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Abstract

Basic properties of block coding and trée coding are
treated for both channels and sources. Hierarchical
channel codes cﬁ of rates RM = (1/N)log M for DMC’s are
constructed so that codes c¥<: C§<: ... satisfy the
expurgated exponent and other exponent functions.
Universality of channel and source codes is achieved
that satisfy the ultimate limits on performance over
all DMC’s in channel coding and over all stationary
ergodic sources in source coding. A simple concept
of universality is introduced and is shown to give
a simple proof to Gray-Davisson’s source coding theorem
for stationary nonergodic sources. The tree coding
research concerns convolutional tree coding on DMC’s
with the Viterbi and sequential tree searching algorithms,
and tree coding of stationary ergodic sources with
several tree searching algorithms. In channel tree
coding the computational problem associated with
sequential decoding is fully investigated, and analytical
confirmation is given to known experimental data for
convolutional codes. In source coding the main

topic is a proof of the tree coding theorem for



stationary ergodic sources using a new tree searching

algorithm,. Finally, as a practical application, tree
coding of speech is investigated. It is shown that,

in spite of the apparent nonstationarity of speech,

tree codes yield satisfactory speech compression.
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I. INTRODUCTION

In this thesis we explore problems of channel and
source coding, especially, with tree or convolutional
tree codes. Two subjects in Information Theory
concern these problems: they are generally referred to as
Shannon Theory and ( Algebraic ) Coding Theory. In
a loose sense, Shannon Theory concerns the ultimate
limits of communicétion, while ( Algebraic ) Coding
Theory concerns the way in which efficient communication
is realized. However we treat problems largely
from the Shannon Theory side, and stuﬁy how effectively
the tree and convolutional tree codes, codes having |
tree-1like and trellis-like geometric structure, can
be used to code channels and sources.

Shannon Theory has assumed originally the use of
arbitrary block codes which may not have any structure,
It is asserted that, if appropriate block encoders and
decoders are devised, we can ultimately achieve
theoretical limits on rates, for error-free communication
over noisy channels ( channel coding ), and on coding
distortions, for efficiency-oriented transmission of

data ( source coding ). However, as the theory



‘'develops and communication engineers notice the infor-
mation-theoretic approach to communication system design,
it becomes apparent that ordinaryblockencoding and
decoding are insufficient for practical use since they
require impossibly much computation. Tree codes are
thus frequently used with a hope that they might afford
implementable encoding and decoding.

In this regard we study properties and ultimate
performance of tree codes in channel and source coding.
In Chapter II, we first see a standard approach to channel
coding for a DMC, which is basic in other chapters.
Chapter III concerns basic, rather mathematical,
features that we can make codes possess,
hierarchical structures between codes and universality
of codes for channels. In Chapter IV we investigate
two decoding schemes for convolutional codes, namely,
sequential decoding and Viterbi decoding. Although
Viterbi decoding is more suited to hardware implementation
in the modern communication systems, they are complemen-
tary. The emphasis is placed on the computational
aspects on sequential decoding with convolutional codes.
In this chapter we see why communication engineers prefer
tree codes in channel coding and how they work in a

certain application.



In the later half of the thesis we consider source
coding. Since our aim is the efficient coding of
practically important sources which have, in general,
correlations between output letters ( sources with memory) ,
we first summarize, in Chapter V, necessary notations
and well-known results. Chapter VI is devoted to the
study of the existence of codes with universally good
performance over sources, universal codes, which are
particularly important in source coding. We introduce
possibly the least restrictive class of universal codes,
and discuss the practical meaning of it. The problem
of tree encoding is treated iﬁ Chapter VII. The main
topic in this chapter is a tree coding theorem for
stationary ergodic sources, which is the first satis-
factory tree coding theorem. The theorem asserts that
tree codes can ultimately attain the theoretical limits
on the coding distortions. Finally, in Chapter VIII
we consider tree coding of a particular source, épeech.
There, we can see the difficulty in treating real
sources which do not have uniform and purely stochastic
characteristics. However our experimental data reveal
that speech may be encoded more efficiently if suitable

codes and source adaptation mechanisms are selected.






CHAPTER 1

CHANNEL CoDING PRELIMINARIES



‘1. Communication system and coding

A fundamental problem in communication is how efficien-
tly one can send signals from an object to other distant
point. The object may be speech or written articles
and the emitted signal may be a speech signal converted
to electric current by a microphone or an electric pulse
train corresponding to letters in the written message
such as in telegram. We call such an object an information
source, or simply, a source. At the destination, the
exact reproduction of the signal is indispensable in
some cases. In other cases only an approximate repro-
duction with specified fidelity is sufficient. We
call the medium that carries necessary data from the
source to the destination a channel; e.g., atmosphere
in radio communication, or copper wire and repeaters
in cable communication.

Some limitations in communication often occur because
of the effect of noise in the channel, such as the thermal
noise in an electronic circuit or the disturbance in long
distance radio communication. When high speed communi-
cation or high quality communication is required, these
considerations become paramount. Direct connection of
the source to the channel is not generally a good answer
even when possible; communication engineers have invented
various devices, commonly refered as encoders and decoders

( see Fig. 2.1.1 ), to facilitate efficient communication



How well should they work, and how should they be

constructed is the coding problem for the source and

channel.

Information theory, originated by Shannon [1],
provides a mathematical basis for studying the existence
of a good encoder and good decoder. One of his‘main
theorems is stated, in rather vague terminology, as follows:

Desired communication is possible if the '"rate' of the
source relative to a given fidelity criterion is less
than the 'capacity'" of the channel, and it is impossi-
ble if the '"capacity'" is less than the '"rate".
Here we mentioned two notions; the "capacity'" of the
channel and the '"rate' of the source, both of which
will be defined rigrously later.
Let A,B,K, and B be finite sets, and suppose that,
at time i, the source emits X5 selected from A, the
channel emits §i selected from B when it receives x5
selected from R, and the decoder, observing ;i’ emits
Yi selected from B as a reproduction of X - Note that
the encoder, the channel, and the decoder may use the
data that have been received in the past or that will be
received in the future to choose the symbol emitted that
time. A,B,K, and B are called alphabets and their
elements are called letters. ( Of course, the situation
is too simplified; the source and channel are not

necessarily synchronized with each other. )
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The respective actions of the encoder and decoder
are not merely inversions of each other, for the decoder
should detect faithfully which gN = %;...%y is sent over
the channel observing the channel output ZN = ?1...?N
while the encoder should decide which gN yields a good

reproduction yN = Y1--2YN provided by decoder’s faithful

detection of gN from XN. This idea will be well under-
stood by introducing intermediate binary ( or g-nary )
sequences U = u...u, and 6" = G;...0 with u;, G; =

0 orl1 (or, 0, 1, ... ,or g-1 ) , as depicted by broken
line in Fig.2.1.1. We call u and @i , respectively,

a message sequence and a decoded message sequence.
Generally, the periods between digits in these sequences
may not agree with those between letters in source
output or channel output ( n # N ).

With these intermediate sequences, the coding
problem for the source and channel splits into that for
the channel and that for the source. Information theory
assures that entirely separate attacks on respective

problems are permissible under broad conditions([2].

The former is called the channel coding problem, which

aims at reliable communication over the channel, and

the latter is called the source coding problem, which

aims at good reproduction at the destination when the

message is sent over a noiseless channel, see Fig.2.1.2.



-Especially, the source coding problem is said to be

noiseless if the reproduction XN is exact, §N = yN.

and is said to have a fidelity criterion if XN

satisfies the condition d(§N,XN) < ND for a given function

Ny gN

d on A and a fidelity D > 0.

We again return to Fig. 2.1.1. We have been concerned
only with the relationships between letters. However,
since the source may continuously emit 1letters XiXy. ..
indefinitely, the decoder and encoder should be active
as long as the source is. A simple way accommodating
the system to such situation is to partition the stream
of source output into blocks of a given number of conse-

cutive letters and to encode each block independently.

This block-wise coding scheme is called block coding.

More precisely, the block source encoder encodes each
block of N consecutive source letters §N = Xy...Xy into

a block of binary ( gq-nary ) digits, gn = Uj...Up

the block channel encoder encodes EN into a block of channel

input letters, N =g ...ﬁN. Then the channel decoder,

= =1
observing the block of channel output letters, XN =

?1"'?N’ detects the transmitted gN, and emits a block

A

of binary ( q-nary ) digits, 4" = ul...ﬁn, expressing

n

X; the source decoder simply converts u® into a block

of reproduction letters, XN = ¥y1---Yn- See Fig.2.1.3,.

10
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We call each EN and each yN in this scheme a block

channel codeword and block source codeword respectively,

and we call the respective totalities of these code-

words a block channel code and block source code. We

note that, if codewords in respective codes are numbered
from 1 to M, the intermediate sequences can be replaced
with numbers m = 1, ... ,M. Then, the rates of codes
are (1/N)log e M nats/letter [ or (1/N)log 2 M
bits/letter ].

We have so far discussed from a rather mathematical
point, where any encoding and decoding computations are
assumed possible; However a little reflection reveals
that a block encoder should repeat an exponentially
increasing number of operations such as distortion
calculation or distortion comparison in an only linearly
increasing time span as the block length gets longer.
With this regard we need codes to have some structures
between codewords that allow easier decoding.

Tree codes are important such codes, which have
a tree-like structure between codewords. This
geometric structure facilitates efficient encoding
and decoding methods; some of them are systemtic
versions of list-searching scheme, and others are

~different.

12



Lastly, we give several notations, which are assumed
in this and the next two chapters where we are concerned
with the simplest channels, discrete memoryless channels.
In the later chapters, where we are concerned with more
complex sources and channels, more subtle notations are
given.

Given a set A, A" denotes the set of all n-tuples

a. ¢ A, and, for each n, elements in AY are

dj...a,, 85

identified by small letters with an under bar and a
super script n, e.g., §p(nr§?, keeping capital letters
for random variables and sets, e.g., Xn and S. For
any subset S in An, S¢ denotes its complement. Let

G be a statement which is true or false. Then we denote

the indicater function of G by x[G]; Xx[G] =1 if G

fl

is true and x[G] 0 if otherwise. Although distinct
symbols are used for source and channel alphabets in
this section, we use the same symbols A and B for
channel and source alphabets in the subsequent chapters.

Finally, all logarithmic functions log(*) are assumed

to have the natural base e — for the function with the

base two, we write as log 2 (*) explicitely.

13
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2. Block coding of DMC

A discrete memoryless channel (DMC) is a channel

with stochastic noise such that, for received channel

input sequence §N = Xpee Xy, the channel emits channel

output sequence XN = Ypee YN with the product probability

>

N, N
P(y |x

) =1 Plylx))

n=1
where P = {P(bla), aeA, beB} is a conditional pmf defined
on AxB, The DMC is identified, symbolically, by P.
Obviously, the outcome from the DMC is a sequence of
iid random variables for each input sequence. For a

given pmf on A, we also write

N

N
p(x) =1 px,),
n=1
for all §N € AN.
When a block code CN = { Eﬁ’ m=1, ... ,M} is given,

the most popular decoder is a maximum likelihood decoder

( MLD ) which operates as : decode each channel output
XN into a message m if XN is in the set, call it the

decoding region for m,

vy @) &0y e BV NIy s N IxNL), a1t 2w s

N,m(

( of course, yN may not be in any YN m(P), but we can
- ’

15



‘neglect such an event without any drawback. )

Let Pe’m(cN) be the probability that, when the massage
m is sent, a decoder, not necessarily a MLD, fails to
decode the channel output into m correctly, and let

the average probability of error be

M
z

Al
m=1

N, A
Pe(C ) = pe,m

Then, as one can see in [2], the MLD minimizes Pe(cN)

and gives

N

Ny _ N
Pe,m(c ) = X CZ P(y |§m)
Y EYN’m(P)
N N,_N N,_N
= 3 PN XL PG IX) < PO Ixge)s
XNEBN
some m*~ #m ] . (2.2.1)

" The extreme right-hand side is further bounded by the

following form with free parameter 0 < p < 1

N,_N 1
: P(lexN){ 2 ["—N"—P(X I&ﬁ‘)] W} p
NEBN _ - m” (#m) Py Izm)

However, it is quite difficult to obtain an analytically
tractable approximation of it for a particular code.

Nevertheless, if we let ch be a random code

16



consisting of random codewords Kﬁ with probabilities

Pr{ Xﬁ = §N } o= p(§N), all §N € AN, for a pmf p on A,

and if we apply the bound to <§N, the expectétion of the
bound with respect to C:N is further bounded by an elegant

form. That is, letting & be the expectation operator

with respect to ¢N, the following result is known [2].

Lemma 2.2.1: The MLD minimizes Pe(cN) for any N

and gives

gr (e £ &p, (eH)
< exp{ -N[ E (p,p,P) - pR ]} ;0 <p <1,
for allm=1, ... ,M , where R = (1/N)log M and
Eé(p,p,P) & -log =z [ : p(a) PT%E(bIa) ]1+p

beB achA

. N, _ N _ N N
Since é‘Pe(C' ) = & all codes Pr{i & = ¢} P, (cT),
there exists at least one code c\ satisfying Pe(cN) <
fPe( CN), and the bound in the lemma is really a

bound on Pe(cN).

Theorem 2.2.1: There is a block code cN of rate

R = (1/N)log M such that the MLD yields
P (M) < exp{ -NE_(P,R) }
e = rits

17



‘where

Er(P,R) & max max [ Eo(p,p,P) - pR ]
p 0<psl

The function E.(P,R) is called the random coding

exponent function. ( The term "random coding" comes

from the argument above the theorem, which is called

a random coding argument. ) A typical curve of the

function is illustrated in Fig.2.2.1: Er(P,R) has the
slope -1 for rates less than a critical rate RO(P) and

has positive values for rates less than C(P), where

C(P) = max I(p,P) and
p
P(bla)
I(p,P) £ © = p(a)P(bla) log
acA beB v p(a”)P(bla”)
a“cA

I(p,P) is called the mutual information quantity for

p and P, and C(P) is called the channel capacity of

DMC P. The term "capacity" referring to C(P) is

justified by the next theorem.

Theorem 2.2.2: For a DMC P and any R > 0, if R < C(P),

then, for any € > 0, there exist a block encoder and

block decoder with a rate larger than R - € and a

probability of decoding error less than € , and, conversely,

18



if R > C(P), then there are no such encoders and decoders.

Since (1/N)log M is made close to any positive value
for large N and large M, the first part of Theorem 2.2.2
is a consequence of Theorem 2.2.1, and the proof of
the latter part is seen in [2]. |

Letting R < C(P), the next interesting problem is
how fast the error probability decreases as the block
length gets longer.(From Theorem 2.2.1, we know that
it is no longer slower than expf{ —NEr(P,R)}.) We call

the maximally attainable exponential rate,

E(P,R) = lim -x log inf P_(cV),
N

N> C

the reliability rate function of P. It is known [2],[3]

that E(P,R) = Er(P,R) for RO(P) < R < C(P) where
RO(P) is the critical rate defined before.

To obtain a stronger bound for R < RO(P), we let

Z(a,a”) & 1 VP(bla)P(bla)
beB

for each a, a~ ¢ A , and let

ne>

N

AR IR TOAI P TTOAI P

for each §N, X e A7; they are called, respectively,

19



‘the Bhattacharyya distance between a and a” and the

Bhattacharyya distance between EN and §’N. Applying

(2.2.1 ), with p = 1, to a code C’N containing 2M

codewords, we have

e.m'C N) < I Z(§$,§g,) sm=1, ... ,2M (2.3.2)
’ m” (#m)

Using the standard inequality ( zaj )S < Zai , 0 <s <1,
we have
pl/eceNy < p 0 ZMedx )
’ m~ (#m) mem
for 1 < pandm-=1, ... ,2M. Let ¢°N be a random

block code with 2M codewords constructed in the same
way as before. The following lemma is obtained

from the arguments in [2].

Lemma 2.2.2: sPé/;(é’N) is independent of m and

cer/ece™ s
< exp{ -N[ E (p,p,P) - p(1/N)log 24 ] }

for 1 < pandm-=1, ... ,2M, where

20



Ex(p’p,P)

-(o/M1og & zH P xD)

> -

o log I pla)p(a’)zt/P(a,a”)
a,a’eA ‘

for 1 < p.

For 1 < p, let o be the indicater function of

v}
A

1/
2’ &pg/ 0 1°

where we let

>

1/ /0, n-N
grr 2 Er /e

Since, from Markov’s inequality, we have

E T o 21/2

there exists at least a code C’N such that ¢m = 1 for
at least M m’s. We renumber the codewords that are
specified by m for which o, = 1 in C’N, and let cN be
the block code consisting of these M codewords. Since

expurgation of codewords does not increase the average

probability of error. we know

21



P n(c) < exp{ -N[ E,(p,0,P) - p(1/N)log 4M ] }

form =1, ... ,M and have a well-known theorem:

Theorem 2.2.3: For each N, there exists a block

code cN of rate R = (1/N)log M such that the MLD yields
P (c™) < exp{ -N E__(P, R + (1/N)log 4 ) }

where

n=>

Eex(P,R) max sup [ Ex(p,p,P) - pR ]

p p21

The function Eex(P,R) is called the expurgated

exponent function, and is known tobe[2],([3]:

Egy (P,R) = E(P,R) ;s R=0,
E, (P,R) > E_(P,R)  ; 0 <R <Ry (P),
Eo (P,R) = E_(P,R) 3 Rj(P) <R < Ry(P),

where Rl(P) is another critical rate. All of the

curves are summarized and illustrated in Fig. 2.2.1.

22



In the figure, Eex(P’R) is depicted as if it
is finite for all R > 0. However, certain channels
have infinite values. Consider the channel P depicted
in Fig.2.2.2. It is certain that the channel yields
no error at R=1og 2, that is, E(P, log 2 ) = o, We

say that a DMC P has a zero-error-capacity R_if E(P,R)

= @ for R < R, and, conversely, say that P has zero
zero-error-capacity if R_ = 0. It is known [2] that

the quantity

R, = Sup max % E, (p,p,P)
’ p21 p
is a lower bound of the zero-error-capacity. Therefore,

‘if P has zero zero-error-capacity, then sup 0>1 [ Ex(p,p,P)

- pR ] is attained with finite p for R > 0.

23
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CHAPTER 111

PROPERTIES OF BLock CopES ForR DMC
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1. Hierarchical construction of good codes

In the previous chapter, good codes are shown
for each rate, or for each code size M, and, in such
an approach, a good code CT with M codewords and another
good code cg with M codewords, both for the same channel,
might be madé of entirely different class of codewords
each other. However, we can show two possible forms

of hierarchical relationships between CT < cg < .

where the inclusion means that every codeword of C§

is in C§+1' Proofs of such hierarchical structures
are virtually related to sequential construction

of good codes; by an addition of a suitable codeword

to a good code c? with i members, enlarge it up to another

good code c§+1 with i + 1 members. 0f course, the
hierarchy relies upon in which sense we say a code

is good. If we mean it under the light of the expurgated
exponent function, the structure takes quite an elegant

form. So we start with this exponent.

Hierarchy For Expurgated Exponent Function

Suppose that the DMC P has alphabets A = {0,1, ... ,0-1}
and B = {0,1, ... ,B8-1}, and that it has zero zero-
error-capacity( see Sec. 2.2 ). The basic bound in
proving the expurgated bound ( Theorem 2.2.3 ) is (2.2.2).

We put as

26



M
1 N _N
M z X Z(im’x ')-

N, 2
F(c,) ©
M m=1 m~(#m) -

Then, F(cﬁ) is a bound on Pe(cﬁ), where the subscript
M in cﬁ means the M members in the code. For the

later convenience, we let

A
Eex(P,P,R) = sup [ Ex(p’P’P) N pR]
p>1
for R > 0, and call it the expurgated exponent function
( although it is a little abuse in terminology ).

The pmf p is fixed arbitrarily through the section.

We note that, if é’x denotes the expectation
operator with respect to a random codeword KN = Xl"'XN'
N N

assuming values x € A" with the product probability
P(EN): then Ex(p,p,P) defined in Lemma 2.2.2 is recasted

as
E (p,p,P) = -(p/N)log &y &y~ 2P0, xN)

for all p > 1.

The recursive selection for the exponent Eex(p,P,R)

starts. from showing a good two word code. Let vy be an
integer; and let 0 < s(i) <1,'i =1, ... ,y, be numbers
all of which are determined later. Then Markov’s

inequality implies the inequality

27



pri &, Mol x N 5 2y &M x ),

some i =1, ... ,y } < 1/2 , (3.1.1)

and the inequality shows the existence of

N N

x; € A7 such that

i N .N .
< zyéxéx,zs(l)@ XNy s 1= 1, Ly (3.1.2)
On the other hand, using Markov’s inequality again,

we have

pr{ z(x),XxN) > min[ 2 25 (Y x N 11/s(4) 4
1

* * .
S T AN SO IR RSSO I
<1/2, - (3.1.3)

where s* is the minimizing s(i). From (3.1.1) and

(3.1.3), there is §§ € AN such that

28



5&»25(1)(5§,§’N)'

<2v& &P oM x Ny s i1, L Ly, and (3.1.4a)
N _N
2(51’52)
;min[ 4Y€X éxazs(i)(KN,K'N) ]l/s(i) . (3.1.4b)
N _ N N
Let c, = { X1,X, 1. Next, we suppose that we have
ey = 1 X e xy I, xi e AV, such that
&, .23 (N x )
hY ZYéX éx’ZS(l) (XN,X,N) ;1= 1, Y (3.1.5a)
m= 1, ,M, and
N
F(CM)
< min[ 4y-1) & &, 28BN x-Ny ) Vs (50105
i

Then, Markov’s inequality implies

N -N
Pr{ Z(Em’l

M
z )

m=1
M s(i) , N Ny 11/s(i)
< min[ 2 I &y.Z (XX ] }

1 m=1
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o]
—~—

where s* is the minimizing s(i) and we used 0

Ny )

< s*

in the first inequality. The above inequalities imply,

N N

together with (3.1.1) and(3.1.5), that there is X1 € A

such that

s(i N N
é‘x,z ( )(X—M+1’§ )
sy & &N x N i, Ly

and

W~ =

Z(x ’—M+1) < mln[ 4yM é' é& Zs(l)(

m=1

From the latter inequality,

F(ey VAxy, b

1 N N _N
= M+1 { MF(CM) + 2 Z()—(-IH’EM'*'I) }

=
N~ =
[

A

1

(3.1.6a)

,N) ]l/s(i)

(3.1.6Db)

where we used M(M-l)l/s(i) < Ml/s(i)(M‘l) and s(i) < 1.
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Since we already have cg, we now conclude that there

N

. . N _ N
is a series of code enlargements Cve1 = M v {5M+1}

such that each cﬁ satisfies
F(cﬂ)
< exp{ -N max[ E (p(i),p,P) - (p(i)/N)log[ 4y(M-1) ]1}
i

where we put p(i) = 1/s(i). Let ﬁi = (i/N)log a, let

y = N, and let p = p(i) maximize E_(p,p,P) - pﬁi.

Then, for each M such that R, > (1/N)log[4N(M-1)] > R

j -
we have
F(cy) < exp{ -N max[ B _(p(i),p,P) - o()Rj 1 }
i
i exp{ -N EeX(p,P’R—I\/I+6N) }
where RM==(1/N)1og(M—1) and NIV (1/N)log 4aN.

Thus we proved the following theorem.

Theorem 3.1.1: For any N, there is a sequence of

N _ N N
block codes CM+1 = M Y {§M+l} such that, for each M, the

MLD yields

N
Pe(cM) < exp{ -N Eex(p,P,RM+6N) }
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where RM = (1/N)log(M-1) and 5N = (1/N)log 4aN.

Eex(p,P,R) is not the true expurgated exponent
function. If we intend to obtain a hierarchy with
respect to EeX(P,R), we have to vary p for each M.
However such adaptation for rates will destroy our
basic argument.

Omura [4] shows a recursive argument for EeX(P,R).
However, his argument leads to a hierarchical series
of codes relative to the expurgated exponent function
only if a pmf p achieves Eex(P,R) simultaneously for
all R, which is satisfied only for symmetric channels.

To complete our argument, we specialize the channel
into a binary symmetric channel ( BSC ) and codes into
linear codes. The BSC P is characterized by A = B =

{0,1} and, for 0 < e <1,

1 -¢; if a=>»

P(b|a) = _
£ ; if a # b

A (K,N)-linear code is a block code whose codewords
are genrated by K N-vectors gﬁ € {O,I}N according

to the linear combination

™=
|
no~ R

N
Yk _g_k ’

k=1
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where Y € {0,1} and the summation and multiplication are
arithmetic in GF(2), the Galois field with elements
0 and 1. It is easy to seethatEeX(p,P,R) is maximized

by the symmetric pmf Pg> pS(O) = ps(l) = 1/2 , and that
B (p,p,»P) = -p log{ (1/2)[ z1/P(0) + zY/°P(1) 1)

for all p > 1 where Z(0) = Z(0,0) and Z(1) = Z(0,1).

In the remainder of this section, we assume p = Py -

First, we consider Pe(cf) for (1,N)-linear codes
cf = { QN,gN}. The argument goes in almost the
same way as in the previous proof. We can see the

existence of a good CT such that
F(ed) < anfl&x2/PX)1°
p>1
where Z(§N) = Z(QN,EN) for all §N € {0,1}N. Thus, we

have
F(cf) < exp{ -N Eex( (1/N)1log 1 ,P)) 1}.

