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                Abstract 

    Basic properties of block coding and tree coding are 

treated for both channels and sources. Hierarchical 

channel codes cM of rates RM = (1/N)log M for DMC's are 
constructed so that codes ci c c2 c ... satisfy the 
expurgated exponent and other exponent functions. 

Universality of channel and source codes is achieved 

that satisfy the ultimate limits on performance over 

all DMC's in channel coding and over all stationary 

ergodic sources in source coding. A simple concept 

of universality is introduced and is shown to give 

a simple proof to Gray-Davisson's source coding theorem 

for stationary nonergodic sources. The tree coding 

research concerns convolutional tree coding on DMC's 

with the Viterbi and sequential tree searching algorithms, 

and tree coding of stationary ergodic sources with 

several tree searching algorithms. In channel tree 

coding the computational problem associated with 

sequential decoding is fully investigated, and analytical 

confirmation is given to known experimental data for 

convolutional codes. In source coding the main 

topic is a proof of the tree coding theorem for



stationary ergodic sources using a new tree searching 

algorithm. Finally, as a practical application, tree 

coding of speech is investigated. It is shown that, 

in spite of the apparent nonstationarity of speech, 

tree codes yield satisfactory speech compression. 
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      I. INTRODUCTION 

    In this thesis we explore problems of channel and 

source coding, especially, with tree or convolutional 

tree codes. Two subjects in Information Theory 

concern these problems: they are generally referred to as 

Shannon Theory and ( Algebraic ) Coding Theory. In 

a loose sense, Shannon Theory concerns the ultimate 

limits of communication, while ( Algebraic ) Coding 

Theory concerns the way in which efficient communication 

is realized. However we treat problems largely 

from the Shannon Theory side, and study how effectively 

the tree and convolutional tree codes, codes having 

tree-like and trellis-like geometric structure, can 

be used to code channels and sources. 

    Shannon Theory has assumed originally the use of 

arbitrary block codes which may not have any structure. 

It is asserted that, if appropriate block encoders and 

decoders are devised, we can ultimately achieve 

theoretical limits on rates, for error-free communication 

over noisy channels ( channel coding ), and on coding 

distortions, for efficiency-oriented transmission of 

data ( source coding ). However, as the theory 
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develops and communication engineers notice the infor-

mation-theoretic approach to communication system design, 

it becomes apparent that ordinary block encoding and 

decoding are insufficient for practical use since they 

require impossibly much computation. Tree codes are 

thus frequently used with a hope that they might afford 

implementable encoding and decoding. 

    In this regard we study properties and ultimate 

performance of tree codes in channel and source coding. 

In Chapter II, we first see a standard approach to channel 

coding for a DMC, which is basic in other chapters. 

Chapter III concerns basic, rather mathematical, 

features that we can make codes possess, 

hierarchical structures betwe_en codes and universality 

of codes for channels. In Chapter IV we investigate 

two decoding schemes for convolutional codes, namely, 

sequential decoding and Viterbi decoding. Although 

Viterbi decoding is more suited to hardware implementation 

in the modern communication systems, they are complemen-

tary. The emphasis is placed on the computational 

aspects on sequential decoding with convolutional codes. 

In this chapter we see why communication engineers prefer 

tree codes in channel coding and how they work in a 

certain application. 
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    In the later half of the thesis we consider source 

coding. Since our aim is the efficient coding of 

practically important sources which have, in general, 

correlations between output letters (sources with memory) , 

we first summarize, in Chapter V, necessary notations 

and well-known results. Chapter VI is devoted to the 

study of the existence of codes with universally good 

performance over sources, universal codes, which are 

particularly important in source coding. We introduce 

possibly the least restrictive class of universal codes, 

and discuss the practical meaning of it. The problem 

of tree encoding is treated in Chapter VII. The main 

topic in this chapter is a tree coding theorem for 

stationary ergodic sources, which is the first satis-

factory tree coding theorem. The theorem asserts that 

tree codes can ultimately attain the theoretical limits 

on the coding distortions. Finally, in Chapter VIII 

we consider tree coding of a particular source, speech. 

There, we can see the difficulty in treating real 

sources which do not have uniform and purely stochastic 

characteristics. However our experimental data reveal 

that speech may be encoded more efficiently if suitable 

codes and source adaptation mechanisms are selected. 
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        CHAPTER II 

CHANNEL CODING PRELIMINARIES 
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1. Communication system and coding 

   A fundamental problem in communication is how efficien-

tly one can send signals from an object to other distant 

point. The object may be speech or written articles 

and the emitted signal may be a speech signal converted 

to electric current by a microphone or an electric pulse 

train corresponding to letters in the written message 

such as in telegram. We call such an object an information 

source, or simply, a source. At the destination, the 

exact reproduction of the signal is indispensable in 

some cases. In other cases only an approximate repro-

duction with specified fidelity is sufficient. We 

call the medium that carries necessary data from the 

source to the destination a channel; e.g., atmosphere 

in radio communication, or copper wire and repeaters 

in cable communication. 

   Some limitations in communication often occur because 

of the effect of noise in the channel, such as the thermal 

noise in an electronic circuit or the disturbance in long 

distance radio communication. When high speed communi-

cation or high quality communication is required, these 

considerations become paramount. Direct connection of 

the source to the channel is not generally a good answer 

even when possible; communication engineers have invented 

various devices, commonly refered as encoders and decoders 

( see Fig. 2.1.1 ), to facilitate efficient communication 
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How well should they work, and how should they be 

constructed is the coding problem for the source and 

channel. 

    Information theory, originated by Shannon [1], 

provides a mathematical basis for studying the existence 

of a good encoder and good decoder. One of his main 

theorems is stated, in rather vague terminology, as follows: 

  Desired communication is possible if the "rate" of the 

  source relative to a given fidelity criterion is less 

  than the "capacity" of the channel, and it is impossi-

  ble if the "capacity" is less than the "rate". 

Here we mentioned two notions; the "capacity" of the 

channel and the "rate" of the source, both of which 

will be defined rigrously later. 

   Let A,B,A, and B be finite sets, and suppose that, 

at time i, the source emits xi selected from A, the 

channel emits yi selected from B when it receives xi 

selected from A, and the decoder, observing yi, emits 

yi selected from B as a reproduction of xi. Note that 

the encoder, the channel, and the decoder may use the 

data that have been received in the past or that will be 

received in the future to choose the symbol emitted that 

time. A,B,A, and B are called alphabets and their 

elements are called letters. ( Of course, the situation 

is too simplified; the source and channel are not 

necessarily synchronized with each other. ) 
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   SOURCE I SOURCE L_-__CHANNEL I               
1 ENCODER 1 ENCODER I 

             xj-----J uj ~----~j                                                    xj 

                                    NOISY 

                                    CHANNEL 

DESTINATION j SOURCE L __ __jCHANNELI 

         y LDECODERJ UDECODE i yi 

            Fig. 2.1.1 - A Communication System 

SOURCE (SOURCE) SOURCE (CHANNEL) 

          ENCODER ENCODER 
         xi u u . 

     7 1 ^ xj 
          NOISELESS NOISY 

           CHANNEL CHANNEL 

                 u~=uj 

DESTI- (SOURCE) DESTI- (CHANNEL) 

NATION LDECODER NATION DECODER 
        yi u~ 

 (a) Source Coding (b) Channel Coding 

       Fig. 2.1.2 - Coding Problems 
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    The respective actions of the encoder and decoder 

are not merely inversions of each other, for the decoder 

should detect faithfully which RN = Rl...RN is sent over 

the channel observing the channel output 9N = 9                                                   1" N 

while the encoder should decide which RN yields a good 

reproduction yN = y1...yN provided by decoder's faithful 

detection of RN from YN. This idea will be well under-

stood by introducing intermediate binary ( or q-nary ) 

sequences un = u1...un and An = ul...O with ui, ui = 

0 or 1 ( or, 0, 1, ... or q-1 ) , as depicted by broken 

line in Fig.2.1.1. We call u and u , respectively, 

a message sequence and a decoded message sequence. 

Generally, the periods between digits in these sequences 

may not agree with those between letters in source 

output or channel output ( n ~ N ). 

    With these intermediate sequences, the coding 

problem for the source and channel splits into that for 

the channel and that for the source. Information theory 

assures that entirely separate attacks on respective 

problems are permissible under broad conditions[2]. 

The former is called the channel coding problem, which 

aims at reliable communication over the channel, and 

the latter is called the source coding problem, which 

aims at good reproduction at the destination when the 

message is sent over a noiseless channel, see Fi.g.2.1.2. 
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     •Especially , the source coding problem is said to be 

     noiseless if the reproduction yN is exact, xN = yN. 

     and is said to have a fidelity criterion if yN 

     satisfies the condition d(xN,yN) < ND for a given function 

     d on ANxBN and a fidelity D > 0. 

          We again return to Fig. 2.1.1. We have been concerned 

     only with the relationships between letters. However, 

      since the source may continuously emit letters x1x2... 

     indefinitely, the decoder and encoder should be active 

     as long as the source is. A simple way accommodating 

     the system to such situation is to partition the stream 

     of source output into blocks of a given number of conse-

     cutive letters and to encode each block independently. 

     This block-wise coding scheme is called block coding. 

          More precisely, the block source encoder encodes each 

      block of N consecutive source letters xN = x1...xN into 

      a block of binary ( q-nary ) digits, u n = u1...u-n ; 

     the block channel encoder encodes uN into a block of channel 

      input letters, xN = xl...xN. Then the channel decoder, 

     observing the block of channel output letters, yN = 

     y1...yN, detects the transmitted xN, and emits a block 

     of binary ( q-nary ) digits, an = ul...u n, expressing 

     x; the source decoder simply converts u n into a block 

      of reproduction letters, y_N = y1... N. See Fig.2.1.3. 
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X = .. xC xi ... xN xN+i x2N [x2N+l " ' 
                 W source encoding 

             lui ... un Iun+i .. u2n u2n+1 .. 

u = ... uC u1 ... un un+l ... u2nl u2n+1 ... 
                 W channel encoding 

x = ... x~ xl .. xN b+i x2N x2N+l ... 
                          transmission over channel 

  _ ... y~ Ll .. NJ yN+l .. y2N ] I y2N+l ... 
                       channel decoding 

                                                                                                                                                                             ... u = u~ ul un IUn+l u2n E?+1 

n U = u~ ul un Hn+i u2n u2n+1 
                           source decoding 

y = yC yl ... yN yN+l y2N yt2N+l ... 

         Fig. 2.1.3 - Block Coding 
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We call each xN and each yN in this scheme a block 

channel codeword and block source codeword respectively, 

and we call the respective totalities of these code-

words a block channel code and block source code. We 

note that, if codewords in respective codes are numbered 

from 1 to M, the intermediate sequences can be replaced 

with numbers m = 1, ... M. Then, the rates of codes 

are (1/N)log e M vats/letter [ or (11N) log 2 M 

bits/letter ]. 

    We have so far discussed from a rather mathematical 

point, where any encoding and decoding computations are 

assumed possible. However a little reflection reveals 

that a block encoder should repeat an exponentially 

increasing number of operations such as distortion 

calculation or distortion comparison in an only linearly 

increasing time span as the block length gets longer. 

With this regard we need codes to have some structures 

between codewords that allow easier decoding. 

    Tree codes are important such codes, which have 

a tree-like structure between codewords. This 

geometric structure facilitates efficient encoding 

and decoding methods; some of them are systemtic 

versions of list-searching scheme, and others are 

different. 
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    Lastly, we give several notations, which are assumed 

in this and the next two chapters where we are concerned 

with the simplest channels, discrete memoryless channels. 

In the later chapters, where we are concerned with more 

complex sources and channels, more subtle notations are 

given. 

    Given a set A, An denotes the set of all n-tuples 

a1...an, ai e A, and, for each n, elements in An are 

identified by small letters with an under bar and a 

super script n, e.g., xn or an, keeping capital letters 

for random variables and sets, e.g., Xn and S. For 

any subset S in An, Sc denotes its complement. Let 

G be a statement which is true or false. Then we denote 

the indicater function of G by X[G]; X[G] = 1 if G 

is true and X[G] = 0 if otherwise. Although distinct 

symbols are used for source and channel alphabets in 

this section, we use the same symbols A and B for 

channel and source alphabets in the subsequent chapters. 

Finally, all logarithmic functions log(*) are assumed 

to have the natural base e - for the function with the 

base two, we write as log 2 (*) explicitely. 

                           13
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2. Block coding of DMC 

    A discrete memoryless channel (DMC) is a channel 

with stochastic noise such that, for received channel 

input sequence xN = x1...xN, the channel emits channel 

output sequence y_N = yl ...YN with the product probability 

         P(yN IxN) = II N P(Yn Ixn) 
                            n=1 

where P = {P(bla), asA, bsB} is a conditional pmf defined 

on AxB. The DMC is identified, symbolically, by P. 

Obviously, the outcome from the DMC is a sequence of 

iid random variables for each input sequence. For a 

given pmf on A, we also write 

N 

            p (xN) = II P (xn) 19 
                            n=1 

for all xN e AN. 

    When a block code cN = { xxN
n, m = 1, ... M } is given, 

the most popular decoder is a maximum likelihood decoder 

( MLD ) which operates as : decode each channel output 

yN into a message m if yN is in the set, call it the 

decoding region for m, 

  YN,m(P) { YN e BN : P(YNIXN) > P(YNIXN-), all m' ~ m } 

( of course, yN may not be in any YN,m(P), but we can 
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neglect such an event without any drawback. ) 

    Let Pe m(cN) be the probability that, when the massage 

m is sent, a decoder, not necessarily a MLD, fails to 

decode the channel output into m correctly, and let 

the average probability of error be 

M 
       Pe(cN) M E pe m(cN). 

                        M=1 ' 

Then, as one can see in [2], the MLD minimizes Pe(cN) 

and gives 

     Pe m(cN) = E P(yN Ixm) 
              yNeYN,m(P) 

                E P (yN I xN) X[ P (y_N I XN) < P (y_N ~ XN ) 
                yNeBN 

                      some m' ~ m ] (2.2.1) 

The extreme right-hand side is further bounded by the 

following form with free parameter 0 < p < 1 

                          P(yNIxN') 1 p 
       E P (yN l xx ) E -- N 1+p 

     yNCBN m'(#m) P(_ (Xm) 

However, it is quite difficult to obtain an analytically 

tractable approximation of it for a particular code. 

Nevertheless, if we let N be a random code 

                           16



consisting of random codewords Xm with probabilities 
Pr{ Xm = xN } = p(xN), all xN s AN, for a pmf p on A, 
and if we apply the bound to C N, the expectation of the 

bound with respect to 4CN is further bounded by an elegant 

form. That is, letting e be the expectation operator 

with respect to 6N, the following result is known [2]. 

   Lemma 2.2.1: The MLD minimizes Pe(cN) for any cN 

and gives 

 e"e ( CN) E Pe m( CkN) 

           < exp{ -N[ E0(p,p,P) - pR ] } ; 0 < p < 1, 

for all m = 1, ... M , where R = (1/N)log M and 

                                      1 1+P 
  E0(P,P,P) -log E [ E p(a) P(bja) ] 

                      bEB aeA 

    Since Pe(eN) = E all codes Pr{ O N = cN } Pe(cN)' 

there exists at least one code cN satisfying Pe(cN) < 

  Pe( Z`N), and the bound in the lemma is really a 

bound on Pe(cN) 

   Theorem 2.2.1: There is a block code cN of rate 

R = (1/N)log M such that the MLD yields 

       Pe(cN) < exp{ -NE r(P,R) } 
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where 

     E (P',R) 0 max max [ E (p,p,P) - pR ] 
      r p 0<p<1 0 

    The function Er(P,R) is called the random coding 

exponent function. ( The term "random coding" comes 

from the argument above the theorem, which is called 

a random coding argument. ) A typical curve of the 

function is illustrated in Fig.2.2.1: Er(P,R) has the 

slope -1 for rates less than a critical rate RO(P) and 

has positive values for rates less than C(P), where 

         C(P) max I(p,P) and 
p 

                                  P(b la) 
       I(p,P) = E E p(a)P(bla) log - . 

                acA beB z p (a') P (b la') 
                                                           a ' cA 

I(p,P) is called the mutual information quantity for 

p and P, and C(P) is called the channel capacity of 

DMC P. The term "capacity" referring to C(P) is 

justified by the next theorem. 

   Theorem 2.2.2: For a DMC P and any R > 0, if R < C(P), 

then, for any c > 0, there exist a block encoder and 

block decoder with a rate larger than R - c and a 

probability of decoding error less than c , and, conversely, 
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if R > C(P), then there are no such encoders and decoders. 

    Since (1/N)log M is made close to any positive value 

for large N and large M, the first part of Theorem 2.2.2 

is a consequence of Theorem 2.2.1, and the proof of 

the latter part is seen in [2]. 

    Letting R < C(P), the next interesting problem is 

how fast the error probability decreases as the block 

length gets longer.(From Theorem 2.2.1, we know that 

it is no longer slower than exp{ -NE r(P,R)}.) We call 

the maximally attainable exponential rate, 

      E(P,R) = lim -N log inf Pe(cN), 
                 N}co cN 

the reliability rate function of P. It is known [2],[3] 

that E(P,R) = Er(P,R) for RO(P) < R < C(P) where 

RO(P) is the critical rate defined before. 

    To obtain a stronger bound for R < RO(P), we let 

    Z(a,a") E VP(bla)P(b a") 
               beB 

for each a, a' e A , and let 

   Z(xN,xIN) E VP(yNixN)P(yNIL.N) 

               yNE$N 

for each xN, x'N e AN; they are called, respectively, 
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the Bhattacharyya distance between a and a' and the 

Bhattacharyya distance between xN and x'N. Applying 

(2.2.1 ), with p = 1, to a code c'N containing 2M 

codewords, we have 

   pe m(c'N) < E Z(xm,xN-) ; m= 1, ... 2M (2.3.2) 
      ' m' (#m) 

Using the standard inequality ( Eai )s < Eas , 0 < s < 1, 

we have 

      Pe/m(c.N) < ,E Z1/p(xN,x 1 )                 m (gym) 

for 1 < p and m = 1, ... ,2M. Let it, N be a random 

block code with 2M codewords constructed in the same 

way as before. The following lemma is obtained 

from the arguments in [2]. 

   Lemma 2.2.2: 8 pe/m(.'N) is independent of m and 

   { 8P e/m ( t -N) } p 

   < exp{ -N[ Ex(p,p,p) - p(l/N)log 2M ] } 

for 1 < p and m = 1, ... ,2M, where 
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         E
x(p,p,P) 

       -(p/N)log Zl/p(Xl,X2) 

         -p log E p(a)p(a')Z1/P(a,a') 
                        a,a'eA 

for 1 < p. 

   For 1 < p, let $m be the indicater function of 

       Perm < 2P[ Pe/P )P 

where we let 

    ~`Pe/m L & Pl/i (C'N) 

Since, from Markov's inequality, we have 

       2M 
       E ~m > 1/2 , 

        m=1 

there exists at least a code c'N such that ~m = 1 for 

at least M m's. We renumber the codewords that are 

specified by m for which ~m = 1 in c'N, and let cN be 

the block code consisting of these M codewords. Since 

expurgation of codewords does not increase the average 

probability of error. we know 
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       Pe
,m(cN) exp{ -N[ EX(p,p,P) - p(l/N)log 4M ] } 

      for m = 1, ... M and have a well-known theorem: 

         Theorem 2.2.3: For each N, there exists a block 

     code cN of rate R = (1/N)log M such that the MLD yields 

         Pe(cN) < exp{ -N EeX(P, R + (l/N)log 4 ) } 

     where 

        EeX(P,R) max sup [ Ex(p,p,P) - pR ] 
                    p p>l 

         The function EeX(P,R) is called the expurgated 

     exponent function, and is known to be[2],[3]: 

              EeX(P,R) = E(P,R) ; R = 0, 

              EeX(P,R) > Er(P,R) ; 0 < R < R1(P), 

             Eex(P,R) = Er(P,R) ; R1(P) < R < RO(P), 

     where R1(P) is another critical rate. All of the 

      curves are summarized and illustrated in Fig. 2.2.1. 
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    In the figure, Eex(P,R) is depicted as if it 

is finite for all R > 0. However, certain channels 

have infinite values. Consider the channel P depicted 

in Fig.2.2.2. It is certain that the channel yields 

no error at R = log 2 , that is, E (P, log 2) = ~. We 

say that a DMC P has a zero-error-capacity R. if E(P,R) 

= - for R < R
. , and, conversely, say that P has zero 

zero-error-capacity if Roo = 0. It is known [2] that 

the quantity 

         RX,~ = sup max p EX(P,p,P)                 p>1 p 

is a lower bound of the zero-error-capacity. Therefore, 

if P has zero zero-error-capacity, then sup 
P>1 [ Ex(p,p,P) 

- pR ] is attained with finite p for R > 0 . 
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                        ( unknown for high rates ) 

          Rl R0 C(P) 

  Fig. 2.2.1 - Several Exponents in Channel Coding 

                  0 -E 0 
E 

                1 1-E 1 
                2 1 E- 2 

E 

E 
                 3 1-E 3 

Fig. 2.2.2 - A Channel with Positive Zero-Error-Capacity 
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          CHAPTER III 

PROPERTIES OF BLOCK CODES FOR DMC 
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     '1 . Hierarchical construction of good codes 

         In the previous chapter, good codes are shown 

     for each rate, or for each code size M, and, in such 

     an approach, a good code c1 with M codewords and another 
     good code c2 with M codewords, both for the same channel, 

     might be made of entirely different class of codewords 

     each other. However, we can show two possible forms 

    of hierarchical relationships between ci c c2 . ... 
     where the inclusion means that every codeword of ci 

     is in ci+1. Proofs of such hierarchical structures 
     are virtually related to sequential construction 

     of good codes; by an addition of a suitable codeword 

     to a good code ci with i members, enlarge it up to another 
     good code ci+l with i + 1 members. Of course, the 

     hierarchy relies upon in which sense we say a code 

     is good. If we mean it under the light of the expurgated 

     exponent function, the structure takes quite an elegant 

     form. So we start with this exponent. 

     Hierarchy For Expurgated Exponent Function 

          Suppose that the DMC P has alphabets A = {0,1,,.. ,a l} 

      and B = {0,1, and that it has zero zero-

      error-capacity( see Sec. 2.2 ). The basic bound in 

     proving the expurgated bound ( Theorem 2.2.3 ) is (2.2.2). 

     We put as 
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M 
     F(c ) 4 M E E Z(xm,x~Nn.) . 

                  m=1 m'(~m) 

Then, F(cM) is a bound on Pe(cM), where the subscript 
M in cM means the M members in the code. For the 
later convenience, we let 

     EeX(p,P,R) sup [ Ex(p,P,P) - pR ] 
                     P>1 

for R > 0, and call it the expurgated exponent function 

( although it is a little abuse in terminology ). 

The pmf p is fixed arbitrarily through the section. 

We note that, if X denotes the expectation 

operator with respect to a random codeword XN = X1...XN 

assuming values xN e AN with the product probability 

p(xN), then Ex(p,p,P) defined in Lemma 2.2.2 is recasted 

as 

      Ex(p,p,P) = -(p/N)log X 8X- Z1/p(XN,X.N) 

for all p > 1. 

    The recursive selection for the exponent EeX(p,P,R) 

starts.from showing a good two word code. Let y be an 

integer, and let 0 < s(i) < l,'i = 1, ... y, be numbers 

all of which are determined later. Then Markov's 

inequality implies the inequality 
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   Pr{ ~X'Zs(i) (XN,XIN) > 2ytx 8X.Zs(1) (XN,X~N) 

               some i = 1, ... y } < 1/2 , (3.1.1) 

and the inequality shows the existence of 

xi c AN such that 

          ~X-Zs (i) (xl , X.N) 

          < 2y 6X ,CX.Zs(i) (XN~X.N) y. (3.1.2) 

On the other hand, using Markov's inequality again, 

we have 

       N N S(i) N N 1/s (i)      Pr{ Z(xl,X' ) > min[ 2 tX.Z (xl'X' ) ] } 

i 

    Pr{ Zs (xi,X'N) > 2 ~X.Zs (xi,X' ) } 

   < 1/2, (3.1.3) 

where s* is the minimizing s(i). From (3.1.1) and 

(3.1.3), there is x2 s AN such that 
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           ~'X.Zs(i) (x2PX.N) 

     < 2y(5X ex-Zs(i) (XN,X'N) ; i = 1, ... y, and (3.1.4a) 

        Z(x1,x2) 

         < min[ 4y~` Zs(i) (XN
,XIN) )1/s(i) (3.1.4b)              i ex X' - -

      Let c2 = { x1'x2 }. Next, we suppose that we have 
     cM = { x1, ... , x~ }, xi s AN, such that 

            X.Zs (1) (xN X'N) 

          < 2yeX tX.Zs(i) (XN,X,N) ; i = 1, ... ,y (3.'1.5a) 

                                                            m = 1, ... M, and 

       F(cM) 

         < min[ 4y(M-1) 8X 6X.Zs(1)(XN,X'N) ] 1/s(i) (3.1.5b) 

i 

      Then, Markov's inequality implies 

M 
       Pr{ Z Z(xm,X.N) 

                m=1 

M            < min[ 2 Z r'`X.Zs(i) (xm,X.N) 1/s(i) } 
                   i m=l 
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  < Pr{ E Zs*(xN,X.N) > 2 E ~X,Zs*(xm,X.N) } 
          m=1 m=l 

  < 1/2 , 

where s* is the minimizing s(i) and we used 0 < s* 

in the first inequality. The above inequalities imply, 

together with (3.1.1) and(3.1.5), that there is xM+le AN 
such that 

     ex z (') (xM+l,X'N) 

    < 2y x XAZs(1)(XN,X.N) ,y, (3.1.6a) 

and 

   M N N S(i) N N 1/s(i) 
    E Z(xm,?M+l) < min[ 4yM tX ~X,Z (x ,X' ) ) 

    M=l i 

From the latter inequality, 

      F(cM V {+1}) 

M 

      M+l { MF(cM) + 2 E Z(26,~N,1+1) } 
                              m=l 

      < min[ 4yM (tX 8X,Zs(i)(XN,X.N) ]1/s(i)p (3.1.6b) 

i where we used M(M-1) 1/s(i) < M1/s(i)(M-1) and s(i) < 1. 
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Since we already have c2, we now conclude that there 
is a series of code enlargements cM+l = CM u {xN+l} 
such that each cM satisfies 

   F (cm) 

  < exp{ -N max[ Ex(p(i),p,P) - (p(i)/N)log[ 41(M-1) ] ] } i 

where we put p(i) = 1/s(i). Let Ri = (i/N)log a, let 

y = N, and let p = p(i) maximize Ex(p,p,P) - pRi. 

Then, for each M such that Ri > (1/N)log[4N(M-1)] > Rj_l, 

we have 

  F(cM) < exp{ -N max[ Ex(p(i) ,p,P) - p(i)R~ ] } 

i 

        < exp{ -N EeX(p,P,RM+3N) } 

where RM = (l/N)log(M-1) and SN = (1/N)log 4aN. 

Thus we proved the following theorem. 

   Theorem 3.1.1: For any N, there is a sequence of 

block codes cM+1 = cM u {xM+l} such that, for each M,the 
MLD yields 

      Pe(cM) < exp{ -N Eex(p,P,RM+SN) } 
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where RM = (1/N)log(M-1) and SN = (1/N)log 4aN. 

    Ee X(p,P,R) is not the true expurgated exponent 

function. If we intend to obtain a hierarchy with 

respect to Eex(P,R), we have to vary p for each M. 

However such adaptation for rates will destroy our 

basic argument. 

    Omura [4] shows a recursive argument for EeX(P,R). 

