

e3 N(14,1)

e4 N(44/3,O.7)

es N(15,O.2)

e6 N(43!3,O.2)

Then the problem of Type (t) is as follows.

          Minirnize f

                          6
          subject to Pr{jSlcjxj5f}iO•8413

 . xj=O or i, j=1,2,...,6, x:spanning tree.

       -1         (O.8413)=1.0, SP and SP(R) become as follows. 'Since F

                    66     sp: Minimize j.E "j xj +ieO(jS!g i• Xj )} '

          subject to xj.=O or 1, j=1,2,...,6, x:spanning tree.

                        66     sp(R): Minimize Rji"jxj+i.OliOi'Xj '
             subJect`to xJ=O or 1, J=1,2,...,6, x:spanning tree

lige.n2izf3L. and xU are shown in Figure 4 2 Therefore mD=o s and ,

                     '                             -5S-
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Step

4.2.

k=2 .

                                           el
                 e6 e                                     4

            es O'
     Figure 4.2(a). xL Figure 4.2(b). xU.

                                   '1: Since 2/liiDT --1.414 and 2/'MDT=3.033, Rij ls shown in Table

 Based on these quantities, Rl(=R12=R4s)=1•5, R2(=R36)=2.4 and
  i-1, xC- (o,1,o,o,!,1) and c-46.3(=zL).

Table 4.2 Rij, 1.:si:sjs6 (Encircled figures constitute RÅí)

2 3 4 5 6

1 L5 O.2 O.3/4 -O.4' 1.215
2' 2.717 i.8!5 O.314 O.05

3 O.912 O.8 2.4

4 1.5 -1.512

5 o

Step 2: Since
P(1.95). Then
44.378 < c (= 46

 i.t'1f2=k, set
 xR. (o,o,i,i,o,

.3), set c-44.

R-e-

1).

378.

(Rl + R2)12 =1.

(See Figure 4

 Go to Step 3

95

.3

.

 and solve
,) Since Z(R)=

Figure 4.3.

e4

     e3

Spanning

e6

      1.95tree x

- S6 --



Step 3: Since k=2, i-2. Return to Step 2.
Step 2: Since i=k -: 2, then go to Step 4.
Step 4: set R--3.o33 (=2!M5) and solve sp(R), Again xR=(o,o,1,

1,O,1) and so xsc+-- (O,O,L,1,O,1) (=xC). Terminate.

4.4 Chance Constrained Spanning Tree Problem with Variable

     Probabi1ity Level

     In this section we consider the problem of Type ([),

                           rn m     vp: Minimize g(x,q) 4) E p.x.+q( E u2?x.)} -xtp(q)

     . j.I JJ j.l jJ
          subject to xj=O or 1, j=1,2,...,m, x:spanning tree,

                                                            'where q4K =Åë'i(ct)(>o). First we introduce the fonowing sub"
         aproblem VPq in order to solve VP.

                    m 'rn     vpq: Minimize jkujxj+q(jSIUi•Xj)"}

           subject to x.=O or 1, x:spanning tree.
                      J
Let xq denote an optimal solution of VPq, X(q) set of all xq and

(x-,qsc) an optirnal solution of Problem VP. Further we define
      '     E(x)A=jlivjxj and D(q) l>.{D(xq)txq Ex(q)} .

Then the following property holds.

     Property 4.3 D(xq) is a monotomcally nonincreasing function

of q.

     Proof: From the optirnality of xql and xq2 (ql< q2), the fol-

lowing inequalities hold.
                            '     mm     l,UjXS•i+ qi (jS, cr fX g•i)t5 j:/,pjX,q•2+ q, (j :/ ,u ix g.2)i, , (4. is)

                                  '
                         '                                              '
                                                     '
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     j:/ "jxg•2+ q2 (j:/loi• xS•2)t sjSlp jxg•1+ q2 (j:/loi• xS•1)t• (4• 16)

From (4.15) and (4.16) we have

          ( ql " q2 ) (j:/IUiXS• 1 )t 5 ( ql - q2 ) (j:/IUi• Xg• 2 )t •

                               'Therefore we have
         D(xql) = (jlilllu f• xJq. 1 )'-L' i (jl/l1oi. x[il.2 )"l' = D(xq2)

because ql - q2 < O. O

     rn order to solve VPq, we consider an auxiliary problem VPq(R)

with positive parameter R as follows.

                        mm     vpq(R): Minimize R E p.x.+q 2 u?x.
                       j.1 JJ j.1 JJ

             subject to xj=O or 1, x:spanning tree.

Let xq(R) denote an optimai solution of VPq(R). This problem is

the same as Problem SP(R) because q=Ka. Therefore Property 4.2,
Lemma 4.1 and Lemrna 4.2 hold by rewriting x(R) and xee as xq(R) and

xq respectively.

     Rernar.k 4.1 All optimal sptutions of VPq(2D(xq)) have the

same .value with respect to D(') and E('). Thus they have the same

value with respect to g(',q).

From Lemma 4.! and Lemma 4.2 the following theorem holds.

     Theorem 4.6 An optimal solution of Problem VPq(2D(xq)), i.e.,
xq(2D(xq)), is also ,optimal for problem vpq.

     Now let define R9. as fonows.
                    iJ '
         R?• j A q ( ui• - u;. )1( #i -- pj ) (i,j =i,2,...,m, i <j).
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Rearranging R?.j such that O<R?.j<co in ascending order of rnagnitude,

let
     R2<Rg<--<Rft and Rggo, ' '
where k is the' number of different R9.'s belonging to the interval
                                   iJg9eoolA,.:Igllg.llliat.,`h.e.,:gd:f Of R?'' i=O•'•••••k• and the numper k

     Theorem 4.7 For fia[Rg,,Rg+i], xEi(fi) is also an optimai solu-

tion of all VPq(R) for RE[R?.,R?.+1] so long as the latter interval

includes i; '
                                                '
     proof: Let Tli(ii) be a corresponding spanning tree of xEi(fi),

                                       h-       -};g"t:.q(gtB,:.:::l. ?liS.;f.N-q-(tRgl edge set Eq(ii) - {e"x?. (ii) -i}. Th..

          fip.+qu;zfiyt+qu2 ' '                                                            (4.17)

                                                                 tt                      --must hold for any et,EEq(R) and erEÅí(et,Tq(R)). By the definition
of R:, 2=1,2,...,k, order of edge cost does not change among the

interval [R?,,R:+1]. Thus once (4.17) holds for a ceytain i[ such

that FE[R?.,R?.+1], for any R on [R?.,R?.+1] including fi, (4.17)ho!ds,

i;e., xq(iii) is optimal for pq(R). p

     Theorem 4.8 g(x,q) is a convex function with respect to q>O.

     Proof: For q>O

          a2g(:,q)= q e-ic2 2>o.

            eq !2r
                                                                '                                                    '                                                          '
This inequality shows the convexity of g(x,q) with respect to q> O.
                                                               o
By Theorem 4.8, the bptimal q=q(x) for each spanning tree x be--

comes as follows.
                                                     '
     '
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            1og(

is nondecreasing

     Theorem 4.9
            qscqN=T(qsc), x
T(•)'.)

     Proof: If
definition of

This contradicts

     rheorem

                    log( X. 2) , . .X2:,fi2vrD(x)

          q(x)= 2" Euj xj .
                           j=1-
             '                        o ' ' x< G2 fiD(x).
                                     tt
BaasS;gi::wg[X), tranSformation T(q) with respect to q> o is defined

                       tt         '' x2                                    ) x> v/2;.;iD(xq)                    log(      ' 2tt (D(.q))2 --
                        o x< !ilD(xq).

Note that T(q) is not necessarily unique, but the followings hold.

       '     wwP et 44 T(q) is anondecreasing function of q.

     Proof: By Property 3, .
                     x2

       2.(D(.q))2

       function of

        (xlt,q-), an

    =xee. (That is

      q" f T(qX), then

    q(x) we have

g(xqX ,q(xof)) <g(x

       the optimality

   4.10 For ql and

)

           '

q. Therefore this property holds.

 optimal solution of Q, satisfies
,.of is a fixed pojnt with respect

   qXfq(xof). Therefore from the

qce
  ,qee)•

        '
   of q"• M

 q2=T(ql)

 -60-
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          ql > q2 -q" "(q2,ql]

and ql< q2 'of -Åë [ql,q2)
                       '
hold. '                             '
     proof: If ql>q2, for any qE' [q2,ql]

            AA A.          T(q) -- q <T(q) -- q2 .ST(ql) -' q2=O

                                                       '                                                             '                                   Aholpls from Property 4.4. Therefore q does not satisfy the necessa-

ry condition of q". !n case of ql<q2, the proof can be done simi-

larly• V
                                                          '     N6w we are ready to construct our algorithm. In the algorithm,

we use the'followir}g simplified notations.

                         '     qL e q(xL) and qU e q( xU).

Algorithm 4.2
Step !: set q-i and calculate Rg,...,Ril. Then set c-g(xL,qL),

- L- Lx+- x , q--q and i+- O. Go to Step 2.
step 2: set R-ll(R?. +R?.+", find xq(R) and calculate g<xq(R),

q(xq(R)). If c> g(xq(R),q(xq(R))), set c-g(xq(R),q(xq(R))),
x-- -xq(R) and Zi"--- q(xq(R)'), and go to $tep 3. 0therwise, go to

SteP3 directly. •                                '                                        'Step 3: Set i•e- i+1. '' If i=k, go to Step 4.                                              Otherwise return to
                                                               '                                              'Step 2. '
step 4: If g(xU;qU)<c, set x' sc+- xU and qsc- qU, and terminate.

otherwise, set x"- x'-  and q"- Ei and terminate. '

     rheorern 4.11 The above algorithm finds an optimal solution
(xee,qf) in at most o(rn2n2) iterations.

     Proof: (Validity) By Theorem 4.g, xkESq" holds where SqS

                                                      '     '                                                   '                                                           '
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      'is the set of all optimal soiutions of Pq" . Moreover by Theorem'
4.6, sq"a sq'" (2Dq" ) holds, where sq" (2Dqee) is the set of all opti-
mal solutions of Pq" (2Dq" ). Above discussion and Theorem 4.7 to-
gether show that x- is included among xq(R)'s for (q,R) such that
R e [R?. ,R2. +1], i=1,2,...,k, R < R2 and R > Ril, because of Remark 4.!.