Next, we suppose that there is a good (K,N)-linear

code cﬁ which satisfies

F(c*) < inf [ (ZK-I)ASX Zl/p(XN) 1°
K 0>1
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We note that the right-hand side is precisely exp{ -N

Eex( (1/N)log(2K-1) ,P) }. Then, for a non-trivial

enlargement c§+1 ='{§N = §'N*-Yg§+1, _'Ns c*K,Y= 0,1 } ,

we have
N N, N
F(cgy) = T Z(x) + NZ Z(x *+gp,q)
* *
X'ecy X ecy
«EoN

By ‘a random coding argument, there is g§+1 such that
the last term is bounded by inf o>1 i 2K¢£X Zl/p(KN) ]p.

Therefore, for any p > 1, we have the bound

ing [ (2%-1)° + 2°% 0 & ey 1°

F(c%, .)
K+1 0>1

In

exp{ -N Eex( (1/N)10g(2K+1-1) ,P) 1.

IA

We summarize the result in a theorem:

Theorem 3.1.2: TFor a BSC P, there is a sequence

of binary N-vectors g?, gg, ... such that, for each K,

the (K,N)-linear code cg generated by {g?, “ee ,gﬁ}

has the average error probability
* - *
Pe(cK) < exp{ -N EeX(P,RK) }

for the MLD, where Rﬁ = (1/N)1og(2K—1).
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Hierarchy Towards Channel Capacity

An important exponent function other than

Eex(p,P,R) is

Er(P’P,R) = max [ EO(D,P,P) - pR ] .
0<p<1
We call Er(p,P,R) the random coding exponent function,
although the so-called random coding exponent function
is the maximum max D Er(p,P,R). From random coding
arguments, it is relatively easy to see that, for any
fixed p, 0 < p < 1, there exists a code cﬁ such that
N .

Pe(cM) < exp{ -N[ Eo(p,p,P) - PRy ] } and that, given

such code cﬁ; we can always select a subcode Cﬁ-l

from it so that Pe(cﬁ_l) < exp{ -NJ Eo(p,p,P) - PRy ]}L
However we can never vary o in this argument. Non-
exixtence of any fine hierarchical structure may be

a feature of random coding exponent function that giVes
the exact exponent at high rates. Nevertheless, it
seems desirable to show a hierarchy under an exponent
related to the random coding exponent function since

the structure of codes of rates near the channel

capacity is also interesting in connection with channel
coding theorems.

To see such a hierarchy, we assign new decoding

regions to a given cﬁ such that, for each m,
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NR

Ihv

m”+1 ?

allm”~ =1, ... ,m-1 } , (3.1.7)

where q is a pmf on B given by q(b) = % acA P(bla)p(a)
for each b ¢ B. We call a decoder with this decoding
rule a modified MLD. This decoding rule is not maximum
likelihood decoding, and the probability of decoding

error for m in this scheme depends only on the

. _ N, _ N N _
first m codewords,namely Pe,m(CM) = Pe,m(cm) where Ch
{ C?, e ,Cg }. Using standard bounds, we see
N
Pe,m(cm)
N,_N
N N Py 1%y
< & P(ylxy) xl log ——x— < NR ;]
yNesN a(y)
N;_N
PN [ Tog ) e
+ I y |x 0g —— > B R
NeBN =m Q(XN) m”+1
some m” =1, ... ,m-1 ]

< n?/(0) g o/ (140) ( Ny p1/ (1) (yN| Ny

-
oNepN
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+ 5 m,—l/(1+p) b P(XNIEﬁ) q-l/(1+p)(XN)

1/(1+ N,.
« pL/(100) (N s
for allm =1, ... ,M and all 0 < p < 1. To simplify
the arguments we fix p for a while. Suppose that cﬁ

satisfies

5 qp/(1+p)(XN) Pl/(l+p)(XN‘§$)
€B

<2 & 1 P Ny pl/Ired (NN,
y €B

Denote the expectation in the right-hand side by ¢(p).
Then, with the aid of Holder’s inequality, we see that
¢(p) < exp{ -N Eo(p,p,P)/(1+p) . By the same argument
as that used for the transition from (3.1.5) to (3.1;6),

we can show that there exists xN

Xp+1 such that

) m’_l/(1+p) b

m =1 XNEBN

Py Nix, ) a0 Ny pl/ (o) ( Npu R
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o1/ (A+0) qp/(1+p)(XN) pl/(1+p)(zN|§§ )
m*=1 yNes™

In this way we can show the existence of §§, 52,

such that the code cﬁ = { 5?, e ,§ﬁ } satisfies

-1

m =1

P, yley) < 20 m m” /(140D 4 (o)

for each M. Thus, if we note the inequality
m@;% -1/ (1+p) L pf/ (1+0) _ g q < pP/(A0)
and if we apply the technique used in the proof of

% < (1+p

Theorem 3.1.1, we have the following theorem.

Theorem 3.1.3: For any N, there is a sequence of

block codes cﬁ+1 = cg v {§§+1} such that,'for each M,

the modified MLD yields

< exp{ -N[ E3(p,P,Ry,q1) - 8y ] }

)
A

for allm =1, ... ,M where GN = (1/N)log 60N and

ES(p,P,R) & max [ E_(p,p,P) - PR 1/(1+0)
T 0<p<l

It is almost evident that Er(p,P,R) > E;(p,P,R) bd
(1/2)E, (p,P,R) and E;(P,P,R)/ET(P,P,R) ~ 1 as R > C(P),

the channel capacity of P. Thus, Theorem 3.1.3 gives

38



a channel coding theorem for DMC’s.
Indeed, this approach serves as a version of
Feinstein’s argument on his fundamental lemma,

an important lemma in classical Shannon theory [5],[6].
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2. Universal performance of good codes

Up to here, all good codes are obtained for any, but

fixed, DMC. However, due to the lack of consistency in

channel characteristics, sometimes we have to make a

code not knowing about channel identity in each

communication. Csiszar, Korner, and Marton [7] ( also

see [8] )show a surprising answer to coding DMC’s

under such a situation.

Let S be the totality of DMC’s with the input alphabet

A={0, ... ,a-1 } and the output alphabet B = {0, ...

and define the mutual information function between

§N € AN and XN € BN by
I(§N,XN)
A 1 NN N(a,b|x",y™
= I I § N(a,blx",y)log N N
acA beB N(alx)IN(b|y™)

where N(a,bl§N,XN) is the number of (a,b) in (EN,XN),
and N(alﬁN) and N(b|XN) are its respective marginal
sums over a € A and b € B. We say that a code CNV

has a fixed composition Py if PN is a pmf on A and

N(a|§§) = N py(a) 5 allm=1, ... ,M and a ¢ A.

41
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‘A maximum mutual information decoder ( MMID ) is a
decoder which decodes every XN into m if I(Eg’XN) >
I(Eﬁ"ZN) for all m~ # m. The following is one of

their main results.

Theorem 3.2.1: For each N, there is a block code

cN of fixed composition Py and rate R = (1/N)log M

such that the MMID yiels

A

Po(c") < expl -N[ EX(py,P,R) - o(N) ]}

where o(N)/N - 0 as N » =,

The function Ei(p,P,R), which is not defined here,
is called the random coding exponent function for fixed

composition codes and is such that:

v

E;(p,P’R) Er(p’P’R) and

max E?(p,P,R)

E_(P,R)
P T

'Despife of these strong mathematical implications,
however, the codewords are to have a fixed composition,
and the mutual information function is not as cumulative
as the log-likelihood function log P(XN'EN) is; both

keep the theorem away from application to tree codes.
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In this section, we treat the problem in a somewhat
different way, and extend the result to tree codes
in Section 6.2

From Lemma 2.1.1, we have, for any Q,P € S,

M
N N \
Pe(c ) = %- T X P(y Iﬁg)
m=1 XN8Y§ m(P)
M
< 1 N|_N
i z )X P(X ‘Xm)
m=1 XNeYﬁ’m(Q)
L NN Py |xy)
m=1 y'eYy (Q) QL xy)

where Qe(cN) symbolizes that Q is used. Thus, if we 1let

‘ P(b|a)
d(P|Q) = max log ——
acA, beB Q(bla)

with the convention that log(0/0) = 0, then we have

the channel mismatch relation:
P (M) < q (M) NICPIQ) © g1 pQqe s (3.2.1)

The next lemma is proved later.

Lemma 3.2.1: For any 0 < & < 1/2@2, there 1s a
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‘subset S(e) of S with at most E‘ZQB DMC’s such that,

for each P ¢ S, a DMC Q ¢ S(e) satisfies the followings:

1) d(plQ)

A

e, and
2) E_(p,p,P) - E (0,p,P) < 28° for 0 < p < 1.

For an arbitrary, but fixed, € > 0 and pmf p on A,
let S(e) be the subset given in the lemma, and let
CN be a random block code each of whose random codewords
has the probability p(§N) for each §N € AN. Then, from

Markov’s ineqality, we have

Pr{ Qe(CN) > 38"2°°B<$Qe , some Q e S(e) }

A

r priq (e > 372 &g )
QeS(e)

< X 52a8/3
QeS{(e)

A

/3,

. . N
where & denotes the expectation operator relative to C

and we put

=

&q, b & e
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Therefore we have the probability

Pr{ Qe(CN) < 38_20”3ng , every Q € S(e) } > 2/3
From this probability we see the existence of a code
N such that Qe(cN) < BE_ZOLBSQe holds for all Q € S(g).

Thus, from the channel mismatch relation, Lemma 2.2.1,

and Lemma 3.2.1, the error probability for this code is
Pe(cN)

< exp{ -N[ Eo(p,p,Q) - pR + (1/N)1og(€2a6/3) - e ] 1}

A

expl N[ E_(0,p,P) - oR + (1/N)1log(e2%8/3) - ¢ - 28% 13

for all 0 < p <1 and all P € S. And we have a theorem:

Theorem 3.2.2: For suffciently large N, there exists

a block code CN of rate R = (1/N)log M such that MLD

yields

P (™) < exp{ -N[ E (p,P,R) - o(N) ]}

A

for any P ¢ S where o(N)/N > 0 as N » .

We note that, whereas MMID never needs the exact:

description of channels, MLD does. However this
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-approach is simple and flexible enough for application
to tree codes.

Next we show another universality with respect to
the expurgated exponent function. Let C'N be a random
block code consisting of 2M independent random codewords
each of which assumes EN e AN with the probability p(§N),

and let

QS 4 &g (e

for 0 < s < 1 and each m. ( It is well-defined for

we can see that the right-hand side is independent of

m in the same manner as é‘Qe m(C’N) ) From Markov’s
b4

inequality, we have

priq, (&M > inf ( 3e7298 £Q%)1/S | some Q ¢ S(e) )
’ O<s<

A

inf { e_zasg?Q;/[ inf ( 38‘2asé?QZ )t/S 11}

t>0 0<s<1
< 1/3
for eachm = 1, ... ,2M, where the last inequality

follows by 1letting t equal s
In view of this inequality, if we let ¢m be the indicator

function of the event

q, (&M < inf (3e72F Q2 )1/ 5 a1 e s(e),
) 0<s<1
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then we have

M

Pr{ o, 21 1 > 2/3

=
TR

m=1

Therefore, there exists c’N with 2ZM members such that o = 1

for at least a half of them, and hence there exists

cN, a subset of c’N consisting of M codewords, such that

N . -2aB S 1/s
Q (c) < inf ( 3¢ Q. )
€,m - 0<s<1 ©
for all Q € S(¢) and all m =1, ... ,M. Thus, letting

p = 1/s, we have
N
P (c)

Qe(CN) eeN

A

A

exp{ -N Sug [ E,(psp,Q) - oR - (p/N)log ge 208 _ ¢ ]}
p> .

The following lemma is proved later.

Lemma 3.2.2: For each P ¢ S, there exists Q € S(¢)
that satisfies the condifions 1) and 2)»in Lemma 3.2.1
as well as the additidnal one:

)l/o

3) E (o,p,P) - E (0,p,Q) < 08 (28° ; 0 > 1.
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From the lemma, the above inequality is further

upper bounded:
N
P, (c?)

< exp{ -N sup [ By(p,p,P) - oR - o8(28%e)1/P - pe; 13
(b :

where, from p > 1, we put e; = (1/N)log 9e 208 4 .

Here we must note that the term (2625)1/p crucially

depends on p > 1. Now let SY be the set of all P ¢ S
such that Eex(p,P,R) is attained by p < vy in sup 031
[ Ex(p,p,P) - pR ]. Then, from the all arguments above,

for any €* > 0 and any y > 0, there exists a code CN

such that

P_(cM)

A

exp{ -N Eex(p’P’ R+ ¢e,) }

for all P ¢ SY’ where R = (1/N)log M and

208

8(28%)Y + (1/N)1og 9¢”

€y + €.
Therefore, for any increasing positive numbers Y; and
decreasing positive numbers €5 there exist increasing
positive integers Ni’Mi and block codes c; with Mi
codewords having block length Ni such that (l/Ni)log Mi

> R - e. and
= i
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Pe(ci) < expf{ —Ni Eex(p,P,R+ei) }

for all P ¢ SYi' Let S be the set of all P ¢ S with
Zero zero-error-capacity. It is evident that
SY - S as y » o for R > 0. Therefore we have proved

the following theorem.

Theorem 3.2.3: For any R > 0, there exist block

codes cy each having Mi codewords of block length Ny
such that, for any P e S_, the MLD yields
11

P (c;) < exp{ -N;[ E,, (p,P,R) - &,

for all éufficiently large i, where €, ~ 0 as i =+ o,

This theorem is weaker than the previous one;
one block code does not necessarily possess a
uniform bouna over all P ¢ S. Finally, to complete
our argument we combine Theorem 3.2.2 and Theorem

3.2.3 in a single form:

Theorem 3.2.4: For any R > 0, there exist block

codes cy each having M, codewords of block length N;

such that, for any P ¢ S_, the MLD yields

]}

pe(ci) i eXp{ -Ni[ Ec(p:P,R) - Ei
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for all sufficiently large i, where e; > 0 as 1 » «, and

iy
Ec(p’P,R) - maX{ Er(p:P>R), Eex(p,P’R) }-

The proof is seen in the latter part of this section.
Finally, we briefly mention to a recent result due to

Csiszar and Korner [9]. They show, in a different

framework, that, for any R > 0 and any € > 0, there

exists a block code CN with a sufficiently large block

length N and a rate larger than R - € such that "MLD"

decodes the code in the error probability
"P_(cN) < exp{ -N[ E*(py,P,R) - & 1}
e = ©Xp c 'N’"?
where Py is the fixed composition of the code and
4 * %
Eg(P,P,R) - maX{ Er(psPaR)’ EeX(P,P,R) }'

The function ng(p,P,R) is a counterpart, for fixed
composition codes, of the expurgated exponent function.
It is shown in [8] that max P Eg(p,P,R) = EC(p,P,R).

It is interesting to observe that MLD attains

the expurgated exponent function universally

over channels, but MMID may not.
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Proof of Lemma 3.2.1

Let n be an integer such that n + 1 < l/e2 <n+ 2,

and let S(e) be the set of all Q ¢ S taking rational

values Q(b]a) =k/n (k=20,1, ... ,n ) for each a € A
and each b ¢ B. Clearly the size of S(e) is less than
(n+1)0‘B ( < ¢~ 20B ). First, fix P ¢ S and a € A

arbitrarily, and let b* ¢ B be the letter such that
P(b*]a) > P(bja) for all b e B. Then there exists
Q € S(e) that satisfies

P(bla) + 1/n > Q(bla) > P(b a) ; all b( # b* ), and

| Q(b*|a) - P(b*[a) | < (B-1)/n.

For this channel Q, it follows that

P(bla)
log —— < 0 ; all b( # b* ), and
Q(bla)
P(b*|a) P(b*]|a) (8-1)/n
log —— < log = -log[ 1 - ———
Q(b*|a) P(b*|a)-(B8-1)/n P(b*|a)
Since P(b*|a) > 8_1, B > 2, and 828 < 1/2 by assumption,
6-1)/n 82 -8 82 -8B+1 L,
< < < B%e” < g/2
P(b*]a) n  n+2
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Hence, for ¢ < 1/8,

Thus

arbit

z
beB

A

A

A

A

A

On th

P(b*|a)
log ————— < -log( 1 - ¢/2 ).
Q(b*|a)

statement 1) is proved since P ¢ S and a ¢ A are

rary. To prove 2), note that

{ 3 p(a)p(blayt/(1re)  1%e

acA
-z x paaelay)t/Te) y v
beB achA
|1 5 pla)pblayt/ (e 3 1¥e
beB achA

AT LICIE A Bt

achA

I (1+0) z p(a) | P(bla)t/ (1*0) _ qplayl/ (1+P))
beB acA

r (1+p) = p(a) | P(bla) - Q(bla) | 1/(1+0)
beB achA

(1+p) 81 (8-1)/n31/ (1*0)
2eB .
e other hand,

P {1 pla)P(bla)t/(1*e) y 1vo 5 g-1/0

b<B asA
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‘Thus, from log x < x-1,

3
E (o,p,P) - E (0,p,P) < 2eB .

Proof of Lemma 3.2.2.

Let Q be the channel in the above proof for the

given P. First note that, for a, a ¢ A,

| { 1 J/PB[a)P]a)) 1P - 1 z Qlaqmlas) 1P

eB beB

€z | VF(BTa)P ) - /A [a)Qblas) | 1P
£

A

A

€ 3 | POjaPEelan - Q(bla)Q(bla”) |2 3L/

{ 8/Z(e-1)/m 11/°

A

< ( 2e8%)1/P

for 0 < € < 1/282. Hence, by the inequality log x < x-1,

it follows that

A

2 \1/0
Ex(papsp) - EX(D,P,P) ( 2eB ) eXP{ Ex(p)pap)/p }

B( 2682 )1/°

A
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for 0 < e < 1/282, where the last inequality follows
since Ex(p,p,P)/ is decreasing in p and Ex(l,p,P) =

Eo(l,p,P) < log B. The lemma follows from Ex(p,p,P)/p < R.
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'Proof of Theorem 3.2.4

Let C“N be the random code used in the proof of

Theorem 3.2.2. Then, for any ¢ > 0, we have

Pr{ Q, (&™) < 372 gq,, all Q e S(e) } 2 2/3

A

and

inf (3¢ 2%8 2)1/5, a11 Qe s(e) } 2 2/3.
0<s<1

Pr{ Q, (&™)

A

Let ¢ be the indicator function of the joint event

Q, (&™) < 3e7%%F £q, and

inf (3¢ 28 £Q3)1/S 5 a11 Qe s(e).
0<s<1

Q (&N

A

Then, we have

1 M 1
Pr{ 7 E . } > 1/3.
m=1
Therefore there exists a code C’N such that ¢m = 1 for
a half of m’s. Now let cN be the code consisting
of those codewords corresponding to such m’s with

appropriate renumbering. Since expurgation of codewords

does not increase the error probability, we obtain
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a code such that

Qe’m(cN) < 3¢72% £q_, and

Qe m(CN) < Oinfl(Se-zaBngZ)l/s ; all Q € S(e).

Thus the proof is completed by constructing those codes

for different values of €.
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CHAPTER [V

ConvoLuTIONAL TREe CopiNe oF DMC
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1., Tree and convolutional tree codes

The block codes that we have treated are codes
made up from arbitrarily selected codewords, except
the linear codes in Section 3.1. However, from the
practical side, algebraic or geometric
structure between codewords are often indispensable
to facilitate highly reliable and practically
implementable encodiné—decoding.

For example consider a binary block code having

the rate 1/3 bits-per-letter,

111101000 111101111
000111010 111010101
111010010 000111101
000000000 000000111

For this code, the decoder needs 72 bits memory other
than calculation of probabilities. On the other hand,
if we rearrange the ensemble as sited in Fig. 4.1.1,
the tree-like systematic structure reduces
the memory requirement from 72 to 42 bits. Such a
code which has a tree-like skelton is called a tree

code; the terminologies, nodes, root node, and branches,

are also used to indicate individual elements of the
skelton of the code tree. The encoder’s action is

simply to trace branches and to emit sequences attached

to branches called branch seguences in order. In the
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Branch

Fig. 4.1.1 — A Binary Tree Code

level O Tevel 1 e ce lTevel i

Fig. 4.1.2 — A g-nary Tree Code of Rate % log q
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‘example, assigning 0 to an upward move and 1 to a
downward move on a node, the message 100 specifies the
codeword 111010010. From the example, we see that the
rate is almost determined by the number of branches
growing on a node, q, and the number of letters
assigned to each branch, v.

Suppose that the channel input and output alphabets
are A={0,...,a-1} and B= {0,...,8-1} respectively, and
that message symbols are qg-nary digits. A general
code tree ( or tree code ) with relevant notations are
depicted in Fig. 4.1.2. We say that a node is at the
i-th level if the node is connected to the root node
through i branches. The root node has the level 0. Any
nodes on a path connecting the root node and a node

are called antecedents of that node; conversely, the

node is called a descendant of those nodes. On

each node at the i-th level, there are emanating q
branches, which are nuﬁbered from 0 to g-1, and
each of which has a branch sequence consisting of letters

L
A message sequence u =

from A, X; = Xi,l"'xi,v'

Ujp...uyp specifies both a node in the tree and sequence
§¥...§E, called the codeword for EL. Then, we

also denote the node by EL . If the tree code

has the maximum level L, then the block length is

vL, and the rate is (1/v)log q, which is virtually
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independent of L.

However, the tree-like structure alohe is insufficient
to save decoder’s memory. See the system
in Fig. 4.1.3, where all the additions are modulo-2
sum . If, for each shift-register content, we arrange
the outputs in a row, ViVoVz, then we immediately obtain
the previous example. Since the major operations are

convolutions, such a code is called a convolutional tree

code, or simply a convolutional code, and the shift-

register length is called the constraint length of the
éode, K (=3). The algebraic structure reduces
memory requirement from 42 to approximately 0 bit,

if the circuit is invariant throughout encoding ( time-

invariant convolutional code ).

A more general convolutional encoder consists of
a K-stage shift-register, adders and multipliers over
GF(q), the Galois field with elements 0,1, ... ,q-1,
and a channel letter selector, as shown in Fig. 4.1.4.
A message sequence u = uju,... is fed into the shift-
register one digit a time from the left; for each
content u;u. ;-
by the linear operation over GF(q),

-2V _gy1s YV 4-maArTy digits Si,j are given

(1) L s e '
ui-K gk_,_l’j ] =1, .0 ,v. (4.1.1)

The commutator arranges these g-nary digits into a
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L
g

4.1.3 — The Generator of the Binary Tree Code
in Fig. 4.1.1

Fig.
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sequence s, ; ... S, which is added componentwise to a
H

i,v
bias sequence Vi ooee Vil consisting of digits from
) b
GF(q) to form Zi1 v iy by
b 2
z = s. . +
i,j ° %1, 7 Vi,j

Finally the channel letter selecterconvertszi 1 Z5
. b b

letter-wise into the branch sequence X; = Xi,l X5,y
according to the rule:

x-1 .X

z - x € GF(q), if Z n_<z < I n R
a = - a
a=1 a=1
(4.1.2)
0 ¢ GF(q), if z < ng ,

where ng,ny, ... n _; are positive integers whose sum

is q and z is interpreted as an integer in the "if"

statements.

If v, 3 and gﬁi% assume values in GF(q) independently

with an equal probability, then, from the property

of GF(q) arithmetic, all zs 3 also assume values
b

in GF(q) independently with an equal probability.

Thus, from (4.1.2), x, ; are iid random variables with
1

b

the pmf

i
-
o]
~
o)
~—
1

p
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The totality gives a random convolutional codes.

When we refer to (‘random ) convolutional codes later,
(4.1.3) is always assumed. For sufficiently large q,
any pmf’s are approximated with this form arbitrarily
well. We summarize several properties of the

random convolutional code for the later use ( cf. [2] ).

Lemma 4.1.1: 1) Succesive letters in a random codeword
2 Y

are i1id random variables: 2) If two paths u” and u

differ in every K consecutive symbols, Uiy o0 Uiax #

u ui+K, i=0, ... ,%K, then the specified random

i+l
codeowrds XX e Xﬁ and Xiv... gév are independent.
The lemma is an easy consequence of GF(q)-arithmetic
and the configuration for the encoder.

Unfortunately, since the random convolutional code
is generated by multiplication coefficients and a bias

sequence selected randomly each time, we can not exclude,

from our view, time-varying convolutional codes, codes

with varying coefficients time after time, as far as
random coding arguments are used. In contrast to
time-invariant codes, time-varying ones require linearly
increasing memory as block length increases.

As a summary, encoders genrate convolutional tree
codes of rate R = (1/v)log q and block length vL, for
message sequences EL. Each codeword 1is sometimes

written as x° = §¥ e 5;’ and corresponding channel outputs

n_ v v
are as y = y; ---

<
=}
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2. Universal performance of convolutional codes

In this section we see the error probability for
convolutional codes , and investigate universality of
codes over DMC’s . From the last purpose,
this section is compié;entary to Section 3.2.

First we see an efficient maximum-likelihood decoding
algorithm called Viterbi algorithm. Notations

in the previous section are maintained.