However, his argument leads to a hierarchical series 

of codes relative to the expurgated exponent function 

only if a pmf p achieves Eex(P,R) simultaneously for 

all R, which is satisfied only for symmetric channels. 

    To complete our argument, we specialize the channel 

into a binary symmetric channel ( BSC ) and codes into 

linear codes. The BSC P is characterized by A = B = 

{0,1} and, for 0 < e < 1, 

                      1 - e ; if a = b 

    P(bla) = 
                    C ; if a b . 

A (K,N)-linear code is a block code whose codewords 

are genrated by K N-vectors gk c {0,1}N according 
to the linear combination 

K 

         xN = E Yk gk , 
                    k=1 
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where Yk £ {O,1 land the summation and multiplication are 

arithmetic in GF(2), the Galois field with elements 

0 and 1. It is easy to see that EeX(p,P,R) is maximized 

by the symmetric pmf ps, PS(O) = Ps(1) = 1/2 , and that 

   Ex(p,Ps,P) = -p log{ (1/2) [ Zl/p(0) + Zl/p(1) ] } 

for all p > 1 where Z(0) = Z(0,0) and Z(l) = Z(0,1). 

In the remainder of this section, we assume p = ps. 

    First, we consider Pe(ci) for (l,N)-linear codes 

ci = { ON,gN}. The argument goes in almost the 

same way as in the previous proof. We can see the 

existence of a good ci such that 

      F(c ) < inf [ Zl/p(XN) ]p             1 = 
p>l X -

where Z(xN) = Z(ON,xN) for all xN c {0,1}N, Thus, we 

have 

   F(cl) < expf -N Eex( (1/N)log 1 ,P)) }. 

Next, we suppose that there is a good (K,N)-linear 

code cK which satisfies 

   F(cK) < inf [ (2K-1)'X Z1/p (XN) } p 
               p>l 
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We note that the right-hand side is precisely exp{ -N 

EeX( (1/N)log(2K-1) ,P) }. Then, for a non-trivial 

enlargement cK+1 = { xN = x'N + ygK+1, x'N E c*K,1' = 0,1 } , 
we have 

  F(cK+1) = E Z(xN) + E Z(xN+gK+1) 
             xNecK xNEC* 

          XN#0N 

By a random coding argument, there is gK+l such that 
the last term is bounded by inf 0>1 [ 2K eX Z1/p(XN) ]p. 

Therefore, for any p > 1, we have the bound 

  F(cK+1) < inf [ (2K-1) P + 2pK ] [ ~X Z1/p(XN) ] p 
               p>1 

           < exp{ -N EeX( (1/N)log(2K+1-1) ,P) }. 

We summarize the result in a theorem: 

    Theorem 3.1.2: For a BSC P, there is a sequence 

of binary N-vectors gl, g2, ... such that, for each K, 
the (K,N)-linear code cK generated by {gl, ... IRK} 

has the average error probability 

         Pe(c*) < exp{ -N Eex(P,RK) } 

for the MLD, where RK = (1/N)log(2K-1). 
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Hierarchy Towards Channel Capacity 

    An important exponent function other than 

EeX(p,P,R) is 

       Er(p,P,R) = max [ E0(p,p,P) - pR ] 
                    0<p<l 

We call Er(p,P,R) the random coding exponent function, 

although the so-called random coding exponent function 

is the maximum max p Er(p,P,R). From random coding 

arguments, it is relatively easy to see that, for any 

fixed p, 0 < p < 1, there exists a code cM such that 
Pe(cM) < exp{ -N[ E0(p,p,P) - pRM ] } and that, given 
such code cM, we can always select a subcode cM-1 
from it sso that Pe(cM_1) < exp{ -N[ E0(p,p,P) - pRM_L ] }. 
However we can never vary p in this argument. Non-

exixtence of any fine hierarchical structure may be 

a feature of random coding exponent function that gives 

the exact exponent at high rates. Nevertheless, it 

seems desirable to show a hierarchy under an exponent 

related to the random coding exponent function since 

the structure of codes of rates near the channel 

capacity is also interesting in connection with channel 

coding theorems. 

    To see such a hierarchy, we assign new decoding 

regions to a given cM such that, for each m, 
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        N N N xN 

{ log P(y IN m) > NRm+l and log P(Y INm-) < NR m.+l ; 
      q(Y ) q(Y ) 

 all m' = 1, ... ,m-1 } , (3.1.7) 

where q is a pmf on B given by q(b) _ aEA P(bja)p(a) 

for each b e B. We call a decoder with this decoding 

rule a modified MLD. This decoding rule is not maximum 

likelihood decoding, and the probability of decoding 

error for m in this scheme depends only on the 

first m codewords;namely Pe m(cN) Pe m(cm) where cm = 
, { c1, ... cm }. Using standard bounds, we see 

     Pe ,m(cm) 

   < E P(YNIXN) XL log P(YNI ,) < NR +      - 
EBN - m q(Y_N) m      yN 1 

              N N P(- NIxm-)       + 
NE N P(- Ix,) ( log q(YN) -'- NR m.+l , 

        y EB -

              some m' = 1, ... ,m-1 ] 

    < mP/(l+P) E qP/(l+P)(yN) pl/(1+P)(YNIxm) 
               yNEBN 
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           M-1 

    + E m.-1/(1+p) E P(yNlxm) q-l/(l+P)(yN) 
        m"=1 yNEBN 

    X pl/ (1+p) (yN Ix 
                            m') 

for all m = 1, M and all 0 < p < 1. To simplify 

the arguments we fix p for a while. Suppose that cM 
satisfies 

           qP/ (l+P) (yN) pl/ (l+P) (yN I xN) 

m 

        yNEBN 

     < 2 GX 
Nz qP/ (l+P) (yN) pl/ (l+P) (yN I XN) 

              y EBN 

Denote the expectation in the right-hand side by q(p). 

Then, with the aid of Holder's inequality, we see that 

gy(p) < exp{ -N E0(p,p,P)/(l+p) }. By the same argument 

as that used for the transition from (3.1.5) to (3.1.6), 

we can show that there exists +l such that 

         qP/(l+P) (yN) pl/(l+P) (yNIxNM+l) < 2~(P) 

    yNEBN 

and 

   m-1 

     M, 1/(1+p) p(yNIx'N~I+1) q-1/(1+P) (y N) pl/(1+P) (yNIx 
  M -.    "=1 yNEBN 
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        M-1 

< 2 E m'-1/(l+p) E qA/(l+A)(yN) pl/(l+A)(yNlxm ) 
      m'=1 yN6BN 

In this way we can show the existence of xi, x2, ... 
such that the code cM = { xi, ... , } satisfies 

    P (cN).< 2[ ml/(l+p) + 2 m E 1 m.-1/(1+A) ]~(A)       e
,M M - m'=1 

for each M. Thus, if we note the inequality 

E m-1 m.-l/ (l+p) < (,+P-1) [ mA/ (l+p) - 1 ] < mA/ (l+p) ,    m'=1 -

and if we apply the technique used in the proof of 

Theorem 3.1.1, we have the following theorem. 

   Theorem 3.1.3: For any N, there is a sequence of 

block codes cM+1 = cM V {+1} such that, for each M, 
the modified MLD yields 

       Pe m < exp{ -N[ E.(P,P,Rm+1) - 8N ] } 

for all m = 1, ... ,M where SN = (l/N)log 6aN and 

    E°(p,P,R) 6 max [ E (A,P,P) - PR ]/(l+A)       r 
O<p<1 0 

     It is almost evident that Er(p,P,R) _> E'(p,P,R) 

(l/2)Er(p,P,R) and E .(p,P,R)/Er(p,P,R) } 1 as R - C(P), 

the channel capacity of P. Thus, Theorem 3.1.3 gives 
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a channel coding theorem for DMC's. 

Indeed, this approach serves as a version of 

Feinstein's argument on his fundamental lemma, 

an important lemma in classical Shannon theory [5],[6]. 
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2. Universal performance of good codes 

    Up to here, all good codes are obtained for any, but 

fixed, DMC. However, due to the lack of consistency in 

channel characteristics, sometimes we have to make a 

code not knowing about channel identity in each 

communication. Csiszar, Korner, and Marton [7] ( also 

see [8] )show a surprising answer to coding DMC's 

under such a situation. 

    Let S be the totality of DMC's with the input alphabet 

A = { 0, ... ,a-1 } and the output alphabet B = { 0,...,5-l}, 

and define the mutual information function between 

xN C AN and yN C BN by 

       I(xN,yN) 

                                 N(a,blxN,yN) 
       E E N N(a,bjxN,y_N)log N N ' 

      aCA bEB N(aIx )N(bIy ) 

where N(a,bixN,yN) is the number of (a,b) in (xN,yN), 

and N(ajxN) and N(bIyN) are its respective marginal 

sums over a c A and b c B. We say that a code cN 

has a fixed composition pN if pN is a pmf on A and 

     N(alxm) = N pN(a) ; all m = 1, ... M and a C A. 
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'A maximum mutual information decoder ( MMID ) is a 

decoder which decodes every yN into m if I(xm,yN) > 
I(xxN.,yN) for all m' ~ m. The following is one of 

their main results. 

   Theorem 3.2.1: For each N, there is a block code 

cN of fixed composition PN and rate R = (1/N)log M 

such that the MMID yiels 

     Pe(cN) < expf -N( Er(PN,P,R) - o(N) l } 

where o(N)/N } 0 as N ~. 

    The function Er(p,P,R), which is not defined here, 

is called the random coding exponent function for fixed 

composition codes and is such that: 

          Er(p,P,R) > Er(p,P,R) and 

       max Er(p,P,R) = Er(P,R) 
       P -

    Despite of these strong mathematical implications, 

however, the codewords are to have a fixed composition, 

and the mutual information function is not as cumulative 

as the log-likelihood function log P(yNIxN) is; both 

keep the theorem away from application to tree codes. 
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In this section, we treat the problem in a somewhat 

different way, and extend the result to tree codes 

in Section 6.2 

    From Lemma 2.1.1, we have, for any Q,P e S, 

M 

Pe(cN) = M E E P(YNIxn) 
            M=l yNeYc (P) 

M 

     < M E E P(yNIxm) 
           M=l yNeYN~m(Q) 

           M p(YNIXN) 

M 
       = 1 Z E Q(YNIXm) exp[ log N N 

m=l yNeYN ~m (Q) Q (y ixxm) 

where Qe(cN) symbolizes that Q is used. Thus, if we let 

                       P (b I a) 
       d(PIQ) 

acAmax , beB log Q(bla) 

with the convention that log(0/0) = 0, then we have 

the channel mismatch relation: 

          Pe(cN) < Qe(cN) eNd(PIQ) ; all P,Q E S (3.2.1) 

The next lemma is proved later. 

    Lemma 3.2.1: For any 0 < c < l/2a2, there is a 
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subset S(E) of S with at most c-g(Ys DMC's such that, 

for each P c S, a DMC Q c S(c) satisfies the followings: 

   1) d(PIQ) < c, and 

   2) E0(p,p,P) - E0(p,p,P) < 2s3c for 0 < p < 1. 

    For an arbitrary, but fixed, c > 0 and pmf p on A, 

let S(c) be the subset given in the lemma, and let 

 CN be a random block code each of whose random codewords 

has the probability p(xN) for each xN c AN. Then, from 

Markov's ineqality, we have 

       Pr{ Qe(G`N) > 3c-2as&e , some Q c S(c) } 

     < E Pr{ Qe( &N) > 3c-2as CtQe } 

       QeS(c) 

     < E c2as%3 

       QcS(c) 

     < 1/3 , 

, where denotes the expectation operator relative to N 

and we put 

      EQe -6 8Qe ( GN) 
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Therefore we have the probability 

Pr{ Qe(C N) < 3E-gas It Qe , every Q E S(E) } > 2/3 . 

From this probability we see the existence of a code 

cN such that Q
e(cN) < 3E-2aa e Qe holds for all Q E S(E). 

Thus, from the channel mismatch relation, Lemma 2.2.1, 

and Lemma 3.2.1, the error probability for this code is 

  Pe (cN) 

< exp{ -N[ E0(p,p,Q) - pR + (1/N)log(E2a(3/3) - E ] } 

< eXp{ -N[ E0(p,p,P) - pR + (1/N)log(E2as/3) - E - 253E ] } 

for all 0 < p < 1 and all P E S. And we have a theorem: 

   Theorem 3.2.2: For suffciently large N, there exists 

a block code cN of rate R = (1/N)log M such that MLDD 

yields 

     Pe(cN) < exp{ -N[ Er(p,P,R) - o(N) ] } 

for any P E S where o(N)/N -; 0 as N ~ ~. 

    We note that, whereas MMID never needs the exact 

description of channels, MLD does. However this 
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,approach is simple and flexible enough for application 

to tree codes. 

    Next we show another universality with respect to 

the expurgated exponent function. Let C'N be a random 

block code consisting of 2M independent random codewords 

each of which assumes xN e AN with the probability p(xN), 

and let 

        &Qe 4 eQs m ( C'N) 

for 0 < s < 1 and each m. ( It is well-defined for 

we can see that the right-hand side is independent of 

m in the same manner as eQe
,m(C 'N) ) From Markov's 

inequality, we have 

  Pr{ ( d'N) > inf ( 3e 2aS t.Qs) l/s , some Q e S (E) }       Qe m 
O<s<l e 

  < inf { £-2a~& Qt/[ inf ( 3e-2aRE Qs )t/s ] } 
    t>0 e O<s<l e 

  < 1/3 

for each m = 1, ... ,2M, where the last inequality 

follows by letting t equal s . 

In view of this inequality, if we let ~m be the indicator 

function of the event 

  Qe,m( C'N) < inf ( 3e 2as a Qe )l/s ; all Q s S(E)                    O<s<l 
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then we have 

               2M 

        Pr{ M E ~m >1 } >2/3 . 
                    m=l 

Therefore, there exists c'N with 2M members such that gym= 1 

for at least a half of them, and hence there exists 

cN, a subset of c'N consisting of M codewords, such that 

         Qe m(cN) < inf ( 3c-2a~ Qss ) 1/s 
             ' O<s<l 

for all Q e S(c) and all m = 1, ... M. Thus, letting 

p = 1/s, we have 

   Pe(cN) 

  < Qe(cN) eeN 

  < exp{ -N sup [ E
x(p,p,Q) - pR - (p/N)log 9c-2aR - c ] }. 

              p>1 

The following lemma is proved later. 

   Lemma 3.2.2: For each P c S, there exists Q c S(c) 

that satisfies the conditions 1) and 2) in Lemma 3.2.1 

as well as the additional one: 

   3) E
x(p,p,P) - Ex(p,p,Q) < pa(2a2 )1/p ; p > 1. 
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    From the lemma, the above inequality is further 

upper bounded: 

     Pe(cN) 

   < exp{ -N sup [ E
x(p,P,P) - pR - ps(2S2c)l/p - pct ] } 

               p>1 

where, from p > 1, we put 61 = (1/N)log 9c-2a~ + c. 

Here we must note that the term (2S2c)l/p crucially 

depends on p > 1. Now let SY be the set of all P c S 

such that Eex(p,P,R) is attained by p < y in sup p>1 

[ E x (p,p,P) - pR ]. Then, from the all arguments above, 

for any c* > 0 and any y > 0, there exists a code cN 

such that 

     Pe(cN) < exp{ -N EeX(p,P, R + c2 ) } 

for all P c SY, where R = (1/N)log M and 

       c2 = ~(2S2c)1/Y + (1/N)log 9c-2as + c. 

Therefore, for any increasing positive numbers Yi and 

decreasing positive numbers ci, there exist increasing 

positive integers Ni,Mi and block codes ci with Mi 

codewordshaving block length Ni such that (1/Ni)log Mi 

> R - c. and = z 
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     Pe(ci) < exP{ -Ni E
eX(P,P,R+ci) } 

for all P c Syi. Let S.0 be the set of all P c S with 

zero zero-error-capacity. It is evident that 

S
y -> S as y -* co for R > 0. Therefore we have proved 

the following theorem. 

   Theorem 3.2.3: For any R > 0, there exist block 

codes ci each having Mi codewords of block length Ni 

such that, for any P c Sam, the MLD yields 

      Pe(ci) < exp{ -Ni[ E
eX(P,P,R) - ci } } 

for all sufficiently large i, where c- i 0 as i i ~. 
i 

    This theorem is weaker than the previous one; 

one block code does not necessarily possess a 

uniform bound over all P e S. Finally, to complete 

our argument we combine Theorem 3.2.2 and Theorem 

3.2.3 in a single form: 

   Theorem 3.2.4: For any R > 0, there exist block 

codes ci each having Mi codewords of block length Ni 

such that, for any P E: S., the MLD yields 

       Pe(ci) < exP{ -Ni[ E
c(P,P,R) - Ei ] } 
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for all sufficiently large i, where cc i -> 0 as i and 

         Ec(p,P,R) 4 max{ Er(p,P,R), EeX(p,P,R) }. 

The proof is seen in the latter part of this section. 

    Finally, we briefly mention to a recent result due to 

Csiszar and Korner [9]. They show, in a different 

framework, that, for any R > 0 and any c > 0, there 

exists a block code cN with a sufficiently large block 

length N and a rate larger than R - e such that "MLD" 

decodes the code in the error probability 

     Pe(cN) < exp{ -N[ E*(pN,P,R) - C ] } 

where pN is the fixed composition of the code and 

       E*(p,P,R) ~ max{ ET*,(p,P,R), E* (p,P,R) }. 
          C ex 

The function E* (p,P,R) is a counterpart, for fixed 

composition codes, of the expurgated exponent function. 

It is shown in [8] that max p E*(p,P,R) = Ec(p,P,R). 

It is interesting to observe that MLD attains 

the expurgated exponent function universally 

over channels,but MMID may not. 
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'Proof of Lemma 3.2.1 

    Let n be an integer such that n + 1 < 1/c2 < n + 2, 

and let S(e) be the set of all Q e S taking rational 

values Q(bla) = k/n ( k = 0,1, ... n ) for each a e A 

and each b c B. Clearly the size of S(e) is less than 

(n+l) as ( < e-2as ). First, fix P e S and a e A 

arbitrarily, and let b* e B be the letter such that 

P(b*la) > P(bla) for all b e B. Then there exists 

Q c S(e) that satisfies 

     P (b I a) + 1/n > Q (b I a) > P (b a) ; all b ( ~ b* ) , and       

I Q(b*Ia) - P(b*Ia) I < (3-1)/n. 

For this channel Q, it follows that 

        P (b I a) 
      log < 0 ; all b( ~ b* ), and 

        Q (b I a) 

     *1a) P(b*Ia)     P(b 
  log < log = -log[ 1 -

    Q (b* I a) P (b* I a) - (S-1) /n P (b I a) 

Since P(b*Ia) > 1, > 2, and ~2c <.1/2 by assumption, 

       (S-1)/n 2 - S 2 - S + 1                 < < < ~2E < e/2. 
      P(b*Ia) n n + 2 
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Hence, for E < 1/8, 

           P (b* la) 
         log < -log( 1 - E/2 ). 

          Q(b* la) 

Thus statement 1) is proved since P E S and a E A are 

arbitrary. To prove 2), note that 

  z { E p (a) P (b l a) 1/•(1+P) } 1+P 
  bEB acA 

            E { E p (a) Q (b l a) l/ (l+p) } 1+P I 
               bEB aEA 

  < E E { E p(a)P(bla)l/(l+P) } l+P 
     bEB aEA 

            { E p(a)Q(bla)l/(1+P) } 1+P I 
                    aEA 

  < E (l+P) E p(a) I P(bla)l/(1+P) - Q(bla)1/(l+P)    - b
EB aEA 

  < E (l+P) E p(a) I P(bla) - Q(bla) I 1/(l+P) 
     bEB aEA 

  < (l+P)R{(a-1)/n}1/(1+P) 

   < 2s 2. 

On the other hand, 

        { p(a)P(bla)l/(l+p) } l+P 
      b-TB a A 
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'Thus
, from log x < x-1, 

3 
         E0(p,p,P) - E0(p,p,P) < 2e5 

Proof of Lemma 3.2.2. 

    Let Q be the channel in the above proof for the 

given P. First note that, for a, a~ e A, 

  { E ti/P(bja)P(bja') }1/P - { E /Q(bja)Q(bja') }1/P 
    beB beB 

  < { E I /P(b a)P(bFa') - VQ(b a)Q(b a') }1/P 
       beB 

  < { E I P(bla)P(bla') - Q(bla)Q(bja') I1/2 }1/P 
     b B 

  < ( 2e52 )1/P 

for 0 < e < 1/252. Hence, by the inequality log x < x-1, 

it follows that 

  Ex(P,p,P) - Ex(p,p,P) < ( 2e52 )1/Pexp{ Ex(P,p,P)/P } 

                     < 5( 252 )1/P 
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for 0 < e < 1/252, where the last inequality follows 

since EX(p,p,P)/ is decreasing in p and EX(1,p,P) _ 

E
0(l,p,P) < log 5. The lemma follows from EX(p,p,P)/p < R. 
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Proof of Theorem 3.2.4 

    Let d„'N be the random code used in the proof of 

Theorem 3.2.2. Then, for any e > 0, we have 

Pr{ Qe
,m( G"N) < 3e-2a6 eQe, all Q e S(e) } > 2/3 

and 

Pr{ Q ( N) < inf (3e-2aSEQs)l/s, all QE S(E) } > 2/3.       e,m - 0<s<l e 

Let ~m be the indicator function of the joint event 

       Qe ,m( C N) < 3e-gas eQe~ and 

    Qe 'm( C.N) < inf (3e-2a~ Qs)1/s ; all Q e S(e).                     0<s<l 

Then, we have 

             2M 
     Pr{ M E ~m > } > 1/3. 

               m=1 

Therefore there exists a code c A such that ~m = 1 for 

a half of m's. Now let cN be the code consisting 

of those codewords corresponding to such m's with 

appropriate renumbering. Since expurgation of codewords 

does not increase the error probability, we obtain 
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a code such that 

           Qe,m(cN) < 3s-2as Qe' and 

   Qe,m(cN) < inf (3e-2as t Qs)1/s ; all Q e S(e).                 O<s<l 

Thus the proof is completed by constructing those codes 

for different values of e. 
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      CHAPTER IV 

CONVOLUTIONAL TREE CODING OF DMC 
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'1
. Tree and convolutional tree codes 

    The block codes that we have treated are codes 

made up from arbitrarily selected codewords, except 

the linear codes in Section 3.1. However, from the 

practical side, algebraic or geometric 

structure between codewords are often indispensable 

to facilitate highly reliable and practically 

implementable encoding-decoding. 

    For example consider a binary block code having 

the rate 1/3 bits-per-letter, 

           111101000 111101111 

           000111010 111010101 

           111010010 000111101 

           000000000 000000111 

For this code, the decoder needs 72 bits memory other 

than calculation of probabilities. On the other hand, 

if we rearrange the ensemble as sited in Fig. 4.1.1, 

the tree-like systematic structure reduces 

the memory requirement from 72 to 42 bits. Such a 

code which has a tree-like skelton is called a tree 

code; the terminologies, nodes, root node, and branches, 

are also used to indicate individual elements of the 

skelton of the code tree. The encoder's action is 

simply to trace branches and to emit sequences attached 

to branches called branch sequences in order. In the 
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          Fig. 4.1.1 - A Binary Tree Code 

           Branch Sequence v 0 

1 

J       ~~ 
0 q-1 

level 0 level 1 ... ... level i 

         Fig. 4.1.2 - A q-nary Tree Code of Rate log q 

                        61



example, assigning 0 to an upward move and 1 to a 

downward move on a node, the message 100 specifies the 

codeword 111010010. From the example, we see that the 

rate is almost determined by the number of branches 

growing on a node, q, and the number of letters 

assigned to each branch, v. 

    Suppose that the channel input and output alphabets 

are A= {0,...,a-l} and B= {0,...,8-l} respectively, and 

that message symbols are q-nary digits. A general 

code tree ( or tree code ) with relevant notations are 

depicted in Fig. 4.1.2. We say that a node is at the 

i-th level if the node is connected to the root node 

through i branches. The root node has the level 0. Any 

nodes on a path connecting the root node and a node 

are called antecedents of that node; conversely, the 

node is called a descendant of those nodes. On 

each node at the i-th level, there are emanating q 

branches, which are numbered from 0 to q-l, and 

each of which has a branch sequence consisting of letters 

from A, xi = xi l...xi v. A message sequence uL = 

u1**'UL specifies both a node in the tree and sequence 

xi...xv, called the codeword for uL. Then, we 
also denote the node by uL . If the tree code 

has the maximum level L, then the block length is 

vL, and the rate is (1/v)log q, which is virtually 
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independent of L. 

    However, the tree-like structure alone is insufficient 

to save decoder's memory. See the system 

in Fig. 4.1.3, where all the additions are modulo-2 

sum . If, for each shift-register content, we arrange 

the outputs in a row, v1v2v3, then we immediately obtain 

the previous example. Since the major operations are 

convolutions, such a code is called a convolutional tree 

code, or simply a convolutional code, and the shift-

register length is called the constraint length of the 

code, K ( = 3 ). The algebraic structure reduces 

memory requirement from 42 to approximately 0 bit, 

if the circuit is invariant throughout encoding ( time-

invariant convolutional code ). 

    A more general convolutional encoder consists of 

a K-stage shift-register, adders and multipliers over 

GF(q), the Galois field with elements 0,1, ... ,q-1, 

and a channel letter selector, as shown in Fig. 4.1.4. 

A message sequence u = ulu2... is fed into the shift-

register one digit a time from the left; for each 

content uiui -1" i-1***ui-K+1' v q-nary digits sare given 

by the linear operation over GF(q), 

                          K-1 
            si 1j k=0 ui-K M gk+l,j = 1, ... ,v (4.1.1) 

The commutator arranges these q-nary digits into a 
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Fig. 4.1.3 - The Generator of the Binary Tree Code 

               in Fig. 4.1.1 
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sequence si 1 ... si 
V which is added componentwise to a 

bias sequence vi 1 ..1 vi v consisting of digits from 

GF(q) to form zi 1 ... zi 
v by 

                      z. = s. . + v. 
                1,3 1,J 1,) 

Finally the channel letter selecter converts zi 1 ... zi v 

letter-wise into the branch sequence xi xi 1 ... xi v' 

according to the rule: 

                                      X-1 x 
     z -~ x c GF (q) , if E n < z < E n , 

                                 a=l a a=l a 

                                                          (4.1.2) 

            0 E GF (q) , if z < n0 , 

where n0,n1, ... n
o,_, are positive integers whose sum 

is q and z is interpreted as an integer in the "if" 

statements. 

    If vi ,j and g(i) assume values in GF(q) independently 
with an equal probability, then, from the property 

of GF(q) arithmetic, all zi
)j also assume values 

in GF(q) independently with an equal probability. 

Thus, from (4.1.2), x 
1.,J are iid random variables with 

the pmf 

n 

     p = { p(a) = a , a = 0,1, ... a-l }. (4.1.3) 
q 
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The totality gives a random convolutional codes. 

When we refer to ( random ) convolutional codes later, 

(4.1.3) is always assumed. For sufficiently large q, 

any pmf's are approximated with this form arbitrarily 

well. We summarize several properties of the 

random convolutional code for the later use ( cf. [2] ). 

   Lemma 4.1.1: 1) Succesive letters in a random codeword 

are iid random variables: 2) If two paths uQ and u'Q 

differ in every K consecutive symbols, ui+l ... ui+K 

ui+l ... ui+K, i = 0, ... ,Q,-K, then the specified random 

codeowrds Xi ... XQ and Xiv... XQv are independent. 

The lemma is an easy consequence of GF(q)-arithmetic 

and the configuration for the encoder. 

