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Chapter 1

Introduction

1.1 At the beginning

When we study various materials, we often use the method in which we apply a field to
material and observe the response. ESR, electron spin resonance is a typical one. We give
the static magnetic field and an oscillating field to the material and observe absorption,
which is described by complex susceptibility x”(w)[1]. Electron spin resonance method has
been a very powerful tool to study the energy structure of the material, from which we can
reduce hamiltonian of the material to to determine hamiltonian.

Turning our eye to the quantum spin system, after the Haldane conjecture in 1983[2,
3],there are many studies on the low dimensional quantum spin system, which reveals that
“non-magnetic” material in conventional sense has various quantum phases in the grand
states. There, the singlet pair(valance bond) plays as a freedom of system and its various
spatial configuration describes the characteristics of the distinguishable quantum phases in
the ground states.

For example, AKLT model, a model of the S = 1 of one dimensional quantum spin system
(see section 1.2.4), shows a disordered state so called “quantum liquid” in the ground states.
There, existence of energy gap and the exponentially decaying spin-spin

correlation function has proved. A new type of quantum order so called hidden order has
been

also pointed out [33, 34].

With combination of various experiments on the quasi-one dimensional materials and
various numerical experiments, knowledge of the low dimensional quantum spin system has
been extremely improved.

On the other hand, surveying the theories on electron spin resonance, only few works
have taken into account the quantum many-body effect. Nothing to say that there are no
need to take into account the many-body effect in analyzing the paramagnetic resonance,
because each spin resonates individually. In the ferromagnetic resonance case and the anti-

ferromagnetic case, system have been treated as a classical vector.



Among them, Nagata-Tazuke’s theory is notable. Using Kanamori-Tachiki’s formalism
[6] and explicit expression of the spin-spin correlation function in one dimensional classical
spin system, they made a good reproduction of the temperature dependence of resonance
shift comparing with experimental results of CsMnCl;-2H,0.

In recent years, electron spin resonance experiments on various quasi-one dimensional
material attracts interests[30, 29, 26]. The system thought in some disordered quantum
phases. But there are no theory of electron spin resonance which gives the physical perspec-
tive on such a quantum disordered system in which spin-spin correlation plays essential role

and the system has no long range order.

To investigate the electron spin resonance in such a strongly fluctuating quantum system,
we proposed a direct numerical method (4] to calculate the dynamical susceptibility x”(w)
via Kubo-formula [8, 9]. We calculate the spin-spin correlation function numerically exact on
the quantum system and apply the Kubo formula. So we can obtain the exact absorption line
shape and the g value shift originated anisotropic effect of exchange integral, dipole-dipole
interaction and the Dzyaloshinsky-Moriya interaction.

Using this method, we can adopt the geometrical effect of the system exactly, i.e., dipole-
dipole interaction effect originated from

the system spatial structure, effect of configuration of the static magnetic field and oscil-
lating magnetic field to the system. Therefore, we can obtain the absorption line shape for
an actual material[4]. We studied relevant model for the experiments, such that bond alter-
nating one dimensional zigzag chain[5]. We also estimate effect of the Dzyaloshinsky-Moriya
interaction effect for resonance[5]. Furthermore, we studied electron spin resonance in the

systems which have various quantum phases in its ground states.

Especially, we paid attention to the dynamical shift, i.e. the geometry configuration
dependence of a resonance shift, the shift from paramagnetic resonance frequency. We
regards the dynamical shift is one of the important quantities which reveal the nature of
the system via ESR. We propose that we can determine exchange integrals which no other
macroscopic measurement can determine until now

comparing the dynamical shift both numerically and experimentally[5].

In computer physics, it is required to understand physical characteristics of the system
effectively within the computer capacity. Computer simulation is one of the most powerful
method to investigate the physics of the system for which explicit theory can not be available.
Until now, no definitive theory of electron spin resonance on low dimensional quantum
magnets. So we hope that direct calculation of dynamical shift of the system is beneficial
to the theoretical understandings of ESR. We strongly hope that this thesis would clarify
the field where combination of numerical experiments and ESR measurement will be able to
determine various nature of material.




In chapter 1, we introduce the perspective of this thesis in the first section. After that,
we review the general property of low dimensional quantum spin systems. The ground state
phase diagram of bond alternating chain will be reviewed.

In chapter 2, we survey the theory of electron spin resonance. Classical description, one
electron case, phenomenological theory with relaxation, paramagnetic resonance theory will
be explained. After that we survey Nagata-Tazuke’s theory which considers many-body
effect. At the last section, we explain the detailed procedure how to obtain the absorption
line shape via Kubo formula. We note a perturbation treatment of Kubo formula and the
theory with dissipation effect.

In chapter 3, we explain the method that direct calculation of the complex susceptibility
via Kubo formula. In first section, we show the background why we need this method. After
that, practical procedure to perform the calculation with computer is presented.

In chapter 4, we analyze one dimensional antiferromagnetic Heisenberg chain using the
method which we introduced in chapter 3, with attention to the dynamical shift. First, we
show our method is a appropriate method. After that, we investigate change of the resonance
in various geometrical configuration of the system. The effects of the static field strength,
oscillation field strength, and anisotropy dependence of the sift of resonance are also studied.

In chapter 5, we apply our method to the chain with zigzag space structure. The sys-
tem is ferromagnetic-antiferromagnetic bond alternating chain with anisotropy, which is the
relevant model to Cug9Zng; NbyOg. We show the importance of system anisotropy.

In chapter 6, we show the possibility that we can determine the system constants, i.e.,
which bond is ferromagnetic and which bond is antiferromagnetic, using the dynamical shift
both from our simulation and from experiments.

In chapter 7, we investigate the dynamical shift in the bond alternating chain in vari-
ous quantum phases. Chapter 8 is devoted to summary and discussion. Chapter 9 is for

acknowledgment. At the end of this thesis, appendices are attached.

1.2 Upon low dimensional quantum spin system

1.2.1 Basic properties of the quantum spin

Insulator’s magnetism is carried by the magnetic moment of electrons which are localized
at the atoms on lattice. Assuming there are n electrons carrying magnetism in an atom,
composition of the spins n/2, due to the Hund rule. _

If we can consider the spins are localized to the lattice, we call the system as spin system.

Due to the overlap of the wave functions, the exchange interactions between spins appear.
Arrangements of exchange interactions determine various forms of quantum spin systems.

Adding to the exchange interaction, there are the dipole-dipole interaction between any
two spins in the lattice. Due to the system asymmetricity, there is the Dzyaloshinsky-Moriya
interaction[24, 25] between nearest neighbor spins. This interaction is antisymmetric with
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spin exchange. These interactions cause the shift in the electron spin resonance measurement.
So these interactions are important in electron spin resonance. They supply small effect to
the quantum phases nature because the amplitude of them are small comparing the exchange
interaction.

Each component of a quantum spin S, i.e. S, SY, and S?, satisfies following relations.

(5%, SY] = ihS?,[SY, §7] = ihS®, [S*, S = ihSY, (1.1)

where % denotes h/27 (h denotes the Plank constants). We set & = 1 here. The magnitude

of the spin, S denotes as

S? = S(S +1).

If S is equal to %, we can represent S*, SY and S* using the Pauli matrix o as follows.

() E () N I R

R P AP W 03

With the commutation relation shown as Eq. (1.1), the quantum spin system shows various
characteristics which we can not see in the classical spin system.

We will explain the exchange interaction. If two spins (S;S;) interacts with exchange

interaction, the system hamiltonian described as

We call this interaction exchange interaction. If J is negative, i.e. the energy of the system
is minimized when two spin’s directions are the same, we call the bond ferromagnetic. If J is
positive, i.e. the energy of the system is minimized when two spin’s directions are different,
we call the bond antiferromagnetic. Furthermore, if the static magnetic field H is applied to
the system, Zeeman term is added to the system hamiltonian. Zeeman term is described as

Hiceman = _H(Sf + Szz) (15)

1.2.2 The order of Heisenberg spin system

In the classical antiferromagnetic Heisenberg spin system, it’s ground state is the Néel state.
We can describe the Néel state as an arrangement of spin states up, down, up, down, alter-
natively.

It is not obvious in the quantum spin case because the Néel state is not the ground state.
Here we summarize the system dimension dependence and temperature dependence of the

order. Below, T denotes the temperature.

3 dimensional system




o T, # 0. Phase transition occurs at a finite temperature.

2 dimensional system

e At T =0, the long range order exists[12, 11].

e At T > 0, no long range order[10] exists.

1 dimensional system
S =1/2 At T =0, the spin-spin correlation function decays by a power as oc L~7.
No long range order at 7' = 0.

S =1 At T = 0,the spin-spin correlation function decays exponentially as oc e~7%.

No long range order at 7' = 0.

1.2.3 Theory and properties of the Haldane system

Here, we review the properties of a one dimensional S = 1 antiferro magnetic spin system,
called “Haldane system”.

The Haldane conjecture

At 1983, Haldane presented the conjecture about one dimensional quantum spin systems,
i.e., half odd integer spin system , S = 1/25 = 3/25 =5/2 - -- and integer spin system has
essentially different properties in the ground states.

The conjecture described as follows.
o Integer spin case

— The Ground state is rotationally symmetric and only one.

— There exists an finite energy gap between the ground state and the first excited

state.

— Spin-spin correlation function decays exponentially in the ground state.

¢ Half odd integer spin case

— The ground state is rotationally symmetric and only one.

— There exists no energy gap between the ground state and the first excited

state.

— Spin-spin correlation function decays by a power in the ground state.

Jr——



Until the Haldane conjecture, it is believed that in quantum spin systems of general
spin also have this half odd integer spin characteristic. It is believed that we can make the
first excited state with state using spin wave with infinitesimal small wave number k, and
believed that this state is orthogonal to the ground state. So this integer spin behavior
changed the “common sense”. Now, with various numerical study, theoretical study, and
experiments, Haldane’s conjecture is considered to be true. We call the system in which the
Haldane’s conjecture holds the Haldane system. The typical one is S = 1 one dimensional
antiferromagnetic Heisenberg chain.

