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CHAPTER 1

INTRODUCTION

We investigate asymptotic behavior in time of small solutions to some kinds of nonlinear
wave equations, which are appeared in geometric optics, fluid mechanics and quantum
mechanics to describe the phenomena of nature. In particular, we concentrate on the
study of nonlinear Klein Gordon equations and nonlinear systems of Klein-Gordon equations

including Dirac-Klein-Gordon equations.

Global existence in time of small solutions to nonlinear Klein-Gordon equations with
quadratic nonlinearities were shown by Klainerman [11] and Shatah [14], independently.
Their methods are different each other and now very important tools in this field.

The method by Klainerman [11] is called the method of vector field and the method of
Shatah [14] is called the method of normal form. The method of vector field is based on
the time decay estimates obtained by using operators which commute with the linear Klein-
Gordon operator. Compactness conditions on data were used to consider the problems by
the use of hyperbolic coordinates. On the other hand, the method of normal form is based
on a suitable nonlinear transformation which transforms the original equation to another

one with cubic nonlinearities.

The method of vector field was improved by Bachelot|2], Georgiev [5, 6] and Hérmander
[1] and compactness conditions on initial data were removed. However the higher order
Sobolev spaces were needed. Then, Ozawa, Tsutaya and Tsutsumi [13] succeeded in ob-
taining global existence of small solutions and the existence of the scattering operator to
quadratic semi-linear Klein-Gordon equations in two space dimensions by making use of
time decay estimate by Georgiev and the method of normal form. It is known that cubic
nonlinearities in one space dimension are critical ones from the balance of time decay of
linear part and that of nonlinear terms. Katayama [10] found that nonlinearities (if they are

non resonance terms) are divided into two groups, one of them are eliminated by choosing



a suitable transformation and another group have better time decay through vector field.
As a product, he obtained the global existence of small solutions to cubic nonlinear Klein-
Gordon equations in one space dimension. I note here that his method is much simpler
than previous works by Shatah [14] or Ozawa, Tsutaya and Tsutsumi [13]. However the
previous works are not sufficient in view of the scattering theory since improper regularity
and decaying assumptions in space are imposed on the data.

The main purpose of this thesis is to refine the time decay estimates by the method
of vector field to apply the scattering problem. After that we apply them to a system
of nonlinear Klein-Gordon equations related to Dirac-Klein-Gordon equations. Indeed, we
prove the existence of a scattering operator for a system of nonlinear Klein-Gordon equations
related to Dirac-Klein-Gordon equations in three space dimensions [19].

The plan in this thesis as follows: In Chapter 1, we summerize the previous related
results as a motivations of our research.

Chapter 2 is devoted to study a scattering problems for a system of nonlinear Klein-
Gordon equations related to Dirac-Klein-Gordon equations in three space dimensions [19]. I
note here that this is the first results for the asymptotic completness of scattering operator
for a system of nonlinear Klein-Gordon equations with a derevative of unknown functions
in the nonlinearities.

In Chapter 3, we consider the initial value problems for a system of nonlinear Klein-
Gordon equations with more general quadratic nonlinearities than ones considered in Chap-
ter 2. We prove the existence of scattering states, namely, the asymptotic stability of small
solutions in the neigborhood of free solutions for small initial data in the lower weighthed
Sobolev spaces comparing with the previous works [2], [4], [5], [16], [18], [17]. If nonliearities
satisfy the strong null condition [5], then the same result is true in two dimensions for small
data in H>3 x H*3. A system of massive Dirac-massless Klein-Gordon equations in three

spaces dimensions is also considered by our method [9].



CHAPTER 2

SCATTERING PROBLEM FOR A SYSTEM OF NONLINEAR
KLEIN-GORDON EQUATIONS RELATED TO
DIRAC-KLEIN-GORDON EQUATIONS

We consider the scattering problem for the system of Klein-Gordon equations in R3

{&¥A+M%wf&ngion¢@¢ (2.0.1)

(07 — A+ m?) ¢ = g™y,

where m > 0, M >0, g € R, {7y*} are the 4 x 4 Dirac matrices given by

1 0 0 0 0 0 01
01 O 0 0 0 1 0
’)/0 = 7’71: ’
00 -1 O 0O -1 0 O
00 0 -1 -1 0 0 0
0 00 —i 0 01 0
0 0 i 0 0 00 -1
72 = 7'73: )
0 2 0 O -1 0 0 O
— 0 0 O 0O 1 0 O

the 4 x 4 matrix v is defined by 7% = —iy9y'y2~3, A* is transposed conjugate matrix of

A, and the 4 x 1 vector ¢ = (@ZJJ) € C* is a spinor field and ¢ € R is a scalar field.

1<j<4
Equation (2.0.1) has an important physical meaning since it is derived from the massive

Dirac-Klein-Gordon equation

{ (‘i Zizo ’Y“au + M) P = i9¢74?/17 (2.0.2)

(02 — A +m?) ¢ = gip* %y,

where t = xg,x = (21,22, 23) and 0, = 0/0z,. Note that y#4” + y"4* = 0 for v # p and

4 = B, v#y# = —E for p = 1,2, 3, where E = [5jk]1<jk<4’ djr =01if j #k and §;; = 1.



Therefore by a direct computation we have
3 3
> 40,0, =E (87 - A) .
p=0rv=0
Multiplying both sides of (2.0.2) by iZizo 9, + M and using the identity y4y# = —yHy4
for 1 =0,1,2,3 and v*y* = E, we obtain

3 3
07 —A+M*)p= i) 'O+ M (—iZ'y”al,+M)¢

/JZO v=0

3
= g | iy "0+ M| ¢v'y
pn=0

3 3
= =g ) A 0ud +igp | i) A0+ M | v

u=0 u=0

3 3
= =g ) V00 +igeyt | =i Y A0+ M | ¢
pn=0

n=0
3
= —g> VY00 — g7
n=0

and we also have

(32 = A+m2) 6 =g (Jol + ol = sl = ).

Therefore we have the system of Klein-Gordon equations (2.0.1).

Denote the usual Lebesgue space by LP = {¢ € S : |¢[L, < oo}, where the norm
[6lls = (Ja |6 (@7 dz)? i 1 < p < 00 and || @l = sup,eps |6 (2)] if p = oo. Weighted
Sobolev space

HyF = {61 ol = | @) (V)™ 0] | < oo},
where m,k € R, 1 < p < 00, (z) = /1 + |z|?, (iV) = v/1 — A. We also write for simplicity
H™F = Hg”’k, H™ = Hgn’o, H = H,"", so we usually omit the index 0 if it does not
cause a confusion. We use the same notations for the vector functions. The direct Fourier

transform ¢ (€) of the function ¢ (z) is defined by

Fo=¢=(2m) 2 / e @9 ¢ (2) du,

R3



then the inverse Fourier transformation is given by

Flp=(2m) / =94 (¢) de.
R3

Existence of global small solutions of the Cauchy problem for nonlinear Klein-Gordon equa-
tions with quadratic nonlinearity was shown by Klainerman [11]. His method depends on
the new time decay estimates through the operators x;0; + t0; and can be applied the
Cauchy problem (2.0.1). Compactness conditions on the data were used to consider the
problem by the use of hyperbolic coordinates. His method was improved by [2], [5], [6], [1]
and compactness conditions on the data were removed. However the higher order Sobolev
spaces were needed for the initial data. Recently, Hayashi, Naumkin and the author [9]
showed a global existence of small solutions to a system of nonlinear Klein-Gordon equation

including ( 2.0.1) under the initial conditions such that

19 (0)l[gras + 10: (0)l[gs.s + ¢ (O)l|gpss + |06 (0) || s

are small. Furthermore in [9], the inverse wave operator from the neighborhood at the origin
of (H4’3 X H373)4 X (H473 X H3’3) to the neighborhood at the origin of (H4’1 X H3’1)4 X
(H4’1 X H3’1) was constructed. However the scattering operator for the problem (2.0.1)
is not obtained. Our purpose in the present paper is to prove the existence of scattering
operator for (2.0.1). Scattering operator is obtained by showing the range of wave operator
includes the domain of inverse wave operator. We also show the existence of the inverse
scattering operator. Our main point is to show a global existence of small solutions to

(2.0.1) under the initial conditions such that

19 (0)[gs/21 + 194 (0) [lggs /2.1 + [ (O)lggsa + 11069 (0) [ g2

are small which enables us to construct the scattering operator from the neighborhood
at the origin of (H5/2’1 X H3/2’1)4 X (HB”1 X H2’1) to the neighborhood at the origin of
(H5/2,1 % H3/271)4 x (H31 x H21) |

In order to state our result precisely, we introduce the operator £, = E0; + 1A (iV), ,

where



The free evolution group associated with L, is defined by

- o itiV),, 0
m (t) = 0 itiv),,

with (iV),, = vm? — A. We put

and

Then the system (2.0.1) can be rewritten as

o ( P (V)L F) (w, Dws) )
—i (zV) Fj (w, 0yws)

Lo s = i (iV),, Fs (@) |
\ ~i(iV),, Fs (@)

where j =1,2,3,4,w = (wj)1<j<4’

(2.0.3)

F] (’U), 8,uw5)

= ;(92( ()—i-w())Q(w( +w2>—gZ(fy*y (w +w(2)>>6u<wé)+wé2)>>

N | =

N | =

We consider the problem (2.0.3) with the initial condition
o (1) @ [
o(1) 0(2)

for 1 <j<4and
1 o (1) (2)
o
@Dj —i(iV)y/ wj
ws ¢ —i(iV), ¢

2
SCEH O S FRr )
1/J] +i(1V) wj
" (%” 5 iv)e




and the final condition

i @+ | ~ 2 W+ . on—1 @+ |7
i Vi =i (iV) )
. WP\ 1 [ e i iv), o™t
Wy = = -
5 w® 2\ g0+ (vt g

We note that the second term of F}; (w,d,ws) contains the full derivative 0, (w(l) + wé )> ,

and so has a derivative loss. This is the reason why we consider ¢ = wél) + wé ) in higher

(1) (2) .

regularity class than the class in which ¢; = w;” 4w, is considered.