Viterbi Decoding Algorithm

From fig. 4.1.4, we see that, given a node gl,
the branch sequence §¥ depends only on the K latest
message simbols u. ... Ui K1) the K-1 latest history

i
Uj q -+« Uj_g4q» Called the state of the node gl_l,

"1 jeads to

and u; indicating which branch on gi
the node gi. Therefore, the convolutional code is
completely specified if we know the branch sequences
on q branches emanating from nodes having respective
states and respective levels. The diagram
representing these minimally necessary specifications
has a structure like a trellis as shown in Fig. 4.2.1,
which is another representation of the example'in

the previous section. Because of such a trellis-like

configuration for codes, convolutional tree codes

are often called trellis codes.
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Given an channel output y = X} .o X{, we can

assign the weight ( log-1likel
V| LV
log P(y;|x;)

to each branch with the branch sequence 52. Then,
MLD searches over the trellis for the path that
maximizes the cumulative weight ( up to the L-th

level )

v
log P(Xi I_)S\:i) .

o™

i=1

The Viterbi decoding algorithm [10] implements

maximum likelihood decoding of trellis codes. It is

described as follows ( see Fig. 4.2.1 ): 1) At the first

step, the decoder searches all qK paths EK and, for

K-1 K-1

each a e A , retains the path,

K, K-
u(a 1) = % aj ... Ay 1>

that has the maximum weight among all EK with the

state QK“1: 2) At the i-th step, the q¥°!

K+i_2(—a—K'l)

previously
retained paths u , called the survivors, are
extended one branch to give qK candidates, and, for

each EK—l £ AK'l, the decoder selects a new survivor
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States , Paths Compared Extended Path
00

Q o QS 2
N) 1 QQ 0]
N

N 11l N 111

Fig. 4.2.1 — Trellis Diagram for the Tree Code in
Fig. 4.7.1 and the Viterbi Algorithm

Fig. 4.2.2 — Trellis Diagram for q-nary Codes



K+i-1, K-
u * l(iK 1) =% ..o *ay ..ag

that has the maximum weight among q candidates with

the state gK-l:

3) When the topmost nodes of the trellis
are reached, the decoder selects the path E*L that

has the largest weight between the latest survivors, and
emits it as the decoded message sequence.

Readers with an interest in operations research
will soon recognizes that the procedure is not anything
else, but is just.a version of algorithms for the
shortest path problem, as noted in [11] and [12].

From the trellis structure, it is easy to see that
K branches are sufficient for a transition from a
branch to any branch stemming from a node of any state.
This suggests that the effective block length of the
codes 1is vK;just the constraint length timés v, In fact,

modifying the message format by additional K-1 consecutive

0’s as

0o ...0, (4.2.1)

Viterbi [10] shows the following theorem.

Theorem 4.2.1: For any 0 < p < 1 satisfying
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Eo(p,p,P) - pR > 0, there exists a convolutional tree

code c such that the Viterbi decoder yields

)
P (¢) < ——— expi -vKEO(p,p,P) }

where R = (1/v)log q and ¢ = EOHDJ%P) - pR.

The proof is done by estimationg each probability that
the message sequence is purged from comparison at a
step, and it is clearly visible in the proof of the
next theorem.

Universality of Good Convolutional Codes

First suppose that the transmitted message is an all-
zeTo sequence QL+K'1 =0 ... 0. Then, a decoding
error occurs if, at some step, say the (j+1)th step,

the comparison between paths

j+1) i+K)
0 ...0 0 O0...0
 ..0% 1 0 ...0
* .. %qg-10...0
discards the path Qj+K. This occurs only if a path
of the form
j*1-1) 3+1) 3+K)
EJ+K(2) =0 ... 0 nonzero * ... ® nonzero 0 ... 0 ’
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for some ¢ = 0,1, ... j, has a weight larger than
that of gj+K. The number of such potential adversaries
is (q-l)zqz—1 [ or g-1 if 2 = 0 ].

Each gj+K(2) specifies a codeword having the same
first j-2 branch sequences as the one for 9j+K. We

denote, by 5*§2+K and §?§2+K(1), the codewords that
correspond to QJ+K and EJ+K(2) respeétively. Then
the probability that 9?+K is eliminated at the (j+1)th

step, write Pe(9?+K), is
P (03" < % P (0", 2)
where
P (077K, 0)

b 3 Py |4 I Py XM s prx R

yng(2+K)

some EJ+K(2) 1.

The same argument equally applies to all message sequences

uJ+K.

Let

. '+K
Pt = g5p I P (w7, 0)
! all u’

Then, Pe(gj+K,2) has the form very similar to the
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probability of decoding error in Section 2.2 if we
let N = v(2+K). The similarity is strengthened by

the following lemma:

Lemma 4.2.1: Any two survivors at each step of

Viterbi algorithm are different in any K consecutive
symbols, and the corresponding random codewords in the

random convolutional code are independent each other.

The first assertion is verified by a reflection on
the algorithm, and the second is a consequence of
the former and Lemma 4.1.1.

From the lemma, we see (cf. [2]) that, under the

operation of expectation relative to the random code,

A o
P (2) = &P (j+1,8)
< exp{ -v(2+K) [ EO(D,P,P) - ORQ 1} 5;0<p =<1,
(4.2.2a)
where
1 2 2-1
NECIH) log[ (q-1)7q ] 5 & >0,
= 4.2.2b
R, ( )
1 L
R log (q-1) ) 0.

For any € » 0, let S and S(e) be the set given in

Section 3.2 for alphabets A and B. Then, the argument
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‘therin yields the probability
. -1 _-208
Pri{ Q. (3+1,8) < v "¢ £Q.(2), all Q e S(e) } 21 - v
for any y > 0, where Q_ (j+1,2) and &Q,(e) symbolize

the channel Q e S(eg). Thus, if we put vy = 1/L(L+1),

we obtain a convolutional code c such that

Q (5+1,2) < L(L+1)e 2*F&q (2) ;5 all Q e S(e);

all g 0, ... 35

all j 0, ... ,L-1. (4.2.3)
From (4.2.2), (4.2.3), and Lemma 3.2.1, we know that
the convolutional code gives, for each P € S, the

average probability of error ( cf. [10] )

L-1 ] L-1 j
P(c) = = I P.(+l,0) < I I Q.(3+1,8) o€ (K+2)
j=0 2,=0 J=O 2=0
L-1 j ]
< T L(Le1)e 2oB
j=0 2=0

x exp{ -v(K+2)[ E_(p,p,Q) - pR - e/v ]}

(L+1)3(q-1)e 28

A

ey exp{ -vK[ E_(o,p,P) - e* ]}
1 -e
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provided that
§ = Eo(p,p,P) - pR - ¢*¥ > 0, and (4.2.4a)
e* = ¢ 1/v + 28° ), (4.2.4D)

where Q ¢ S(g) is the channel given in Lemma 3.2.1.

Thus we have proved the following result.

Theorem 4.2.2: For any e€* > 0, there exists a

convolutional code ¢ of constraint length K and rate

R = (1/v)log q such that the Viterbi decoder yields

(L+1) > (q-1)e 2F
P <

-8V

exp{ -vK[ Eg(o,p,P) - €* ]}
1 -e _

for every P ¢ S and all 0 < p < 1 satisfying (4.2.4)

where € is given by (4.2.45).

From this theorem we see that the exponent Eo(p,p,P)
is attained universally, if maximum likelihood decoding
is used. For each rate R, the exponent can be optimized,
and an asymptotic form is illustrated in Fig. 4.2.3.
We note that the actual block length is vL, while
the effective block length is vK. 1In the figure, we can
see that the reliability exponent for convolutional codes is
much greater than the reliability exponent for block codes

with the same effective block length vK.

77



Eo(p,p,P) optimized in ¢ and p

Random coding subject to Eo(p,p,P) > oR

C(P) Rate

Fig. 4.2.3 — Comparison of Exponents for Block Codes
and Convolutional Codes
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Why tree codes ?

As we have seen, properly constructed convolutional
codes have large reliability exponents if the effective
block length vK is identified with the block length
of ordinary block codes. We can see that such a
comparison is completely reasonable; both codes with the
same effective block length require approximately the
same computations in decoding.

Consider two channel coding systems, one with a

vk with qK block codewords and the other

vL

block code c
with a convolutional code ¢ of rate (1/v)log q
having constraint length K ( cf. Fig. 2.1.3 ). The
block decoding with F s performed, for each channel

K, by the combination of parallel weight

output XY
enumeration and heirarchical parallel comparison as
depicted in Fig. 4.2.4 (a). Using this parallel
processing, the decoder should possess computational

speed that enable one weight enumeration and Kweight compa-
risons for a codeword. On the other hand, decoding
for the convolutional code, using the Viterbi algorithm,
will comprise of alternating weight enumeration for

branch sequences and path comparison as shown in

Fig. 4.2.4 (b). From the inspection of both schemes,

we can see that they require almost the same computational

loads and speed. High reliability with realizable
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computational requirment makes the convolutional code
with Viterbi decoding practically significant.
Indeed, Viterbi decoders implemented by hardware are

sold for the use in practice.
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Fig. 4.2.4(a) — Computations in the block decoder
(k=2q=3)
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Fig. 4.2.4 (b) — Computations in e Viterbi Decoder

(K=q=23)
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3. Sequential decoding of convolution codes: Computational

moments

In the previous section, we have seen the good

performance of convolutional codes. However, as the
constraint length increases, computational burden
in Viterbi decodihg becomes great. This is quite

discouraging if we need an extremely small probability

of error. Sequential decoding is a substitute for

Viterbi decoding under such a requirement [13],
although the former has a rather old origin; it is
invented by Wozencraft [14] and is almost completed
by Fano [15].

For a DMC P with input and output alphabets A =
{0, ... ,0-1 y and B = { 0, ... ,B-1 } respectively
and a pmf p on A satisfying (4.1.3), let q be the pmf

on B given by

q(b) = © p(a)P(b|a)
achA
for all b e B. Once the channel out put y = XXX;
is accepted, we can assign to each node ( or path )
gl a weight by the function

P(y.|x.)
[ log —*zll:l~ - VR ] (4.3.1)

rety -
q(zj)

o™ e
—

where R = (1/v)log q 1is the rate of codes and §i =
§¥ ce §; is the codeword specified by gl. Maximum
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likelihood decoding suggests exhaustive searching for
the node with the largest weight as Viterbi decoding,
which, however, is sometimes costly. Instead, sequential
decoding algorithms search nodes selectively.

We use the modified version by Gallager [2].
Chiefly it consists of three moves on nodes: forward,

lateral, and backward moves ( see Fig. 4.3.1 ).

A forward move on a node is a move to the immediate

descendant that is numbered 0. A lateral move on a

node is a move to the next neighbouring node between q
nodes having the same antecedent. And, a backward
move on a node is a move to the immediate antecedent
of the node. Shift on a node is controled by
comparison of weights and a threshold value T

which is renewed after each shift. The

precise rule is described in Table 4.3.1, where

A is the size of threshold increment-decrement.

1f I(p,P) > R, then the low of large numbers implies
that P(gi) tends to increase on the path specified

by the message. On the other hand, T(gi) would lastly
fall below zero on the other paths.

An example is depicted in Fig. 4.3.2, where we
suppose 1000 to be the message. As the example shows,
the decoder output has no synchronization with the
channel input; the message blocks are sometimes decoded
quickly, and other times are not decoded even when the

next message bloks are to be treated. Therefore,
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i+]
Forw§rd Move

on U’ ////zf

U
¢ Lateral Move
on U1+]

Backward

~i+1

Move on U U,i+1

Fig. 4.3.1 — Three Basic Moves on Nodes

Condition on Nodes Action to be Taken

Previous  Comparison of F(g1-]) and Final

3 Move
Move I'(u') with Initial Threshold Treshold

ForlL F(gi-]) < T+A F(gi);T
ForlL F(gﬁ']):>T+A F(gi)< T
Forl aw]ﬂf'” ‘NEU<T
B r <1 any r())
B F(g]’]);T any F(yj)

Raise*
No Change
No Change
Lower by

No Change

* Add jA to threshold, where j is chosen to satisfy

1“(31)-A< T+jA;F(g]).

Table 4.3.1 — Sequential Decoding Algorithm
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Levels in Tree

=24

Weights
Fig. 4.3.2 (a) — Sequential Decoding: Weights

Thresh- Thresh-
Path old Move Path old Move
- 0 F 0 -2 F
0 0 L 00 -2A L
1 0 B 01  -2A F
— -A F 010 -2A L
0 -A F 011 -2A B
00 -A L 01 -2A B
01 -A B 0 -2A L
0 -A L 1 -2A F

-A B 10 -2A F
- =2A F 100 -A F

Fig. 4.3.2 (b) — Sequential Decoding: Decoder
Movements
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the sequential decoder must be accommodated with a

buffer to smooth these occasional delay.

One of the problems, other than such a computational
one, is the capability of reliable encoding and decoding.
I1f we suppose the message format (4.2.1), we have

a theorem from the arguments due to Jelinek [16].

Theorem 4.3.1: For p > 0 satisfying Eo(p,p,P) - pR > 0,
there exists a convolutional code c such that the

sequential decoder yields

LB/ (1+0)

P
e = 1o Ty (16 ) (1-6277)

eXp{—V(K'l) [EO(p ,p,P)*E]}

where ¢ = [ E_(p,p,) - pR 1/(1+p).

From Theorem 4.3.1, we see that the sequential
algorithm implemented independently of the constraint
leﬁgth K, shows approximately the same performance as
the Viterbi algorithm which is heavily dependent on K.
However, the advantage is sometimes lost; a long
burst of severe channel noise forces the decoder to
stray into wrong paths through the code tree while
channel output letters continuously accumulate in
the buffer and overflow. Hence, assessment of such
failure is indispensable in sequential decoding.

We assume that the sent message is an all zero
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sequence. We say that an F-hypothesis occurs on a
node if the sequential decoder searches the node and
makes a forward move on it. We denote, by Wi’ the
number of F-hypotheses which occurred to decode the
(i+1)th message symbol correctly. ( This rather vague
definition will be made rigid later. )

Now consider a node Ei and its immediate descendents
gi+1(j) in Fig. 4.3.1. For lateral moves on Ei+1(j)
to be made, the node Bi must be first F-hypothesized,
and a backward move occurs only at the last descedent
gi+1(q-1). Therefore, for W F-hypotheses, there
are made at most (q+1)W basic moves in the code tree.
Suppose that the decoder is capable of o basic moves
while v channel letters come. Then, if a buffer overflow
occurs, we necessarily have (q+1) I izl Wi > oT for
the buffer capable of storing vT letters, and the buffer-
over flow probability will be

Pr{ (q+1) W, > oT }

[ e |
[

1

It is known [2],[16] that this probability is intimately
related with boundedness of the p-th moments of Wi’

EWP.
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The Number of F-Hypotheses

For a transmitted message sequence, say, 0=100... ,
we say that a path , or a node, gl is correct if
31 =0 ... 0, and, on the other hand, say that gl is

incorrect if gl #0 ... 0. Let Di be the set of nodes

J =90 ...0 Usyq »oo uj, j > 1 and Us 4 # 0, and call

1=

it the i-th set of incorrect nodes, It also contains
the i-th correct node 91 ( see Fig. 4.3.3 ). We define

w the number of F-hypotheses to decode the i-th correct

i,
node, as the number of all F-hypotheses occurred in

D;. The following lemma shows a necessary condition

for a node in D, to be F-hypothesized ( cf. [2, p.275] ).

Lemma 4.3.1: A node gj in Di is F-hypothesized

for the h-th time only if

j -
r(u’) > Fmin,i (h 2 )A
where
r . . A min T
min,i - m
m=i,...,L

Now let Dg be the set of all nodes in Di and at
the j-th level, and let p > 0. From the lemma, we have

the following bounds on W,:
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Fig. 4.3.3 — The Sets of Incorrect Nodes
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8

L-i

W, < & I zx[ T 2 rpgp g+ (h-2)a ]
h=1 2=0 ueD
o L-i L
<z ¢ 1 xltr@ >r, + (h-2)a]
h=1 ¢=0 m=1i EeDg
@ L-i L
<t o5 31 expl gl T - Ty - (he2)Aa ]}
h=1 2=0 m=1i EeDg
p > 0. (4.3.2)

To make the arguments straightforward and simple, we deal

only with WO’ and use the abbreviations X; = 5} .. _X
and Yi = Xz “e X¥° Under this convention,
1
L L —
~ Ply,lxy)aly,)] T#p v
Wo 2 vy Z z ) exp{I:B{m-R)R} ;

q(y, )Py, lx,)

o >0, (4.3.3)

where x, and gm mean the codewords specified by EQ € Dg

2
and the m-th correct node gm respectively, and

028/ (1+0)
‘Y =
0 eA/(1+o) -1

Henceforce we use distinct notations for expectation
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‘operators with respect to the random code, use &,

and with respect to the channel and any particular

code, use E. The operator & is a product of two
expectation operators é‘c and é‘I; The former is for
the random codewords  specified by correct nodes and the
latter is for the ones specified by incorrect nodes

( cf. [2] and [16] ).

Suppose 'that convolutional codes have infinite
constraint length. According to random coding arguments,
our task is to bound the average p-th moments ¢éEWp.
Remember that R is the rate of codes and that p is
given by (4.1.3). Falconer [17] shows that &LEWP < o
if pR < Eo(p,p,P) and 0 < p < 1. For all poitive
integers p, Savage [18] and Zigangirov [19] show that
EEWP < ©» if pR < Eo(p,p,P) for tree codes possibly with-
out algebraic structures. And their result is extended
to all positive p by Jelinek [20]. Though several
simulation results suggest that these should be also
true for convolutional codes, however, no proof has
been known. The difficulty has its root in the algebraic
structure that makes the codes feasible.

For finite constraint length , it is known [21]
that, with slight modification in the algorithm, the
computational burden is lessened by decreasing constraint
length K. Therefore we always suppose infinite

constraint length, K = o,
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L—Independence

We say that a set of incorrect nodes { 31(1),... ,gl(n)}
has rank k if, there exist maximally k nodes gi(nl), e,
gl(nk) in the set such that the all nodes are expressed
by linear combination as

El(j) = a, El(nz), for a, € GF(q),

™=

=1

where all gl(j) are interpreted as i-vectors over GF(q).
The algebraic dependence of nodes implies another structure

between corresponding random codewords

Lemma 4.3.2: If .a 'set of nodes { 21(1), ce ,gl(n) }

has rank k, then, between the corresponding i-th random

branch sequences in the random convolutional code,

5;(1), cen ,Xz(n), there exist k mutually independent
Xy(n), oo LXP(ny).
Corollary: 1If { gi(l), e ,gl(n) } has rank k, then

there exist n” subsets with the following properties:

1) Each subset consists of k mutually independent
i-th random branch sequences Kg(nj,l), ce ’Xg(nj,k)’
for each j =1, ... ,n":

2) Their union is { X;(1), ... ,X;(n) }, the set of

all corresponding random branch sequences:

3) n” < n.
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The proof of Lemma 4.3.2 is given later, but the proof
of Cdrollary is relatively easy and is omitted.
As an example, consider nodes (1110),(1011),(1101),

and (1000), for g = 2. Their rank is 3, and

{ X,(1110), X,(1011), X,(1101) 1,
{ X,(1110), X,(1011), X,(1000) },

{ X,(1110), X,(1101), X,(1000) }

give the subsets assured by Corollary.

Given a set of incorrect nodes, U = { EL(l) “e gP(n) }
< D%, we write the antecedens at the 2-th level of
EL(j) as EQ(j). Let L = (Ll, cen ’Ln) be any vector
with integral components. We say that U is L-independent
if { gl(l), cen ,Ez(n) } has rank k wnenever L, ; <
2 < Ly, where L, = 0. Nodes in the above example are
(1,2,4,4)-independent. The following lemma gives an

upper bound on the number of L-independent sets [66]:

Lemma 4.3.3: For integers Ly( =0) <L, < ... 2L

n’

the number:M(L) of distinct L-independent sets
{ EL(l), cen ,EL(n) } is bounded by

2
n”(n+1) log

M(L) < expf k( Ly - Ly 5 dlog q +

n~Ms

k=1
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Bounding EEWS_

Applying Minkovsky’s inequality to the bound (4.3.3),

we have a bound on the p-th moment.

( &EW) H1/P

p

. P

L L q(Y.) \T+p P(Y, |X,) TI+p

<Yy =z | &CE —~:‘“~——) SI[ 3 A
2=0 m=0 PCY, X)) ~ ung a(Y,)

O

% exp| ‘1’—2.5( m - %2)R ] (4.3.4)

First note the identity

P

T p
é“cE( a(y,) 1o&{*]

POy X))
a(y,) \1+°
p@L)P(_y_L@L)(———:‘“——) & [* ]
Py, Ix,)

"
™
]

vL vL

1
P(Xm|§m) T+p
Dooplx) | ———
y eAvL X eAvm q(zm)
<L —m

Then, from Holder’s inequality, we have

il
™

( Emwh )0 <
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1 1
L
Py, Ix)\TFp | 1*°| 5TT%0

Yo I roaly)| * pixp)|————

m=0 Xmerm xmeAvm q(-Xm)

1 1+p 1
L ¢ Py IX,\T#o \° | o [T#p

X I z Q(Xp) I pX —

=0 XZEBVQ EeDz q(Xz)
x exp{ lrp( m- & )R} . (4.3.5)

Next we bound the expectation 3&(*) with respect
to incorrect codewords in (4.3.5). Let n be an integer
such that n-1 < p < n. From Jensen’s inequality,

the expectation is

1 P
e[, [Pl ]I
I 2| aly,)
EEDO =%

1

[P(y |X,) 11+ n g
o

el( 5 2oty ]

ung q(Xz)

A

1 .p
P(y,|X,(3)) |I+p |n
A n g [
all j=1l - a(yy)
u?(1)...ut ()
in Dg
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where each Xz(j) corresponds to each Ez(j). The

following lemma is crucial in bqunding the expectation

in the extreme right-hand side

Lemma 4.3.4: If { 32(1), .o ,Ez(n) } is

(21, e ,zn)-independent, then the expectation is

1

ey, X, () 1T
51 1 [ 9=
j=1 aly,)

1 (1+p)k-n
n x G PPy 1x) TT#0 P
< T T r P ——=—
k=1 i=gy ;+1 ) xVeA” a(y;)

= m %y = ;
where 20 0 and I i=2(,) 1 if 2 > m.

According to the lemma, the bound above continues

as follows.

n 2
) i
k=1 j=#; ;+1

k

A
™

|

(1+p)k-n

1
L TP Ix") 1 T+e 0
xVeAY ' q(Xj)

L
n

where the first summation in the right-hand side is
over all n-vectors with positive and nondecreasing

integral components less than %, the number of which
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‘is at most (2+1)n. Averaging the both sides of the

above bounds with respect to all Yo» W€ obtain

| 1 0 1+p p
Py 1Xo) [1+p p |T+p
z q(y_) 5 _.__i___&__
vy &I % (y.)
Y4eB ueD; aty,
£ n lk \ (1+p)k-nN1+p p
<4 I ayp|:r M T I ) e o lte
yeB* 2 k=1j=2, |+
Z n L1 (1+p)[(A+p)k-n] ] 1
< ZMn(&) T q(zz) i I (*) pn 1+p
2 yeB* k=1j=gq _;+1
2L n zk
<M [ I
3 k=1 j=2,_;+1
1 (1+p)k-n
Le i) e 1P pn
1 2 a(y,) 2 p(x)| ————
y\)aBV 5\)€A\) q(y )

where the second inequality follows from Minkvsky’s

inequality and the third from Jensen’s inequality using

O<(1+—p)1;'f1—:'£il'
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By substitution of the above bound into (4.3.5) and using

Lemma 4.3.3 and the identity
» 1
==\ 1+

z Q(Xv) z p(_)_(_\)) [_—\)‘
yVen xVeBY aly ™)

= exp{ 'VEO(D,P,P) },

we have

( ngg y1/0

L
vn
< vy, & exp{ - [ E _(p,p,P) pR 1 1}

0 n=0 (I+p) o)

L
x 3 (g + 1)/

2=0

n

x max expi{ - %[ % kzl k( Ly - 211 ) - T¥% ]

2

oR ] + EL%ill log q }

x [ E; (p,p,P)

% for any %, we finally have

v

. n
Since I 4 _4 k(zk-zk_l)

the bound:
o y1/p
( & EWG )

Eo(p,PaP) - PR ] }

i~

expl -7yl
0 P

A

Yo
m
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1}'9 ) [EO(O,P,P)‘OR] }

x z (g 1) expr - Y
2=0 °

=

X exp{ Ei%ill log q 1}

From n-1 < p < n, all summations converge as L » « if

oR < Eo(p,p,P). Therefore we have a theorem.

Theorem 4.3.2: For any p > 0 satisfying Eo(p,p,P) > pR,

the average of the p-th moment EWS with respect to the
random convolutional code ( K = « ), éEW'g, is bounded by
a finite constant which is independent of the message

length L, where R = (1/v)log q.

Corollary 1: For any p > 0 satisfying Eo(p,p,P) > pR,

and any L, there exists a convolutional code of rate R =
(1/v)log q with block length L such that the p-th
moment EWS is bounded by a finite constant which is

independent of L.