1.2.4 AKLT model

To understand the nature of the ground state of the Haldane system, we often uses the
picture that valence bond (spin singlet pair) covers the system and moves around.
For the system consists of two S = 1/2 spins interacting antiferro-magnetically, the

ground states is shown as .
5(' T)ll l)z - | l>1| T)z), (1-6)

we call this state spin singlet state or singlet pair. This state is rotationally symmetric and
the expectation value of Sf + S5 becomes 0. We call this states as valance bond.

We call such systems “quantum liquid”.

AKLT model is given as

N

1
M= T Y (SiSi +5(S:8u)?), (1.7)

2

where J > 0.

It has been proved that if the model has the ground state which can describe as valence
bonds cover the system. It is proved that Haldane’s conjecture holds explicitly in AKLT
model[33].

1.2.5 Various phases in the ground state

We can add the single-ion anisotropy D term to the S = 1 one dimensional Heisenberg

model:

H[,’D == Z JSiSi.H + l)(Sf)2 (18)

If D is 0, we call the system is in the Haldane phase in the ground state. If D is sufficiently
big comparing J (> 0), the system is in the so called large D phase.

Here, we introduce two order parameters described by spin-spin correlation.

We introduce Néel order parameter as

Onea = lim (=1)F(GS|S;S;|GS). (1.9)

ji—jl—o0




If this order parameter is finite, the system has Néel order. We also say the system is in Néel
phase. The classical antiferromagnetic spin system has Néel order in the ground state. But
no Néel order in the Haldane phase and in the large D phase. This means that the ground
state of the Haldane system has different nature from that in the classical spin system case.

To distinguish the Haldane phase and the large D phase, we introduce the string order

parameter as '
Ostring = — j!%gloo(GSl S Limia1 5 S$|GS). (1.10)

Here, @ = z, y or z. In Haldane phase, this order parameter is finite and in large D phase,
this order parameter vanishes.

The spin state of the system is described as -+ -0+ —0+ 0 — + — .. .. Finite string
order parameter means that the system has Néel order if we ignore the spins in the state 0.
This order is isotropic, i.e. we can confirm this order from any direction[34]. Because we
can not detect this order experimentally, we call this order as “hidden order”. We can “see”
this order in computer simulation.

Phase transition between Haldane phase and Dimer phase has found in S = 1 one di-
mensional antiferromagnetic bond alternating chain in the ground state by Kato-Tanaka[15].
This phase transition beaks Z; X Z; symmetry. We set system hamiltonian as

Ns—1

H= Z (1= (=1)'6)S;S;41. (1.11)

Case § = 0, the system is Haldane system, and case § = 1, the system is in “Dimer phase” in
the ground state. Dimer phase is described with a picture two valence bonds at the strong
bond and no valence bond at the weak bond. They studied the gap between the ground
state and the first excited state when § changes 0 to 1, as Fig 2. Between dimer phase and
Haldane phase, there is a point where the gap vanishes. Similar phase transition occurs in
S = 2 case[16].

1.3 The phase diagram of S = 1/2 bond alternating
Heisenberg chain in the ground state

In this section, we summarize the phase diagram of the S = 1/2 bond alternating Heisen-
berg chain obtained by Hida[l8, 19]. There the bond strength of the system changes
ferromagnetic-antiferromagnetic alternatively. Effect of anisotropy is also considered.

We set the hamiltonian of S = 1/2 bond alternating spin chain as
N
H = 2J(S5:5541 + 5551 + AS5:55:11) + 27 SaiaSoi + D(S5i, + 55)°. (L12)

S denotes S = 1/2 spin operator, N denotes the number of spin in the system, and assume
Sy = Sy, the periodic boundary condition. The ratio —J'/J is denotes by 3. A denotes an

anisotropy of antiferromagnetic bond.




For example, if we consider the case § — oo, the system is equivalent to S = 1 one
dimensional antiferromagnetic with exchange interaction J4p = 1/2J, because we can regard
the S = 1/2 spins besides ferromagnetic bond as one S = 1 spin. Other various quantum
' phases with various parameter has studied[18, 19]. In Fig. 3, the phase diagram is presented.



Fig. 1: A rough sketch of Valence Bond Solid state, from [17].
The connected two black painted out circles denotes spin singlet
pair (valence bond) and an oval enclosing two black painted out
circles denotes a S = 1 spin. This oval represents operation of
“symmetrize”, which can be described as 1/2( -e o +7q_3).
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d (dimer strength)

Fig. 2: The gap between the ground state and the first exited
states is shown in a horizontal axis. Quotation From [15]. The
parameter A is shown in a vertical axis. We can see the phase
transition at around A = 0.25.
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Fig. 3: The phase diagram of the S = 1/2 bond alternating chain

in the ground state. Quotation from [19]. See the text for D and A
’s notation. ‘




Chapter 2

A Brief Review on Theories of
Electron Spin Resonance

Until now, there are various theoretical approaches to electron spin resonance. We will
present a brief review in this chapter.

We begin with the dynamics of magnets introducuing the Bloch

equation which includes relaxation effect of disipation. We then explain the general idea
of the paramagnetic resonance.

After that, we show the fact that if the spin-spin interaction is isotropic (i.e., SU(2)
symmetric) then no resonance frequency shift from that of the paramagnetic resonance exists.
So if we want to observe the shift, we needs the non-isotropic spin-spin interaction such as the
anisotropic coupling, the dipole-dipole interaction, and Dzyaloshinsky-Moriya interaction.

We introduce the Nagata-Tazuke’s workwhere they show the resonance shift from para-
magnetic case in the one dimensional Heisenberg spin chain with

the dipole-dipole interaction, making use of Kanamori-Tachiki’s equation.

We show a derivation of the imaginary part of the susceptibility from the Kubo formula,
and derive an exlicite expression for numerical calculations. We also introduce the result
of Natsume et.al.. They performed a perturbation expansion of Kubo formula and showed
dependence of the resonance shift on the angular between the chain ands the static field.
At ending, we note the treatment of Hamano et al. for a time evolution with a disipation

dynamics.

2.1 Larmor rotation

We set M denotes a magnet, Hy the static magnetic field.

The classical torque equation is

o = [Mx Hy. (2.1)

This equation is derived in scope of electrodynamics. y denotes the gyromagnetic ratio.

11




Setting Hy = (0,0, H,), H, > 0, the torque equation is expressed as

dM* dMY dM*
=yM'H,, — = —-yM°*H,, — = 0. .
i a a = ° (22)
Substituting time differential of the first equation to the second equation, we obtain
d*M, d2M,
ol —v*HZM,and dt;’ = —y’HZ M, (2.3)

M, and M, satisfy the equation of the harmonic oscillation equation. From the third equa-
tion, M, appears a constant.
The eigenfrequency wy of M, and M, is

wi = |v|H,, (2.4)

and we obtain
M, = Myge®, M, =i
[l
Both M, and M, have the same amplitude, and have the phase difference of 7. If ’s sign

Moe™*t and M, = M. (2.5)

changes, the direction of rotation will be reversed. This rotation called Larmor rotation (Fig.
4).

2.2 Magnetic moment of electron

We consider one free electron here. The spin has the charge —e, mass m, and spin S. The
spin S has the eigenvalues +1 setting unit to /i = J-( h denotes the Plank constant). The

spin has it’s own magnetic momentum usg,

P ( ch ) s, (26)

2m,

where
h = 1.05459 x 1073* J/S,

e =1.60219 x 107 C.

ge denotes “g-value” of the spin:

ge = 2.0023193, (2.7)
We use SI unit. Setting Bohr magnetron pp as
eh —24 -1
g = — = 9.927410 x 10~2* JT-, (2.8)
2m.

the zeeman energy H, in the static magnetic field Hy is given as
H,=—pu, -Hy = g.uu5S - Hy. (2.9)

12



The gyromagnetic ratio of electron spin, 7, the ratio between magnetic momentum of
the electron spin and anguler momentum of the electron spinis, and it is defined as follows.

_ _ge/J’BS _ —ge€
=R T om, (2.10)
So, the magnetic moment of a spin is described as
—g.eh
e = 29 ) (2.11)

e

2.3 Equation of motion of the quantum spin

In this section, we show the classical torque equation Eq. (2.1) holds in quantum spin case.
We set A as a physical quantity, H as hamiltonian of system, equation of motion becomes

dA
called Heisenberg equation of motion. Here, [ , | denotes commutation relations.

We apply this equation of motion to one free electron with static magnetic field Hy. The

system hamiltonian is given as
H = —y.hH,S. (2.13)

Substituting this equation to Eq. (2.12), we obtain

ds
dt
We set Hy = (H®, HY, H?), and obtain

ih— = [—7,hH,S, S]. (2.14)

ds, .
d‘i = —iy[H*S® + HYSY + H*S*] =
— i1 [H?(S°87 — §25%) — HY(SYS* — §29Y)|. (2.15)

For the spin exchange relation Eq. (1.1), Eq. (2.15), derived as follows.

ds*

Fral Ye(—H®SY + HYS®) = ~,[S x Hy].. (2.16)

T componet and y component become as

dSs
5 = e[S x Hol. (2.17)
Applying the relation pus = 7.hS after multiplying 7.% to both side of the Eq. (2.17), we
obtain d
(ﬁs = Y|pts x Ho. (2.18)
13



This equation has the same form as Eq. (2.1). In electron case, as 7, < 0, and the rotation
is illustrated in Fig. 4(b).

This equation of motion of electron spin can solved exactly. Especially, consider the case
static magnetic fields H is parallel to z axes, and consider oscillating field H; is orthogonal
to Hy and satisfy H; = cos(Hy/|7e|). If we set initial conditions as |1) (quantize axe is set
z axe) at t = 0, the probability of the spin is in |1) and | — 1) states becomes

P, = cos®(v.H;t/2),

P =sin®(v.Hit/2), (2.19)

respectively. We call them Rabi’s formula.