    Unfortunately, since the random convolutional code 

is generated by multiplication coefficients and a bias 

sequence selected randomly each time, we can not exclude, 

from our view, time-varying convolutional codes, codes 

with varying coefficients time after time, as far as 

random coding arguments are used. In contrast to 

time-invariant codes, time-varying ones require linearly 

increasing memory as block length increases. 

    As a summary, encoders genrate convolutional tree 

codes of rate R = (1/v)log q and block length vL, for 

message sequences uL. Each codeword is sometimes 

written as xn = x1 ... xn, and corresponding channel outputs 
          n v v 

are as y = yl ... yn' 
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      2. Universal performance of convolutional codes 

          In this section we see the error probability for 

      convolutional codes , and investigate universality of 

       codes over DMC's From the last purpose, 

      this section is complementary to Section 3.2. 

      First we see an efficient maximum-likelihood decoding 

      algorithm called Viterbi algorithm. Notations 

      in the previous section are maintained. 

      Viterbi Decoding Algorithm 

           From fig. 4.1.4, we see that, given a node u', 

      the branch sequence xi depends only on the K latest 
       message simbols ui ... ui -K+1; the K-1 latest history 

       ui -1 ... ui-K+1, called the state of the node ui 1~ 

      and ui indicating which branch on ul-1 leads to 

      the node u1. Therefore, the convolutional code is 

      completely specified if we know the branch sequences 

      on q branches emanating from nodes having respective 

      states and respective levels. The diagram 

      representing these minimally necessary specifications 

      has a structure like a trellis as shown in Fig. 4.2.1, 

      which is another representation of the example in 

       the previous section. Because of such a trellis-like 

       configuration for codes, convolutional tree codes 

      are often called trellis codes. 
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              Given an channel output y = yi ... yL, we can 
      assign the weight ( log-likel 

             log P(yiIxi) 

      to each branch with the branch sequence xi. Then, 
      MLD searches over the trellis for the path that 

      maximizes the cumulative weight ( up to the L-th 

      level ) 

L 
               E log P(yi x.). 

                      i=1 

          The Viterbi decoding algorithm .[10] implements 

      maximum likelihood decoding of trellis codes. It is 

      described as follows ( see Fig. 4.2.1 ): 1) At the first 

       step, the decoder searches all qK paths uK and, for 

       each aK-1 s AK 1, retains the path, 

                    K (a K-1 = u ) = a
l ... aK 1, 

       that has the maximum weight among all uK with the 

       state aK-1. 2) At the i-th step, the qK-1 previously 

       retained paths uK+1-2(aK-1), called the survivors, are 

       extended one branch to give qK candidates, and, for 

        each aK-1 c AK-19 the decoder selects a new survivor 
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States Paths Compared Extended Path 

00 Gam- 000 000 "' 
       X11 

olp X11 • .41p 

01 

10 

       000 1~1 000 d0 11 
0' 111 111 

   Fig. 4.2.1 - Trellis Diagram for the Tree Code in 

                Fig. 4.1.1 and the Viterbi Algorithm 

      States 

      0-00 

           0...01 

           0...02 
                                          / .i 

         0...0 q-1 i 

1 
     0...q-1 q-1 dY ' %.,~/~ 

    q-1 ...q-1 q-1 

Fig. 4.2.2 - Trellis Diagram for q-nary Codes 
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                 u K+i-1(a K-1) = ... a1 ..- aK-1 

     that has the maximum weight among q candidates with 

     the state aK-1: 3) When the topmost nodes of the trellis 

     are reached, the decoder selects the path u*L that 

     has the largest weight between the latest survivors, and 

     emits it as the decoded message sequence. 

           Readers with an interest in operations research 

     will soon recognizes that the procedure is not anything 

     else, but is just a version of algorithms for the 
. 

shortest path problem, as noted in [11] and [12]. 

         From the trellis structure, it is easy to see that 

     K branches are sufficient for a transition from a 

     branch to any branch stemming from a node of any state. 

     This suggests that the effective block length of the 

     codes isvK,just the constraint length times v. In fact, 

     modifying the message format by additional K-1 consecutive 

      0's as 

                                                  K-1 

                   L+K-1                   u = u
1 ..* uL 0 ... 0 , (4.2.1) 

     Viterbi [10] shows the following theorem. 

         Theorem 4.2.1: For any 0 < p < 1 satisfying 

                              72



E
0(p,p,P) - pR > 0, there exists a convolutional tree 

code c such that the Viterbi decoder yields 

              L(q-1) 
      P(c) < exp{ -vKE(p ,p ,P) 

                      cv 0            e 1 -e- } 

where R = (1/v)log q and e = E0(p,p,P) - pR. 

The proof is done by estimationg each probability that 

the message sequence is purged from comparison at a 

step, and it is clearly visible in the proof of the 

next theorem. 

Universality of Good Convolutional Codes 

    First suppose that the transmitted message is an all-

zero sequence OL+K-1 = 0 ... 0. Then, a decoding 

error occurs if, at some step, say the (j+l)th step, 

the comparison between paths 

                  j+l) j+K) 

                    0 ... 0 0 0 ... 0 

                       * .. * 1 0 ... 0 

                       * ... * q-1 0 ... 0 

discards the path OJ+K. This occurs only if a path 

of the form 

                   j+1 Q) j+l) j+K) 

   ui+K(Q) = 0 ... 0 nonzero * ... * nonzero 0 ... 0 , 
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'for some t = 0
,1, ... j, has a weight larger than 

that of Oj+K. The number of such potential adversaries 

is (q-1) 2 q R-1 [ or q-1 if k = 0 ]. 

    Each u3+K(R) specifies a codeword having the same 

first j-R branch sequences as the one for Oj+K. We 

denote, by x*xR+K and x*xR+K(R), the codewords that 

correspond to Oj+K and u3+K(R) respectively. Then 

the probability that Oj+K is eliminated at the (j+l)th 

step, write Pe(Oj+K), is 

      Pe(Oj+K) < E Pe(Oj+K,R) 
                       R=0 

where 

    Pe(Oj+K,R) 

      E P(Y_IXR+K) X[ P(YIXR+K) > P(YIXR+K(R)) 
    ycBv(R+K) 

    some uj+K (R) ] . 

The same argument equally applies to all message sequences 

uj+K. Let 

                    1 J+K 
R      P

e(j+1,R) = j+K E Pe(u )                    q 
all u3 +K 

Then, Pe(uj+K,R) has the form very similar to the 
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probability of decoding error in Section 2.2 if we 

let N = v(Q+K). The similarity is strengthened by 

the following lemma: 

   Lemma 4.2.1: Any two survivors at each step of 

Viterbi algorithm are different in any K consecutive 

symbols, and the corresponding random codewords in the 

random convolutional code are independent each other. 

The first assertion is verified by a reflection on 

the algorithm, and the second is a consequence of 

the former and Lemma 4.1.1. 

    From the lemma, we see ( cf. [2] ) that, under the 

operation of expectation relative to the random code, 

  epe(Q) A epe(j+l,Q) 

          < exp{ -v(k+K)[ E0(p,p,p) - pR2 ] } ; 0 < p < 1, 

                                                            (4.2.2a) 

where 

                v(K+Q) log[ (q-1)2gQ 1 ] ; 2 > 0, 

          RQ = (4.2.2b) 

                 vK log (q-1) ; 2 = 0. 

    For any E > 0, let S and S(s) be the set given in 

Section 3.2 for alphabets A and B. Then, the argument 
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therin yields the probability 

 Pr{ Qe(j+1,Q) < ,y-1£-2a~eQe(Q), all Q c S(e) } > 1 - Y 

for any y > 0, where Qe(j+1,Q) and E Qe(6) symbolize 

the channel Q e S(E). Thus, if we put y = l/L(L+l), 

we obtain a convolutional code c such that 

     Qe(j+1,Q) < L(L+l)e'2asCOt~Qe(Q) ; all Q E: S(e) 

                                               all ),= 0,... j; 

                                             all j = 0, ... ,L-1. (4.2.3) 

From (4.2.2), (4.2.3), and Lemma 3.2.1, we know that 

the convolutional code gives, for each P c S, the 

average probability of error ( cf. [10] ) 

    e - L-1 j e < LE j e c(K+k)    P (c) < E E P (j+l,k) < E E Q (j+l,Q) e             j=0 Q=0 j=0 2=0 

              L-1 j -2as 
         < E E L(L+1)e 

               j=0 Q.=O 

            x exp{ -v(K+Q)[ E0(A,p,Q) - pR - s/v ] } 

      (L+1)3(a-1)e-2aB 
          < Sv exp{ -vK[ E0(P,p,P) - c ] } 

                      1 - e 
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provided that 

      6 = E
0(p,p,P) - pR - s* > 0, and (4.2.4a) 

    F-* = s( 1/v + 2a3 ), (4.2.4b) 

where Q e S(e) is the channel given in Lemma 3.2.1. 

Thus we have proved the following result. 

   Theorem 4.2.2: For any c* > 0, there exists a 

convolutional code c of constraint length K and rate 

R = (1/v)log qq such that the Viterbi decoder yields 

          (L+l)3(q-1)e 2aR 
       P -Sv - exp{ -vK[ E0(p,P,P)          e - e ] } 

                        1 - e 

for every P s S and all 0 < p < 1 satisfying (4.2.4) 

where e is given by (4.2.4b). 

    From this theorem we see that the exponent E0(p,p,P) 

is attained universally, if maximum likelihood decoding 

is used. For each rate R, the exponent can be optimized, 

and an asymptotic form is illustrated in Fig. 4.2.3. 

We note that the actual block length is vL, while 

the effective block length is vK. In the figure, we can 

see that the reliability exponent for convolutional codes is 

much greater than the reliability exponent for block codes 

with the same effective block length vK. 
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Fig. 4.2.3 - Comparison of Exponents for Block Codes 

              and Convolutional Codes 
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Why tree codes ? 

    As we have seen, properly constructed convolutional 

codes have large reliability exponents if the effective 

block length vK is identified with the block length 

of ordinary block codes. We can see that such a 

comparison is completely reasonable; both codes with the 

same effective block length require approximately the 

same computations in decoding. 

    Consider two channel coding systems, one with a 

block code cvK with qK block codewords and the other 

with a convolutional code cv' of rate (1/v)log q 

having constraint length K ( cf. Fig. 2.1.3 ). The 

block decoding with cvK is performed, for each channel 

output yvK, by the combination of parallel weight 

enumeration and heirarchical parallel comparison as 

depicted in Fig. 4.2.4 (a). Using this parallel 

processing, the decoder should possess computational 

speed that enable one weight enumeration and K weight compa-

risons for a codeword. On the other hand, decoding 

for the convolutional code, using the Viterbi algorithm, 

will comprise of alternating weight enumeration for 

branch sequences and path comparison as shown in 

Fig. 4.2.4 (b). From the inspection of both schemes, 

we can see that they require almost the same computational 

loads and speed. High reliability with realizable 
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computational requirment makes the convolutional code 

with Viterbi decoding practically significant. 

Indeed, Viterbi decoders implemented by hardware are 

sold for the use in practice. 
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 vK letters Weight Comparisons Weight Enumerations 
( Codewords ) 

Fig. 4.2.4(a) - Computations in the block decoder 
                  ( k = q =3 ) 
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       v letters Weight Weight 
     ( Branch Sequences ) Enumerations Comparisons 

Fig. 4.2.4 (b) - Computations in the Viterbi Decoder 
                 ( K = q = 3 ) 
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3. Sequential decoding of convolution codes: Computational 

moments 

    In the previous section, we have seen the good 

performance of convolutional codes. However, as the 

constraint length increases, computational burden 

in Viterbi decoding becomes great. This is quite 

discouraging if we need an extremely small probability 

of error. Sequential decoding is a substitute for 

Viterbi decoding under such a requirement [13], 

although the former has a rather old origin; it is 

invented by Wozencraft [14] and is almost completed 

by Fano [15]. 

    For a DMC P with input and output alphabets A 

{ 0, ... ,a-1 } and B = { 0, ... ,S-1 } respectively 

and a pmf p on A satisfying (4.1.3), let q be the pmf 

on B given by 

           q(b) _ p(a)P(bla) 
                         a£A 

for all b e B. Once the channel out put y = y1y2 " ' 

is accepted, we can assign to each node ( or path ) 

ul a weight by the function 

                   i 
--Y-3- - v R 4. 3 .1) 

            j=1 q(yj) 

where R = (1/v)log q is the rate of codes and xl = 

xi ... xi is the codeword specified by u1. Maximum 
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likelihood decoding suggests exhaustive searching for 

the node with the largest weight as Viterbi decoding, 

which, however, is sometimes costly. Instead, sequential 

decoding algorithms search nodes selectively. 

    We use the modified version by Gallager [2]. 

Chiefly it consists of three moves on nodes: forward, 

lateral, and backward moves ( see Fig. 4.3.1 ). 

A forward move on a node is a move to the immediate 

descendant that is numbered 0. A lateral move on a 

node is a move to the next neighbouring node between q 

nodes having the same antecedent. And, a backward 

move on a node is a move to the immediate antecedent 

of the node. Shift on a node is controled by 

comparison of weights and a threshold value T 

which is renewed after each shift. The 

precise rule is described in Table 4.3.1, where 

A is the size of threshold increment-decrement. 

If I(p,P) > R, then the low of large numbers implies 

that r(ul) tends to increase on the path specified 

by the message. On the other hand, r(u') would lastly 

fall below zero on the other paths. 

    An example is depicted in Fig. 4.3.2, where we 

suppose 1000 to be the message. As the example shows, 

the decoder output has no synchronization with the 

channel input; the message blocks are sometimes decoded 

quickly, and other times are not decoded even when the 

next message bloks are to be treated. Therefore, 
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      Fig. 4.3.1 - Three Basic Moves on Nodes 

    Condition on Nodes Action to be Taken 

Previous Comparison of F(ui-1) and Final M
ove 
 Move r(u') with Initial Threshold Treshold 

F o r L r(u'-1) < T+4 r(u') > T Raise* F 

F or L r(ui-1) > T+A r(u') < T No Change F 

F o-r L any r(ui-1 ) r(u') < T No Change L 

  B F(ui-1) < T any r(u') Lower by F 

  B r(ui-1) > T any F(u') No Change L 

     * Add jA to threshold , where j is chosen to satisfy 
    r(u')-A< T+jA<F(u'). 

    Table 4.3.1 - Sequential Decoding Algorithm 
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-2A

-2A

-2A

-2A-A

-2A-A

01 -2A-A

-2A-A

-2A-A

-2A-A

-A-2A

Thresh- Thresh-
Path old Move Path old Move

F- 0 F 0

L0 0 L 00

F1 0 B 01

LF 010

-BF 0110

B00L

L- 001

FL 10

FB 101

FF 100

- 

. Weights 

Fig. 4.3.2 (a) - Sequential Decoding: Weights 

            Thresh- Thresh-
       Path old Move Path old Move 

         - 0 F 0 -2A F 

        0 0 L 00 -2A L 

        1 0 B 01 -2A F 
         - -A F 010 -2A L 

        0 -A F 011 -2A B 

       00 -A L 01 -2A B 

        01 -A B 0 -2A L 

         0 -A L 1 -2A F 

        1 -A B 10 -2A F 
         - -2A F 100 -A F 

  Fig. 4.3.2 (b) - Sequential Decoding: Decoder 

                     Movements 
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  the sequential decoder must be accommodated with a 

  buffer to smooth these occasional delay. 

      One of the problems, other than such a computational 

  one, is the capability of reliable encoding and decoding. 

  If we suppose the message format (4.2.1), we have 

  a theorem from the arguments due to Jelinek 116]. 

     Theorem 4.3.1: For p > 0 satisfying E
0(p,p,P) - pR > 0, 

  there exists a convolutional code c such that the 

  sequential decoder yields 

                LeA/(l+p) 
   P < exp{-v(K-1)[E (p,p,P)-s]}     e = (1 -e-Al+p ) (1-e ") (1-e -"P ) 0 

  where e = [ E0(p,p,) - pR ]/(l+p). 

       From Theorem 4.3.1, we see that the sequential 

  algorithm implemented independently of the constraint 

  length K, shows approximately the same performance as 

  the Viterbi algorithm which is heavily dependent on K. 

  However, the advantage is sometimes lost; a long 

  burst of severe channel noise forces the decoder to 

  stray into wrong paths through the code tree while 

  channel output letters continuously accumulate in 

  the buffer and overflow. Hence, assessment of such 

  failure is indispensable in sequential decoding. 

       We assume that the sent message is an all zero 
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sequence. We say that an F-hypothesis occurs on a 

node if the sequential decoder searches the node and 

makes a forward move on it. We denote, by Wi, the 

number of F-hypotheses which occurred to decode the 

(i+l)th message symbol correctly. ( This rather vague 

definition will be made rigid later. ) 

    Now consider a node ul and its immediate descendents 

ui+1(j) in Fig. 4.3.1. For lateral moves on ul+l(j) 

to be made, the node ul must be first F-hypothesized, 

and a backward move occurs only at the last descedent 

ui+1(q-1). Therefore, for W F-hypotheses, there 

are made at most (q+l)W basic moves in the code-tree. 

Suppose that the decoder is capable of a basic moves 

while v channel letters come. Then, if a buffer overflow 

occurs, we necessarily have (q+l) E jTl Wi > aT for 

the buffer capable of storing vT letters, and the buffer-

over flow probability will be 

T 
       Pr{ (q+l) E Wi > aT } . 

                       i=l 

It is known [2],[16] that this probability is intimately 

related with boundedness of the p-th moments of Wi, 

EWp. 
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The Number of F-Hypotheses 

    For a transmitted message sequence, say, 0= 00... , 

we say that a path , or a node, u1 is correct if 

u1 = 0 ... 0, and, on the other hand, say that u1 is 

incorrect if u1 0 ... 0. Let Di be the set of nodes 

u3 = 0 ... 0 ui+l ... uj, j > i and ui+l # 0, and call 

it the i-th set of incorrect nodes. It also contains 

the i-th correct node 01 ( see Fig. 4.3.3 ). We define 

Wi, the number of F-hypotheses to decode the i-th correct 

node, as the number of all F-hypotheses occurred in 

Di. The following lemma shows a necessary condition 

for a node in Di to be F-hypothesized ( cf. [2, p.275] ). 

   Lemma 4.3.1: A node u3 in Di is F-hypothesized 

for the h-th time only if 

          r(ui) _> rmin ,i + ( h - 2 )A 

where 

         r min r             min
,i m=i L m 

    Now let Di be the set of all nodes in Di and at 

the j-th level, and let p > 0. From the lemma, we have 

the following bounds on Wi: 
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               Oi+l -

       01 / 

I 

   Oi-1 

              Oi+ ' Ui+R 

         Fig. 4.3.3 - The Sets of Incorrect Nodes 
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        00 L-i 

Wi < E E E x[ r(u) > r
min i + (h-2)A       h=1 k=0 u6D1 

        00 L-i L 
   < E E E E x[ r(u) >- rm + (h-2)1, ] 

      h=l k=0 m=i ucDQ 

           L-i L 

   < E E E E exp{ l+p[ r(u) - rm - (h-2)A                                     ] } ; 
      h=l k=0 m=i u6Dk 

                                            p > 0. (4.3.2) 

To make the arguments straightforward and simple, we deal 

only with W0, and use the abbreviations xi = xi ... xi 
and yy-i = y1 ... yi. Under this convention, 

         L L 1                    P(ykI x2)a(ym) 1+p v 
W0 < Y0 E E E exp{ 1+p(m-),)R                                          } ; 

        k=0 m=0 usDO a (y p) P (Ym) 

                                           p > 0, (4.3.3) 

where xk and Rm mean the codewords specified by uk e Dk 

and the m-th correct node 0m respectively, and 

                e20/(l+p) 
         Y0 = 

eA/(l+p) 1 

    Henceforce we use distinct notations for expectation 
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operators with respect to the random code, use ~, 

and with respect to the channel and any particular 

code, use E. The operator t is a product of two 

expectation operators e C and tI; The former is for 

the random codewords specified by correct nodes and the 

latter is for the ones specified by incorrect nodes 

( cf. [2] and [16] ). 

    Suppose'that convolutional codes have infinite 

constraint length. According to random coding arguments, 

our task is to bound the average p-th moments k EWp. 

Remember that R is the rate of codes and that p is 

given by (4.1.3). Falconer [17] shows that # EWp < 

if pR < E0(p,p,P) and 0 < p < 1. For all poitive 

integers p, Savage [18] and Zigangirov [19] show that 

 'EWp < - if PR < E
o(p,p,P) for tree codes possibly with-

out algebraic structures. And their result is extended 

to all positive p by Jelinek [20]. Though several 

simulation results suggest that these should be also 

true for convolutional codes, however, no proof has 

been known. The difficulty has its root in the algebraic 

structure that makes the codes feasible. 

    For finite constraint length , it is known [21] 

that, with slight modification in the algorithm, the 

computational burden is lessened by decreasing constraint 

length K. Therefore we always suppose infinite 

constraint length, K = -. 
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L-Independence 

    We say that a set of incorrect nodes { u1(1),... ,ul(n) ) 

has rank k if, there exist maximally k nodes ul(n
1), 

ul(nk) in the set such that the all nodes are expressed 

by linear combination. as 

k 
          ul (j) = E ak ul (nk) , for a

k E GF (q) ,                          k=1 

where all ul(j) are interpreted as i-vectors over GF(q) . 

The algebraic dependence of nodes implies another structure 

between corresponding random codewords 

   Lemma 4.3.2: If a set of nodes { ul(1), ... ,ul(n) } 

has rank k, then, between the corresponding i-th random 

branch sequences in the random convolutional code, 

Xi(1), ... ,Xi(n), there exist k mutually independent 
Xi(nl), ... ,Xi(nk). 

   Corollary: If { ul(1), ... ,ul(n) } has rank k, then 

there exist n' subsets with the following properties: 

    1) Each subset consists of k mutually independent 

    i-th random branch sequences Xi(n. 1), ... ,Xi(n7•'k), 
     for each j = 1, ... ,n': 

   2) Their union is { Xi(l), ... ,Xi(n) }, the set of 
    all corresponding random branch sequences: 

    3) n' < n. 
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The proof of Lemma 4.3.2 is given later, but the proof 

of Corollary is relatively easy and is omitted. 

    As an example, consider nodes (1110),(1011),(1101), 

and (1000), for q = 2. Their rank is 3, and 

     { X4(1110), X4(lOll), X4(1101) }, 

     { X4(1110), X4(1011), X4(1000) 1, 

     { X4(1110), X4(1101), X4(1000) } 

give the subsets assured by Corollary. 

    Given a set of incorrect nodes, U = { uL(l) ... uL(n) } 

c DL, we write the antecedens at the R-th level of 
uL(j) as u2(j). Let L = (L1, ... Ln) be any vector 

with integral components. We say that U is L-independent 

if { uQ(1), ... ,u'(n) } has rank k wnenever Lk-1 < 

Q < Lk, where L0 = 0. Nodes in the above example are 

(1,2,4,4)-independent. The following lemma gives an 

upper bound on the number of L-independent sets [66]: 

   Lemma 4.3.3: For integers L0( = 0 ) < L1 < ... <_ Ln, 

the number M(L) of distinct L-independent sets 

{ uL(1), ... ,uL(n) } is bounded by 

  M(L) < exp{ E k( Lk - Lk -1 )log q + n2( log q }.                  k =1 
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Bounding EEW6-
    Applying Minkovsky's inequality to the bound (4.3.3), 

we have a bound on the p-th moment. 

( eEWg )1/P 

                               P P 

     L L q (Y) T+p P (YQ XQ) ~+p 
< YO E E 45CE EI E     Q=0 M=O P(Ym Wim} lucDQ q(Yk) 

0 1 

P   x exp[ ipp( m -9.)R ] (4.3.4) 

First note the identity 

                 P P 

  E q (Y 1+p   C I ~ 
     P(YmIXm) 

                          a(ym) 1QP P 
   E E p(xL)P(YL1xL) 

P ! LI 1   xLEAvL yLEBvL (ym~~) 

1 

                          P(y_mIxm) 1+P 
   E E p () ~I 

                vm q (y ) 
  yLEAvL xx EA P 

Then, from Holder's inequality, we have 

 ( tEWP ) 1/P < 
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                                      1 1   L (P(YmIXm) 1+p p +p 
YO E E q (_m) ~ P (Xm) 

          sBvm xmeAvm q(y_m)    M=O y  Lm 
                                          1 l+p 1 

  L P(y
Ql ) l+p p p x E E            q(Y_p) I E 

 2=0 yQeBvk u6D~ q(y_R) 

x exp{ 1+p( m - Q )R } (4.3.5) 

   Next we bound the expectation ~I(*) with respect 

to incorrect codewords in (4.3.5). Let n be an integer 

such that n-i < p < n. From Jensen's inequality, 

the expectation is 

                     1 p 
          P(y9IXQ) p 

I 

          E: E        uD~ q (Y_Q)       - 0 

             p(yQ~XQ) 1+p 
<I 

Q q(y-Q) 

     1 
])T            u - EE D 0 

                                    1 p 

                   n P(y_QIXQ(j)) 1+p n 
       E IT 

      all I j=1 q(Lk) 

     u2'(1) ...uQ(n) 

    in Dp -
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where each XQ(j) corresponds to each uQ(j). The 

following lemma is crucial in bounding the expectation 

in the extreme right-hand side 

   Lemma 4.3.4: If { uQ(l), ... ,u-(n) } is 

(Qi, ... ,Qn)-independent, then the expectation is 

1        n P(Y
_QIXQ(j))   t

I I1      j=11 Q (Y_Q) 
                                         1 (l+p)k-n     n Q

k p(Yvlxv) p 
  < II II E p (xv) i , 

    k=l i=Qk-1+1 xVCAV q(Y1) 

where QO = 0 and IT imQ(*) = 1 if k > m. 

    According to the lemma, the bound above continues 

as follows. 

               n Qk 
        < E II lI 

           R k=l j=Qk-l+1 

                                      1 (l+p)k-n p 
                     P (Y_~ I xv) p n 

         x E p (xV ) 

            xVEAV q(Y_~) 

where the first summation in the right-hand side is 

over all n-vectors with positive and nondecreasing 

integral components less than Q, the number of which 
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'is at most (Q+1)n
. Averaging the both sides of the 

above bounds with respect to all yQ, we obtain 

                                   1 l+P P          ~, 1p(yix)1f'P Q+p P Jii+p   ~ q(Y_Q) G I E 
  EBVR uEDP- q (y Q) 

                     R, n Qk (1+P)k-n l+P P 

< E q(y.) E Mn(2) 11 11 * pn P 1+P 
   yQEBvk k k=l j=2.k -1+1 

    Q n Q,k (l+p) [ (l+p)k-n] 1 

< EM n(Q) E q(YQ) B II P n l+ P 
  Q y.XEBvk k=l j=Qk-l+1 

     Q n Qk 
< E M1(Q) II II 

  Q k=l j=Qk -l+1 

                                 v v 1 1+ (l+p)k-n                            P(
y_ I x ) 1+p P pn  x E q(yQ) E P(x ) v - ( yvEBv kxvcAv q(Y ) 

where the second inequality follows from Minkvsky's 

inequality and the third from Jensen's inequality using 

           0 < (l+p)k - n < 1 
                     pn = 
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By substitution of the above bound into (4.3.5) and using 

Lemma 4.3.3 and the identity 

1 
                                  P(yv Ixv). 1+p 1+p 

             Q (Yv) E P (X"") 

yVcBv xV a(y_v) 

       exp{ -vE0(P,p,P) }, 

we have 

    ( ~'EWP )l/P 

0 L 
   < y0 E exp{ - l+p [ E0(p,p,P) - pR ] } 

         M=O 

L 
    X E ( Q + 1 )n/Q 

          Q=0 

n 
     x max exp{ - 1[ n E k( Q k - Q k-1 ) - l+p                                               Q ] 

         Q p n k=l 

                                } .       x [ E0(p,p,P) - PR ] + n(2+l) log q 

Since E kn1 k(Qk-Qk 1) > Q for any k, we finally have 

the bound: 

   ( EWP )l /0 

L 

  < y0 E exp{ l+p [ E0(p,p,P) - PR ] } 
         M=O 
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L 
   X E ( Q + 1 )n/Q exp{ - pR(n - l+p) [ E0(p,P,P)-pR ] }         Q=0 

                 n+ 1)     x exp{ n( log q } 

From n-1 < p < n, all summations converge as L -, co if 

pR < E0(p,p,P). Therefore we have a theorem. 