Further the orde.r of R2 and k are independent of q. The algorithm

tests all these candidates and finds a minimal solution of them.
(Complexity), First note that the calculation of R?,...,Rkq can be
done in at most o(rn21og m). For each (q,R), xq(R) can be found in

at most o(n2) if using prim's algorithm [g] or Kruskal's one [8]•

Clearly, the number of xq(R) checked by the algorithm is at most
m(m-1)12+2 in order to find (xee,qx). Thus in at most o(m2n2) corn-

putatio'nal time, the algorithm finds (xee,q"). O
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                            CHAPTER 5

               STocHASTIC FACILIIY LocATION PROBLEiVIS
                                         '

5.1 Introduction
     Up to now, there are stochastic faciiity location problems are
investigated in many papers [1,2,5-7,10,11,15,17, and 20]. In this

chapter we dea! with four types of single facility location problerns

in which the weights andlor the locations of demand points 4re ran-

dom. The first two problems'refer to the value of information in.
facUity location. The value of information was discussed in the
reference [16] and introduced to stochastic linear programming by

Bracken and Soland {2] and to facility location model by Wesolowsky
[16]. Generally speaking, additional information rn.ay reduce the

uncertainty on stochastic situation. If we can have "perfect infor-
mation", that is, we can know the realization of random elements in

advance, then the stochastic problem becomes deterministic one.

Therefore perfeet information has some value, which is so called
"the expected value of perfect information (EVPI)". The EVPI
is the upper b' ound on what one 'would be willing to pay for perfect
inforniation about the random variables. Usually, perfect informa-
tion is seldom avai!able, and so we must take a sample if'  we want

to obtain more information. Since sampling incurs some cost, it

would be helpful for deciding whether or not to take a sarnple to

know the worth of sarpple information, i.e., the expected value of

sample information (EVS!). EVSI is not greater,than EVPI and .ap-

proaches EVPI as the sample size increases. Therefore EVP! is Usa-
ble as an upper bound for the EVSI, though perfect information gan
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not be received. rn the other problem, we are interested in finde
                                                'ing the optÅ}mal locatÅ}on. . . . .
     In Section 5.2 we investigate' the EVSI in facility location.

                                                               'LVe assume each weight is normally distributed independent random

variable with unknown mean and known va,riance, and a distance be-

tween the facility and each demand point is rectangular•. The EVPI

of facUity location problem with randorn weights is investigated
in [11] and [20]. They deal with the case where the weights have

a rnultiVariate normai distribution with known means and a known
covarian' ce matrix. We evaiuate the EVSI by utilizing the cornputa-

tional method developed in [20]. Moreover we investigate the be-
havior of the EVSI as the sarnple size changes and' provide the opti-

mal additional sample size maxinizing the expected net gain of sam-

pling. .
     In Section 5.3 we evaluate the EVPI in facility location model
under locationai and weighted uncertain.ties. In th.e references [6,

and l5L the locations of demand points are assumed to be identical,

independent distributed (i.i.d.) random variables. But there are

few papers in which the locations and the weights of the demand
                    'points are random variables. We assume that the locations of demand
                              '                                                                'points are i.i.d. random variables and the weights of demand points
are also i.i.d. normal 'r' andom variables, and the distances between
a facility and demand po'ints are rectangular. We' evaluate the EVPI

and give its explicit representation. •
     In Sectioa 5.4 we ttnd an optimal facility location which rnaxi-

ralzes the probability satisfying the cost restrictign. We assume the
w,el.gh.gs. o,g- depa, 4.pd pgl.p..ts are mutually independent normal random

                  -l
variables and distances are lp ones. Especially in the rectangular
distance case, we construct an algorithm which finds an optimal
soiution in o(n3) time, xn stochastic programming probiems, some

polynomial time algorithms are developed (e.g., [12, 13, and 14]).

     '
                                                           '
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Hourever there are few as for stochastic facility location problems.

      In Section 5.5 we consider a minimax facility location problem

under locationaZ uncertainty. When a demand cali appears, e.g., an

 accident happens in a certain point, we rush a relief squad from .

 emergency service facility to the scene. In this caseweicarmQ•ttlknow

certainly a priori when and where an accident happens. If we cannot

restore the scene to the original state in a restricted time, it
                                                                 '
rnay not be relieved. Moreover the reachable distance in a restrict--

ed tirne depends on the ability of facility. Therefore we minirnize

the reaehable distance so that the probability to relieve all of

the accidents is larger than a certain value. In this section the
locations and number of demand points are assurned' to be randorn,

that is, the former are random variables with uniform distribution

on rectangular area or pieoewise uniform distribution on separated

two areas, which are independent and identicai, and the latter is a

random variables with a Poisson distribution. We derive isorne useful

properties to solve the problern and give an expiicit optimal solu-
  'tion of the problern by parametrically.
                          '

5.2 Expected Value of Sample Information in Facility Location
     under Probabilistic Weights
                                            tt     Let (ai,bi), i=1,2','.i.,n, denote the locations of n demand

points on a plane, and Wi the weight which conver'ts the distance
                               'between the i--th demand point (ai,bi) and the facility into cost.

We assume the distances.are rec.tangular and Wi (i=1,2,...,n) ha,,ve

independent normal distributions with unknown means M: and•known
                                                    i
variances 11ri (Parameter ri is called the precision of Wi). And

we assumg that the prior distribution of Mi is a normal distrib.u-
tion with a positive mean ui and a positive variance lk' i. The
parameter Ti is the precision of Mi.
                           '
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     If the minimum expected cost is used as a criterion of opti-

rnality, the problem is as follows.

         Minimize E[ "E wi(1x - ail + ly -- bi1 )] ,

           x,y i=1                                                      A A'
where (x,y) is the location of the facility. We define (x,y) to be

a solution which is optimal under the prior distribution, i.e.,

     ii"i(12"-ail+l9'-bi1)=:t; il"i(lx-ai1+ly-bi1)• • . (s•i)

     Now suppose that wfi),...,wlki) are random sarnpies of w.,

                      11 1where k. is the number of samples. Then the posterior distribution
of Mi wken wE.j)=wij (j=i,2,...,ki) is a normai distribution with

mean ui and precision Ti+kiri (see [8]), where .
                                                             '
                       -•              T. p. +k.r.w.        •A          pi= iTl+klrl i', (IXIi: sampie mean). (s.2)
                 1 il
                                                          '
Under tbe posterior distribution determined by the .sample mean IXi,

the problem reduces as follows. - '
                   n
         Mi.niiymize l"i(lx-ail+ly-bil)• .

Then the conditional value of the sample information (CVSI) is de-
fined as follows. (See [16].)

                     n     cvsi(IZFi,•••,W.)-A L" ui(lil--a,i.I+lY-biD

                     i=1
                            n
                       -:iyn- il"i(lx-ail+ly--b")• (s.3)

The CVSI cannot be evaluated until wi.'s are known, but we can com-
                   ,pute the expected value of sample information (EVSI) before wi's
are known:

             nn    EVS!=E[i;liZi(lSl-ail+1S-bil)--::l; igizi(1x•-ail+Iy-biI)], (s••4)

                             '
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where

            ATiui + kiriWi
                          . (5.5)          Z. =           z T. +k.r.                11i. '           '                                      '
Here each Zi has an independent normai distribution with rnean pi
                                      ttand variapce 11Ti-1!( Ti+ki ri). '
         '     !t will be useful to separate the EVSI as foilows:

                               '          Evsl=Evsl.+Evsly, (s.6)
                    '                   nn •'where Evsi.gE[E zil5?-ail-min Ezilx-a"], (5•7)
                                x i=1                   i=1

                   nnand • EvslyeE [iglzilY-bil- rngn iS.lzily-bil]• (5•8)

Because it is easy to treat one dimensionai case at a time, we
shall deal only with findirig EVSr hereafter.                                              EVSI can be caicu-
                                .x y.                   'lated similarly.
     The equation (5.7) can be reduced to

                 nn          Evs!.= E u" 5}-aii-E[min E zilx-ail]• (s•g')
                 i=1 x                                   i=1
                        'To evaluate the second term in the right hand side of (5.9), we
define x"(z) (Z4(zl,z2,...,zn)) t6 be the optimal solution of the

following problem P(Z).

                      n     p(z): Minirnize 2 zilx-a"•
               Å~ i=1
Then we obtain

             n
      E[rnin ,T Zilx-ail]
         x i=1
       nn     =j gl [ iil f-co.Zi l aj -ai l Pr {Zi=z" xee (z )=aj} dzi ] pr{xee ( z).aj}

       nn     =iii j.Ei/:.zi1aj-'aiIPr{xce(z)=ajlzi=zi}gi(zi)dzi, (s.io)
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where gi(') is the p.d.f. of Zi. The first equality holds because
Pr{xsc(Z>faj for j=1,2,...,n}=O, and the second one is derived

from Bayes' theorem ([8]). •
     Now we renumber ai, i=1,2,...,n, according to the nondecreasing
;".gg'.,oX.m:g,:ltxd,g.g"g.g,S?:.:2,g.ig`,agil1'f,Z."s,,:.?',::?.8Yf?l.?"gX'

pi and k so that we can neglect the ,probability of getting a nega-
tive value of each Zi. Then the probability that xee(Z)=aj becomes
as follows([20]).
                       '                                           '     pr {xes (z) = aj } = pr { {11 iilzi sil/jzi } n {il/lzi > i.:. .izi}}

                  .o(:iutj-=12+u)-Åë(:E2-:-!t{!>, '
                                                             (5.11)
                        "v • rv
where O(') is the standard normal distribution ,' '
          uj e l Eii ui - i.:/.iui ' (s.i2)

              nand v2 iEi( li -Ti+ftiri )'                                                            (5.13)

Similarly, if i<j,
                        '                                                            '                           -u .+y .-z.+p.                                           --u .-p .-z.+p.     Pr{xee(Z)=a.lz..z.}.e( j J i i)--Åë( J J i i),                                                            (5.14)               J•ii ,x. 2'V.and if i> j, i . i
     pr {x sc (z )= aj lzi=zi) = e( "- Uj 'iilt(ll Zi- Pi ) - Åë( -"j - lltl;lll'Zi- #i ), (s.is)

                                llwhere •
          "iA Y( -l}i'.-,. +lk.r. )' (5'16)
             j=1 1 l ii

Therefore substituting (5.14) and (5.15) into (5.10), we obtain.
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            n
     E[min L" zilx-ail]

     =ill=iiii-,Z.l•i'li7i2.j,ii:.i.lili"Si•1i':-,'3,i'f,iliili'il:I.ilii,i,.

                       . (5.17)
The integrals in the right-hand side of (5.17) can be calculated by

numerical integration such as Simpson's rule. Evaluating EVSI y '
          'sirnilarly, we can find the EVSI by (5.6). '
     Considering the function EVSI(k) of sample size vector k=(kl,

k2,...,kn), we shall derive some properties, treating each ki as if

it wereacontinuous variab!e. •
                                    '               n nn     Evsi.(k)= Z uilSl-ail--fco.-.,"'Jco.. .,/ {min E z"x-ail} n {gi(zi)dzi} •

                                    x i=1              i=1                                                  i=1
                                             '
                                                            (5.18)
                       '
Now we have the following property.
                                                        '                               ' ' Property 5.1 EVSI(k) is a nondecreasing function of each ki.,

                                              'To prove this property, we first show the following Xemma.