2.4 Phenomenological theory of resonance absorption
- Bloch equation

The energy from the oscillation field, first excites the Zeeman energy of each spin of the
system. After that, the energy transfer to whole spin system via the spin-spin interaction,
such as exchange interaction and dipole-dipole interaction. Naturally, the Zeeman energy of
each spin also transfers to the lattice via lattice-spin interaction and became thermal energy

and also transfers to outside of the system via radiation.

We introduce the Bloch equation as a representative phenomenological theory of reso-

nance absorption

dM=Y M=
= .y _
T = 1M H - 2 (2.20)
dM* Mz — MO
=M x Hy]* = —. .
STV s (221)

M denotes total sum of the system magnetic moment ", M;. We assume the static magnetic
field Hy is parallel to the z axis, and assume M, is the z component of My in the equiribirium.

We set T} = oo and T3 # 0. As T} = 00, M, is maintained constants with time evolution,
while M, , will decay to 0. This means that the phase of each spin M*¥ becomes randome
after long time. Thus, we call T; as the phase memory time. Or we sometimes call T, as
spin-spin relaxation time, because it comes from the spin-spin interaction.

On the other hands, T is the relaxation time for M, to the equlibrium value M,. So we
sometimes call T; spin-lattice relaxation timeere

If we assume y>H7T1T; << 1, the complex susceptibility x(w) = x'(w) — ix"(w) (see 2.9)

is derived as
Xov?Hi (72 H§ — w?)
(V2H — w?)? 4 4w /T3

Xo(w) =

14



and 212
x"(w) — 2X07 HO (W/Tz)

: (YHE — w?)? + 4w /T3
Here, xo = Mo/Hy. The absorption line shape x”(w) described here is called Lorenzian, the
half width is 1/75. In the Bloch equation, the width of the absorption line peek exists due

to the relaxation term.

(2.22)

2.5 Paramagnetic resonance and equation of Kanamori-
Tachiki

We will consider the paramagnetic case, in which we can assume spin-spin interaction is
weak and each spin rotates individually. The resonance frequency of each spin are same.
Here, let S(t) be the total magnetization of the system S(t) = ¥ S;(t). We assume one

dominant mode

ds+t
dt

Now, St = 5% +1¢5Y and S~ = 5% —15Y.
Combining the commutation relation with Eq. (2.23) and

= —iwS*. (2.23)

ih% =[S, H], (2.24)
we obtain 45+
i([S™, = 1) = ([[%, 571, 57]). (2.25)
Finally, we obtain Cres
Y (Ca At 226)

2(S.)
using [S~, St] = —-25,.
If we assume that the system hamiltonian consists of only the Zeeman term,

H = gepupS*Hy. (2.27)

we obtain from Eq.(2.26) as
hw = geptp Hp. (2.28)

w is the frequency of the paramagnetic resonance.

We can also apply Eq.(2.26) to the hamiltonian with spin-spin interaction. Thus we can
take into account the effect of spin-spin interaction.

Furthermore, Kanamori-Tachiki[6] also extent Eq.(2.26) to the case of 2 axis anisotropy
where the single mode assumption of Eq. (2.23) is not reasonable.

They obtained .
o = US55 57 (2.29)
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2.6 ESR in quantum spin system with interaction

2.6.1 The case of interaction has rotational symmetry

We will consider the case where the exchange interaction is isotropic, i.e., S;S;. The system
hamiltonian has the form H becomes as

H = —JHss - Hzeeman

= —J(STSE + SYSY + S78%) — Hogeps(S: + SZ). (2.30)

Here, the relation
[Has, S = 0 (2.31)

holds with S* = S{ 4+ S5, a = z,y and z case. So, applying Eq. (2.26) to this hamiltonian,
we obtain the resonance frequency w as

w = gupHy. (2.32)

This is the same frequency comparing from the paramagnetic case, H = H,ceman. 10 oObserve
the resonance shift from the paramagnetic resonance, we should take into account the some
anisotropy effect in the system hamiltonian, ¢.e., exchange interaction, anisotropy of the ex-
change interaction, the dipole-dipole interaction, and the Dzyaloshinsky-Moriya interaction.
In the realistic system, g is a tensor. Anisotropy effect of g will also effects to the resonance
shift. In other words, the system hamiltonian should breaks the SU(2) symmetry.

2.7 Dipole-dipole interaction and theory of Nagata
and Tazuke

As we had see at previous section, the interaction which breaks SU(2) symmetry is needed

to observe the resonance shift. Nagata and Tazuke derived the formula of the temperature

dependence of the resonance shift in the one dimensional antiferromagnetic chain with dipole-

dipole interaction. They succeeded to explain the experimental results of CsMnCl;-2H,0[7].
They start with following interaction,

N
apBSigepSiv1 3(guBSitiiv1)(gKBSitiTiit1)

oo g maSaSes_YouSranonSinte) g

= 15 1

which contains dipole-dipole interaction. Here,the number of spins is N + 1. r;; denotes the
vector from the ¢ th lattice to j th lattice. And 7;; = |r;;|. We assume periodic boundary
condition. When the lattice is in the z-direction, the system Hamiltonian is given as

N N
H=-2J) (1+a)(S7Sf,+S¥SI_1)+ (1 —2a)S:S7_,) —gup Y S;H (2.34)

i~i-1
j=1 =0
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where

a = —(g*up/a’)(1/2J), (2.35)

H denotes the external magnetic field and a = |r; ;|. As we can see this equation, we can
take into account the effect of the dipole-dipole interaction as an anisotropy effect.

They applied the Eq. (2.26) with the cases the external static magnetic field is parallel
to z axis and also the case orthogonal to z axis. They used the Fisher’s classical solution
of spin-spin correlation function with zero magnetic field in classical vector type spin case,
to calculate quantum spin-spin correlation function. They treated the effect of the external
field as a perturbation to the zero field case. Then, they get the resonance shift from the
paramagnetic case. We show the results in Fig. 5, which shows good agreement with the

experiments.

2.8 Dzyaloshinsky-Moriya interaction

In considering the shape of the spin-spin interaction, the system may have the interaction

d[Si x Sj] . (2.36)

This interaction is called as Dzyaloshinsky-Moriya interaction. Moriya performed the second
order perturbation calculation between exchange interaction and orbital arguer momentum,
and derived this term [25].

2.9 General theory of electron spin resonance

In this section, we review the general electron spin resonance theory start with Kubo formula.
We apply the weak oscillation field He™!. And we observe the magnetization Me™*.
Because the magnetic field is weak, so the following relation persists.

M = x(w)H. (2.37)
x(w) denotes the system susceptibility and in general, complex number. Here x'(w) are real,

x(w) = x'(w) — ix"(w). . (2.38)

Here, x"(w) stands for the energy absorption of the system. x(w) and X’ (w) satisfy the
Kramers Kronig relation. So with the measurement of x"(w) in a wide range of w, we can
calculate x'(w).

In electron spin resonance study, we observe the absorption of the energy applying the
oscillating fields with various frequency. Below, we will derive x,(w) from Kubo formula.

See appendix A for the derivation of Kubo formula.
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Consider the case with no spontaneous magnetization. We apply the magnetic field
H*(t') to the 2 axis direction and observe the response appears to the x axis direction. If
we treat the response to M, with the field H,, the response function ¢,,(t —t') is defined as

14
(M*(t)) = / bua(t — ') HA(¢')dE. (2.39)
In Kubo formula the response function is given as ,
$ea(t — ') = {([M°(2), M*(¥)]), (2.40)
where
(-+y="Tr...ePH, (2.41)
and § denotes .

with Boltzmann constant kg and the temperature T. H is the system hamiltonian of the

system. Here the pure quantum dynamics for time evolution is used.
M?(t) = ™ MTe ™, (2.43)

The response function is an odd function because the sign of the function changes when
we exchanges ¢t and t'. So, the left hand side of the Eq. (2.40) dose not change if we take
complex conjugate. So, response function is real function.

We set the external magnetic field as
H*(t') = ReHye™" (2.44)

Here, Re denotes the real part.
Substituting the Eq. (2.44) to the Eq. (2.39) and set ¢ — ¢’ as t/, we obtain

(M*(t)) = Re /0 " baa(t')e ! dt Hoe™, (2.45)
because ¢, is a real function. Here, the the complex susceptibility x..(w) denotes as
Xex(@) = [ fua(t)e™dt = ¥yolw) = ixa(w), (2.46)
with real x.,(w) and x7,(w). As ¢, (t) is the real odd function of ¢, we obtain as
—Imxee(w) = X0 (w)
= /Ooo $2s(t) sinwtdt = % /_O:o Gz (t) sin widt
1

- / " bua(t)e s, (247)

2t J-

18




Using the trace circulation,

/ (MZ(t)M*(0))e~*dt = /Oo TrefMeMt p=e=t proeitdt

= [ Tref e e pzeinsrDgivngy, (2.48)

Here, we set t + i3 as t. -
= P / (M*(0)M®(t))e~tdt (2.49)

Substituting the Eq.(2.40) and the Eq.(2.49) for the Eq. (2.47) in order, we obtain the

following expression.