We let a closed ball HZl’k (e) with a radius € and a center at the origin in the function

space
H™F = (v = L = |lp® e < 0o
q - v = : ||UHHT’I€ = ||v H;nk Hmk

Z; € C (L (13" x (L3)7); lollz, < ooy,

I
S
I

with the norm

‘U”zl Z Z (HPM J‘

LH5/2-181) + H@PMUJ‘

L Le (T;H3/2-18I
Jj=18<1 ( ( )
B . B,
* HPMU]’ Lg(I;Hﬁ"ﬁ' + HatPMU]’ L{(I;H;_Iﬁ|)>
8 B
+ Z (Hpm 5‘ Loo(I H3— |m + Hatp 7)5’ L?O(I;HQ_"Bl)
18]<1
1 21 3
I B I
+ H m? Ly (nag/ 1) tFmbs L (xuy2 ) ) g 5Tr 20
where Py = (2, Jy). We are now in a position to present our main results
Theorem 2.0.1. We let w = (’Li)j,’ti)5)l< . € (H‘E’/zvl)4 x H*!. Then there exists an e > 0
<<

and a positive constant C' such that (2.0.3) has a unique global solution

weC ((—oo,O] ; (L2)5>



such that ||w|| < Ce for any w € (HY/2! (e Y 5 H3! (). Furthermore there ezists a
Z(—c00)

unique W = (wj_,wg>1<j<4 € (H5/2,1 (Ca))4 x H31 (Ce) such that

Jetas (=) w; (1) = w7 |

H5/2,1 + Hum (_t) Wy (t) - w5_HH371 — 0

ast — —o0.

Theorem 2.0.2. We let w™ = (w;-r,w;r € (HE’/Q’l)4 x H>. Then there exists an

)1§j§4
e > 0 and a positive constant C' such that (2.0.3) has a unique global solution w satisfying

HuM (~t)yw; () =y

Lt U (=) ws () = wF || gas — 0
as t — oo and HwHZ[O o S Ce for any w™ € (H5/2,1 (5))4 x H3 (e).

By Theorem 2.0.1, we can define the inverse wave operator W= which maps (H5/ 2,1 (E))4 X
H3! (2) to (HY/2! (C’E))4 x H3! (C%), and by Theorem 2.0.2, we can define the wave oper-
ator W which maps (H?/2! (8))4 x H3L (¢) to (H?/2! (C’ls))4 x H>! (C1¢). Therefore the
scattering operator which maps (H*/21 (5))4 x H3! (¢) to (HY/2! (CC’le))4 x H3! (CCe)
can be constructed if we let Cie < &. It is easy to see that the inverse scattering operator

is also defined. We have the relations

](-1) +w? O = —i(iV) (w(l) - w](-2)> ,
o = W+l 00 = ~i V), (wl’ —wl?).

Therefore for the solutions to (2.0.1) we find that

| (+
Unm (1) ‘ ij N - . d)_]1 2)+
(iV)ar Or; (1) (iV) v; H5/2,1
L+
+ U (1) ¢ () - ¢ -0, (2.0.4)
<ZV>1;1 O (t) <iv>;zl (Z)(QH— H3.1
where
U (1) = cos ((iV),,t)  sin((iV),, 1)

—sin ((1V),,t) cos ((iV),, )

m



is the usual free Klein-Gordon evolution group. From (2.0.4) and the fact that the operator

Uy, (t) is a unitary operator in H™ it follows that

Hq/;j (1) = (cos ()5 ) 6" + (V)3 sin ((19) 1) 0P HH/

N qu () — <cos (1Y), t) oW 4 (iV) Lsin ((iV), 1) ¢(2)+)‘

H3.0

One of our main tools is the operator
T = (i), Un, (£) alhy (—t) = (V) <xE +itA (V) v)

which was used to obtain the time decay estimates for smooth and decaying functions
and applied to asymptotic problem of nonlinear Klein-Gordon equations with super critical

nonlinearities in [7], [8]. By a direct calculation we see that the commutation relation

is true. However it is difficult to calculate the action of 7, on the nonlinearity since 7, can
not be considered as a first order differential operator on the power nonlinearities. Therefore

we use the first order differential operator
Z=FE(tV+10) = <Z(1>, Z®, z(3>>
which is closely related to 7, through the identity
20) = £2; —iATY
and we find that it almost commutes with £,, by
(L, 2] = EV —iA[z, (iV), ]9 = —iA (V) VL. (2.0.5)

The operator Z was introduced by Klainerman [11] to obtain time decay estimates of solu-
tions to linear Klein-Gordon equations and the estimates were improved by [2], [5], [6], [1],

[7], [8]. We often use the following commutation relations

2, L] = iA [z, (iV), | = iA (iV) 1V, [xj,z<k>] = Et[z;,0n,] = —Eto.  (2.0.6)



10

2.1 LEMMAS

We first state time decay estimates through the operator 7, for any smooth and decaying

functions which was shown in [9].

Lemma 2.1.1. Let m > 0. Then the estimate

]Iy < C ()P G| L 2P| TSl H2P 4 € (1) T2/ g

is valid for all t > 0, where v = (n/2+1)(1—=2/p), 2 < p < 2n/(n—2) and n > 2,

provided that the right-hand side is finite, where n denotes the space dimension.

We now state the Strichartz type estimates used in this paper. Denote the space-time

norm

||¢||LT IL‘I = HH¢ ”Lq

LT (I) )
where I is a bounded or unbounded time interval. By the duality argument of [20] along

with the LP — LY time decay estimates of [12] we obtain the Strichartz estimate. Define

t
U] (t) = / e =V (YT g (1) dr,m > 0
T

Lemma 2.1.2. Let 2 < q < 2n/(n—2) and 2/r = n(1—2/q) /2. Then for any time

interval I and for any T € 1 the following estimates are true
H\Il [g]”LE(LLg) S C HgHL%”/ (I;szfl) ’

1 [Q]HLgO(I;Lg) <C HgHLI/ (I;Hf;,_l)

and

e

criragy < €9l
where ' =1/ (r—1),¢ =q/(¢—1) and p = (1+n/2) (1 —2/q) /2.

Proof. For convenience of the reader, we give a proof. Denote

/ K (t,7) =TIV, (V)" f(r)dr,



11

where K (t,7) € L™ (RQ) is a piecewise continuous complex-valued function. In particular,
to get the integral W [f] of the lemma we choose K (t,7) =1for T <7 <tand K (t,7) =0
otherwise. By the LP — L4 time decay estimates of [12] we have for n (1 —2/q) /2 < 1

dr
!
Ll

b, (7l < [ 13070

‘<iV><H’5><1‘5>‘2“ £ ()

from which by the Sobolev inequality it follows that

920 Al ) < €| G0+ D 082

4= Iy ()

L (I;Lg
where 2/r = n (1 —2/q) /2 and u = (14 n/2) (1 — 2/q) /2. Then substituting f = (iV)** ¢
gives us the first estimate of the lemma. We have
[EAGIG]FA
t A t
= < / e N Im (i7)7H f (1) d, / e NNy (£ — 7') (iV) 7 f () de>

T T

t t
[ ([leremeernsiol,

< C Hf”i{'(I;Lg./)

L3

IN

) [ () gy e

which implies the second estimate of the lemma if we take f = (iV)* -1 g. The last estimate

is dual to the second one

/I(eit<N>m¢,g (t))L% dt‘ = <<iv>ﬂ b, /Ieit(iV)m (V) " g (t) dt)

< CNGVY* bl 1 16] Oz < O ol ol () -

L3

Lemma is proved. I
We next consider time decay estimates involving the operators Z and L.
Lemma 2.1.3. Let m > 0. Then the estimate is valid
~#(-3) -3(-3)
6]l < C (1) P (Il + 120llgv—) + C(F) P Ll o1

forallt >0, where v =(n/2+1)(1—-2/p), 2 <p<2n/(n—2) and n > 2, provided that
the right-hand side is finite.
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Proof. By (2.0.6), we have the identity
Tm =iAZ — E(iV) 1V —iAzL,,.
Therefore we get

|Tmdllgv—1 < ClIZ0llg-1 + [0l + Cll2Lmd g1 -

In view of Lemma 2.1.1 and (2.1.2) the estimate of the lemma follows. I

2.2 PROOF OF THEOREM 2.0.1 AND 2.0.2

(2.1.1)

(2.1.2)

Denote by Zj (¢) a closed ball of a radius ¢ with a center in the origin in the space Zj. Let

us consider the linearized version of the Cauchy problem

i (V)3 Fj (v,0,05)
—i (iV) 3 Fj (v,0,v5)
i (iV),,! Fs (7)
~i(iV),, Fs(0)

EM’LUj =

ﬁmwf) =

wi(0,z) = wy, (x),
with j=1,...,4,k =1,...,5 and a given function
v=(v,v5) € Zg (p),v = (v1,...,04), I = (—00,0]

where

o
wj

o
Ws

4
p=C Z

‘H5/2,1 + H3.1

The integration of (2.2.1) with respect to time yields

i (V) Fj (v, 005)

wj(t):uM(t){ZjJr/tuM(t—T) _
0 —i (iV)y} Fj (v, 8,v5)

dr.

(2.2.1)

(2.2.2)
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Taking the Lg® (I; H5/2) - norm of (2.2.2) and applying the second estimate of Lemma 2.1.2
we find with 1/p+1/p' =1/2

||ijL§°(I;H5/2)

< O]l + C B3Iy oy
< O]y + € Wollgaons oy 1900l g0y
+C HU||L20/17(I‘H1/2) ||8HU5||L;“(1;H;)
+C HU”Lr (I “H1 ) ‘8#U5HLQO/17 (I.H1/2>
O 0l (aryo) 1005 o (22.3)
By Sobolev’s inequality with s % 10, 2 < p <6 and Lemma 2.1.1
ol 20/17( 10y < CIGVY 0l aorrr g1
< g -2) YT
p
< mmm@ﬁ“2>”wmww
1T (69 0l o 1) + ol eeess) )
< C <’|jM5||Lg°(1;Hv+s—l) + (| Tmvs |l Lo (rpzv+s-1) + ||U||L;>O(I;Hv+s)>
< Cp,
where v = % <1 — %) and we have assumed 6 > p > . We also have

[

< C (1900l vy + 1 msllae ey + [0lgge(ramsry ) < o
and

0,05 HLfom (I;H}/Q)

< C (I1TmBuvs e 172 + 10005 e (rpvs1/2) < Co.
By Sobolev’s inequality

10y g ) = g ey = ©
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Therefore by (2.2.3)

ijHL?O(I;Hs/z) < Ce+ Cp2.