Corollary 2: Under the same condition as Corollary 1,

there exists a convolutional code of rate R= (1/v)loggq

with block length L that has the probability distribution

A
| =|
V|

0)
Pri{ Wy 2w } <

3

for w > 0, where W(p) is independent of L.
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We note that all the above arguments equally apply

to Wi and that these statements also hold for each W,
A probability distribution F(w) = const.xw ',

w > 0, is called a Pareto distribution, and, from the

upper bound in Corollary 2, we may think that Wy has

the same tail probabilities as a Pareto distribution.

In fact, this is generally true: we see in the

next section that the tail probabilities of WO are also

bounded below by a Pareto distribution. Historically,

several simulation data ( cf. [22] ) have predicted

such a observation, which is now analytically proved

for convolutional codes. In Fig. 4.3.4, we see an

example of computer simulation by Jordan*[22] over

BSC’s with crossover probabilities «. The binary

convolutional code wused in this simulation has the

finite constrain length K = 60. Since Pareto distri-

bution F(w) decreases algebraically as w - «, an extreme

number of incorrect F-hypotheses are likely to happen

and tend to accumulate in the decoder. We can see an

illustrative example in the same literature, which

is reproduced in Fig. 4.3.5. The position in the tree

indicates the highest level that the decoder has ever

reached, and the waiting line indicates the number of

data that stored in the memory and waiting for

decoding. The computational critical rate Rcomp and

* By permission of K.L. Jordan, Jr.
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Computational speed o are defined in the next section.

Intuitively, R corresponds to the extent of noise

comp
such that Pr{ W, > w } ~ wl and the waiting data
accumulate indefinitely ( since 9 pr{ W, >w }dw >
as § » ), In the next section we study the effect

of such accumulation more thoroughly.
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Waiting Line ( x 10° bits )

4 -
s L R=0.89R o
o=6.7
0 1 1 h 1 1 1 4 (a)
0 20 40 60 80 100
16
12 b
s |
R=0.89R (0
0=6.7
4 L
O h j Y 'R ] [ [ h (b)
0 20 40 60 80 100
80
60 |
R=0.89R
40 1 6=6.7
20 }
0 § 1 1 §
0 20 40 60 80 00 (€)

Position in Tree ( x 103 bits )
Fig. 4.3.5 — Sample Waiting Lines
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4. Probability of deficient decoding

Implementable Decoder and Deficient decoding

In the previous section we observed that the P-th
moment of the number of F-hypotheses per a node remains
finite when block length increases, if Eo(p,p,P) > pR
for p > 0. In fhis section we see how the occasional
heavy computational loads affect decoder, using a
simple and practically meaningful decoder model.

We study a decoder consisting of three main units:

a buffer which has storage capacity of vT channel output
letters, a searching unit which retains a tree having
(T+S) 1levels, and a control unit which controls node
searching process according to a modified sequential
decoding algorithm with a fixed search length S.

The whole system is depicted in Fig. 4.4.1.

The sequential decoders that have concerned ué
search nodes sequentially, but emit decoded sequence
in a block. On the other hand, the modified sequenfial
decoding algorithm makes each decision on decoder
output letters sequentially as follows: 1) The decoder
searches the code tree, and, when a first F-hypothesis
is made on a node at the S-th level, the decoder decides
that the correct path is through the first antecedent
of that node, call it a decoded node ( see Fig. 4.4.2 ):
2) In general, the decoder searches all descendants

of the previously decoded node, say, at the i-th level,
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‘and, when an F-hypothesis is first made on a node at

the (i+S)th level, the decoder makes the next descendant,
directing toward the just reached node, of the previously
decoded node a new decoded node. We call S the search
length and call T the buffer length.

Using this modified sequential decoding algorithm,
the decoder proceeds repeating successive decoding
cycles, in each of which a reproduced part of the
original code tree is decoded until T more nodes are
decoded, and, after the completion, all of the buffer
content is shifted into the searching unit for another

T cycles of node searching on a sub-tree.

We suppose that each message has the format
T S
N 0

We say that a deficient decoding has occurerred for

the first time in the k-th decoding cycle and denote
the event by Gy» if the first error is found between
symbols decoded in this cycle. The cause of a
deficient decoding in the k-th decoding cycle is
two-fold: an inevitable error inherent in the decoding
algorithm, with a fixed search length S, and a

buffer overflow caused by severe computational

requirements for correct decoding. We call the
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Buffer Searching Unit Decoder

_ Storage for |5 - "_04 —> Oyt

vT Channel s =0
lLetters
Overflow | Sequential Searching
Notification | Control Unit

. s

Fig. 4.4.1 — Implementable Sequential Decoder

P First

- Penetration

\\\\\”j;
The First
Decoded Node

Second
Penetration
The Second

Decoded Node

Fig. 4.4.2 — The Modified Sequential Decoding
with the Fixed Search Length S
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former an errorneous decoding, denote it by Ek, and
call the latter a buffer overflow, denote it by By -
Thus, |

Pr{ G = Pr{ Bk } + Pr{ Ep } o,

x !

and the average probability of deficient decoding per

a decoding cycle is

o]

FG 4 %E zd P{ G 1,
k=1
where ny is the number of decoding cycles needed to
decode message sequences.
Let o be the maximum number of basic moves that
the decoder can carry out while v channel output symbols
come, and call it the computational speed. The following

lower bound is shown in Jelinek [16] using the result

of Jacobs and Berlekamp [23].

Theorem 4.1.1: For p > 0 satisfiying Esp(p,P) < pR,

exp{ -0( vlog o[S+T] ) }
P s+ 1)1

fiv

where ESp is the convex hull of ES in p, given by

p’

E__(p,P) 4 max E_(p,p,P)
sp b o
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and O0(*) is any function such that 0(§)/8 is bounded

for all large §.

Thus the probability of deficient decoding never
decreases faster than algebraic convergence for large
S, T, and o; This, perhaps, surprisingly slow convergence
is balanced with decoder’s moderate computation. For
aimost DMC’s, Esp(p,P) is convex in p, and hence is
equal to Esp(p,P). »A pathological exception is seen
in Gallager [2, p.147].

The interest of this section is on upper bounds
of ?G; namely, we show the existence of good convolutional
codes that allow us tight bounding of ?G' Again
the proof is through a random coding argument using
the random convolutional code. Writing the expectation
operator relative to the random convolutional code

as &, we have

é?G = &pr{ B } + &pri B, 1.

As for the pfobability of errorneous decoding, we have

a bound from fhe results in [16].

Lemma 4.4.1: For €, p > 0 satisfying Eo(p,p,P) - pR

= e/(1+p),

oA/ (1+p) _-€vpS
-6\) e e 3
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where the constraint length is K = o,
Therefore our major task is to show a sufficiently

tight upper bound on the probability of buffer overflow.

The Probabilities of Deficient Decoding and Buffer Overflow

A buffer overflow occurs if, and only if, the
number of basic moves in a decoding cycle exceeds 0(S+T)
As noted in the previous section, we know that, for
each F-hypothesis on a node, at most g-1 lateral moves

and a backward move can occur between the immediate

descendants of the node. Therefore, we have the bound
S+T-1
Pr{ By } < Pr{ (q*1) = Wy o(S+T) }. (4.4.1)
j=0

Jelinek [16] shows the following bounds on éPr{Bl}

for tree codes ( not necessarily convolutional codes ):

Theorem 4.4.2: For p > 0 satisfying Eo(p,p,) > pR,

(" Y,

if 0 1
P( s+ T )0'1 ’ £ 0 <ozl
Y2
T if1<px< 2,
(o-vg) (1/s+1)°
é'Pr{Bl} < Y,
577 if 2 < p ,
(o -v5) (T/s+1)
SMl(o) £ 5
<
(1/s + 1)°°F ' "
\
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where Y1 — Y4 are constants and Ml(*) is a decreasing
finite valued function of o, all of which are independent

of o( except Ml(*) ), S, and T.

The theorem gives an asymptotically tight bound
for 0 < p < 1. But it is obviously uninteresting
case for P increases as S and T increase from
Theorem 4.1.1. In this sense, the rate RComp =
Esp(l,P) is regarded as the limit for meanigful sequential
decoding, and is said to be the computational critical rate.
For p > 1, the boﬁnds are rather loose and disunited,
and, even worse, give no answer for convolutional codes.

To derive a more general bound, we use an additional
notation: for a node Ej+£ specifying a codeword §X e §§+2’
let

v v
A P(Xj+ki£j +k)

s B}
Fl’j(g ) [ log VR ]

=~
I ™M=
[

v

q (}_’_J +k)
1f W™ is a correct node, we write it simply as Fm 3
- ’

With this notation, we see

IRy = Jrey
(U ™) - Ty =Ty ;@ ) -0y

Pyen i

for any EJ+£ € D?.

Therefore, if we put as
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(o2

iy -
Wz,m’j z z . xI F/Q’j(l_l_) > Fm,j + (h-2)a 1,
h=1 geDj

then, from (4.4.1) and the next to the last expression

in (4.3.2), we have

Pr{ B; }
S S S+T-1
< Pr{ (q+1) = z pX Wl . > o( S+ T) }
2=0 m=0 j=0 25 J
S S S+T-1
<z t Pr{ (g+1) T W . > G (S +T) }
2=0 m=0 j=o  AmJ o hum
where Oy m are positive numbers satisfying
2
S S .
I I Som = O
2=0 m=0 ’
and are determined later. The right-hand side summation

in the above bound is divided into three:

S S 2-1 S m-1
Epr{ By } < T o+ I L + T I
~— \ 2=m=0 2=1 m=0 m=1 2=0
S+T-1
x EPr{ (q+1) jEO Woom,j o g n( S+ T) }
A
= Pg gt Pp 2t Pp3o
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where we put the respective summations as P , P
B,1 B,2?

and PB,S'

The first summation is further bounded as follows.

Pp 1
S m £
< I X Prq (q+1) ) W . > 0 (S+T)/m
~ m=0 k=0 mj+k<S+T-1 MMMtk m,m )
j20
Now we note that W, m,j and Wo o j+k are independent
b H b ’ .

random variables under the probability of the random
code and éhannel if k > max(%,m); an easy consequence
of the memoryless property. Therefore the right-

hand side of the bound on P is exactly the sum of

B,1
tail probabilities of accumulated iid random variables.

And the next bound on the tail probability of the sum of

iid random variables is vital , which is proved
later.
Theorem 4.4.3: For iid nonnegative random variables
Xl’ XZ’ ... with finite p-th moments ( 0 > 1 ) and
EX1 < o-1,
”

N 21 PEx§
Pr{ I X. >o0oN } < . 55T if 1 <0 < 2,

j=1 (o - EX; )N
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-

for all N; where E is

3 if EX, > 1 and

g = 12

To make arguments
1 <p< 2. Then, in

calculation reveals

S (q+1)

1+poyp
27" PEX]

(o - EX yPne-l

22P%3 (p42) 3P 3 (ExE) &

+

(o - BXg ) PNP

the expectation operator and

£ =1 1if EX1 < 1.

simple, we temporarily assume

if

view of the lemma, a little

p,1+p_p o
2- 7P SEWm,m’O

m=0 [ n,m - (q+1) EEW_

0 p-1
,m,0 1"CSsS +T)

2

A

Almost in the same way, the other terms are bounded as

Pp 2

S £-1

1+ P
(q+1)P277PP £Ew2’m,0

<z z
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2=1 m=0 [ o, _ (q+1)éEW2,m,O 1PCs +T)

’
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P l¥p p 0
S 2-1 +1)P27 " PP &EW
< 3 T (a*1) & 2,m,0

= =1 m= _ o p-1
2=1 m=0 [ %0 .m (q+1) gEWQ,m,O 1S +T)

Therefore, we have

&EPr{ B, }
s s (q+1)°2 " PePmP LEWO
< Z Z Q”m’ 1
= 0=0 m= . P p-
2=0 m=0 [ o .m (q+1)<?EW2,m’O 1"( S + T)

The convergence of summations in the right-hand side
is assured by the following lemma, which is obtained
by a slight modification of the bounds in the previous

section as shown later.

Lemma 4.4.2: For any p > 0,

A

P n_pn(n+l1l)/2
SEWg,m,O YO( Ll

x exp{ - T¥5 [ m+ (1+p-n)2/n ][ Eo(p,p,P) -pR ] .

where n-1 < p

A

n and Yo is given below (4.3.3).

115



According to this lemma, if we let

- P
og,m (gq+1) gEWR,m,O

e-yﬁl-dm ‘ S S -
= [ 0 - (g+1) = b EW ]
| g g o Y&-8m £=0 m=0 Lom, 0
2=0 m=0

and, if we let y and § be sufficiently small
positive constants, then the bound on Pr{Bl} converges

as S » », and we have

w*

2
Pr{ B, } < "
L T o -wr1P(s+ )P !
where we put
W§ = (q+1) T 2 é‘EWz n.0 and
2=0 m=0 e
(q+1) 2'7°
w3 = 5
(1-e¥)(1-¢e°)
x 1z 2fwPeTYETOMERNS
2=0 m=0 s

Note that Wi < « is implied by W% < o because p > 1.

For the case 2 o, the arguments also hold with a little

|A
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modification. We state the result in a theorem:

Theorem 4.4.4: For any p > 1 satisfying Eo(p,p,P) >

PR,
W*
EPr{ B, } o< < Z T » ifl<p <2,
T (o -wWE)P( s+ T )P N

% %
w3 (1+ Ws)
(o - Wt )P(s+ TP s+T1/

if 2 <p,
where Wi, W%, and Wg are finite constants independent
of 0, S, and T.

Now let S > (1/e)logl (g-Wf)(S+T) ] in Lemma 4.4.1.
Then the following is an immediate consequence of the

lemma and Theorem 4.4.4.

Theorem 4.4.5: Suppose that p>1 and EO(D,P,P) >

oR. Then, for sufficiently large S and T, there exists
a convolutional code such that

*
w3

(o -w)P(s+ 1))

PG <

where W§ and Wi are finite constants independent of
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0, S, and T.

Corollary: For p > 1, suppose that Esp(p,P) =

Esp(p,P). Then, for any € > 0, the best attainable

FG satisfies

84 ) _
5TE —T = inf Pq
o (s +T)F conv. codes
(K==)
%

= T
P E (s + T )P E

for sufficiently large o, S, and T, where the infimum
is over all convolutional codes ( K = « )
and 61 and &, are positive constants independent of

o, S, and T.

Corollary gives a complete answer to the asymptotic

behavior of the probability of deficient decoding,
when K = . For finite constraint length, a similar
result will be shown with more elaborate analysis.
Finally we note that all results derived here
aplly to time-varying convolutional codes. Since
codes used in practice are of time-invariant, another

problem thus seems to exist.
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5. Convolutional codes in practice

Before ending this chapter, we briefly mention

to space communication as a promising field for
convolutional codes and Viterbi or sequenctial decoding.
Space communication includes satellite-to-ground
communication ( relatively shortidistance ) and space-
probe-to-earth communication ( long distance ): The
former requires high speed transmission and the latter
requires extremely large ability to overcome severe
circumstances.

Consider satellite-to-ground transmission of data
( see Fig. 4.5.1 ), which may be messages from other
ground stations or data about the weather of a district.
Typically, the data are binary digits and to be
transmitted one bit each 1 seconds in the form a(t) =
ay (=1 ) for it < t < (i+l)t . A standard modulation
technique is phase-shift keying ( PSK ), where the

modulated carrier signal is
x(t) = aa(t) cos wct
The parameter o indicates the power of the transmitted

signal. In an ideal situation, the ground station

demodulates the received signal y(t) through a correlator
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Fig. 4.5.2 — Performance of Decoders
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as

(i+1)
z; = [ y(t) cos w.t dt
1T
= aa; *ny ,
where n, are the noise. Let (I/ZT)NO be the variance
of the noise n;. The ratio of the signal power uz

to No is called the signal-to-noise ratio ( SNR ) per
a bit and is expressed in 10 log aZ/NO ( dB ).

In space communication, the noise is surprisingly
well approximated by iid zero-mean Gaussian random
variables. In literatures such a channel is
called a white Gaussian channel. Generally the greater
the nominal bandwidth 1/2t is the more the capacity
of the channel increases, and, as 7 - 0, the limit
SNR necessary for efficient communication approaches to
-1.6 dB, called the Shannon limit.

In this scheme, though the original data are binary,
the correlator outputs are not binary. We can convert
these analog data into binary data ﬁi by hard decision,
ﬁi =1 (-1) for z; > ( <) 0, and decode 4,8,

Contrary to hard decision, we can decode the

correlator output 2925 directly. Then we say that
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the decoder uses soft decision. Only soft decision
decoding attains the Shannon limit in the limit.

In Fig. 4.5.2, typical performance curves are
shown ( see [64],[65] ). Convolutional codes
used with Viterbi decoders have maximally K = 7 or 8,
while convolutional codes used with sequential decoders
have generally larger constraint lengths. We can
see that Viterbi.decoders are generally superior to
other decoders for moderate error probabilities. On
the other hand, because of the larger constraint lengths,
sequential decoders exhibit sharp reduction of the
error probability by increasing coding gain ( SNR ).
Thus sequential decoders will find applications in
fields where extremely small error probabilities

are needed.
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Proof of Lemma 4.3.4

First note

| 1
. E[P(zuzzcj)) T+
D=1l atyy)
1
n 2 P XL (3 1+
VR [ (y;1%;(3)) P
j=1 i= aly;)

i "x DOy XG0 I+
= 1 - &; 1 ( 11 ]
k=1 i=g, ;+1 j=1 aly;)

m

* = ’
where 1 i=g (*) 1 for & > m. Suppose that 2, ; <
ix o Then, from Corollary to Lemma 4.3.2, there
are n” ( < n ) subsets consisting of k independent

random i-th branch sequences:
us) = { x’8,1), ... ,X"(8,k) } , 8=1, ... ,n

in the set { 52(1), e ,gﬁ(n) . Note that we may
}mvegy(a,B) =§y(u16‘) for distinct (a,B) and (a”,B87).
Let D 8 denote the number of U(B)’>s that contain

2

X(a,B). Obviously,
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Therefore

1
R E[P(zﬁlﬁcj)) T+
I
=1l a(yy)
1
n* k P(y?le(a,B)) e Da,B
= & 1 I 1=
| _ v
a=1 g=1 q(y;)
1 1
n” & k P(X\i)!ﬁv(oc,ﬁ)) [1+iju,B n’
= P I ? v
a=1 g=1 q(X—l)

where the last inequality follows from Holder’s inequality
for n” random variables. Since each U(B) consists
of independent random branch sequences, the bound
continues as:

n 1
P(y}|x}) (T+e)D, & | n-

o=1] B=1 xveAv q(zi)

For any, but fixed, o and B8, let n’/Du g = £E. Since

-

n>n

b
> D, g 2 1, we have 1+p > n > & > 1. Thus,
’
the summation over §V in the extreme right-hand side

is bounded by Jensen’s inequality as follows:

v V 2
v, [P 1x") \ (T+0)
o p(x )| ———
V_aV aly )

X €A
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where Q is the inverse conditional pmf given by Q(g?lx )
v v

= Py’ |x")p(x")/a(y”) for each x” ¢ A” and each y° € B .

Therefore we have

3

[[I=N=]

1
(P(z\i’lz\i’(j)))m
1 q(z\i))

In
=
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1 (1+p)k-n

s o \))(P(X\i)|§v))1+p b

- Vv
xveAv q(Xi)

This proves the lemma.
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Proof of Lemma 4.3.2

Without loss of generality suppose that the set
of first k sequences, 31(1), “en ,gl(k) , has rank
k. Let [U], [S], and [G] be an nxi matrix with (j,%)

entry ul(j), nxy matrix with (j,&) entry s% and

s 4°

vxi matrix with (j, %) entry ggli, respectively.
b

Then (4.1.1) is written as

[S] = [U][G]

Since the set of messages has rank k, there is a

nonsingular linear transformation [T] such that

ug (1)
[UIIT] = |u (2) u,(2) °
ul(k) v uk(k)
. : 0
ul(n) “e uk(n) nxn
This transformation yields
. . i-1 .
J = .y o (1) .y (1)
sy o = u.(jlgils + I u._(jlg
i, e j i-j+1,2 mei-j+l i-m m+l,%
for j =1, ... ,kand 2 =1, ... ,v, where ggli are
elements of the matrix [T]'l[G]. Since [G] is a

matrix with independent equi-probably distributed

random components, [T]-I[G] has the same statistical
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property. Therefore sg I} »J =1, ... ,k, 2 =1,
b
»V, are also distributed independently and equi-
probably. Therefore, from (4.1.2), the assertions

follow.

Proof of Lemma 4.3.3

First consider the subsequences, u(l) s e ,u(n)
ZLg,Lq N
of the sequences EL(I), . ,EL(n), where we let
u (i) = u (1) .. up (i)
Lg-1-Lx Lk-1*1 Ly 777
for i=1, ... ,nand k =1, ... ,n. Since the set

of these subsequences has rank 1,

(1) _ €5 .
HLQ’Ll = o ELO’Ll" i 2, ... ,n,

for some nonzero oy in GF(q). Since the number of
L1-Lp

distinct u(l) is q , the number of all subsequemces

LIy

n-1 Lp-L
{Bﬁl)L y e ,g£n)L } is bounded by q q 07=1 Next,
0°71 0°~1

consider subsequences, u(l) s e ,u(n) , of rank 2.
—Ll,L2 =L.,L

For these subsequences these exist oy and B; in GF(q)

such that ( assuming the first two subsequences are

linearly independent )
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(1) . (1) (1) .
u =a.u + B.u ; 1= 3, ... ,n.
L %L 5L, %L 5L,

(1) (2)
and u of rank 2
L1-Ly-1 Lo- L 2(Lo-L
is bounded by (q-1)q 17%2 q 2 1 q (L2 1), the

(n)

number of sets {gﬁl)L s eee HUp Ty } of rank 2 is
1272 1272

Zn Z(Lz-Ll)
bounded by q q . In general, for L > Ly 15

Since the number of pairs u

the number of sets {gL(l) L.» e ,u£n) L.} of rank k
k-1°"k T Tk-17k

kn k(Ly-L
nq (L k'l). Since this bound is

is bounded by q
also valid for Ly = Ly_;» the total number of sets
{EL(I), cen ,uL(n)} which is L-independent is bounded
by '

kn+k(Lk-L

q
1

ML) < Kk-1)

 k

A
o~

S Koy [kno* k(L p) ]

nz(n+1)/2 + X kzl k(Lk_Lk-l)
= q
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Proof of Theorem 4.4.3

Since the first bound, for 1 < p < 2, is already

proved in Jelinek [16] with the aid of the inequality

in [24], we assume p > 2. Let the random variables
u, & x. x[ X, < BN ] and
J J J
v. 8x. - u. ,
J J J

where B is a positive constant determined later.

Note that Vj > BN whenever Vj > 0, First, we have
N
Pr{ £ X, >oN}
j=1
N
<Pr{ x V;>NEV,}
j=1 J
N
+ Pr{ .§ ( Uj - EU; ) > (o - EXg N},
j=1
where E denotes the expectation operator. From

Markov’s inequality and the note above, the first term

in the right-hand side is

N
Pr{ & V., >oN} < NPr{ V., > BN}

EVP

gPNP
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Th i . = . - = -
erefore, if we let ZJ UJ EU1 and % o] EXl’

then the bound on the tail probability is

N
Pr{ ¢ X. >oN}
j=1
EV] N
< ————= +Pr{ £ I.2>0,N}
gPNP -1 je1 3700

The last term is the tail probability of the sum of
zero-mean random variables, which we approximate next.

For any positive integer n, the n-th power of the sum is

where the second summation is over all k-tuples ( n;,

,nk) consisting of increasing positive integers
whose sum is n, and the last summation is over all
ordered k-tuples (il, e ,ik) consisting of distinct
integers from 1 to N. From this time on, all summations
over n.’s and i.’s are to be understood in these respective

meanings, and are denoted simply by Zﬁ and Zg respectively.
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With this expression for the n-th power, we have a bound

on the last term, the tail probability of the sum of Zj’

N
pr{i = Z. > g N }

i}
J
=
o
i
n ™M=z
=
[a
.
g
o]
v
Q
oB
Z
=]
S

N
<Pri = Zz% > (1-s)oB N}
= . j = 0
j=1
n k nj
+ T zxpel s T z, > o? R
k=2 * Ty=1 0t
for 0 < s < 1, where
n n n n
o = g0 / % 1
1 0% j=2
Now let n-1 < p £ n. Then the first term of this
bound is
N n n .n
pri ¢ z0 > (1-s)o; N}
. = 0
j=1
N
<pr{ ¢ |z.|° > (1-s)p/nog NP}
— . J =
j=1
P p
2" EU1

A
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where the first inequality follows from 1. Z% < 1. |Z

J 13 =13
IZJ.Ip )n/p and n > p, and the last one follows

!n
j
< ( Zj

from ( E|U;-EU; [P )0 <« (B )P 4+ BU < 2( EUP yi/e,
Let 8 = o [ =0 - EX1 ] and let (1_5)-p/n = 2 [ then,

s > 1/4']. Then, we have shown

N
Pr{ £ X. > oN}
=1 ]
Evp 21+p EUp
1 1
2 oI T o1
OO N 00 N
n k 0y n ,n
+ 3 sEPr{ 3z} m Z; > o] N}
k=2 j=1 °J
210 Ex®
<
T (o - EX; yPnP-1
n 1 k nj nj
+ I I* v 2%, M E Z. Z.>
k=2 1 c%n Nem 1t j=1 5 01j

where, in the last inequality, we used Markov’s inequality,

and note that

o? > scg / (4

o3

i) >0/ 4(n+1 o

i=2

Therefore, in the remainder of the proof, we bound

the expectation
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! S
* %
0q N j=1 J J
For n; < ... <My, let ki be the number of j’s such
that nj = i, The final step is carried out for

three distinct cases respectively.

