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ABSTRACT

In this thesis, considering the imprecise nature of the human judgements
in the real-world decision situations, two types of fuzziness of human
Jjudgements are incorporated in multiobjective linear, linear fractional
and nonlinear programming problems with fuzzy parameters. One is the
experts' ambiguous understanding of the nature of the parameters in the
problem-formulation process, and the other 1is the fuzzy goals of the
decision maker for each of the objective functions. The fuzzy
parameters, which reflect the experts' ambiguous understanding in the
problem-formulation, are characterized by fuzzy numbers. The concept of
M-a-Pareto optimality is introduced on the basis of the a-level sets of
the fuzzy numbers and the fuzzy goals of the decision maker for each of
the objective functions are quantified by eliciting the corresponding
membership functions. In our interactive methods, the satisficing
solution of the decision maker can be derived efficiently from among an
M-a-Pareto optimal solution set by updating his/her reference membership
values and/or the degree « together with the trade-off information.
Based on the proposed methods, interactive computer programs are written
to implement man-machine interactive procedures. To demonstrate the
feasibility and efficiency of the proposed methods, several illustrative
numerical examples are shown along with the corresponding computer

outputs.
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CHAPTER 1

INTRODUCTION

1.1 Introduction and Historical Remarks

Recently, 1t is increasingly recognized that most of the real-world
decision making problems usually involve multiple, noncommensurate, and
often conflicting objectives. For such multiobjective programming
problems, multiple objectives are usually noncommensurable and cannot be
combined into a single objective. Moreover, the objectives usually
conflict with each other in that any improvement of one objective can be
achieved only at the expense of another. Consequently, the aim in
solving multiobjective programming problems is to find a compromise or
satisficing solution of a decision maker (DM) which is also Pareto
optimal based on his/her subjective value-judgement (Chankong and Haimes,
1983a,1983b; Cohon, 1978; Grauer, Lewandowski and Wierzbicki, 1982;
Grauer and Wierzbicki, 1984; Haimes, Hall and Freedman, 1975; Hwang and
Masud, 1979; Steuer, 1986; Zeleny, 1982).

Two types of approaches for the determination of a compromise or
satisficing solution of a DM in multiobjective programming problems have

been developed. They are:



(1) goal programming approaches (e.g. Charnes and Cooper, 1961,1977;
lgnizio, 1976,1983; Lee, 1972) |
(2) interactive approaches (e.g. Geoffrion, Dyer and Feinberg, 1972;

Musselman and Talavage, 1980; Sakawa, 1981,1982a; Sakawa and Mori,

1983,1984; Sakawa and Seo, 1980,1982,1983; Sakawa and Yano, 1984b;

Steuer and Choo, 1983; Wierzbicki, 1979a,1979b,1980: Zionts and

Wallenius, 1976)

The goal programming approaches, which assume that the DM can
specify hiss/her goals of the objective functions, first appeared in a
1961 text by Charnes and Cooper (1961) in order to deal with
multiobjective linear programming (MOLP) problems. Subsequent works on
goal programming approaches have been numerous including Charnes and
Cooper (1877), Ignizio (1976,1983) and Lee (1§72).

The interactive approaches, which assume that the DM is able to give
some preference information on a local level to a particular solution,
were first initiated by Geoffrion et al.(1972) and further developed by
many researchers such as Sakawa (1981, 1882a), Sakawa and Mori (1983,
1984), ©Sakawa and Seo (1980,1982,1983), Sakawa and Yano (1984b), Steuer
and Choo (1983), VWierzbicki (1879,1980) and Zionts and Wallenius (1876).

The interactive goal programming method proposed by Dyer (1972) is a
first attempt to provide a link between goal programming and interactive
approaches. Since then several goal programming based interactive
methods which combine the attractive features from both goal programming
and interactive approaches have been proposed (Masud and Hwang, 1981;
Monarchi, Kisiel and Duckstein, 1973; Weistroffer, 1982,1983,1984).

However, considering the imprecise nature of the DM's judgements in

multiobjective programming problems, fuzzy programming approaches (e.g.



Kickert, 1978; Zimmermann, 1983: Zimmermann, Gaines and Zadeh, 1984) seem
to be very applicable and promising for solving multiobjective
pProgramming problems.

An application of the theory of fuzzy set (Zadeh, 1965} to
multiobjective linear programming problems was first presented by
Zimmermann (1978) and further studied by Leberling (13981) and Hannan
(1981). Following the fuzzy decision or the minimum-operator proposed by
Bellman and Zadeh (1970) together with linear, hyperbolic or piecewise
linear membership functions respectively, they proved that there exist
equivalent linear programming problems.

However, suppose that the interaction with the DM establishes that
the first membership function should be linear, the second hyperbolic,
the third piecewise linear and so forth. In such a situation, the
resulting problem becomes a nonlinear programming problem and cannot be
solved by a linear programming technique.

In order to overcome such difficulties, Sakawa (1983a, 1983b) has
proposed a new method by the combined use of the bisection method and the
linear  programming method together with five types of membership
functions; linear, exponential, hyperbolic, hyperbolic inverse and
piecewise linear functions. This method was further extended for solving
multiobjective linear fractional (Sakawa and Yumine, 1983) and nonlinear
programming problems (Sakawa, 1984a).

In these fuzzy approaches, however, it has been implicitly assumed
that the fuzzy decision or the minimum-operator of Bellman and Zadeh
(1970) 1s the proper representation of the DM's fuzzy preferences.
Therefore, these approaches are preferable only when the DM feels that

the fuzzy decision or the minimum-operator is appropriate when combining



the fuzzy 9goals and/or constraints. However such situations seem to
rarely occur, and consequently it becomes evident that an interaction
with the DM is necessary.

Under these circumstances, assuming that the DM has a fuzzy goal for
each of the objective functions in multiobjective programming problems,
several interactive fuzzy decision making methods have been proposed by
incorporating the desirable features of both the goal programming methods
and the interactive approaches into the fuzzy approaches (Sakawa, Yumine
and Yano, 1984a,1984b; Sakawa and Yano, 1984a, 1985b,1985d).

However, when formulating the multiobjective programming problem
which closely describes and represents the real decision situation,
various factors of the real system should be reflected in the description
of the objective functions and the constraints. Naturally these
objective functions and the constraints involve many parameters whose
possible wvalues may be assigned by the experts. In the previous
approaches, such parameters are fixed at Some values in an experimental
and/or subjective manner through the experts' understanding of the nature
of the parameters.

In most practical situations, however, it is natural to consider
that the possible values of these parameters are often only ambiguously
known to the experts. In this case, it may be more appropriate to
interpret the experts' understanding of the parameters as fuzzy numerical
data which can be represented by means of fuzzy subsets of the real line
known as fuzzy numbers (Dubois and Prade, 1978,1980). The resulting
multiobjective programming problem involving fuzzy parameters would be

viewed as the more realistic version of the conventional one,.



Recently, Tanaka and Asai (1981,1984) formulated the multiobjective
linear programming problems with fuzzy parameters., Following the fuizy
decision or the minimum operator proposed by Bellman and Zadeh (1970)
together with triangular membership functions for fuzzy parameters, they
considered two types of fuzzy multiobjective linear programming problems;
one is to decide the nonfuzzy solution and the other is to decide the
fuzzy solution.

More recently, Orlovski (1983,1884) formulated general
multiobjective nonlinear programming problems with fuzzy parameters. He
presented two approaches to the formulated problems by making systematic
use of the extension principle of Zadeh (1975) and demonstrated that
there exist in some sense equivalent nonfuzzy formulations.

Very recently, in order to deal with the multiobjective linear,
linear fractional and  nonlinear programming problems with {fuzzy
parameters characterized by fuzzy numbers, Sakawa and Yano (1985c,1885e,
1986b, 1986d, 19861, 19869, 19861,1986j) introduced the concept of
a-multiobjective programming and (M-)«-Pareto optimality based on the
a-level sets of the fuzzy numbers. Then they presented several
interactive decision making methods not only in objective spaces but also
in membership spaces to derive the satisficing solution of the DM
efficiently from among an (M-)a-Pareto optimal solution set for
multiobjective linear, linear fractional and nonlinear programming
problems as a dgeneralization of their previous results (Sakawa,1983a,
1983b,1984a; Sakawa and Yano, 1985f,1986h; Sakawa, Yano and Yumine, 1986;
Sakawa and Yumine, 13983; Sakawa, Yumine and Yano, 1984a,1984b).