1

" - - *°
Xaa(w) = =3 -

00 , 1 .
([M=(8), M=(O)]e!dt = (1 — ) / (M(0)M=(t))e"*!d¢  (2.50)
In order to obtain x”(w) practically, we proceed with the following procedures: First we

obtain all the eigenvalues and the eigenvectors:
H|m) = Ep|m), (2.51)

for m = 1,--- M. Here M is the total numbers of the states and M = 2¥ for § = 1/2
case. Here N is the number of spins. Next we obtain the matrix elements (m|M®|n) for
m=1,---M and n =1,--- M. With these quantities the autocorrelation function is given

by
TrMeetHt pfee—iHt—AH
Tre—PH
Do S M=) e
B S e PEn
_ XmXm |{m|M?®|n)|?e (Bm—En)te—AEm
- . .
where Z = ¥, e P~ The Fourier transformation of c(t) is written as
(oo . ' Mz 2 —',BEm
[ ctgerirar = e i 7 e s+ (B~ Ba))  (253)

—00

oft) = (M*(0)M*(¢))

(2.52)

and x7 (w) is given as an ensemble of the delta-functions:

Xao(@) = D D(Wmn)b(w + (Em — En)), (2.54)

Wmn

where
|[(m|M*|n)|?e~PEm

Z
[(m| M= |n)[*
Z

D(wpmn) = (1 — e Pomn)

D(Wpp) = w(e™PEm — e=PEn) (2.55)

and w,,, = F,, — E,,.
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2.9.1 Perturbation expansion method

Natsume-Sasagawa-Toyoda-Yamada[20] calculated the shift of the resonance field when we
change the angle between the chain and the fields with a perturbation calculation from
Kubo formula. The system hamiltonian is one dimensional S = 5 /2 Heisenberg model with
exchange interaction, dipole-dipole interaction, and Zeeman term. This model is the relevant
model corresponding to TMMC.

The absorption as I(w) is given as

I(w) /_ Z G(t)e—“tdt, (2.56)
G(t) = (M=(t) M 0)). (2.57)

Using the cumulant expansion of G(t) toward the second order, They obtained as
AH o« —sin® (3 cos 20 — 1) cos 2¢. (2.58)
In Fig. 6 and Fig. 7, the geometrical configuration of the chain with § and ¢ and the results

are shown. They checked that their results agree with the experimental result of TMMC.

2.9.2 Theory with the dissipation term

Hamano et.al used the dynamics with dissipation term for M(t)[21, 28]. Without dissipation
effect, i.e. if we use pure quantum dynamics, the absorption function is described as assembly
of delta functions, as Eq.(2.54). With the dissipation effect, each delta function will have a
width.
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Fig. 4: The rough sketch of the Larmor rotation. (a) v > 0 case ,
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Fig. 5: The temperature dependence of the resonance shift, by
Nagata-Tazuke, quotation from [7]. This experimental results of
CsMnCl3- 2H,0 is also shown. The axes of the crystal are a, b
and c. The chain is parallel to the a axis. e, , + in the figure are
the experimental data, corresponding with the H || ¢ case, the
H || b case, and the H || a case. The Solid lines are theoretical
results. Upper line denotes the case the chain and the static field
H, and lower line denotes the case the chain is parallel to the
static field. Corresponding data agrees well. The horizontal axis
denotes the temperature (K), the vertical axes denotes the shift of
the resonance field when we set the g value as 2.0.
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Chapter 3

Method of Direct Numerical Analysis

3.1 Problems of the theories before

As described in the chapter 1 and 2, ESR in a low dimensional quantum spin system attracts
interests both theoretically and experimentally. We focus on the ESR absorption line shape

in such a system.

Nagata and Tazuke have used the Kanamori-Tachiki formula to obtain the tempera-
ture dependence of the resonance of the one dimensional Heisenberg antiferromagnet with
the dipole interaction. They succeeded in explaining experimental data of the shift in
CsMnCl;-2H,0.[7] This approach is a seminal step to investigate the ESR measurement
from a microscopic viewpoint. Their method, however, aimed at studying collective motion
of spins in ordered systems and assumed only one dominant mode. Furthermore, for the
practical calculation, informations of the spin system at finite temperatures, such as the
temperature dependence of the spin correlation function, etc. are necessary, which should

be provided from other studies.

Generally in the quantum disorder states, the spin correlation function decays in a short
distance. Thus it is expected that we can obtain characteristic features of ESR line shape
by studying the response function of a finite spin cluster of the system including the dipole
interaction. The system may have Dzyaloshinsky-Moriya interaction.

under this circumstance we propose a direct numerical approach to this problem. Here
we study the response function given by the Kubo formula[8, 9, 39] in a way of the first
principle although we limit the size of the system to rather small number. Here we use
non-approximated quantum mechanical dynamics of spins due to the exchange interaction
and the dipole interaction.
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3.2 The elementary procedure

We starts from Eq.(2.54) and Eq. (2.55). We show them again below as

Xaz(@) = 3 D(Wna)8(w + (Em — En)), (3.1)

Wmn

m|M*|n)|*

D(Win) = m(e7PEm — e=AEw) I 7 (3.2)

(wmn is denoted as wmy, = E, — Ey,.)

We should note that we should do diagonalization of the complex Hermitian matrix,
generally.

For absorption, we consider the case with w,,, > 0. Because we do not include the
dissipation effect, the susceptibility is an ensemble of the delta functions. Z is denoted by
Z = ¥,,e PP~ When we need the broadening of each resonance we should use dynamics
with dissipation effect as have been done by Hamano et al.[21, 28], (see section 2.9.2).

However, since we take into account the dipole and exchange interactions explicitly in
H, we can treat the broadening due to them in the way of the first principle.

We study the temperature dependence of the mean of the frequency and its width by

> omn wmnD(wmn)

w= , 3.3
Tomn D{mn) (33)
and
Ywmn Wan D(wmn)  _
Aw = mn TR - @2, 3.4
J ZWm'n, D(w’mﬂ) ( )
respectively.

After here, we translate the resonance frequency @ to a §H, the shift of the resonance
field from the paramagnetic resonance field.
In the isotropic Heisenberg model case, where no anisotropy effect of interaction, the

relation between the resonance field Hy and the resonance field wg are shown as
wro = 7YHRro- (3.5)

This relation is identical with paramagnetic resonance case. Here, the gyromagnetic rate 07
is denoted as v = 1g.up/h.

We need the term which breaks SU(2) symmetry if we want to see the resonance shift
from the paramagnetic case. The dipole-dipole interaction term is one of the such a term.
In experiments, we fix the detecting field angular frequency wgo and change the strength of
the static magnetic field Hy, investigating the peak of the absorption. Assume that when

Hy— Hy+ AH,

24




the absorption amplitude becomes local maximum, i.e. resonance peak has detected. We
can describe this change that g value shifts with H, is fixed, as

w = g us(Hy + AH)

(3.6)

g gx g B (3.7)
Hy+ AH Hy~ ’
The minus change of § H, corresponds to the positive change of g.g.

In actual numerical calculation, we fix Hy and change w, detecting the absorption peak,
first. The resonance angular frequency shift from the paramagnetic resonance angular fre-
quency wgo, Aw, is given as

Aw = w — Wgo. (3.8)

Here, the shift of the resonance field is given as
1
AH = ;(w + Aw) — H,. (3.9)

Note that v becomes 1.0 if we set £2 = 1, because g. = 2.0.

In order to obtain the line shape we construct a histogram representing x”(w) with a small
interval éw. In the k-th bin, we sum up D(wWpn) OVEr Wpy, in the interval kéw ~ (k + 1)éw.
Even for small number of N, the total number of states M is large, and furthermore the

number of frequencies {wy,,} is O(M?). Thus we obtain a rather smooth line shape.

3.3 Hamiltonian with the dipole interaction
The hamiltonian of the system with the static field Hy is given by
H=Ho+Hp—-Hy M, (3.10)

where H, is the spin hamiltonian of the system denoted by

N

(7

N is the system size and take periodic boundary condition, i.e. ,Sy,1 = Si. Hp denotes the

dipole interaction:

Hp=DY (Si -S; _ 3(Si-1y)(S; - rij)) , (3.12)

3 5
ij Tij Tij

where r;; is the vector from the site ¢ to j and r;; = |r;;|. Let the direction of r;; be
(e,8,7), (@ = cosy;sinb;;, 3 = sin¢;;sinb;; and v = cosb;;). Here M (= %;S;) is the
total magnetization and Hj, represents the external static field in the direction (8g, ¢x) with
an amplitude Hy = |Ho|. In Fig. 8, the geometry of Hy and r;; is given.
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First we write down the hamiltonian Hy+Hp which consists of the exchange interactions.

Generally the interaction between two spins is given by

hiy hiz hiz S®
H = (5%,5Y,5%) ( hoi hop has ) ( SY ) , (3.13)
ha1 hay has S*
where

hin = —=2(J; + Dy(a? — 1))

hn = —=2(Jy + Do(5* - 3))

hss = —2(J; + Do(y2 - %))

his = —2Dgof3

h23 = —2DyBy

ha1 = —2Dyya

(3.14)

where Do = 3D/2r};.
We show the explicit expression of H;; in Pauli Matrix when S = 1/2 in Appendix B.
In practical calculations, we take the direction of the field as the diagonalization axis.

Thus we rotate the axis using the matrix:

cosOgpcospy coslpsingy —sinfy
R= —sin ¢y cos ¢y 0 (3.15)
sinfgcospy sinfgsingy cosby
In the new axis the interaction H;; is given by
H = RM'R. (3.16)

Now we diagonalize an M x M Hermitian matrix H— HoM,, where M, = ¥, S7 is the
z component of the magnetization in the new coordinate. Generally speaking, this matrix
is complex Hermitian matrix. We apply a detecting field along the z or y axis in the new
coordinate, i.e. —H; cos(wt) ¥; S for xg,(w), and —Hj cos(wt) 3; S for xj,(w). Using the
eigenvalues and eigenvectors, {E,} and {|m)} (m = 1,--- M), we obtain the line shape
(2.54).
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Fig. 8: One dimensional spin chain and the static field.
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Chapter 4

Antiferromagnetic Heisenberg chain

We apply our method to the one dimensional Heisenberg model in various geometrical config-
urations of the lattice and the external fields, i.e. the static field and the detecting oscillating
field. We investigate how the resonating frequency shifts due to the dipole interaction and
anisotropy of the interaction. We confirm that the present method reproduces qualitative
features of the results of Nagata and Tazuke for the dependence of the shift on the angle
between the lattice and the static field. We also investigate the angle dependence of the
width and obtain a good agreement with the experimental data of Dietz et al.[36, 37] The
shift also depends on the angle between the lattice and the oscillating field.[20] We find that
the temperature dependence is sensitive to the strength of the static field. At weak fields,
we find a dependence which qualitatively agrees with a recent experimental study of TMMC
by Taniguchi et al. [29]

We use Hj to express the static field, and use H; to express the oscillating field.