     Lemma 5.1 Suppose that y(•x) is a concave function of x and

the random variable X has a norrnal distribution with mean p and .
variance a2. Then the expected value of y(x), i.e., E[y(x)] is non-

increasing with respect. to u.
                                 '                                tt
     Proof: Considering E[y(X)] as a function ofo,

                                     tt          L(o)AE[Y(2)]=fco-..Y(X)rt..'eXP("'L(:-jil-Z:-X.,)2)dX

                         1co x2                       =m. fo{Y(gX'P)'Y('-UX'y)}eXP(-T)dx.

                                                          '                              '
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For O<ul<u2 and x>O, we have

                '
      L(al)-L(U2)
                                                              2     =Z21Å}ii. foco[{Y(UiX+P)"Y(-'UiX+u)}-{Y(a2x+u)+y(-u2x+y)}]exp(--li-.)dx

     . •osi211Ioi foco.{ Y["--a.i.x+.:I:;iixil) . Y[ .G;;,p))I;ii.s+,)p•) }..p(.. -Sl)d.

     ZO (by the concavity of W(x)). O

Now we are ready to prove Property 5.1.

     Proof of Property 5.1 Let k=(kl,k2,.••,ki,•••,kn) and ki=(kl,

k2,....,Ri,...,kn), i.e., ki has the same component- s as k except i,.th

one. Moreover'we assume ff.>k,. Then by (4.1) we have
                          11  '
                                                n          Evsi.(ki)-Evsl.(k)=fco-..r.fe.O.,Hi(z(i))jn=1(gj(zj)dzj),

                                                fi
where

                     '                      nn     Hi(z(i) ) A= 1co--.mlnjlizj lx-aj 1gi(zi)dzi- Lcocomlnlizj 1x--aj Igi( zi)dzi ,

     z(i)2(zi,...,zi-i,zi+i,''',zn)'

gi(') and gi(') are the density functions of normal distribution

with the same mean pi but different variances 1/T-i.--11(Ti+lsiri) and

11Ti-1/(Ti+ftiri) re$pectively. Let .
                    n          f(q) 2 rn;n {j gi'( zjlx-aj l+qlx-ail)}•

                    ifi

Then it is easily shown f(.) is concave. By Lemma 5.1,
           '                                      '                              '                                                   '          f:.f(zi)gi(zi)dzi '

is nondecreasing with respect to the standard deviation (or vari-
                      '                                                               '                                          '
                             - 71• -



ance) of Z.. Since
          l              '       '                             11•            11          (=l7. '-'I-1.-;rtF":'+ -r. )'-(T.- T. +k.r.)>O'

          •1 11X 11 11Hi(z(i));O results. Therefore

          Evsr.(ki) - Evsl.(k)z o•

As to EVSI , we can also obtain similar results. O
          y
     We define the expected value of perfect inforrnation <EVPI):

          EVPI=EVPI +EVPI, ' (5.19)                   xy
                 nnwhere EvPI.! Lr u"Sl-a"-E[min EiZilx-ail]i (5•20)
       '' i=1 •x i=1
                 nn          EVPIy=ikpiiS}-bi1-E[mSp illiZily-bil], (s•21)

and assume each Zi has independent normal distribution with Mean ui
and variance 1/Ti. .Then the following coroUary holds.

     Corollary 5.1 e < EVSI < EVPI.
                     --                                                              '                                                '                                        '                                            AA     Proof: By (5.4) and the definition of (x,y), the first ine-

quality holds. Furthermore, as the sample size ki increases, the.
variance of random variable zi approaches to the variance 2i, i.e.,
                                                                '1/Ti. Thus Theorem 5.1'implies the second inequality. n
                                                 '
This corollary shows that the EVPI gives an upper bound oS EVSI.

 • The EVSI is the value of sample information without consider-
ing sampling cost. On the other hand, if the sample lnformation
                                               ninvolves some costs, thÅ}s samp!ing cost, CS(k)=Ej.lcjkj+b, should

be subtracted from the EVSI, where each cj is a unit cost taking

one samp!e about the i-th location and b is a fixed eharge taking

the sample. Then the net result called the expected net gain of
sampling (ENGS) becomes as follows:
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          ENGS(k) = EVSI(k) - CS(k). (5.22)
The optimal vector sample size is defined as the vector size k

which rnaxindzes ENGS(k). '                               ttt
     In the following exampie, we consider the optimal sampling in

which ail kl, k2,..., kn.are restricted to the same value k. If we
define c=E:.,lcj, then the sampiing cost reduces to the following

scalar function: '
          CS(k)=ck+b, (5.23)
Now the ENGS is determined by the value of k, and so the function
of k. Therefore the optima! sampXe size kif is de#ined as the size
k which maxSmizes ENGS(k). In the foliowing we give an exarnple and

find its optimal sample size.

Example 5.1 We want to iocate a wholesale store in the town where
there are 5 retail stores. Let (a.,b.) and W. denote the location
                                 111
of i-th retail store and the random amount soid in a week there
respectively. When the location of wholesale store is (x,y), the

distance between the whQlesale store and the i-th retail store' is

Ix-ailtly-biJ kilometers` We assume that W; is mutually inde-

penden.t normal random variable with unknown meap, Mi and known
variance 11r.. And we assume that the prior distribution of M. is
a norrpal distribution with mean pi and variance 1/k. ((ai,bi), ri,

#i and Ti are given in Table 5.1.) We assume the transportation

cost per kilometer and ton is 1000 yen. Then the-optimal location
under the prior distribution becomes (8,6). If we assume that' all

sarnple sizes kl, k2,..., kn have the same va!ue k, the EVSI and the
ENGS as a function ot sample size k are shQwn in FigureT5.1. In '

Figure 5.1 we assume the sampling cost (Å~1000 yen) is as follows

          C$(k) = O.02k + 5.

Then the optimal sample size is about 60 and ENGS(60) is 2240 yen.

                                                   '                         '                                                         '
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Table 5.1. Data for Example•5.1.

i 1 2 3 4 5

(at,bi) (3,2) (4,9) (8,12) (12,1) (14,6)

ri O.Ol' O.Ol O.Ol O.Ol O.Ol

ui so 38 30 35 25

Tt O.1 O.1 O.1 O.1 O.1

10

9

8

7

6

5

4

3

2

1'

o

(xlOOO yen )

cs

EVSI

ENGS

o       5o k*

Figure 5.1. EVS!

10

and ENGS

  lo Sarnple

   '
of Example 5.1.

•Size
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5.3 Expected Value of Perfect Information in Facility Location

     under Locational and Weighted Uncertainties

     There are n demand points in the plane and bDth their locations
and weights are known probabUistically. Let (Xi,Yi) and Wi denote

the location and the weight of i-th demand point respectively. We
assume that X., Y. (i=1,2,...,n) are identical, pairwise independent
             11
random variables with density function f(',') and cumulative distri--

bution function F(','), and W. (i=1,2,...,n) are identical, inde--
                            i
pendent , normally distributed random variab!es with mean p and

   .2vamance u. We assume that we can neglect the occurrence proba;
bility of negative Wi (e.g., pi3u). Further we assume the dis-
tances between a facility (x,y) and the demand points (Xi,Yl.), i=l,

2,...,n, are rectangular. Then the cost function is as foliows:
                                                             '                         n•
          c(x,y;x,y,w)= E wi(lx-xil+ly-yil), (5•24)
                        i=1 •
where X,= (Xl,X2,.e.,Xn), Y = (Yl,Y2,•..,Yn) and W = (.Wl,W2,...,Wn).

     Now we consider the expected value of perfect inforrnation
(EVPI). We define the EVPI as follows (see [20']'):

                    '          EVPI=rnin E[C(x,y;X,Y,W)] -E[min C(x,y;X,Y,W)], (5.25)

               x,y x.,y                                            'where E stands for the rnathematical expectation, We can transform
(5.24) into the separate form with respsct to X-coordinate and Y-

coordinate as follows: ' .
          C(x,y;X,Y,W).= C.(x;X,W)+Cy(y;Y,W), . (5.26)
                                '                                                    '                      n
where Cx(x;X,W)= LV Wilx-Xil
                    ,i=1
                      n-
and Cy(y;Y,W)= i;IWiIY-YiI'

Therefore it can easily be shown that equation(5.25) becomes as.

                                                     '
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follows:

         EVPI=EVP! +EVPI, (5.27)                   xy
where EVP!.=min E[C.(x;X,W)]-E[min C.(x;X,W)],

                 xx
and EVPIy=min E[Cy(y;Y,W)] -E[min Cy(y;Y,W )] .

                 yy
Because it is easy to consider one dimension at a time, in what

follow.s we have only to consider either EVPIx or EVPI y. Without
any loss of generality, we shall find EVPIx hereafter. The EVPI

y
can be found similarly.

     Now we consider two types of problems. One is as foilows:

     Ep: Minimize E[Cx(x;X,W)],
             x
and the other is tis followS:

     P(x,w): Minimize C (x;x,w),
                       x                 x
Where X=(Xl,X2,...,xn) and w=(wl,w2,...,wn). Let xO and xee(x,w)

denote the optimal solutions of problems EP and P(x,w) respective-

ly.

     Define T(x) as follows:

         T(x)eE[c (x;x,w)1. (s.2s)
                  x

Then T(x) can be rewritten as follows:

         T(x) =n{ /X-.u (x -- t)f(t)dt + I.cop(t-x)f(t)dt },

where f(t)gf-co .f(t,u)du. Differentiating T(x), we have

         dT(x)               =n{ 2F (x) -1 }p,
          dx
where F(x)2fi. .f(t)dt. Therefore the optimal solution xO of problem
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EP is obtained from the convexity of T(x), i.e.,

         xO .. F-1(112). (5.29)
     Now we con$ider the second type of problern, i.e., Problem

P(x,"e). Since X., i=1,2,...,n, are i.i.d. random variables, the
                i
expected optimal value of Problem P(x,w) is as follows:

                              n
     E[min c.(x;X,W)] =n!E[min E Wilx-Xil XlS" '.SX.]Pr{X15" '5X.}•

       x . xi=1
This equation can be rewritten by using x"(X,W) as follows:

                         n i-1. n                           co     E[Min C.(x;X,W)] =n!i2-..if-..w{jE.iEPij(w)--j,.{.+iEPij(w)}dw, (5•30)

where

     EPij(w)=E[Xi-XjlX15"'5X., x'(X,W)=Xj and Wi=w]

             xPr{Wi--w, x,e(X,W)=Xj and XlÅí'"EXn}• (5.31)

Rewriting the equation (5.31), we have

               '         EPij(w) = f.co..xPjii("r,x )dx - f-co.xpjij(w,x)dx, (5.32)

where

         Pijk(w,x)=Pr {Xl:Åí'"-<.X, n, x"(X,W)=Xi, Wi=w and Xk=x}.