Finally, it is appropriate to mention some application areas of the

multiobjective approach. Although most of the early practical



applications have been accomplished in the areas of water resources
planning (see, for example, the texts by Haimes 1977, Cohon 1978),
regional planning (e.g. Rietveld 1980) and environmental planning (e.q.
Nijikamp 1979). Many other real-world problems are inherently
multiobjective. As we 1look at recent engineering and industrial
aﬁplications of the multiobjective approach, we can see contihuing
advances. They can be found, for example, in the areas of optimal design
of shallow arches (e.g. Stadler 1983a,b), electronic circuit design (e.q.
Lightner 1879), operation of a packaging system in automated warehouses
(e.g. Sakawa 1983b), management of the erection of a cablestayed bridge
(Ishido, Nakayama, Furukawa, Inoue and Tanikawa 1986) and pass scheduling

for hot tandem mills (Sakawa, Narazaki, Konishi, Nose and Morita 1986).

1.2 Outline of the Thesis

In multiobjective programming problems, multiple obJjectives are
often noncommensurable and conflict with each other, and consequently the
aim 1is to find a compromise or satisficing solution of a decision maker
(DM) which 1is also Pareto optimal based on his/her subjective value-
Judgement.

However, considering the imprecise or fuzzy nature of the human
Judgements, a fuzzy approach seems to be very applicable and promising
for multiobjective programming problems under fuzziness. Two types of
fuzziness of human Jjudgements should be incorporated in multiobjective
programming problems. One is the experts' ambiguous understanding of the
nature of the parameters in the problem-formulation process, and the

other is the fuzzy goals of the DM for each of the objective functions.



In order to cope with both types of fuzziness, in this thesis, we
formulate multiobjective linear, linear fractional and nonlinéar
programming  problems with fuzzy parameters and present several
interactive decision making methods for obtaining the satisficing
solution of the decision maker based on his/her subjective imprecise
value-judgements. The fuzzy parameters 1in the description of the
objective functions and the constraints, which reflect the experts’
ambiguous understanding of the nature of the parameters in the problem-
formulation process, are characterized by fuzzy numbers. The concept of
e-multiobjective linear, linear f{ractional and nonlinear programming
together with M-o-Pareto optimality is introduced based on the «-level
sets of the fuzzy numbers. The fuzzy goals of the DM for each of the
objective  functions are quantified by eliciting the corresponding
membership functions. Then interactive decision making methods for
multiobjective linear, linear fractional and nonlinear programming
problems are presented to derive the satisficing solution of the decision
maker efficiently from among M-«-Pareto optimal solution sets based on
his/her subjective Jjudgement. On the basis of the proposed methods,
time-sharing computer programs for all the proposed methods are written
in FORTRAN to implement man-machine interactive procedures. Illustrative
numerical examples for multiobjective linear, linear fractional and
nonlinear programming problems with fuzzy parameters are demonstrated

along with the corresponding computer outputs.

Organization of each Chapter is briefly summarized as follows:
Chapter 2 1is concerned with a new linear programming based on an

interactive decision making method for the multiobjective  linear



programming problems with fuzzy parameters in order to derive the
satisficing solution of the decision maker from among an M—a-Paréto
optimal solution set by wupdating his/her reference membership values
and/or the degree o on the basis of the current M-a-Pareto optimal
solution as well as the trade-off rates.

In Chapter 3, a new interactive decision making method for
multiobjective linear fractional programming problems with fuzzy
parameters is proposed on the basis of the linear programming method. In
the proposed interactive method, the satisficing solution of the DM can
be derived from among an M-o-Pareto optimal solution set by updating
his/her reference membership values and/or the degree « together with
trade-off information.

Chapter 4 is devoted to developing a new interactive decision making
method for multiobjective nonlinear programming problems with fuzzy
parameters. In the proposed interactive decision making method, in order
to generate a candidate for the (local) satisficing solution which is
also (local) M-a-Pareto optimal, if the DM specifies the degree « of the
a-level sets and the reference membership values, the DM is supplied with
the corresponding (local) M-«a-Pareto optimal solution together with the
trade-off rates. Then by considering the current values of the objective
or membership functions and « as well as the trade-off rates, the DM acts
on this solution by updating his/her reference membership values and/or
degree «.

Chapter 5 develops new interactive computer programs on the basis of
the methods proposed in Chapters 2,3 and 4 to facilitate the interaction
processes. Moreover, in order to demonstrate the feasibility and

efficiency of both the proposed algorithms and the corresponding computer



programs, interaction processes for several numerical examples for
multiobjective linear, linear fractional and nonlinear programming
problems with fuzzy parameters under the hypothetical decision maker are
shown together with the corresponding computer outputs.

The Appendix presents generalized scalarizing methods for
multiobjective programming problems, called the hyperplane methods, by
putting the special emphasis not only on generating Pareto optimal
solutions but also on obtaining trade-off information. The results
presented in the Appendix are the theoretical basis for the trade-off

information used in Chapters 2,3 and 4.



CHAPTER 2

INTERACTIVE DECISION MAKING FOR MULTIOBJECTIVE LINEAR
PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS

2.1 Introduction

In multiobjective programming problems, multiple objectives are
usually noncommensurable and cannot be combined into a single objective.
Moreover, the objectives often conflict with each other in that any
improvement of one objective can be achieved only at the expense of
another. For most such multiobjective programming problems, in addition
to the decision analyst's role, value-judgement-based analysis of a
decision maker plays an essential role. To be more explicit, it is
particularly important how to combine the roles of a decision maker and a
decision analyst in order to find a compromise of satisficing solution of
a decision maker which is also Pareto optimal. However, when formulating
the multiobjective programming problem which closely describes and
represents the real-world decision situation, various factors of the
real-world system should be reflected in the description of the objective:-
functions and the constraints. Naturally these objective functions and
the constraints involve many parameters whose possible values may be

assigned by the experts. In the conventional approaches, such parameters
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are fixed at some values in an experimental and/or subjective manner
through the experts' understanding of the nature of the parameters.

In most real-world situations, however, it may be reasonable to
assume that the possible values of these parameters are often only
imprecisely or ambiguously known to the experts. In this case, it would
certainly be more appropriate to interpret the experts' understanding of
the parameters as fuzzy numerical data which can be represented by means
of fuzzy subsets of the real line known as fuzzy numbers (Dubois and
Prade 1978,1980). The resulting multiobjective programming problem
involving fuzzy parameters would be Viewed as the more realistic version
of the conventional one.

Recently, Tanaka and Asai (1981,1984) formulated the multiobjective
linear programming problems with fuzzy parameters. Following the fuzzy
decision or the minimum operator proposed by Bellman and Zadeh (1870)
together with triangular membership functions for fuzzy parameters, they
considered two types of fuzzy multiobjective linear programming problems;
one is to decide the nonfuzzy solution and the other is to decide the
fuzzy solution.

However, it should be emphasized here that their approaches are
preferable only when the decision maker feels that the minimum-operator
is appropriate. In other words, in general decision situations, human
decision makers do not always use the minimum-operator when they combine
the fuzzy goals and/or constraints. Probably the most crucial problem is
- the identification of an appropriate aggregation function which well
represents the human decision makers' fuzzy preferences. [f the
appropriate aggregation function can be explicitly identified, then the

problem reduces to a standard mathematical programming problems.

-11-



However, this rarely happens and as an alternative, it becomes evident
that an interaction with the decision maker is necessary. |

In this chapter, we focus on the multiobjective linear programming
problems with fuzzy parameters characterized by fuzzy numbers. To cope
with the fuzzy parameters of the experts' together with the fuzzy goals
of the decision maker, the concept of M-a-Pareto optimality is introduced
by extending the ordinary Pareto optimality concept. Then a new
interactive decision making method to derive the satisficing solution of
the decision maker efficiently from among an M-«-Pareto optimal solution
set 1is presented on the basis of the linear programming method as a
generalization of the results for multiobjective linear programming

problems without fuzzy parameters by Sakawa (1983a,1983b).

2.2 Problem Statement and Solution Concept

Consider multiobjective linear programming (MOLP) problems of the

following form:

min ( clx ) c2x s ees s ckx )
subject to (2.1)

XxXEX = {xei | a;x S by J=lhms x 20 ),

where X is an n-dimensional column vector of decision variables, Cy

-12-~



C +sC are n-dimensional cost factor row vectors, al. a2,.‘., a_ are

2509 k m

n-dimensional constraint row vectors and bl’ b2,..., bm are constants.