Taking the Ly (I; Hg) - norm of (2.2.2) with 1/¢g = 2/5 and applying the third and the first

estimates of Lemma 2.1.2 we obtain with 2y = 1/2

ijHLj;(I;Hg) < HUM (t) wj‘

L;(LHZ)
t i(iV)y, Fi (v, 8,0
+C /Z/IM(t—T) < >M1j( hvs) dr
0 —i (iV) 3} Fj (v,
Z<Z )M J ('Ua #U5) L{(I;Hg)
< onjHHS/Q+0||vauv5||L:,(I;Hzl/2). (2.2.4)

By the Holder inequality with 1/¢' = 3/5,1/q¢ =2/5,1/r" =17/20,1/r = 3/20 we get

||'U6“’U5 ”L;‘/ (LH(BI//Z)

< Clollyormgan 105l (rary=) + C 10l gy sl gy

We use Lemma 2.1.1 to find

_9 _9
o ()lls < C 7 ([ollggsss + 1Tarvllggar) < Co (). (2.2.5)
Hence
00,05
ol (et

_9 ~
< Cpl|ty | Lorn g (ol (raasss) + 1T (raazss)y + 105 e s )
< Cp2

Thus by (2.2.3) we obtain the estimate

ijHLtOO(I;HSﬂ) + |’ijL§(1;H§) < Ce+Cp”. (2.2.6)
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For the estimate of ws, we get

sl ey < [ 0B

T s
0 —i (iV) ! F5 (D) 1 (163?)

= C H{Z}SHH& +C Hiﬂ Ly (I;Hi,)

< Cls , +C Il g Py gy < O+ C? (2.2.7)

and

IN

lwsliz gy < C|Jos| , +C 1 o)

IN

o ~ ~
C s gy + € 1l z007 g0, 1l ey

< Ce+Cp (2.2.8)

Since [Lar, Z] = —iA <ZV>X41 V Ly, the application of the operator Z to equation (2.2.1)
yields
i (iV)a; Fj (v, 0,05)

LruZuw; = (2 -iAiV)3 V)
—i(iV) 3y Fj (v, 8,05)

Then by integrating with respect to time

t oAV -1 F. ,8
Zw; = Uns (1) Zw; +/ U (t—7) (2= iA (V)3 V) PV B 0ts) )y
’ =i (iV) s Fj (v, 005)

(2.2.9)
As above, taking the L{® (I; H3/2) and L} <I; Hém) - norms of (2.2.9) and applying Lemma

2.1.2 we obtain

12wjll e (ras2y + 1205y ()
< C b gy 2

oy (HzﬁFj (v,a,wg))‘

I8I<1

) + HZBF]' (v,aum)‘ L (I;H:{//Q)> .(2.2.10)

L} (LH!/2
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We have by Hélder’s inequality

| ZF; (v, Ouvs) HLtl (LH/2)

IN

+C|2v]| ., /2 Ha,quHLN/N I.L10
Ly (LH?) (LL0)

Ce + Cp?

IN

and

1Z2E5 (v, Ouvs)l v (ra2/?)

IN

< Ce+ Cp2

In the same manner we find the estimate
2
10wl o (raz2) + 10swllpy (1) < Ce+ Cp”.
By the relation Jy = iAZ — iALpyx we get

HJMIU]‘HL?O(I;H;a/z) < szjHL?O(I;H3/2) + H»CM.TIU]‘HL?O(I;HB/z) .
Multiplying both sides of (2.2.1) by z, we find

iV Fi (0,0
EM..’E’LUJ = A [CL’} <’LV>M] w; + 2 7 <'L >M1 J (U u’l}5)
—i(iV)y Fj (v, 0uvs)

Since Ex = (iV);, Ju — iAtV (iV),; by the Sobolev inequality we have

(i) Fj (0,0
x i >M_1 7 (v, 0uvs) < Ce + Cp2.
—1 <ZV>M Fj ('U, a,ﬂ)5) H3/2

Therefore by (2.2.10), (2.2.12) - (2.2.14)

| Tnrw; ||Lgo(I;H3/2)
< 2wl (morz) + I0sllge (or2)
i(iV) a7 Fj (v,0,05)

+C ||z )
i (V)31 F (v, 0,05)

Lo (LH?/2)
< Ce+Cp%,

Clellyorr g 12005l 1) + N2l agyo) 10005l g

C ”U||L?O/17 (I;Hié2) ||Zaﬂv5HL€ (I§H(11/2) + C HZUHLZ(I;LP/) ‘|8NU5HL?O/17 (I;H;,l,/z)

(2.2.11)

(2.2.12)

(2.2.13)

(2.2.14)



17

similarly,
HjijHL;(I;Hé) < Ce+ CpQ.
We next consider the estimate of ws. Taking the L® (I; H2) and Ly (I; Hg/ 2) - norms to

the integral equation

t -1 i(iV),, F (0)
Zws = Up () Zws + | U (t—7) (z — A GV v) 1 dr
0 —i(iV),, F5 ()
and applying Lemma 2.1.2 we get
[ Zws||pee (1:12) + HZW5HL;~ (13?)
< il e Y (|20, +|zne)
< Clibllgs +C 3 ( 5 () L} (LH!) * 5 () L (vH},)
1B1<1 K
< C ||,l‘lO)HH3’1 + C ||:17HL?0/17(I;L10) HZ%HL:(LH}I)
O Wl 0 g 120 ey + € 2007 gy 100 o
< Ce+Cp (2.2.15)
In the same way
1Tmws e ez + [ Tmws]l, (re2/?) < Ce+Cp? (2.2.16)
which in view of (2.2.6), (2.2.10) and (2.2.11) implies
[wll5, < p+ Cp*. (2.2.17)

Therefore the mapping M : w = M (v) defined by the problem (2.2.1), transforms a ball
Z1 (2p) into itself. Denote w = M (v), then in the same way as in the proof of (2.2.17) we
have

lw—wlx <Cpllv—-7lx.
Thus we find that there exists an p such that M is a contraction mapping in Zy (2p) and
so there exists a unique solution w = M (w). To prove the asymptotics of solutions, we

replace v by w in (2.2.9), then we have for ¢t > t/

Uni (—t) Zw; (t) — Ung (—t) Zw; (1)

t i (iV) s Fj (w, duw
= /t/ Uns (—7) (Z —iA <1V>R41 V) _Z<<1V>;\;/11 Fj((w gu“if))) "
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Hence by lemma with I = (—o0, 0] and estimate (2.2.5)

[Uar (—1) Zw; () = Ung (=) Zw; (') || g2
i (V)2 Fj (w, d,ws)
—i (iV) 3 Fj (w, d,ws)

IN

dr

H3/2

[ Uns (—7) (Z — A iV} v)

IN

Cp® (t)™"

17
t t 20
[t [ DR el <o,
t t/

where v = =3 (1 —2/p) /24 17/20,60/13 < p < 6. Similarly,

since -
10

<cws,

HL{M (—t)w; (t) —Un (—t') wj (t') HH5/2 < Cp* ()"
for all 0 > ¢t > ¢/. As in derivation of estimate (2.2.12) we obtain
[tar (=) Tarw; () — Un (=) Tnrw; (V) ||ggsre < Cp? (1)

Hence
HUM (_t) wj (t) - UM (_t/) wj (t/) HH5/2,1 S Cp <t>_7

. . _ 2
for all 0 > t > t'. Thus we see that there exists a unique final state w; € (H5/ 2’1) such

that
<Cp* ().

In the same way as in the proofs of (2.2.7), (2.2.8), (2.2.15), (2.2.16) we find that there

|tar (=) wy (0) = w |

H5/2.1

exists a unique final state w; € (H371)2
U (=t) w5 (£) = w3 || gen < CP* ()77

This completes the proof of Theorem 2.0.1. In order to prove Theorem 2.0.2, we consider

the problem

1 <ZV>X41 Fj (w, 8MU)5)
—i (iV)3; Fj (w, 9ws)
i (iV), 1 F5 ()
—i(iV),,! F5 (@)

(2.2.18)
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under the condition that

[tar (ty ey @) =it |+ (6o (<85 (8) = w0 g = 0

H5/2,1

as t — oo. In the same way as in the proof of Theorem 2.0.1, we find that there exists a
. . 4

unique solution w and an & such that Hw||z[0 o S Ce for any w™ € (H5/271 () xH>!(e).

We also have the time decay estimates

HuM (—t)w; (t) — w;H ([t (=) w5 () — w3 || ggar < Cp? (1)

H5/2.1

This completes the proof of Theorem 2.0.2.
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CHAPTER 3

SCATTERING PROBLEM FOR A SYSTEM OF NONLINEAR
KLEIN-GORDON EQUATIONS

We consider a system of semi-linear Klein-Gordon equations

(D+m?)w:/\/}(%3u)a (t,z) € R xR", (3.0.1)

u; (0,2) = it (x), Opu; (0,2) = i\ (x) ,z € R”,

where O = 8?2 — A,m; > 0,u = (uy,...,u;), the partial derevative 0 = (9;,0,) =
(0o, 01, ..,0y), the spatial dimension n = 2,3. We assume that the nonlinearities Nj (y) €
CPpo (C(2+n)l; C) satisfy the estimates

NG @) | < Clyl, 10,N5 () | < Clyl, [ogN; (9) | < €2 < |a] < po (3.0.2)

fol all |y| < 1. Thus the nonlinearities N include quadratic terms, when we restrict our
attention to small solutions.  Our purpose in the present paper is to prove asymptotic
stability of small solutions to (3.0.1) in the neighborhood of free solutions in the lower order
Sobolev spaces comparing with the previous works [2], [4], [5], [16], [17], [18]. The main
ingredent which will be used here is the method of “Klainerman vector fields”. We will
rely on the expression of the Klainerman vector fields in terms of the operator itself and
of a convenient pseudodifferential operator of order one. It allows us to treat the system
involving Klein-Gordon equation with positive masses and the wave equations (i.e. zero
masses Klein-Gordon equations). As an example of such a system will be considered the
system of massive Dirac-massless Klein-Gordon equations in three space dimensions.