Now we define

         Ai(x)ePr{Xl;"'EX.IXi=x}, (s.33)
                    j-1 n j n         Bij(w)4Pr{kglWk<kSjWk and k;IWk>k.JE..IWklWi=w}, (s•34)

                      ..s(.!!:.lu.:-W )2

                                           'and g(w).A 1' e' 2u2 .               be"U

Since Xi, i=1,2,...,n, are i.i.d. random variables, the equation
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(5.33) becornes as follows:

         Ai(x) = (i-.i)l (..-i)! {F(x)}i'i {i"F(x)} "-i.

         '
    ttlIf we can neglect the probability of negative W j, the equation

(5.34) becomes as follows:

              j--1 n j n    Bij (w) = Pr {kllWk<kljWk1Wi=w}-Pr{k21Wk5k.JE. .IWk1Wi=w}•

                                            'By standardizing thern, we have

    B..(.). Åë( w+(n--2j+1)p)- tp,( w+(n-'2j-1)p) if i>j, (s.3s)

     iJ !i{:iia !il:iu
    B. .(.) . o( •-w+(n-2j+3)u) .- o( --w+(n-2j+i)p) if i <j, (s.36)

     iJ vGI:T. !I{:rlu
where O(') stands for the cumulative distribution function of a
standard normal variate. We si.rnply denote the functions (5.35) and

(5.36) as Vj(w) and V3(w) respectively. Then Pjii(w,x) and Pjij(w,

x) can be rewritten as follows:

         P...(w,x)=A.(x)f(x)B..(w)g(w),
                            IJ          JII                    1

         P .. .(w,x) = A .(x)f(x)B. .(w)g(w).
                            IJ                    J          JIJ

Substituting these two equations into the equation (5.32), we have

               '         EPij(w) = f.co-.x{Ai(x) - Aj(x)}Bij(w)f(x)g(w)dx.

                    '
Therefore the equation '<5.30) becomes as follows:

    E[min C.(x;X,W)1 = n!fdco-.wJ2.x{Hl(x,w)-H2(x,w)}f(x)g(w)dxdw,

       x                                                        (5.37)
                  n i-1 .
"lr Pere Hi(x,w)2ili jEi{Ai(x)-Aj(x) }Vj(w),
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                   nn         H2(x,w) A- iSl j.l.1{Ai(x) - Aj(x)}v3(w)•

Since O(-x)=1- tp(x), we have

         vt(.) . Åë( w+{n-2(n-j+1)+1}p) - o( w+{n-2(n--j+1)-1}p)

          J vF:Tl. vC{:ru
                      (w).               =v. n-j+1
Hence by sirnply rewriting summation, we have

         H2(x'w) " i2/i JilEl {An--i+i(x) "- An-j+i•(x)} vj(w)'

Therefore the equation (5.37) becomes as follows:

                             n i--1
         E[mln C.(x;X,W)] =n!itYi jli(Li-Lj)Mj,

            '                              n i-1
                         = nliE.ILi{jE-..IMj -- (n -- i)Mi}, •                                                          (.5.38)

where Li e f.co ..x{Ai(x) - An-i+1(x) }f(x)dx,                                                          (5..39)

and Mjef-co.wvj(w)g(w)dw. • (s.4o)
Rewriting the equation (5.40) by using the density function of
standard norrnal variate. tp(.'), we obtain

         M.=ufco wV.(wu+u)tp(w)dw+ufco V.(wo+u)tp(w)dw. (5.41)
          J               -co J                                  -co J
                                                     '
Now we define Tl and T2 as follows:

              co         T1 =f -. wVj(w o+ u) Åë(w)dw,

qnd T2 = J-co.Vj(wu+p)Åë(w)dw.

Then by the integration by parts, Tl can be rewritten as follows:

      '
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         Ti= x.illii f-cocoÅë(w){tp(WU'ii'Il2j.'2)V)-tp(]btE!liil(ill lil'"}-!!2. ) )}dw.

By the sirnple integra! calculation, we have
                     u2 u2
                   .- "' - j+1
              '1' (. 2' .-e 2 ), (5•42)         T=          1 !52?ffn

where uj =(n' ,-
!ffn2j u+2)Y

 •

      is rewrit,ten as follows:And T    2
                t'
         T2=Eco.f J ip(t)Åë(w)dtdw,
                tt+1
             w+ /nu.where t.= J.          J Mnl

Transforming (t,w) into (t',w') by

              1 asnl
         wt= W- t,             fn. vH
             Mnl 1
                 w+ t,         t' =
              rn rn

we have T2 =Åë(-uj.1)-O(-uj). (5.43)
Therefore frorn the equat-ibns (5,41), (5.42) and (5.43), we obtain
         Jil:iiMj = 72k.. (e"'"i/2- e-U;' /2)+p{Åë(-ui)-Åë(-ui)}. '

Hence substituting this equation into (5.38), we have

    E[min C.(x;X,W)]=n! S f-oo.x{Ai(Å~)--A.-i.1(x)} f(x)dx

       X .[tt/.{e'Ui12.-(n-i.1)e-U?'12+(.-i)e'-U?'"112}

                       +p{(n-i+1)Åë(-ui)-Åë(-ul)-(n--i)O(-ui.1)}1•

                                                        (5.44)
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The integrals in right hand side of the equation (5.44) can be cal-
culated by numerical integration.

ptSl9!2E!,!!L}l!!E9eCialCaSe

     lf the distribution of Xi is symmetric, then we can set the
                                          'center of symmetry to O by a suitable translation. Then we have

                                                         '             '                   '          f:.XA.-i.1(x)f(x)dx = -f-co.xAi(x)f(x).dx. (s.4s)

                                    'Therefore the equation (5.44) becomes a slightly simpie form. In

the following example we show that the EVPI cari be represented by

elementary functions and normal distribution functions if each Xi
has a uniform (therefore symmetric) distribution.

Exarnple 5.2 We assume the distribution of X. is uniform on (-h,h).
                                           iThen the optimal solution xO of Problem EP is O. Therefore the

optimal value of Problem EP is

          T(xO) =n{ fO-.y(--t)f(t)dt +.focoutf(t)dt}

               .-Lns!uh
               --                  2
                       '
And from the equations (5.39) and (5.45), we have

                           n-i          Li = (i-1)l, l? nri)! jE.i Ti-i Cj (-1 )j (i+'ii J(' -i-' 1+. j+ o '

                                      '
Therefore

                          n n-1     E[Mi" Cx(X;X'W)1 ='2hiEli'nCii.ln--i,Cj('1)j(ii")j("-i'1+j+1)

                       .[ u''{e-'Uil2-(.-i+oebU?'/2.(n-i)e'Ui'+112}

                         /2Tn '                      +p{(n-i+1)Åë(-ui)-Åë(-ul)-(n-i)e(--ui.1)} -

We calculate the EVPIx for various r (414 a) and n. (See Tab!e 5.2.)

                                                     '

-81-



Table ,5.2.. Calculatton of the EVPI

n r Evpr(Å~ph)

3.0 O.52070'

4.0 'O.5e547

5.
5.0 O.50132

6.0 O.50028N

3.0 O.53362

4.0 O.51073
10

5.0 .O.49877

6.0 O.49107
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5.4 Stochastic Facility Location Problem under Aspiration Level

                  '     Criterion

     There are n demand points (a.,b.), i=1,2,...,n, on a piane.
                                11
Let (x,y) be the location of the facSlity on the plane and !et

di(x,y) be the lp distance between the •facility and the i-th demand

                                  which converts the distancepoint. We assume each weight Wi, •••
d.(x,y) into cost, is the independent normal random variable with

         mean ui and positive variance ui.posltlve

     If we use the aspiration-level criterion, then the problem is
               '                                           'as follows:

                       n
     APo: Maximize Pr{ L" Widi(x,y):iC },
                       i=1
where di(x,y)=(1x-aiiP+1y-bilP)1/P, p )1.

        '
Let (x+,y,e) denote an optimal solution of Problern APo. In this

paper we assume that

         n                                            '                                                            (5.46)     C> 2 Fidi(x,y) for some (x,y).
        i=1
                          '
This assumption is not so restrictive because maximurn probability
should be larger than 1/2 usually. Then Problem APo is equivalent
to the following deterministic probiem AP. (See [19].)
                             n'

                    . c- 2 pidi(x,y)
     Ap: Maximize v(x,y)A l=1 • .
                      -. n                             L" uli•l(di(x,y))2

                           i=1

The optimal value of'Problem AP is denoted by x". Then the assump-
tion (5.46)implies xsc>O. In order to solve the fractional pr'oblern

AP, we consider the following parametric subproblern AP(X).
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                               nn     Ap(by): Minimize F(x,y;x)= LV yidi(x,y)+x Lr uli.(di(x,y))2

                                          - i=1.                              i=1
Let (xx,yx) be the optimal solution of Problem AP(X). Then the

following properties hoid. •'
     Proper'ty 5.2 F(x,y;X) is a convex function of (x,y) for X)O.