Fundamental to the MOLP is the Pareto optimal concept, also known as
a noninferior solution. Qualitatively, a Pareto optimal solution of the
MOLP is one where any improvement of one objective function can be

achieved only at the expense of another.

Definition 2.1 (Pareto optimal solution)

X% € X is said to be a Pareto optimal solution to the MOLP, if and

only if there does not exist another x € X such that cix s cix* .

i=l,...,k with strict inequality holding for at least one i.

In practice, however, it would certainly be more appropriate to
consider that the possible values of the parameters in the description of
the objective functions and the constraints usually invoive the ambiguity
of the experts' understanding of the real system. For this reason, in
this chapter, we consider the following multiobjective linear programming

problem involving fuzzy parameters (MOLP-FP) :

—~

min ( clx , c2x be e ckx )
subject to (2.2)
x €X(a,b) p (x€E | ax sb.=l,....mix20 )

-13-
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Here Ei = (Eilq...,c. )9 and a- = (g.

~ -

in j Jl""’ajn)’ bJ represent

respectively fuzzy parameters involved 1in the objective function Eix

and the constraint 5jx s EJ .

These fuzzy parameters are assumed t0 be characterized as the fuzzy

numbers introduced by Dubois and Prade (1978,1980)., It is appropriate to

review here that a real fuzzy number p is a convex continuous fuzzy

subset of the real line whose membership function ug(p) is defined as:

(1) A continuous mapping from En to the closed interval [0,1],

(2) us(p) = 0 for all p € (-m,pll,

(3) Strictly increasing and continuously differentiable on (pl,p2),

(4) u;(p) 1 for all p € [pé,pé],
(5) Strictly decreasing and continuously differentiable on (p3,p4),

(6) ug(p) = 0 for all p € [34,+m ).

Fig. 2.1 1illustrates the graph of the possible shape of the fuzzy

number p.

~ -~

We now assume that Eil""’g‘ R 531,...,3. and b. in the MOLP-FP

in Jjn J

are fuzzy numbers whose membership functions are u~ (c.,),...,u~ (c ),
cil il cin in

ugjl(ajl),..., ugén(ajn) and q;j(pj) respectively. For simplicity in

the notation, define the following vectors:

-14~
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Fig., 2.1 Fuzzy number

Then we can introduce the following o-level set or o«-cut (Dubois and

Prade 1980) of the fuzzy humbers gjr ., b, and c._ .

Definition 2.2 (a-level set)

The «-level set of the fuzzy nhumbers gjr’gj and Eir is defined as the

ordinary set La(g,ﬁ,g) for which the degree of their membership functions
exceeds the level o«
La(a,b,c) = {(a,b,c) | ugsr(ajr) 2 «a, W% (pj) 2 «, %ir (qr ) 2 a,

i=1,...,Kk, J=1,...,m, r=1,...,n } . (2.3)

-15-



Fig. 2.2 «-~level set

The concept of the w«o-level set is illustrated in Fig. 2.2. As can be

seen from Fig., 2.2, it is clear that the level sets have the following
property:
o &  if and only if L (a,b,c) DL (a,b,C) . (2.4)
% %

For a certain degree «, the MOLP-FP (2.2) can be understood as the

following nonfuzzy a-multiobjective linear programming («-MOLP) problem.

min { clx, c2x e eas ckx )
subject to
X €X(a,b) p { x €E | ax Sb ,J=l,...mix20}, (2.5)

(a,b,c) € La(S,S,E) )

-16-



It should be emphasized here that in the «-MOLP the parameters
{a,b,c) are treated as decision variables rather than constants.
On the basis of the a-level sets of the fuzzy numbers, we introduce

the concept of «o-Pareto optimal solutions to the «-MOLP.

Definition 2.3 (a-Pareto optimal solution)
x¥ € X(ax,bx) is said to be an a-Pareto optimal solution to the «-MOLP

{2.5), if and only if there does not exist another x € X(a,b), (a,b,cC)
€ La(S,B,E) such that c;x & cpxx , i=1,...,k, with strict inequality

holding for at least one i, where the corresponding values of parameters

{ax,b*,c*) are called «~level optimal parameters.

2.3 Interactive Decision Making under Fuzziness
2.3.1 Fuzzy Goals

As can be immediately understood from Definition 2.3, in general,
o¢-Pareto optimal solutions to the «-MOLP (2.5) consist of an infinite
number of points and some kinds of subjective judgement should be added
to the quantitative analyses by the decision maker (DM). Namely, the DM
must select his/her compromise or satisficing solution from among
a-Pareto optimal solutions based on his/her subjective judgement.

However, considering the imprecise nature of the DM's judgement, it
is mnatural to assume that the DM may have imprecise or fuzzy goals for

each of the objective functions in the «-MOLP (2.5). In a minimization

-17-



problem, a goal stated by the DM may be to achieve "substantially less"
than A. This type of statement can be quantified by elicitiné a
corresponding membership function.

In order to elicit a membership function “i(CiX) from the DM for

each of the objective functions Cix’ i=l,...,K, in the «-MOLP (2.5), we

first calculate the individual wminimum and maximum of each objective
function under the given constraints for « = 0 and « = 1. By taking
account of the calculated individual minimum and maximum of each
objective function for o« = 0 and o =1 together with the rate of
increase of membership of satisfaction, the DM may be able to determine

his/her membership function ui(CiX) in a subjective manner which is a
strictly monotone decreasing function with respect to Cix.

So far we have restricted ourselves to a minimization problem and

consequently assumed that the DM has a fuzzy goal such as " cix should

be substantially less than Ai"‘ In the fuzzy approaches, we can

further treat a more general case where the DM has two types of fuzzy

goals, namely fuzzy goals expressed in words such as " cix should be

in the vicinity of Ci" (called fuzzy equal) as well as " cix should be
substantially less than Ai or greater than Bi" {called fuzzy min or

fuzzy max). Such a generalized o-MOLP (Ga~-MOLP) problem may now be

expressed as:

fuzzy min cix (i €1,)

fuzzy max cix (i €1,)

-18-



fuzzy equal cix (i € 13)

subject to X € X{a,b) (2.6)

(a,b,c) € La(E,E,E)

where 1. UI,UI,= {1,2,...,k } .

1 2 3

In order to elicit a membership function ui(CiX) from the DM for a

fuzzy goal like " cix should be in the vicinity of Ci"’ it is obvious

that we can use different functions to the left and right sides of Ci‘

Concerning the membership functions of the Gu-MOLP, it is reasonable

to assume that ui(CiX)’ i € I, and the right side functions of ui(cix),

1

i € I3 are strictly monotone decreasing and continuous functions with

respect to cix, and ui(CiX)’ i€ 12 and the left side functions of

ui(ciX)’ i € I. are strictly monotone increasing and continuous functions

3

with respect to cix. To be more explicit, each membership function

“i(CiX) of the Ga-MOLP for i € 1 i €1l, orié€ 13 is defined and its

1’ 2
possible shape is depicted as follows:

(1) 1€ I1

. 1
1 or =1 if (CiX)R P-4 cix ,
u. (c.x) = Do, c.x) if (c,x)) s cxs (cxl (2.7)
i i iR i iR i i™R "’ *
0 or =0 ' if c.Xx a (C x)0
i iR’

-19-



“1(°1x)

i
!
1
i
!
!
I
1
[}
!
1
1
1
|
|
|
1

1 0
(cix)R (cix)R c X

Fig. 2.3 Fuzzy min membership function

(2) i € 12 :
0 or =0 it (c.x? zcx
i™°L it
_ . 0 i
ui(CiX) = DiL( cix ) if (ciX)L s cix s (CiX)L , (2.8)
. 1
1 or 21 if cix b4 (CiX)L s

"1(°1x)

0 1
(cix)L (Cix)L c,x

Fig. 2.4 Fuzzy max membership function
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(3y i€l

ui(CiX)

Here it is

. 0
0 or =0 if cix s (c. x)L )
D., (c.x) if (c x)0 S X S (c x)1
iL S ¥ 2 G L
1 if (c.x)) S ¢ x & (g ) (2.9)
XL R .
D.(C.X) if (c.xl scxs c.x?
ir'Ci ¥R 2 ¢ ¥R o
0 or -0 if (c.x)? 5 ¢ x
i™'R it e

assumed that DiR(CiX) or DiL(CiX) is respectively a

strictly monotone decreasing or increasing and continuous function with

respect to cix

are unacceptable

and may be linear or nonlinear, and (cix)E and (cix)g

1
L

1

levels for cix and (cix) and (CiX)R are totally

desirable levels for cix.