   Theorem 4.3.2: For any p > 0 satisfying E
0(p,p,P) > pR, 

the average of the p-th moment EWP with respect to the 
random convolutional code ( K = ), tEWE, is bounded by 
a finite constant which is independent of the message 

length L, where R = (1/v)log q. 

   Corollary 1: For any p > 0 satisfying E
0(p,p,P) > pR, 

and any L, there exists a convolutional code of rate R = 

(1/v)log q with block length L such that the p-th 

moment EWQ is bounded by a finite constant which is 
independent of L. 

   Corollary 2: Under the same condition as Corollary 1, 

there exists a convolutional code of rate R= (1/v)logq 

with block length L that has the probability distribution 

                    W(p) 
          Pr{ WO > w } < P 

W for w > 0, where W(p) is independent of L. 
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We note that all the above arguments equally apply 

to Wi and that these statements also hold for each Wi. 

    A probability distribution F(w) = const.xw y, 

w > 0, is called a Pareto distribution, and, from the 

upper bound in Corollary 2, we may think that W0 has 

the same tail probabilities as a Pareto distribution. 

In fact, this is generally true: we see in the 

next section that the tail probabilities of W0 are also 

bounded below by a Pareto distribution. Historically, 

several simulation data ( cf. [22] ) have predicted 

such a observation, which is now analytically proved 

for convolutional codes. In Fig. 4.3.4, we see an 

example of computer simulation by Jordan*[22] over 

BSC's with crossover probabilities e. The binary 

convolutional code used in this simulation has the 

finite constrain length K = 60. Since Pareto distri-

bution F(w) decreases algebraically as w - -, an extreme 

number of incorrect F-hypotheses are likely to happen 

and tend to accumulate in the decoder. We can see an 

illustrative example in the same literature, which 

is reproduced in Fig. 4.3.5. The position in the tree 

indicates the highest level that the decoder has ever 

reached, and the waiting line indicates the number of 

data that stored in the memory and waiting for 

decoding. The computational critical rate Rcomp and 

       * By permission of K.L. Jordan, Jr. 
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'computational speed a are defined in the next section . 

Intuitively, Rcomp corresponds to the extent of noise 

such that Pr{ Wi > w } no w-1 and the waiting data 

accumulate indefinitely ( since f S Pr{ Wi > w }dw 

as S -> cx). In the next section we study the effect 

of such accumulation more thoroughly. 
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Fig. 4.3.5 - Sample Waiting Lines 
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4. Probability of deficient decoding 

Implementable Decoder and Deficient decoding 

    In the previous section we observed that the P-th 

moment of the number of F-hypotheses per a node remains 

finite when block length increases, if E
0(p,p,P) > pR 

for p > 0. In this section we see how the occasional 

heavy computational loads affect decoder, using a 

simple and practically meaningful decoder model. 

    We study a decoder consisting of three main units: 

a buffer which has storage capacity of VT channel output 

letters, a searching unit which retains a tree having 

(T+S) levels, and a control unit which controls node 

searching process according to a modified sequential 

decoding algorithm with a fixed search length S. 

The whole system is depicted in Fig. 4.4.1. 

    The sequential decoders that have concerned us 

search nodes sequentially, but emit decoded sequence 

in a block. On the other hand, the modified sequential 

decoding algorithm makes each decision on decoder 

output letters sequentially as follows: 1) The decoder 

searches the code tree, and, when a first F-hypothesis 

is made on a node at the S-th level, the decoder decides 

that the correct path is through the first antecedent 

of that node, call it a decoded node ( see Fig. 4.4.2 ): 

2) In general, the decoder searches all descendants 

of the previously decoded node, say, at the i-th level, 
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,and , when an F-hypothesis is first made on a node at 

the (i+S)th level, the decoder makes the next descendant, 

directing toward the just reached node, of the previously 

decoded node a new decoded node. We call S the search 

length and call T the buffer length. 

    Using this modified sequential decoding algorithm, 

the decoder proceeds repeating successive decoding 

cycles, in each of which a reproduced part of the 

original code tree is decoded until T more nodes are 

decoded, and, after the completion, all of the buffer 

content is shifted into the searching unit for another 

T cycles of node searching on a sub-tree. 

We suppose that each message has the format 

            T S 
        -*7'

_-* „0-a 0 -

    We say that a deficient decoding has occurerred for 

the first time in the k-th decoding cycle and denote 

the event by Gk, if the first error is found between 

symbols decoded in this cycle. The cause of a 

deficient decoding in the k-th decoding cycle is 

two-fold: an inevitable error inherent in the decoding 

algorithm, with a fixed search length S, and a 

buffer overflow caused by severe computational 

requirements for correct decoding. We call the 
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Fig. 4.4.1 - Implementable Sequential Decoder 

                           ~• First 

                                 Penetration 

                 T Branches 

                                            Secc          Th
e First \' T' Branches 

Pr eneti        D
ecoded Node 

                     The Second 

                  Decoded Node 

 Fig. 4.4.2 - The Modified Sequential Decoding 

              with the Fixed Search Length S 

                      107



'former an errorneous decoding
, denote it by Ek, and 

call the latter a buffer overflow, denote it by Bk. 

Thus, 

         Pr{ Gk } = Pr{ Bk } + Pr{ Ek } , 

and the average probability of deficient decoding per 

a decoding cycle is 

                     nd 

        PG n E P{ Gk }, 
                  d k =1 

where nd is the number of decoding cycles needed to 

decode message sequences. 

    Let a be the maximum number of basic moves that 

the decoder can carry out while v channel output symbols 

come, and call it the computational speed. The following 

lower bound is shown in Jelinek [16] using the result 

of Jacobs and Berlekamp [23]. 

    Theorem 4.1.1: For p > 0 satisfiying ESP (p,P) < pR, 

              exp{ -0( /log o[S+T] ) } 
          gG > 

6p( S + T )p-l -

where Esp is the convex hull of Esp, in p, given by 

            Esp(p,P) 6 max E0(p,P,P) 

P 
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and 0(*) is any function such that O(S)/S is bounded 

for all large S. 

   Thus the probability of deficient decoding never 

decreases faster than algebraic convergence for large 

S, T, and a. This, perhaps, surprisingly slow convergence 

is balanced with decoder's moderate computation. For 

almost DMC's, Esp(p,P) is convex in p, and hence is 

equal to Esp(p,P). A pathological exception is seen 

in Gallager [2, p.147]. 

    The interest of this section is on upper bounds 

of PG; namely, we show the existence of good convolutional 

codes that allow us tight bounding of PG. Again 

the proof is through a random coding argument using 

the random convolutional code. Writing the expectation 

operator relative to the random convolutional code 

as c*, we have 

        ~PG = 8Pr{ B1 } + E Pr{ E1 } . 

As for the probability of errorneous decoding, we have 

a bound from the results in [16]. 

    Lemma 4.4.1: For s, p > 0 satisfying E0(p,p,P) - pR 

= e/ (1+P) , 

        Pr{ E } _ < T ePA/(l+p) e-svpS                  1 
1 - e sv ' 
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where the constraint length is K = -. 

    Therefore our major task is to show a sufficiently 

tight upper bound on the probability of buffer overflow. 

The Probabilities of Deficient Decoding and Buffer Overflow 

    A buffer overflow occurs if, and only if, the 

number of basic moves in a decoding cycle exceeds o(S+T) 

As noted in the previous section, we know that, for 

each F-hypothesis on a node, at most q-1 lateral moves 

and a backward move can occur between the immediate 

descendants of the node. Therefore, we have the bound 

                                      S+T-1 
        Pr{ B1 } < Pr{ (q+l) E W > o(S+T) }. (4.4.1) 

                               j=0 j 

    Jelinek [16] shows the following bounds on Pr{B1} 

for tree codes ( not necessarily convolutional codes ): 

   Theorem 4.4.2: For p > 0 satisfying E0(p,p,) > pR, 

                      Yl 
                               1 if 0 < p < 1, 

                 op( S + T )p- -

                      Y2 
                                          if 1 < p < 2, 

             ( o - Y3 ) ( T/S + 1 ) p- _ 

  pr{B1} < Y 
4                                         if 2 < p , 

             ( o - Y3 ) ( TES + 1 ) p 2 

                   SM1 (o) 

, 

               ( if 2 < p                     TES + 1 )p-1 
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where yl - y4 are constants and M1(*) is a decreasing 

finite valued function of o, all of which are independent 

of of except M1(*) ), S, and T. 

    The theorem gives an asymptotically tight bound 

for 0 < p < 1. But it is obviously uninteresting 

case for PG increases as S and T increase from 

Theorem 4.1.1. In this sense, the rate Rcomp 

Esp(1,P) is regarded as the limit for meanigful sequential 

decoding, and is said to be the computational critical rate. 

For p > 1, the bounds are rather loose and disunited, 

and, even worse, give no answer for convolutional codes. 

    To derive a more general bound, we use an additional 

notation: for a node uj+Q specifying a codeword x1 xj+Q, 
let 

               k P(y:'+k~xV+k) 
   rQ

,7(uJ+Q) E [ log j - vR ] .                  k=1 q (y_j+k) 

If uJ+m is a correct node, we write it simply as r    - m,J 

With this notation, we see 

           rj +Q(uj+Q) - rj+k rQ,i(uJ+Q) - rQ 

for any ui+Q s Dk            j. 

    Therefore, if we put as 
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              00 

  WQ
)m:J o z E r~,j (u) > rm'j + (h-2)0 ] ,          h=l uED~ x[ 

then, from (4.4.1) and the next to the last expression 

in (4.3.2), we have 

   Pr{ B1 } 

                   S S S+T-1 
   < Pr{ (q+l) E E E W > a( S + T ) } 

                   Q=0 m=0 j=0 Q,m,j 

        S S S+T-1 
   < E E Pr{ (q+l) E W > G ( S+ T)} 

       R=0 m=0 j=0 R,m,j k'm 

where 0 ,,m are positive numbers satisfying 

           S S 
                E E oQ m = c~ 

               Q=0 m=0 ' 

and are determined later. The right-hand side summation 

in the above bound is divided into three: 

                      S S Z-1 S m-1 
tpr{ Bl }< E + E E + E E 

       ,=m=0 2=l m=0 m=l k =O 

                                    S+T-1 
             x tPr{ (q+l) E W > a ( S + T )} 

                               j= Q m,j Q,m 

            4 P
B,l + PB,2 + PB,3 

                          112



where we put the respective summations as PB 1' PB 2' 

and PB 3' 

    The first summation is further bounded as follows. 

  PB
,l 

  S m 
< E E tPr (q+l) E W

m m m +k > am m(S+T)/m   m=0 k=0 mj+k<S+T -1 ' 

                     j > 0 

Now we note that WQ m
,j and WQ,m,j+k are independent 

random variables under the probability of the random 

code and channel if k > max(Q,m); an easy consequence 

of the memoryless property. Therefore the right-

hand side of the bound on PB 1 is exactly the sum of 

, tail probabilities of accumulated iid random variables. 

And the next bound on the tail probability of the sum of 

iid random variables is vital , which is proved 

later. 

   Theorem 4.4.3: For iid nonnegative random variables 

X1, X2, ... with finite p-th moments ( P > 1 ) and 

EX 1 < a-1, 

     N 21+pEXp 
Pr{ E X. > aN } < 1 , if 1 < p < 2, 

     j=1 J a - EX 1 )pNp-1 
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                              21+pEXi 

                             ( a - EX, )pNp-1 

                           22p+5(p+2)3p+3(EXp)~ 
                              + 1 _                                                             p,                                              if 2 < 

                               ( a - EX1 )pNp 

     for all N, where E is the expectation operator and 

       = 3 if EX1 > 1 and = 1 if EX1 < 1. 

          To make arguments simple, we temporarily assume 

     1 < p < 2. Then, in view of the lemma, a little 

     calculation reveals 

           PB
,l 

         S (q+l)p2l+pmp tEWm)m,O          < E 

         M=O [ 6m,m - (q+1) tEWW,mjl0 ]p( S + T )P-

     Almost in the same way, the other terms are bounded as 

            PB
,2 

         S k-1 (Q+l) p2l+pkp EEWQ'm'0         < E E , and 

         k=l m=0 [ 6k ,m - (q+1)k EWklm'O ]p( S + T )p-
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      PB
,3 

     S Q-1 (q+l) P21+PrP eEWP m 0 
  < E E ' 

    2=1 m=O [ aP
"m - (q+l) EEWQ~VmIo ]P( S + T )p-l 

Therefore, we have 

     tPr{ B1 } 

    S S (q+1)P2l+PQPmP t EWQ m 0 
                                                                       > > 

 < 
S=O m=O [ aX

'm (q+l) ~&EWQ,m'o ]P( S + T )P-1 

The convergence of summations in the right-hand side 

is assured by the following lemma, which is obtained 

by a slight modification of the bounds in the previous 

section as shown later. 

   Lemma 4.4.2: For any p > 0, 

   EWQIm'O < y0( Q + 1 )ngPn(n+l)/2 

              x exp{ - 1+p [ m + (1+p-n)Q/n ] [ E0(p,p,P) - PR ] 

where n-1 < p < n and yo is given below (4.3.3). 
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    According to this lemma, if we let 

a - (q+l) &EWQ,m,O 

             e-Y2-Sm S S 

        S S [ a- (q+l) E E ~'EWQ~m~O ] 
           E E e-Y2-Sm Q=O m=O 

         Q=O m=O 

and, if we let y and S be sufficiently small 

positive constants, then the bound on Pr{B1} converges 

as S } co, and we have 

                            W* 2 
           Pr{ B1 } < 

[ o W1 ]P( S + T )P-1 

where we put 

                      CO CO 

       Wi = (q+l) E E tEWQ m 0 and 
                        2=0 m=0 ' 

                (q+l) 21+P 
         W2 

( 1 - e -Y ) ( 1 - e-6 ) 

                                  00 CO 

                x E E Q,PmPe-y2,-6m eEWP 
                    Q=0 m=0 Q,m,O 

Note that Wl < - is implied by W* < 00 because p > 1. 

For the case 2 < p, the arguments also hold with a little 
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modification. We state the result in a theorem: 

   Theorem 4.4.4: For any p > 1 satisfying E
0(p,p,P) > 

pR, 

                         W* 
    Pr{ B1 } < 2 if 1 < p < 2, 

                 ( o - W* )P( S + T )0 

                           W2 
1 + w3 

                 ( o W* )P( S + T )p-1 S + T 

                                            if 2 < p , 

where W*, W*, and W* are finite constants independent 

of a, S, and T. 

   Now let S > (1/E)log[ (o-W9)(S+T) I in Lemma 4.4.1. 

Then the following is an immediate consequence of the 

lemma and Theorem 4.4.4. 

   Theorem 4.4.5: Suppose that P ->1 and Eo(p,p,P) > 

pR. Then, for sufficiently large S and T, there exists 

a convolutional code such that 

          _ W* 
                    _ 0 _          PS < 

(~6 Wl )p( S +~T )p 1 

where Wp and Wi are finite constants independent of 
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       a, S, and T. 

          Corollary: For p > 1, suppose that Esp(p,P) _ 

       Esp(p,P). Then, for any e > 0, the best attainable 

      PG satisfies 

                           < inf PG 
        6p+c( S1                   S + T )p+6- = cony. codes 

                                         (K=oo) 

                                   s2 

                                    6p-s( S + T )p-E 1 

      for sufficiently large a, S, and T, where the infimum 

       is over all convolutional codes ( K = °° ) 

      and 6 1 and 6 2 are positive constants independent of 

       a, S, and T. 

           Corollary gives a complete answer to the asymptotic 

      behavior of the probability of deficient decoding, 

       when K = ~. For finite constraint length, a similar 

       result will be shown with more elaborate analysis. 

           Finally we note that all results derived here 

       aplly to time-varying convolutional codes. Since 

       codes used in practice are of time-invariant, another 

       problem thus seems to exist. 
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5. Convolutional codes in practice 

    Before ending this chapter, we briefly mention 

to space communication as a promising field for 

convolutional codes and Viterbi or sequenctial decoding. 

Space communication includes satellite-to-ground 

communication ( relatively short distance ) and space-

probe-to-earth communication ( long distance ): The 

former requires high speed transmission and the latter 

requires extremely large ability to overcome severe 

circumstances. 

   Consider satellite-to-ground transmission of data 

( see Fig. 4.5.1 ), which may be messages from other 

ground stations or data about the weather of a district. 

Typically, the data are binary digits and to be 

transmitted one bit each T seconds in the form a(t) _ 

ai ( = ±1 ) for iT < t < (i+l)T . A standard modulation 

technique is phase-shift keying ( PSK ), where the 

modulated carrier signal is 

. 

              x(t) = aa(t) cos w c t 

The parameter a indicates the power of the transmitted 

signal. In an ideal situation, the ground station 

demodulates the received signal y(t) through a correlator 
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Fig. 4.5.1 - Satellite-To-Groung Communication 

                  Sequential Decoder ( Ultimate Theoretical ) 

                  -Channel Capacity 

                                 Uncoded 

                               Sequential Decoder, R=(1/3)log 2, 
                              50 kb/s ( Hard Decision ) 

                               Viterbi Decoder, R=(1/3)log 2, 
                               K=6 ( Soft Decision ) 

      Fig. 4.5.2 - Performance of Decoders 
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as 

                 (1+1)T 
             zi = f y(t) cos wct dt 

                           1T 

                   = aai + ni , 

where ni are the noise. Let (1/2T)N0 be the variance 

of the noise ni.. The ratio of the signal power a2 

to No is called the signal-to-noise ratio ( SNR ) per 
a bit and is expressed in 10 log a2/No ( dB ). 

    In space communication, the noise is surprisingly 

well approximated by iid zero-mean Gaussian random 

variables. In literatures such a channel is 

called a white Gaussian channel. Generally the greater 

the nominal bandwidth 1/2T is the more the capacity 

of the channel increases, and, as T - 0, the limit 

SNR necessary for efficient communication approaches to 

-1 .6 dB, called the Shannon limit. 

    In this scheme, though the original data are binary, 

the correlator outputs are not binary. We can convert 

these analog data into binary data ai by hard decision, 

ai = 1 ( -1 ) for zi > ( < ) 0, and decode ala2 .... 

Contrary to hard decision, we can decode the 

correlator output z1z2... directly. Then we say that 
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the decoder uses soft decision. Only soft decision 

decoding attains the Shannon limit in the limit. 

    In Fig. 4.5.2, typical performance curves are 

shown ( see [64],[65] ). Convolutional codes 

used with Viterbi decoders have maximally K = 7 or 8, 

while convolutional codes used with sequential decoders 

have generally larger constraint lengths. We can 

see that Viterbi.decoders are generally superior to 

other decoders for moderate error probabilities. On 

the other hand, because of the larger constraint lengths, 

sequential decoders exhibit sharp reduction of the 

error probability by increasing coding gain ( SNR ). 

Thus sequential decoders will find applications in 

fields where extremely small error probabilities 

are needed. 
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Proof of Lemma 4.3.4 

    First note 

1 
                            JTP      nI [P(IX(i))1T              yRt 

      I j=1 q(Y
_Q) 

1 
        n Q P(Y_ilXi(j)) 1+P    _ I II II 

         j=1 i=1 q(y_i) 

1       n Qk n P(y
_iIxi(J)) 1+P   = II II ~I II 

      k=l i=t k -l+l j=1 q(yi) 

where II imQ (*) = 1 for t > m. Suppose that 2,k-1 < 

i < 2.k. Then, from Corollary to Lemma 4.3.2, there 

are n' ( < n ) subsets consisting of k independent 

random i-th branch sequences: 

                  v v       U(S) _ { X (S,1), ... ,X (S,k) } , S = 1, ... n , 

in the set { Xi(l), ... ,Xi(n) }. Note that we may 
have Xv (a, 3) = iv (a, 3") for distinct (a, ~) and (a', 

Let Da
is denote the number of U(S)Is that contain 

X(a,s). Obviously, 

             k n' 1 
            E E = n. 

           a=1 R=1 Da,R 
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Therefore 

1 
     n P(Yilxl(J)) 

  ~l 
j=l q(Y_i) 

1 

                     v v 

      II II P( Y1 (1+p )D IX (a,s)) a,s     I a=1 s=1 q(Y_i) 
                               1 1 

   n' k P(yiIXV(a,s)) 1+p Da,s n' 
< II 8 II 
  a=1 l s=l q(Y_i) 

where the last inequality follows from Holder's inequality 

for n' random variables. Since each U(s) consists 

of independent random branch sequences, the bound 

continues as: 

                                            n 1 

                    P(yiIxi) l+p Da s n'  n~ f k V 
   II II E p(x ) . 

  a=1 [3=1 xveAv q(Yi) 

For any, but fixed, a and $, let n'/D,
,, = E. Since 

n > n' > Da
is > 1, we have l+p > n > E >_ 1. Thus, 

the summation over xV in the extreme right-hand side 

is bounded by Jensen's inequality as follows: 

               P(Y_VjXV) (l+p) 
    E P(x ) 

   xveAv q(Y_V) 
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                  Q(xVIyV) 1+p 
       = E p(xv) 

         xVcAV p(xV) 

                                              l+p-~ 
                          P (xv) l+p 

         xvsAv Q(xvly_v) 

                                         p l+p-
                       , p (xv) 1+p p       < E Q(xvlyv)~ 

           xvcAv Q(XVIY_v) 

                                          1 l+p-C 
                     P(yvIxv) l+p p 

            E p(xv) 

            xvcAv q(Y_ ) 

where Q is the inverse conditional pmf given by Q(xVlyV) 

  P(yvlxv)p(xv)/q(yv) for each xv c AV and each yv c BV. 

Therefore we have 

1 
     n P(y-X+p 8 l i=l(iIi(j)))'v              q (Y_1) 

                                               1 l+p-n 1   n' k 
< II II E p(xV) P(Y_vilxv) 1+p pDa R n" 
  a=1 ~=l xvcAv q(yi) 

                              1 E" k 1+p _ l ) 
                     p V V 1+P 

             P(x a=1 R=1 (. pn" p~               v) (y-i l x- ) 

E 

       V v - v 
    x cA q(yi) 
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                            1 (1+p)k-n 

         p(x~ P (Yi k ) 1+p P = E ) -  Ix VsAv a(Yi) 
This proves the lemma. 
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Proof of Lemma 4.3.2 

    Without loss of generality suppose that the set 

of first k sequences, ul(1), ... ,ul(k) , has rank 

k. Let [U], [S], and [G] be an nxi matrix with (j,Q) 

entry uR(j), nxv matrix with (j,2,) entry si 'Q, and 
vxi matrix with (j,R) entry gj,Q, respectively. 
Then (4.1.1) is written as 

           [S] = [U] [G] 

Since the set of messages has rank k, there is a 

nonsingular linear transformation [T] such that 

                ul (l) 

       [U] [T] = u1(2) u2(2) 0 

                     u1(k) ... .uk(k) 

                                                                                            ... 0 

                     u1(n) ... uk(n) nxn 

This transformation yields 

                         1 i-1 1      s1'Q = uj(j)gi- +1~Q+ E ui-m(j)gm+1,R,                                      m=i-j+l 

for j = 1, ... k and k = 1, ... v, where g(i) are 
                                                     j,Q 

elements of the matrix [T]-1[G]. Since [G] is a 

matrix with independent equi-probably distributed 

random components, [T]-1[G] has the same statistical 
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property. Therefore si ,R ,j = 1, ... k, k = 1, 
... ,v, are also distributed independently and equi-

probably. Therefore, from (4.1.2), the assertions 

follow. 

Proof of Lemma 4.3.3 

    First consider the subsequences, u(1) , ... 'u (n)                                               -L
O,L1 -LO'L1 

of the sequences uL(1), ... ,uL(n), where we let 

        uL
k-1'Lk(i) = uL k-1 +1(i) ... uLk(i) 7 

for i = 1, ... n and k = 1, ... n. Since the set 

of these subsequences has rank 1, 

            U(i) L = ai u(1)L ; i = 2, ... ,n,              L
O' L 0' l1 

for some nonzero ai in GF(q). Since the number of 
                  L L distinct uL

OIL 1 is q 1-0, the number of all subsequemces            LO IL 
, ... ,uLn) } is bounded by qn-1gL0-L1. Next,   LO' L 0'L 1 

consider subsequences, u(i)L . ,uLn)L , of rank 2. 
                             1' 2 l,2 

For these subsequences these exist ai and Qi in GF(q) 

such that ( assuming the first two subsequences are 

linearly independent ) 
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        u(i) L = Ot (i)L + SiuLl)L ; i = 3, ... n. 
          1' 2 iHL 1' 2 1, 2 

Since the number of pairs u(1) and u(2) of rank 2                                -Ll,L2 -L1 'L2 

is bounded by (g-l)gLl-L2-1gL2- Ll g2(L2-Ll), the 

number of sets {u(1) ... u (n) } of rank 2 is                    -L
l,L2 -L1'L2 

bounded by g2ng2(L2-Ll). In general, for Lk > Lk -1' 

the number of sets {uL(1) L , ... ,u(n) L } of rank k 
                            k-1' k k-1' k 

is bounded by gkngk(Lk-Lk-1). Since this bound is 

also valid for Lk = Lk -l, the total number of sets 

fu L(1), ... ,uL(n)} which is L-independent is bounded 

by 

                   n kn+k(Lk-Lk -1) 
        M(L) < E q 

                    k=l 

                E knl [ kn + k(Lk-Lk -1) l                    = g 

                 n2(n+l)/2 + E knl k(Lk-Lk -1) 

g 

                        130



Proof of Theorem 4.4.3 

    Since the first bound, for 1 < p < 2, is already 

proved in Jelinek [16] with the aid of the inequality 

in [24], we assume p > 2. Let the random variables 

            Uj Xj X [ Xj < 13N ] and 

            Vj Xj - Uj , 

where ~ is a positive constant determined later. 

Note that Vj > SN whenever V. > 0. First, we have 

N 
         P r { E X. > aN }                 J =               j =1 

N 
       < Pr{ E V. > N EV1 } 

             j=1 J = 

N 
         + Pr{ E ( U. - EU1 ) > ( a - EX, )N } , 

               j=l J 

where E denotes the expectation operator. From 

Markov's inequality and the note above, the first term 

in the right-hand side is 

N 
         Pr{ E V. > aN } < N Pr{ V. > SN } 

              j=1 

                              EVi 
                            S p-

                          131



Therefore, if we let Zj = Uj - EU1 and a0 = 6 - EXl, 

then the bound on the tail probability is 

N 
       Pr{ E X. > eN } 

          j=l J = 

       EVp N 
     < 1 + Pr{ E Z. > e N } 

        SpNp-1 j=l J = 0 

The last term is the tail probability of the sum of 

zero-mean random variables, which we approximate next. 