We assume the static magnetic field is orthogonal to the oscillating field. Thus as the
most typical cases of geometrical configurations of the lattice, the static field and oscillating
filed, there are six configurations. (Fig. 9) There, H, denotes the static magnetic field, and
H, denotes the oscillating field. Hereafter we call the cases following in Fig. 9.

In this chapter we apply the present method to the one dimensional antiferromagnetic
Heisenberg model:

L
Ho=2J) S Sina (4.1)
i=1
with the periodic boundary condition Sy, = S;. Hereafter we use J(> 0) as a unit of
energy. Here we take the value of D for the dipole interaction (3.12) to be 3D /a3 = (2/27)J
with a = r;;, (Do = J/3?).

First let us study the case where the direction of the chain is perpendicular to the field
H,. That is to say, (o, 8,7) = (1,0,0) and 65 = 0 and ¢z = 0, which will be called the
Casel. In Fig. 10, a typical histogram representing x” (w) is shown. In Fig. 11, that for
0g = 7/2 and ¢y = 0 is given, where the chain and Hj are parallel, which will be called the
Case3.
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In Fig. 12, the temperature dependence of the shift AH, eq.(3.9), is shown for various
values of 8. We find that 6H is positive in the Casel, while it is negative in the Case3.
The amplitudes of the shifts increase at low temperatures. These qualitative features agree
with the results of Nagata-Tazuke. Although we do not show here, for small values of Hy, it
is also found that values of the shifts AH(T") move downwards and AH(T') is negative for
most angles, and that amplitude of these shifts becomes large as Hy becomes small, which
is naturally expected.

In Fig. 13, we show the dependence of AH on the angle 85 keeping ¢y = 0. We find
that the shift disappears around 85 = 7/6. This is the angle which has been known as the
magic angle, 3cos?(7/2 — 8) — 1 = 0, where the anisotropy due to the dipole interaction
disappears.[36, 37]

In ESR theory of a single spin (EPR) [8, 9, 39], the line shape has been studied in terms of
the nature of random noise. In the present analysis, we can directly obtain the line shape due
to the exchange interaction and the dipole interaction. The data of the width Aw are shown
in Fig. 14 which agree qualitatively well with the experimental data for TMMC.[36, 37)

Effects of long time diffusive behavior of the random force has been also discussed in
order to study the type of the line shape.[36, 37] Such slow random noise comes from the
collective motion of the spin due to the exchange energy. In the present analysis, the spin
dynamics due to the exchange interaction is taken into account and thus effects of such
interactions are included automatically. However as shown in Figs. 10 and 11, it is difficult
to discuss the type of the shape whether Lorentzian, Gaussian or other type. Because the
system studied here is not large, the effects due to the slow collective mode does not appear
here. Thus we simply estimated the width by Eq.(3.4) which corresponds to the width of
Gaussian shape. We restrict the summation in Eq.(3.4) near the peak because D(wmy)s
for large wy,, — @ cause significant effects on the summation for the width even if D(wy,,)s
themselves are very small. For the data in Figs. 12 , 13 and 14, we take the summations in
the range 0.9H, < w < 1.1H,, which seems reasonable from the observation in Figs. 10 and
11.

Next we investigate the shift in the configurations between the Casel and the Case2
where (a,3,7) = (0,1,0) and 65 = 0. Here the static field is always perpendicular to the
lattice. On the other hand, the angle ¢;; between the lattice and the detecting field changes
from 0 (Casel) to 7/2 (Case2). Generally X7 (w) depends on the angle ¢;; because of the
difference of geometrical configurations. This dependence is called dynamical shifts.[20, 29)

In Figs. 15 and 16, the shifts are plotted for various values of angle ¢;;. For a strong
field, i.e. Hy = 1.0, we find very weak dynamical shift. That is to say, the shifts are almost
the same regardless to the angle ¢;;. Here the shift in xy,(w) and xg,(w) are nearly the
Same.

On the other hand, for a weak field, ¢-dependence of the shifts becomes significant.
In particular, for Hy = 0.3, we find that the temperature dependence of the shift in the
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Casel is in opposite direction to that in the Case2. This dependence has been observed by
Taniguchi et al. in TMMC|29]. Here it should be noted that Taniguchi et al. have found
very symmetric shifts, 7.e. AH in the Casel ~ —AH in the Case2, while here we found

an asymmetric one. In the present model, the cos2¢ type dependence[20] is found at high
temperatures, but x/ (w) in the Case2 depends on Hj strongly at low temperatures as shown
in Fig. 17. Furthermore the width of the shape is rather wide when the dynamical shift is
notable. In Fig. 18 the line shape for Hy = 0.3 at a high temperature is shown. We find that
the line shape decomposes to several peaks at low temperatures. (Fig. 19) These detailed
properties may depend on the value of the spin, z.e.

Because of the geometrical equivalence, there are some trivial properties, i.e. the shift
must not depend on fy in the Case2, and Xy, (w) in the Casel is the same as x;,(w) in the
Case2. These properties have been confirmed to check the reliability of the present method.
In this paper we studied mainly the chain with N = 8. We have checked that the qualitative
features do not change for N = 6 and N = 10.

Next we also study the effect of the edge. Because spins at edges behave more freely
and may affect on the response. In Fig. 20 the shifts are shown for the periodic chain (solid
line) and for the open chain (dashed line) in the configuration of the Casel. We find the
shift is almost the same but the shift in the open chain is smaller at low temperatures. This
observation seems natural because the system in an open chain is close to the free spin for
which no shift appears.

4.1 Effects of anisotropy

Besides the dipole interaction, the system may have an anisotropic coupling:
L
Ho = 2J ) (S7SFyy + S¢Sty + ASSTy)- (4.2)
i=1

In Fig. 21, the shift in the configuration of the Casel for the XY anisotropy (4 = 0.9) is
plotted. We find that shifts become large and remain nonzero even at high temperatures.
Here it should be noted that the dependence of the shift on the angle 65 is opposite to that
in Fig. 12. We found that the shift is very sensitive to the anisotropy and the dependence
changes around A = 0.96 where the shifts for all values of ¢ almost coincide, where the
anisotropy is effectively compensated by the dipole interaction.

Next we study the case of Ising anisotropy. The 85 dependence of the shift is similar
to that for the Heisenberg model (Fig. 12). When the anisotropy increases, however, the
dependence of the shift on the temperature and the angle shows various features. For
example, in the case of A = 1.2, for a weak field Hy = 0.3 the shifts for all the 85 appear in
the negative side as shown in Fig. 22, while for a strong field H = 1.0 the 65 dependence of
the shift changes qualitatively with the temperature as shown in Fig. 23.
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While the anisotropy is only effectively compensated by the dipole interaction in the
Casel, the anisotropy is canceled exactly in the Case3 where the lattice and the static field
are parallel. This cancelation occurs when Hy; = Ha, coincides with Hjs in Eq.(3.14), i.e.
Je. = Jy = J, + Dy, which corresponds to A = 1+ Dy ~ 1.037. At this anisotropy, we have
checked that AH = 0.

4.2 Antiferromagnetic Heisenberg Chain,Summary and
Discussion

We have investigated shifts of the resonance peak of ESR for antiferromagnetic Heisenberg
chains in various geometrical configurations and also the anisotropy effects on the shifts.
In particular, we investigated the dependence of the shift AH on the angle 6y, which
agrees with the results of Nagata and Tazuke. [7] We also investigated the width of the
resonance Aw due to the dipole interaction and the exchange interaction. The angle de-
pendence of the width also agrees with the corresponding experiments. [36, 37] The field-
and temperature-dependence of the dynamical shift was also investigated and found a case
corresponding the experiments by Taniguchi et al. [29] So far we compared our data with
those of TMMC(S = 5/2) but it would be very interesting to compare them with data of an
S = 1/2 antiferromagnetic Heisenberg chain.

Here let us mention for the shift in the ferromagnetic chain. The angle dependence of the
shift in the configuration of Fig. 12 has been found very similar to that of the antiferromag-
netic chain. The dynamical shift also shows similar behavior at high temperatures. On the
other hand, at low temperatures the dynamical shift increases (move upwards) regardless to

the angle ¢;.
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Fig. 9: Geometrical Six Configurations with Hg,H1,and chain
direction.
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- top to the bottom), which changes the configuration from the
Casel to Case3.
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Fig. 13: The angle fg dependence of the data in Fig. 12 for the
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Fig. 15: The shift of resonance, §H(T) for Hy = 1.0 in
configurations from the Casel to Case3. The lines denote data for
¢i; = 0,7/10,7/4, and 7/2 from the top to the bottom. The
circles denote data for ¢;; = 27/5.
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Fig. 16: The shift of resonance, 6H(T') for Hy = 0.3 in
configurations from the Casel to Case3. The lines denote data for
¢i; = 0,7/10,7/4, and 7/2 from the top to the bottom. The
circles denote data for ¢;; = 27 /5.
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Fig. 20: Dependence of the boundary conditions in the same

configurations for Fig. 12 (only for 65 = 0 and 7/2): the solid

lines denote the dependence in the periodic boundary condition
and the dashed line in the open chain.
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Fig. 21: The shift of resonance, §H(T) for Hy = 1.0 in the same
configurations for Fig. 12 for XY anisotropic interaction
(Ho = 1.0 and A = 0.9). The circle denotes the data for §g = 0
and the lines denote data for 0y = mn /10, m =1,2,3,4 and 5
from the bottom to the top.
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Fig. 22: The shift of resonance, §H(T) in the same
configurations for Fig. 12 for Ising anisotropic interaction
(Hy=0.3 and A =1.2). g =0,7/10,7/5,37/10,27/5 and 7 /2
from the top to the bottom at T' = 20.
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Fig. 23: The shift of resonance, §H(T') in the same
configurations for Fig. 12 for Ising anisotropic interaction
(Ho=1.0and A =1.2). 85 =0,7/10,7/5,37/10,27/5 and /2
from the top to the bottom at T = 20.
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- Chapter 5

ESR in Zigzag Chain

The relevant model to the material Cug9Zng;Nb;Og is a one dimensional S = 1/2 chain

with zigzag structure. We study the electron spin resonance of this model.