(e x)

(cix)g (cix)ll‘ (cix); (cix)g c,x

Fig. 2.5 Fuzzy equal membership function
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When fuzzy equal is included in the fuzzy goals of the DM, it is

desirable that cix should be as close to Ci as possible. Consequently,

the notion of «-Pareto optimal solutions defined in terms of objective
functions cannot be applied. For this reason, we introduce the concept
of M-a-Pareto optimal solutions which is defined in terms of membership

functions instead of objective functions, where M refers to membership.

Definition 2.4 (M-«-Pareto optimal solution)
X% € X(ax%,b*) is said to be an M-«-Pareto optimal solution to the

Go-MOLP, 1if and only if there does not exist another x € X(a,bl}, (a,b,cC)
€ La(a,b,c) such that ui(CiX) 2 ui(ch*),i=l.....k, with strict

inhequality holding for at least one i, where the corresponding values of

parameters (a%,b%,cx) are called o-level optimal parameters.

Observe that the concept of M-a-Pareto optimal solutions defined in
terms of membership functions is a natural extension of that of «-Pareto
optimal solutions defined in terms of objective functions, when fuzzy
equal is included in the fuzzy goals of the DM.

Having elicited the membership functions ui(cix),i=1,...,k from the
DM for each of the objective functions cix, i=t,...,k, if we introduce a

general aggregation function

”N %(qxh %(%XL”.,%(%XL o ), (2.10)

a general fuzzy «-multiobjective decision problem (Fa-MODP) can be

defined by:
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max uD( ul(CIX)’ u2(02x),..., uk(q(x), o ), (2.11)

subject to

(x,a,b,c) €EPla), «€[ 0, 1]. (2.12)

where P(a) is the set of M-«a-Pareto optimal solutions and corresponding
a-level optimal parameters to the Ge-MOLP.

Probably the most crucial problem in the F«-MODP is the
identification of an appropriate aggregation function which well

represents the human decision makers' fuzzy preferences. If uD(.) can be

explicitly identified, then the Foa-MODP reduces to a standard
mathematical programming problem. However, this rarely happens and as an
alternative, it becomes evident that an interaction with the DM is
necessary.

Throughout this section we make the following assumptions.

Assumption 2.1 The fuzzy goals of the DM can be quantified by
eliciting the corresponding membership functions through the interaction
with the DM.

Assumption 2.2 uD(.) exists and is known only implicitly to the DM,
which means the DM cannot specify the entire form of uD(.), but he/her

can provide local information concerning his/her preference. Moreover,

it is strictly increasing and continuous with respect to “i(’) and «.

2.3.2 Minimax Problems
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For generating a candidate for the satisficing solution which is
also M-a-Pareto optimal in our decision making method, the DM is asked to
specify the degree « of the a-level set and the reference levels of
achievement of the membership functions, called reference membership
values. Observe that the idea of the reference membership values first
appeared in Sakawa, Yumine and Yano (1984a.,b) can be viewed as an obvious

extension of the idea of the reference point of Wierzbicki (197%a). Once
the DM's degree o and reference membership values ﬁi, i=l,...,k, are

specified, the corresponding M-e-Pareto optimal solution, which is in a
sense close to his/her requirement or better than that if the reference
levels are attainable, 1is obtained by solving the following minimax

problem.

min max (u, - b (cx) ), (2.13)
X € X(a,b) 18isk

(a,b,c) € La(E,B,E)

or equivalently

min \Y

subject to ﬁi - ulgx) S v, di=lnk (2.14)

aJXSbJ L] J=19-.‘,m9 XZO 3

(a,b,c) € La(E,B,E).

Fig., 2.6 illustrates a graphical description of the minimax problem.
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However, with the strictly monotone decreasing or increasing
membership function given by (2.7)-(2.9), which may be nonlinear, the
resulting problem becomes a nonlinear programming problen. In order to

solve the formulated problem on the basis of the linear programming
method, we first convert each constraint ﬁi - ui(CiX) Sv, i=l,...,k, of

the minimax problem (2.14) into the following form using the strictly

monotone property of DiL(') and DiR(°)

“z(czx)
1
E2
u2(0§x*)
0 1 pl(clx)
Fig. 2.6 Minimax problem
-1 - :
cix s DiR( ui -v), i € I1 U 13 {2.15)
-1, - )
cix p-3 DiL( ui -V ), i€ I2 U 13 (2.16)
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Now we introduce the following set-valued functions siR(')’ SiL(.)

and Tj(.,.).
Sipley) = { 6w | gx & Dl -~v) ), 1€LUL (217
5.t = { v | ox 2 b (T ~v) ). i€ LUL  (2.18)
Tia;b) = { x| a;x & by } o, o=tk (2.19)

Then, it can be verified that the following relations hold for

SiR(‘)’ SiL(.) and TJ(.,.). when x 2 0 .

Proposition 2.1

1 2 1 2 1 2
(1) If % scr then Smu%) ) %Ruﬁ) and Su}c) C Sm(q).

1 2 | 2
(2) 1f aj S aj, then Tj(aj,bj) D TJ(aJ,bJ).
1 2 1 2
(3) 1f bj s bj, then TJ(aJ,bJ) C TJ(aJ,bJ).

Now from the properties of the x~-level sets for the vectors of the

fuzzy numbers c a. and the fuzzy numbers Ej, it should be noted here

i’ J

that the feasible regions for ci,aj and bj can bé denoted respectively by

the intervals [ c%a, c?a 1.0 a%a, %a ] and [ ﬂfa, 3§a ] as shown in Fig.
2.7.

Consequently, by making use of the results in Proposition 2.1, we
can obtain an optimal solution to (2.14) by solving the following

problem.
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Fig. 2.7 Feasible region for Ci’ aj and bJ

min v

subject to  c¥x S Dl(L-v), 1€, U I (2.20)
o iR" ¥ : 1 37 :
Ry 2 0lcn-vy, 1€e1.U 1
i o Lt ¥ : 2 37
L R -
ajax 2 bja , J=1,...,my, x 220

It 1is important to note here that in this formulation, if the value
of v is fixed, it can be reduced to a set of linear inequalities.
Obtaining the optimal solution v to the above problem is equivalent to

determining the minimum value of v so that there exists an admissible set

satisfying the constraints of (2.20). Since v satisfies Emax -1 3Sv s

”max’ where umax denotes the maximum value of ui , i=1,...,K, we have
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the following method for solving this problem by combined use of the

bisection method and the simplex method of linear programming.

Step 1.

Step 2.

Step 3.

Set v and test whether an admissible set satisfying the

umax
constraints of (2.20) exists or not by making use of phase one
of the simplex method. If an admissible set exists, proceed.

Otherwise, the DM must reassess his/her membership function,

Set v = amax - 1 and test whether an admissible set satisfying

the constraints of (2.20) exists or not using phase one of the

simplex method. If an admissible set exists, set vx = 1.

Mnax”

Otherwise 9o to the next step, since the minimum v which

satisfies the constraints of (2.20) exists between ﬁmax - 1 and
umax‘
For the initial value of v = Bmax - 0.5, update the value of

v using the bisection method as follows :

n+1

v - 1/2

vn+1 n

if admissible set exists for vn s

n+l . L .
n+1 vn + 1/2 if no admissible set exists for Vn .

v
Namely, for each vn (n=1,2,...), test whether an admissible set

of (2.20) exists or not using the sensitivity analysis technique
for the changes in right hand side of the simplex method and
determine the mnminimum value of v satisfying the constraints of

(2.20).
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In this way, we can determine the optimal solution v*. Then the DM

selects an appropriate standing objective from among the objectives Cix’

i=1,...,k. For notational convenience, in the following, without loss of

generality, let it be Clx and 1 € 11‘ Then the following linear

programming problem is solved for v = v,
min cL X
lo
subject to  c“x s Dlcm -wx), i€1,UI (2.21)
io iR™ i ’ 1 3’ :
Ry 2 plen -vx), 1€LUI
io i’ i ' 27 °3°
L R .
ajax S bja R Jj=l,...,m, x 2 0 .