For any positive integer n, the n-th power of the sum is 

          N n 
       4 E Z. 

      tij=l j 

       n n! k nj 
      E E E 11 Z.        k=l 0<nl<...<nk E n ...,ik J=1 lj 

                 E. n. =n j=1 J            J J 

where the second summation is over all k-tuples (_ n1, 

... n k) consisting of increasing positive integers 

whose sum is n, and the last summation is over all 

ordered k-tuples (ill ... ,ik) consisting of distinct 

integers from 1 to N. From this time on, all summations 

over ni's and ii's are to be understood in these respective 

meanings, and are denoted simply by En and Et respectively. 
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With this expression for the n-th power, we have a bound 

on the last term, the tail probability of the sum of Zj, 

N 

         Pr{ 
jE1 ZJ . > (YON }                    = = 

       Pr / E Zj / > 60 Nn 

n 

             1J 11 

N 
       < Pr{ E Zn >_ (1-s)6 Nn } 

            j=1 J 0 

             n k nJ        + E E Pr{ Et H Zi > 61 Nn 
         k=2 n }                          J= J 

for 0 < s < 1, where 

n       a1 = SU0 / E In 
                        i=2 

Now let n-1 <,P < n. Then the first term of this 

bound is 

N 
       Pr{ E Zn > (1-s)a0 Nn } 

            j=1 J = 

N 
     < Pr{ E IZ p > (1-s)p/nao Np 

          j=1 J I} 

-

           2p EUi 
        < , 

        ( 1 s ) p /n 6p Np-1 0 

                          133



where the first inequality follows from Ej Z~ < Ej IZjIn 
< ( Ej (ZjIP )n/P and n > p, and the last one follows 

from ( EJU1-EU1IP )1/P < ( EUP )1/P + EU < 2( EUP )1/P. 

Let S = a0 [ = a - EX, I and let (1-s) P/n = 2 [ then, 

s > 1/4 ]. Then, we have shown 

N 
          Pr{ E X. > oN } 

             j=l ~ _ 

           EVP 21+P EUP 

1 

            ap NP-1 + 6p NP-1          0 0 

              n k n-
           + E E* Pr{ E* II Z.3 > on Nn } 

             k=2 n 1 1 1 

              21+P EXP 
       < ( a - EX1 )PNP-1 

            n 1 k nj nj 
        + 

k=2 En 6Zn E1 E1 =l E Zij ZiJ 

1 where, in the last inequality, we used Markov's inequality, 

and note that 

n 
    of > sa / ( 4 E in ) > a~ / 4 ( n + 1 )n 

                           i=2 

Therefore, in the remainder of the proof, we bound 

the expectation 
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               Ei Et, E E Z. Zi 
         a 2n 1 N j =1 J J 

For n1 < ... < nk, let ki be the number of j's such 

that n. = i. The final step is carried out for 
J 

three distinct cases respectively. 

[ Case I: 2nk < p] Then, the expectation contains 

no moments of order higher than p. Moreover, ij ii 

( 0 < j < k1 ) implies E Z. Z .. = 0 and the number 
                        J J 

of non-zero moments is at most 

        k-k1-1 k-1 

        E ( N- i) 2 E ( N- i)< N2k-kl 

        i=0 i=k-k1 

Therefore 

    2nd Ei E*i. E E Z. Zi•     a1 N j=l ii J 

         ( EIZ11P )2n/p 

           o2n N n- + l 1 

        22n( EUp )2n/p 

           62n Nn ' 1 

where the last inequality follows since n = Ei iki. 
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[ Case II: 2nk > p and 2nk -l < p ] Then, the summation 

splits into two terms: 

k                                                               n• n-

    62n N2n Zi Zi' X[ lk # ik ] 1 E Zi3 Zi 
     1 J= 

        1 k    + 2n 2n Zi Zi' X[ ik = ik ] II E Z1? Z1? 
      61 N j=1 J j 

In the first term, there is no mement with order higher 

than p, and hence it is bounded as Case I. On the 

other hand, the second term contains only n2k-kl-1 

non-zero summands, each of which has only a moment 

with order higher than p, EZikk. The effect of other 
moments is at most ( EIZ11p )2(n-nk)/p. Therefore, 

the second term is 

1                                                n n 

      6 Z1 Zi' X[ ik - lk ] E Zip Zij 2n N 2n 1 j=l 

1 2k-k 1-1 EIZ 2n k EIZ 2(n-n k)/p 
      oIn N2n N 1~ ( llp ) 

1 

                                    2(n-nk)/p             22n 
EU2nk ( EUp ) 

       a2n N2n-2k+kl+l 1 1 1 

Now note that, for 2nk > p, 
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      2nk 2nk-p 2n -p 
  EUl < ( aN ) EUi = ( 60N ) k EU1 . 

Thus we have the bound 

        1 k 

      2n 2n Zi Zi' II E Z1 z )       01 N j =1 J J 

       221 
   < ( EUp )2n/p     = 

62n Nn 1 1 

      + 22n 1+2(n-nk)/P 

         62nk-p a2n N 2n-2n k+p- + 1+l ( EU1p )         0 1 

      22n n 
           ( EU )     < 

6 NP 1     - 2n 
1 

where we used the inequality 2n-2nk-2k+kl+l > 0 and 

1 + 2(n-nk)/p < 2n/p, 60 > 1, and we put = 2n/p if 

EU1 > 1 and E = 1 if EU1 < 1. 

[ Case III: 2nk > p and 2nk-l > p ] Then, it should 

be that k = 2 and n1 = n2 = n/2, and there are only 

two combinations; i1 = ii and i2 = i2 or it = i2 and 

i2 = il. Therefore 
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           1 k nj nj 

         lln N2n E1 E:~1 E Zij Zii 
         all n 

1 

        a2n N2n 2N2 ( EIZ1In )2 

1 <         -72 2n n 22n+1 N2 ( a0N )2(n-p)( EUi )2 
         a1 N 

           2n+1 n 

     < 2 a0 ( EUi )         = 
a2n NP 1 

where p > 2 is used. 

    By combination of these three results, we have 

    E En n2n E1 E1 II E Zi3 Zl3 
     k=2 a1 N j=1 J j 

      n 22n+lan 
  < E E* 0 ( EUp ) 

     k=2 n a 2n NP 1 1 

     22n+3( n + 1 )3n   < 
an NP ( EUi ) 

0 where we note E k=2 En < (n+l)n. Therefore we have 

proved the theorem since 2n/p < 3. 
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Proof of Lemma 4.4.2 

    We use the convention in Section 4.3. According 

to the arguments there, we have 

  t`EWp 
        Q,m,o 

P 

< u*CE exp[ - lpp rm ] ~I E exp[ 1+p rQ ]                           ueD0 
                         P _ 1 p 

  ~_&CE( a (Ym) 1+p I P (YR X ,) J+P 
      \P (Y m IX in usD Q Q(YQ)             -) 0 

               ( m - 2. )R ]      X exp[         I _+P 

Note that the extreme right-hand side is just the 

p-th power of the summand in the right-hand side of 

(4.3.4). Thus the lemma is immediate. 
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     CHAPTER V 

SOURCE CODING PRELIMINARIES 
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(a) Facsimile 

    ITTY 
(b) Speech 

Fig. 5.1.1 - Sources With Memory 
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1. Notations and preliminaries 

    In this and the subsequent chapters, we discuss 

source coding problems especially for sources with 

memory. In contrast to channel coding problems 

where DMC's play dominant roles, memoryless sources, 

sources whose outputs are iid random variables, are less 

significant in source coding. Important sources 

like speech signals or facsimile signals are never 

considered to be memoryless. Because of 

the memory in sources, we sometimes require complicated 

mathematics. Thuswe start with notations and some 

preliminaries. 

   Let A and B be any finite alphabets. Denote n-

length sequences a1 ... an consisting of letters from 

A by al, and let An be the set of all al. If we 
write simply as x, we mean a doubly infinite sequence 

... x _1 x0xl ... , xn c A, and denote the set of all 

x by A. For each x c A and each m < n, let xm and 
xn be subsequences xm ... xn and ... xn_lxn respectively. 

                                                             m+n 

And, for each al c An and each m, a cylinder set cm+1(al) 
is a subset of A such that xm+l = ai. ( Of course 
occasional deviations are made to avoid tedious expressions 

if there is no ambiguity. ) These definitions and 

notations equally apply to sequences with alphabet 

B, and then symbols b or w are used instead of a or x. 
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    Let vQ and be the Borel fields over A and B, 

respectively, generated by all cylinder sets. Then 

(A,,A ), (B,Z), and (AxB„,4x,' ) are all measurable 

spaces. Thus, given probability measures p, n, and w, 

respective spaces (A,4 p) , (B, n) , and (AxB „,¢ x.S w) 

are all probability spaces, where measurablity of all 

sets in 4, 7 , and 4 x73 by p, n, and w, respectively, 

is always assumed. Given the probability spaces, 

a statement in (A,,4 ) is said to hold for p-almost 

every x ( with symbolic expression p-a.e. x ) if the 

subset of A consisting of all x that make the statement 

invalid has u-measure zero ( completeness, namely, that 

all subsets contained in a measurable set having zero 

measure are also measurable and have zero measure , 

is assumed ). Respective notations n-a.e. w and 

w-a.e. (x,w) are defined in the same manner. 

    An n-th coordinate function Xn is an -measurable 

function defined by Xn(x) = xn for all x E A, and let 

X = ... X_1XOX1 ... and X = Xm ... Xn for m < n. 

( The coordinate functions are termed random variables 

in the previous chapters.) The quadruplet' (A,.,u,X) 

specifies a stochastic process, which is called a source 

and is denoted by [X,p]. For the sequence of coordinate 

functions W in (B,,'*) , we also have two processes 

[W,n] and [(X,W),w], which are called a code generation 

process and a joint source respectively. For later 
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convenience, we sometimes use the notation [Y,n] for 

the code generation process instead of [W,n]: the 

latter is preferred if the code generation process 

is used by itself, not as a part of the joint source. 

    For each measure u and each n, a pmf is 

given by p(an) = u[Cn(al)] and a conditional pmf is 
given by u(anI al-1) = u(al)/F(alfor al s An such 
that p(al-1) > 0, where am is interpreted as void 
whenever n < m. A conditional pmf p(X1jX0) is suitably 

defined for p-almost every x as well. These definitions 

are also valid for n and w. The distinction between 

pmf's and measures will be clear from the situation 

they appear. 

    A shift T in (A,.4) is an operation that shifts 

coordinates as Xn(Tx) = xn+l for x c A and as TE _ 

{ Tx, x s E } for E 6 .4 . The same notation T is 

also used for shifts in (B,; ) and (AXB,J X.P). 

    We say that [X,p] is a stationary if p(TE) = p.(E) 

for all E c,4 , and say that [X,p] is ergodic if p (E) = 1 

or 0 for every invariant set E, TE = E. A simple 

example of stationary ergodic sources is discrete 

memoryless sources (DMS's ), whose pmf's are given by 

the product probabilities p(al) = n nil p(ai) for all 
al s An using pmf's p on A. Each DMC is denoted by the 
symbol p, which expresses the characterizing pmf is p. 
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    A channel [X,v,W] is a class of probability measures 

vx such that vx is a probability measure in (B, ) 

for each x c A and vx(F) is an 4 -measurable function 

of x for each F cj? . Since vx is a probability measure 

for each x c A, we denote respective probabilities 

by vx(wm), vx(wn1wm-l), and vx(wnI wn-1) for each (x,w) 
c A B and each m < n. If the channel is a DMC P, then 

vx(wm) = R inm P(wilxi) for all (x,w). We say that 

[X,v,W] is stationary if vx(F) = vTx(TF) for all x c A 

and all F c Moreover, we say that the channel 

is ergodic if, for any ergodic source [X,p], the 

joint source [(X,W),pv] is ergodic, where uv is the 

measure given by 

          pv (ExF) = f vx (F) dp (x) 
                    E -

for all E 6 ,,4 and all F c ,~& . If [X,p] and [X,v,W] 

are stationary, then [(X,W),pv] is always stationary, 

but may not be ergodic even if the source is ergodic. 

A sufficient condition for the ergodicity is the output 

strongly mixing property ( cf. Berger [25] ): 

         lim vx(TnE n F) - vx(TnE)vx(F) = 0 
                 n-*co 

for all cylinder sets E, F cy~ and all x c A. 
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Apparently, DMC satifies this condition and hence is 

ergodic as well as stationary. 

    For a probability measure w in (AxB, A-x t ) with 

marginals p and n in (A „f ) and (B,J ) respectively, 

let 

      Hu (Xl) 0 - E u (al) log u (al)                aneAn 

   Hw(Xl,Wl) A - E E w(a1 b1) log w(al,b1)               aneAn bl6Bn 

                                              (a nbn) 
     I (XnWn) - E E w(an,bn) log w-1,1       W -11 -1 

aneAn bneBn -1 -1 u(al)rt(bl)                     -1 -1 

and, for a code generation process [Y,p], let 

                                                   (a n,bn) 
                                         ) log -1 1    I In(Xn;Wn) = - E E w(an,bn w     w -1 1 n

eAn bnBn -1 -1 u(an)r,(bn                        a -1 -1 e 1 -1 

Moreover, we write 

        n n W(X1,w1) 
     i (x ;w ) = log and      w -1 -1 u (Xl) TI (ti'l) 

          n n w(xl,wl)    i 
I.(x ;w) = log ,     w -1 -1 u (xI TI NJ 

for each (x,w) e AxB. Hp(X1) and Hw(X1,W1) are known as 

                         1 47



the entropy of Xl and the entropy of (X1,W1) respectively, 
and Iw(X1;W1) is known as the mutual information quantity 
between X1 and W1. We tentatively call Iwjr(X1'W1) 
the mutual information quantity between Xi and Wi 
relative to [Y,n]. And we call iw(xi;wl) and iwln(xl;w1) 
the information densities. 

   When we write as w(al,bl) = u(al)Pn(bljal) for some 
conditional pmf Pn defined on AnxB", then we say that 

X1 and W1 are connected by [X1,Pn,W1] and prefer I(un,Pn) 
to Iw(X1;W1). If the source is a DMS p and the channel 
is a DMC P, then I(pn,Pn) = n I(p,P) for all n > 1 

( cf. Section 2.2 ). 

    For these processes, let 

       Hu (X) limn H (Xl) ,                 n->co 

HW(X,W) lim n Hw(Xi)W') , 
                    n-° 

      Iw(X;W) lim n Iw(Xi;Wl) 
                          n->co 

    Iwln(X;W) liminf n Iwln(X1;Wl) 
                          n}OO 

provided that the respective limits exist. It is easy 

to see that, if H11(X) and Hw(X,W) exist, then Iw(X;W) 

also exists. 
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   Lemma 5.1.1: If [(X,W),w] is stationary, then 

H
11(X), H W (X,W), and I W (X;W) are well defined, and          - -

if [Y,~] is a stationary finite-order Markov process, 

then I
wln(X;W) is also given as a limit (, which may 

be infinite ). Moreover, if we let 

      I(X;W1) A lim I         W w(Xmz;Wl)' 
                                 Q , m->oo 

then 

        Iw(X;W) = lim n Iw(X;Wi) ,                                    n->oo 

where all limits exist. 

    Corollary: For stationary [(X,W),w], let 

    I w(X;W1lW°n) A Iw(X;W1n) - Iw(X;W0 ). 

Then, we have 

    lim Iw(X;W1IW_0 ) = Iw(X;W) .      n;co 

    Proof of Lemma 5.1.1. The first half-follows 

from Theorem 2.5.1. of Gallager [2], and the second 

half follows from the proof of Theorem 6.1.1 of 

Pinsker [26]. 

                         149



   Remark: It is easy to see that, for stationary 

[X,p] and [X,v,W], we always have 

                              vX(bnlbl-1) 
    Iuv(X;W1) = Eu E vx(bn) log n-1 

                   bneBn - n (bn 1 b1 )                   -1 

and, for an (n-l)th order stationary Markov [Y,n], 

1 
 Iuv l n (X;W) = nE n ~t (bl) log n (b l bn-1) - Huv (W I X) 

                  b1cB n -1 

if I (X;W) < -, where Huv(WIX) = Huv(X,W) - Hu(X) ]IV I 

and Eu denotes the expectation operator relative to p. 

    The importance of these information-theoretic 

quantities comes from Shannon-McMillan-Breiman Theorem 

( see Billingsley [27] ): 

   Lemma 5.1.2: If [X,p] is stationary ergodic, then 

      lim n log p(Xl) = Hu(X) p-a.e. x . 

   Corollary: If [(X,W),w] is stationary ergodic, 

and [Y,n] is stationary finite-order Markov, then 

       lim n iw(Xn.Wi) = Iw(X;W) w-a.e. (x,w) , and 
             n-* D 

                         150



    i.im n iwln(Xl;Wl) = Iwln(X;W) w-a.e. (x,w), 
      n-+oo 

where u and n are marginals of w on (A,,4) and (B,3? ) 
respectively, providede that Iwlp(X;W) < ~. 

    Now we define distortion. Let d(a,b) be any, 

but fixed throughout the remainder, nonnegative finite-

valued function on AxB with the maximum value d . 0 
The distortion bewteen an e An and bl e Bn is then 

given by 

n 
          d(a1,bl) E d(ai,bi) , 

                                i=1 

and the average distortion induced by [(X,W),w] is 

written as 

           dw(X,W) = limsup n Ew d(Xl,Wl) , 
                                           n-oo 

where Ew denotes the expectation operator with respect 

to w. Apparently, for stationary [(X,W),w], d
w(X,W) 

 Ewd(X1,W1). When we write as w (al,bl) = u (al)Pn(bl l al) 
for some conditional pmf Pn on AnxBn, then we use 

d(un,Pn) = Ewd(Xl,W D . 
    A block code cN of rate R with block length N 

is a set { y(m)l, m = 1, ... M } of M sequences 
in BN with R = (1/N) log M, and the distortion in 
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  coding x1 e AN by the code is 

      d(x1,cN) min d(x1,y_(m)1) . 
                                 M=11 .. ,M 

  For any S e AN, we write 

        d(S,cN) = max d(xl,cN) . 
             x1cS 

  For every R > 0 and every D > 0, we say that (D,R) 

  is achievable for the source [X,u], if, for each 

  e > 0, there exists a code cN of rate less than R + e 

  that yields the average distortion 

         du(cN) A Eu N d(xi,cN) < D + edo. 
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2. Coding theorem for stationary ergodic sources 

    Source coding with a fidelity criterion concerns 

how efficiently one can transmit outcomes from a source 

through a channel capable of carrying them at rates 

up to its channel capacity ( see Fig. 5.2.1 ) . 

Shannon's source coding theorem suggests that sources 

have their own effective rates relative to a given 

fidelity criterion. And, when sources are mathematically 

described, the relation between the effective rates R 

and the fidelity D is known to have definite functional 

forms, called the distortion-rate functions D(R) or rate-

distortion functions R(D). 

    The distortion-rate function D
u(R) of a stationary 

source [X,p] is given by the limit 

         D
u (R) 4 lim Du~n(R) , 

                          n->oo 

where the n-th order distortion-rate function D (R)                                                                   u
,n 

is the minimum of the following information-theoretic 

optimization over test channels [Xl'Pn'W1]' 

        D
u,n(R) = min 1 d(un,Pn). 

                 (1/n)I(,n,Pn) < R 

    The function DIj(R) is a convex, decreasing, 

continuous function of R, and the limit in the definition 

is actually the infimum in n. Moreover, for a DMS p, 
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the distortion-rate function is D11(R) = Du 'l(R) 

[ 4 Dp(R) ]; the distortion-rate function is obtained 

by a single minimization over DMC's P. 

    For an example, let A =B ={0,1}, and suppose that 

the source is a binary symmetric source (BSS),p(O) _ 

p(l) = 1/2, and the distortion measure is Hamming, 

d(a,b) = 0 if a = b, d(a,b) = 1 if a ~ b. Then the 

rate-distortion function of the source, Rp(D), is 

simply Rp(D) = log 2 - H(D) for 0 < D < 1/2, where 

H(D) = -D log D - (1-D)log(l-D). 

    The above definition well reflects the history 

of the development of source coding with a fidelity 

criterion. Historically, a source coding theorem 

with a fidelity criterion is first proved by Shannon 

[28], and it asserts that D u
, l(R) is achievable for any 

stationary ergodic source [X,u]. Given that Du 'l(R) is 

achievable, the extension of the achievability to 

D 
pn (R), for n > 1, seems immediate since the n-th 

order super source u', each of whose letters X i = Xi(n-1)+l 

... X in is n successive letters from the source, 

has its first order distortion-rate function D,. ,1(R) 

= D
u,n(R). however, this trick does not work 

well; the super source does not necessarily ergodic 

if the original source is ergodic. Gallager [2] 

tides over this theoretical difficulty using so-called 

Nedoma decomposition of stationary ergodic processes: 
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   Nedoma Decomposition: Let [X,p] be a stationary 

ergodic source and let [X',p'] be the n-th order 

super source obtained from [X,p]. Then there are 

at most n stationary ergodic sources 

1, ... n, with the super alphabet An such that 

n 
        p"(S) = n E p1(S), and 
                          i=1 

        Pi(TS) = pfi+1](S) , for i = 1, ... n 

for all S'c A', where [i+l] = i+l for 1 < i < n and 

[n+l] = 1, and A' is the set of all super sequences x'. 

   That is, every output x'e A from the super source 

comes, with equal probability, from one of ergodic super 

sources. 

    In view of this decomposition theorem, a nice 

trick [2, p.498] allows a coding theorem for stationary 

ergodic sources with a fidelity criterion: 

   Theorem 5.2.1: Let [X,p] be a stationary ergodic 

source. Then, for any R > 0 , any D satisfying 

D > D
p(R), and any e > 0, there exists a block code 

cN of rate at most R +F-such that 

. 

            d
p(cN) < D + Ed 

0 
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conversely, there is no such a code for D < DA(R). 

    The theorem just asserts that R
u(D) is the 

effective rate of the source relative to the fidelity 

D. However, the definition of R
11(D) or Du(R) assumes 

the block coding on super sources, which is troublesome 

hypothesis when we consider tree coding as we discuss 

in Section 7.2. In the next section, instead, we 

study a more useful definition of the distortion-

rate function. 
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       CHAPTER VI 

PROCESS APPROACH TO CODING THEOREMS 
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1. Process definition of D
u(R) and a source coding theorem 

    In the preceeding chapter, we see that DP(R) gives 

the boundary of achievable distortion-rate region. 

However, the argument up to the coding theorem for 

stationary ergodic sources is indirect; Nedoma decompo-

sition is used to extend the coding theorem for memory-

less sources up to the one for stationary ergodic sources. 

    Recently, Gray, Neuhoff, and Omura [29] propose 

a more direct approach to the coding theorem through 

a different definition of the distortion-rate function: 

          D(P) (R) = inf d (X,W) 
              u u - -

where the infimum is taken over all stationary ergodic 

[(X,W),w] with the marginal [X,u] on (A,,4) such that 

          I
w(X;W) < R. 

    Under this definition, proof of coding theorems 

is greatly simplified, as they show for ergodicity 

is already a part of the definition. Most importantly, 

they prove the equivalence of both definitions: 

   Theorem 6.1.1 - Process Definition For a stationary 

ergodic source [X,p] and each R > 0, 
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        Du (R) = D(P) (R) 

    In view of the theorem, their definition is called 

the process definition. 

    However, the original proof of the process definition 

assumes known coding theorems and is involved; 

they require quite mathematical evidences such as 

the sliding-block codes( see Section 7.1 ). In 

this section we give a more elementary proof 

to the process definition theorem and a more natural 

proof to the source coding theorem. The arguments 

contained in the latter enable us to see several 

features of good source codes; especially theyy lead 

to a tree coding theorem in Chapter VII. 

Proof of Theorem 6.1.1. 

   Our proof is based on the argument used to prove 

the following weak statement due to Gray, Neuhoff, 

and Omura [29] and Marton [30]: 

   Theorem 6.1.2: For a stationary source [X,}a] and 

any R > 0, 

              D
u (R) = inf dw (X,W) 
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where the infimum is taken over all stationary [(X,W),w] 

with the marginal on (A,4) such that 

            I
w(X;W) < R. 

    Let [Xi,Pn,Wi] be a test channel, and let [X,v(n),W] 
be a test channel defined by independent application 

of Pn to each Xin+i)n .9 i see 
.Fig. 6.1.1 ). Generally, v(n) is not stationary. 

On the other hand, if we let [X,v,W] be such that 

                           n-l 
        vx(F) = 1 E vX(F) (6.1.1)              - 0=0 -

for each F c , where vX(F) = v( Xn)(TF) for x' = T0x, 
then [X,v,W] is stationary ( although it may not be 

ergodic ). Intuitively, the channel v consists of 

n channels which operate block-wise, and a channel 

selected from them with the probability 1/n determines 

the real input-output relationship for each input x 

( cf. Fig. 6.1.1 ). For v, it is shown in Appendix that 

     Iuv(X;WllW0N+2) < n I(.,n,Pn) + Nln log n (6.1.2a) 

            duv(X,W) = n d(un,P') . (6.1.2b) 
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 ... x0 xl x2 ... x
n-1 xn, xn+l xn+2 ... 

I 

                  Pn Channel v(n) 

 ... y0 yl y2 ... yn-l yn yn+l yn+2 ... 

               (a) 

     Random Shift 

  .. X0 X1 ... xe x6+1 .. x
n xn+l ... xn+e'xnxn+e+l 

 I I 
     P n Pn Channel v 

-I 

     yo yl ... ye ye+l ... yn yn+l ...yn+e yn+e+1 ... 

              (b) 

    Fig. 6.1.1 - Test Channels Acting Block-Wise 
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In view of Corollary to Lemma 5.1.1, Theorem 6.1.2 is 

immediate from (6.1.2). 

    Now we consider a new stationary channel v" such 

that 

      ~x(wi+l1wl) = vx(wi+lIwi -N+2) 

for all i and all w e B. With proper stationary 

probabilities, the output of the channel becomes 

an (N-l)th order Markov process for given x. We 

can determine its stationary probabilitites so that 

        ~x(wi-N+2) = vx(wi-N+2) 

for all i. To show it, it is enough to prove that, 

if the identity holds for some i, then it holds also 

for i+l: indeed, 

     vx(wi-N+3) = E v"x(wi+l1wl-N+2)vx_(wi-N+2) 
                       wi -N+2 eB 

                  = E v
x(wi+llwi-N+2)vx(wi-N+2) 

                      wi -N+2eB -

                         i+l                    v
x(wi-N+3) . 

       Because of the inequality 

                          164



  Ivv(X;W1JW0) < IPv(X;WljW°N+2) _ Iuv(X;Wl!W°N+2) 

Corollary to Lemma 5.1.1 and (6.1.2) imply that 

        I
uv(X;W) < 1 I(n,Pn) + NIn log n , and (6.1.3a) 

       du-(X,W) = n d(pn,Pn) . (6.1.3b) 

   Next, let Pn be a channel which achieves 

D [ R - (N-n)-flog n ], and let 
 u,n 

     Pf(blIal) = (1-6)Pn(bljal) + 6S-n , 

for arbitrary 6 > 0, where S is the size of B. Then, 

by the inequality (x+y)log[(x+y)/(u+v)] < x log (x/u) + 

y log (y/v), for x,y,u,v > 0, we have 

        I(un,Pn) < (1-6) .I(,,n,Pn) , and 

        d(un,Pn) < (1-6) d(p',Pn) + n6d o. 

These inequalities and (6.1.3) imply 

        Iu~)(X;W) < (1-6)R + Nln log n , and (6.1.4a) 
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     duv(X,W) < (1-S) Dun( R - n log n ) + Sdo . (6.1.4b) 

From the choice of Pn and v, we know that 

          vx(w.l wi-1) > 6C n , (6.1.5) 

for all i and all (x,w) c AxB. 

   Lemma 6.1.1: Suppose that [X,v,W] statifies, for some 

p > 0, 

      vx(w.Iwi-1) = vx(wilwi-N+1) >_ p 

for all i and all (x,w) e AxB. Then [X,v,W] is output 

strongly mixing, and hence it is ergodic. 