     Proof: The first term in the objective function of Problem
AP(X) is convex because it is positively weighted sum of convex

functions di(x,y). Now define ..' •
                                 '
         D(x,y)e iSia;•(di(x,y))2, . . (s.47)
                                                   '           '                                'then for 05ct 51 we can show
            '                        '                              '                                                '           '      {aD (xl ,y1 ) +5iD ( x2 ,y2 ) }2- {D ( orxl+ax2 , ay1+lily2) }2

                          '     =i1ui• [ {adi (xi ,yi ,).+Eqi( x? ,y2 ) }.2-{di ( ctxi+61K2, a\i+liy2) }2

                                              '      +2aa[ i2/io;•(di(xi,yi))2 i!/ig;•(di(x2,y2))2

                                   tt           1 - S•o;• di(xl,yl)di(x2,y2)] k o (ff tt l--a)

          ' i=!
:\.Yi)l"".goth..edCOx"."oefi:IIigfp.d.iBg;i:j) ::n.gdg?ucohy's inequality. since

                                              '                                       '                       '     Property 5.3 Let FxgF(xx,yx;X), then Fx is continuQus and

strictly monotone increasing function of X, and

                  '         Fxfc - x< xs'
                              '         Fx=c - x= pt,
         Fx>c N x>xee.
Proof: See [9]. O
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From Property 5.3, we can derive the followings.

i) There exists an unique X $uch that Fx=c.
ii) If Fx=c, then (xx,yx) is the optimal solution of Problem AP,

g?g.lfxF.<>ft;,;:?? we repiace current vaiue of x .by a better one,

                                                          R     Further we consider the following auxiliary probiem AP of

subproblem AP(X). •                                       '
                                n n'     ApR: Minimize G(x,y,;R)=R E pidi(x,y)+ E oli.i(di(x,y))2•

                                            i==1 .                               i=1
Let (xR,yB) denote the optimal solution of this problem. Then th'e

following properties hoid.
                                                 '
     Properby 5.4 For R>O, G(x,y;R) is a convex function of (x,y).
                        -
     Proof: The first term is convex for R)O as weli as Property
                               25.2. The convexity of (di(x,y)) is ensured as follows: .
For osa :s l, (El == 1- ct )

             '      a(di(xl,y1))2+a(di(x2,y2))2-(di<axl+Ux2,cty1+ay2))2

    :or(di(xl,yl))2+U(di(x2,y2))2-(adi(xl,yl)+adi(x2,y2))2

                                  '
              (by the convexity of di(x,y))

     =aE(di(xi,yi)-di(x2,y2))2 2:o•

Thus G(x,y;R) is convex because it is the positive sum of convex

                               '
     ProperRty R5e5 Suppose xRfai and yRfbj, i=1,2,...;n; j.1,2,...,

:AiyT2.;nxAl.26rx&,j)Rsa:n optimai soiution of probiem Ap(x) if and .

                                                                 '                                 tt
     Proof: For xfai, yfbj, i=1,2,...,n; j=1,2,...,n, both F(x,y;X)
and G(x,y;R) are differentiable, then

                  '
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                     R R.aG(x,y;R) R R .o,         eF(x,y;X)
                  x=x , y=y ax x=x ,            ex                                             y=y

         salsLs,!E,sz.i.i2F( X) R R.aGS2.SLX.!El.2,Y;R) R R.o,

                  x=x,y=y ay x=x,             ay                                             yury
if and oniy if xR=2D(xR,yR). Therefore (xR,yR) is an optimai soiu-

tion of P(X) by Property 5.2 and Property 5.4. 0

                                                       'rf xR=am or yR=brn for some m, then the above property cannot be

used to solve the problem. So we consider the following restricted
problems.
                                         '                                                   '
                         nn     Ap.,rn(4): Minimize ilipidi(x,brn)+x •iSioi(di(x,bm))2.

                                nn     ApxR,rn: Minimize G(x,Prn;R)=I ilipidi(x,b.)t;S• (di(x,bm))2.

              -n     Apy,.(x): Minimize i.Eipidi(a.,y)+x i.Eiui•(di(a.,y))2•

                                nn     ApyR,rn: Minimize G(am,y;R)=Riiipidi(am,y)+igiol•(di(arn•y))2.

Then the following corollary of Property 5.5 holds.

     coronary s.2 suppose xRlai, i=i,2,...,n, then xR is an opti-
:Rl,9?i:.:l?:,f?f,:f02,'g: S-Rx,.:(•ZA g;,l.::i"g:k2m,gA ,2;d,;g::g:e

APy,m(X) if XR=2D(a.,y ).

     Proof: This coroUary can be easily proved by the simi!ar
manner to Property 5.5. 0

     Now we rearrangq ai's and bi's according to the ascending

order such as al< a2<"'< a j and bl< b2<"'< bk respectively,
where j and k are numbers of different a.'s and b.'s-. And we
                                      11
divide the area A={(x,y)lal:ixSaj, 61:Sy::6k} into three types of

                                               '
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areas Sh,m, iT:,m and TYh,m, and point sets Uh,m which are disjoint

     '    Sh,.A' {(x,y)l5h< x< 5h.i, 6.< y<5.li , h=i,2,•••,j-i

     . ' m=1,2,...,k-1,                   tt    TX,R {(x,y)IZ;h<x<5h.1, y=5rn}, h=1,2,...,j-1; m=1,2,...,k,

                                                     '    'TX,.A-- {(x,y)lx=5h, 5.<y<.6."}, h=1,2,...,j; m=1,2,...,k--1,

                                      '      '        A - -    Uh,m'{(ah,bm)}, h=1,2,'•.,j; rn=1,2,•..,k.

                                        '                     '
The optimai soiution of probiem ApR, i.e., (xR,yR), is contained an

only one of the above sets., Therefore we concentrate the search on
one set at a time.

[Area Sh,rn] '
    We• consider (x,y) contained in the area S                                                Define the fol-                                          h,m'
lowing disjoint index sets:
   ' ii(h,m) 4>{il(ai,bi)E (-co,lih]Å~(-co,5.]},

    i2(h,m) 2{ ii(ai,bi)E [-ah.i,cn)x(--co,5.]},

             '    I3(h,m) g{ iI(ai,bi) E (--co,Zih]x[6..1,co)},

                                '    i4(h,m) 2{ il(ai,bi) e [5h.i,co)Å~[6..i,co)},

                                            t ttt                                         'where Å~ denotes the Cartesian product. Then we can easil.y find

         Il(h,m) U I2(h,m) U I3(h ,.m) U I4(h,m) = {1,2,...,n}.

                         '
For (x,y) ESh,m, we can differentiate G(x,y;R) as follows:

                  '                              '    g.(x,y;R) = aG(Xsl[iR) = R(Mi-M2)+2(si+s2)x+2(si-S2)y--h(Hi+H2),

                                               '        '          '                                 ' (5.48)                                     '                                                          '                                                             '
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where

and I

note

Then

where
above

gy (x,y;R) . eG(X slll ;R) =R(Mi+M2)+2 (si-s2)x+2(Si+S2 )y-'2(Hi-H2) ,

               . (5.49)
  Ml= Epi.- 2pi,

     I!•      14
           '  M2= ,V pi- Epi,

     II      23
  sl = E uii.i + E uli•i,

     ZI      14
  s2= 2ui•ii+ Euii•i,

    • I2 I3
  Hl =i u;• (ai+bi) +i uli•i(ai+bi),

      14 'H2 = Eoil• (ai-bi) + E a,li•i(ai-pi),

     I. I      23
i stands for li(h,m), i=1,2,,..,4• Let (xh,m(R),yh,rn(R)) de--

the solution of the following equations:

                            '     gx(x,y;R)=O, •• . (5.50)
     g(x,y;R)=O.. •                                                     (5.51)

                                                        '             '                                            '              '                                        'Xh,m(R) and yh,m(R) are as follows:

             -- (MIS2d-M2S1 ) R+2 ( HIS2+H2S1 )

     iEh,m(R)= - 4s s' '
     Yh,.(R)=-(MIS2+M2S14iRll+i(Hls2-H2sl) , (s s2)

                      '                                                 ' SIS2>O since o?., i=1,2,".,n, are positive. If for R>O the

 solution satisfies the following inequalities;
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         ah< xh,m(R)< ah+1 and bm <yh,m(R)< bm+1,
      '
then it is the optimal solution of ApR, i.e., (xR,yR); otherwise,

(xR,yR,) does not exist in sh,m. Now we define the area of R,

       '
         Rh,.= {R >o1Eh <5Eh,. <5h.i and iJ. <Yh,.(R)< i5..i}•

    '
From property s.s, when xRfai, yRlbj, i=1,2,...,n'; j--1,2,...,n,

                       '               n•         xR = 2 Z u?. (lxR-ai l+lyR-bi D 2, (s. s3)
       . i=1                         'if and oniy if (xR,yR) is an optimai soiution of probiem Ap(x). in

                             'addition from Property 5.3, •
         F(xR,yR;x).c, (5•54)
        'if and only if (xR,yR) is an optimal solution of problem Ap. There-

fore if there exist the parameters x and R satisfying the above two
equatiohs (s.s3) and (s.s4), then (xR,yR) is an optimal solution of

Problem AP. Muitiplying (5.54) by R and substituting it into (5.53),

we have
                   '                             t/ t           nn         Rl"i( lxR-•ai l + ly--bi D + 2i .E,ioi. ( ixR--ai i + iyR--bi g )2= cR.

                      '                     'This equation is rewritten as follows:

         R{(Mi-M2)xR+(Mi+M2)yR-Ai}+2(si+s2){(xR)2+(yR)2}

                                                 '          .4(sl-s2).RY'R-4Hl(.R.yR)-4H2(.R-yR).2A2..R. (s.ss)

          '                   '
where Al and A2 are defined as follows:

                                          '         Al=il pi(ai+bi)-i2yi(ai-bi)+t23pi<ai-bi>-i4pi(ai+bi,),
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         A2=iio ?• (ai+bi)2+i2ui• (ai-bi)2+i3a l• (ai-bi)2+i4a i• (ai+bi)2•

While equations (5.50) and (5.51) are rewritten as follows:

                               '         R(Ml--M2)+2(S'1+S2)xR+2(Sl-S2)yR-2(Hl+H2)=O, (s.s6)
                                               '                                   '                '                  '         R(Ml+M2)+2(Sl-•S2)xR+2(Sl+S2)yR-2(Hl--H2)=o. (s.s7)

From (5.55), (5.56) and (5.57), we have

          2(Hl+H2)xR+2(Hl-H2)yR+(Al+c)R•-2A2=O. (s..ss)
                                                               '
If Rh,m fÅë, for RE'Rh,rn xR and yR are given by (.s.s2). Tlr}erefore

the equation (5.58) is linear in R. Then if we define R satisfying
the equation (5.58) as R', R' is given as follows:
                         /          R,.HiS2+H:Sl-2A2SIS2 . (s.sg)
             HIMIS2-H2M2Sl--SiS2(Al+c)
                              '                                                    '•If R'E Rh,m, then (xR' ,yR' ) is an optimai solution of problem ,Ap.

                                            '[Area Tit,m]

     !f the optimal solution does not exist in any area Sh,m, then
it exists on Til,m, TYh,m or Uh,m. At first we consider the case

that it existsi on TX,m. Then 'the following property holds.

                                          '     Property 5.6 For some R(>O), if

          Yh ,m(R)5 bm' ' Yh,m-1 2: brn '                                                          (5.60)

                             '
                                                         '            --         g.(ah,b.;R,)< O and g.(5h.1,5.;R)> o,                                                          (5.61)

then the optimal solution of problem ApR exists on TX .
                                                 h,m
     Proof: From (5.61) the rninimum soiution of G(x,b                                                     ;R) exists
                                                   min (5h,5h+1) and it is denoted by xfl,m. Now consider sufficiently
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small neighborhood of xil,m denoted by N(xfl,m). For any (x,y)E

N(xfi,m)n Sh,m-1, let (x',5rn) denote the intersection of T:,m and

line segment between (Eh,m-1(R),Yh,m-1(R)) and (x,y). Then

         G(x,y;R)>G(x',bm;R) (by the convexity of G(x,y;R))

                 >G(xfl,m,5m;R) (by the definition 'of xfi,m).