For n = 2,3 we denote the usual Lebesgue space by L? = {¢ € 5'; ||¢||rr < oo}, where
the norm [|¢||Lr = (fgn | (2) \pda:)%, if 1 <p < ooand ||¢|Le = supyern |¢ (z) ], if p= o0.

Weighted Sobolev space

R

I ()" (1= )% glley < oo},
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where m,k € R,1 < p < oo, (z) = /1+[z]2,A = 3" ,0?. Homogeneous weighted
Sobolev space is defined by

0 = {61l = @) (1= )5 [VI6lar < o0}

In the sequal we use widely the fact that the spaces HZ“”g for 1 < p < oo are stable under
Fourier multipliers of order 0, in particular by the operator (iV) 'iV (see [15]). We also
write for simplicity H™F = H;n’k, H™ = H;n’o, H = H;”’O, so we usually omit the index
0 if it does not cause a confusion. We use the same notations for vector valued functions.

The direct Fourier transform ?q;(f) of the function ¢(x) is defined by

Fo=¢=(2m)3 / ) () do,

n

then the inverse Fourier transformation is given by

Flo=(mt [ 9.
We denote the free Klein-Gordon evolution group by

Unn(t) = cos ((iV)t)  sin ((iV)t) |
—sin ((tV)mt)  cos ((iV)mt)

where (), = \/m? + |z|2, so that (iV), = vm? — A. For the case of the massive Klein-

m

Gordon equations we introduce a closed ball H’f’k (¢) with radius € > 0 and a center at the

origin in the function space

k _ — otV (1) (2)
m, .
H" = dv= @] llv HH;M + |lv ||H;nk < 0

Different positive constants we denote by the same letter C.

Theorem 3.0.1. Let n = 3 and condition (3.0.2) be fulfilled with pg = 4. Then there exists
o(1)

U 4
e > 0 such that for any initial data ZQ) € H*%(gg),1 < j <1, with g € <0,5§} the

Cauchy problem (3.0.1) has a unique global solution

uj € C ([0,00) ; H4’3) nct ([O,oo) ; H3’3)
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and
Jus(®)le < € (0207

forallt > 0,1 < j <1, where 2 < q < co. Furthermore, there exists a unique final states

+(1)
U -
J € HY(e),1 < j <1, satisfying
ut®@
J
wa(t u+(1)
Up, (—t) _i( ) — 7 o < Ce2(t)~°
: 1
forallt > 0,1 <j <1, where 0 <4 < 3.
+(1)
Theorem 3.0.1 shows the existence of final states 1(2) € H*!(¢). In other words the
u

J
small solution of (3.0.1) are asymptotically stable in the neighborhood of the free solutions.

Therefore, the inverse wave operator is well defined from (H*3(g))! to (H*!(e))".

Remark 3.0.1. Since the evolution operator Up,(t) is the unitary one in L? x I?, we find

)
H Q—Li( SN ELAC Y| =eer
(197 s () (197 6 | |

forallt > 0,1 <j<I, where0 < < % Hence,
. 1 . . . — 2 _
Jay (6) = (cos(i9),, Oy 4 sin((i9),, 1) (19) 0 0] @) 1y < O (1)

We next consider the two dimensional case n = 2. Assume that nonlinear terms have a
special complex-conjugate structure,
N (u,du) = > 0" 0, U, O, (3.0.3)
0<r,s<2,1<m,k<I

with complex vector coefficients "%, Following [5], we introduce the strong null condition.

Definition 3.0.1. We say that nonlinearities written by (3.0.3) satisfy the strong null con-
dition if
> g™, =0
1<r,s<2

for any n = (ng,ny,m) € (R?*),1 <m,k <1
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For example, the nonlinearity
N (u, au) = q1212 (Glulﬁqu — 82U181U2>

satisfies the strong null condition. Denote the operators zM) = to1 + x10; and z2) =
t0s + x20;. Then by the identity

N (u, 0u) = ¢**1%t72 <(Z(1)u1)Z(Q)U2 — (2@ 1) ZW gy

—(2Wur)20puz + (220u1) ZWup — (218pu1) ZPus + (Z(z)ul)xlatW)

it is clear that the strong null condition helps us gain more time decay properties of the
nonlinearity through the operator t9; + x;0;, so that the problem with the qudratic non-
linearity in two space dimensions behaves like the asymptotically free one. Indeed, we have

the following result.

Theorem 3.0.2. Let condition (3.0.2) be fulfilled with po = 5. Suppose that the quadratic

nonlinear terms of the nonlinearity satisfy the strong null condition. Then there exists
i . :

e > 0 such that for any initial data 22) € H*(g9),1 < j <1, witheg € (0,51}, Cauchy
U
J

problem (3.0.1) has a unique global solution,

uj € € (0,00): H) 1 C* ([0, 00): H)

and
-1
[luj ()] Lo < C(F)
+(1)
u .
for all t > 0,1 < j < [. Furthermore there exists a unique final states 1(2) €
u

H"\(e),1 < j <, satisfying

(¢ f(l)
Umj(_t) ’LLi( ) B ujl o < 052 <t>75
iy ost))  \9h @ ) [

: 1
forallt> 0,1 <j <1, where 0 <4 < 3.



24

u -
Theorem 3.0.2 shows the existence of final scattering states i_ @ € H*!(¢). Namely,
J
the inverse wave operator is well defined from (H>?%(g0))! to (H*!(¢))!, and the small solu-

tions of (3.0.1) are asymptotically stable in the neighborhood of the free solutions.

Remark 3.0.2. By the proof of Theorem 3.0.2 we find that

() — (cos((iv>mj tyu; M 4 sin((iV),, 1) (iV);) uj@)) e < Ce2tL.

We now apply our method to the Dirac-Klein-Gordon equations

(—i Yoo VO + M ) b =igpy*y,

(O +m?) ¢ = g™y,

(3.0.4)

where O =07 — A,m >0,M > 0,9 € R,

1/1 - Wt,x) = (¢1(tax),¢2(t:$)a¢3(ta$)a¢4(t7$)) € C4

is a spinor field, and ¢ = (¢t,2) € R is a scalar field. We use the coordinates t = x,

x = (x1,x2,23) on R!'*3, and Oy = %, where {7} are the 4 x 4 Dirac matrices, given by

10 0 0 0 0 01
01 0 0 0 0 10
7 = Y= :
00 -1 0 0 -1 0 0
00 0 -1 1.0 00
0 00 —i 0 01 0
0 0 i 0 0 00 -1
v = Y =
0 i 0 0 100 0
i 00 0 0 10 0

Here 9" denotes the adjoint. We have

V*0% = 9 7 + [o)® — |9h3]% — byl



The 4 x 4 matrix v? is defined by

0o 0 -1 0

0 0 0 -1
A = iyl 2B =

-1 0 0 0

0O -1 0 0

25

Note that y*v” + y’v* = 0 for v # p and v99° = 1 and y#y# = -1 for p = 1,2,3, where

1= [0jk]i<jr<a,0jx = 01if j # k and d;; = 1. Then by a direct computation we get

3 3

Z Z 70,0, = 10

p=0rv=0

and so by (3.0.4)

3 3
O+ M) = i) 70+ M (—iZ'y”ay—i—M) W

pn=0 v=0

3
=ig iy YO+ M | ¢v'y

pu=0

3 3
= =g > VYOud +igd [ 1D "0+ M | v

pu=0 n=0

3 3
= =g > VY0 +igeyt | =i Y _AFO+ M | ¢
pu=0 n=0

3
= =g VY0 — g7 0™

pu=0

and

(O+ m2) =g (|7/)1|2 + [hal® = [W3]* — [vul),

where we have used the identities y*y* = —v#~4% for = 0,1,2,3 and v*y* = 1. Therefore,
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we consider the system of Klein-Gordon equations instead of (3.0.4)

(O+ M?) p = —g?¢*) — g >0y v* 0,0,
(B+m?) ¢ =g (1> + [al* — 13> = [¥4]?) ,
1/}](0733) = 1251)’8151/)](0’33) = 1252))‘7 = ]-a 253747

6(0,2) = 6", 16(0,2) = ¢

(3.0.5)

.z € R3.

In the case of M > 0,m > 0, the asymptotic stability of small solutions was obtained in
Theorem 3.0.1 .

We now consider the case M > 0, m = 0. We introduce a closed ball I;I;n’k(s) with a radius
€ and a center in the origin in the vector function space H;n’k of initial data for massless
Klein-Gordon equations,

(1

. v
D) (2)
H = "=<v= o] ||lv HH;M + |lv ||H;n71,k < o0

Theorem 3.0.3. Let M > 0 and m = 0. Then there exists € > 0 such that for any initial
° (1) - (1)
data v; € H"3(gy),
° (2) < (2)
(2 ¢

a unique global solution,

€ H4’3(€o) with gy € (075%} , Cauchy problem (3.0.5) has

b; el ([0,00) ; H**) N C* ([0, 00) ; H*?)
o€ C ([0.00): H) N ((0.00): B

and

2
q

s Ol < 02075 196 (1) e < O 1)

where 2 < p < 0o, for allt > 0,1 < j < 4. Furthermore, there exists a unique final states
1/}+(1)

J 1 . .
qp‘."@) € HY'(¢) satisfying
J

; (1) pi W

§052t_5
(i) ar b (2) (V)3 wi® Hm
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+(1)

forallt > 0,1 < j <4, where 0 < § < % and there exists a unique ) c H4’1(5)
¢
satisfying
t +(1)
Uop(—t) ¢ () - ¢ < Ce%?
iV~ (t) iV 1ot ] | g
for allt > 0.
+(1) ¢+(1)
Theorem 3.0.3 shows the existence of final states | ’ € H*!(¢) and €
@ +(2)
0 ¢
H4’1(5). Namely, the inverse wave operator is well-defined from (H4’3(50))4 X H4’3(50) to

(HY () x H4’1(5) and the small solutions of (3.0.5) are asymptotically stable in the

neighborhood of the free solutions.
Remark 3.0.3. By virtue of Theorem 3.0.3, we have
oy (&) = (cos((i9) 0y )Y +sin((i9) 4, 6) (V)3 w7 @) g < =27
and
[6(t) = (cos((iV[1)e* D + sin((i0]1) V]~ 6+ @) | o < O,

We can see the previous work on (4) in [2], where the higher order Sobolev spaces H*® used

for the initial data.