    In view of Lemma 6.1.1, (6.1.4), and (6.1.5), 

we obtain a theorem: 

   Theorem 6.1.3: For any stationary ergodic source 

[X,u] and any R > 0, let 

          D(P) (R) = inf duv(X,W) 

where the infimum is taken over all stationary ergodic 

test channels [X,v,W] such that 

                         166



         I
uv(X;W) < R and 

       vx(w.1wi-l) = vx(wilwi -2n+1) 

for all i and all (x,w) c AxB. Then, we have 

       D(P) (R) < Du n( R - n log n ) . 

    Now Theorem 6.1.1 follows from Theorem 6.1.3, 

the continuity of D
P(R), and the inequality 

   D(P)(R) < D(P)(R) < Du n( R - n log n) 

             < D
un( R - c ) < D ( R - e ) + £, 

for any c > 0 and a sufficiently large n. 

Proof of The Source Coding Theorem ( Theorem 5.2.1 ) 

   According to the process definition, we give a new 

and simple proof to the source coding theorem for 

stationary ergodic sources. 

    For the stationary ergodic source [X,u], we arbitrarily 

fix e > 0, and let [(X,W),w] be a stationary ergodic 

joint source with marginals [X,u] and [Y,rt] on (A,4 ) 
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and (B,VT) respectively such that 

                           Edo 
        d (X,W) < D (R) + and            w - - = u 12 

E 
        I (X;W) < R + -

          W - - - 12 

Then, for u(xi) > 0, we have 

                                        Ed 

   NE N X[ d(xl,wl) < Du (R) + 30 ] n(wl) 
   El eB 

                                      N N 
                 N Ed w(x 1 ,w1)  = E X[ 1 d(x,wN) < D (R) + o -

   w1NEBN N -1 -1, = u 3 . u (xi) 

-

   x exp[ - i w(x w l) 

                  N N 
           N N w(X1'wl) -N( R + E/3 )  > E ~(x

1,w1) N e , 
   w1NCBN u(-1) 

- where 

                                               + ° and    ~(N ,N ) i = X[ N d(NN N u Ed                     x1,w1) = D (R)        -1 -1 3 

               N i (Xl'wl) < Iw(X;W) + . ]. 

From Corollary to Lemma 5.1.2 and the ergodic theorem, 
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there exists an integer N
o such that 

      E E q(xi,w1) w(xi,w1) > 1 - 6 
    xicAN wiEBN 

for all N > No. Therefore, there exists SNG AN such 

that p(SN)> 1 - E/3 and the inequality 

                         N N 
                 N N W (Xl'wl) 1            E ~(

x1,wl) N > 2 

        wiEBN u(x1) 

holds for all x1 E SN. Thus, the inequality 

                                           Ed 

   NE N X[ N d(x~,wi) < Du (R) + 3° ] n(wi) 
    wlEB 

           > 2 exp[ - N( R + 3 ) ] 

holds for all xi E SN and p(SN) > 1 - E/3. 
    Let N = { Yl(m) , m = 1, ... M } be a random 

block code having block length N and consisting of 

random codewords independent of each other with the pmf 

{ n(wi) } . Then we have 

 E C d ( en N ) 

< Du (R) + E 3 d0 + d0E1EC X [ N d (XN , bN) _'. DIj (R) + edo ] 

3 
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            Ed 
o = D

u (R) + 3 

  + do E u(xi){ 1 - E x[ N d(xN,wN) < Du (R) -1 -1 
     x1EAN w1EBN 

                          + Ed0 l n (wl) }M 

3 < Du (R) + Edo + Edo + d
o exp [ - eN( R - R - E/2 ) l 

          3 3 

for N >_ No, where we used 1 - x < e-x for 1 _> x >_ 0, 

and R = (1/N)log M. 

    Finally, let N abd M sufficiently large so that 

R < R + E and E L d (&N) < Du (R) + Edo . Then we have 

a code cN of rate less than R + E with distortion 

less than D11(R) + Edo, which proves the theorem for 

E is arbitrary. 
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2. Universal properties of good codes 

         In Section 3.2 we have seen a universal performance 

of good channel codes. Analogous properties are 

also seen in this section. They seem especially 

useful in source coding since signals through communi-

cation link such as the telephony link are seldom 

stationary or ergodic, rather are varying, for example, 

from one speaker to another and from one consonant to 

another in continuous speech. 

    The first step towards encoding sources without 

specific knowledge about them is made by Sakrison [31] 

and Ziv [32]. Ziv [32] shows that, for any rate R, 

there is a sequence of block codes ci such that each 

stationary ergodic source is encoded by c1, a block code 

of rate arbitrarily close to R, so that the coding 

distortion is arbitrarily close to its distortion-

rate function. Because of this universal optimality, 

the sequence is termed as a universal sequence. 

Later, Davisson [33] classifies these universal sequences 

into three groups for noiseless source coding, and 

Neuhoff, Gray, and Davisson [34] extend the classification 

to sequences in source coding with a fidelity 

criterion. They are ( fixed rate ) weighted, 

weakly-minimax, and strongly-minimax universal sequences 

respectively. 

                         171



    Let A be a class of sources, and let { ci } be 

any sequence of block codes, each of which has a rate 

Ri, such that Ri -> R, any positive number, as i -> -. 

Then, the sequence is a weighted universal sequence 

if 

                                           i-}00 
         .1 d

p(ci) dx(p) -* IA Dp(R) dl(p) 

for a given measure X defined on A. The sequence 

is a weakly-minmax universal sequence if 

                                      i-*CO 
            d

p (ci) Dp (R) 

for each p e A. And, the sequence is a strongly-mini-

max universal sequence if 

                                    i-+00 
               d

p(ci) -> Dp(R) ; uniformly over A. 

Apparently, they are ordered in increasing significance. 

In general, strong universality requires the strongest 

conditions on the class. These universal sequences 

are sometimes explicitly refered to as fixed rate universal 

sequences for rates of codes converge to a fixed 

number the rate of the sequences. 

    These universal sequences are typically built up 
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from smaller codes, and there are known two construction 

methods, one due to Ziv [32] ( see also [34] ) and 

the other due to Neuhoff, Gray, and Davisson [34]. 

Both methods use the notion of code concatenation: 

the K-th concatenation of a code cN is a code cKN 

consisting of successions of K codewords from cN. 

    If cN has M codewords, then eKN has MK codewords 

and the rate (l/KN)log MK = (1/N)log M, the rate 

of cN. Now, given J codes c~ of rate R = (1/N)log M, 
let c* be the code consisting of all codewords from 

all concatenated codes C N. Then c* has JMK codewords 

and has the rate (1/KN)log JMK which becomes 

approximately R for sufficiently large K. Therefore, 

if each subcode cN achieves the distortion-rate 

bound of a source uj approximately, then c* achieves 

the distortion-rate bounds of all sources uj 

approximately. That is, c* is universally good 

over uj, j = 1, ... ,J. 

    Ziv argues that, since reproduction alphabet B 

has only R letters, J = M0 codes are sufficient to 

construct c* for there are only J codes. Neuhoff 

et al. argue that, since source alphabet A has only 

a letters, we can approximate all sources with 

sufficiently many, say J, particular sources and hence 

that J codes are sufficient. 
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    However, these construction methods are indirect 

and usually require a lotof subcodes: Ziv's method 

needs virtually all the possible block codes. In this 

section, we pursuit different universality. 

Quasi-Universal Sequences 

    For each stationary ergodic source [X,p], each 

stationary code generation process [Y,n], and each 

R > 0, let 

        D
uI'n(R) = inf dw(X,W) 

where the infimum is taken over all stationary ergodic 

joint sources[(X,W),w] with the marginals[X,p] on 

(A,,4) such that 

        I w l n (X;W) < R 

We call D (R) the distortion-rate function of [X,u]_ 
            u,n 

relative to [Y,n]. 

    Apparently, the infimum of D 11,n (R) in code 

generation processes is the distortion-rate function 

D
u(R) of the source. However, the continuity or 

the convexity of D 
11,T) (R) with respect to R is not 

generally obvious since the behavior of the relative 

mutual information quantity Iwln(X;W) is involved 

                         174



      for inappropriate [Y,n]. We are not concerned 

      with such geometrical properties of D (R) here, 
                                                      u,n 

      but show its meanings. 

         Definition: For R > 0, we say that { cN } is a 

      quasi-universal sequence of rate R ( relative to 

      a code generation process [Y,n] ) if, for each e > 0 

      and each stationary ergodic source [X,p], there exists 

      an integer N
0 such that each cN in the sequence has a 

      rate less than R + e and satisfies d
u(cN) < Du1n(R-0) + e, 

      for all N > N , where D (R-0) = lim D (R-c).                     = o u ,n e+0 u,TI 
           The core of the proof of a quasi-universal source 

      coding theorem is the following lemma: 

          Lemma 6.2.1: For any [Y,n], let S 
n,N (R,D,6) be 

      the set of those xl c AN that satisfy 

          E X[ N d(xi,wi) < D + 6do ] n(wi) > e-NR,. 
          w F-BN 

      where 6, R, and D are any positive numbers and N is 

      any positive integer. Then, for any e > 0, there 

      exists a block code cN of rate less than R + c having 

      sufficiently large block length N such that 

              d( S
n,N(R,D,6) cN ) < D + 46do 
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for any 6 > e. 

    The intuitive meaning of the lemma is simple: 

all points xi such that spheres of radius D + 6do 
centered at these ponints have n-probability 

at least e- NR are encoded by the code with 

distortions at most D + 46do. 

   Proof of Lemma 6.2.1. Let (tN = { YN(m), m = 1, 
... ,M } be a random block code generated using n 

as in the proof of Theorem 5.2.1 in the prevous section. 

Let h and k be integers such that 2 > eh > 1 

and 2 > ek > 1, and let Di = id 0/k and sj = je for 

i = 0,1, ... k and j = 1, ... h respectively. 

Then, from the union bound, we have 

, 

    E& X[ N d( Sn,N(R,D,6) (tN ) > D + 36d0 

                   some 6 > e and some d0 > D > 0 ] 

     h k 

  < E E E Ed X[ N d(xi, &N) > Di + sjdo ] 
     j=l i=0 xNCS. 

     h k 

    < E E E exp[ -Me-NR ] 

     j=l i=0 x1ES1'j 

   < ( 4aN/s2 )exp[ -e( - R ) ] 
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where a is the size of A, R = (1/N)log M, 

Si
,j = Sf,N(R,Di,cj), and we used D + 36d0 > 

D. + cJ.do whenever D. > D > Di_1 and c J . > c > c J. -1. 

Thus, for sufficiently large N and M, there exists a 

block code cN of rate less than R + c such that 

            n,N o o,      N d( S(R,D,6), cN ) < D + 36d+ Ed 

which proves the lemma. 

    In this lemma we show the existence of a code 

based only on knowledge about the source output 

sequences; every xl in Sn,N(R,D,6) is encoded with 
distortion approximately D. We can see that 

each stationary ergodic source [X,p] emits xi 
contained in S

n,N(R,D,6) with large probability 
if D

uj'n(R) < D and N is sufficiently large. 
We show the following theorem. 

    Theorem 6.2.1 ( Quasi-universal source coding 

theorem ): Let [Y,n] be any stationary finite-order 

Markov process, and let R > 0. Then, there exists 

a quasi-universal sequence of rate R relative to 

[Y,n]. 

   Proof. Let { ci } be a decreasing sequence of 

positive numbers such that lim i-*CO ci = 0, and let 

ci be codes with block length Ni obtained from Lemma 
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6.2.1 for c = ci. For the proof , it is enough to 

show that, for any S > 0 and any [X,u], there exists 

an integer No such that u( Sn,N[R,DU'n(R),6] ) > 1 - S 

for N > N , since d (c•) < D (R) + 5Sd          = o u 1 = u'n o 

holds for.ei < S and Ni > No then. 

For an arbitrary 6 > 0, let 6' and [(X,W),w] be, 

respectively, a positive number and a stationary 

ergodic joint source such that 

        I
wln(X;W) < R - 26' and 

         d
w(X,W) < Dun( R - 0 ) + Sdo/2 . 

First we have, for u(xl) > 0, 

       E X[ N d(xl,wl) < D + Sdo ] n(wl) eNR 
     wicBN 

    > E ~y(xN N) w(xl,wl) es'N      = 
wNEBN -1 w1 u(xl)       -I 

where D = D TI (R-0) and 

    ~U(X "wN) = X[ N d(xl,wl) < dw(X,W) + 6d0/2 and 

                    N 1w n (Xl'wl) < Iw ~ n + 6' ] 
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In view of Corollary to Lemma 5.1.2 and the ergodic 

theorem, there exists SN E AN such that u(SN) > 1 - 8 

and 

               N N w(X1,w1) 1           E(x
l,wl) N > 2 

       wNEBN u(X1)        -1 

for all xi E SN and all sufficiently large N (so large 
that e6'N > 2 as well ). Therefore 

    P( Sn ,N(R,D,S) ) 

                          (xNN)                          N N w-1 , w1 S N N 
  > X[ E ip(x

l,w1) N e > 1 ] F(X1) 
    X EAN wNcBN u(Xl) 

> which completes the proof. 

    In Theorem 6.2.1, the code generation process 

[Y,n] is assumed finite-order Markov. We generalize 

the result in the next theorem. 

   Theorem 6.2.2: For each stationary [Y,n] and any 

R > 0, there exists a sequence of stationary finite-

order Markov processes [Y,n(n)] such that 

                          179



     liminf D
u,n(n)(R) < Du}n( R - 0 )            n-3co 

for each stationary ergodic [X,p]. Moreover, all 

[Y,n(n)] can be made ergodic. 

   Corollary: For each stationary ergodic source 

[X,p] and each R > 0, there exists a sequence of 

stationary ( ergodic ) finite-order Markov [Y,n(n)] 

such that 

      liminf D
~ n (n) (R) = Du (R)                   n-~.oo 

   Proof of Theorem 6.2.2. For each [X,p], let 6 > 0 

be arbitrary, and let [(X,W),w] be a stationary ergodic 

joint source with the marginal [X,u] on (A,4 ) such that 

      dw(X,W) < D
in( R - 6 ) + 6 and 

        I
wln(X;W) < R . 

Let each n(n) be an n-th order Markov process with 

stationary probabilities n(bi+l), bl+l s Bn+l for each 
n. Then, from the remark below Lemm 5.1.1, we have 

    I wln(X;W) 
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                                     w(b Ibn-l,an) 
  > liminf E E w(an,bn) log n -1 -1 

      n}oo aF-An bieBn 1 -1 'l(bnlbl-1) 

   liminf I wln(n)(X;W) . 
         n->oo 

Thus, for the setah of integers on which the above 

limit-supremum is a limit, we have 

       liminf Du
,rl(n) (R) 

     < liminf D
n(n)( Iw~p(n)(X;W) - 6 ) 

          ne u , 

      < D'P ~~l( R - 6 ) + 6. 

This proves the first half since 6 is arbitrary. 

To prove the latter half , let each ?(n) be an n-th 

order stationary ergodic Markov process with 

transition probabilities ?i(bn+lIbn) = (1-e)rl(bn+l1                              bl) + 

ER-l where c is any positive number and a is the size 

of B. It is easy to see that [ see below (6.1.3) ] 

       I w I (n) (X;W) > (1-e) Iw I n (n) (X;W) 

Therefore the above arguments also hold for n with 

a slight modification. 
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Discussion 

    Finally, we give several remarks on the universal 

and quasi-universal sequences. The statements in 

the quasi-universal coding theorems are weaker versions 

of weakly-minimax universal coding theorems in [34]. 

However, if a practical problem, code construction, 

is involved, the situation seems to change; we have 

to consider the performance in moderate circumstances, 

moderate block length and moderate encoder complexity. 

Elementary code generation units, such as a convolu-

tional encoder, linear block encoder ( using linear 

codes ), or more likely speech encoder which is 

treated later, generate codewords having particular 

characteristics: statistical independence between 

letters in linear codes and autoregressive character-

istics in speech encoders. Thus ordinary universal 

encoders are best constructed by assembling suitably 

selected code generation units. 

    On the other hand, practical encoders can not 

possess so much sub-units because of cost performance 

balance. Thus, theorems in this section will be 

useful - a code generation process corresponds to 

a code generation unit. 
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3. Coding of stationary nonergodic sources 

    In this section the quasi-universal 

source coding theorems are used to prove directly the 

source coding theorem for stationary nonergodic 

sources [35]. First we see what are stationary 

nonergodic sources. 

    For each x c A, we denote, by px, a proability 

measure induced by x as the limit of relative frequencies 

fN(a~) of a1 e An in subsequences xNN as N, n } co. 
Of course, they may not be well defined for some x. 

However, px is well defined for p-almost every 

x, if the source is stationary, and px = p if the source 

is ergodic as well. Nonergodic sources give measures 

pX which vary also randomly; 

   Theorem 6 3 1 ( Ergodic Decomposition Theorem [36] ): 

There exists an invariant set G e 4 , and, for each 

x e G, there associates a stationary ergodic measure 

px such that, for any bounded 4 -measureable function 

h on A, the integral fA h(x) dpx(x) is an A -measurable 

function of x on G, and 

   f h (x) dp (x) = I [ I h (x) dpx (x) ] dp (x) 
      A _ G A -

for any stationary [X,p]. Moreover, if [X,p] is 

stationary and ergodic, then px = p for p-almost every x. 
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    For each x c G, we denote the distortion-rate 

function and the distortion-rate function relative to the 

process [Y,p], respectively, of [X,px] by Dx(R) and 
D X(R). Moreover, we denote the expected distortion, 
    ~n 

by dx(c), when a code c is used to encode a stationary 

ergodic source [X,ux]. We show the following theorem. 

   Theorem 6.3.2: For any stationary source [X,u] 

and any R > 0, 

    f
G Dx (R) du (x) = inf fG Dx ' n (R) du (x) 

where the infimum is over all stationary ergodic finite-

order Markov [Y,fl], and the right-hand side is 

achievable by block codes. 

   Proof The first statement is a consequence 

of Dx(R) < Dx n(R) and the next lemma. 

   Lemma 6.3.1: For any stationary [X,p], R > 0, 

and e > 0, there exists astationary ergodi.c finite-order 

Markov [Y,p] such that 

   f
G DX'Tj(R) du(x) < fG Dx( R - c ) du(x) + c. 

To prove the last statement, let c > 0 be arbitrary, 

and let [Y,,,] be a stationary ergodic finite-order Markov 
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process given in Lemma 6.3.1. Then, the quasi-

universal source coding theorem ( Theorem 6.2.1 ) 

implies that there exists a quasi-universal sequence 

of block codes of rate R,{ ci }, such that 

     limsup d x(ci) < Dx,fl(R) < Dx( R - e) + e            i -}eo - - -

for p-almost every x e A. Therefore, from the 

bounded convergence theorem and the ergodic decomposition 

theorem ( Theorem 6.3.1 ), we have 

   limsup d (c.) = limsup f d (ci) dp(x) 
        i-+00 u 1 1->.00 G x -

                < I limsup dx(ci) du (x)                              G i -±cc -

                < I Dx( R - e ) dp(x) + e, 
                  G -

which proves the theorem since the right-hand side 

is continuous in R and e is arbitrary. 

Conclusion 

    Gray and Davisson have shown in their noted paper 

[35] that f G Dx(R) dp(x) is achievable by block codes 

and that, if the noiseless channel ( in Fig. 5 .2 ..l ) can 

transmit exactly one out of eNR different codewords 
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in each block transmission, then any block codes never 

serve with strictly less coding distortion than this 

integral. In this sense, fG Dx(R) du(x) is said 

to be the fixed-rate distortion-rate function of 

the source. If the source is ergodic, then the 

integral agrees with the ordinary distortion-rate 

function. 

    Originally, the source coding theorem for 

stationary nonergodic sources is considered as the 

consequences of universal coding theorems. We have 

shown, in this section, that the quasi-universal 

coding theorems also afford a coding theorem for 

stationary nonergodic sources. 
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Proof of The Inequalities (6.1.2) 

    First note the following bound 

      I
u~(X;WOjW_N+1) 

    < Iuv( (X,0) ;WOW-N+1) 

      H
uv(W0IW-N+1) - Huv(WOIW-N+l,X,O) 

where 0 is a random variable assuming values 0 = 0, 

... ,n-1 with equal probability, the first inequality 

follows from a generalization of the equation (2.3.17) 

in Gallager [2, p.26], and ( from the choice of v ) 

       Huv(WOIW_N+1,X)0) 

                n-1 

       n E H A (WO jW_N+l,X) 
             e=0 uv 

            1 n-1 _1 A 

         n AEO Huv0(WOIWe-n+11X0-n+l). 

Then it is easy to see that the right-hand side of 

the above bound is decreasing in N for N > n. 

To bound further this bound, we note the followings: 
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        n-1 

   n E [ H e(WOIWe-n+l) - H e(WOIWeln+l'Xe-n+l) ) 
      e=0 )IV µv 

        n-1 

   n eE0 Iuve(X0_n+i'WOIWeln+i) 
       n-i  = n 

e~0 IuvO(XOn+l;W-elW-n+l) 

    I X-n O(n+i'W-n+i) 
      pv 

   n I(un,Pn), 

   H
uv(WOIW-N+l) - Huv(WOIW-N+1'e) 

   I
uv(O;WOIW-N+1)' 

and, for N > n, 

     1 n-i 
   n eE0 Huve(WOIWeln+1) HUv(WOIW-N+1'O) 

   1 nEl.[ H e(WOIWe-n+i) - H 0(WOIW-N+1) I 
      e=0 uv Uv 

  > 0 . 

Therefore we have a bound on Iuv(X;WOIW_N+l): 
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 Iv(X'WOIW-N+1) < n I(un,Pf) + Iuv(O;WOIW_N+l) . 

Since 

                                              00 

 E I v(O'WOIW-N+1) = Iuv(O'WNIW1-1) < log n , 
 N=1 N=l 

and since I]Iv(X;WOIW_N+l) is decreasing for N > n, 
we have shown the inequality (6.1.2a) [ if we shift 

the coordinates ]. (6.1.2b) is obvious. 
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Proof of Lemma 6.1.1 

    For S = BN-1, let Pn t s be a transition pmf such 

that Pn
,t,s x(wn wn-N+1) for t = (wn-N+2 ... wn) S 

and s= (wn -N+l " . wn-1) S and Pn ,t,s = 0 otherwise 

    For S = BN-l, let Pn be a transition pmf such that 

t = (wn -N+2 ..* wn) e S and s = (wn-N+l ... wn-1) c S and 

P
n t s = 0 otherwise, and let 

          qn,t scS Pn,t,s qn-l,s ' 

for n = 1,2, ... and arbitrary pmf's p0 and q0 on S. 

Let v
n t 1n t qn t for each t e S. Then 

E s
eS vn s = 0 for n = 0,1, ... , and 

           vn
't seS Pn't,s vn-l,s 

Our purpose is to show that vn t eventually converges 

to 0 for all t e S as n -~ -. To show this, let 

Sn be the set of all s e S that satisfy vn s > 0, 

and let 

             vn 
sESn vn,s 

          P E P , and             n
's tes n t's 

n 

         Pn,s = 
tES Pn,t,s 

n 
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Then we have 

     vn 
seS Pn,s vn-l,s + sS Pn,s vn-l,s 

                 n-1 n-1 

      < ( max P+ ) v+ - ( min P+ ) v+ 
              sS n,s n-1 sgS n,s n-1            s ' 

                   n-1 n-1 

We can see that the condition in the lemma implies 

      max P+ - min P+ < 1 - p~ , 
      SF -1 n      s ,s s~Sn-1 n,s = 

where B is the size of B. Therefore we have v+ < 
( 1 - Ps )vn-1, and 

           lim E Pn
,s - qn,s            n}oo sES 

        lim 2vn = 0 , 
                n-}o 

which proves the lemma, since we have vn
,t hn,t 

- q
n t for all t E S whatever the initial conditions 

p0 and q0 are. 
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Proof of Lemma 6.3.1 

    Let S e ' and raw, respectively, be an invariant 

subset of B and stationary ergodic measures corresponding 

to w s S that are assured by the ergodic decompostion 

theorem on (B,,`8). Let 6 > 0 be arbitrary. 

For each x e G, the invariant subset of A, let 

[(X,W),w(x)] be a stationary ergodic joint source 

with the marginal [X,px] on (A,4) such that 

         I w(x)(X;W) < R - 6 and 

         dW(X) (X,W) < Dx( R - 26 ) + 6. 

                                   ), Let [Y,n(x)] be a marginal of [(X,W),w(x)] on (BJ& 

and let n be the measure on (B,W) given by 

        n(F) = f n(F li x) du(x) 

G for every F c$> where n(FIlx) is the n(x)-measure 

of F. First, we show that IW(xI~(X;W) = Iw(x)(X;W) _ 

I w(x)In(x)(X;W). To see it, we note the following 
lemma due to Parthasarathy [37, Theorem 2.6]. 

   Lemma 6.3.2: We have, for ~-almost every w, 

      n(YlIY0 = nw(Y1!Y0) for nW-a.e. w. 
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In view of the stationarity of p, we have 

 f [ liminf - N E n (wi II x) log n (wl) ] du (x)    G N-}0 wi£BN 

< lim - N E p(wN) log n(wN) 
  N- wNeBN 

         -1 

= I [ - 
B log n (Yl I Y6) ] df (w) 

= I I [ - log n(Y1IY°) I do'P(w) dnN) 
  S B/ -

= I I I [ - log n,, (Y1 I Y6) 1 dn,, (w) do (~? li x) du (x) 
   G S B - -

where we use Lemma 6.3.2 in the last equality. 

Furthermore, if we let n(Y1IY°IIx) be the conditional 

pmf induced by n(x), the last term is calculated, 

using the ergodic decomposition, as follows: 

   I 
G I B [ - log n (Yi I Y° fi x) l do (w f! x) du (x) 

   I lim - N E n(W1tjX) log n(wl fjx) dp(x)      G N-- wiEBN 

where the last equality follows from the stationarity 
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of n(x). Therefore 

                                  n (wNI x) 

                w - du(x) = 0, 

 f liminf N E n(wiIIx) log -1 `N 
   G N->~ NsBN ~ (wl) 

             -1 

and this implies that 

                              n (wN x)  liminf N E n(w llx) log -1`N- = 0 ; u-a.e. x. 
    N-*°o 

wNEBN rt (w1)           -1 

Thus, for 'i-almost every x, I W(x)In(X;W) is equal to 

Lw(j)(X;W). It is immediate that 

      DX
'~ ( R - 6 ) < Dx( R - 26 ) + 6; u-a.e. x. 

Now let [Y,n(n)] be stationary finite-order Markov 

process such that 

                                                             - a .e.) ; -a.e. x,  liminf D 
x,(n) (R) < Dx r( R - 6 U                  - -

    n~oo - -

whose existence is shown by Theorem 6.2.2. 

Then we obtain 

        liminf f Dx
'n (n) (R) dp (x)                n-3oo G -
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      < I liminf D
x,TI (n) (R) dU (x)            G n-co -

      < I D
x( R - 2 6 ) du (x) + 6.          G -

Therefore, for sufficiently large n, it holds that 

 I
G Dx,n(n) (R) du(x) < IG D x ( R - 26 ) dp(x) + 26, 

and the lemma is proved if we let s = 26. 
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TREE ENCODING OF SOURCES 
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I. Introduction 

    Although source coding theorems assure efficient 

coding of sources, information-theoretic ideas have 

not used fully in real data compression systems yet. 

This is partly because real sources seldom have well 

defined characteristics, and because mathematical 

description of coding distortions is usually very 

defficult. Besides these obstacles, application 

of block coding so far discussed is sometimes avoided 

because of much computation in coding ( especially 

in source coding with a fidelity criterion ). 