      '
                          osimilarly for any (x,y)eC N(xh,m)nSh,rn,

         G(x,y;R) > G(xfl ,.,ii;.;R) •

Therefore (xfl,m,6m) is a local optimal solution of problem ApR.

Since G(x,y;R) is convex, (xfl,m,6m) is a global optimal solution. O

                          AIf (5.60) holds, we define ,xh,m(R) as follows:

      . gh,.(R)..--R(Mi-M2)-22((SsiiiSs22))bm'l(Hi"H2). , (s.62)

Then R satisfying the condition (5.61) is

         RX ,.={R> olZIh < 2h,.(R) < 5h.1}•

If Rh,m=tp, then the optimal solution of Problem AP does ngt exist
X;RE52-lt6i]tiP'.:-i?2?Kil?e',Sh.,;,m8ge.l2.;Ve,?:t,ir.;! soi"`ion of p'obiem

         xR=2 iE.io;•(lxR-ail+Iii;.-b")2, •
                                                   'then (xR,5rn) is the optimal solution of APx,m(ly). In addition,

            R-         F(x ,b                ;x) =c
               m
if and only if (xR,5 ) is an optimal solution of problem Ap. From
                   m
                                                             '                                                    '
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the above two equations, we have

           nn         R L" pi(1xR--ail+l6.-bil)'+2 E oi.i(IxR-ail+16.-bi1)2=cR.

                                 i=1          i=1
This equation is rewritten as follows:

         R{(Mi-M2)xR+(Mi+M2)i5.-Ai}+2(si+s2){(xR)2+5:}+.4(si-s2)6.xR

         -4Hl(xR+5.)-4H2(xR-5.)+2A2=cR. (5•63)

since (xR,5 ) is the solution of (s.so), we have
          m
         R(Ml-M2)+2(Sl+S2)xR+2(Sl--S2)5.-2(Hl+H2)=o. (s.64)

                                               'From (5.63) and (5.64) we have '

         2 {Hl+H2- ( S1-S2 )5,t, }xR+ {Al- (Ml+M2 ) 6.+c }R

                              '          --2{(Sl+S2)6:l-2(Hl-H2)i5.+A2}=O. (s.6s)

;g.gtg:,'.2;,f,O].EC,i/'.•p,,(5,'.6,58.iRS.a.8i'.".e,".r,.e,q",aigO,".O.f..R'.,.T.h8,r.e.-,

we have the following solution R'i. '
             2 {( Hl+H2)2+4(Hls2-H2s1)5.-4sIS26.2-A2(Sl+S2) }

         R" =

If R" is

Problem AP.

Property 5.6.

    Corollary

         Xh,M

         g (5
          y

                                           .- . (5.66)
     (Hl+H2)(Ml-M2)-(Al+c)(Sl+S2)+2(SIM2+S2Ml)b.

contained in R:,m, then (xR,5m) is an optimal sQlution of

    In case of TY                  , we have the fo!lowing corollary of               h,m

                      '
     5.3 For some R.(>O), if
           `

     (R)<ah, Xh,m.1>ah, (5.67)
                                 '
      -    h,b.;R)<O and gy(Zlhr6..1;R)>o, (s.6s)
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              (Hl-H2)(Ml+M2)--(Al+c)(Sl+S2)-2(SIM2-S2Ml)ah

                                          '
[Point Set U               ]

           h,rn
     If the optimal solution does not exist in the above areas,

then it exists in Uh,m. The foliowing property holds.

     Property 5.7 If for some R>O

                  -A-          A          xh,.(R):Åí ah and xh-.l,.(R)2 ah

                                                          (5.71)
                  - A --t          Aor yh,m(R)5bm and yh,m-i(R)ibm,

then (5h,6m) is the optimal solution of problem ApR.

            A - ---- -     Proof: xh,m(R) is defined only when yh,m(R)<bm and yh,rn"1(R)
> 6m hold. TherefoTe <5h,iim) is the optimal solution of probiem ApR

by the convexity of G(x,y;R). O

Let Rh,.A- {R >ol R satisfies (s.71)}.

    Now we obtain the aigorithm by using the above properties.

A1gorithm

Step 1: Rearranging ai and bi(i=1,2,...,n) in ascending order of

magnitude respectively. Set h-[j12], m-[k12] and go to Step 2.
                          Rstep 2: Consider Probiem AP in the area Sh,m. If Rh,rnl Åë, then
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then the optimal solution of Problem APR exists on TYh,m.

    Proof: We can prove it similarly to Property 5.6. 0

           AIn addition yh,m(R) and R" are given as follows.

         S}h,.(R)- -'B(Ml"M2)-22((SslliSs22))5h'2(H1-H2),

             2 {( Hl --H2 ) 2+4 ( Hls2+H2Sl ) E' [h-4SIS2iill-A2 ( S!+S2 ) }

(5.

(5

69)

.70)



go to Step 3; otherwise go to Step 4.
Step 3: If RtE Rh,m, then xee+--Eh,m(R'), y'e-Sh,rn(R') and stop;

otherwise go to Step 4.

           AASteP 4: If xh,m(R) (or yh,rn(R)) is not defined, then go to Step 6;

otherwise go to Step 5.
Step 5: If there exists R satisfying (5.60) (or (5.67)), then go

to Step 7; otherwise go to Step 6.
                                                          '                                               '                           t-Step 6: If 3ih,m(R')5-a- h (or xh,rn(R')iah+1), then h'wh, h--h-1
(or h+---h+1, h'wh) and return to Step 2. If yh,m(R')5bm (Or

Yh,m(R')2:bm+1), then m'en, men-1 (or m--n+1, mtan) and
return to Step 2.
step 7: consider Problem AP:,m,'(or APII,ht) in thb area Ti ,,m, (or

TYh,,rn,). If Ee:,,m,=(P (or RYh,,m,=tp), then go to Step 9; otherwise

go to Step 8. • • ' -                                      ttStep 8: If R"ERhX ,m (or R"ERK,m), y"wh-m (or xsc--ah) and xsc+---

Xh,m(R") (Or Ylpyh,m(R")) and stop; otherwise. g.o ,to Step g.

                     PA-siep,g::fi-i?:rn(il'i?:,Ap,;sg,•2iRl.';` ;:lA,:it5 :. gth.21T, -:,-.'--..,i (2:,M"t

wh (or men+1, m'---m). If the condition (5.71) is satisfied,
then go to Step 10. 0therwise, return to Step 2.

Step 10: Set xsc-ah,, yce-bm, and stop.

     Theorem 5.1 The above algorithm finds an optimal solution in
at most o(n3) time. ,
                         '                                                      '     proof: The number of areas is at most (n-o2+2n(n-o+n2 and

the cornputational time necessary to search each area is O(n).
Therefore this algorithm finds an optimal solution in at most o(n3)

     In the following, we give some toy examples illustrating the

above algorithm.
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Example 5.3 The location (ai,bi) and the rnean vi and variance u?.

of weight Wi are given in Table 5.3. And the avail.able cost c is

                                                              '1000. ' .         --d--- - --Step 1: al=O, a2=1, a3=3, a4=4, as=7, bl=-3, b2==-1, b3=2, b4=3,

bs=4, h=2 and m=2r ,
Step 2: S22={<x,y' )l 1<x<3, ---1<y<2}. R22--Åë.

                 AA                                 (R) are not defined.                     (R) nor yStep 4: Neither x                  h,m h,m .
Step 6:,'  E22)3, and therefore h=3 and h,=3.

SteR 2: S32={(x,y)l 3<x<4, --1<y<2} and R32fÅë•
step 3: Rt=13.82 and Rh,rn={RI 9.04<R<18.09}, therefore R' ERh' ,m•
xes=3.53 and yce=1.32.

                                                          'Example 5.4 (ai,bi) and c are the sarne as in Example 5.3. yi and

o. are given in Table 5.4.
Step 1, Step 2, Step 4 and' Step 6 are the same as in Example 5e3.
Step 2: S32={(x,y)1 3<x<4, -1<y<2} and R32=tp.
         AStep 4: yh,m(R) is defined.
Step 5: The condition (5.67) is satisfied for some R (e.g., R=5).
step 7: Tg2={(3,y)l -1<y<2} and Rg21tp.
Step 8: R"=28.13 and RY32={Rl O<R<48}. Since R"ERY32, xee=3 and

ysc=1.32. • '
Example 5.5 (ai,bi) and c are the same as in Example 5.3. pi and

 2 ..u. are given m Table 5.5.
 1
The first seven steps are advanced in the'  same way a$ in Example
                                                  '                     '
        '
step 7: Tg2={(3,y)l -1<y<2} and Rg2=Åë.
                                                '               AStep 9: Since y32(R)>2, m=3 gnd m'=3. The condition (5.71) is
                                             'not satisfied.

Step 2: S33={(x,y)1 3<x<4, 2<y<3} and R33=Åë.
         ASteP 4: x33(R) is defined. .
Step 5: The condition (5.60) is satisfied for some R.
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               /tStep 7: Tg3={(x,2)l 3<x<4} and Rg3=tp•

Step 9: Since 233(R)<3, h'=3 and h=2. The condition (5.71) is,

not satisfied. '                                       'Step 2: S23={(x.y)l 1<x<3, 2<y<3} and R23=Åë•
         ASteP 4: y33(R) is defined. .
                  ttStep 5: The condition (5.67) is satisfied for some R.
 'step 7: Tg3= {( 3,y)l 2<y <3}. and RY3 3= Åë• '
               AStep 9: Since y33(R)<2, rn'=3 and rn=2. The condition (5.71) is

satisfied.

Step 10: xes=3 and yce=2.

                                               'The above examples show the three cases whose optlmal solutions are
                  'in Sh,m, Til,m and Uh,m 'respectively.
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Table 5.3. Data for Example -5.3.

i (a.,b.)11 pi
2U.1

1 (Q,2) 22 18

2 (1,4) 28 11

3 (3,-3) 24 21

4 (4,3) 35 12

5 (7,-1) 55 17

Table 5.4. Data for Example 5.4.

1 2 3 4 5

p•1 22 32 52 50 47

2U.i 12 11 21 12 i7

Table 5.5. Data for Exarnple 5.5.