Our result is obtained through a new time decay estimates of solutions to the inhomo-

geneous equations

—i (iV), 1 f (3.0.6)
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where L, = EO; + A (iV),,,, (iV),, = Vm? — A,;m > 0,

1 0 1 0

E= A= ,
0 1 0 —1

-1

Then the solution u of the usual inhomogeneous Klein-Gordon equation
02— A+m?)u=f,
(6 ) (3.0.7)
u (0) = ), Opu (0) = u?,

can be representated by u = w(!) + w®. We introduce the free evolution group of (3.0.6)
o—it(iV)m 0
Un(t) = :
( ) 0 eit(iv>m

T = (i), Un (8) 2l (—t) = (iV), (xE—I— itA (i) ! v) (3.0.8)

The operator

=2E(iV), — EGV) 'V +itAV

is useful for obtaining the time decay estimates of solutions ( see Lemma 3.1.1 below), where

we have used the commutation relation
[x, (iV)M —F! [iv, @H F=A3Gv)A 2y (3.0.9)
and the notation
T = (T80, 7
= ((iV>mZ/{m(t)x1Um(—t), cee <iV>mUm(t)xnUm(—t)>.
By a direct calculation we see that the commutation relation
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is true. However, it is difficult to calculate the action of 7, on the nonlinearity since
Jm can not be considered as a first order differential operator on the power nonlinearities.

Therefore, we use the first order differential operator
Z = B(tV + 28;) = (z<1>, . ,z<"))
which is closed related to J,, by
AN . WAL (3.0.10)
and it almost commutes with £, since by a direct calculation,
(L, 2] = EV —iA [z, (iV), |0, = —i A (iV),} VL. (3.0.11)

The operator Z was introduced by Klainerman [11] to obtain decay estimates of solutions
to linear Klein-Gordon equations and the estimates were improved by [2], [5], [6], [1]. We

also use the following commutation relations

20) iy axk} - (<iv>;ﬁ D1y O, — (IV);} 5jk) (Lo — 1A (iV). ) (3.0.12)
(2, L] = iA [z, (iV), | = iA (iV) 1V, [:cj,z<k>] = Bt[1;,0,] = —iBté;e,  (3.0.13)

29, 70| = [B(t0,, + w;00) . (iV),,, 05 + 140,
= EL(iV),, 06 + E(iV), " Op,0,0p + i Ax;0y, — 1 A8 50,

= 0t L + (V) (E@sz(k) + z‘Aj,g)&%> .
3.1 LEMMAS

We first prove time decay estimates through the operator 7, for any smooth and decaying
functions. We note here that 7, was used to study nonlinear Klein-Gordon equations with

a super critical nonlinearity in two space dimensions (see, [7], [8]).

Lemma 3.1.1. Let m > 0. Then the estimate

ol <@ 20D 1ol 2,080 Lo 2008 g
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n

is valid for all t > 0, where v = (2
right-hand side is finite. Furthermore, the estimates are true

+1) (1—7) 2<p< " and n > 2, provided the

~35(1-3)

16l zr < C<t>_%(1_%) [t (=) T, i L 1)II¢||Hv

Loy 300 gl

-3)

and
500y rm\;f 5>H¢Hﬂf(

|a|<2

I¢llzr < C (¢

o 30 gl

for allt > 0, where v = (% + 1) (1 — %) ,2<p< % and n > 3, provided the right-hand

sides are finite.
Proof. By the Sobolev inequality we find

lellee < Cllell  ga-2

for 2 < p < oo, n > 2; hence the estimates of lemma follow for all |t| < 1. We consider now

|t| > 1. We have the L™ — L! time decay estimate for the free evolution group U,, (t) ( see

Lemma 1 in [12]).
(3.1.1)

|8l = [t (D) < CII 2] (iV) 5 Upn(—1)@lIg1-

t)¢||L2, then by interpolation we get

Since |||z = [t (=
(3.1.2)

_n 1_,
léllLs < CleI™ 24 0) | GV Un (=) @llor,
1 1
where p/ = S v = (&2)(1 - %) Taking p = H|1:]"¢) ;HngL;’ ,and applying the Holder

inequality, we obtain

1llee < WG+ 12D 2z (o + |2])7 @]l 2

Cpi=3) 31.3
, +Cp 9]]y,2 (3.1.3)

< Cp%(l’%)"’
#0-2) 1-2)
i ||¢HL2

< C|lel¢| ;2
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since 2 <p < - o > 0. Substitution of (3.1.3) into (3.1.2) yields

20’
~20-2) 35 (1=3)
o) |lLr <C[t]2 [ (V) U (— )¢>IIL2
v %(1*%)
x H|x\”<zv>mum(—t)¢ ot (3.1.4)
By (3.0.9) we get identity
Uy (1) (iV)) U (—t) = (V) T + A (GV) 20V, (3.1.5)
Hence,
& (V) Unn (~0)9llgz < Clléllgprs + CllTmblggrs. (3.1.6)

We apply (3.1.6) with A = v to (3.1.4) with 0 = 1 to obtain the first estimate of Lemma
3.1.1.

We next consider the second estimate. Taking o = 3 in (3.1.3) we find that

1-2(1-2)
1l ||¢||L2
for any 2 < p < =5, Therefore, we get by (3.1.2) and (3.1.5)
_n(1-2) 5 1 v (-2
Il < Cle =505 ZH\xmj (V) U ()6
1-2)
X1 (EV )y, U (— )¢HL2
_n_2 1 -2 . 3(1= 1-%2(1-2)
< 130D it () (V) %wH; ||¢||Hu
~20-2) |1} oyl 0D b0
+ O 2]z V) Un(=8) Tmd|| H@f)HHv ’ (3.1.7)

which implies the second estimate of lemma if we apply the inequality

[letitm (-9, =

<‘$’%Um(—t)¢, ’x‘éum(_t)d))
= (¢,Um(t)lxlum(—t)¢> < [[@l|p2 el (=) Bl 2 (3.1.8)
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By (3.1.8),(3.1.7) and (3.1.5) we obtain

_n(1_2 n(1_2
Ile < CltI™ 207 (| Tz + | 6]lggv—2) 6077

2(1,2) 172(1,2)
X [ @llgp—a” N0l "
30-2)  1-2(1-2)
O

_n_2 1-2(1-2) n(1-2)
<t Pl (X (1786l ol )
1BI<1

2(1-2)  B(1-2)
+ 0 1Tl " 6l )- (3.1.9)

181<2

+ 2D |22 (V)2 U (—) Tond

By (3.1.9) in view of the inequality ab < 3(a® + b?) we get the last estimate of the lemma.
This completes the proof of Lemma 3.1.1. |

We next consider time decay estimates involving the operators Z and L,,.

Lemma 3.1.2. Let m > 0. Then the following estimate is valid:
-3(-3)
[llzr < C(t) P2\ olle + 1120l g
_n(1_2
+0 7 E 070 2l
for all t > 0, where v = (% —1—1) (1— %) 2 < p< % and n > 2, provided that the

right-hand side is finite. Furthermore, the estimate is true:

Il < € (1 5 (3) <Z 1286 i + 3 1LmZl gp2a

18]<2 161<1

1 1
T Lmoll g1z + (@) [ Ll gr-1.1)> Hﬁmeﬁllipl,l),

forallt > 0, wherev = (”T“'Q) (1 — %) ,2<p< % andn > 3, provided that the right-hand

stde is finite.
Proof. By (3.0.10) and (3.0.13) we have the identity

Tm =1AZ — E(iV) ViV — i AzL,y,. (3.1.10)
Therefore, we get

[Tm@llgr—1 < CllZ28|lggv—1 + 1]lggr—1 + CllzLm gy (3.1.11)
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In view of the first estimate of Lemma 3.1.1 and (3.1.11) the first estimate of the lemma
follows.

By the second estimate of Lemma 3.1.1 we have
_n_2
ol <C t)~247%) <”-7m¢HH”_1 + [0l ev

+ ny\% ([iv)r! L{m(—t)jm¢‘ L2>. (3.1.12)

We again apply (3.1.10) to get

|21 V) ()T, < O elithn(=0) ¥ 2

L2

+ Ol it ()2 (1957 L)

o et —t) 19 9]

L2

Then via (3.1.8) we find

|2/ (V) tn ()T

2 S Clglger + Ol 2]
+ Cllz (V)i U (—1) (V)2 V|12 + Clla (iV)o ' 26|

1

1 1
+ Clla (V)0 Una (1)L | 25 | 2L 2 s

and by (3.1.6) with A = v — 1 we obtain

2l (V)7 tn (1) T

L2 < Cllgllgr + ClIZdllgpr

+ C|| T (V)2 VO o2 + Cl| Tn 20| grv—

1

1 1 1
+0 (Womdllp-s + Wl ) Dol

By (3.0.8),(3.0.9) and (3.1.10) we find

| Tom (1%, Vol gp—2 < Cl|Tmllggv—2 + Cll@| gro—2
S C Z HZﬂéHH”72 + CuﬁmﬁbHHVfQ,l.