For convenience ih our subsequent discussion, we assume that the
optimal solution x» to (2.21) satisfies the following conditions:

L -1

ciax* = DiR( Ui -y¥ ), 1€ 11U ISR ;
Ry = pln -w), 1€1LU1
i o it My ’ oV g -
where 13 = I3LU ISR and ISLn ISR = ¢ ,

. , Lo, . R ..
Then it is interesting to note that Cia(l = Il U I3R)’ cia(l € 12 U IBL)

aga and b§a (j=1,...,m) are o-level optimal parameters for any M-a-Pareto

optimal solution.
The relationships between the optimal solutions to (2.20) and the
M-o~Pareto optimal concept of the Ga-MOLP can be characterized by the

following theorenms.
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Theorem 2.1
If x* is a unique optimal solution to (2.20), then x* is an

M-o~Pareto optimal solution to the Ge-MOLP.

(Proof)
Assume that x% is not an M-a-Pareto optimal solution to the Ga-MOLP.

. L .. R .. L R
Then, since Cia(l € I1 U ISR)’ C'a(l € 12 U ISL) and aja, bja

i (j=1,...,m)

are o-level optimal parameters to the Gu-MOLP, there exist X € X(a,b) and

~ o~ o~ L .
(a,b,Cc) € La(a,b,c) such that ui(CiX) P 3 ui(ciax*), (i € I1 U ISR)’

b (e,x) 2 ui(cfax*), (i € 1, Uly ), strict inequality holding for at

least one i. Then it holds that

max ( ﬁi - ui(c%ax*) ) 2 max G- ow(gx) )
i€ I1 U I3R i€ I1 U I3R
2 max { ixi - ui(cli‘ax) ),
i € I1 U I3R
max ( Di - ui(c§ax*) ) 2 max ( hi - W (g x) )
i€ I2 U I3L i€ 12 U I3L
- R
P max ( ui - ui(ciax) ),
i € I2 U I3L

which contradicts the fact that x»* is a unique optimal solution to

(2.20). q.E.D.

Theorem 2.2

If x% 1is an M-e-Pareto optimal solution to the Ge-MOLP, then x* is

an optimal solution to (2.20) for some 1 = ( DETRRY ).
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(Proof)

Assume that (x%,v%) is not an optimal solution to (2.20) for any u

satisfying
o= w0 = ux i€er, Ul
i i e ’ 1 3R
ho- w(R x) = vk, i€l UI
i i Tiax ’ 2 3L

Then there exists x € X(a,b) such that

- L - .
ui - ui(ciaX) < ui - uj(c‘;ax*), i € I1 U I3R
- R - R .
ui - “i(ciaX) < ui - ui(ciax*), i € 12 U I3L

L . L L .
This implies that ”i(ciaX) > ui(ciax*)’ (i € I1 U ISR)’ ui(éiax) >

u.(cR x%), (i € I, U1, ), which contradicts the fact that x* is an
1 Tl 2 3L

M-a-Pareto optimal solution to the Ga-MOLP. Q.E.D.

It must be observed here that for generating M-a-Pareto optimal
solutions wusing Theorem 2.1, uniqueness of solution must be verified.
In the ad hoc numerical approach, however, in order to test the M-a-
Pareto optimality of a current optimal solution x*, we formulate and

solve the following linear programming problem:

max

n e
m

subject to

. L -
c; X + €, = ciax* R ei 20, 1€ IIU ISR (2.22)
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R _ R ,
Ciax - €, = c‘ax* R Ei 20,1¢€ 12U I3L

Let X and € be an optimal solution to (2.22). If all Ei = 0, then xx is

an M~«-Pareto optimal solution. If at least one Ei >0, it can be easily

shown that X is an M-a-Pareto optimal solution.
2.3.3 Interactive Algorithm

Now given the M-«-Pareto optimal solution for the degree o« and the
reference membership values specified by the DM by solving the
corresponding minimax problem, the DM must either be satisfied with the
current M-o-Pareto optimal solution and «, or update his/her reference
membership wvalues and/cr the degree « . In order to help the DM express
his/her degree of preference, trade-off information between a standing
membership function and each of the other membership functions as well as
between the degree « and the membership functions is very useful. Such a
trade-off information is easily obtainable since it is closely related to
the simplex multipliers of the problem (2.21).

To derive the trade-off information, define the following Lagrangian
function L corresponding to the problem (2.21).

L = c% X 4+ ¥ T. {éﬁ X - Db
o ier, U 1, IRl
1 3R

iRU Y - vx) }
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m
oor o om ey v -8 x ) r Tad x-B ) 223
1612U ISL 1 1 1 o j=1 J Ja Jo

I

where I and AJ are simplex multipliers corresponding to the

iL’ "iR

constraints of (2.21).

Here, we assume that the problem (2.21) has a unique and
nondegenerate optimal solution satisfying the following conditions

> 0, i€l

(1) T U I3R’ i1

iR 1

(2) HiL > 0, i€ 12U I3L'

Then, by using the results in Haimes and Chankong (19739), the

following expression holds .

a( cL X )
_ le _ I
— =
g ¢ x )
le

iel, U I3R’ i =1 (2.24)

iR’ 1

3 cL X )
le

- e R e = ..'n‘
3 cR X }
i

iL’ i € 12U I3L (2.25)

Furthermore, using the strictly monotone decreasing or increasing

property of DiR(‘} or DjL(‘) together with the chain rule, if DiR(‘) and

DiL(‘) are differentiable at the optimal solution to (2.21), it holds
that

aul( c%ax ) DfR( c%ax )

aui( iax ) DjR( io‘x )

au, cll‘ax ) D; clfax )

- = - —a— T , 1 €1,U1 (2.27)
' R il 2 3L
au (& x) D; € & x )
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where D{R(') and D{L(') denote the differential coefficients of DiR(‘)

and DiL(') respectively.

Regarding a trade-off rate between ul(c%ax) and «, the following

relation holds based on the sensitivity theorem (for details, see, e.g.,

Luenburger 1973 or Fiacco, 13883).

au, c‘; X ) . a(c%a) a(éga)
— - DiR(ClaX) X o+ ¥ HiR X
3o A IEIIU ISR o
a(c*fa) " a(aL.a) 3B )
- Y. HIL X + z AJ { X - }
1612U I3L Ju J=1 Jo 3a

(2.28)
It should be noted here that in order to obtain the trade-off rate
information from (2.26)-(2.27), all the constraints of the problem (2.21)

must be active for the current optimal solution. Therefore, if there are

inactive constraints, it is necessary to replace Di for Iinactive

constraints by D, (c; x¥) + v¥ or D, (CR x*¥) + wvx and solve the
iR "ie iL 7o

corresponding problem (2.21) for obtaining the simplex multipliers.

Now, following the above discussions, we can present the interactive
algorithm in order to derive the satisficing solution for the DM from
among the M-«-Pareto optimal solution set. The steps marked with an

asterisk involve interaction with the DM,

Step 0. Calculate the individual minimum and maximum of each objective

function under given constraints for « = 0 and o« = 1.
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Step 1%, Elicit a membership function Ui(CiX) from the DM for each of the

objective functions.

Step 2x. Ask the DM to select the initial value of o« (0 § « § 1) and set

the initial reference membership values ﬁi= I, i=l,...,k.

Step 3. For the degree « and the reference membership values specified

by the DM, solve the minimax problem and perform the M-«-Pareto

optimality test.

Step 4%, The DM is supplied with the corresponding M-«-Pareto optimal

one
one

the

solution and the trade-off rates between the membership
functions and the degree o . If the DM is satisfied with the
current membership function values of the M-o-Pareto optimal
solution and «, stop. Otherwise, the DM must update his/her
reference membership values and/or the degree o by considering
the current values of the membership functions and o together
with the trade-off rates between the membership functions and

the degree «, and return to step 3.

Here it should be stressed for the DM that (1) any improvement of
membership function can be achieved only at the expense of at least
of the other membership functions for some fixed degree «, and (2)

greater value of the degree « gives worse values of the membership

functions for some fixed reference membership values.

2.3.4 Numerical Example
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To clarify the concept of M-o-Pareto optimality as well as the
proposed method, consider the following three objective linear

programming problem with fuzzy parameters.