[ Case I: 2nk < p] Then, the expectation contains

no moments of order higher than p. Moreover, ij # ig
nj _nj

(0<j< k1 ) implies E Zi? ziQ = 0 and the number

J . ]
of non-zero moments is at most

k-kl-l k-1 _
z (N -1 )2 r (N-1i)x< N2k-ky
i=0 i=k~k1
Therefore
1 k : n
e B I*.. I E 7% 7%
2n n “1i i° .7 i: Ti%
o N j=1 J J

( Elzllp )zn/p

o0 N Zn- ZKFK]

A

22n( EUP )Zn/p

Z2n ,n ?
0q N

where the last inequality follows since n = Zi iki.
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[ Case II: an > p and an_l < p ] Then, the summation

splits into two terms:

! K nj _nj
% v : e
e R e S e M
! X .0
* =
Y omozm 5 KiexD i =ig ] TOB Zgu 2y

In the first term, there is no mement with order higher
than p, and hence it is bounded as Case 1I. On the
other hand, the second term contains only n2k-kp-1
non-zero summands, each of which has only a moment
with order higher than p, EZ%ﬁk. The effect of other
moments is at most ( Eilep )Z(n-nk)/p. Therefore,

the second term is

1 k nj ,nj
oF 2%, [ i, = i7 ] E 7.9 7.2
Ozn NZn i 71 k k 5=1 15 715
1 2k-k, -1 2n 2(n-ny)/p
1 k 0 k
S Znam N Elzgl © CEIZ417)
oy N
2n
2 2n 2(n-n,)/p
< EU, X ( BUP ) k
= 2n 2n-2k+ki+l 1 1 :
o N

Now note;that, for an > 0,
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2n 2n, - p 2n, -p
k k k
EU; © < ( BN ) Euf = (ggN) EUg .
Thus we have the bound
1 k n: 'n
% $*. T E 2.7 7.J
Gin Nén i i j=1 15 715
22n
P y2n/p
= 2n .n ( EUl )
oy N
2n
2 1+2(n-n; ) /e
( EU® ) k
an-p 2n Zn-an+p~2k+k1+l 1
9 01 N
2n n
2 o
0 3
< ——— ( EU? )
- o%n NP 1

where we used the inequality 2n-2nk—2k+k1+1 > 0 and

1 + 2(n-ny)/p
EU; 21 and ¢

Ia

2n/p, 0p 2 1, and we put & = 2n/p if

1 if EU, < 1.

1

[ Case III: an > p and an_l > p ] Then, it should

be that k = 2 and ny n, = n/2, and there are only
two combinations; i1 = ii and i2 = ié or i1 = i2 and

i2 = ii. Therefore
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1 k )
. N ns
e~ % $%. T E 7.9 7.7
Zn y2n "1 Vi j=1 i "1

= ———a 2N2
n

n,2
o CElzg ™)

A

2n+1 ,.2 2(n-p) P 2
—75—575 2 N® ( cON ) ( EU1 )
1

_22n+1 08 ok
———— ( EU7 )
o%n NP 1 ’

Ia

where ~. © p > 2. is used.

By combination of these three results, we have

n 1 k nj nj
* % *
et 2 e 2 S R E
1
n 22n+108 £
< T IE e EU? )
k=2 " of" NP 1
22n+3( n+ 1 )Sn o
<
0
where we note I §=2 Zﬁ < (n+1)n. Therefore we have

proved the theorem since 2n/p < 3.
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Proof of Lemma 4.4.2

We use the convention in Section 4.3. According

to the arguments there, we have

P
6EWK,m,0
o
P 1
hY €CE exp[ - T+p Fm ] £I z exp [ T+p P/Q ]
ueD
=770
P | 1 0
q(Y_) \1l+e P(Y,|X,) \T#¥0
P(Y, 1X) ueD} a(Yy)

x exp[ g5 (m - 2)R ]

Note that the extreme right-hand side is just the
p-th power of the summand in the right-hand side of

(4.3.4). Thus the lemma is immediate.
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CHAPTER V

SoUrRcE CoDING PRELIMINARIES
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Fig. 5.1.1 — Sources With Memory
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1. Notations and preliminaries

In this and the subsequent chapters, we discuss
source coding problems especially for sources with
memory. In contrast to channel coding problems
where DMC’s play dominant roles, memoryless sources,
sources whose outputs are iid random variables, are less
significant in source coding. Important sources
like speech signals or facsimile signals are never
considered to be memoryless. Because of
the memory in sources, we sometimes require complicated

mathematics. Thus we start with notations and some

preliminaries.

Let A and B be any finite alphabets. Denote n-
length sequences a; +.. 3y consisting of letters from
A by g?, and let A" be the set of all gp. If we

write simply as x, we mean a doubly infinite sequence

X_1XgXq » X, € A, and denote the set of all

x by A.  For each x € A and each m < n, let 53 and

n .
X be subsequences x_ ... X, and ... X, 1%p respectively.

m+n
And, for each g? e A" and each m, a cylinder set Cm+1(§2)

is a subset of A such that 53:? = g?. ( Of course
occasional deviations are made to avoid tedious expressions
if there is no ambiguity. ) These definitions and
notations equally apply to sequences with alphabet

B, and then symbols b or w are used instead of a or x.
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Let (4 and B be the Borel fields over A and B,
respectively, generated by all cylinder sets. Then
(A,A), (B,P), and (AxB, #xP) are all measurable
spaces. Thus, given probability measures p, n, and w,
respective spaces (A, f,u), (B,3 ,n), and (AxB,A4x@ ,u0)
are all probability spaces, where measurablity of all
sets in A4, &, and 4B by u, n, and w, respectively,
is always assumed. Given the probability spaces,

a statement in (A, 4 ) is said to hold for u-almost

every x ( with symbolic expression u-a.e. x ) if the
subset of A consisting of all x that make the statement
invalid has n-measure zero ( completeness, namely, that
all subsets contained in a measurable set having zero
measufe are also measurable and have zero measure ,

is assumed ). Respective notations n-a.e. w and

w-a.e. (x,w) are defined in the same manner.

An n-th coordinate function X is an A -measurable
»functiOn defined by Xn(5) =X for all x € A, andklet
§‘=7... X_1XpXq --- and K; =X, ... X for m < n.

( The coordinate functions are termed random variables

in the previous chapters.) The quadruplet (A, 4,4,X)
specifies a stochastic process, which is called a source
and is denoted by [X,u]. For the sequence of coordinate
functions W in (B, ) , we also have two processes

[W,n] and [(X,W),w], which are called a code generation

process and a joint source respectively. For later
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convenience, we sometimes use the notation [Y,n] for
the code generation process instead of [W,n]: the
latter is preferred if the code generation process
is used by itself, not as a part of the joint source.
For each measure u  and each n, a pmf is
given by u(g?) = u[c?(g?)] and a conditional pmf is
given by p(an|g?_1) = p(g?)/u(gﬁ-l), for 52 e A" such
that u(gﬁ_l) > 0, where éﬁ is interpreted as void
whenever n < m. A conditional pmf u(Xllgo) is suitably
defined for p-almost every x as well. These definitions
are also valid for n and w. The distinction between
pmf’s and measures will be clear from the situation
they appear.
A shift T in (é)yl) is an operation that shifts

coordinates as Xn(Té) = X for x € A and as TE =

n+l
{ Tx, x ¢ B} for E ¢ /. The same notation T is
also used for shifts in (B,# ) and (Axg,,/ x2).

We say that [X,u] is a stationary if u(TE) = p(E)
for all E € ,4 , and say that [X,u] is ergodiq if u(E) =1
or 0 for every invariant set E, TE = E. A simple

example of stationary ergodic sources is discrete

memoryless sources (DMS’s ), whose pmf’s are given by

the product probabilities u(g?) = 1 izl p(ai) for all

n
2

symbol p, which expresses the characterizing pmf is p.

e A" using pmf’s p on A. Eéch DMC is denoted by the
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A channel [X,v,W] is a class of probability measures

Vo such that vy is a probability measure in (B,Z)

for each x ¢ A and vX(F) is an /A -measurable function

of x for each F ¢ . Since v, is a probability measure

for each x ¢ A, we denote respective probabilities

n n-1 n-1
by vE(wm), Vgﬁwnlym ), and vE(wnIE ) for each (x,w)
e A B and each m < n. If the channel is a DMC P, then
vx(gg) =1 izm P(Wilxi) for all (ﬁ’ﬂ)f We say that

[g,v,ﬂ] is stationary if vX(F) = vTX(TF) for all x € A
and all F ¢ & . Moreoverj we say ;hat the channel
is ergodic if, for any ergodic source [X,u], the
joint source [(X,W),pv] is ergodic, where uv 1is the

measure given by
wv (ExF) = f v (F) du(x)
E =

for all E € .4 and all F ¢ & . If [X,u] and [X,v,W]
are stationary, then [(X,W),uv] is always stationary,
but may not be ergodic even if the source is ergodic.
A sufficient condition for the ergodicity is the output

strongly mixing property ( cf. Berger [25] ):

lim | v (T"ENF) - v (TME)V, (F) | = 0

n-ro —_

for all cylinder sets E, F ¢ F and all x € A.
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Apparently, DMC satifies this condition and hence is
ergodic as well as stationary.

For a probability measure w in (AxB, 4 x @) with
marginals y and n in (A,A4) and (B,® ) respectively,

let

n, A _ n n
aneAn
=1
n . n, A _ n.n n.n
H,(Xq.07) = z r w(ay,by) log w(a;,by)
N_,0 0 gD
g1et 2
n .n
w(i ,E )
T B & - g : w(a®,bh) log — 7L
w =1"=1 n .n.,n,n 11 p(aMHnph
a el b,eB -1 -1

and, for a code generation process [Y,7], let

w(a™,ph
4152
L7 X139 £- x I w(a],by) log —g—o- .
win n .n.n_.n u(a;)n(by)
gleA EleB -1 -1

Moreover, we write

w(xn wn)
. n,n, _ =1°-1
lw(ﬁl’ﬂl) = log and

u(x]n (W)

w(xn wn)
. n, n,y _ =141
ig=(x75w)) = log —=b—— |
ot u (XA (w))

m

for each (x,w) AxB. Hu(g?) and Hw(x?,w?) are known as
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the entropy of K? and the entropy of (X?,H?) respectively,
and Iw(g?;wg) is known as the mutual information quantity
between X? and E?. We tentatively call leﬁ(gg;ﬂg)
the mutual information quantity between Xg and HX
relative to [Y,N]. Aﬁd we call iw(gg;yg) and iw|ﬁ(§2§E2)
the information densities.

When we write as w(g?,hg) = U(EE)PH(EE!EE) for some
conditional pmf P® defined on AHXBn, then we say that
Kﬁ and Hﬁ are connected by [KE,PH,HF] and prefer I(un,Pn)
to Iw(zg;ﬂg). If the source is a DMS p and the channel
is a DMC P, then I(pn,Pn) =n I(p,P) for all n > 1
( cf. Section 2.2 ).

For these processes, let

A 5. 1 n
H (X) = 1im = H_(X3)
A L. 1 n .n
Hw(_&:w) = lim n Hw(zl’v—vl) ’
n->-
A L. 1 n, . n
I,(X;W) = lim o I (X7;5W;)
n->°
. A L. 1 n, ,n
Iw ﬁ(&w) = 1lﬁigf o leﬁ(zl :El)
provided that the respective limits exist. It is easy

to see that, if Hu(x) and Hw(g,ﬂ) exist, then Iw(§§ﬂ)

also exists.
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Lemma 5.1.1: If [(X,W),w] is stationary, then

Hu(g), Hw(z,ﬂ), and Iw(ﬁ;ﬂ) are well defined, and
if [Y,7] is a stationary finite-order Markov process,
then leﬁ(g;ﬂ) is also given as a limit (, which may

be infinite ). Moreover, if we let

oy A . m
Iw(ﬁ,ﬂl) lim Iw(X

LWl
2 Moo __Q”W_l) >
b4

then

) R | ]
I(GH) = lim = T (X;3Wy)

oo
where all limits exist.

Corollary: For stationary [(X,W),w], let

roasw 0 8 ouwl ) - T sl
Then, we have
lim I (X;W,|W 0 ) = I (X;3W)
now W T 1'—n w ==
Proof of lLemma 5.1.1. The first half follows

from Theorem 2.5.1. of Gallager [2], and the second
half follows from the proof of Theorem 6.1.1 of

Pinsker [26].
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Remark: It is easy to see that, for stationary

[X,u] and [X,v,W], we always have

1
vy (by |B]"

I (X;Wh) =E vy (M) log —
by

and, for an (n-1)th order stationary Markov [Y,{],

1

L(X;W) =z n(bp) log H ,(WIX),

I
uv |{ == = ~ n-1
hgeBn n(bn“ll )

if T 1%(X;0) < e, where H  (W[X) =H  (X,¥) - H (X)

pv |2
and E_ denotes the expectation operator relative to u.

The importance of these information-theoretic

quantities comes from Shannon-McMillan-Breiman Theorem

( see Billingsley [27] ):

Lemma 5.1.2: If [X,p] is stationary ergodic, then

| >

.1 n, _ _
1lim = log u(&l) = HU(E) u-a.e.

n->co

Corollary: If [(X,W),w] is stationary ergodic,

and [Y,%] is stationary finite-order Markov, then

S PG DT : -
rlliz = i, (X0 = I (GW) w-ae. (X,W) and
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1im 3 (XT5W) = I (GW)  w-a.e. (x,w),

i
ow © 01T

where M and n are marginals of w on (A,/4) and (B,%)

respectively, providede that I (X5W) < =,

w |7

Now we define distortion. Let d(a,b) be any,
but fixed throughout the remainder, nonnegative finite-
valued function on AxB with the maximum value do'

The distortion bewteen gp

1 € A" and E? e B" is then

given by

d(al,p]) ¢

[ e e

d(ai’bi) ’

i=1

and the average distortion induced by [(X,W),w] is

written as

_as 1 n . n
dw(zc_,ﬂ) - ligosoup n Ew d(zl’ﬂl) >
where E, denotes the expectation operator with respect
to w. Apparently, for stationary [(X,W),w], dw(ﬁ,ﬂ)

- Nypht, N, N
= Ewd(xl’wl)' When we write as w(g?,h?) = u(il)P (Ellgl)
for some conditional pmf P" on AHXBn, then we use

n ,n, _ n ,.n
d(pu ,P") = Ewd(zl’wl).

A block code cN of rate R with block length N
is a set { X(m)?, m=1, ... ,M } of M sequences

in BN with R = (1/N) log M, and the distortion in
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coding E? € AN by the code is

N A .
ax),c™ & mindGe,ymD)

m=1l,...,M

" For any S € AN, we write

d(S,cN) g max d(§§,cN)
§§€S
For every R > 0 and every D > 0, we say that (D,R)
is achievable for the source [X,u], if, for each

e > 0, there exists a code N of rate less than R + €

that yields the average distortion

N, A 1 N N
du(c ) = Eu N d(il,c ) £ D+ edo.
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2. Coding theorem for stationary ergodic sources

Source coding with a fidelity criterion concerns
how efficiently one can transmit outcomes from a source
through a channel capable of carrying them at rates
up to its channel capacity ( see Fig. 5.2.1 ).
Shannon’s source coding theorem suggests that sources
have their own effective rates relative to a given
fidelity criterion. And, when sources are mathematically
described, the relation between the effective rates R
and the fidelity D is known to have definite functional

forms, called the distortion-rate functions D(R) or rate-

distortion functions R(D).

The distortion-rate function DU(R) of a stationary

source [X,u] is given by the 1limit

A L.
DU(R) = lim Du,n(R) s

T —>oco

where the n-th order distortion-rate function Du n(R)
b
is the minimum of the following information-theoretic

optimization over test channels [X?,Pn,wg]:

DU n(R) 2 min % d(un,Pn).
’ (1/m) 1™, P™ < R

The function DU(R) is a convex, decreasing,
continuous function of R, and the limit in the definition

is actually the infimum in n. Moreover, for a DMS p,
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the distortion-rate function is DU(R) = Du,l(R)
[ 4 DP(R) ]; the distortion-rate function is obtained
by a single minimization over DMC’s P.

For an example, let A=B=1{0,1}, and suppose that
the source is a binéry symmetric source ( BSS), p(0) =
p(1) = 1/2, and the distortion measure is Hamming,
d(a,b) = 0 if a = b, d(a,b) = 1 if a # b. Then the
rate-distortion function of the source, Rp(D), is
simply Rp(D) = log 2 - H(D) for 0 < D < 1/2, where
H(D) = -D log D - (1-D)log(1l-D).

The above definition well reflects the history
of the development of source coding with a fidelity
Criterion. Historically, a source coding theorem
with a fidelity criterion is first proved by Shannon
[28], and it asserts that Du,l(R) is achievable for any
stationary ergodic source [X,u]. Given that Du,l(R) is
achievable, the extension of the achievability to
Du,n(R)’ for n > 1, seems immediate since the n-th
order super source u~, each of whose letters Xi=-xi(n-1)+1

.. Xin is n successive letters from the source,
has its first order distortion-rate function Du’,l(R)
= Du,n(R). however, this trick does not work
well; the super source does not necessarily ergodic
if the original source is ergodic. Gallager [2]
tides over this theoretical difficulty using so-called

Nedoma decomposition of stationary ergodic processes:
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Nedoma Decomposition: Let [X,u] be a stationary

ergodic source and let [X“,u”] be the n-th order
super source obtained from [X,u]. Then there are

at most n stationary ergodic sources [&’,ui], i=

1, ... ,n, with the super alphabet A" such that
1 D
u’(s) = o § ui(S), and
; i=1
ui(TS) = ufi+1](8) , for i =1, ... ,n

fl

for all S”“« A", where [i+1] i+l for 1 < i < n and

[n+1] = 1, and A" is the set of all super sequences X .

That is, every output x“e A" from the super source
comes, with equal probability, from one'of ergodic super
sources.

In view of this decomposition theorem, a nice
trick [2, p.498] allows a coding theorem for stationary

ergodic sources with a fidelity criterion:

Theorem 5.2.1: Let [X,u] be a stationary ergodic

source. Then, for any R > 0 , any D satisfying

D > DU(R)’ and any € > 0, there exists a block code

N

c® of rate at most R + e such that

a, (e

A

D + ed .
o)
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conversely, there is no such a code for D < DM(R)'

The theorem just asserts that RU(D) is the
effective rate of the source relative to the fidelity
D. However, the definition of RU(D) or DU(R) assumes
the block coding on super sources, which is troublesome
hypothesis when we consider tree coding as we discuss
in Section 7.2. In the next section, instead, we
study a more useful definition of the distortion-

rate function.
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CHAPTER VI

Process APPROACH To CoDING THEOREMS
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1. Process definition of DU(R) and a source coding theorem

In the preceeding chapter, we see that DU(R) gives
the boundary of achievable distortion-rate region.
However, the argument up to the coding theorem for
stationary ergodic sources is indirect; Nedoma decompo-
sition is used to extend the coding theorem for memory-
less sources up to the one for stationary ergodic sources.
Recently, Gray, Neuhoff, and Omura [29] propose
a more direct approach to the coding theorem through

a different definition of the distortion-rate function:
(P) .
D R) = inf 4 (X,W
N (R) i 11(__ W)

where the infimum is taken over all stationary ergodic

[(X,W),w] with the marginal [X,u] on (A, A) such that

1 (W) < R
Under this definition, proof of coding theorems
is greatly simplified, as they show for ergodicity
is already a part of the definition. Most importantly,

they prove the equivalence of both definitions:

Theorem 6.1.1 — Process Definition : For a stationary

ergodic source [X,u] and each R > 0,
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- pn(P)
D (R) = D ") (R)

In view of the theorem, their definition is called

the process definition.

Howe?er, the original proof of the process definition

assumes known coding theorems and is involved;

they require quite mathematical evidences such as

the sliding-block codes( see Section 7.1 ). In

this section we give a more elementary proor

to the process‘definition theorem and a more natural
proof to the source coding theorem. The arguments
contained in the latter enable us to. see several

features of good source codes; especially they‘lead

to a tree coding theorem in Chapter VII.

Proof of Theorem 6.1.1.

Our proof is based on the argument used to prove
the following weak stétement due to Gray,‘Neuhoff,

and Omura [29] and Marton [30]:

Theorem 6.1.2: For a stationary source [X,u] and

any R > 0,

D (R) = inf d (X,W)
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where the infimum is taken over all statidnarz [(X,W),w]

with the marginal on (A,A) such that

Iw(z;ﬂ)

R.

fin

Let [XQ,PH,EE] be a test channel, and let‘[z,v(n),ﬂ]

be a test channel defined by independent application

i+1)n

(
of P" to each X: in+l ,

i= ... ,-1,0,1, ... ( see

(n)

Fig. 6.1.1 ). Generally, v is not stationary.

On the other hand, if we let [X,v,W] be such that

n-1
- 1 0
vﬁ(F) = n EO v{(F) (6.1.1)
for each F ¢ # , where Vo (F) = v(n)(TF) for x” = T'x,
then [X,v,W] is statlonary ( although it may not be
ergodic ). Intuitively, the channel v consists of

n channels which operate block-wise, and a channel
selected from them with the probability 1/n determines
the real input-output relationship for each input x

( cf. Fig. 6.1.1 ). For v, it is shown in Appendix that

A

(X W1[W T(u®,P™) + N%n log n (6.1.2a)

=

N+2)

d ,(X,W = - dw™,ph . (6.1.2b)

=1
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n-1 "n n+l *n+2

Pn Channel v(n)

ml l 1

Yo Yy Yoo e Yna1 Y Yo Yne2
(a)
Random Shift
|<—e—>-|

co Xy Xp e xeJl Xo41 ==+ Xn  Xpal "'Xn+6“fn+e+]"'

ph ph Channel v

i 1l
Yoo Y1 Ye Yerl o0 Yn Ynal o Ynwe Ynwes oo

Fig. 6.1.1 — Test Channels Acting Block-Wise
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In view of Corollary to Lemma 5.1.1, Theorem 6.1.2 is
immediate from (6.1.2).
Now we consider a new stationary channel V such

that
9 (w |w ) = v_(w. [w% )
i+l Xt i+l —i-N+2

for all i and all E'e B. With  proper stationary
probabilities, the output of the channel becomes
an (N-1)th order Markov process for given X. We

can determine its stationary probabilitites so that

) i
(Wl N+2) = Vx (T ne2)

for all i. To show it, it is enough to prove that,
if the identity holds for some i, then it holds also

for i+l: indeed,

5 i+1 - ~ i ~ i
Vx(WioNe3) = 2 U (W11 195 e 2) V5 (W5 s 2)
Wi-N+2%B |
i i
=t Ve (Wi W5y 2) Vi (M5 ns )
Wi-N+2%B
- i+l
=V ( Wi N+3)

Because of the inequality
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. 0 . 0 - . 0
LigGW W) < 1o (W IWoy 50 = T (G [W L)

Corollary to Lemma 5.1.1 and (6.1.2) imply that

: 1 1

IoXm < = I(p™,P™ + w-m logn , and (6.1.3a)
_ 1 n .n

d (X0 = £ a@™, P . (6.1.3b)

Next, let P" be a channel which achieves

D R - (N-n)_llog n ], and let

U’n[

PP(byla)) = (1-6)P"(byla)) + 687"

for arbitrary 6§ > 0, where B is the size of B. Then,
by the inequality (x+y)log[(x+y)/(u+v)] < x log (x/u) +
y log (y/v), for x,y,u,v > 0, we have

“n

My < (1-8) 10°,P

1(u",p

A

) , -and

d",P™ < (1-6) d(",P") + nsd .

A

These inequalities and (6.1.3) imply

log n , and (6.1.4a)

. 1
To(GW) < (1-60)R + gim
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1
dg(XW) < (1-8) D, (R -7 logn) +8&d, . (6.1.4D)

uv
From the choice of P" and V, we know that

~ i-1 ;n
VE(Wilﬂ ) > 88 , | (6.1.5)

for all i and all (x,w) e AxB.

Lemma 6.1.1: Suppose that [X,J,W] statifies, for some

i-1
w

_ - i-1
1T T = D (v Wy neg) 20

for all i and all (x,w) e AxB. Then [X,V,W] is output
strongly mixing, and hence it is ergodic.

In view of Lemma 6.1.1, (6.1.4), and (6.1.5),

we obtain a theorem:

Theorem 6.1.3: For any stationary ergodic source

[X,u] and any R > 0, let
(P) - 3
Du,n(R) = inf duv(z,ﬂ)

where the infimum is taken over all stationary ergodic

test channels [X,v,W] such that
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| A
-v)

Iuv(g;ﬂ) < and

i-1
Vi (W5 195 2n41)

i-1

for all i and all (x,w) € AxB. Then, we have

(P) 1
Du,n(R) < Du,n( R I log n )

Now Theorem 6.1.1 follows from Theorem 6.1.3,

the continuity of DU(R)’ and the inequality

(P)
D, 7 (R)

In

D&?%(R) <D ( R - % log n)

<D (R

= "u,n e)éD(R-E)“"E,
2

for any ¢ > 0 and a sufficiently large n.