I81<1

We also have by (3.1.10)

|TmZSllgv—2 < C Y 12°¢]lge-2 + CllLim ZS||ggv-2a
|6]<2
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and by a direct calculation we get

[Tz Lmdllgr—2 < Cl|Lndllgr-12 + Ct| Lol g1

Therefore, we have

|2l (V) (=) T

L2
<C Z ”Zﬁd}”}[v—\ﬁ\ +C Z HﬁmzﬁqﬁHHu—zl
18I<2 8I<1
1 1
+C (|Lmllgge-12 + ] Lol gge—10) | LomllZ0—11- (3.1.13)

By virtue of (3.1.12) and (3.1.13) the last estimate of the lemma follows. This completes
the proof of Lemma 3.1.2. |

In the case n = 2 we have the following estimate.

Lemma 3.1.3. Let m > 0. Then the estimate

Il < C &) llgs + C(8) ™ thn (—t) Tl s
is valid, for all t > 0, where § > 0.

Proof. We have by (3.1.1) and (3.0.9)
19z, < CI I (GV) U (=)
el (||¢||H3 ] @) <iv>;um<—t>¢||Lz). (3.1.14)

Then by identity (3.0.8) we have <zV>?n U (—t) = <ZV>$,L U (—t) T which implies the
desired result. Lemma 3.1.3 is proved. |
In the next lemma we state the time decay estimates through the operators Z and L,,

in the two dimensional case.

Lemma 3.1.4. Let m > 0. Then the estimate

Iolzn, <€)~ (Iolme

+ Y122l + D leLmZel5n | D 1200

o <2 laf<1 o<1
+ Ll Lmd s + 0 |Lmoll e )

is valid, for allt > 0, where § € (0,1).
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Proof. We have by Lemma 3.1.3 and identity (3.1.10)

gl <C (7 (||¢|!H3 + o (=)l 2.0

U (~8) 252 + [ (—0)2Ln g2

Applying the Hélder inequality and the definition of 7, by (3.0.8), we obtain

Uon(~D)lsz2.6 < Clldllgez + C |2 V), Un( 1)),
< Cllgllgz2 + Clla V), Unn (D)8l 16352

= Cll¢llgz + CllTmd gy 161"

Then by (3.1.10) we find the estimates

U (<0l 25 < Cll ]2
+C (120l + laLmolldy ) Il

and

U (=) 20| gr26 < C[| 20|y

+C (122605 + I2£n 26l ) 126]15"
In the same manner via (3.0.8) we obtain

‘|um(_t)$£m¢HH2v5
< CllaLmdlpz + CllImzLmd |3 |2Lmdll 1

< C||Lmd |22l Lmd |l + C (0 || Lmllggzar

from which the estimate of the lemma follows. Lemma 3.1.4 is proved. |
We next consider the time decay estimates for the case m = 0, which is needed to prove

Teorem 3.0.3.

Lemma 3.1.5. The estimates are valid:

3(1-3)

L2

_ _n(1_2
ol < o~ 7 02) 3 v g L6

o<1

[ayR
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and

wwmsCfi@vx@herwha

3(1-2) 2(1=9)

+Ct “wwwwnwmkwmw

—_

where v = "H (1 — 7> and 2 < p < ff” n > 2, > 2, provided that the

27

ESUE
3=
Lol

E =
right-hand sides are finite.

Proof. By L? — L time decay estimate of solutions to the linear wave equations obtained

by Brenner [3] and (3.1.3) we have

Il = [2ho(e)4 <MW<QW‘“” U~ ¢H
—n=l(]_2 y %(1 Y 1——
<l U(~)s to(~1)9),”
where p/ = %, v="(1- 5) and 2 < p < 57 In the same way as in the proofs of (3.1.5)

and (3.1.6) we have

o],

Therefore we have the first estimate of lemma.
The second estimate for all |t| < 1 is a consequence of the Sobolev inequality. Consider

now |t| > 1. We have the identities with Jy = xE|iV| + itAV — E|iV|~1V
<x|_1x : Jo>iV|2‘V\_1 + E<|x]_1x - V|iV|_2>iV = At<\x|—1x - N) iV| 7YV + |z| BiV
and
<j0 iV|iV|~ 1>1V|zV| L Aiv|iv|™! = Alz] (]:1:| Ly ZV> V|71V + LBV,
Therefore,

tE|z|) (BExA(z| 'z -iV]iv|T!))iV
= —iAiV[iV|™' + A (J -iV[iV|1) iV]iv|~!

£ (|2 'z - ) iViV[TT £ E(Jz| Tz - VIV V]IV (3.1.15)
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From (3.1.15) we have

(E+ A (2| 'z iV]iv|™)) iV
_ 1
otz

(—iAiV|iV|_1 + A (Jo - iV|iv|H)iv]iv| ™

+ (|| Jo) iViVI T+ E (x|t - V]IV z'vw\l)
and

(E—A(Jz| 'z iV]iv] ™)) iV

= t_lm <—iAz'V|z’V|_1 + A (Jo-iV]iv| ) iv|iv|!

— (lz|tz - Jo) V]IVt = E(|z| 'z - ViV N|N|—1>.

Summing up the both identities, and taking the absolut value of the resulting identity, we

obtain

Vo(z)| < C <(t +1|x]) + (t —1Ix!)>
“

VIV ()| + (o - iV)iVIiv | 20(a)
+ | TV iV ()| + ‘V2|73V\_2¢(x)‘).

Taking L? (|z| < £), we find that

Hv¢||Lq(|m|<%) < Ct_l

x <Hz’V!iV|_1¢HLq +||(7% - ivyiviivi e

ol

By the commutation relation [jo(j), |2'V|_18k} = —Ed;), — iE|iV|720;0) we find

+ HJ{)Z’V|Z’V|_1¢HLq + Hv%m-%)

196l < € (1556100 + ol

< o (19l + 190l (3.1.16)
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:M—‘

for any smooth vector-function ¢ and % = > 0. Using the Sobolev inequality on a

St

sphere we also have for all [z| > %

) lel"™ = = [ 0ot < CIVOl s 6l

for any ¢ € C3°(R"™), which implies

1 1
sup 9(a)| < O T IV61E iy I61 . (3.1.17)
Therefore by (3.1.17)
2
—n-l(1-2) 2 2 q
<ot qmwgqgﬁwgﬁ%ym@. (3.1.18)

From (3.1.16) and (3.1.18) the second estimate of the lemma follows. Lemma 3.1.5 is proved.
[ |

Lemma 3.1.6. The following estimates are true:

lollzr < % 072 (|

%(1 _n(1_2
v rto| |+ [livrtecy > i 2< 2
L L
and
16l ze < Ct‘l(HV%HLa + HWﬁwHLa + HWHLa)
-271(1-2) 1(1-2 l1-2
+ot= 7 UTD|vg)? i) il il H¢H
wherey:"TH<l—%> and2<p< 5 nZQ,E:%—% > 0,4 > 2, provided that the
right-hand sides are finite.
Proof. By the identity (3.1.10) we obtain
o1 20], <cljeet-126], + -

+CHW -

and

[Jo¢llLs <CIIVZ¢|Li + ClVaLodllrs + ClIVollpa.

Therefore, by Lemma 3.1.5 we have the desired result. |
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3.2 PROOF OF THEOREM 3.0.1

We put
wj(-l) 1 [ uj+i(iV),}! O,
UJJ (ta$) - (2) = 5 i ’
w] U] — Z <ZV>7;] atu]
. (1) - (1) oy Lo (2)
, e | W _ L[ u e <zV>mj Uj
W (0,$) = wj (fL‘) - 2 (2) 9 . (1) o\ —1 o(2)
w; U; " —1 <Zv>mj U

Then the nonlinear Klein-Gordon equation (3.0.1) can be rewritten as a system of equations,
Lin;wj = (iV),,. Fj (w), (t,z) € R x R?
j=1,...,1, (3.2.1)
w; (0,2) =wj (x),x € R3,
where Ly, = EO; +iA (iV),, ,(iV),, = \/m5 — A, m; >0, and

FY (w)

Fy(w) =
2)
F (w)
. 1 2 . 1 2 1 2
= ib\; (w( ) +w®, (iV) i, (w( ) — wl )> ,V (w( ) wl )))
with b = . We introduce function space
-1

Xr = {6 € C(10.11:12) % (1) )i ollxy < o0}

with the norm

l
Ik = sup 53 (nz%jumm +uatz%juH3w.>

te[0,7] 5= 18|<3

l
- Z(<t>—1 161z + (8)°2 querz,z).

te[0,T] j=1

Denote by X7, a closed ball of a radius € > 0 with a center at the origin in the space Xr.
By the contraction mapping principle we can easily obtain the local existence of solutions

to (3.2.1).
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Proposition 3.2.1. Let the initial functions w; € (H4’3)2,1 < j < I, and the norm
0] g3 = €0. Then there exists a time T > O(gg') and a unique solution w € Xra. of

(3.2.1).

It is sufficient to prove that there exists € > 0 such that a priori estimates ||w|x, <
3
e(> €3) hold for any 7' > 0 to get global solutions to (3.2.1). In order to prove a priori

estimates we devide the proof into several lemmas.