5.1 The geometrical constants of Cug9Zny;NbyOg and
the system hamiltonian

Motivated by the experiments on Cug9Zng1NbyOg we investigate a chain with zigzag struc-

ture. CuggZng1NbyOg has a quasi one dimensional lattice with a zigzag chain of S = 1/2

spins of Cu which are coupled by ferromagnetic and antiferromagnetic bonds alternately.
; The zigzag chain has tree principal axes (d, g,é') as shown in Fig. 25. The ¢ axis is
taken along the chain (|¢] = 5.0084(2)A), the b axis is perpendicular to the chain in the
| plane of the zigzag chain (|@| = 14.1742(6)A) and the a axis is perpendicular to the plane
(|8 = 5.7583(2)A).[22]

The shape of a chain is determined by the chain lengths, ¢; and /5, of bonds and the angles
between them, ¢ as shown in Fig. 26. For this chain, the geometrical parameters have been
estimated as ¢ = 106.46°, ¢; = 3.073A and ¢, = 3.178A.[22] Recently Taniguchi et al. have
made various measurement of this material.[22, 23, 29] In particular, they made experiments
on the dynamical shift of ESR resonant frequency of this material.[29] Throughout this
chapter we fix the frequency of the oscillation field H; to be 9GHz.The unit of the field is
Tesla [T].

The spin-spin interaction is written as

Ho= >, 2Jar(S5_15% + S%_15% + Rr(S5:._15%))
i=1,N/2

ot 2JF(S§ZS:2B,L+1 + Sg,isgi+1 + RF(5515221+1))). (5.1)

The coupling constants of this chain are determined to be 2Jr = 121.3K and Jap = 51.4K

[22] but which bond is ferromagnetic is not yet known.
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5.2 Dynamical susceptibility

We study the dynamical susceptibility of the model (5.1). We have to determine the pa-
rameter of the system. The parameters for the dipole-dipole interaction is determined from
the geometrical structure. Here we adopt the dipole-dipole interaction only between the
nearest neighbor (nn) pairs. We have compared results of only nn pairs with those of nn
and next nn pairs and we found very little difference between them. We set the short bond
to be antiferromagnetic and the long bond to be ferromagnetic. We have also found little
difference in alternate choice of the bonds.

The shift of the resonance is sensitive to the anisotropy. But first we consider the isotropic
case, i.e., Rp = 1.0, Rp = 1.0. Thus the shift comes from only the dipole-dipole interaction.
The temperature dependence of the shift for this case is given in Fig. 27. The marks and
lines in Fig. are corresponding to Casel-Case6, as Table 24. Hereafter we use this table.

Here we compare the data at high temperatures with those of experiments because the
shifts in experiments at low temperatures maybe affected by various unknown interactions
and is difficult to be analyzed.

We quote the relevant experiment results in Fig. 28. There, the g value shift (see below)
is shown. This experiment performed in four geometrical configurations (Casel - Case4 in
Fig. 9).

As we had already noted, if the spin-spin interaction has no SU(2) symmetry, we can
detect the resonance frequency shift from the paramagnetic resonance. Ag denotes the shift
of g value from g.. The relation between Ag and AH is shown as follows.

g—g+Ag
H, AH
IX H +AH 97, (5.2)

So, if AH is positive, Ag = g — 2.0 become negative.

The sign of the shift is always negative, which agree with the experiment. But, this result
is not satisfactory, because relative relation of the amplitudes of shifts for the 4 geometrical
configurations does not agree with that of the experiments. Here the order of the amplitude
of the shift is (Casel, Case2, Case4 and Case3) while, in the experiment, the order is (Casel,
Case3, Case2 and Case4). In particular, the amplitude of the dynamical shift for Hy ||c is
behaves opposite way.

In order to find the case which gives the same order as that in the experiment, we variate
the anisotropy terms, Rp and Rap. First we change Rp and Rap together. For example,
when we decrease Ry and Rap, which cause the XY anisotropy for both bonds, (ie., 1 >
Rp = Rar > 0.990), we find that the shift moves in worse way. Next we study the cases
of Ising anisotropy, (i.e., 1< Rp = Rap < 1.008). Then we find the order of Case3 and
Case4 exchanged to agree with that of the experiment, but the amplitude of Casel and
Case2 become small and the order is exchanged. Thus we change the anisotropies of the
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ferromagnetic bond and antiferromagnetic bond independently. Scanning the parameter, we
find that the combination

Ry = 1.003 and Rpp = 0.996

gives a good agreement.(Fig. 29)

5.3 ESR of zigzag chain with Dzyaloshinsky-Moriya
interaction

As we mentioned, the Dzyaloshinsky-Moriya(DM) interaction

Hom =Y dij - [Si x S (5.3)
ij
also causes the shift of the resonance frequency. It is, however, difficult to determine the
parameters {d;;} by fitting the data because of so many parameters. Thus here we investigate
general tendency of Dzyaloshinsky-Moriya interaction effect.

Even we consider only nearest neighbor pairs, there are six parameters: i.e. d} =
(dzs,dys,dzg) and d, = (dza, dYa, d2,), for ferromagnetic bonds and for antiferromagnetic
bonds, respectively.

Here we investigate the cases

[(dxf’ dyf’ dzf)7 (dmm dym dza)] = [(1’ 0, 0)(0’ 0, 0)]7 [(0’ L 0)(0’ 0, 0)]’
[(0,0,1)(0,0,0)], [(0,0,0)(1,0,0)],
[(0,0,0)(0, 1,0)], [(0,0,0)(0,0,1)]. (5.4)

The static field H, is fixed to be 9GHz and the unit of d is Kelvin. A typical temperature
dependence of the shift is shown in Fig. 30. Here we found that the shift is classified into
the following pairs: (Casel, Case6), (Case, Case4), and (Case3, Case5). This means that
the shift depends on whether the oscillating field H; is parallel to the direction of d and the
direction of Hy is not important. Furthermore the shift in ,[(0,1,0)(0,0,0)] and [(0,0,1)(0,0,0)]
are almost the same to the Fig. 30, if we regard the axis of d as the z direction. If we put DM
interaction in the antiferromagnetic bond, the temperature dependences are found different
from the ferromagnetic case. But the fact that the shift depends on whether the oscillating
field H, is parallel to the direction of d, or not holds as well as the ferromagnetic case.
Temperature dependence of the shift for [(0,0,0)(1,0,0)] is shown in Fig. 31. Here we see
that the shift is much bigger in the antiferromagnetic case. The cases where H; is parallel to d
the temperature dependence is similar in both ferromagnetic case and antiferromagnetic case.
We also studied the case [(1,0,0)(1,0,0)], etc. and find the shift appears as the summation of
the shifts for [(1,0,0)(0,0,0)] and [(0,0,0)(1,0,0)]. In the above cases the shift is determined
almost only by DM interaction. Thus the amount of 1K for d is considered to be strong.
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We also investigated d with smaller values. We find a sooth change from DM free case. We
found that the effect of DM interaction is stronger when d is perpendicular to the ¢ axis
than the parallel cases.

The magnitude of the Dzyaloshinsky-Moriya interaction is roughly estimated[25, 1]

|d| ~ J.
g
An isotropy effect is roughly estimated [25, 1]
AT =~ (B9y2;
g

Using these relations and the previous chapter results as (0.004) = (Ag/g)?, we can estimate

as
d >~ 0.06J ~ (25 or 60) x 0.06 ~ 1.54K. (5.5)

In the experimental results, there are no such a large shift as we had obtain for d = 1.0K,

so Eq. (5.5) gives overestimation. This fact is not strange because |d| becomes small if the
system shape has some symmetries.

We also investigate the case the magnitude of |J| is small, 1.e. Icﬂ = 0.1K. We can see

the smooth change from the no DM effect case. And we also conclude that the DM effect

" became more weak if d is orthogonal to ¢ axis comparing from the case which d is parallel

to the ¢ axis.
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Case3 | Ho |l ¢ Hill @ dotted line
Cased | Hol|l & Hy || b O
Case5 | Hol| b, H1 |l @ .
Case6 | Hol|l b, Hi |l € o

Fig. 24: Six Configurations.
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Fig. 25: Zigzag chain of CugeZng1Nb2Og[22].
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Fig. 27: Temperature dependent of the shift of the resonant field
AH of the isotropic zigzag chain. §H is a normalized shift :
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Chapter 6

New Method to Determine Structure

of Interaction

As mentioned in chapter 5, there are a ferromagnetic bond and an antiferromagnetic bond
in Cug.9Zng 1 Nb2Og. The length of them are £1=3.073A or £,=3.178A. However there are no

 method to determine which bond is ferromagnetic. Because the lengths of the bonds are very

close, it is difficult to distinguish them in macroscopic measurements. Here we would propose
a new method making use of the dynamical shift to determine which bond is ferromagnetic.
As we saw in th previous chapter, dynamical shifts in the 6 geometrical configurations are
not sensitive which bonds is ferromagnetic. On the other hand, we expect a significant
difference between the shift of the case where the static field is parallel to the ferromagnetic
bond and that of the case where the static field is parallel to the antiferromagnetic bond.