~

fuzzy min Z,(X,Cp) L 2%+ CioXy

fuzzy max Z,(X:Cy) 43X = CyoX,

fuzzy equal  z5(X,C3) & €% - X, (2.29)
subject to x €EX A { (%) | 3% +% - 1250,

where 512. 522, and Eél are fuzzy numbers whose membership functions are

given below:

)

u~ (¢ max ( 1 - 0.5 lc12 - 4!, 0,

c12 12
u622(c22) = max (1 - 2 lc22 + 0.751, 0 , (2.30)
UE31(C31) = max (1 - lc31 - 2.5/, 0) .

Fig. 2.8 Fuzzy numbers CI2’ c22, c31
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Now, for illustrative purposes, suppose that the interaction with
the hypothetical DM establishes the following simple linear membership

functions for the three objective functions.

| Z s 5,
ul(zl) = DIR(ZI) = (20 - zl)/ls, 5= Zy S 20,
0 20 5z,
0 z, 83,
u2(22) = D2L(22) = (22- 3)/9, 3 s Z5 s 12,
1 12 5 22,
0 24 s -3,
D3L(23) = (zg+ 3)/3, -3 52z 80,
u3(23) = 1 23 = 0,
D3R(23) = (6 - 23)/6, 0 s Zq s 6,
\ 0 6 S Zg.
u (z)) Hy(zy)

Fig. 2.9 Linear membership functions representing fuzzy goals
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Fig. 2.9 illustrates a graphical description of the hypothetical
DM's linear membership functions representing his/her fuzzy goals.for
each of the objective functions of (2.29).

Also assume that the hypothetical DM selects the initial value of

the degree « to be 0.5, and the initial reference membership values

(u U

3) to be (19730, 5/6, 1). Then the corresponding M-«-Pareto

1’ u29

optimal solution can be obtained by solving the following problem.

min v
X €X
subject to
_1 -
2xl + 3x2 s DIR( u1 - v )
3, + X, 2 Dl(m, -v)
1 2 2L 2
2X, - X s plen, -vo
1 2 3R 3
3%, - X > DT, -v)
1 2 3L° 73

Solving this problem by combined use of the bisection method and the
simplex method of linear programming, we obtain the optimal solution vx =
1/6. In order to obtain the corresponding optimal values of the decision

variable xx, we solve the following linear programming problem for v =

1/6.
Xmérx 2x1 + 3x2
subject to
B+ X, 2 Dy (T, - ux)
2%, = X, & Dgé( g - ux )
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1

3L - v

3X, - x2 P4 D, ( u3

As a result, we get the following optimal values for v, xx, ZT b

z (X*;CL

R .
NP B S NN PN W NN JS RT3 SON(Z DTS LIRPPPI S

and the simplex multipliers ( H?L’ H§L’ H§R).
(XT’ x§) = (2, 3), (ZT’ 25, z§) = (13, 9,1),
(ur, u§, u§) = (7/15, 2/3, 5/6 ), ( HfL, Eﬁa. Eﬁe) = (8/5, 0, 7/5).

From (2.26) and (2.27), the +trade-off rates among the membership

functions become as follows:

A -
i aul( zf ) _ i ?1R‘ zr ) H§ . (-1/15) _E_ _ 72
. L ’
3u2( 25 ) D2L( 25 ) (1/9) 5 75
i RS LA U M M no- - sy o 42
. L _ ’
8“3( zg ) DBL( zg ) {-1/6) 5 75

Concerning the trade-~off rate between ul(zl) and «, from (2.28) we have:

L
8u1(zf) acla ac% aéga

¢ —‘—'—‘a -
Diglzp) | vy 2! L Xft X
o do.

do da 2 }
= (-1/15) { (1/2)x3 + (7/5)x1x2 - (8/5)x(-2)x3 }

= -138/150.
Observe that the DM can obtain his/her satisficing solution from
among an M-o-Pareto optimal solution set by updating his/her reference
membership values and/or the degree « on the basis of the current values

of the membership functions and o together with the trade-off rates among

the values of the membership functions and the degree «.
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2.4 Conclusion

In this chapter, we have proposed a new interactive decision making

method for multiobjective linear programming problems with fuzzy

parameters to cope with the imprecise nature of human judgements. As the

conclusions of this chapter, the desirable features of our proposed

method will be summarized as follows.

(1

(2)

(3)

(4)

(5)

(6)

The experts' ambiguous understanding of the nature of the parameters
in the problem-formulation process can be incorporated.

The fuzzy goals of the DM can be quantified by eliciting the
corresponding membership functions, which may be nonlinear.

For the degree o and the reference membership values specified by
the DM, the corresponding M-a-Pareto optimal solution can be easily
obtained by solving the minimax problems based mainly on the well
known linear programming method.

M-a-Pareto optimality of the generated solution in each iteration is
guaranteed by performing the M-a-Pareto optimality test.

The trade-off information between the membership functions and the
degree « 1is easily obtainable, since it is closely related to the
simplex multipliers of the minimax problems.

The satisficing solution of the DM can be derived efficiently from
among M-o-Pareto optimal solutions by updating his/her reference
membership values and/or the degree o« based on the current values of
the M-o-Pareto optimal solution together with the trade-off

information between the membership functions and the degree «.
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In the next chapter, we further proceed to the multiobjective linear
fractional programming problems with fuzzy parameters as a slightly

generalized version of this chapter.
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CHAPTER 3

INTERACTIVE DECISION MAKING FOR MULTIOBJECTIVE LINEAR
FRACTIONAL PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS

3.1 Introduction

As indicated in Kornbluth and Steuer (1981b) linear fractional
objectives (i.e., ratio objectives that have linear numerator and
denominator ) are useful in production planning, financial and corporate
planning, health care and hospital planning and so forth. Examples of
fractional objectives in production planning include inventory/sales,
output/emplovee, etc. - However, for single objective linear fractional
programming, the Charnes and Cooper (1962) transformation can be used to
transform the problem into a linear programming problem.

Concerning multiobjective linear fractional programming (MOLFP) few
approaches have appeared in the literature (Choo and Atkins 1980;
Kornbluth and Steuer 1981a,1981b; Luhandjula 1984; Sakawa and Yumine
1983). Kornbluth and Steuer (1981a,1981b) present two different
approaches to MOLFP; one is the simplex-based approach and the other is
the goal programming approach. Choo and Atkins (1980) proposed an
interactive approach to MOLFP based on the weighted Tchebycheff norm.

Luhandjula (1984) presents a linguistic approach to MOLFP by introducing
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linguistic wvariables to represent linguistic aspirations of the decision
maker (DM).  Sakawa and Yumine (1983) presented a fuzzy approach for
solving MOLFP by combined use of the bisection method and the linear
programming method together with five types of membership functions ;
linear, exponential, hyperbolic, hyperbolic inverse and piecewise linear
functions. Recently, Sakawa, Yano and Yumine (1986) have presented a
new interactive fuzzy satisficing method by combined use of the bisection
method and the linear programming method to derive the satisficing
solution for the DM efficiently from among a Pareto optimal solution set
by updating his/her reference values for each of the membership
functions, called the reference membership values, as a generalization of
the result in Sakawa and Yumine (1983).

In this chapter, we further focus on multiobjective linear
fractional programming problems with fuzzy parameters, which reflect the
experts' ambiguous understanding of the nature of the parameters in the
problem-formulation process. Then by considering the imprecise nature of
the DM, we present a new interactive decision making method for obtaining
the satisficing solution of the DM on the basis of the linear programming
method as a generalization of the method of Sakawa, Yano and Yumine

(1986) for MOLFP.

3.2 Problem Statement and Solution Concept

Consider multiobjective linear fractional programming (MOLFP)

problems of the following form:
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min Zl(X) pl(x)/ql(x)

min 22(x) = p2(x)/q2(x)

e e e e e e e (3.1)

min zk(x) pk(x)/qk(x)

subject to X €X ={ x € & | a;X 8 by, J=li...k 3 x20)

where x is an n-dimensional column vector of decision variables, a. is an

J
n-dimensional constraint row vector, bj is a constant, zltx),...,zk(x)
are kK distinct linear fractional objective functions and

Py(X) = CyyXp * CipXp # e ¥ CiXy * G ey (3.2)
qi(x) = d“x1 + di2x2 + ...+ dinxn + di,n+1‘

Here it is customary to assume that the qi(x) > 0 for all x € X,

Fundamental to the MOLFP is the Pareto optimal concept, also known
as a noninferior solution. Qualitatively, a Pareto optimal solution of
the MOLFP is one where any improvement of one objective function can be

achieved only at the expense of another.