We note here that in what follows constants C' appearing in the proof below do not

depend on T'. The integral equation associated with (3.2.1) is written as

wj(t) = U, (t)w; + /L[m7 — ZV) Fj(w)(r)dr. (3.2.2)

Taking the H%-norm of (3.2.2) we obtain

t
s Olhas < sl + € [ 175 @)oo
t
swmm+cﬁ<ﬂMﬂm;

)l o) g + ()1 ). (323)
Since w € Xg . we also have for (k =1,2 <p < o0), and (k=3,p =2)

104w () |gas < Cllw; @)l gger + ClLE; (w) (@) || g1 < Cllw; ()| g
< 2o (1) g1
Therefore, a priori estimates of time derevative of solutions are obtained through the es-

timates of space derevative solutions. We consider second term of (3.2.3). By the Sobolev

inequality and the first estimate of Lemma 3.1.2 we get

1
()2 lwllgg < CHwHH4 + CllZw|gs

+CZHF HH21<Ce+CZ||F w) |21 (3.2.4)
7=1



41

andform<q<65€(0 1)

020wl < € (02972 (V) wl|ga
l
< Ollwllggs + Cll 2wy + €S |1F;(w) g2
7j=1

<Ce+CZ||F )21 (3.2.5)
j=1

Also by the Sobolev inequality, identity (3.0.11), and the second estimate of Lemma 3.1.2

we obtain for % <p<oo,0 € (0, %)
lwlle, < C| (V) w]|re
l
DS (T 12l + X 12 6915
j=1 V|g|<2 18]<1

1 1
+ (1E (W) g2z + (&) 15 (w) [[g21) 2 HFj(w)Hilz,1>~ (3.2.6)
In the next lemma we estimate the nonlinearity Fj(w) in the norms H>*! and H>?,

Lemma 3.2.2. Let w € X7, be a local solution of (3.2.1) such that the inequality

1 é ,2
()2 [Jwl gz + ()" IIwHH2 < C€+CZ 1 (w) | g2 (3.2.7)
7=1

1s true for 3 < q < 6. Then the following estimate are valid:

1 1-3 312
()2 [[wll g + (02 Jwll g + ()21 ] g < Ce
and

l

Z(@ £ (w) g + Hf}(w)llﬂe«z) < Ce* (1)

J=1

QW

for allt € [0,T], where 3 < q < 6.

Proof. By applying the identities(3.0.8) and (3.1.10) we find

2B =iA(iV), Z = E(iV),2 iV — At (iV), iV —iA (V) 2L,

J
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Therefore, by the Sobolev inequality

[@lles < Cll g

and estimate (3.2.7) we get

ol < lollg + lowllg
l
< oZ(uzwuﬁs o w; gz + {8 ||wjqu)
=1
l

()2 > (e + | Fj(w)]|gza) - (3.2.8)

Jj=1

[

We use the Holder inequality and estimate (3.2.7) to obtain

Z 1E (W)l < Cllwllggz ][z

l

3_
i (e + |1 F(w)lgg2a)” (3.2.9)
J=1

Since w € X7 . we see that || Fj(w)||g21 < C||w|\§(T < CTe?. Thus by (3.2.9) we find

ZHF lgza < Ce2 (1) (3.2.10)

for all ¢ € [0,1]. Then by a standard continuation argument we obtain (3.2.10) for all
€ [0,T]. By (3.2.7) and (3.2.10) we have for 3 < ¢ <6

1 §(1_2) 2
() lwllggy + ()30 Jullgs < Cs + Ce (3:211)
Applying the Hélder inequality and estimates (3.2.11) we can write
[wlle < HwH QHUJH 2 SOt )20 (e + CE?).
Thus, the first estimates of the lemma is true. Substituting (3.2.10) in to (3.2.8) yields

Jeollggsr < Ce (t)2 . (3.2.12)
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As in the proof of (3.2.8) we estimate via (3.2.10) and (3.2.11)

[wllggzr < llwllgg + [lzw]ly

l
< cZ(HijHHI gl + (0 ijuﬂé)

j=1

M=

< Cet)s™
for 3 < g < 6. Then as above by virtue of (3.2.10) and (3.2.11) we get

gz < oz + lowlg
l
< CZ(IIZ%’IIW o wy gz + (8) ||wj||Hg)
=1

< Ce(t)z

for 3 < g < 6. Hence, we obtain

l
> I (w)l|g2e < Cllwll gz lwllg + IIwIIiIi,l
j=1

Thus, the second estimate of the lemma is fulfilled. Lemma (3.2.2) is proved.

We continue to prove Theorem 3.0.1. By equation (3.2.1) we have dyw; = —iA <Z'V>mj w;+
<1V>;é Fj(w). Hence ||0yw;||gor = C|lwjlgrr + || Fj(w)||gor < Ce (t). Therefore, by (3.0.9)
we find

Y 12040V Fy(w) g
1BI<1

< OllopE;(w)llgoa + D 1 27F;(w)lgpa
B1<1

< Ce i)l + 3 127 F5(w) g (3.2.13)
1BI<1

We now apply (3.1.10),(3.0.8) and the first estimate of Lemma 3.2.2 (we note that the
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condition (3.2.7) of the lemma follows from (3.2.4) and (3.2.5)). We have for 3 <¢ <6

Y NZ°PF(w)llga <C ) HZﬁwIIHmellﬂz
1BI<1 13I<1

§ _2
< ceq-t0 >ZZ(HJmkzﬁwkquH>||zﬁwk|ng)-

k=18|<1

Using (3.0.10), (3.0.11) and (3.0.13) we find
AL —— (z‘Azﬁ +18] (V) iV) Lon, + (iAZ — (V)L iV) z8,

Therefore, by the Sobolev inequality ||¢”H§ < O @]l gg2 we get

> 12°Fj(w)||gr < Ce Z | 2Pw]|gg-151

[B1<1 181<2

v ey 207G Z ST 1227 (i), Fo(w) g2
k=1|p|<1

Substitution of the last estimate into (3.2.13) yields

3_1
> NZP (V) Fij(w)llges < Ce () [lwllgy + Ce (61 2 |wllx,.,
[B1<1
!
+Ce (27D Y Z |27 (i)} Fio(w) | gg2-
k=1 |3<1
Hence for w € X7, we obtain
! 1 3_1
(1=C2) > Y 127 V), Fj(w)llg2r < Ce (t) [wllgy + Ce>(t)a 2. (3.2.14)

J=1|8|<1
We substitute (3.2.14) and the second estimate of Lemma 3.2.2 (we recall that Lemma 3.2.2
applies because of (3.2.4) and (3.2.5)) into the right-hand side of (3.2.6) to get for 5 < ¢ < 6

and 9 < p < o0
I, < Ce (72077 (1 + (O wllg, +e <t>%*%) :
Hence,

lwllg < Ce (t)rFa 2 < Ce ()1 (3.2.15)
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with some § > 0. Collecting (3.2.3),(3.2.15) and the estimate of Lemma 3.2.2 we find
t
o (®)llggs < 16 gt + 052/ (1)1 dr < eo + CE2
0
with some § > 0. Thus, we obtain

sup |lw(t)||ggs < g0 + Ce2 (3.2.16)
t€[0,T
Appliying the operator Z¢ to the equation (3.2.1) using commutator relation (3.0.11), taking

the H*~l*l-norm of the result, we find after integrating with respect to time
1Z2%w; ()]l gga-101 < [[(Z2%w;)(0) || gga-1a

t
e /0 lole, 3 120w gdr

o <3
t
+0 [ 12wl 3 120 wldr
laf<1 |o|<2
for |a| < 3. Since w € X7, by (3.2.15) we have the estimate with 5 < ¢ <6 and 9 <p < o0
3,3
lwllg, D Z%wlg < O3 (1)e a2,
|or|=3
In the same way as in the proofs of (3.2.4) and (3.2.5) we get
3 20wl < Ce ()2
|| <2
and
> 12wy < Ce (720
Wig = e
lal<1
for 5 < g < 6. Hence,
3_9
S 2%l 3 120wl < C2 (6572
lo|<1 |or|<2
Therefore, we obtain

sup Z | Z25w|| gga-ia
tel0.17 51<3

<Y sw
181<3 te[0,T]

xﬁat‘ﬁ'w) (O)H + e < Cep + CE2.
H4-181
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By using this estimate and identities [0}, Z] = EV, [8xk,Z(j)] = E[0y,,,;]0; = Ed;,0r, L0y =
Ly — AUV, 2B = (iV) ' T — At (iV) 1iV,(3.1.10) we have for the local solution
(3.2.1)

sup Z ||0tZﬁwHH3—|B|
t€(0,T) 18/<3

<C sup > [ Z%]lga-i9 + C sup Z > 2P Fjllggz-m
te[0,T 18]<3 te[0,T j=1|3|<3

< Ceg + Cllwlk, < Ceo + Ce?,

sup ()" ]| gges
t€[0,T]

<C sup > ||Z%w||gga-is + C sup Z “HIE g
t€[0,T) 18]<3 te(o, T]] 1

< Cep+ CHU}‘@{T < Cgy+ 062,

and

sup ()72 [|w||gz2 < C sup Z HZﬁwHHz;_m\
te[0,7 te[0,7 18]<3

l

+C sup 3 > () 2PFllga + C sup Z 2| g2
tE[OT}] 118]<1 teOT]] 7

< Ceg + Cllw|k, < Ceo + Ce>.
Thus, we obtain the estimate
Jwlx, <e

for any T' > 0. Therefore we have a global in time of solutions.
We next consider the asymptotic behavior of solutions. By (3.2.2) in view of (3.2.15)
and (3.2.16)

[Unn, (—1) w;(t) = Un, (—5) wi(s)||ggs < CE* / t ()0 dr < Ce?s70 (3.2.17)

s
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for all t > s > 1 with some § > 0. In the same way
U, (—t) Zw;(t) — Unm; (—5) Zw;(s)][gs < Cs™°. (3.2.18)
We let ¢ — oo, then there exist unique final states w;“ € H* such that

|} — U, (—5) w;(s)llpps < C2s7%.

Via Lemma 3.2.2 || Fj(w)]|gg21 < Ce? <t>%71 with 3 < ¢ < 6. Therefore, by identity (3.1.10)
and estimate (3.2.18) we get
([Urm; (=) T w; (8) = U (=8) Timyw; (s)] g3
< Nty (1) (142 — BGV),L i) wy(1)
— Uy, (—5) <iAZ ~ E(iV),;) N) w;(5)ggs
+ Ol Lo, wi (1) |3 + CllzLim;w;(s) |
< Ce?570 4 Oz Fj(w(s)) gz < Ce?s70.

with some § > 0, from which via (3.2.17) by the relation U, (—t)Jm = (iV),, sl (—t) =
z (iV), Un(—t) — (iV) ViV, (—t) we get

V), Uy (—2) w5(E) = U, (=8 w5(5)) llgs < Ce?s 2

forallt > s> 1. We let t — 0o, then we see that there exists unique final states w;-r e HM!

such that

[w} = U, (=) wj(s) |l gar < Ce?s™.