In Figs. 32 and 33, we show the temperature dependence of the shift for the parameters
found in the previous chapter. Here we find a definite difference in the case changing Hj,
while there is little difference when we change Hy. Thus the dynamical shift with H; can
be a new method to determine which bond is ferromagnetic and thus the other is antiferro-
magnetic. We should point out that this method works only on a crystal, but not powder.
Fortunately, crystal of Cug9Zng1Nb;Og is available and we expect that such measurement
will be done. However as will be mentioned in the proceeding chapter, in order to predict
the difference we need to know the interaction correctly. Beside the dipole-dipole interaction
and the anisotropy, magnetic systems generally have various other sources for the shifts,
such as Dzyaloshinsky-Moriya (DM) interaction. Furthermore the anisotropy of the g-factor
is also anther important parameter in real materials. Although the dipole-dipole interaction
can be determined from the geometrical information, parameters for other interactions must
be known from other informations or determined by fitting experimental data. In fact we
did a fitting the anisotropy parameters in the previous chapter setting DM interaction to be
0, which is not satisfactory. In practice, it is difficult to know all the parameters. However
the idea to determine the structure of interaction through the dynamical shift will provide

a new kind of informations for the parameter and we hope that this measurement will be
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done and find the difference in the shift.
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Fig. 32: Dynamical shift for changing Hy: The dashed line
denotes the case where H; parallel to the ferromagnetic bond, the
dotted line the case where H; parallel to the antiferromagnetic
bond, and the solid line where H; parallel to the c axis.
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Figs. 33: Dynamical shift for changing Hy: The dashed line
denotes the case where Hj parallel to the ferromagnetic bond, the
dotted line the case where H, parallel to the antiferromagnetic
bond, and the solid line where H parallel to the c axis.
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Chapter 7

ESR in the system with strong
quantum fructuation

In this chapter, we investigated the dynamical shifts in one dimensional S = 1/2 alternat-
ing bond chain. As explained in chapter 1, S = 1/2 ferro-antiferro magnetic alternating
bond chain exhibits various quantum phases in the ground state when we control the bonds
strength. There are four phases, i.e., Haldane phase, Néel phase, like Dimer phase state,
and Large D phase.

We investigated the system which has a set of ferro-anntiferro magnetic bonds correspond-
ing to typical quantum phases, respectively. We calculated the temperature dependence of
the shift of resonance magnetic field AH(T'). Namely, for each system, we studied the shift
with six geometrical configurations denoted by static field Hy, resonance field H,, and along
chain axis c.These configurations are shown in Fig. 9.

To see the shift of resonance in such quantum phases, we should take into account the
non-symmetric spin-spin interactions, such that dipole-dipole interaction. For all cases, we
take into account dipole-dipole interaction setting the bond length to be I = 3.0A.

The system Hamiltonian is given by Eq. (5.1). To check the effect of spatial structure of
chain, we varied the angle between bonds. We set the angle change from linear chain case
@, for example, ¢ = 0 for linear chain case. We varied ¢ as O(linear chain case), 0.17, 0.27.
We assume the zigzag structure lying in the XY plane. Strength of static field H, are 10,
20, and 50GHz. We investigated with the temperature range form 0.1K to 20K. We do not
take into account Dzyaloshinsky-Moriya interaction.

7.1 Explanation about each quantum phase

7.1.1 The Haldane phase

For the strong ferromagnetic bonds, spins in both sides of the ferromagnetic bond couple
and make a S = 1 spin. These S = 1 spins interact weakly with antiferromagnetic bond.

So the system have the nature of one dimensional antiferromagnetic chain and thus the
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Haldane phase in the ground state. As a typical set of parameters, we take Jp/Jap = 5.0,
Jar = 1.0K, Rp = R4p = 1.0.

7.1.2 The Néel phase

Due to the strong Ising anisotropy in the antiferromagnetic bond, the effective S = 1 likely
align “antiparallel” each other in the z direction. The spin system is in the Néel state in the
ground state. Here, we set Jp/Jar = 5.0, J4r = 1.0K, Rp = 1.0, R4r = 5.0.

7.1.3 The Dimer phase like state

In this case, the strong antferromagnetic bond makes valance bond (singlet pair) with spins
in both side of the bond. The physical picture is that the valance bonds interacts with
weak ferromagnetic interaction. As noted in chapter 1, we can distinguich Dimer state and
Haldane phase in S = 1 case, so we can define the Dimer phase. But in the S = 1/2 bond
alternating chain, there are no clear phase transition between Haldane phase and “Dimer
phase”. We set Jp/Jap = 0.2, Jr = 1.0K, Rp = R4r = 1.0.

7.1.4 The Large D phase

For strong XY type anisotropy of the ferromagnetic bond, the spins both side of the bond
tend to be “paralle]” to the the XY plane. Conposition of two spins tend to became the
state with total spin is 0. It is considered that the term —D(S7 + S7,)? in added to the
isotropic hamiltonian. Here ¢ and 741 are the pair of spin site besides a feromagnetic bond.
Originally, this term is considered in S = 1 case, but we can adopt to the S = 1/2 case
regarding two spins beside the ferromagnetic bond as one S = 1 spin. We set Jp/Jar = 5K,
Jar = 1.0K, and Rr = 0R4r = 1.0.

7.2 Dynamical shift in each quantum phase

7.2.1 The Haldane phase

The hamiltonian which is in a Haldane phase in the ground state, has SU(2) symmetry.
Therefore, the shift of the resonance field come from the diple-dipole interaction term. We
start with the linear chain , i.e. ¢ = 0.

In the strong static magnetic field case, ¢.e. Hy = 50GHz, the shift depends on the angle
between the static field direction Hy and chain direction ¢. When Hj is orthogonal to ¢, AH
appeares positive and when Hj is parallel to ¢, AH apperes negative. In both cases, the
shift magunitude tends to be zero as the temperature T increases (Fig.34). This nature is
resemble to the nature of S = 1/2 one dimentional antiferromagnetic chain shown in chapter
4.
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In weak static magnetic field case, i.e.,H, = 10GHz, almost all of six sifts appears below
zero (Fig.35). At 1K, the tendency of the shift changes. It is considered that this is due to
the effect of the gap between the ground state and the first excited state as Fig. 35. The
absorption became very small at the low tempareture.

For system symmetry, we can classify the six configurations to three cases. The case
H; || ¢, the case Hy || ¢, and other configurations. Each of them has two geometical
configulations, which are physically equevalent when ¢ = 0, so the shift should be exactly
same, which has been checked in calculation.

Next, we check the case ¢ = 0.17 and 0.27 cases. If ¢ is nonzero, the symmetry between
the b axis and a axis breaks. We observed the effect of this symmetry beraking. For a strong
field case(Hy =50GHz) , the shift depends mainly on the direction of the static field Hj.
Shift in ¢ = 0.27 case is shown in Fig. 36.

7.2.2 The Néel phase

In all six configulations, the resonance shift AH appears negative. Moreover, the magunitude
of the shift is very large compareing with the Haldane phase. It is considered that this is
because that the shift is very sensiteve to the anisotropy of the hamiltonian compareing from
dipole-dipole interaction, as seen in chapter 5.

In the week static magnetic field case (Hy=10GHz), we can roughly classify the shifts into
two groups, one is H; || z, z axis is the Néel direction, and the other is case with H; (Fig.37).
We conclude the shits is sensitive to the H; direction. This tendency holds when Hj is strong
such as Hy=50GHz(Fig.38). In all cases, the tendency of the shift depends little on the ¢
chang. It is considered that this is because the contribution of dipole-dipole interaciton is
rather small comparing the contribution of anisotropy of the exchange integrals.

7.2.3 Dimer like phase state

In this type of the system, there is a gap between the ground state and the first excited state.
The spin-spin interaction has SU(2) symmetry and the shift of the resonance is infulenced
only by the dipole-dipole interaction term. These charactoristics are the same as the Haldane
system case and the tendency of the dynamical shift apperes in the same way.

For example, when ¢ = 0 and the magnetic field is weak, i.e. H;=10GHz, all the shift
appear negative. And in the strong magnetic field case, i.e. Hy =50GHz, the sign of the sift
depends on whether the H direction is orthogonal or parallel to the chain direction as seen
in Fig. 39. Last point is that all the shifts tend to 0 in the high tempareture limit in strong
static field case.

Futhermore, this state, not only in weak field case (H; = 10GHz) but also in strong field
case (Hy=50GHz), the large shift is observed at T" < 2K, perhaps due to the enrgy gap
between the ground state and the first exited state.
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When the space structure of the chain is zigzag, for example in the ¢ = 0.27 case, the
system symmetry between the a axis and the b axis breaks. So the shifts which appere in
the same direction and the same magnitude in the case of ¢ = 0 split in the zigzag structure
(Fig. 40).

7.2.4 Large D phase

In this phase, shift of resonance appears negative in all cases. The shift amplitude is very
large, if we compare with the Haldane phase case.

In Fig. 41, the tempareture dependence of the shift is shown for ¢ = 0 and Hy=10GHz.
We can classify the 6 shifts into two groups, the former are H, is parallel to the XY plane
and latter group is H; is orthogonal to the XY plane. When H; is parallel to the a axis
of the crystal, observed shift is rather small comparing with other cases. In the strong H
case, t.e. Hy = 50 GHz, the almost same nature is observed as the weak H, case, though
magnitude in the formar case is rather small comparing with the latter(Fig. 42).

The qualitative nature of the shift does not change with the change of ¢. The reason of
this is that the effect of the dipole-dipole interaction to the shift is rather small comparing
with the anisotropy effect.