1 2 3 4 5

y•1 25 32 46 35 30

2a.1 IO 8 9 !2 5
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5.5 Chance Constrained Minimax Facility Location Problem

     There appears some demand points in the plane and their loca-
tions and the nurnber are known only probabilistically. Let (Xi,Yi)

and N denote the location of i-th dernand point and the number of

dernand points respectively. We assume .that (Xi,Yi) are independent

identically distributed (i.i.d.) variates and that N has a Poisson

distribution with positive parameter B.
              '     Our objective is to decide the reachable distance r in a re-
                                                    tstricted tirne and the location (x,y) of facility to solve the fol-

lowing problem.

              '     MPo:, Minimize r

                             '           subject to Pr{ mgx Di(x,y)::r}2:a,
                          •l                                                                 '
where' Di(x,y)glxi-xi+Iyi-yl . (s.72)
                                                       '
and O<ct<1. Now let {(xes,yee),rtt} denote an optirnal solution of
        tta-     -                                   .t                                           'this problem.

     To soive the problem, we introduce the following subproblem
   '
MP(r) with nonnegative parameter r.
                               '
     MP(r): Maximize Pr {max Di(x,y>:: r}.
                           i
The optimal solution and the optimal value of thiS problem P(r) are
                                              'denoted by (xr,yr) and f(r) respectively.                                          Then the following prop-
                                                             '                                             'erty holds. •. '                                                      '                              '                                '     property s.s Let r'gmin{rl f(r)2:a, r2:O}, then {(xr,,Yr,),

                                                                'r'} is an optimal soiution of MPo. '  ' . .
     Proof: The chance constraint of Problem MPo is satisfied by
{(Xr,,Yr,),r}}. And f(r) is a nondecreasing function. Therefore

if r-<r', then by the definition of r' we have f(r")ga. It con-

'
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tradicts that rff is feasible for Probiem MPo. Hence ree=r'. V

     Since (Xi,Yi) are i.i.d. variates, Di(x,y) are also i.i.d.

variates. Thus we have
                    '
                                                n          Pr{rnax D.(x,y)< rlN=n}=(Pr{D(x,y)< r})                                                  for n>1, (5.73)
              ..1 -- . -           .1
where we drop the subscript of D.(x,y). If there are not any demand
                               i
points, i.e., n=O, then thg maximum distance between the faciiity .

and demand points is zero, hence .

          Pr{ mgx Di(x,y) .s rlN=O} = 1•                                                           (5.74)
              Il.

Therefore we have
                                                 '                              co
          Pr{max Di(x,y)sr}= E Pr {max Di(x,y)ErlN==n}Pr{N=n}

              i n=O i
                              co              '                            = E (Pr{D(x,y) < r})"B"e'- B/n!
                             n=o r.
                                                  '
                                  (by (5.73) and (5.74))

                            =exp[BPr{D(x,y).s r}--B]. (5.75)

Now we consider the following prob!em MP'(r).

     MP'(r): Maximize 'Pr{D(x,Y)< r}•
                                -
     '                                        'Then Problem MP(r) is equivalent to the above Problem MP'(r) from

(5.75). Thus if we deÅíine the optimal value of MP'(r) by g(r). we

                                'have
                   '                             '
          f(r)=exp{Bg(r)-B}. ' (5.76)
       -BIf ase , then from (5.75) the chance constraint of Problem MPo
holds for any {(x,y),r}, r>O. Thus we consider the nontrivial
case a> e' B hereinafter.
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     Now we consider the case that the demand points are uniformly
distributed in a rectangular area Ue{(x,y)l O<x<a, O<y<b}. We
                                                      tta t-e                                             --
assume a)b without any loss of generality. Then the following

property holds. '                    '                             '
                                                '     Property 5.9 For any x, y and r, the following inequalities
                  '
                                           '
          pr {D(x,b12) 5r}l Pr{D(x,Y) .S r} ,

          Pr {D(a!2,y) Åír}2i Pr {D(x,y) 5r}•

       '     Proof: The probability Pr{D(x,y)sr} is in proportion to the

area of intersection of the rectangular U and the rotated square
area V(x,y) (see Figure 5.2), where v(x,y)g{(x',y')Ilxt--xi+ly'-yl.

                                                                 '                                                                 'Sr}. Therefore the proof of this property is easily done. D

'

a

        Figure 5.2. Intersection of U and V.(Shaded area.)

                           '                               '                                                    '                 '                                        '                       '     From this property, it follows that (a12,b12) is an optirnal
                                                'loeation of the problem .MP'(r).. Therefore we have only to consider
three cases. (See Figure s.3.) If r>(a+b)12, then we 6an cover

the area U with the area V entirely. Therefore we have

          g(r) =1, •- .(5.77)
                    '                                      'and by (5.76)

                           tt                                                           tt/          f(r)=1, • • (5:78)                       '
that is, we can reach any point of the rectangular area U with -prob-

                                           '         '                                 '
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b b

   (i) o E r ; l} ' (ii) g < r ;g ?,• (iii) -a,- < r E a b

                                                       '                               '
              Figure 5.3 Three cases.

ability 1. Hence from Property 5.8 we do not cgnsider the case r>
(a+b)!2 anymore.

     The optimal value of Problem P'(r) in three cases of Ifigure 5.

are
                 2               2r                                                            (- 5.79)          g(r) =                ab '

               4r-b                    , (5.80)          g(r) =                2a
                          2                  (a+b-2r)                    ' 2ab (5•81)          g(r) -- 1-

respectively. Therefore from Property 5.8, (5.79), (5.80) and (5.

81) we have

             ab(1+ln alB ).                         , (5.82)          r+ =                  2.                                                        '             2a(1+ln ofB )+b                          , ' (5.83)          ree =                   4
             a+b--! -2ab ln ofB                                                            (5.84)          r- =              .2                                                                '
respectively fo"ifi the cases (i), (ii) and (iiO in Figure 5.3.

Tran$forming the intervals of r' into corresponding ones of a, we

obtain the parametric solutions. (See Table 5.6.)

a

3
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Table 5•.6. Pararnetrtc solutton in the untforrn case.

Interval of ct (xft,y*) r*

o < ct

(g,e)
o

= =

< q
-B(1-

<e=

bzir.

) ab(7,7) (5
.
82)

-B(1-
e

x)
< ct

ab(77)
(5.83)

= '

Bb

< ct <1=: ab(7,7)
(5

.
84)

     Next we partition a rectangular region U into two subregions
Ui4{(x,y)l Osxsai, Osysb} and U2e{(x,y)l aisx: a, Osysb} in

which the demand points have uniform distributions with densities
ql (>O) and q2 (>O) respectively. Then the following equation
holds.

         albql + (a-al)bq2 = 1• (s.ss)
rn th;s section we do not assume azb. But we aSsUme qliq2>O
without any loss of generality. Then we obtairi the following prop-

erty.

                             '     t'roperty 5.10 The following inequalities hold.

    '
                                '(i) Pr{D(x,b12) <r} > Pr{D(x,y)< r},
                    --                                  nt             '                                          '
(ii) Pr{D(al/2,b12)Åír})Pr{D(x,b12)sr} for r5al12,
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(iiO Pr {D(r,b12) sr} 21 Pr{D(x,bl2)s r} for r> al/2 and x2:r

(iv) Pr {D(al-r,b/2)5r} )Pr{D(x,b/2)Sr} for r>al/2

                                                and x< a -r .'                                                     -1
                    '
    Proof: Let A(') denote a funetion which represents the size

of areas on R .                Then we have
                           '        '
         Pr {D(x,y)5 r}= qlA(V(x,y)nUl) + q2A(V(x,y )nU2), (5•86)

where v(s,t)={(x,y)l1x-sl+ly-s1s t}•

The equation (5.86) can be rewritten as followsi

                                                '         Pr {D(x,y) :S r} = (ql--q2)A(V(x,y )n Ul)+q2A(V(Å~,y)fi U)•                                                          (5.87)

                  '(i) Both of the areas Uland U2 are considered separately. There-

fore we can prove this inequality similarly as Property 5.9.
(ii) If r5al/2, then (x,y)=(al/2,b/2) maximiRes A(V(x,y)nUl) and
A(V(x,y)nU). Therefore this inequality is proved from (5.87).

(iii) For r> al/2 and x)r, both A(V(x,b12)nUl) and A(V(x,P12)nU)

are nonincreasing in x. (See Figure 5.4.) •

                                      (or U)
                   b

(iv)

U)

                o

     Figure 5.4.

  For r>al/2 and
are nondecreasing

r(.,g)

Ul1

a
   al
 r>T'

x<a -r -1
.m x.

         (or a)

x>r  == -

, both A(V(x,b12)nUl)

(see Figure 5.5•) D
and A(V(x,b/2)n
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b

r
(x, g)

o

Ul (or u)

                                       (or a)                                     1
                          . al
           Figure-s- .s. r>T, xgal-r.

From this property it follows that we have only to consider the
twelve cases. (See Figure 5.6.) The optimal values and the opti-
rnal solutions of Problem MP'(r) in the above twelVe cases ate as
                                                            '
                     '
            g(r) =2qlr2Case (i)

            (Xr, Yr)=(all2, b/2)

case 6i) g(r)=2qird-q:iqi-iq22) (2r-ai)2

  '   ' (ql-q2)al+q2r                                   , b/2)            (Xr' Yr)"( 2qi-q2

case
 (ii" Xild--i:IIi".-ii t-` l2I' i,l':ib/2)

case(iv) g(r)=-Sitlill2E;2L(qil2)(2r-..i)2+E!!tE!ElilZ:9Lb(4r"'b)

            (x., y.)r( (qiiii-)qa2i+q2r , b/2)

                                 q2(3ql-q2)
                                     ' b2casg (v) g.(r)=2q2br+(qrq2)aib" 4qi
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<(>

a)

(iv)

"i)

(v)

(iii)

(viO (vi")

(vi)

(ix)

 (x)

Figure 5.6 Twelve cases

(xi) (xii)
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Case (vi)

 (Xr' Yr>=

 g(r)=•-

(x , y )=(
  rr
g(r)=

(Xr' Yr)=

  '
g(r)=-

(Xr' Yr)"(

g(r)=

(Xr' Yr)"

(Xr' Yr)=(

g(r)= k' -

       '(Xr' Yr)=(

g(r) = i?'L,-

(Xr' Yr)=(

  (r-      2ql

qlq2
q1+q2

   (q l-q2) (2r-b) +2q2a

ql-q2
     b, b/2)

       '
(a+b-2r)2+1

Case (vii)
ql(ql-q2)

     2(ql+q2) '

q2 •ai+q2b(2r-g)

               '.(rqi i2q2ai+r, b/2)

  '          ' 2+2(g+q2b)r- 2qi2b2 +

  i      b/2)

       2,-S2!lllL)

(al/2, b/2)

r2+2(g+qib)r" 2qlb2 "'

  '
  i      b12)
       ,
  1 q2(ql-q2)
     - ql .(a-al)2

  1      b/2)

  '  1 'ql(ql'-q2)
"itqlliSTqb+ q2 ai

  i      b/2) 2q2b '

b/2)

Case

Case

Case

Case

Case

(viti)

(ix)

(x)

(xi)

(xii)

     2q2r

         2q2b '

    ql(2r

g(r)=e2qi

         2qlb '

        2qlb2

        '
         2qlb '

ql(ql-q2)

q2

q2(ql-bq2)

   q2 .
a2.-     b2 12

ql
(a-a

1
) 2,-

qliL,b2
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 From

tions

 (S-1)

 (S-2)

Property 5.8 and (5

for Problem M? in    .o
       .*. wutlnOtlB
            . 2q                1
          -2ql(ql-q2)al+

.76) we have the fQllowing optimal

cases (O-(xti) respectively.