The asymptotic behavior stated in the theorem follows from the relations u; = w§~1) + w]@),
<1V>T_ni Oruj = w](-l) — w](?). Theorem 3.0.1 is proved. |
3.3 PROOF OF THEOREM 3.0.2

In the same way as in the proofs of the previous theorem we prove a priori estimates of the

3 3
local solution of (3.2.1). We let & > &g = [[10|5.4. We introduce the function space

YT—{¢ecﬁmﬂwﬂyxaﬂﬁmwa<w}
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with the norm

l
6l = t:[%% Z(Z OTNZ o101 + Y IIZ%J-IHMm)

J=1 "||<4 18l<3

l
T+ osup Z( S 1862565 lgo-ro1 + () o lggsn + (8) H¢HH2,2),

t€[0,T j=1 N|g|<3
where 7 is small. Denote by Y7, a closed ball of a radius € > 0 with a center in the origin
in the space Y.

Taking the H>-norm of the integral equation (3.2.2) we obtain
t
[w;(®) s < [0l +C/0 15 (w)(T) | adr

t
< [ ]| ggs +C/0 [[w(T) gz llw(7)]|ggs - (3.3.1)

In view of (3.0.9),(3.0.11),(3.1.10) and the identity zE = (zV);ﬁ TIm; — 1At (zV)E iV we

have

2L, Zwjllg < C Y IZ°Fj(w)|lgos < Cllwllgy, Y [2%w]gpa

la)<1 || <1
l
< Cllwllg, ((ﬂz oI wlle + Y chﬁmjzawj!v)
J=1 <2 o] <1
Hence for w € Y7,
(1= Ce)l|[zLm,; Zw;j| g < Ce(t) HwHHéo (3.3.2)

By Lemma 3.1.4 we have
() lwllg, < Cllwlgs

oy ||zaw|r;{£(2 B ||x£m2w||zp)

|| <1 |a|<2
+ (1P + (0 17 @) ) I

with some small v > 0. Then for w € Y7, we get

() wlgy, < Ce+ C<IIF(w)II§{1,2 +(t)7 IIF(w)HlpJ) 1 (w) g1 (3.3.3)
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From identities E9, =t *Z() — 1 Fz, 9, and the strong null condition we can write

(w)=ibt™ > 3" q;nkrszm( (1) 4 42 )) 26 (w® +wD)

1<m, k<l 0<r,s<2

—ibt? 3T 3T gtz (wl) ) ol + )

1<m, k<l 0<r,s<2

S VD S LR RN ) ECT R

1<m, k<l 0<r,s<2

1
with b = . Then we have the identity
-1
2y, Fj(w) = ibt ™2 Z Z qurs oA <w7(7p + wﬁ?) 24 Z0) (wy, 4 w,i ))
1<m k<1 0<r,s<2
— ibt ™2 Z Z mkrs (w( )+ w(2)> :ch:JcS@t(wl,(c )+ w(l))

1<m, k<l 0<r,s<2

bt 3 3 e (uf) + ol ) 220w + w)

1<m, k<l 0<r,s<2

So by identity x E = <2V>;i Tm,;—i At <ZV>;£ V, the relation 0; (w§1)+w§2)) =—1 (iV)mJ_ (w(.l)—

w](?)) and by the Sobolev imbedding theorem |w|+ < C||lw||g: we get for w € Y,

l
1 ()2 < O Ty 2wkl F4 + Cll Zwl3p
k=1

l
+ 0 (42 1m Bl + 20l )l < O (0, (334
k=1

where we have used the fact that || 7, Zwk||p+ can be estimated through the identity
(3.1.10) and (3.3.2) as follows

[Ty Zwrl|ps < Ol Ty Zwil| g

<O Y 2wkl + ClleLm, 2wkl < Ce ().
jal<2
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Similarly,

z, Fj(w) = ibt > Z Z q;ﬂ’““sxpzw (wﬁnl) + wf?) Z(s) (w,il) + w,(gl))

1<m, k<l 0<r,s<2

—ibt™2 Z Z q;”kTspo(r) (wg) + wﬁ?) xsat(w,(:) + w,gl))

1<m, k<1 0<r,s<2

— ibt ™2 Z Z "5 2,0, (w%) + wf?) o AC) (w,(gl) + w,(cl))

1<m, k<l 0<r,s<2

which by identity £ = <’LV>;,$ Tm,;—iAt <1V>;ﬁ V, the relation 0, (w](.l)—l—wj(?)) =—i <iv>mj (w(.l)—

J
w®

i ) and by the Sobolev imbedding theorem |w||;« < Cllwl|gg: we get for w € Yo,

l
T c(r? S 1 Zulis + t—1|2w|rH;1)
k=1

! 1 1
(3 Wl + 0y ol )

k=1

1
< Ce(t) 2 <5 + (1) w(®)l|2 ) : (3.3.5)
We substitute (3.3.4) and (3.3.5) into (3.3.3) to get
{t) w(t) g < Ce + Ce?. (3.3.6)
Substitution of (3.3.6) into (3.3.1) yields
b
@)l < e+ Ce [ @7 ()
from which it follows that
B wt)|gs < Ce + Ce2 (3.3.7)

In the same way as in the proof of (3.3.7), we estimate the other terms in the norm of Y
to find ||w(t)|y, < Ceo+ Ce?. The asymptotics stated in the theorem follows from the

same arguments as in the proof of Theorem 3.0.1. Theorem 3.0.2 is proved. |
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3.4 PROOF OF THEOREM 3.0.3

We put L, = E0; +iA(iV),, ,
w? L[ ¢+t <Z'V>JT/I1 al‘wj
wj = i?) 5 1 )
! ¥y — GV O

. ° (1 e —1 9 (2
P A BN A
7 . 21 () .,o-10@ |
wj(?) 2 Y —i <1V>Ml Y;

and
e — ws! _ 1 o+ilivITo
w® 2\ ¢—iliv| o6

0 e L 6© vt
Wy = = — R N .
o )2\ 6 —ijiv) 16"

Then the system (3.0.5) can be rewritten as

)
i GV Fs (w

Carw; = ( >M1J() 1,234
—i(iV)y Fj (w)

(3.4.1)
i|iV|~LFs5 (w)
E()U)E) = )
—i|iV| 71 F5 (w)
where
3
1 1 2\ 2 1 2 1 2 1 2
Fj(w) = 3 (92 (wé ) +wé )> (wj( ) +w§ )> —gz (7“74 (w]( ) —i—wj(- ))> Oy <wé ) —i—wé )))
n=0
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We note that the first term in the nonlinearity F(w) is cubic, the second term contains
the full derevative 0,, (w ( () + wé )), and so has a good time decay property (see the second
estimate of Lemma 3.1.5). Therefore, the nonlinearity Fj(w) is asymptotically free.

We introduce function space

2 = {0 0(10.11: 02 x (12 )i [0l < o0,

with the norm

I¢llzy = sup Z > (”Zﬁ¢j|’H4—ﬁ + !!atZ%jI!HS—ﬁ)

tel0.T] =1 p1<3

fap Y (1226,llp-1n + 1026, -

te[()T]J 115)<2

+ s 3 (1% g+ 10265l )

t€[0,T] 18l<3

+ sup Z( oyl + €07 16, e

te[0,T)

for small v > 0. Denote by Z7 . a closed ball of a radius € > 0 with a center in the origin in
the space Z7. As in the proof of Theorem 3.0.1 we used Lemma 3.1.2 to estimate wj;, then

we get for |3 =3

t
|25l g1 < =0+ / |27 Fy(w)|gedr

<eot / (Z sl 3 1270,

J=118|<3
4
Y Y 2w Y Y \IZBijIL3)dT
j=1|8|=1 J=11p]<2

t
3
< o+ Cllwlly, /0 ()4 dr.,

and

t
127Pws g2 < e +/ 127 Fs (w) |2 + 127 P (w) Lo dr,
0



93

where p < g. In the same way as above

t
/ |28 F5(w)||prdr
0

is estimated from above by

;4 4
/3D SN ELTTD 9h S ELTE
0 j=11p1<1 i=11p/<3
t
<Cllull, [ )< @it
0
with ¢ < 3. Hence we get

12%ws |2 < eo + Ce2 ()77

We have for [3] =3, 1<j<4
4 t
1270w < 20+ 3 [ 122 Fyw)lyor
j=1

t 4
< Eo+C/0 ((Z 12Pws =) D" > 1125wy,

18I<L1 Jj=1|8|=3
4
+Z Z |1 25wj| 6 Z | 2% ws | g Z | Z2Pws||y,3
J=118I<1 1BI<1 |8|=3
4
+Z llwjl|Lee Z |20V ws||p2 + || Vaws || Z 1 25wj| .2
Jj=1 |8|=3 18I<3
4
Y Vel S S uzﬂwmﬁ)df
lo|<2 J=1|B|<2

t 4 t
§50+05/ EEIDD \|zﬂwj||L2dr+csz/ () dr,
0 0

J=118|<3

and an analogous estimate for the norm || Z° ws|| g1 holds, where we have used Lemma 3.1.6

to estimate ws and Lemma 3.1.2, from which with the Gronwall inequality it follows

4
A O IZ wsllg + 112%ws g | < Ceo + Ce
181=3 \j=1
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for small v > 0. In this way we have for the solutions ws; of the massless Klein-Gordon

equation

t
sup Z ||Zﬁw5||H4f\m < Cg + 082/ (T>7%+7 dr < Ceg + Ce2.
te[0,T) 181<3 0

Then for the solutions wj,1 < j < 4 of the massive Klein-Gordon equation we obtain

4 t 5
i Z Z HZﬂ“’J’”HS—\m < Ce¢p —1—052/ (ry"it dr

0Tl =1 51<2 0

and

s t
Sup Z Z ()™ ”Zﬁ“’jHHHm < Cep + Ce? <t>_7/ <T>—1+v dr.

tEl0T] j=1 |5 <3 .

In the same manner as in the proof of Theorem 3.0.1 we estimate the other terms in the norm

Zr to find the desired a priori estimate of solutions ||w||z, < Ceg + Ce?. The asymptotics

is proved in the same way as that Theorem 3.0.1. Theorem 3.0.3 is proved. |
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