" Proof of The Source Coding Theorem ( Theorem 5.2.1 )

According to the process definition, we give a new
and simple proof to the source coding theorem for
stationary ergodic sources.
For the stationary ergodic source [X,u], we arbitrarily
fix € > 0, and let [(X,W),w] be a stationary ergodic

joint source with marginals [X,u] and [Y,n] on (A,4)
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and (B,®) respectively such that

ed
d (X,H) <D (R) + —2 and
w - 12
€
I (X;0) <R+ —
w = 12
Then, for u(§§) > 0, we have
ed
rx[gdEl,w)) <D (R) + —2 1 n(w))
wN BN
ik
N _N
ed w(x7,wq)
=z x[gdw) <D ®R) + 2] L1
<N _oN ~ H 3, u(xy)
x expl - i (x],w)) ]
NN, LMD (R e o3 )
> T ¢(xy,Wy) ——=— e ,
EleB =1
where
oxN,wly &y £ ac, W) <D o(r) + Yo and
21°81 XU g @&1-M) = 4y .
TN CARTEONEIS I e NEIE-SN P

From Corollary
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there exists an integer No such that

Don e, wxlw) 21 - €
N ,N_ NN Bl Bl -
XqeA” wieB
for all N > N_. Therefore, there exists sNe AN such
that p(SN); 1 - ¢/3 and the inequality
N _N
NN, C&Xp¥) g
X ¢(2(_1’Y’7_1) - N. =7
N N (x) 2
w.eB HiXy
—1
holds for all 5? € SN. Thus, the inequality
d
N N € N
: xl §dx],w) <D (R) + —217 n(w))
N 1°-1 u 1
N LN 3
w,eB
> Loexpl - NCR+£)]
z 7 °XP 3
holds for all 5? € SN and u(SN) > 1 - €/3.
Let (fN = { X?(m) , m=1, ... ,M } be a random

block code having block length N and consisting of

random codewords independent of each other with the pmf

{ n(y?) } . Then we have
N
Bp 4, (&Y
ed ed
o 1 N N, . o
= DU(R) + + doEch x{ N d(zl, &) > DU(R) + e ]
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= 0
D,(R) + —
sd oz a1 - oz xEaadLw <p )
o =1 N "*=1°=17 = "u
xNeAN W eBN
=1 -1
ed
+ —2] n(ﬁl) M
3
ed ed n,
SD(R) + —2+ —2 4 d exp[ - MR TR IE/Z)
H 3 3 °
for N 2 N, where we used 1 - x 2 e X for1>x20,
and K = (1/N)log M.
Finally, let N abd M sufficiently large so that

i1 <R+ € and End (d'N) < Du'(R) + ed . Then we have
a code cN of rate less than R + £ with distortion
less than Du(R) + edo, which proves the theorem for

e is arbitrary.
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2. Universal properties of good codes

In Section 3.2 we have seen a universal performance
of good channel codes. Analogous properties are
also seen in this section. They seem especially
useful in sourée coding since signals fhrough communi-
cation link such as the telephony link are seldom
stationary or ergodic, rather are Varying, for example,
from one speaker to another and from one consonant to
another in continuous speech.

The first step towards encoding sources without
specific knowledge about them is made by Sakrison [31]
and Ziv [32]. Ziv [32] shows that, for any rate R,
there is a sequence of block codes cy such that each
stationary ergodic source is encoded by C5s a block code
of rate arbitrarily close to R, so that the coding
distortion is arbitrarily close fo its distortion-
rate function. Because of this universal optimality,
the sequence is termed as a universal sequence.

Later, Davisson [33] classifies these universal sequences
into three grdups for noiseless source coding, and
Neuhoff, Gray, and Davisson [34] extend the classification
to sequences in source coding with a fidelity
criterion. They are ( fixed rate ) weighted,
weakly-minimax, and strongly-minimax universal sequences

respectively.
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Let A be a class of sources, and let { <y } be
any sequence of block codes, each of which has a rate
Ri’ such that Ri + R, any positive number, as i » =,

Then, the sequence is a weighted universal sequence

if

i
Jod (c;) dx(w) - s D (R) dx(w) ,
Ao oW1 Ao
for a given measure ) defined on A. The sequence

is a weakly-minmax universal sequence if

i

4 (c;) » DR,

for each y ¢ A. And, the sequence is a strongly-mini-

max universal sequence if

isw

du(ci) > DU(R) ; uniformly over A.

Apparently, they are ordered in increasing significance.
In general, strong universality requires the strongest
conditions on the class. These universal sequences

are sometimes explicitly refered to as fixed rate universal
sequences for rates of codes converge to a fixed

number the rate of the sequences.

These universal sequences are typically built up
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from smaller codes, and there are known two construction
methods, one due to Ziv [32] ( see also [34] ) and
the other due to Neuhoff, Gray, and Davisson [34].

Both methods use the notion of code concatenation:

the K-th concatenation of a code N is a code &N

.. . N
consisting of successions of K codewords from ¢

N K

If ¢ has M codewords, then CKN has M™ codewords

and the rate (1/KN)log MK = (1/N)log M, the rate

N

of c. Now, given J codes c? of rate R = (1/N)log M,

let c* be the code consisting of all codewords from
all concatenated codes €§N. Then c* has JMK codewords

and has the rate (1/KN)log JMK which becomes

approximately R for sufficiently large K. Therefore,
if each subcode c? achieves the distortion-rate

bound of a source uj approximately, then c* achieves
the distortion-rate bounds of all sources “j
approximately. That is, c* is universally good
over uj, j =1, ... ,J.

Ziv argues that, since reproduction alphabet B
has only B8 letters, J = MBN codes are sufficient to
construct c* for there are only J codes. Neuhoff
et al. argue that, since source alphabet A has only
a letters, we can approximate all sources with

sufficiently many, say J, particular sources and hence

that J codes are sufficient.

173



However, these construction methods are indirect
and usually require a lot of subcodes: Ziv’s method
needs virtually all the possible block codes. In this

section, we pursuit different universality.

Quasi-Universal Sequences

For each stationary ergodic source [X,u], each
stationary code generation process [Y,n], and each

R > 0, let
D R) = inf d (X,W
Lo (R) = inf d (W)
where the infimum is taken over all stationary ergodic
joint sources[(X,W),w] with the marginals[X,u] on

(A, A) such that

In(W) <R .

We call Du n(R) the distortion-rate function of [X,u]
N >

relative to [Y,n].

Apparently, the infimum of Du n(R) in code
b
generation processes is the distortion-rate function
DU(R) of the source. However, the continuity or

the convexity of Du n(R) with respect to R is not

’

generally obvious since the behavior of the relative

mutual information quantity Iw‘n(z;w) is involved
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for inappropriate [Y,n]. We are not concerned
with such geometrical properties of Du,n(R) here,
but show its meanings.
Definition: For R > 0, we say that { cN } is a
quasi-universal sequence of rate R ( relative to
a code generation process [Y,n] ) if, for each ¢ > 0
and each stationary ergodic source [X,u], there exists
an integer N0 such that each cN in the sequence has a

Tate less than R + e and satisfies dp(cN) < Du (R-0) + €,

5T

D (R-¢).

for all N > N, where Du e¥0 Tu,n

R-0) = 1i
T]( ) im

b4

The core of the proof of a quasi-universal source

coding theorem is the following lemma:

Lemma 6.2.1: For any [Y,n], let Sn N(R,D,G) be
b

T € AN

the set of those x that satisfy

N -NR
I x[ & d,w)) <D+ ad 1 (W) > e,

A

E?eBN

where §, R, and D are any positive numbers and N is
any positive integer. Then, for any ¢ > 0, there
exists a block code CN of rate less than R + e having
sufficiently large block length N such that

N

a( 8, y(R,D,8) ,c' ) <D+ 4sd
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for any § > e.

The intuitive meaning of the lemma is simple:

all points 5?

centered at these ponints have n-probability
NR

such that spheres of radius D + d&dj

at 1least e ' are encoded by the code with

distortions atmost D + 46d0.

Proof of Lemma 6.2.1. Let &N { }’_If(m), m 1,

.. ,M } be a random block code generated using n
as in the proof of Theorem 5.2.1 in the prevous section.
Let h and k be integers such that 2 > ¢h > 1
and 2 > ek > 1, and let D, = ido/k and €5 = je for
i=20,1, ... ,kand j =1, ... ,h respectively.

Then, from the union bound, we have

N
Ex xI & 40 S, y(®,D,8) ,¢" ) > D+ 3sdy

some § > € and some dO >D >0 ]
h k
1 N N
< -Z .Z NZ‘. Eé x[N-d(_)gl,é) >Di+ejd0]
j=1 i=0 Elssi,j
h k
< T 3z T exp [ Me NR
. . _ N
j=1 i=0 §1esi,j
< ( 4N/ Yexpl (- R 1,
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where o is the size of A, R = (1/N)log M,
i, = Sn,N(R’Di’ej)’ and we used D + 36d0 >

Di + ejdo whenever Di >D > Di—l and Ej > e > €j-1'

Thus, for sufficiently large N and M, there exists a

block che CN of rate less than R + ¢ such that

1

N
N d( Sn,N(R,D,a), c

) <D+ 35do + edo,

which proves the lemma.

In this lemma we show the existence of a code
based only on knowledge about the source output

sequences; every §T in Sn N(R,D,é) is encoded with
?

distortion approximately D. We can see that
each stationary ergodic source [X,p] emits 5?
contained in Sn,N(R,D,G) with large probability
if D, (R) <D and N is sufficiently large.

We show the following theorem.

Theorem 6.2.1 ( Quasi-universal source coding

theorem ): Let [Y,n] be any stationary finite-order
Markov process, and let R > 0. Then, there exists

a quasi-universal sequence of rate R relative to

[Y,n].

Proof. Let { €y } be a decreasing sequence of
positive numbers such that lim ise 3 = 0, and let

¢y be codes with block length Ni obtained from Lemma
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6.2.1 for € = ej. For the proof , it is enough to
show that, for any § > 0 and any [X,u], there exists
an integer N, such that u( Sn’N[R,Du,n(R),S] ) > 1 -8
for N > No’ since du(ci) < Du,n(R) + Ssd0
holds fore; < & and Nj > Nj then.

For an arbitrary § > 0, let 6" and [(X,W),w] be,

respectively, a positive number and a stationary

ergodic joint source such that

len(X;W)

R - 26~ and

A

4, (X,W) <D (R=-0) +8d/2

First we have, for u(z?) > 0,

N, _NR
2 x[ & d@),w)) <D+ sd ] () e
wN BN A
w.E
N N
N N, ©(XpWp) ey
E?eBN “(51)

o) = X[ § 4xw) < d (KW + sd /2 and

1. N N )
N lwln(il,‘/_sll) __<= len + 8 ]

178



In view of Corollary to Lemma 5.1.2 and the ergodic
theorem, there exists SN € AN such that U(SN) >1 -3

and

N _N
N N w(§ W )
Do) ——p 2
ETEBN n(xy)

for all 5? £ SN and all sufficiently large N ( so large

that e(S N > 2 as well ). Therefore

w(xN wN)
N N =1°-1 eG’N

oxl oz w,m) - 217 p(x))
U({l)

(A%

N N N _N 1=

flv
o
1
O
.

which completes the proof.

In Theorem 6.2.1, the code generation process
[Y,n] is assumed finite-order Markov. We generalize

the result in the next theoremn.

Theorem 6.2.2: For each stationary [Y,n] and any

R > 0, there exists a sequence of stationary finite-

order Markov processes [Y,n(n)] such that
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liminf Du,n(n)(R) < Du,n( R-10)

N0
for each stationary ergodic [X,ul. Moreover, all
[Y,n(n)] can be made ergodic.

Corollary: For each stationary ergodic source
[X,p] and each R > 0, there exists a sequence of
stationary ( ergodic ) finite-order Markov [Y,n(n)]

such that

liminf D
N>

u,n(n) (R) = Du (R)

Proof of Theorem 6.2.2. For each [X,u], let § > 0

be arbitrary, and let [(X,W),w] be a stationary ergodic

joint source with the marginal [X,u] on (A,4 ) such that
dw(ﬁ,ﬂ) < Du’n( R-6)+ & and
len(ﬁ;ﬂ) <R .
Let each n(n) be an n-th order Markov process with

stationary probabilities n(hq+l), h?+1 e B™! for each

n. Then, from the remark below Lemm 5.1.1, we have

len(ﬁ;ﬂ)
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n-1 n
w(b b7, a7)

> liminf % I w(a],b]) log —
N+ E?EAn EQEBH n(b, by )
= liminf I (X;W)

e win(n)

Thus, for the set9k of integers on which the above

limit-supremum is a limit, we have

liminf Du,n(n)(R)

N>

< liminf D o[n(n

ot Punm (1

W) - 6)

<D, ((R-8)+s.

This proves the first half since § is arbitrary.
To prove the latter half , let each n(n) be an n-th
order stationary ergodic Markov process with

s s ~ ny _ ) n
transition probabilities n(bn+1|§1) = (1 e)n(bn+llgl) +

1

eB ~ where ¢ is any positive number and B is the size

of B. It is easy to see that [ see below (6.1.3) ]

(X5W) > (1-¢e)1 (X;W)

Lolnm) w|n(n)

Therefore the above arguments also hold for 1 with

a slight modification.
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Discussion

Finally, we give several remarks on the universal
and quasi-universal sequences. The statements in
the quasi-universal coding theorems are weaker versions
of weakly-minimax universal coding theorems in [34].
However, if a practical problem, code construction,
is involved, the situation seems to change; we have
to consider the performance in moderate circumstances,
moderate block length and moderate encoder complexity.
Elementary code generation units, such as a convolu-
tional encoder, linear block encoder ( using linear
codes ), or more likely speech encoder which is
treated later, generate codewords having particular
characteristics: statistical independence between
letters in linear codes and autoregressive character-
istics in speech encoders. Thus ordinary universal
encoders are best constructed by assembling suitably
selected code generation units.

On the other hand, practical encoders can not
possess so much sub-units because of cost performance
balance. Thus, theorems in this section will be
useful — a code generation process corresponds to

a code generation unit.
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3. Coding of stationary nonergodic sources

In this section ' the quasi-universal
source coding theorems are used to prove directly the
source coding theorem for stationary nonergodic
sources [35]. First we see what are stationary
nonergodic sources.

For each x ¢ A, we denote, by My @ proability
measure induced by x as the limit oE relative frequencies
fN(gg) of gg e A" in subsequences 5§N as N, n->ow,
0f course, they may not be well defined for some Xx.
However, u, is well defined for u-almost every

x, if the source is stationary, and u, = u if the source
X , Y X

is ergodic as well. Nonergodic sources give measures

uy which vary also randomly ;

Theorem 6.3.1 ( Ergodic Decomposition Theorem [36] ):

There exists an invariant set G ¢ 4 , and, for each

x ¢ G, there associates a stationary ergodic measure

My such that, for any bounded A -measureable function
h_on A, the integral fA h(x) dux(§) is an A -measurable

function of x on G, and

S h(x) du(x) =/ [/ h(x) du,(x) ] du(x)
A G A EAd

for any stationary [X,u]. Moreover, if [X,u] is

stationary and ergodic, then By = M for p-almost every X.
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For each x ¢ G, we denote the distortion-rate
function and the distortion-rate function relative to the
process [Y,n], respectively, of [K)ux]by DX(R) and

Dx n(_R). Moreover, we denote the expected distortion,
A

by dx(c), when a code c is used to encode a stationary

ergodic source [K,ux]. We show the following theorem.

Theorem 6.3.2: For any stationary source [X,u]

and any R > 0,
D = j
fG 2(_(R) du(x) = inf fG D,_c,n(R) dp (x)

where the infimum is over all stationary ergodic finite-
order Markov [Y,n], and the right-hand side is

achievable by block codes.

Proof The first statement is a consequence

of DE(R)

A

Dx n(R) and the next lemma.

ol ]

Lemma 6.3.1: For any stationary [X,u], R > 0,

and ¢ > 0, there exists astationary ergodic finite-order

-

Markov [Y,n] such that

fG D§,n(R) du(x) < fG D§( R - ¢ ) du(x) + €.

To prove the last statement, let € > 0 be arbitrary,

and 1etv[X,n] be a stationary ergodic finite-order Markov

184



process given in Lemma 6.3.1. Then, the quasi-
universal source coding theorem ( Theorem 6.2.1 )
implies that there exists a quasi-universal sequence

of block codes of rate R,{ cy }, such that

11?i:p dﬁ(ci) < DE,H(R) < DE( R-¢) + ¢
for py-almost every x e A. Therefore, from the
bounded convergence theorem and the ergodic decomposition

theorem ( Theorem 6.3.1 ), we have

limsup du(ci) limsup f di(ci) du(x)

10 1>

A

fG ll?igp dzcci) du(i)

A

S D .(R - ¢€) du(x) + e,
¢ % -
which proves the theorem since the right-hand side

is continuous in R and ¢ is arbitrary.

Conclusion

Gray and Davisson have shown in their noted paper
[35] that [ G DX(R) du(x) is achievable by block codes
and that, ifthé;oiselesschannel( in Fig. 5.2.1 ) can

NR

transmit exactly one out of e different codewords
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in each block transmission, then any block codes never
serve with strictly less coding distortion than this
integral. In this sense, fG DX(R) du(x) is said

to be the fixed-rate distortion?rate function of

the source. If the source is ergodic, then the
integral agrees with the ordinary distortion-rate
function.

Originally, the source coding theorem for
stationary nonergodic sources is considered as the
consequences of universal coding theorems. We have
shown, in this section, that the quasi-universal
coding theorems also afford a coding theorem for

stationary nonergodic sources.
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Proof of The Inequalities (6.1.2)

First note the following bound

_—
o &g lW yyq)

A

. -1
1,0 (%,0) 5Wg[Wiy,p)

-1 -1
By (olW nep) = By WolWoyep Xo00

where © is a random variable assuming values 6 = 0,
,n-1 with equal probability, the first inequality
follows from a generalization of the equation (2.3.17)

in Gallager [2, p.26], and ( from the choice of v )

-1

By (oW ne1-%50)

T OH LW W X))
PSRN IS R NS RRS

-1 6
H oWolWg ne1sXg-ne1)-

=1
n 0 wpv -

fll M1

Then it is easy to see that the right-hand side of

the above bound is decreasing in N for N > n.

v

To bound further this bound, we note the followings:
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Sl

- -1
r [ H (W|W_ ) - H (WW ) ]
=0 uve 0'—p-n+1 uv O| —0- n+1’ 6 -n+1

r I (x sWo W, )
=0 uv =g-n+l1’"0'-9- n+1

o (x°

I
Bl

E I n+1;w-e|—-n+1)

0 puv

0 .0
I 0Qlpe1i¥opneg)
uv

!
=l

_ 1 n ,n
- H I(U ,P )9

oW W8, 1) - H (W[5, ,0)

(@ WOIW N+1),

and, for N > n,

S

- -1
5 H oW lWo puq) - H (WlW, N+1’ 9)
=0 v v

Bl

- -1 -1
LoD H Wy Weloyq) - H OG0 ) ]
uv uv

Y
o

Therefore we have a bound on I (X WOIW N+1)
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. - 1 n ,n . 1
Lo EWolWon,g) <5 TGP + T (65Wo (W)

Since
> 1 © N-1
NEIIU\)(@;W()'V_V_N.,.I) = Nil Iu\)(e;lew-l ) < logn,

and since IUV(Z;WO,H:§+I) is decreasing for N > n,
we have shown the inequality (6.1.2a) [ if we shift

the coordinates J. (6.1.2b) is obvious.
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Proof of Lemma 6.1.1
N-1

For S = B , let P be a transition pmf such
n,t,s
- n-1 =
that Pn,t,s" 5(wn wo-N+1) for t=(W, _N+2 " °° W) S
and s = (wn_N+l e wn-l) S and Pn,t,s = 0 otherwise
For S:=BN_1, let Pn be a transition pmf such that
t==(wn_N+2 . wn)e S and s==(wn_N+l .o wn_l)e S and
Pn,t,s= 0 otherwise, and let
q = P q._ ’
n,t seS n,t,s 'n-1,s
for n = 1,2, ... and arbitrary pmf’s Py and q, on S.
Let Vn’t = Pp,t " qn,t for each t ¢ S. Then
b seS Vn,s = 0 forn = 0,1, , and

= P
n,t sgs n,t,s Vv

<
)

n-1,s

Our purpose is to show that v, eventually converges

t
3
to 0 for all t € S as n » o, To show this, let

Sn be the set of all s ¢ S that satisfy Vs 2 0,
,s =

S

and let

<

I
™
<

n n,s
SeSn
+
Pn,s = 3 Pn,t,s , and
teS
n
P,s= 1t P
n tisn n,t,s
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Then we have

+ +
V.= I p + I P v
n,s n-1,s n,s n-1,s
S€5y-1 s¥Sh.q
+ + . + +

< ( max Pn,s ) Vo1 T ( min Pn,s ) v,

seS S¢S
n-1 n-1

We can see that the condition in the lemma implies

max P; ¢ - min P; s < 1 - 08,
H4 b
seS, 4 S¢Sn_1
where B is the size of B. Therefore we have v; <

+
(1-p8)v, _q, and

lim I | p - q |

no®  SeS n,s n,s
o= lim 2v+ =0 ,

n-—>o n

which proves the lemma, since we have Vv =D
n,t n,t

- qn & for all t € S whatever the initial conditions
b

Py and q, are.
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Proof of Lemma 6.3.1

Let S ¢ & and Ny respectively, be an invariant
subset of B and stat;onary ergodic measures corresponding
to w ¢ S that are assured by the ergodic decompostion
theorem on (B,%) . Let § > 0 be arbitrary.

For each x ¢ G, the invariant subset of A, let
[(X,W),w(x)] be a stationary ergodic joint source
with the marginal [X,px] on (A,A such that

(X;W) R - & and

I

Iw(i)

i

)(g,@) Dz( R - 28 ) + 8.

dw(§
Let [Y,n(x)] be a marginal of [(X,W),w(x)] on (B,&),

and let 7 be the measure on (B,®) given by

nF) = IG n(F || x) du(x)

for every F ¢@® where “(Fl|§) is the n(x)-measure

of F. First, we show that Iw(i)\ﬁ(x;w) = Iw(g)(ﬁ;w) =
Iw(i)ln(é)(z;w). To see it, we note the following
lemma due to Parthasarathy [37, Theorem 2.6].

Lemma 6.3.2: We have, for fi-almost every W,

- 0
n(Yllzo) = ”@(Y1|X ) for ns-a.e. w.
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In view of the stationarity of 7, we have

/[ liminf - & 3 @[]0 log A(w]) 1 du(x)

G N->oo E§EBN

~ N « N
r filw;) log #(wy)

A
=
[
=

1
I

sl 1og ROY, YD) 1 AR

~ 0 ~
s I, L - Tog WO IYD) ] dng(0) dR(®)

sr Lo ng (Y 1Y% 1 dng(w) dn(@ || du(x) ,

where we use Lemma 6.3.2 in the last equality.
Furthermore, if we let n(Y1|Xollg) be the conditional
pmf induced by n(x), the last term is calculated,

using the ergodic‘decomposition,as follows:

£ T log n( Y0 T dn(u|]x) du(x)

p o]0 log n(w) ||x) &),

where the last equality follows from the stationarity
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of n(x). Therefore

o1 N ﬂ(ﬂﬁllé)
S liminf I n(Ellli) log —x— du(x) =0,
G N->oo E1€B n(ﬂl)

and this implies that

R 1 N
liminf I niw x) log ————— = 0;u-a.e. Xx.
minf &z on0q|x N x

EleB
Thus, for p-almost every X, Iw(g)lﬁ(z;ﬂ) is equal to

Iw(w)(g;wj. It is immediate that
DE:ﬁ( R-8) < DE( R -28) + 6§; n-a.e. X.

Now let [Y,n(n)] be stationary finite-order Markov
process such that

l1iminf D
X

%, (n) (R-8) ; u-a.e. X,

~
n
LR

(R) < D5

n-—c

whose existence is shown by Theorem 6.2.2.

Then we obtain

ligigf IG Dﬁ,ﬂ(n)(R) dU(E)
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< J 1liminf D
G n->-ce

x,n (n) (R) du (x)

<JfJ D_(R - 28 ) du(x) + 8.

Therefore, for sufficiently large n, it holds that

fG Dy nm) (R du(x) < fG D (R - 28) du(x) + 286,

and the lemma is proved if we let € = 29.
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CHAPTER VII

TREE ENCODING OF SOURCES
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I. Introduction

Although source coding theorems assure efficient
coding of sources, information-theoretic ideas have
not used fully in real data compression systems yet.
This is partly because real sources seldom have well
defined characteristics, and because mathematical
description of coding distortions is usually very
defficult. Besides these obstacles, application
of block coding so far discussed is sometimes avoided
because of much computation in coding ( especially
in source coding with a fidelity criterion ).