For application of source coding theory to real 

situation we need codes with good performance and effi-

cient coding algorithms. In this regard tree codes 

consitute an important class of source codes as in 

channel coding. We first develop mathematical basis 

for tree coding. 

    Tree coding theorems are well-known for discrete 

memoryless sources ( DMS's ) that emit iid output 

according to pmf's p on the source alphabet A. The first 

tree coding theorem is due to Jelinek [38] ( which nas 

a flaw, and is subsequently corrected by Davis and 

Hellman [39] ). However, the most important of all 

such coding theorems is the trellis coding theorem 

due to Viterbi and Omura [40]. Trellis codes assumed 

therein are tree codes which have a trellis-like 
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structure as seen in Fig. 4.2.1 ( but their codes 

do not necessarily have an algebraic structure like 

convolutional codes ). They show the theorem: 

   Theorem 7.1.1: Let p be a DMS and let R > 0. Then 

there exists a ( time-varying ) trellis code cN with 

q branches per a node, v letters per a branch, and 

a constraint length K such that 

                               d e- vKE (R) 
        dp (cN) < Dp (R) + 1v cE R 

                               [ 1- e ] 

where d1 is a constant, E(R) and c are positive numbers 

for R = (1/v)log q > R
p(R), the rate-distortion 

function, and the block length N is assumed sufficiently 

large. 

In the proof the decoder is supposed to use Viterbi 

algorithm, an optimal searching algorithm on trellis. 

    These two theorems show the performance of tree 

codes when the best paths or codewords are found out. 

However exhaustive searching, searching the best one 

by inspection of all codewords, generally suffers from 

heavy computational loads in source coding, in contrast 

to those in channel coding. Many alternatives are devised; 

some enable us to find source coding theorems [41], 

[42], others do not, but afford efficient coding L43], 
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[44] . 

    Despite of all these results for DMS's, however, 

it is rather surprising that no satisfactory coding 

theorem with a fidelity criterion has been known 

yet for more general sources, stationary ergodic sources. 

An exception may be Tan's result [45]: 

  Theorem 7.1.2: Let [X,u] be a stationary ergodic 

source and let R > 0. Then, for any c > 0, there 

exists a tree code cN with sufficiently many branches 

per a node ( q branches ), sufficiently long branch 

sequences ( v letters ),and a sufficiently large block 

length N such that 

          du (cN) < D
u (R) + c 

where R = (l/v)log q is the rate of the code. 

   In this theorem, however, large q and v are indispensable, 

and make the theorem less interesting for large 

q and v generally increase encoder's computational 

task. There seems to exist nothing of notable advantage 

for tree codes having long branches over block codes. 

In the next section we prove a tree coding theorem 

for satationary ergodic sources using tree codes having 
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fixed branch length 

    Concerning tree codes, we mention here that there 

exists an elegant mathematical formulation, called 

sliding-block coding, proposed by Gray [46]. However 

this formulation for source coding appears to hardly 

give us sufficient insights into coding at this stage 

of theory; finding good sliding-block encoders is only 

carried out by exhaustive simulations [47]. 
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Level 0 Level 1 Level 2 .. Level i 

   Fig. 7.2.1 - A q-nary Tree Code 

                               v-length 
     I Branch SequE 

I 
      1 --

    Level 0 Level 1 ... L( 

    Fig. 7.2.2 - A (K,L)-Tree code 
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2. Tree encoding of stationary ergodic sources 

    As we have already seen in the previous chapter, 

there is a change in the notations; letter x for 

sources and letter y for codes. Therefore tree 

codes used in this chapter are represented as 

shown in Fig. 7.2.1. 

    Seeing the code tree, the first thought may 

be how they can encode sources in spite of rather 

poor number of codewords at first a few branchings; 

only q branches at the first branching and only 

q2 of them even in the next branching. Thus 

it is a quite natural idea that branches in. these 

first part do not have a significant role in 

coding. 

    We say that a code is a (K,L)-tree code if 

the code has block length N ( = vL ) and has 

K 
q root nodes ( see Fig. 7.2.2 ), where the 

length of branch sequences, v, and the number of 

branches per a node, q, are all fixed throughout 

this chapter. Obviously, the (K,L)-tree code 

is a truncated tree code at the K -th level. 

    We suppose that N = vL and L = KL*, 

and divide the code tree into L* parts each having K 

levels. Then, the first part consists of those 

from the 0-th level to the K-th level, and the 
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  second one consists of those from the K-th level to the 

  2K-th level, and so on. The i-th part contains 

  q(i+l)K subsequences, concatenations of K branch 

  sequences connecting the lowest nodes and the highest 

  nodes in this part; one lowest node is connected with 

  qK highest nodes, the lowest nodes in the next part of 

  the partition. For each lowest node, we number these 

  highest nodes, and hence corresponding subsequences, 

  from 1 to qK in any order. Then each source output 

  xl ..* xL is partitioned accordingly as x(l) ...x~L 

      Each subsequence in each part of the partition has 

  a distortion relative to the corresponding part of the 

  source output. We call it the weight of the 

  subsequence. The distortion of each path through the 

  tree is then the sum of these weights along it. 

 We use the following searching algorithm: 1) At 

  the first step, q2K candidates in the first part 

  of the partition are classified into qK groups cal), 
  j = 1, ... qK , so that cal) consists of all 

  subsequences numbered j, and the decoder retains 

  qK subsequences, call them survivors, each having 

  the smallest weight in cal), j = 1, ... qK 
  2) At the Q-th step, in general, q2K candidates 

  in the Q,-th part connected with the previous 

Q   survivors are classified into qK groups c~ ), 
  j = 1, ... qK so that c~Q) consists of all 
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urvivors qK Sur% 

rom for 

evious Step J c2 (Q) the Next 
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                                    CM 

q 

       E--- K Branches -.,~. 

Fig. 7.2.3 - Searching on the (K,L)-Tree Code 

                   205



subsequences numbered j, and the decoder retains 

qK new survivors, each having the smallest weight 

in a group c(Q), j = 1, ... ,qK 3) When the 

decoder obtained qK survivors at the last step, 

then each survivor uniquely specifies a path or 

a codeword with length N, and the decoder selects 

the best codeword and emits it. This algorithm 

resembles to the Viterbi algorithm, although this 

one is not exhaustive. ( See Fig. 7.2.3. ) 

   From the above description of the algorithm, 

the selected codeword is a concatenation of survivors. 

Thus the distortion is less than the sum of the 

respective maximum weights at steps; for a stationary 

ergodic source [X,u], 

          L* 

Nd (cN) < z E max d(X(Q),c~M 

) 

               Q=1 j=l,...,qK 

                    L* 

       < ND* + vd0K E E X[ d(X(9),c~'-) > )KD*, 
                             R=1 

                                         some j = 1, ... qK ] 

                     qK L* 

       < ND* + d 0 K E E E X[ d(X(Q),c~Q)) > vKD* ]. 
                        j=l Q=1 
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    For R > 0 and any c > 0, let [(X,W),w] be 

a stationary ergodic joint source with marginals 

[X,p] and [Y,n] on (A,4 ) and (B,SP) respectively 

such that 

          d
w(X,W) < DIP(R) + Edo and                         12 

E 
         I

w (X;W) < R + -                     12 

Let C N be a random (K,N)-tree code constructed 

as: 1) Branch sequences on branches emanating from nodes 

at the RK-th level are assigned randomly and independently 

each other by the pmf { n(wi), wi E A") }: 2) Branch 
sequences on branches after consecutive i branches ( i< K ), 

each assigned with a branch sequence bVj), j = 1,...i, 
are assigned randomly and independently each other 

by the conditional pmf { n[wi+ll b(l),...,b(i)] }: 3) After 
K successive branches, branch sequences are selected 

independently of the previous assignment. 

    We denote the expectation operator relative to this 

random tree code by , and denote the respective groups 

appeared in the searching by 

Then we have 

   N d
u ( N) 
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             qK L* 

< ND* + vd0K E E tE X[ d(X(' , L~Q)) > vKD* ] . 
              j=l k=1 

    We note that, though all ~3 Q) are not necessarily 

independent, the random sequences in each e4k) are 

independent of each other and have the same probabilities 

as YVK. Indeed, each Q) is a random block 

code with qK members having block length vK. 

Therefore we can use, for each one of 

arguments in Section 6.1, which is stated 

as follows: 

   Lemma 7.2.1: For any R, c > 0 and all sufficiently 

large K, there exists SvK F- A-A such that u(SvK) > 

1 - c/3 , and 

     X[ d(xvK, &3Q) ed 
                                3 o                      ) > D1(R) + ] 

    < exp [ - qK e- vK( R + e/2 ) ] 

for all xvK c SvK~ all j = 1, ... qK , and all 

k 

    Now let D* = Du(R) + edo/3 and R + e > (1/v)log q 

> R + 3e/4. Then, according to the lemma, we 
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obtain, for sufficiently large K, 

       d
u(&-N) 

              Ed Ed 
   < D

u (R) + o + 0              3 3 

     + d
og K exp[ - qK e K( R + E/2 ) ] 

  < D
u (R) + 2F-d0 + do exp[ K log q - eEVK/4 ] 

3 

   < D
u ( R* - c ) + Ed o , 

where R* = (1/v)log q. Since D
u(R) is continuous 

in R, we have D
u(R*-E) + Edo < D (R*) + E*do 

for any c* > 0 if e is sufficiently small. 

Therefore we have proved a lemma. 

   Lemma 7.2.2: Let [X,p] be a stationary ergodic 

source. Then, for any c* > 0, there is a (K,L)-tree 

code cN such that 

         d
u(cN) < Du(R*) + E*do , 

where R* = (1/v)log q. 
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   We note that the (K,L)-tree code is a truncated 

tree at the level K and its true rate is 

[(N+vK)/ N]log q, which is greater.than R*. If 

we use ordinary tree codes with single root nodes, 

then we have to consider the distortion caused by 

the first several branchings where only a poor 

number of codewords exist. 

   Theorem 7.2.1: For a stationary ergodic source 

[X,p] and any e* > 0, there exists a tree code cN of 

rate R with sufficiently large block length N such that 

                                     vKd 

. 

          d
u(cN) < Du(R) + c*do + N 0 

    As the block length gets large, the final 

term in the bound becomes arbitrarily small. 

Thus we have shown a tree encoding theorem for 

a stationary ergodic source with a bounded 

distortion measure and discrete alphabets. 

     These results are proved using a result in a random 

block coding argument, and do not necessarily tell us 

the superiority of tree codes to block codes. 

However, once the source coding capability of tree codes 

is known, we can appropriately modify the searching 

algorithm to make encoding computation feasible. 
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    In the last chapter, the algorithm used to prove 

Theorem 7.2.1 is modified, and it is shown that the 

modified algorithm gives an efficient way of tree 

coding. 
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3. Encoding BSS with Hamming distortion measure 

    An interesting problem, theoretically as well as 

practically, is the speed of the convergence of 

distortions to the distortion-rate functions of sources. 

For a BSS p and Hamming distortion measure, Omura and 

Shohara [48] argue that, if optimal codes cN, either 

block codes or tree codes, are allowed to maintain 

rates at least R larger than Rp(D*) in a positive 

amount c, then the convergence should be as fast as 

doubly exponentials, 

      dp(cN) - D* < exp[ - e-cN ], (7.3.1) 

as N } c. This assertion is proved for block codes, 

but only has a simulation evidence for tree codes, 

although it seems quite probable ( also see [49] ). 

In this short section, we observe that this conjecture 

is true. 

    For the combination of a BSS p and Hamming 

distortion measure d, the distortion-rate function 

is attained by test BSC's for all rates ( see Section 

5.2 ). Hence the optimal code generation processes 

[Y,n] are iid sequences of random variables with the 

symmetric pmf, n(O) = n(l) = 1/2. From the argument 

in Section II of [48], Lemma 7.2.1 is strengthened 
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as follow. 

   Lemma 7.3.1: For any xvK c AvK, 

       X [ vK d (xvK , ~~ Q) ) > Dp (R) 

       < exp{ - qK e- K[ R + S(vK) ] } 

for all j = 1, ... qK and all k = 1, ... ,L*, 

where 6(*) is a function such that 6(y) -} 0 as y -+ co. 

     In view of Lemma 7.3.1, Corollary to Theorem 7.2.1 

is replaced by the next theorem, whose proof is omitted 

for it is almost a repetition. 

   Theorem 7.3.1: For a BSS p with Hamming distortion 

measure, any N, and any R* >0, there is a tree code 

cN of rate R = (1/v)log q such that 

    dp (cN) < Dp (R*) + N 

              + qK exp{ - evK[ R - R* - S(vK) ] } 

for any K, where S(*) is a function such that 

6(y) -> 0 as y -• c. 

    If we let c = vK/N sufficiently small for 

large N, then the continuity of Dp(R) assures 
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D
p(R*) + c < Dp(R*-c*) for any positive c*. Thus, 

letting dummy rate R*sufficiently close to R , we 

have a corollary. 

   Corollary: For a BSS p with Hamming distortion 

measure, every sufficiently large N, and any c* > 0, 

there is a tree code cN of rate R = (1/v)log q 

such that 

     dp (c ) < DP ( R - c* ) + exp [ ENR - ecc*N 

where c'is a positive constant. 

    Therefore the convergence has the higher-than-

exponential ( almost doubly exponential ) speed 

if a small, but fixed, amount of the excess in rate, 

c*, is allowed. 

    However, such a positive excess c* can not be 

isolated in real situation. Instead, we ask, for a 

given rate R and given source, what is the ultimate 

distortion theoretically attainable, D(R) and what 

is the distortion achievable by practical source 

encoders, d
p(cN); we want to know how fast the error 

              d
p (cN) - Dp (R) 

converges to zero. This error is bounded by the 
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Fig. 7.3.1 - Nominal Convergence Curves and 

             a Practically Meaningful Convergence 

              Curve 
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envelope of d
p(cN) - Dp(R*), R* > R ( see Fig. 7.3.1 ). 

We show experimental data* [74] in Fig. 7.3.2 when trellis 

codes of rate R = (1/2)log 2 with constraint length 

K are used to encode BSC. Codes are generated 

randomly, and each plot shows the meanvalue of several 

tens simulation data. As discussed in Section 4.2, 

2K is the effective block length. In this figure, 

we also depicted the envelope of the doublly exponential 

convergence 

     dp(c2K) - Dp(R*) = exp[ -e 2K( R* - R ) ] 

Though we do not discuss details, the convergence of 

the error in block coding can not be faster than 

(1/2K)log 2K ( cf. [25, p.197] ). From Fig. 7.3.2, 

we know that tree codes are really superior to block 

codes. 

* By permission of Hiroyoshi Morita 

                           217



o, S, and T. 

   Corollary: For p > 1, suppose that Esp(p,P) _ 

E
sp(p,P). Then, for any E > 0, the best attainable 

PG satisfies 

        S1 
                    < inf PG 

 Qp+E( S + T )p+7 cony. codes 
                                   (K=OD) 

                               S2 

                             6p-E( S + T )p-E 1 

for sufficiently large a, S, and T, where the infimum 

is over all convolutional codes ( K = - ) 

and 6 1 and 6 2 are positive constants independent of 

a, S, and T. 

    Corollary gives a complete answer to the asymptotic 

behavior of the probability of deficient decoding, 

when K = -. For finite constraint length, a similar 

result will be shown with more elaborate analysis. 

    Finally we note that all results derived here 

aplly to time-varying convolutional codes. Since 

codes used in practice are of time-invariant, another 

problem thus seems to exist. 
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             CHAPTER VIII 

TREE ENCODING OF SPEECH AND SPEECH-LIKE SOURCES 

                    219



1. Introduction 

    In the previous chapters we have seen that tree 

codes can encode stationary ergodic sources up to 

their distortion-rate bounds, bounds on attainable 

distortion and rate given by distortion-rate or rate-

distortion functions. In this section we apply tree 

codes to encoding speech, a practically important source. 

    In the practical field, source coding is referred 

to, from its analog-to-digital conversion, as data 

compression, and so is speech coding, which is sometimes 

called speech compression. Speech compression, or 

speech coding, has long been studied by many engineers. 

Indeed, it is a major factor in Shannon's developing 

noted theoretical idea about communication; then he 

has been with Bell System Laboratry where first rate 

communication problems have been worked out, capacity 

of telegram wire, Vocoder, etc. And, among other 

prblems, speech coding is a serious problem which is 

continuously increasing its significance. There are 

so many literatures that we can not list them up all 

here ( cf. [58], [51], and references therein ). 

    From statistical and mechanical evidence [50], 

speech is best described as the autoregressive-moving_ 

average_( ARMA )__source satisfying 

               m n 

       Xt = - 
kEl ak Xt-k + kEl bk Xt-k ' 
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where the process V is a pulse train, for voiced speech, 

or is a white noise, a process consisting of iid random 

variables, for unvoiced speech. However, because of 

difficulty in identification and analysis, a simpler 

model, the autoregressive ( AR ) source satisfying 

m 

            Xt = - 
k=l ak Xt_k + Vt 

is often preferred. ( For example, PARCOR Vocoder [52] 

is based on this model. ) 

    Speech coders, the terminology for speech encoding-

decodeing machinery, are divided into principally 

two classes [51]: waveform coders and source coders. 

The former coders, as seen from their name, essentially 

strive for facsimile reproduction of the signal waveform, 

which are designed, in principle, to be source independent. 

PCM ( Pulse Code Modulation ) and DM ( Delta Modulation ) 

are in this class. They are used for many data 

compression systems not confined to speech compression. 

The latter coders, on the other hand, make use of 

the knowledge about speech generation mechanism. 

The idea is that respective fractions of speech 

offer numerical data on the actions of human vocal 

tarct and vocal code which turn out to advantage 

in efficiency describing the signal. Therefore, 
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the signal must be fitted into a specific mold and 

parametrized accordingly. This class includes 

PARCOR Vocoder. 

    Coders in these two classes have quite distinct 

features each other in efficiency and human reception. 

For example, the rates of waveform coders are no 

less than about 10 kbits/sec, while the rates of 

source coders are never more than several kbits/sec 

because of instrument complexity and cost. Moreover, 

the former coders have relatively natural quality 

while the latter coders produce sounds less natural 

and their quality is talker-,or even sentence-,dependent. 

Therefore, generally speaking, source coders with 

their extremely low rates can not be good substitutes 

for coders at higher rates. 

    Tree coders, speech coders using tree codes 

first systematically proposed by Anderson [54], 

constitue a class of efficient waveform coders [59], 

[60],[61], and are capable of encoding speech at 

relatively low rates, about 10 ' 20 kbits/sec. 

Especially, with sufficient instrumentation [60],[61], 

tree coders can encode speech at 8 kbits/sec yielding 

moderate quality. Since the data speeds 7.2 kbits/sec 

and 9.6 kbits/sec may be avaiable through the 

conventional telephony link [53] ( the recommendation 

is under investigation in CCITT ), tree coders 
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will be important speech coders. 

     Speech waveform sampled each unit 

time has discrete time coordinate, but has continuous 

magnitudes. In the source coding terminology, 

speech, as a source,,has a continuous alphabet 

the real line, in contrast to the sources that we 

have dealt with in the preceding chapters. Thus 

we briefly discuss how sources with continuous alphabets 

treated. 

    For these sources, source alphabets A and reproduction 

alphabets B are mil, and each string x from the sources 

is a point in an infinite-dimensional Euclidean space 

A = 5T O. Let [X,p] and [X,v,W] be a source and 

channel with continuous alphabets. To avoid unnecessary 

mathematical subtlety, we suppose that the measure u 

and conditional measure v have, respectively, the 

density pu and conditional density p. (*Ix) for all 

x e A with respect to Lebesgue measures on A and B. 

Then, according to general definitions of information 

quantities ( cf. [25] and [55] ), the mutual information 

quantity between Xl and Wl is the supremum 

     I jv(Xl;W1) 

)                         uv(E1xFj      sup E pv(EixF.) log ll 1 
                      u(Ei)n(F~) 
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over all finite partitions {Ei} and {F~} of A and B 
( they are 711 ), where n is the marginal of uv on 

(B,'a). Since each finite partition of 2? 1 induces 

a finite partition of 9Z n in an obvious manner, and 

since the measures have densities ( n automatically 

possesses its density ), the mutual information 

quantity between Xl and Wl is then 

   Iljv(Xl;Wl) 

             n nv(EixFn) 
    sup E uv(E-xF-) log (8.1.1) 

      i,j 1 u(Ei)n(F~) 

where the supremum is over all partitions {E'} and 

{F~} of An and Bn induced by partitions of A and B 
respectively. Moreover, the right-hand side is 

actually the integral 

             p (X1)pv(wllXl) n n n n n 

    j n log u n n pu(X1)pv(wllxl) dxl dw1 JAfl B pp(Xl)pn(wl) 
    Now let 

  hu(Wl) f B n [ log pa(wl) ] pa(wl) dwl and 

   h (WnIXn) 
      PV 1 -1 

                        224



   I
An IBn [ log PV(wlixl) I pu(xl)pv(wllxl) dxl dwl 

and call them the differential entropy and conditional 

differential entropy respectively. Then the following 

continuous alphabet analog is obtained for the mutual 

information quantity: 

             n n n n n       I
]IV(X1;W1) = h~(W1) - hjv(W1~X1). 

If we use the backward channel given by 

        n pp(xl)p\) 1IXl 
   p (X1 n4 )     ~W1) ' 

              pu(X n )p(W n                         l) 

for each xl s An and each wl s B. , then we have another 
form 

   Iu~(X1;W1) = h11(X1) - hnC(X11W1). 

And, if we define the differential entropy of the 

process X by the limit ( it exists for stationary X ) 

       h (X) ° n m n hu (Xl) 

we eventually obtain formulae for the information 

quantity between processes X and W 
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      I
uv(X;W) = hu(X) - hnE(XI W) 

               = h 
Ti (W) - huv(W IX)                    - --

    Again consider the general definition (8.1.1). 

For each pair of finite partitions {Ei} and {FJ}, the 
summation in the right-hand side is regarded as the 

mutual information quantity across the system depicted 

in Fig. 8.1.1. Passing through the quantizer in 

the figure, all identification of xi is lost except 
that xi is in some En. Given the quantizer output 
i ( there are only finite number of them ), the 11 n 
channel emits an output 0i in Fn with the conditional 
probability uv(EnxFn)/p(Ei), and the average distortion 
across the channel is 

         E pv(E.xF~) d(xi,wi) . 

If we suitably choose numeric letters ai corresponding 

to Ei and numeric letters bj corresponding to F~ for 
all i and j, and let the partition sufficiently fine, 

then the mutual information quantity across the 

system is made arbitrarily close to Ijjv(X;W) and 

the average distortion is made arbitrarily close to 

the integral 
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 f
An fBn d(xl,wl) p(xl)pv(wllxl) dxl dwl 

               n n        d
PV(Xl,Wl) . 

Since stationarity and ergodicity are preserved 

through quantization, we can see that coding problems 

for continuous alphabets are approximated by those 

for discrete alphabets arbitrarily well. 

    In this chapter, we are concerned largely with the 

practical side of coding rather than the mathematical 

properties. Thus we avoid measure theoretical 

terminologies. Instead, we consider coordinate 

functions Xt as random variables, and distinguish 

random variables with distinct distributions as 

Xt and Xt. 
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Fig. 8.1.1 - A Discrete Channel Approximation 
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2. Rate-distortion function of speech-like sources 

    As seen in Introduction, mathematical models of 

speech, called speech-like sources, are coded by tree 

codes up to rate-distortion bounds if the sources are 

stationary and ergodic. In this section, we discuss 

the rate-distortion function of AR sources as speech-

like sources. 

Gaussian AR Sources 

    AR sources are continuous amplitutde process X 

satisfying the difference equation 

m 
        Xt = - E akXt -k + Vt , for t = 1,2, (8.2.1a)                  k

=1 

            X0 = ... = X1 -m = 0 , (8.2.1b) 

where V, the driving process, consists of iid zero-

mean random variables with variance a2, When Vt 

are Gaussian random variables, we call the source 

the Gaussian AR source. As we see subsequently, 

the Gaussian source is not necessarily a suitable 

speech-like source for its probability dencity function 

does not have as sharp peak at zero amplitude as 

relative frequencies obtained from actual speech. 

However, investigation on this source is an important 
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step toward distortion-rate bounds of speech-like 

sources and the construction of tree codes for speech. 

    The behavior of the Gaussian AR source crucially 

depends on the location of zeros pk, k = 1, ... ,m, 

of the characteristic polynomial ( cf. [25] ) 

           A(p) = 1 + alp-1 + ... + amp-m . 

Let p* be the maximum magnitude 

        p* max I kI , 
                          k=l,..,m 

and denote covariances as 

          Yt 's = E X t X s f 

where E is the expectation operator. Then, the source 

is asymptotically stationary, 

         Yt
,s Yk as t,s } C , 

for each k = t - s 1, if p* < 1. On the other hand, 

the source is nonstationary and has exponentially 

diverging variances, 

        Yt 't = O(p*2t) as t } C , 
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if p* > 1, and the source is nonstationary and has 

algebraically diverging variances, 

         _Yt ,t = O(t') as t - - , 

for some a > 0, if p* = 1, where 0(*) is any function 

such that O(S)/d is bounded for large S. An 

example of the last case is a Wiener sequence satisfying 

                Xt = Xt -1 .+ Vt , and X_1 = 0 

for all t > 0, with covariances yt s = SZ min(t,s). 

Of course, the most important is asymptotically 

stationary sources, which are ergodic as well. 

    Let Rn(D) be the n-th order rate-distortion 

function of the Gaussian AR source relative 

to the squared-error distortion measure 

              d(x,w) = ( x - w ) 2 

for each x and each w. Then, the rate-distortion 

function of the source is the limit 

        R(D) = lim Rn(D) , 
                  n-oo 

                        231



for D > 0, provided that the limit exists. 

Apparently, R(D) is well-defined if the source 

is asymptotically stationary. The following block 

source coding theorem is known [56]: 

   Theorem 8.2.1: R(D) is achievable ( if it exists ) 

using block codes. 

    The theorem asserts that R(D) is achievable ( see 

Section 5.1 for the terminology ) even if the source 

is nonstationary with p* > 1. This is a quite 

exceptional statement among source coding theorems; 

most of them concern stationary ergodic sources. 

Therefore we deduce a general formula for R(D) here. 

    Let A be the nxn matrix n 

          A = n 1 

                 al 1 

                           aM... al 1 

   am--•a nxn 

Then the covariance matrix Pn = [ ''s t ]nxn is 

given by 62[ An An ] 1, and 
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       An T An = a0 ... a
m 

a m 

                                                      a0 ... a
m 

                       am F* nxn 

where,putting a0 = 1, 

                   m-2 
          at = 
k=0 ak ak+R 

for k = 1, ... m , and An is the transpose of An. 
Rn(D) is given, in terms of the eigenvalues of An An, 
An

,l < ... < ~n,n , as 

               1 n o2          D
e = n E min [ 6 , ] and (8.2.2a)                     k=1 n

,k 

                   n 2 
    Rn(D0) = n E max [ 2 log ex , 0 ] , (8.2.2b)                     k=l n,k 

where 6 is a parameter. To calculate R(D), we 

have to know the asymptotic behavior of eigenvalues 

~
n,k' 

    Let (
n be a matrix with the same entries ~~ on 

its upper and lower Q-th diagonal, k = 0, ... ,n-1 

( ~0 on the main diagonal ). Such a matrix is called 

a ( finite ) Toeplitz matrix. An An is almost 
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Toeplitz matrix except the lower right mxm corner. 