Definition 3.1 (Pareto optimal solution)
x¥ € X is said to be a Pareto optimal solution to the MOLFP, if and

only if there does not exist another x € X such that zi(x) s zi(x*),

i=1,...,k with strict inequality holding for at least one i.
In practice, however, it would certainly be appropriate to consider

that the possible values of the parameters in the description of the

objective functions and the constraints usually involve the ambiguity of
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the experts' understanding of the real system. For this reason, in this
chapter, we consider the following multiobjective linear fractional

programming problem involving fuzzy parameters (MOLFP-FP):

min z(x,c,d) AR zl(x,El,EI), ZZ(X,E ,&é),..., zk(x,ék,d%) ) (3.9)
subject to X € Xta,b) p { X € E'| a;x S by, d=l,....m 3 x 20 },
where zitx,Ei,ai) = pi(X’Ei)/qi(x’Ji)’ (3.4)
and | pi(x,Ei) = Eilxl + 612X2 + ... 04 Einxn + é;,n+l’
qi(x,ai) = 511X1 + aizxz + ... * Einxn + &;,n+1‘ (3.5)
Here C; = (Ciyv..rCypnCy py) 45 = () ysenendypedy o) and
Sj = (531""’53n)’ 65 represent respectively fuzzy parameters involved

in the objective function zi(x,Ei,ai) and the constraint gjx s 5& .

These fuzzy parameters are assumed to be characterized as the fuzzy

numbers introduced by Dubois and Prade (1978,1880).

-~ o~

We now assume that Ei’ di and aj R 5& in the MOLFP-FP are fuzzy

numbers whose membership functions are u~ (¢, ), ur (d.) and u~ (a,) ,
ci i d1 i aj J

ug (bj) respectively. For simplicity in the notation, define the
J
following vectors:

-~ ~ -~ -~

c = (cl,...,ck). c= (Cl""’ck) , d = (dl"“’dk)’ d = (dl,...,dk) s

-45~



a= (a ,a.), a = {(a ,...,am) y b= (bl""’bm)’ b = (bl”"’b ),

177" m 1

ug(c) = (UEI(CI)’...’HEk((k)) s gf(d) = (%q (q ),...,%; (i ),
ug(a) = (ugl(al),...,ggn(qn)) , q;(b) = (¥ﬂ (q ),...,%; (R ))

Then we can introduce the following «-level set or «a-cut {Dobois and

~ ~ -~

Prade 1980) of the fuzzy numbers a , b , ¢ and d .

Definition 3.2 (a-level set)

The a—lével set of the fuzzy numbers a,b,c and d is defined as the
ordinary set La(g,ﬁ,g,a) for which the degree of their membership
functions exceeds the level «

L (a,b,c,d) = { (a,b,c,d) | My (ajr) z o, qijtgj) 2 o uo (G ) 2 o,

« Jr Cir
u&ir(dir) 2 «, i=1,...,k, j=1,...,m, r=1,...,n }. (3.6)

It is clear that the level sets have the following property:

o, S if and only if L (a,b,c,d) DL (a,b,c,d) . (3.7)
1 % ozl '0:2

For a certain degree «, the MOLFP-FP (3.3) can be understood as the
following nonfuzzy «-multiobjective linear fractional programming

(x~-MOLFP) problem.

min z(x,c,d) 4 (2, (X,¢;,d))2,(X,Ch0d5) 500042, (X, Gy D)

subject to
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x € X(a,b) 5 {x€E | a;x 8 bj,d=l,..omix 20}, (3.8)

(a,b,c,d) € La(E,B,E,&) ,

where Zi(x’ci’di) = pi(x’ci)/qi(x’di) s (3.9)
and pi(x,ci) = c“x1 + ci?_x2 + ...+ Cinxn + Ci.n+1’ (3.10)
9,40 = dy Xy HdioXy Foe Hdp X+ dp

It should be emphasized here that in the «-MOLFP the parameters
(a,b,c,d) are treated as decision variables rather than constants, and it

is customary to assume that the qi(x,di) > 0 for all x € X(a,b)., In this
chapter, for simplicity, we further assume that the pi(x,ci) > 0 for all

X € X(a,b).
On the basis of the a-level sets of the fuzzy numbers, we introduce

the concept of «-Pareto optimal solutions to the «~MOLFP.

Definition 3.3 (a-Pareto optimal solution)
x%¥ € X(a%,bx) is said to be an «-Pareto optimal solution to the

o~MOLFP (3.8), if and only if there does not exist another x € X(a,b),
(a,b,c,d) € LG(E,B,E,&) such that z;(x,c;,d;) S z; (xx,c6.d8), i=1,....k,

with strict inequality holding for at least one i, where the
corresponding values of parameters (a%,bx,cx,d*) are called o-level

optimal parameters.

3.3 Interactive Decision Making under Fuzziness
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3.3.1 Fuzzy Goals

As can be seen from Definition 3.3, wusually, «-Pareto optimal
solutions consist of an infinite number of points, and the DM must select
his/her compromise or satisficing solution from among «-Pareto optimal
solutions based on his/her subjective value-judgement.

However, considering the imprecise nature of the DM's judgement, it
is reasonable to assume that the DM may have fuzzy goals for each of the
objective functions in the «-MOLFP (3.8). For example, a goal stated by
the DM may be to achieve “"substantially less" than A. This type of
statement can be quantified by eliciting a corresponding membership
function.

In order to elicit a membership function “i(zi(x’ci’di)) from the DM
for each of the objective functions Zi(x’ci’di)’ i=1,...,K, in the

«-MOLFP (3.8), we first calculate the individual minimum and maximum of
each objective function under the given constraints for « = 0 and « = 1.
By taking account of the calculated individual minimum and maximum of
each objective function for « = 0 and o« = 1 together with the rate of
increase of membership of satisfaction, the DM must determine his/her

membership function “i(zi(x‘ci’di)) in a subjective manner.

It is significant to note here that, in the fuzzy approaches, we can
treat two types of fuzzy goals; namely, fuzzy goals expressed in words

such as " Zi(x’ci’di) should be in the vicinity of Ci“ (called fuzzy

equal) as well as " Zi(x’ci’di) should be substantially less than
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Ai or greater than Bi" (called fuzzy min or fuzzy max). Such a

generalized «-MOLP (Ga-MOLP) problem can be expressed as:

fuzzy min Zi(x’ci’di) (i € Il)

fuzzy max Zi(x’ci’di) (i € 12)

fuzzy equal Zi(x’ci’di) (i € 13) (3.11)
subject to x € X(a,b)

(a,b,c,d) € La(S,B,E,E)

where I, U 12 U 13 = {1,2,...,k } .

1

In order to elicit a membership function “i(zi(x’ci’di)) from the DM
for a fuzzy goal like *“ Zi(x’ci’di) should be in the vicinity of Ci"’ it

is obvious that we can use different functions to the left and right

sides of Ci’

For the membership functions of the Gou-MOLFP, it is reasonable to

assume that ui(zi(x,ci,di)), i € I1 and the right side functions of

“i(zi(x’ci’di))’ i € I, are strictly monotone decreasing and continuous

3

functions with respect to Zi(x’ci’di)’ and ui(zi(x,ci,di)), i € I, and

2

the left side of ”i(zi(x’ci’di))’ i € 13 are strictly monotone increasing
and continuous functions with respect to Zi(x’ci’di)'
To be more specific, each membership function “i(zi(x'ci’di)) of the

Ga-MOLFP for i € Il’ i€ 12 ori € I3 is defined as follows :
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(1) 1€l

; 1
i or =21 if Zi(x’ci’di) s ZiR’

) | 0
ui(zi(x,ci,di)) DiR(Zi(X’Ci’di)) if ZiR s Zi(x’ci’di) s ZiR’

. 0
0 or -+ 0 if ziR s Zi(x’ci’di)’ (3.12)

(2) 1 €1

. 0
0 or =20 if Zi(x’ci’di) = ZiL s

_ . 0 1
ui(zi(x,ci,di)) = DiL(Zi(X’Ci’di)) if ZiL = Zi(x’ci’di) s ZiL’
. 1
1 or 1 if ZiL s Zi(x’ci’di) (3.13)
(3) i € I3 :
0 or =90 if z,(x,c.,d.) S ZO
i i iL ’
D.. (z.(x,c.,d.)), if z° Sz (x,c.,d) § zZ.
iL it iL S T iL’
_ . 1 i
“i(zi(x’ci’di)) = 1 if ziL s Zi(x’ci’di) S ZiR,

. , i 0
DiR(Zi(X’Ci’di)) if ZiR s Zi(x’ci’di) 3 ziR s

0 or =»0 if Z°

iR S Zi(x’ci’di) . (3.14)

where DiR(Zi(X’Ci’di)) or DiL(Zi(X’Ci’di)) is respectively a strictly
monotone decreasing or increasing continuous function with respect to

Zi(x’ci’di) and may be linear or nonlinear, and Z?L and Z?R are

unacceptable levels for Zi(x’ci‘di) and z1 and ZiR are totally desirable

iL

levels for Zi(x’ci’di)‘
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When fuzzy equal 1is included in the fuzzy goals of the DM, it is

desirable that Zi(x’ci’di) should be as close to Ci as possible,

Consequently, the notion of «-Pareto optimal solutions defined in terms
of objective functions cannot be applied. For this reason, we introduce
the concept of M-a-Pareto optimal solutions which is defined in terms of
membership functions instead of objective functions, where M refers to

membership.