7.3 General remarks

Dynamical shift has studied with the systems which ground state is in the Haldane phase,
the Néel phase, Dimer like phase state, and Large D phase. Here, we summarize the general
tendency. Roughly speaking, we can separate 4 cases into 2 groups. The first group is the
spin systems with SU(2) symmetry. They have the nature likes S = 1/2 antiferromagnetic
chain. The ground state of this group is in the Haldane phase or the Dimer like phase. In
the second group is the spin systems without SU(2) symmmetry. They have the large shift
due to the anisotropy of exchange interaction comparing with the first group. The ground
state of this group is in the Néel phase or large D phase. The former group’s shift is sensitive

to the angle ¢ and the latter group’s shit is insensitive.
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Fig. 34: Dynamical shift in the system which ground states is in
a Haldane phase. Hy = 50GHz and ¢ = 0. AH, the shift of
resonance field is shown in a vertical axis. K , the temperature is
shown in a horizontal axis.
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Fig. 35: Dynamical shift in the system which ground states is in
a Haldane phase. Hy = 10GHz and ¢ = 0. AH, the shift of
resonance field is shown in a vertical axis. K , the temperature is
shown in a horizontal axis.
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Fig. 36: Dynamical shift in the system which ground states is in
a Haldane phase. Hy = 50GHz and ¢ = 0.27. AH, the shift of
resonance field is shown in a vertical axis. K , the temperature is
shown in a horizontal axis.
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FlIg. 37: Dynamical shift in the system which ground states is in
a Néel phase. Hy = 10GHz and ¢ = 0. AH, the shift of resonance
field is shown in a vertical axis. K , the temperature is shown in a

horizontal axis.
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Fig. 38: Dynamical shift in the system which ground states is in
a Néel phase. Hy = 50GHz and ¢ = 0. AH, the shift of resonance
field is shown in a vertical axis. K , the temperature is shown in a

horizontal axis.
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Fig. 39: Dynamical shift in the system which ground states is in

a Dimer phase like state. Hy =50GHz and ¢ = 0. AH, the shift

of resonance field is shown in a vertical axis. K , the temperature
is shown in a horizontal axis.
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Fig. 40: Dynamical shift in the system which ground states is in
a Dimer phase like state. Hy = 50GHz and ¢ = 0.2w. AH, the
shift of resonance field is shown in a vertical axis. K , the
temperature is shown in a horizontal axis.
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Fig. 41: Dynamical shift in the system which ground states is in
- a large D phase. Hy = 10GHz and ¢ = 0. AH, the shift of
resonance field is shown in a vertical axis. K , the temperature is
shown in a horizontal axis.
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Fig. 42: Dynamical shift in the system which ground states is in
a large D phase. Hy = 50GHz and ¢ = 0. AH, the shift of
resonance field is shown in a vertical axis. K , the temperature is
shown in a horizontal axis.
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Chapter 8

Conclusion

8.1 The obtained results

We proposed a direct numerical method to calculate the dynamical susceptibility, x"(w),
in strongly fluctuating quantum systems, using Kubo formula. Calculating the spin-spin
correlation function in a small system numerically exact,we can obtain the absorption line
shape due to dipole-dipole interaction and other spin-spin interactions. We used histogram
representation of the line shape, because original result is the assembly of the delta function.
We calculated dependence of the line shape on the geometrical configuration of chain and
fields which is caused by the dipole-dipole interaction.

We performed this method in § = 1/2 one dimensional quantum spin systems. We calcu-
lated the resonance shift from the paramagnetic resonance by averaging the absorption line
and we reproduce the results of Nagata-Tazuke|7] for temperature dependence of dynamical
shift. We also investigated the effect of anisotropy, the effect of the magnetic field strength,
geometrical effect, on the dynamical shift. In particular, we found that the resonance shift
is sensitive to anisotropy of exchange interaction.

We also investigated the relevant model of the material, Cug9Zng 1 NbyOg[29]. This model
is a S = 1/2 one dimensional zigzag chain. We investigated dynamical shift of the chain, and
fitting the anisotropy parameter of bond for each bond, and finally reproduced same prop-
erties of the experimental results. We also investigated Dzyaloshinsky-Moriya interaction
effect on the dynamical shift.

Cug.9Zng.1 NbyOg, has two kinds of bond,one of them is a little longer than the other. But
we can not determine which bond is ferromagnetic in present macroscopic experiments. We
calculated the dynamical shift when the oscillating field is parallel to ferromagnetic bond
and when also the oscillating field is parallel to the antiferromagnetic bond. We found a
distinguishable difference between them. We proposed that comparing these two dynamical
shifts, we determine which bond is ferromagnetic and which bond is antiferromagnetic.

This method for structure determination is a new type of method, where combination of

experiments and numerical calculation is profitable to study the material nature.
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We also investigated the various S = 1/2 spin systems which are in various quantum
phases in the ground states, such as the Haldane phase, the Dimer like phase, the Néel
phase, and the Large D phase. We investigated the dynamical shift of such phases. We
investigated the effect of field strength, geometrical configuration of chain and fields, and

the effect of the chain shape to the shift, in each phases.

8.2 Further problems

We summarize the further problems.

Study on various quantum S = 1/2 spin chains
There are many materials investigated experimentally using ESR. For example,
(CH3).CHNH;CuCl3[27], S = 1/2 zigzag chain was investigated by Manaka et al..
Powder sample of CuCl,-2Dx was investigated by Ajiro et.al., which is considered
S = 1/2 trimer with ferromagnetic-ferromagnetic-antiferromagnetic interaction. The
impurity effect[41],is also interesting. The ladder model is also interesting and can be

calculated by our method.

Study on quantum liquid states, especially S = 1 case
In this thesis, we investigated quantum liquid state using S = 1/2 bond alternating
chain, but the calculation in S = 1 system is possible and we expect to obtain more
detailed nature of quantum liquid states. There are many experimental and theoretical
studies on one dimensional S = 1 spin systems with interest in Haldane conjecture. It
is interesting to study the effect of impurity and the effect of the open boundary, on
ESR line shape and resonance shift.

Quantum relaxation phenomena
Concerning the quantum relaxation, several ESR measurement are done, i.e. Mn;, and
Feg[40]. Dynamical shift in Such systems is also interesting.

Dipole-dipole interaction effect from distant sites, Ferromagnetic resonance.
Dipole-dipole interaction is a long range force, and we should take this into account
for detailed research. With our method, we can consider the dipole-dipole interaction
with half system size distance. It is interesting to investigate effect from distant sites.
We desire to investigate the ferromagnetic resonance taking a demagnetizing field into

account.

Absorption line shape study
As to the detail line shape, such as the Gaussian or Lorentzian or intermediate one is

an interesting problem. For this, the study on larger systems is required.
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Development of the method to determine the structure constants
We want to establish the practical procedure to determine physical properties of ma-
terial comparing the experimental result and the numerical calculation, examining the
ESR dynamical shift. If it is reasonable to assume the shape of the spin-spin interaction
can be represented only with nearest neighbor spin pairs, the number of the unknown
parameters are only nine(see appendix B). In this sense, nine kinds of experiments and

numerical calculation of the shift can determine the constant.
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Chapter 10

Appendix

Appendix A : Derivation of the Kubo fomula

Here, We will derive the Kubo fomula.
We will make a perturbation treatment to a time dependent external field. The pertur-

bation term H' is for

M = —AF(t). (10.1)

The Hamiltonian of the system H is
H=Ho+H (10.2)

This means that the external field F(t) is conjugate to a physical quantity A. We assume
the system is in equilibrium at the initial time, ¢ = —oo, for the hamiltonian is H. The

density matrix py at a temperature T is given by

e_ﬂHO
po = p(—00) = Tre—fHo’ (10.3)

where § = 1/KpT. The expectation value of operator B is given as
(B) = Tr[poB]. (10.4)

The external field F(¢) is applied to the system after that.

We think the time evolution of dencity matrix is given by

A1) = [Ho+ H, po + Bp(t)] (10.5)

We regards H' is sufficiently small comparing with H,. Thus we consider the change Ap(t)
in the first order of H'. Neglecting the seconed order quantity [H', Ap(t)],

i S Ap(t) = (Mo, Ap()] + [, o). (10.6)

73




S SRR S

The solution of this equation is

1

_E e—z’(t—t’)’H/h[A, p]ei(t—t')’H/h. (10.7)

Ap(t) =

With the external field , we obtain the time dependence of a physical quantity B. Here
we asume (B) in the absence of the field is 0. The time dependence of (B), which is written
AB(t), is given as

1 t - oy
Amaz—%ﬁ/ TIN5l itV g (1) gy
] —00
t . , . ,
— _% N TI'[A, p]ez(t—t )’H/hBe—z(t—t )’H/hF(tl)dtl
1t
== Trp[B(t — t'), AJF(¢')d¢’ (10.8)
Deriving this equation, we used the relation TrAB = TrBA with operators A and B. Here,
B(t —t') = e't=tIH/h pe=ilt=t)H/h (10.9)
If we set .
Eq.(10.8) becomes
14
AB(t) = / Trpa(t — t')F(¢)dt. (10.11)

Substituting h = 1,F(t) = H*(t),B = A = M® to Eq.(10.10) and Eq.(10.11), and making
use of the rotation of operators in the trace,we finally obtain the Eq.(2.39) and Eq.(2.40) as

(o) = [ too Sunlt — O)H*(£)dt (2.39)

and
oot — 1) = i{[M"(t), M*(')]) (2.40).

Appendix B: Hamiltonian with the Pauli Matrix

Here we show the explicit expression of interaction between the spin S; and S;,h[ij] in the

Pauli matrix expression which is used in Eq.(3.13).

hi1 hiz hig 53
hlij] = ( Sy 57 Sf) ha1 ha2 o3 SY
hsi1 h3 33 St

1 1
= (Z(hn — hg2) + E(hu + ha1))ofof +
1 1
(7(har = haz) — 5z +ha)o oy +
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1 1
(Z(hn + ha2) + E(hZI — hy2))ofo; +
1 1

(Z(hn + hao) y (ha1 — hi2))oi o} +

T4
1 zZ 2
Zhssai og; +

1 1 1
—h Zhay)oior + (—=
(4i 3z+4 31)010'] +( yE

1 1 1 1
(Ehza + Zh13)0§+0; + (—erhzs + Zh13)0;0]z~

1
k32 + Zhsl)dfaj_ +

Now, o = 25 and « denotes z, y, or z. And o = §% 4159, 0~ = §% — {SY.
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