Given ~R, Q = 0,1, ... , Toeplitz matrices Z
n have 

a nice asymptotic eigenvalue distribution: 

   Theorem 8.2.2 - Toeplitz Distribution Theorem: 

Let S and p be the essential infimum and supremum, 

respectively, of the real-valued function on [-Tr,Tr] 

           (D (w) = E00 ~k e-jkw 
                        k=-00 

where $k = $ -k and j2 = -1. Then, for any function 

G(*) continuous in [8,ix], 

                n Tr 

    limn E G(En k) = 2~ f G[ (D(w) ] dw 
         n-}c k=1 - Tr 

holds, where n
,l `_ " 'n,n are eigenvalues of fin. 

   Remark: The theorem implies that the integral 

           f dw          2Tr 
{ ~(w)< S } 

gives the asymptotic fraction of eigenvalues less than S. 

    Now let T
n be the Toeplitz matrix with aQ on 

the upper and lower R-th diagonal, 9 = 1, ... n , 

for each n, and let Xn 1 < ... < Xn n be its eigen-

values. From the Sturmian separation theorem [57], 
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we have 

            An
,k ' Xn-m,k-m ; k = m+l, ... m 

Moreover, putting aR = a -Q, 

m 
             ~n < E a 

                      'n Q=-m R 

Therefore we see that all eigenvalues, except the 

smallest m eigenvalues, have the same asymptotic 

distribution as X 
nk' 

    If the source is asymptotically stationary, it 

is easy to see that all eigenvalues of rn, An-1k 62, 

are bounded above for large n. This implies that, 

for large n, the least m eigenvalues Xn k are bounded 

away from zero, and their contributions to (8.2.2) are 

negligible for large n. Therefore, for the asymp-

totically stationary source, we have the parametric 

representation 

2 
       De = 2I f min [ e g(w) ] dw and 

                        7T 2 
     R(De) = 2~ I max [ Z log e_9( 0 ] dw , 

where g(w) = j A(e Jw) 12. The function a2/g(w) 

is a spectral distribution of the source, 
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       Fourier transform of the limit covariance sequence 

     {Yk} . 

            However, if the source is nonstationary and p* > 1, 

       then the speed of the convergence of An 1 < ... < n 
,m 
       becomes significant in taking the limit of (8.2.2). 

       We can show the following lemma 

           Lemma 8.2.1: Suppose that 

                A(p) = E ( 1 - pkp 1 ) Qk 
                              k=1 

      ( Qk is the multiplicity of pk ) and that 

           Ip1I > ... > Ipk' > 1 > Ipr+ll > ... > 'Ps' . 

      Then, 

                                             k-1 k 

          xn
'Q an Q k IpkI-2n < k < E Qi                                            i=1 i=1 

                                               k < r , 

                    a
n k k otherwise, 

        where an
,Q,,k are positive numbers decreasing at 

       most algebraically as n - 
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        From the lemma, the following theorem is 

   immediate 

       Theorem 8.2.3: The rate-distortion function R(D) 

   of the Gaussian AR source is represented parametrically 

    as 

                            7T 2 
          De = 2~ f min [ 0 g (WT I dw and 

                            7F 2         R(D0) ~ f max [ 2 log eg(w 0 ] dw 

m 

                + E max [ log 'pkI , 0 ] 
                         k=1 

   where all pk are zeros of the characteristic polynomial 

   A(p) and 

m 

             g(w) = I E ak e ~kw 2                                                   a0 = 1. 
                             k=0 

        The theorem implies that nonstationary sources 

   require additional rates corresponding to their 

    exponential rates of diverging variances. As an 

    illustrative example, consider a nonstationary source 

                Xt = pXt -1 + Vt ; t = 1,., ... , and 

            XO = 0, 
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where p > 1 and 62 = 1. Xt has variances 'Yt t 

= (p2t-1)/(p2-1) . Given Xn, the process proceeds 

backward as 

                  (p2t_1)p p2t_1 
         Xt -1 

p t+l _1 Xt + p2(t+l)_1 Ut 

where all Ut are iid Gaussian random variables with 

unit variance. Let ?~t ( t < n ) be the conditional 

expectation of Xt when Xn is known, and let Xt = Xt - Xt, 

Then X approximately satisfies, for large n, 

                       _ 1 " 1            X
t-1 P Xt + p Ut , and 

             Xn = 0 

Thus, we see that the output of the source is 

decomposed into exponentially diverging random variable 

Xn and an approximately stationary backward process X. 

Since the rate-distortion function of X is n 

(1/2)log yn ,n/d for each d > 0, the average contribution 
of Xn to the total rate-distortion function is 

(1/2n) log Inn/d -> log p as n -- -. Therefore, if 

we let d sufficiently small, we have 

                                                                     -2 

     D8 ti 2 1 f 7T min [ 6 p                                 , -1 _ w2 ] dw and                 -7r I l+p e 1 
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                                                                               -2 

   R(D0) 77 f Tr max [ 2 log p _l w 2 , 0 ] dw                      -Tr e l+p e 

            + log p 

This coincides with the formula in the theorem. 

    Concerning Theorem 8.2.1 and Theorem 8.2.2, 

we give a brief comment. For stationary Gaussian 

AR sources, the rate-distortion function has been 

known [25]. Berger [58] shows a coding theorem for 

Wiener sequences and gives a formula of R(D) which 

is eventually equal to the integral in Theorem 8.2.3, 

since p* = 1. Subsequently Gray proves a coding 

theorem ( Theorem 8.2.1 ) for general Gaussian AR 

sources; however the formula for R(D) therein 

is misled by a wrong argument. 

                          239



Stationary AR sources 

    We can see that whether the source is stationary 

or asymptotically stationary is not essential; 

asymptotically stationary sources turn out to be stationary 

sources when infinite time has passed by or suitable 

initial conditions are selected. Thus, in the 

latter part, we make no distinction between both 

sources and simply call them stationary sources. 

    For a stationary Gaussian AR source, suppose 

that 

2 
         D8 < min 6 = D 

             -Tr<w<~ ~j 0 . 

Then, Theorem 8.2.3 gives 

         De = 0 and 

             _ 1 7F 1 02     R(D
0) 2~ I~ 2 log Og w dw . 

By calculation of the integral, we have 

2 
     R(D0) = Z log e , 

which is exactly the rate-distortion function of 

V for the fidelity 0 ( cf. [25] ). Since D0 < 0 and 

R(D0) > (1/2)log(o2/0), for 0 > 0, we have a corollary. 
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   Corollary to Theorem 8.2.2: For the stationary 

Gaussian AR source, the rate-distortion function R(D) 

of the source is 

         R(D) > RV(D) 

for all D > 0, and the equality holds for D < DO 

where RV(D) is the rate-distortion function of V. 

    This corollary gives us a useful lower bound 

of R(D): this is a special form of Shannon lower 

bound ( cf. [25] ). 

   Theorem 8.2.3 - Shannon Lower Bound: For a 

stationary source X, the rate-distortion function 

R(D) relative to the squared-error distortion 

measure has the lower bound 

       R(D) h(X) - max h(Z) 

where the maximum is over all random variables Z 

satisfying EZ2 < D. 

   Remark: This theorem holds for more general 

distortion measures, the difference distortion measures 

d(x,w) = d(x-w). 

    We first note that the maximizing Z does not 
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depend on sources, and that it is necessarily 

a Gaussian random variable. For a stationary 

Gaussian source, the maximizing Z is a zero-mean 

Gaussian random variable with variance D, and 

the inequality in Corollary to Theorem 8.2.2 is a 

direct consequence of Theorem 8.2.3. 

    It proves to be useful later to investigate 

what the equality for D < D0 means. Let Z be a 

process consisting of iid random variables distributed 

as the maximizing Gaussian Z, and suppose that 

there is a process W independent of Z such that 

X = W + Z. Then we have 

            d(X,W) = D 

           I(X;W) = h(X) - h(XIW) = R(D) , 

where the last equality follows from h(XIW) = h(Z) 

and the corollary. These identities imply that W 

is just an optimal code generation process ( for the 

terminology see Section 5.1 ). In more elaborate 

analysis, it is shown [25] that the Shannon lower 

bound R(D) equals R(D) if, and only if, the source 

output is obtained through the backward channel 

X = W + Z. Corollary to Theorem 8.2.2 means that 

such an expression is possible if D < Do. A similar 
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statement holds for general AR sources: 

   Theorem 8.2.4: For a stationary AR source, the 

rate-distortion function R(D) of the source is 

          R(D) > RV(D) 

for all D > 0, and the equality holds for all 

D < (S*/c2)D0 if RV(D) equals its Shannon lower bound 

for D < 8* ( < o2 ), where RV(D) is the rate-distortion 

function of V. 

    For Gaussian AR source, RV(D) equals its Shannon 

lower bound for all D < 02, and hence Theorem 8.2.4 

coincides with Corollary to Theorem 8.2.3. However, 

as we have noted below Theorem 8.2.3, for RV(D) to 

equal its Shannon lower bound, each Vt should be 

the sum of a Gaussian random variable and another 

random variable independent of it: This is quite 

improbable. In fact, almost speech-like sources 

do not satisfy this condition, and hence Theorem 8.2.4 

is useless for most cases. Instead the following 

simple theorem is useful 

   Theorem 8.2.5: Given a stationary AR source, let 

R(D) be the rate-distortion function of the source, 

and let RG(D) be the rate-distortion function of the 

stationary Gaussian AR source with the same parameters. 
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Then, 

     RG (D) > R(D) > RG (D) - [ hG (X) - h (X) ] 

for D < Do, where h(X) and hG(X) are, respectively, 

the differential entropy of the original source and 

the differential entropy of the Gaussian source. 

   Proof The left-most inequality is a consequence 

of Theorem 4.6.3 in Berger [25]. On the other hand, 

from Theorem 8.2.3 and the Gaussianity, there exists 

a random variable Z such that 

        R(D) > h(X) - h(Z) and 

       RG(D) = hG(X) - h(Z) 

which proves the other inequality. 

    The bound given by this theorem is tight for 

most speech-like sources. 
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3. Tree encoding of speech and speech-like sources 

    In this section we show some results in coding 

speech and speech-like sources 

Tree Codes 

    Below Theorem 8.3.4, we have noted that, for 

D < D0, the rate-distortion function R(D) of the 

( asymptotically ) stationary Gaussian AR source is 

attained by the backward channel 

              Xt = Wt + Z t , 

for all t, where Z is a process independent of W and 

consisting of iid zero-mean Gaussian random variables 

with variance 62. The optimal code generation process 

W then has the spectral density 

2 
    fW(w) gg(w7 D 

           02 E b e jkwl2~l E a e-
             k jkwl2                     =U k k=0 k 

for -it < w < it, where the coefficients bk are given 

by the factorization ( it is possible for D < D0 [25] ) 

              m m _ 

    (D/o2) ` Z a k e ~kwl2 E bke 3kwI2 (8.3.1) 
              k=0 k=0 
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with a0 = 1. Therefore W satisfies the ARMA model 

                   m m 
          Wt = - 

kZl akWt-k + kz0 bkVt-k 

for all t where all Vt are iid zero-mean Gaussian 

random variables with variance a2. 

    A straightforward construction of tree codes 

for the Gaussian sources is to simulate the random 

generation of tree codes described in Section 7.2 

by computer-generated random process W. However any 

tree code obtained in this way bears no superiority 

to simpler tree codes discussed subsequently; it 

requires large memory area in spite of the convergence 

of distortion which is rather slow. This is partly 

because ideal codes which perform at rates and 

distortions very near to the rate-distortion bound 

are not necessarily also good at moderate tree 

searching capability of encoders. Sometimes a better 

result is obtained by substitution of fixed number 

of numeric values vl, ... ,vq, instead of randomly 

generated numbers, for the driving V t ; the totality 

of available sequences wi constitutes, by itself, 
a tree codes of rate log q having block length n 

( assuming w0 = ... = wl_m = 0 ). 

    To obtain simple code design, we first note the 
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following equivalent definition of the code generation 

process W. 

           Wt 
kE0 ckVt-k 

where the coefficients ck are given by the formal 

expansion 

  ( E bkp k ) / ( E akp-k ) = E ckp k 
     k=0 k=0 k=0 

We say that a tree code has B-coefficients or 

is a B-code if the code is generated by 

K 
           yt = E ckvt-k (8.3.2) 

                   k=0 

where K is a finite integer called the constraint 

length of the code and all vt assume only fixed number 

of levels sl, ... ,s q. The coefficients bk can 

be replaced by other coefficients fk determined 

according to different reasoning. For such selection 

bk = fk, for all k, we say that the tree code has 

F-coefficients or is an F-code. Especially, if 

f0 = 1 and fk = 0 for all k > 0, then the code is 

called a No Smoothing (NS)-code, and its coefficients 

are called an NS-coefficients, since fk are generally 

selected to possess smoothing ( filtering ) effects 
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on the behavior of yt. In this regard, another 

code design is possible by smoothing NS-coefficients 

ck by F(p) = E kK0 fkp-k as 

         K K" 
           E ckp-k = F(p) E ckp-k 

          k=0 k=0 

where K = K'+ K' -1. We call the code thus constructed 

an F-code, and call its coefficients F-coefficients. 

Since the NS-coefficients tend to zero rapidly for large 

k, F-codes and F-codes eventually become almost equal 

to each other for large constraint length K, for 

most cases. 

M-algorithm [ or (M,L)-algorithm ] 

    Given these tree codes, the next problem is an 

efficient way of coding capable of finding codewords, 

or paths, that make the distortion small. Viterbi 

algorithm which is optimal for convolutional codes 

or trellis codes is no longer useful for these codes. 

And sequential algorithms have a significant drawback 

because of their buffer overflow problems, though they 

seem attractive in conceivably cheap instrumentation 

cost [62]. 

    (M,L)-algorithm [43] is then a standard algorithm 

[54],[59]-[61], which is known to outperform the Viterbi 

algorithm in distortion when the number of computations 
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per an encoded node at the encoder is limited [44]. 

Suppose qQ > M > qQ-1, and call the root node the 

0-th encoded node. It is described as follows 

( see Fig. 8.3.1 ): 1) First investigate all paths 

up to the 2.-th level to find out M paths minimizing 

distortions between the codewords and the corresponding 

portion of the source output: 2) Investigate qM ( or 

at most qM ) paths extended one branch from these 

previously retained paths, and sort out M ( or at most 

M ) paths with the least distortions: 3) Whenever the 

decoder reaches nodes higher in L levels than the 

previously encoded node , sort out a path having 

the least distortion, let the immediate descendant of the 

previous encoded node on this path a new encoded node, 

abondon all nodes except those descendants of the 

new encoded node, and return to 2). 

    Due to the last operation that makes the selected 

path never jump transversally on the tree, the number 

of retained nodes is occasionaly less than M. 

Fig. 8.3.2 shows the combined scheme of the tree code 

generation and (M,L)-algorithm. 

Coding of Speech-Like Sources 

     Two AR sources are chosen as speech-like sources: 

a Gaussian AR source and a Laplacian AR source whose 
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Fig. 8.3.1 - The (M,L)-Algorithm 
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iid driving random variables Vt have the Laplacian 

( Two-side exponential ) probability density 

       f (v) 
a exp ( - VT 6-1 v           ~ ) . 

The former is selected bacause of observed analytical 

evidence above. The latter is selected because of 

its probability density having a sharp peak at zero, which 

is typically seen in relative frequencies for speech 

signals as shown in Fig. 8.3.3, where the horizontal 

axis gives the prediction error 

m 
          Xt 

kEl akht-k 

for the AR coefficients ak. 

    In Fig. 8.3.4, we show several rate-distortion 

curves. Rates are expressed in bits/sample 

( bits/letter ) and distortions are expressed in 

terms of SNR ( dB ) given by 

      SNR = -10 log 1 D                         0 variance o X
t ' 

where the base of the logarithmic function is 10. 

In the fugure, R1
,G (D) and RG(D) are the first order 

rate-distortion function and rate-distortion 
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function, respectively of the Gaussian AR source, 

whose AR coefficients are obtained from sampled speech. 

While RL V(D) and RG V(D) denote respective rate-

distortion functions of the Laplacian driving process 

and Gaussian driving process. RL V(D) is calculated 

numerically using Blahud's algorithm [63]. The 

difference between RL V(D) and RG V(D) is small compared 

with that between RG(D) and RG 1(D); from Theorem 8.2.3, 

the former difference is less than (1/2) log 2 (Tr/e), 

the difference of respective values of differential 

entropy which is about 0.1 bits/sample. Theorem 8.2.5 

also implies the difference between RG(D) and RL(D), 

the rate-distortion function of the Laplacian source, 

is less than 0.1 bits/sample for higher SNR than 

D0 ( about 20 dB ). Indeed, the numerically obtained 

plots denoted by R2 which are their second. order 

rate-distortion functions show no noticeable difference, 

where the deviation from linearity at high rates is 

due to coarse quantization of coordinates to 

make Blahut's algorithm feasible for this two-

dimensional case. Therefore we see that the shape 

of distribution is less relevant than the memory of 

sources in rate-distortion function; much reduction 

in rates comes from dependence between samples. 

    In the simulation we let q = 4 ( 2 bits/sample ) 

                          252



Fig. 8.3.3 - A Typical Relative Frequency Distrbution 

             of the Prediction Error 

is/sample) 

            N R
l,G 

   2 `® 
    \\R2 

4 

     1 RG (D)am` 

0 

            0 Gaussian 

              Laplacian RG
,V 
       0 RL,V 

             20 
SNR 10 0 ( dB ) 

        Fig. 8.3.4 - Rate-Distortion Functions 

                       253



                            254



and use the same AR coefficients as above. At this 

rate we have D(2) = 23.8 dB which is higher than D0 

in decibel and the reasoning for B-code is valid. 

The quantizer levels s1 = s4 and s2 = s3 are selected 

by another simulation with (M,L,K) = (4,8,8) for 

each of three code coefficient sets ( the same level 

set is used for both F-code and F-code ). The 

smoothing filter F(p) = (l+p 1)/2 is selected to 

eliminate the noise typically observed for wa.veform 

coders with spectrum around a half the sampling 

frequency [54]. The simulation results are 

visualized in Fig. 8.3.5. The figures show universally 

good performance of theF(F)-code for large K and large 

M. While the F-code perform rather poorly at small 

encoding intensity M as seen in Fig. 8.3.5 (b), which 

is also observed in [60] for Gaussian sources. 

On the other hand, the NS-code and B-code both of 

which perform well for the Gaussian source no longer show 

good SNR for the Laplacian source. This is a 

clear contrast with the F(F)-code. 

Coding of Speech 

    Though we have used stationary or asymptotically 

stationary source as speech-like sources, real speech 

signals are seldom considered as stationary, or even 

asymptotically stationary signals. Rather they are 
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                                   50 msec 

Fig. 8.3.6 - A Typical Speech Waveform 
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succession of relatively uniform waveforms lasting 

30 ' 50 msec as seen in Fig 8.3.6. These fractions 

have respective power and spectrum, while statistical 

properties of codes are almost determined by code 

coefficients selected. 

    There are two directions in code-source adaptation: 

the one is to adapt codes only to power variation [54], 

[59] and the other is to adapt codes, varying code 

coefficients, to both power and spectrum variation 

[60],[61]. The former seems to fit for relatively 

high rates and the latter seems to fit for low rates 

where the cost needed to set up adaptation mechanisms 

is permissible. 

    In this section, we apply two power-adaptation 

methods, AGC and AQ, to encode speech, sampled at 

10 kHz, using tree codes of 2 bits/sample ( i.e., 

20 kbits/sec). AGC( Auto Gain Control ,) is the 

simplest mechanism that adjusts discontinuously its 

gain over the sampled data string partitioned into 

blocks of equal size so that sample power in each 

block remains about at a fixed level. We call the 

length of each block the AGC length and call the 

standard level the AGC level. With AGC, 

AGC gain has to be sent to reproduce 

signals at the decoder. However, the increase 
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in rate to send the additional signal is usually 

small, and it is neglected here. In contrast to 

AGC which adapts codes blockwise, a( Adaptive 

Quantizer ) adapts the levels sk, k = 1, ... q on 

each path in code trees according to the rule [59] 

          S (t) - _ h s (t-1)              k k
t_.l k 

for all k = 1, ... q , where skt) are levels at t, 
kt indicate the levels assumed at t, and hk are AQ 

coefficients. AQ needs no additional messages at 

the decoder. 

    We first describe the results of sppech encoding 

using AGC. The data used to determine ak are taken 

from a Japanese sentence "HONJITSU WA SEITEN NARI" 

sampled at 10 kHz and have about 16000 samples each 

represented by 12 bits. ( These coefficients are used 

in all experiments.) Encoding is performed over the 

fraction "HONJITSU", about 4100 samples. AGC length is 

10 msec ( 1000 samples ) and AGC Level is fixed 

at a constant value for all codes according to 

preliminary expreiments which show approximately 

the same optimal AGC levels for all codes. 

Results are reproduced in Fig 8.3.7, where each plot 

indicates the maximum SNR for L = 4,8,16. Two 
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Fig. 8.3.7 - Tree Encoding on Speech with AGC 
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Figures show uniform superiority of F-code; F-code 

work only poorly for small K conceivably due to 

truncation effect. In Fig. 8.3.7(b), 

the superiority of F(F)-code becomes clear for large M. 

    Next we show the results of speech coding using 

AQ, which are given in Fig. 8.3.8. We put K = L 

in Fig. 8.3.8(a) and L = 8 in Fig. 8.3.8(b). 

Moreover we let AQ coefficients h1 = h4 and h2 = h3, 

and h1 and h2 are determined for NS-, B-, and F-codes 

( for F-coefficients and F-coefficients 

the same AQ coefficients are used ) 

through preliminary experiments on (M,L,K) _ 

(4,8,8). They are observed best or nearly best in 

coding on (M,L,K) = (4,16,16), too. We first 

notice that AQ inverts the order between codes: 

F(F)-code performs poorly for all K and M, and, on the 

other hand , B-code and NS-code work at SNR 

approximately 20 dB, much improvement over the gain 

obtained by AGC. However, F(F)-code tends to show 

better SNR for large K and M, whereas B-code and 

NS-code show no significant improvement in SNR by 

increase of K and M. 
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Fig. 8.3.8 - Tree Coding on Speech with AQ 
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Remarks on Encoding Algorithms- M-algorithm and 

Parallel Sorting M-algorithm 

    In this section, all tree encoders have used M-

algorithm since it is simple and is easily implemented 

in software. However, this algorithm is not an effi-

cient algorithm to attain high SNR [62]. One reason 

for it is that, as M gets large, sorting requires more 

computation. Another reason is that encoders have 

to sort out the best M paths from qM extensions. 

Generally, sorting the best M paths from qM extensions 

requires much computation than sorting out M ones by 

selecting the best M/2 paths from a half of the exten-

sions and selectiong another set of the best M/2 paths 

from the other half of them separately. 

    Here we propose an efficient tree searching algorithm 

( in comparison with the M-algorithm ), which is termed 

as the parallel sorting M-algorithm. This algorithm is 

obtained from the block-wise tree searching algorithm 

used in Section 7.2. The operation is simple. 

First consider the code tree in Fig. 8.3.10, and suppose 

that we are retaining M paths ( or nodes ). Since, 

from each retained path, we have q extensions numbered 

from 1 to q, all qM extensions are classified into 

q groups according to the attached numbers. In 
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the new algorithm, M paths are obtained by sorting 

out M/q paths from each group. If speech data 

sampled at 10 kHz are to be encoded, only M = 4 ( qM2 

= 64 comparisons in 0 .1 msec ) is realizable using 

the M-algorithm, while M = 16 ( M2/q = 64 comparisons 

in 0.1 msec ) is realizable using the proposed algorithm. 

In Fig. 8.3.9, the computational time per a node and 

coding distortion are shown for the two algorithms, 

where the source is speech and plots of the compu-

tational time for the parallel sorting M-algorithm 

show the overall computational time per a node. 

For M larger than 4, the new algorithm performs better 

than the M-algorithm. If we use a parallel sorting in 

the sorting, the computational time for the parallel 

sorting M-algorithm is reduced to approximately one 

q-th of the plots. 
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Fig. 8.3.9- Comparison of Computational Time 

           and Distortion 
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Fig. 8.3.10 - The M-Algorithm and Parallel Sorting M-Algorithm 
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Proof of Lemma 8.2.1 

    Consider the difference equation 

       n + a1~n_1 + ... + amen-m = 0 ; n = 1,2, ... , 

            ~0 = ... _ ~1-m 0 

with the associated characteristic polynomial A(p). 

    We first suppose that all zeros are distinct and 

satisfy Ip1I > ... > Ipml > 1 > Ipm.+ll > ... > Ipml 

( nondegenerate case ). Then any solution ( real) 

n-vector C = [Cl ... En] T of the difference equation 

is a linear combination of m linearly independent 

n-vecotrs ilk = [1 pk ... pk-1]T. Let vk+1, ... I v_n 
be any linearly independent n-vectors orthogonal to 

ui, ... ,un. And let `lxll2 = x*x where x* is the 
adjoint of x. Then, from the Courant-Fisher theorem 

[57], we have 

                              2 2                max 
ogonal to (IAnx ~~ /~~x~~ 

       ~n
,k < x:orth 

                      vk+l,...,vn 

           max II E RR,AmumII2/ ([ E ~Qun1I2 
                  ~1,...,Bk Q=1 Q=1 

       < max 11 E aQ,AmumtI2/ II E aQpn-kukll2 
                  R11...,~k k-l R 1 

                          266



          = 1/0( 'pkl2n ) 

where 0(*) is any function such that O(S)/6 is bounded 

for large S. The second inequality above follows 

from xT(G+H)x > xTGx for any nonnegative summetric 

matrices G and H, and the last equality follows 

from positive definiteness of the matrix [ (u1k)*u J k ]. 
    To bound the eigenvalues from lower, we note the 

matrix identity An = B1B2 ... B
m where 

            Bk = 1 

                        -P
k 1 

                                 -pk 1 nxn 

Moreover, any n-vector x orthogonal to ul, ... 'Uk -1 

is writen as x = Bk _l ... Bly where y is any n-vector 

such that y = [yl ... y
n-k+l 0 ... 0]T. Therefore, 

from the Courant-Fisher theorem, 

   1/X n, k < max IIAn l x 2/11 x '2              x: orthogonal to 11 l 
                n In 

                    Ul.... 'uk-1 

                                 - 2 2         < max l!An 1 B1 ... Bk-lx 11 /11X11 
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          < trace [Bml ... Bkl]*[Bml ... Bkl] 

                  0( IPkl2n ) ; k = 1, ...,m', 

                     0(n) ; k = m'+1, ... , m. 

Therefore, the lemma has been proved for the non-

degenerate case. 

    When some zeros degenerate as pi pi+l 

... = pi+j, then vectors ui, ... ,ui+j are given as 

        ui+Q = [1 2Qpi ... nkpn-1], 

for all k = 0,1, ... j, and the argument goes 

in almost the sae way since ui, ... ,uk are again 
linearly independent. 
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     IX. CONCLUSION 

    We have discussed channel and source coding, chiefly, 

with tree codes, and have seen that the tree codes are 

useful in designing practical communication systems. 

In channel coding, the theory well approximates the 

real system, and the practice well supports the assertions 

of the theory. In source coding, however, we do not 

have many succesful applications of the tree coding 

theory. This is partly because, in contrast to channels 

such as the white Gaussian channel in space communication, 

sources are active by itself and tend to alter their 

temporal characteristics according to the contents 

that should be transmitted, like speech that 

alters its power and spectrum from one consonent to 

another. Therefore robustness or universality of 

codes is an important factor in the coding system 

design, and should be explored thoroughly in conjunction 

with implementable tree encoding algorithms. 
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DMC discrete memoryless channel 

DMS discrete memoryless source 

iid independently and identically distributed 

pmf probability mass function 

SNR signal-to-noise power ratio 
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