For application of source coding theory to real
situation we need codes with good performance and effi-
cient coding algorithms. In this regard tree codes
consitute an important class of source codes as in
channel coding. We first develop mathematical basis
for tree coding.

Tree coding theorems are well-known for discrete
memoryless sources ( DMS’s ) that emit iid output
according to pmf’s p on the source alphabet A. The first
tree coding theorem is due to Jelinek [38] ( which nas
a flaw, and is subsequently corrected by Davis and
Hellman [39] ). However, the most important of all
such coding theorems is the trellis coding theorem
due to Viterbi and Omura [40]. Trellis codes assumed

therein are tree codes which have a trellis-like
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structure as seen in Fig. 4.2.1 ( but their codes
do not necessarily have an algebraic structure like

convolutional codes ). They show the theorem:

Theorem 7.1.1: Let p be a DMS and let R > 0. Then

there exists a ( time-varying ) trellis code CN with
q branches per a node, v letters per a branch, and

a constraint length K such that

-vKE (R)
dle

eveE(R) ]2

N
d (c < D _(R) +
p()=p() —y
where d1 is a constant, E(R) and € are positive numbers
for R = (1/v)log q > Rp(R), the rate-distortion
function, and the block length N is assumed sufficiently

large.

In the proof the decoder is supposed to use Viterbi
algorithm, an optimal searching algorithm on trellis.
These two theorems show the performance of tree

codes when the best paths or codewords are found out.
However exhaustive searching, searching the best one

by inspection of all codewords, generally suffers from
heavy computational loads in source coding, in contrast

to those in channel coding. Many alternatives are devised;

some enable us to find source coding theorems [41],

[42], others do not, but afford efficient coding [43],
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[44].
Despite of all these results for DMS’s, however,
it is rather surprising that no satisfactory coding
theorem with a fidelity criterion has been known
yet for more general sources, stationary ergodic sources.

An exception may be Tan’s result [45]:

Theorem 7.1.2: Let [X,u] be a stationary ergodic

source and let R > 0. Then, for any € > 0, there
exists a tree code CN with sufficiently many branches
per a node ( q branches ), sufficiently long branch
sequences ( v letters ),and a sufficiently large block

length N such that
d (cN) < D (R) + €
H = M

where R = (1/v)log q is the rate of the code.

"In this theorem, however, large q and v are indispensable,
and make the theorem less interesting for large
q and v generally increase encoder’s computational
task. There seems to exist nothing of notable advantage
for tree codes having long branches over block codes.
In the next section we prove a tree coding theorem

for satationary ergodic sources using tree codes having
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fixed branch length

Concerning tree codes, we mention here that there
exists an elegant mathematical formulation, called
sliding-block coding, proposed by Gray [46]. However
this formulation for source coding appears to hardiy
give us sufficient insights into coding at this stage
of theory; finding good sliding-block encoders is only

carried out by exhaustive simulations [47].
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Fig. 7.2.1 — A g-nary Tree Code
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Fig. 7.2.2 — A (K,L)-Tree code
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2. Tree encoding of stationary ergodic sources

As we have already seen in the previous chapter,

there is a change in the notations; letter x for

sources and letter y for codes. Therefore tree

codes used in this chapter are represented as

shown in Fig. 7.2.1.

Seeing the code

tree, the first thought may

be how they can encode sources in spite of rather

poor number of codewords at first a few branchings;

only q branches at the first branching and only

2

q” of them even in the next branching. Thus

it is a quite natural idea that branches in these

first part do not have a significant role in

coding.

We say that a code is a (K,L)-tree code if

the code has block length N ( = vL ) and has

qK root nodes ( see Fig. 7.2.2 ), where the

length of branch sequences, v, and the number of

branches per a node, q, are all fixed throughout

this chapter. Obviously, the (K,L)-tree code

is a truncated tree

We suppose that
and divide the code
levels. Then, the

from the 0-th level

code at the K -th level.

N = vL and L = KL*,

tree into L* parts each having K
first part consists of those

to the K-th 1evei, and the
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second one consists of those from the K-th level to the

2K-th level, and so on. The i-th part contains

1+
q(1 1)K subsequences, concatenations of K branch

sequences connecting the lowest nodes and the highest
nodes in this part; one lowest node is connected with
qK highest nodes, the lowest nodes in the next part of
the partition. For each lowest node, we number these
highest nodes, and hence corresponding subsequences,
from 1 to qK in any order. Then each source output
(1) 0%

X, .00 X

X1 is partitioned accordingly as x

L
Each subsequence in each part of the partition has

a distortion relative to the corresponding part of the
source output. We call it the weight of the
subsequence. The distortion of each path through the
tree is then the sum of these weights along it.

We use the following searching algorithm: 1) At

the first step, qZK. candidates in the first part

(1)

of the partition are classified into qK groups cj ,

j =1, ... ,qK , so that c§1) consists of all

subsequences numbered j, and the decoder retains

qK subsequences, call them survivors, each having
D, 5 =1, .0

2) At the #-th step, in general, qZK candidates

the smallest weight in

in the %2-th part connected with the previous

(%)

. P . K
survivors are classified into q groups cj ,

j =1, ... ,qK so that cgl) consists of all
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q2K Extensions

O
N

K .
qK Survivors g Survivors
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Cs the Next Step

from
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:}
;
|
«€— K Branches _>j

Fig. 7.2.3 — Searching on the (K,L)-Tree Code
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subsequences numbered j, and the decoder retains

qK new survivors, each having the smallest weight

in a group ¢

(%)
J b

j =1, ... ,q

decoder obtained qK

K 3) When the

survivors at the last step,

then each survivor uniquely specifies a path or

a codeword with length N, and the decoder selects

the best codeword and emits it. This algorithm

resembles to the Viterbi algorithm, although this

one is not exhaustive. ( See Fig. 7.2.3. )

From the above description of the algorithm,

the selected codeword is a concatenation of survivors.

Thus the distortion is less than the sum of the

respective maximum weights at steps; for a stationary

ergodic source [X,u],

Ndu(cN)

A

|A

max d(z(z),cgi))

; K ]
i=l,...,q

L*

ND* + deK r E xIl d(X(R),cgg) > vKD#*,
=1
some j =1, ... ,qK ]
a1

ND* +

doK

5 I E x| d(g(ﬁ),c§2)) > VKD* .
j=1 2=1
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For R > 0 and any ¢ > 0, let [(X,W),w] be
a stationary ergodic joint source with marginals
[X,u] and [Y,n] on (A,#4) and (B,@) respectively
such that
ed

< D (R) + o and
H 12 :

Q.
~
[

=
~—

AN

€
R + —

I (X;5W)
w 12

A

Let éblbe a random (K,N)-tree code constructed

as: 1) Branch sequences on branches emanating from nodes

at the 2K-th level are assigned randomly and independently
each other by the pmf { n(yi), Ei e AV }: 2) Branch
sequences on branches after consecutive i branches ( i<K ),
each assigned with a branch sequence E?j)’ j=1,...1,
are assigned randomly and independently each other
by the conditional pmf { n[yz+1|§}1),...,§%i)] }: 3) After
K successive branches, branch sequences are selected
independently of the previous assignment.

We denote the expectation operator relative to this

random tree code byg , and denote the respective groups

(%)

appeared in the searching by C& .

Then we have

‘ N
EN d, (&)
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qK L*

< ND* + wd Kz 1 FE x[ ax(Y, égﬂ)) > VKD* ]
j=1 g2=1

We note that, though all é§£) are not necessarily
independent, the random sequences in each ng) are
independent of each other and have the same probabilities

as X;K.

Indeed, each Cﬁz) is a random block
code with qK members having block length vK.
Therefore we can use, for each <f§2), one of
arguments in Section 6.1, which is stated

as follows:

Lemma 7.2.1: For any R, ¢ > 0 and all sufficiently

large K, there exists sV ¢ AYK such that u(SvK) >

1 - ¢/3 , and

d
1 vk <(2) €%
éX[VT‘d(?S ’éJ ) >DU(R) + ]
< expl - qf e VKR *e/2)
for a1l x"X ¢ VK, a11 5 =1, ... ,q° , and an1
4=1, ... ,L*.

Now let D* = Du(R) + edo/S and R + ¢ > (1/v)log q

> R + 3¢/4. Then, according to the lemma, we
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obtain, for sufficiently large K,

N
d
£a ceM
ed ed
<D (R) + —2+ 2
- M 3 3
rdga®  expl - of T KUR T /20
2ed :
< DM(R) + ° 4 d, exp [ K log q - eevK/4 ]
*
< Du( R e ) + sdo,
where R* = (1/v)log g.  Since DU(R) is continuous

1 * - * *
in R, we have DU(R g) + edo < DU(R ) + ¢ d0
for any e€* > 0 if ¢ is sufficiently small.

Therefore we have proved a lemma.

Lemma 7.2.2: Let [X,u] be a stationary ergodic
source. Then, for any €% > 0, there is a (K,L)-tree
code cN such that

N * *
d (c) <D (R*) + e*d

where R* = (1/v)log q.
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We note that the (K,L)-tree code 1is a truncated
tree at the level K and its true rate is
[(N+vK)/ N]log q, which is greater than R¥. If
we use ordinary tree codes with single root nodes,
then we have to consider the distortion caused by
the first several branchings where only a poor

number of codewords exist.

Theorem 7.2.1: For a stationary ergodic source

[X,u] and any e* > 0, there exists a tree code cN of

rate R with sufficiently large block length N such that

deo
N

N
d () D (R) + e*d, +

As the block length gets large, the final
term in the bound becomes arbitrarily small.
Thus we have shown a tree encoding theorem for
a stationary ergodic source with a bounded
distortion measure and discrete alphabets.

These results are proved using a result in a random
block coding argument, and do not necessarily tell us
the superiority of tree codes to block codes.

However, once the source coding capability of tree codes
is known, we can appropriately modify the searching

algorithm to make encoding computation feasible.
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In the last chapter, the algorithm used to prove
Theorem 7.2.1 is modified, and it is shown that the
modified algorithm gives an efficient way of tree

coding.
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3. Encoding BSS with  _ Hamming distortion measure

An interesting problem, theoretically as well as
practically, is the speed of the convergence of
distortions to the distortion-rate functions of sources.
For a BSSp and Hamming distortion measure, Omura and
Shohara [48] argue that, if optimal codes CN, either
block codes or tree codes, are allowed to maintain
rates at least R larger than Rp(D*) in a positive
amount e, then the convergence should be as fast as
doubly exponentials,

dp(cN) - D* < expl - e_gN

1, (7.3.1)
as N » o, This assertion is proved for block codes,
but only has a simulation evidence for tree codes,
although it seems quite probable ( also see [49] ).
In this short section, we observe that this conjecture
is true.

" For the combination of a BSS p and Hamming
distortion measure d, the distortion-rate function
is attained by test BSC’s for all rates ( see Section
5.2 ). Hence the optimal code generation processes
[Y,n] are iid sequences of random variables with the
symmetric pmf, n(0) = n(1) = 1/2. From the argument

in Section II of [48], Lemma 7.2.1 is strengthened
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as follow.

Lemma 7.3.1: For any gvK € AvK,

1 K
gxl o " &) s v ]

< exp{ - gf e” KL R+ 8(vi) 1

for all j = 1, ... ,qK and all ¢ =1, ... ,L¥,
where §(*) is a function such that &(y) » 0 as y - «.

In view of Lemma 7.3.1, Corollary to Theorem 7.2.1
is replaced by the next theorem, whose proof is omitted

for it is almost a repetition.

Theorem 7.3.1: For a BSS p with Hamming distortion

measure, any N, and any R* >0, there is a tree code

CN of rate R = (1/v)log q such that

N vK
dp(e) < Dy (RF) + ¢

K

v q exp{ - évK[ R - R*¥ - §(vK) ] }

for any K, where 6(*) is a function such that

S(y) - 0 as vy » =,

If we let ¢ = vK/N sufficiently small for

Iarge N, then the continuity of Dp(R) assures
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Dp(R*)+ e < Dp(R*—e*) for any positive e%*. Thus,
letting dummy rate R*sufficiently close to R , we

have a corollary.

Corollary: For a BSS p withHamming distortion
measure, every sufficiently large N, and any €% > 0,
there is a tree code CN of rate R = (1/v)log q
such that

*
dp(cN) <D (R - %) + exp[ eNR - e°F N

where € is a positive constant.

Therefore the convergence has the higher-than-
exponential ( almost doubly exponential ) speed
if a small, but fixed, amount of the excess in rate,

e*, is allowed.

However, such a positive excess €* can not be
isolated in real situation. Instead, we ask, for a
given rate R and given source, what is the ultimate
distortion theoretically attainable, Dp(R), and what
is the distortion achievable by practical source

encoders, dp(cN); we want to know how fast the error
N
d (c - D_(R
p( ) p( )
converges to zero. This error is bounded by the
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Effective Blcok Length
Fig. 7.3.1 — Nominal Convergence Curves and

a Practically Meaningful Convergence

Curve
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envelope of dp(cN) - Dp(R*), R* > R ( see Fig. 7.3.1 ).
We show experimental data*[74] in Fig. 7.3.2 when trellis
codes of rate R = (1/2)log 2 with constraint length

K are used to encode BSC. Codes are generated

randomly, and each plot shows the meanvalue of several
tens simulation data. As discussed in Section 4.2,

2K is the effective block length. In this ‘figure,

we also depicted the envelope of the doublly exponential

convergence

2K GZKCR* - R

d_(c

5 ) - Dp(R*) = exp|

Though we do not discuss details, the convergence of
the error in block coding can not be faster than

(1/2K)log 2K ( cf. [25, p.197] ). From Fig. 7.3.2,
we know that trée codes are really superior to block

codes.

* By permission of Hiroyoshi Morita
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o, S, and T.

Corollary: For p > 1, suppose that Esp(o,P) =
Esp(p,P). Then, for any € > 0, the best attainable

fG satisfies

%1
< inf P,
PTEC S+ T )p+€_IV_ conv. codes G
(K==)
%2

<
TP (s TP e

for sufficiently large o, S, and T, where the infimum
is over all convolutional codes ( K = « )
and 61 and 52 are positive constants independent of

o, S, and T.

Corollary gives a complete answer to the asymptotic
behavior of the probability of deficient decoding,
when K = =, For finite constraint length, a similar
result will be shown with more elaborate analysis.
Finally we note that all results derived here
aplly to time-varying convolutional codes. Since
codes used in practice are of time-invariant, another

problem thus seems to exist.
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CHAPTER VIII

TREE ENCODING OF SPEECH AND SPEECH-LIKE SOURCES
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1. Introduction

In the previous chapters we have seen that tree
codes can encode stationary ergodic sources up to
their distortion-rate bounds, bounds on attainable
distortion and rate given by distortion-rate or rate-
distortion functions. In this section we apply tree
codes to encoding speech, a practically important source.

In the practical field, source coding is referred
to, from its analog-to-digital conversion, as data
compression, and so is speech coding, which is sometimes
called speech compression. Speech compression, or
speech coding, has 1long been studied by many engineers.
Indeed, it is a major factor in Shannon’s developing
noted theoretical idea about communication; then he
has been with Bell System Laboratry where first rate
communication problems have been worked out, capacity
of telegram wire, Vocoder, etc. And, among other
prblems, speech coding is a serious problem which is
continuously increasing its significance. There are
so many literatures that we can not list them up all
here ( cf. [58], [51], and references therein ).

From statistical and mechanical evidence [50],

speech is best described as the autoregressive-moving

average ( ARMA ) source satisfying

n
a, X + r b
1 k “t-k ke

~
i
1
fl 8

t K
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where the process V is a pulse train, for voiced speech,
or is a white noise, a process consisting of iid random
variables, for unvoiced speech. However, because of
difficulty in identification and analysis, a simpler

model, the autoregressive ( AR ) source satisfying

ap Xep v Vi

>
t
I
(=]

k=1

is often preferred. ( For exaﬁple, PARCOR Vocoder [52]

is based on this model. ) |
Speech chers, the terminology for speech encoding-

decodeing machinery, are divided into principally

two classes [51]: waveform coders and source coders.

The former coders, as seen from their name, essentially
strive for facsimile reproduction of the signal waveform,
which are designed, in principle, to be source independent.
PCM ( Pulse Code Modulation ) and DM ( Delta Modulation )
are in this class. They are used for many data
compression systems not confined to speech compréssion.
The latter coders, on the other hand, make use of

the knowledge about speech generation mechanism.

The idea is that respective fractions of speech

offer numerical data on the actions of human vocal

tarct and vocal code which turn out to advantage

in efficiency describing the signal. Therefore,
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the signal must be fitted into a specific mold and
parametrized accordingly. This class includes
PARCOR Vocoder.

Coders in these two classes have quite distinct
features each other in efficiency and human reception.
For example, the rates of waveform coders are no
less than about 10 kbits/sec, while the rates of
source coders are never more than several kbits/sec
because of instrument complexity and cost. Moreover,
the former coders have relatively natural quality
while the latter coders produce sounds less natural
and their quality is talker-,or even sentence-, dependent.
Therefore, generally speaking, source coders with
their extremely low rates can not be good substitutes
for coders at higher rates.

Tree coders, speech coders using tree codes
first systematically proposed by Anderson [54],
constitue a class of efficient waveform coders [59],
[60],[61], and are capable of encoding speech at
relatively low rates, about 10 ~ 20 kbits/sec.
Especially, with sufficient instrumentation [60],[61],
tree coders can encode speech at 8 kbits/sec yielding
moderate quality. Since the data speeds 7.2 kbits/sec
and 9.6 kbits/sec may be avaiable through the
conventional telephony link [53] ( the recommendation

is under investigation in CCITT ), tree coders
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will be important speech coders.
Speech waveform sampled each unit
time has discrete time coordinate, but has continuous
magnitudes. In the source coding terminology,
speech, as a source,,L has a continuous alphabet 7?1,
the real line, in contrast to the sources that we
have dealt with in the preceding chapters. Thus
we briefly discuss how sources with continuous alphabets
treated.

For these sources, source alphabets A and reproduction
alphabets B are 7@1, and each string x from the sources
is a point in an infinite-dimensional Euclidean space
A = 7fm . Let [X,pu] and [X,v,W] be a source and
channel with continuous alphabets. To avoid unnecessary
mathematical subtlety, we suppose that the measure u
and conditional measure v have, respectively, the
density pu and conditional density pv(*|§) for all
- X € A with respect to Lebesgue measures on A and B.
Then, according to general definitions of information

quantities ( cf. [25] and [55] ), the mutual information

quantity between Xl and Wl is the supremum

Iuv(xl;wl)

1 .1

A 1.1 uv (E3*F3)
= sup I UV(EiXFj) log —T 1
i,j u(Ei)n(Fj)
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over all finite partitions {Ei} and {Fﬁ} of A and B
( they are 731 ), where n is the marginal of pv on
(B, B). Since each finite partition of 7?1 induces
a finite partition of 7Qn in an obvious manner, and
since the measures have densities ( n automatically
possesses its density ), the mutual information

guantity between Eg and W? is then

n,.n
Iuv(ll,ﬂl)

n_n
uv (BLxFY)
g sup I uv(EQXF?) log r )

_— (8.1.1)
i,] w(ED N (F3)

where the supremum is over all partitions {Eg} and
{F?} of A™ and B"™ induced by partitions of A and B
respectively. Moreover, the right-hand side is

actually the integral

- p, (x])p, (wylx])

‘ log u=1/Fyt=1 =1 D (Ep)P (E?|§?) d§p dwﬁ

n n n n pr=1/Fyr=1'=1 1 1
A" 7B p, (x7)p, (wy)

Now let
A n n
hy() 7, [ log py(ip) 1 p,(wy) dwy  and

n, . ny A
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/ /
B

n,_n n n,_n n n
an 7gn [ Tog p,(wylxy) 1 P (xp)p,(wylxy) dxy dwy

and call them the differential entropy and conditional

differential entropy respectively. Then the following

continuous alphabet analog is obtained for the mutual

information quantity:

n, n, _ ny n,n
Lo W) = h (W) - b (W[Xp).

If we use the backward channel given by

p, (x])p,, (W] |x])

>

p, (x]]wy) =
g pp(ﬁg)pn(wg)

for each 5? e A" and each EE ¢ B", then we have another

form
n, ,n, _ n, _ n,,n
Ly, (X5W) = b (X)) - b (X))

And, if we define the differential entropy of the
process X by the limit ( it exists for stationary X )
A

. 1 n
lim ~ hu(zl) ,

n->c

h, (X)

we eventually obtain formulae for the information

quantity between processes X and W :
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—

[

=

g
I

h (X) - b (X|W)

h () - b (W]X)

Again consider the general definition (8.1.1).
For each pair of finite partitions {E%} and {F%}, the
summation in the right-hand side is regarded as the
mutual information quantity across the system depicted
in Fig. 8.1.1. Passing through the quantizer in
the figure, all identification of 5? is lost except
that 5? is in some E?. Given the quantizer output
g? ( there are only finite number of them ), the
channel emits an output @2 in F? with the conditional
probability uV(E?XF?)/p(E?), and the average distortion
across the channel is

n_-n n _n
z }J\)(EIXFJ) d(z(-l’-vil)

i,]

If we suitably choose numeric letters aj corresponding
to E% and numeric letters bjbcorresponding to F} for
all i and j, and let the partition sufficiently fine,
then the mutual information quantity across the
system is made arbitrarily close to Iuv(z;ﬂ) and

the average distortion is made arbitrarily close to

the integral
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n n n n n n n
T an d(xy,wp) p,(x)p, (wy|xy) dxy dwy

. n .n
- dUV (?Sl ,V_Vl)

Since stationarity and ergodicity are preserved
through quantization, we can see that coding problems
for continuous alphabets are approximated by those
for discrete alphabets arbitrarily well.

In this chapter, we are concerned largely with the
practical side of coding rather than the mathematical
properties. Thus we avoid measure theoretical
terminologies. Instead, we consider coordinate
functions Xt as random variables, and distinguish
random variables with distinct distributions as

Xt and Xt'
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Fig. 8.1.1 — A Discrete Channel Approximation
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2. Rate-distortion function of speech-like sources

As seen in Introduction, mathematical models of
speech, called speech-like sources, are coded by tree
codes up to rate-distortion bounds if the sources are
stationary and ergodic. - In this section, we discuss
the rate-distortion function of AR sources as speech-

like sources.

Gaussian AR Sources

AR sources are continuous amplitutde process X

satisfying the difference equation
for t = 1,2, ..., (8.2.1a)
Xo = ... =X =0 |, (8.2.1b)

where V, the driving process, consists of iid zero-
mean random variables with variance 02. When Vt

are Gaussian random variables, we call the source

the Gaussian AR source. As we see subsequently,

the Gaussian source is not necessarily a suitable
speech-1ike source for its probability dencity function
does not have as sharp peak at zero amplitude as
relative frequencies obtained from actual speech.

However, investigation on this source is an important
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step toward distortion-rate bounds of speech-like

sources and the construction of tree codes for speech.
The behavior of the Gaussian AR source crucially

depends on the location of zeros Py k=1, ... ,m,

of the characteristic polynomial ( cf. [25] )

Afp) =1+ ajpl+ ... +ap™

Let p* be the maximum magnitude

where E is the expectation operator. Then, the source

is asymptotically stationary,

Yt,s Yk as t,S > © ’

for each k = | t -s |, if p* < 1. On the other hand,
the source is nonstationary and has exponentially

diverging variances,

= %2t -
Ye,¢ = 0(p*7%) as t >,
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if o* > 1, and the source is nonstationary and has

algebraically diverging variances,

Yt,t = O(ta) as t » o
for some a > 0, if p* = 1, where O(*) is any function
such that 0(8)/8 is bounded for large §. An

example of the last case isa Wiener sequence satisfying

for all t > 0, with covariances Yt,s = 62 min(t,s).
0f course, the most important 1is asymptotically
stationary sources, which are ergodic as well.

Let Rn(D) be the n-th order rate-distortion
function of the Gaussian AR source relative

to the squared-error distortion measure
v 2
d(x,w) = ((x - w)

for each x and each w. Then, the rate-distortion

function of the source is the limit

R(D) = lim R_(D) ,

n->o
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for D > 0, provided that the 1imit exists.
Apparently, R(D) is well-defined if the source
is asymptotically stationary. The following block

source coding theorem is known [56]:

Theorem 8.2.1: R(D) is achievable ( if it exists )

using block codes.

The theorem asserts that R(D) is achievable ( see
Section 5.1 for the terminology ) even if the source
is nonstationary with p* > 1. This is a quite
exceptional statement among source coding theorems;
most of them concern stationary ergodic sources.
Therefore we deduce a general formula for R(D) here.

Let An be the nxn matrix

An = 1
a; 1
ap - 2y 1
! a -+ aq 1 | nxn
Then the covariance matrix Fn = [ Ys,t ]nxn is
given by 02[ Ag Al ]'1,'and
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= r 3
A An = ag o
o
m
. ag e O
- .
g aml nxn
-
where, putting ag = 1,
m- 4
o, = L a, a s
2 k=0 k “k+g
for 2 =1, ... ,m , and AE is the transpose of An.