 , (xk, y*)=(ai/2, b/2)

solu-- .

r*s

 (x*,

r*=

 (x*,

r*=

2qi(2qi'-q2){qi(qi-q2)az+q2(i+inct!B)}

y*)=(

           2qlq2
(q1-q2)a1+(l2r*

2ql-q2 '
b/2)

(S-3)

(S-4)

'q1(ql-q2)al+q2(1+lnct!B)

          2q2

       ql-q2
Y*)'(-  q2 al+r*, b/2)

L+]lt!IRgte/

4 2qlb
2q1(q1dq2)a1+q1(2q1-q2)b-- rs

where

(S-5)

(S-6)

                  4ql(ql-q2)

                                                '
D=ql(2ql-q2) {qlq2b2 +4ql(ql--q2)alb-4(ql-q2) (1+lnct/B) }

              .      (.., y*)'.( (qi";q2i.a.qiliS2r* , b/2)

       '• ql'-q2 3ql-q2                            1+lnct16
            2q2 al+ 8qt b+ 2q2b      r*= d.

                   ql--q2
                         b, b/2)      (x*, y*)=(r*-                     2ql
          a+b 1 '(ql+Cl2)lnct/
             --r*=

(x*,

22
y*)-(

     qlq2
2q 2a+(q l-q2) (2r*-b)

, b12)

if

if

ql=q2 ,

otherwtse '

2(ql+q2)
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(S-7)

(S-8)

(S-9)

(S-10)

(S-11)

(S-12)

     tt

Now all the

parametric

.rk--Sit:!"F!zL(qi-bq2).2i.7.u.:;{}:feinctgB

           ql-q2
                al +r*, b/2)(xrk, y*)=(-
            q2

rrk=

(x*,

r*=

(x*,

r*=

(x*,

r*=

(x*

r*=

(x*

 2
q2(a-a1)+q 22b+Cllq2al- 2qlq2(ql-'q2)al--2q21nctIB

       . ql-q2
 Y*) =( 7- 2q2 al ,

b 1+lnct/B
-+4 2qlb '
 y*)=(al12, b/2)

11b+qlb'

2q2

b/2)

2{ "q2 (qi'q2) ( a•-• ai) 2 •-qiimu/B}

     yst)"

        2     1+ 2b

    , y*)=

        2     1- 2b

    , y*)"

 cases are
solutions.

{q2(ql-q2) Ca-al)2+ql(1+lnot /B)}

    . 2ql

( 2ql lb , b/2)

   4qlb

   1      , b!2)c  2q lb

{ql(ql-q2)a2 1-q2

   4q2b

  . qrq2
( 7d -2q2 a 1,

 Shown in.Table

(1+lnct/3)}

b/2)

        '
 5.7. Table 5 .8 shows the
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Table 5.7. All the cases Qf b and a         1
b al policies

O<b<2a/3=

OÅíal;q2b12ql
q2b!2ql<alÅíb

b<alÅíat-b!2

a-b12<alga

.Table5.8<i)
Table5.8(ii)
Table5.8(M)
Table5.8(iv)

2a/3<bSa-

OÅíalgq2b/2ql
q2bl2ql<alÅía--b!2

a-b/2<a<b1-=

b<alga

Table5.8(i)
Table5.8(")'

Table5.8(v)
Table5.8(iv)

OEalEq2(b-a)/(ql-q2)
q2(b-a' )1(qi-q2)<aiSq2b/2qi

q2b/2ql<al5a-b!2
a-b12<•alEa

Table.5.8(vi)
Table5.8(i)
Table5.8(ii)
Table5.8(v)

2qial(ql+q2)gb OEalÅíq2a/(ql+q2)

q2a!(ql+q2)<Lalsa
Table5.8(vi)
Table5.8(vtt)

t
  In this 91 iS not equal to ,q2.
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1

}•--,

-o
l

(i)
Table 5.8. Parametric •solutions

Interval of a

     •-BO< ct <e

e-B < ct < e

     "' 2
    qlal

-B ( 1•-

-B(1-

   ql
---

B ( 1-

-B ( 1•-

  '
)
 <- ct

 2)

  rrB(1'-
;e
ai'

   <u
ai-- flitL b2 )

 q2
12

<a<1

  2qlal

 2

q1(3q1-'q2)

ql(3ql-q2)

e

e

e

e

e

   q2

  -B(1-
Ee

 < ct <e

  '    -B
< ct < -e

ai'

 q2
(ql-q2)

q1(ql•-q2)

-•
B ( -•

q2

ql(ql-q )

2 q2
al- T
 2

-• B(-

-B

   q2
ql(ql-q2)

   q2
ql(ql-q2)

      a  q2'

'a2+---b2)

2

1

    q2
ql(ql-q2)

ai

 b2)

ai+ ElitL b 2 )

q2

solution

(s•-o)

(S-•1)

(S-2)

(S-3)

(S-7)

(S-8)

(S-6)



1

ppp
I

(ii)

Interval of a solution

o<ct (s-o)
= =

2qial

e-B< a<em
-• B(1-

2
)

(S-1)
2qlal

-B(1-
e

2)
<ct <e

-B(1+ 2(2ql-q2)(b'-al)-T
(S-2)

=
ql(qr q2)

-B(1+
e

2(2q1--q2)
(b-al)2

-- Zf- <a<.-Bq2b(a-al-4qlb)
(S-4)

=
qrq2 q2(q1+Cl2)

b2Bq2b(a-al- 4ql
b)

<a
-B

<e4qi==

(S-5)

q2(q1+q2)
b2-B

e
4ql

<ct <l (S-6)
=



l

ppM
I

( lio

.Intervalofa solution

(s-o)
=:=

e-B<a<e-B(i--q1
2b2

)
(S-1)

='-B(i--gi 2b2 )-B(i-qiaib+qi 2b2

(S-9)

e--B(i--qiaib+Sltllll-b-2)<ct<e-Bq2b(a-ai-qtiill2b)

(S-4)
=

.-Bq2b(a'-ai-q 2El2b)<ct..-Bq2(21tS2)b2

(S•--5)

=q2(qliq2)b2-Be4qi<ct4i

(S--6)



l

NPbe

l

(iv)

Interval of ct

     -BO< ct <e

-B
  < ct <ee
    =   qlb2

-B(1-    2

)

 < ct
 qlb2

qlb 2

-B(1••-

-

  e

   2

B(1-qlaib+

     1

#

)

2

e

<

(a-al)2+(ql-q2)(a-al-b)2--

           (qr
          nv

)

B(i-qlalb+

ag

q!b2

e

e

e

e

-B(

   21

  2
(q -q2)

ql

(a-'al) 2+(ql-q2) (a-arb) 2

   '            e-B

(a-al)2

     <ct<1       =

(q1- 2•q 2)

-B(

-B

(q -q2) 2q2)

  ql

q2(q1+q2)

  ql

  2
q2(q1+(l2)

ql

   b2)
2

b2)

  <ct<
(a--al)2

solution

    '(s-o)

(S--1)

(S-9)

(S•-4)

(S-10)

(S•-6)



l

Hp)
,

(v)

Interval of a

     -BO< ct <e

 -B  <a<e-e    =    'qlal
 --B(1-

-- B(1•-

)

1

 2)

  -B(1+

(b-al) 2

 2qlal

 2 < ct <e
ql(q -q2).

ql(ql-q2)

e

-- B ( 1+
2(2ql-q2)

 (ql-q2)

    2(2ql-q2)

   ql  -Tb2)
      <ct<
(a'al)2+(ql-q2)(a-al-b)2

(b-ai)2- Illt; b2)

e

-- B(

1

ql

(a-al) 2+(

 '

qr2q2

-- B(

e

(q -q2)
ql-q2) (a--al•-b) 2.

  -

ql-2q2

e ql

  q2(ql-
-B

e ql
q2)

(a-al)2
< ct <' 1

   2
  q2(ql-q )
-B----e ql

   b2)
 2

b2)

  <ct<    =2'  (a-al)2

solution

(s-o)

(S-1)

(S-2)

(S--4)

(S-•10)

(S-6)



1

-ptn
1

(vi)

Interval of ct

        -BO< ct <e
 pt =:

e-B <

 -B(1-

a<
qla

e
2

1

-`B (1-

)

  2qlal

2
)

-B(1-
ql(3ql-q2)

e

-- 6 ( 1-

2

ql(3ql-q2)
<a<e
  ai'

  q2

-'

B (1- 2q1
2'ija '

ai'

q1(q1--q2)

e

-• B(1-

q2

  1
i2Er:i;q2-

<

ql(qrq2)
a<e

ai'

q2

-'
B(rkq2 -

q1 (q1+Cl 2)

ai'

ql(ql-q2)

e

-B(
l

q2

ql(ql-q2)
ai'

  < ct <e

      --B

<a<e   =s

a2
1

q2
ai'

e

-B

rmq2"

q1(q1+q2)

q2

a2
 1< ct <1
       :

q2

e
q2

solution

(s--o)

(S-1)

(S-2)

(S--3)

(S-12)

(S-8)

(S-6)



(vii)

1

Ppa
1

Interval-ofct solution

-BO<ct<e=:=qlal

2

'

(s-o)

)

2q1-q2 ql(ql-q2)

(s-!)

-- B(1---- B(1-2)
e<ct•<=:

2ql-q2

eql(ql-q2)
2qlq2 +q2ai)

1q2(ql-`q2)

(S-2)

.-'B(1-2qlq2b+

1q2('ql-q2)

q2
ai'<ct <.-B(rr2ql+ql(a-'al)2)

=q2(q1+q2)
'(S-11)

+ -B(a-al)2.-B('521iTi;qiqi

q2(q1+q2)

(a-a1)2),<ct
<eql= (S•-10)

.'Bql(a-al)2
<ct <1= (S--6)

In the
(s•-o)

above tables' , the solution

  r*=O, (x*,y*)=(al12,b!2).

(S-O) is as follows:
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