Rn(D) is given, in terms of the eigenvalues of AE An’

An,l L .00 2 An,n » as
1 D 02
De =5 T min [ 6 , 5 ] and (8.2.2a)
k=1 n,k
1 2 1 o°
R (D) = = £ max [ 5 log —=—— , 0 ] , (8.2.2b)
n-"o no, 4 2 exn,k
where 6 is a parameter. To calculate R(D), we

have to know the asymptotic behavior of eigenvalues
An,k'

Let @n be a matrix with the same entries ¢, on
its upper and lower ¢-th diagonal, & = 0, ... ,n-1

( ¢, on the main diagonal ). Such a matrix is called
0

a ( finite ) Toeplitz matrix. Ag An is almost
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Toeplitz matrix except the lower right mxm corner.

Given ¢Q, L = 0,1, , Toeplitz matrices @n have

a nice asymptotic eigenvalue distribution:

Theorem 8.2.2 — Toeplitz Distribution Theorem:

Let § and A be the essential infimum and supremum,

respectively, of the real-valued function on [-7,7]

o(w) = 3% Py e_jkw
k=

where b = g and j2 = -1. Then, for any function

G(*) continuous in [§,A],

L o0 6l o(w) ] dw

< & are eigenvalues of @n.

holds, where & 6 ; < ... n.n
H b

Remark: The theorem implies that the integral

1

J dw
21 T a(w)< § )

gives the asymptotic fraction of eigenvalues less than 6.

Now let Wn be the Toeplitz matrix with a, on

the upper and lower %-th diagomal, & = 1, ,n o,

<X be its eigen-

for each n, and let Xn,l < ... n,n

values. From the Sturmian separation theorem [57],
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we have

An,k > Xn—m,k-m ; k=m+l, ... ,m
Moreover, putting ap = O_gs
m
A < z o
n,n = " n ¢

Therefore we see that all eigenvalues, except the
smallest m eigenvalues, have the same asymptotic
distribution as Xn k*

b

If the source is asymptotically stationary, it
is easy to see that all eigenvalues of TI_, A—l 02
n n,k ’
are bounded above for large n. This implies that,
for large n, the least m eigenvalues A, x are bounded
b
away from zero, and their contributions to (8.2.2) are

negligible for large n. Therefore, for the asymp-

totically stationary source, we have the parametric

representation
1 " . 02
De = f_ﬂ min [ & , RO ] dw and
R(D.) = -1 5 max [ L 1o o’ 0 1 du
9 2 Z “°% Fglwy ’ @
where g(w) = | A(e—jw) ]2. The function oz/g(w)

is a spectral distribution of the source,
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Fourier transform of the limit covariance sequence
(v}

However, if the source is nonstationary and p* > 1,
then the speed of the convergence of xn,l < ..o XA

becomes significant in taking the limit of (8.2.2).

We can show the following lemma

Lemma 8.2.1: Suppose that

2

1

A(p) = k

P
Hown
—

(1'pkp

( Ly is the multiplicity of P ) and that

logl > cov > oyl 21> Jopql > ven log |
Then,
[‘ son k-1 k
by = 4 D N AR S 2T NS A
n,4% oLn,,Q,,k kal j=1 1 = ;-1 1
k<r,
\‘“n,z,k ; otherwise,

where a, g .k are positive numbers decreasing at
’ H

most algebraically as n * «.
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From the lemma, the following theorem 1is

immediate

Theorem 8.2.3: The rate-distortion function R(D)

of the Gaussian AR source is represented parametrically

as

= 1 ‘ o
De = 7 f_,” min [ e , g—(m- ] dw and
1 " 1 02
R(De) = '2—51_-‘ f_Tr max [ > 10g —em ’ 0 ] dw
m
+ % max [ log [pkl , 0]

where all Py are zeros of the characteristic polynomial

A(p) and

‘jk(}) |2

([

glw) = | s a4 T 1.

a, e
Kk k

0

The theorem implies that nonstationary sources
require additional rates corresponding to their
exponential rates of diverging variances. As an

illustrative example, consider a nonstationary source

X, = pX + vV ; t=1,., ... , and
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2

where p > 1 and ¢ = 1. Xt has variances Yt t
= (pZt-l)/(pZ—l). Given X, > the process proceeds
backward as
2t
(p”""-1)o
Xge1 = - pZ(t+1j_l Xe ot Ut

where all Ut are iid Gaussian random variables with

unit variance. Let %t ( t <n ) be the conditional
. . N n
expectation of thduﬂlxnls known, and let Xt = Xt - X

Then X approximately satisfies, for large n,

£-1 = £ and

> >
]
o

Thus, we see that the output of the source is

decomposed into exponentially diverging random variable
Xn and an approximately stationary backward process g.
Sincebthe rate-distortion function of Xn is

(1/2)1og Yn,n/d for each d > 0, the average contribution
of Xn to the total rate-distortion function is

(1/2n)1log Yn,n/d + log p as n > o, Therefore, if

we let d sufficiently small, we have

-2
i P

1 .
5=/ min [ 6 , ——
2m . |1+ le Jw|2

=]
e

] dw and
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This coincides with the formula in the theorem.
Concerning Theorem 8.2.1 and Theorem 8.2.2,

we give a brief comment. For stationary Gaussian

AR sources, the rate-distortion function has been

known [25]. Berger [58] shows a coding theorem for

Wiener sequences and gives a formula of R(D) which

is eventually equal to the integral in Theorem 8.2.3,

since p* = 1. Subsequently Gray proves a coding

theorem ( Theorem 8.2.1 ) for general Gaussian AR

sources; however the formula for R(D) therein

is misled by a wrong argument.

239



Stationary AR sources

We can see that whether the source is stationary
or asymptotically stationary is not essential;
asymptotically stationary sources turn out tobe stationary
sources when infinite time has passed by or suitable
initial conditions are selected. Thus, in the
latter part, we make no distinction between both
sources and simply call them stationary sources.

For a stationary Gaussian AR source, suppose

that

Then, Theorem 8.2.3 gives

D, = 6 and

1 "1 o*
R(De) = 7; {ﬂ 7 10g §§T6T dw

By calculation of the integral, we have

_ 1 o
R(De) = 7 log gf s
which is exactly the rate-distortion function of

V for the fidelity 6 ( cf. [25] ). Since De§=6 and

R(De) > (1/2)1og(02/6), for 6 > 0, we have a corollary.
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Corollary to Theorem 8.2.2:

For the stationary

Gaussian AR source, the rate-distortion function R(D)
of the source is

R(D) > Ry (D)

for all D > 0, and the equality holds for D < D

0
where RV(D) is the rate-distortion function of V

This corollary gives us a useful lower bound

of R(D): this is a special form of Shannon lower
bound ( cf. [25] ).

Theorem 8.2.3 — Shannon Lower Bound:

For a
stationary source X, the rate-distortion function
R(D) relative to the squared-error distortion
measure has the lower bound

R(D) 2 h(X) - max h(2)

where the maximum is over all random variables Z
satisfying EZ% < D.

Remark:

This theorem holds for more general
distortion measures,

the difference distortion measures
d(x,w)

= d(x-w).

We first note that the maximizing Z does not
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depend on sources, and that it is necessarily
a Gaussian random variable. For a stationary
Gaussian source, the maximizing Z is a zero-mean
Gaussian random variable with variance D, and
the inequality in Corollary to Theorem 8.2.2 is a
direct consequence of Theorem 8.2.3.

It proves to be useful later to investigate
what the equality for D < D0 means. Let Z be a
process consisting of iid random variables distributed
as the maximizing Gaussian Z, and suppose that

there is a process W independent of Z such that

X =W+ Z, Then we have
d(X,w) =D
I(X;W) = h(X) - h(X|W) = R(D) ,

where the last equality follows from h(X|W) = h(Z)
and the corollary. These identities imply that W
is just an optimal code generation process ( for the
terminology see Section 5.1 ). In more elaborate
analysis, it is shown [25] that the Shannon lower
bound R(D) equals R(D) if, and only if, the source
output is obtained through the backward channel

X =W+ Z. Corollary to Theorem 8.2.2 means that

such an expression is possible if D < Dy - A similar
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statement holds for general AR sources:

Theorem 8.2.4: TFor a stationary AR source, the

rate~-distortion function R(D) of the source is
R(D) > Ry (D)

for all D > 0, and the equality holds for all
D < (6*/02)D0 if RV(D) equals its Shannon lower bound
for D < 6* ( < 02 ), where RV(D) is the rate-distortion

function of V.

For Gaussian AR source, RV(D) equals its Shannon
lower bound for all D < %, and hence Theorem 8.2.4
coincides with Corollary to Theorem 8.2.3. However,
as we have noted below Theorem 8.2.3, for RV(D) to
equal its Shannon lower bound, each Vt should be
the sum of a Gaussian random variable and another
random variable independent of it: This is quite
improbable. In fact, almost speech-like sources
do not satisfy this condition, and hence Theorem 8.2.4
is useless for most cases. Instead the following

simple theorem is useful

Theorem 8.2.5: Given a stationary AR source, let

R(D) be the rate-distortion function of the source,
and let RG(D) be the rate-distortion function of the

stationary Gaussian AR source with the same parameters.
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Then,

Rg(D) 2 R(D) > R(D) - [ hg(X) - h(X) ]

for D < DO’ where h(X) and hG(z) are, respectively,
the differential entropy of the original source and

the differential entropy of the Gaussian source.

Proof The left-most inequality is a consequence
of Theorem 4.6.3 in Berger [25]. On the other hand,
from Theorem 8.2.3 and the Gaussianity, there exists

a random variable Z such that

R(D)

v

h(X) - h(Z) and

which proves the other inequality.

The bound given by this theorem is tight for

most speech-like sources.
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3. Tree encoding of speech and speech-like sources

In this section we show some results in coding

speech and speech-like sources

Tree Codes
Below Theorem 8.3.4, we have noted that, for

D <D the rate-distortion function R(D) of the

0,
( asymptotically ) stationary Gaussian AR source is

attained by the backward channel

for all t, where Z is a process independent of W and
consisting of iid zero-mean Gaussian random variables
with variance 02. The optimal code generation process

W/ then has the spectral density

fw(w) = RO D

il
Q

N =]
o’

for -m < w < 7, where the coefficients b, are given

by the factorization ( it is possible for D < D0 [25] )

m . m o
/8y | ¢ ae K2 1= |1 be K2 (8.3.1)
k=0 X -0 K
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with a, = 1. Therefore W satisfies the ARMA model

=
{
I
e~ =

mo
ek T I brVe-x

k=1 k

for all t where all Gt are iid zero-mean Gaussian
random variables with variance 02

A straightforward construction of tree codes
for the Gaussian sources is to simulate the random
generation of tree codes described in Section 7.2
by computer-generated random process W. However any
tree code obtained in this way bears no superiority
to simpler tree codes discussed subsequently; it
requires large memory area in spite of the convergence
of distortion which is rather slow. This is partly
because ideal codes which perform at rates and
distortions very near to the rate-distortion bound
are not necessarily also good at moderate tree
searching capability of encoders. Sometimes a better
result is obtained by substitution of fixed number
of numeric values Vi --- ,Vq, instead of randomly
generated numbers, for the driving Vt; the totality
of available sequences Eﬁ constitutes, by itself,
a tree codes of rate log q having block length n
( assuming wy = ... = Wy . = 0 ).

To obtain simple code design, we first note the
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following equivalent definition of the code generation

process W.

where the coefficients ) are given by the formal

expansion

We say that a tree code has B-coefficients or

is a B-code if the code is generated by

-k (8.3.2)
where K is a finite integer called the constraint

length of the code and all v, assume only fixed number

t
of levels Sqys ve- ,sq. The coefficients bk can
be replaced by other coefficients fk determined
according to different reasoning. For such selection

bk = fk, for all k, we say that the tree code has

F-coefficients or is an F-code. Especially, if

fO = 1 and fk = 0 for all k > 0, then the code is

called a No Smoothing (NS)-code, and its coefficients

are called an NS-coefficients, since fk are generally

selected to possess smoothing ( filtering ) effects
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on the behavior of Y+ In this regard, another

code design is possible by smoothing NS-coefficients

Cx by F(p) =2 kEO fkp_k as

K K~
-k -k
I cp = F(p) I cup
k=0 X k=0 X
where K = K“+ K~ -1. We call the code thus constructed
an F-code, and call its coefficients F-coefficients.

Since the NS-coefficients tend to zero rapidly for large
k, F-codes and F-codes eventually become almost equal
to each other for large constraint length K, for

most cases.

M-algorithm [ or (M,L)-algorithm ]

Given these tree codes, the next problem is an
efficient way of coding capable of finding codewords,
or paths, that make the distortion small. Viterbi
algorithm which is optimal for convolutional codes
or trellis codes is no longer useful for thesg codes.
And sequential algorithms have a significant drawback
because of their buffer overflow problems, though they
seem attractive in conceivably cheap instrumentation
cost [62].

(M,L)-algorithm [43] is then a standard algorithm

[541,[59]-[61], which is known to outperform the Viterbi

algorithm in distortion when the number of computations
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per an encoded node at the encoder is limited [44].
Suppose q2 >M > ql'l, and call the root node the
0-th encoded node. It is described as follows
( see Fig. 8.3.1 ): 1) First investigate all paths
up to the &-th level to find out M paths minimizing
distortions between the codewords and the corresponding
portion of the source output: 2) Investigate gM ( or
at most gM ) paths extended one branch from these
previously retained paths, and sort out M ( or at most
M ) paths with the least distortions: 3) Whenever the
decoder reaches nodes higher in L levels than the
previously encoded node , sort out a path having
the least distortion, let the immediate descendant of the
previous encoded node on this path a new encoded node,
abondon all nodes except those descendants of the
new encoded node, and return to 2).

Due to the last operation that makes the selected
path never jump transversally on the tree, the number
of retained nodes 1is occasionaly less than M.

Fig. 8.3.2 shows the combined scheme of the tree code

generation and (M,L)-algorithm.

Coding of Speech-Like Sources

Two AR sources are chosen as speech-like sources:

a Gaussian AR source and a Laplacian AR source whose
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iid driving random variables Vt have the Laplacian

( Two-side exponential ) probability density

f(v) = 7%g exp( - /7'0_1[v] ).
The former is selected bacause of observed analytical
evidence above. The latter is selected because of
its probability density having a sharp peak at zero, which
is typically seen in relative frequencies for speech
signals as shown in Fig. 8.3.3, where the horizontal

axis gives the prediction error

for the AR coefficients a-

In Fig. 8.3.4, we show several rate-distortion
curves. Rates are expressed in bits/sample
( bits/letter ) and distortions are expressed in

terms of SNR ( dB )} given by

D

SNR = -10 log 4 [variance of X, T

where the base of the logarithmic function is 10.

In the fugure, R1 G(D) and RG(D) are the first order

rate-distortion function and rate-distortion
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function, respectively of the Gaussian AR source,

whose AR coefficients are obtained from sampled speech.
While RL,V(D) and RG,V(D) denote Trespective rate-
distortion functions of the Laplacian driving process
and Gaussian driving process. RL,V(D) is calculated
numerically using Blahud’s algorithm [63]. The
difference between RL,V(D) and RG,V(D) is small compared
with that between RG(D) and RG,l(D); from Theorem 8.2.3,
the former difference is less than (1/2)1log 2 (n/e),

the difference of respective values of differential
entropy which is about 0.1 bits/sample. Theorem 8.2.5
also implies the difference between RG(D) and RL(D),

the rate-distortion function of the Laplacian source,

is less than 0.1 bits/sample for higher SNR than

D0 ( about 20 dB ). Indeed, the numerically obtained
plots denoted by R, which are their second. order
rate-distortion functions show no noticeable difference,
where the deviation from linearity at high rates is

due to coarse quantization of coordinates to

make Blahut’s algorithm feasible for this two-
dimensional case. Therefore we see that the shape

of distribution is less relevant than the memory of
sources in rate-distortion function; much reduction
in rates comes from dependence between samples.

In the simulation we let q = 4 ( 2 bits/sample )
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and use the same AR coefficients as above. At this
rate we have D(2) = 23.8 dB which is higher than D0
in decibel and the reasoning for B-code is valid.

The quantizer 1evelss1 = s, and s, = sz are selected

by another simulation with (M,L,K) (4,8,8) for

each of three code coefficient sets ( the same level
set 1s used for both F-code and %—code ). The
smoothing filter F(p) = (1+p_1)/2 is selected to
eliminate the noise typically observed for waveform
coders with spectrum around a half the sampling
frequency [54]. The simulation results are
visualized in Fig. 8.3.5. The figures showuniversally
good performance of the F(F)-code for large K and large
M. While the I'-code perform rather poorly at small
encoding intensity M as seen in Fig. 8.3.5 (b), which
is also observed in [60] for Gaussian sources.

On the other hand, the NS-code and B-code both of

which performwell for the Gaussian source no longer show

good SNR for the Laplacian source. This is a

clear contrast with the F(ﬁ)—code.

Coding of Speech

Though we have used stationary or asymptotically
stationary source as speech-like sources, real speech
signals are seldom considered as stationary, or even

asymptotically stationary signals. Rather they are
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succession of relatively uniform waveforms lasting
350 ~ 50 msec as seen in Fig 8.3.6. These fractions
have respective power and spectrum, while statistical
properties of codes are almost determined by code
coefficients selected.

There are two directions in code-source adaptation:
the one is to adapt codes only to power variation [54],
[59] and the other is to adapt codes, varying code
coefficients, to both power and spectrum variation
[60],[61]. The former seems to fit for relatively
high rates and the latter seems to fit for low rates
where the cost needed to set up adaptation mechanisms
is permissible.

In this section, we apply two power-adaptation
methods, AGC and AQ, to encode speech, sampled at
10 kHz, using tree codes of 2 bits/sample ( i.e.,

20 kbits/sec ). AGC( Auto Gain Control ) is the

simplest mechanism that adjusts discontinuously its
gain over the sampled data string partitioned iﬁto
blocks of equal size so that sample power in each
block remains about at a fixed level. We call the
length of each block the AGC length and call the
standard level the AGC level. With AGC,

AGC gain has to be sent to reproduce

signals at the decoder. However, the increase
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in rate to send the additional signal is usually
small, and it is neglected here. In contrast to
AGC which adapts codes blockwise, AQ( Adaptive
Quantizer ) adapts the levels Sc? k=1, ... ,qg on

each path in code trees according to the rule [59]

(t) _ (t-1)
Sk T kel Sk

for all k =1, ... ,q , where sﬁt) are levels at t,
kt indicate the levels assumed at t, and hk are AQ
coefficients. AQ needs no additional messages at
the decoder.

We first describe the results of sppech encoding
using AGC. The data used to determine a; are taken
from a Japanese sentence "HONJITSU WA SEITEN NARI"
sampled at 10 kHz and have about 16000 samples each
represented by 12 bits. ( These coefficients are used
in all experiments.) Encoding is performed over the
fraction "HONJITSU", about 4100 samples. AGC length is
10 msec ( 1000 samples ) and AGC Level is fixed
at a constant value for all codes according to
preliminary expreiments which show approximately
the same optimal AGC levels for all codes.

Rgsults are reproduced in Fig 8.3.7, where each plot

indicates the maximum SNR for L = 4,8,16. Two
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Figures show uniform sﬁperiority of ﬁ-code; F-code

work only poorly for small K conceivably due to

truncation effect. In Fig. 8.3.7(b),

the superiority of F(ﬁ)—code becomes clear for large M.
Next we show the results of speech coding using

AQ, which are given in Fig. 8.3.8. We put K = L

in Fig. 8.3.8(a) and L = 8 in Fig. 8.3.8(b).

Moreover we let AQ coefficients h1 = h, and h2 = h

4 3
and h1 and h2 are determined for NS-, B-, and F-codes
( for F-coefficients and F-coefficients

the same AQ coefficients are used )
through preliminary experiments on (M,L,K) =

(4,8,8). They are observed best or nearly best in
coding on (M,L,X) = (4,16,16), too. We first

notice that AQ inverts the ordér between codes:
F(ﬁ)—code performs poorly for all K and M, and, on the
other hand , B-code and NS-code work at SNR
approximately 20 dB, much improvement over the gain
obtained by AGC. However, F(ﬁ)-code tends to show
better SNR for large K and M, whereas B-code and

NS-code show no significant improvement in SNR by

increase of K and M.
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Remarks on Encoding Algorithms— M-algorithm and

Parallel Sorting M-algorithm

In this section, all tree encoders have used M-
algorithm since it is simple and is easily implemented
in software. However, this algorithm is not an effi-
cient algorithm to attain high SNR [62]. One reason
for it is that, as M gets large, sorting requires more
computation. Another reason is that encoders have
to sort out the best M paths from gM extensions.
Generally, sorting the best M paths from gM extensions
requires much computation than sorting out M ones by
selecting the best M/2 paths from a half of the exten-
sions and selectiong another set of the best M/2 paths
from the other half of them separately.

Here we propose an efficient tree searching algorithm
( in comparison with the M-algorithm ), which is termed
as the parallel sorting M-algorithm. This algorithm is
obtained from the block-wise tree searching algorithm
used in Section 7.2. The operation is simple.

First consider the code tree in Fig. 8.3.10, and suppose
that we are retaining M paths ( or nodes ). Since,
from each retained path, we have q extensions numbered
from 1 to q, all gM extensions are classified into

q groups according to the attached numbers. In
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the new algorithm, M paths are obtained by sorting
out M/q paths from each group. If speech data
sampled at 10 kHz are to be encoded, only M = 4 ( qu
= 64 comparisons in 0.1 msec ) is realizable using
the M-algorithm, while M = 16 ( Mz/q = 64 comparisons

in 0.1 msec ) is realizable using the proposed algorithm.
In Fig. 8.3.9, the computational time per a node and
coding distortion are shown for the two algorithms,

where the source is speech and plots of the compu-
tational time for the parallel sorting M-algorithm

show the overall computational time per a node.

For M larger than 4, the new algorithm performs better
than the M-algorithm. I1f we use a parallel sorting in
the sorting, the computational time for the parallel

sorting M-algorithm is reduced to approximately one

g-th of the plots.
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Proof of Lemma 8.2.1

Consider the difference equation

with the associated characteristic polynomial A(p).

We first suppose that all zeros are distinct and

satisfy [pyf > ... 2 lopl 2 1 2 fopepql 2 o0 2 oyl
( nondegenerate case ). Then any solution ( real)
T

n-vector £ = [gl ce En] of the difference equation

is a linear combination of m linearly independent

n _ n-1,T
n-vecotrs uy = [1 Py =+ Px ]1°. Let Vy,1s -+ » Vg

be any linearly independent n-vectors orthogonal to
22’ e ,g?. And let “EHZ = x*x where x* is the
adjoint of Xx. Then, from the Courant-Fisher theorem

[57], we have

2 2
An,k . é:ortgggonal to "AnEH /"5“
—\Lk+l""’zl’l
k 2 k 2
) Bl,m?).(, K “251 o[ | sLElBQEn“
K 2.1 K -k, k|2
: 61,11.1?}.(,81( ” 1ot ot [ “sa?—-l%pr’1 v
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= 1/0( Jop|*™)

where O(*) is any function such that 0(8)/8§ is bounded
for large §. The second inequality above follows
from §T(G+H)5 > §TG5 for any nonnegative summetric

matrices G and H, and the last equality follows

from positive definiteness of the matrix | fgg)*uk 1.

]
To bound the eigenvalues from lower, we note the

matrix identity An = Ble “es Bm where
F o
Bk = 1
_pk 1
-p 1| nxn
L. k .

Moreover, any n-vector x orthogonal to g?, ’Eﬂ—l
is writen as x = Bk—l ce Blz where y is any n-vector
T
such that y = [yl © Ynok+1l 0 ... 0]". Therefore,
from the Courant-Fisher theorem,
-1, .42 2
1/Xx < max ATx |/ hx|
n,k = x:orthogonal to I n X[/ |
n ult
Uy oty
-1 2 2
< max 140 By o B x| 7/]lx]|
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< trace [B ' B tyxr ! By 1]
2 -
= O( lpkl n) > k=1, cee M,
0(n) s k=m™+1, ... , m.

Therefore, the lemma has been proved for the non-

degenerate case.

When some zeros degenerate as Py T P41 T
= n n .
= pi+j’ then vectors uss ..o ’Hi+j are given as
n _ 2 £ n-1
Uipg = [1 2 py --- 070y 1,
for all & = 0,1, ... ,j, and the argument goes
in almost the same way since g?, . ,Ei are again

linearly independent.
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[X. ConcCLUSION

We have discussed channel and source coding, chiefly,
with tree codes, and have seen that the tree codes are
useful in designing practical communication systems.

In channel coding, the theory well approximates the

real system, and the practice well supports the assertions
of the theory. In source coding, however, we do not

have many succesful applications of the tree coding
theory. This is partly because, in contrast to channels
such as the white Gaussian channel in space communication,
sources are active by itself and tend to alter their
temporal characteristics according to the contents

that should be transmitted, like speech that

alters its power and spectrum from one consonenf to
another. Therefore robustness or universality of

codes is an important factor in the codingbsystem

design, and should be explored thoroughly in conjunction

with implementable tree encoding algorithms.
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Glossary of Abbreviations

AGC auto gain control

AQ adaptive quantizer

AR autoregressive

ARMA autoregressive moving-average

BSC binary symmetric channel

BSS binary symmetric source

DMC discrete memoryless channel

DMS discrete memoryless source

iid independently and identically distributed
pmf probability mass function

SNR signal-to-noise power ratio
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