Definition 3.4 (M-a-Pareto optimal solution)
X% € X(a%,bx) is said to be a M-a~-Pareto optimal solution to the

Ga-MOLP, if and only if there does not exist another x € X(a,b),(a,b,c,d)

€ L (a,b,c,d) such that u. (z, (x,c..d,)) 2 W (z (x*,c¥,d%)),i=1,...,K,
¢4 1 1 1 1 1 1 1 1

with strict inequality holding for at least one i, where the
corresponding values of parameters (ax,b%,cx,dx) are called o-level

optimal parameters.

After eliciting the membership functions uj(zi(x,ci,di)), i=t,...,K
from the DM for each of the objective functions Zi(x’ci’di)’ i=1,...,K,

if we introduce a general aggregation function

l’dl))""’ Uk(zk(x’ck’dk))’ x ), (3.15)

a general fuzzy a-multiobjective decision problem (Fa-MODP) can be

uD( ul(zl(x,c

defined by:
max uD( ul(zl(x,cl,dl)),..., uk(zk(x,ck,dk)), o ) (3.16)
subject to
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(x,a,b,c,d) € Pla), «€ [0, 1] - 3.17)

where P(a) is the set of M-«-Pareto optimal solutions and corresponding
«-level optimal parameters to the Go-MOLFP.

Probably the most crucial problem in the F«-MODP 1is the
identification of an appropriate aggregation function which well

represents the human decision makers' fuzzy preferences. If uD(.) can be

explicitly identified, then the Fo-MODP reduces to a standard
mathematical programming problem. However, this rarely happens and as an
alternative, it becomes evident that an interaction with the DM is
necessary.

Throughout this section we make the following assumptions.

Assumption 3.1 The fuzzy 9goals of the DM can be quantified by
eliciting the corresponding membership functions through the interaction
with the DM.

Assumption 3.2 uD(.) exists and is known only implicitly to the DM,
which means the DM cannot specify the entire form of uD(.), but he/she

can provide local information concerning his/her preference. Moreover,

it is strictly increasing and continuous with respect to ui(.) and «.

3.3.2 Minimax Problems

Having determined the membership functions for each of the objective

functions, in order to generate a candidate for the satisficing solution
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which is also M-a-Pareto optimal, the DM is asked to specify the degree «
of the o«o-level set and the reference 1levels of achievement of the

membership functions, called reference membership values (Sakawa and Yano

19851). For the DM's degree « and reference membership values ui,

i=1,...,k, the corresponding M-a-Pareto optimal solution, which is in a
sense close to his/her requirement or better than that if the reference
levels are attainable, is obtained by solvihg the following minimax

problem.

min max ( u, - z; (X,cyd) ), (3.18)
X € X(a,b) 1818k
(a,b,c,d) € La<595,6,a)

or equivalently

min v
subject to ﬁi - bz (x,0Hd ) S v, islhonk o, (3.19)

ajx s bj s J=l,..o0m, X 2 0,

(a,b,c,d) € La(S,B,E,&)

A graphical description of the minimax problem is depicted in Fig. 3.1.

in order to solve the formulated problem on the basis of the linear
programming method, we first convert each constraint ﬁi - ui(zi(x.ci,di))

Sv, i=1l,...,k, of the minimax problem (3.19) into the following form

using the strictly monotone decreasing or increasing property of DiR(’)

and Di (.).

L
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y(2z,(x,¢,,d,))
1 F
_ m
H2 /7:
’
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u(z(x*,c*,d*)) 1 i
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| 1
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| I
I 1
i !
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| !
| |
I 1
i { —
0 ul(zl(X*)C-f)d'f)) I-ll 1 ul(zl(x,cl,dl))

Fig, 3.1 Minimax problem

1

Zi(x'ci’di) S DiR( ui -v), 1€ I1 U I3 (3.20)
-1. - )
Zi(x’ci’di) 3 DiL( ui ~-v), 1€ 12 UI3 (3.21)

Since qi(x,di) 2 0 for all x € X(a,b) (by assumption), each

constraint (3.20) and (3.21) can be converted as follows:

-1, = :
pi(x,ci) s DiR( ui— v ) qi(x,di), i€ ]1,U 13 (3.22)
-1, - .
pi(x,ci) P4 DiL( ui v ) qi(x,di), i € 12 U I3 (3.23)

Then, we introduce the following set-valued functions RiL("‘) ,

R..(.,.) and T.(.,.).

iR J
) -1, s .
RiL(Ci’di) = {(x,V)| pi(x,ci) 2 DiL( W= v )qi(x,di), i€ I2L113} (3.24)
- -1 = .
RiR(ci,di) = {{x,v)} P; (X,C;) s DiR( W= v )qi(x,di), i € IILJI3} (3.25)
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Tj(aj,bj) = {x| a;X s bj } (3726)
Then it can be verified that the following relations hold for

RiL("') ; Ri (.,.) and TJ("‘)’ when x « 0 .

Proposition 3.1

1. 2 1 2
(1 1f Ci s ci , then RiL(Ci’di) C RiL(Qi,di)
and R..(cl,d.) D R..(c?,d.)
iR'Ci 4 ir(€i+9;) -
1.2 1 2
(20 If d] $d°, then R, (c,,d) D R (c,d)
and R..(c.,d) C R .(c .d%)
iR‘Ci+9; ig‘Ci-dj) -

1

2 .
(3) If a. s aJ , then Tj(aj,

[

2
bj) i Tj(aj’bj)

1 2
(4) If b, S b , then Tj(aj’bj) C Tj(aj’bj) .

e B

[y

It should be noted here that the feasible regions for Ci’di’aj and

) ) L R
bj can be denoted respectively by the intervals (Cia’ Cia]’ [d%a,dﬁa],

L

Jo

R L R . .
E aja] and [bja’ bja] shown in Fig. 3.2.
Therefore, by making use of the results in Proposition 3.1, we can

obtain an optimal solution to (3.19) by solving the following problem.

min v
subject to

L -1, - R .
pi(x,cia) 2 DiR( ui v ) qi(x,dia), i€ IIU 13 , (3.27)
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0
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o

Fig. 3.2 Feasible regions for Ci‘ di aj and bj

1

| R 1, - .
P X, cR ) 2 DI (T -v) qi(x,dli‘a), i €1V, ,

L R . .
ajax s bja . J=l,....m 5 x e 0,

It is important to note here that in this formulation, if the value
of v is fixed, it can be reduced to a set of linear inequalities.
Obtaining the optimal solution vx to the above problem is equivalent to

determining the minimum value of v so that there exists an admissible set

satisfying the constraints of (3.27). Since v satisfies ﬁmax -1 8vs3
umax’ where “max denotes the maximum value of ui , i=1,...,K, we have the

following method for solving this problem by combined use of the

bisection method and the simplex method of linear programming.
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Step 1. Set v = L ax and test whether an admissible set satisfying}the

constraints of (3.27) exists or not by making use of phase one
of the simplex method. If an admissible set exists, proceed.

Otherwise, the DM must reassess his/her membership function.

Step 2. Set v = Lmax - 1 and test whether an admissible set satisfying

the constraints of (3.27) exists or not using phase one of the

simplex method. If an admissible set exists, set vx = amax - 1.

Otherwise g0 to the next step, since the minimum v which

satisfies the constraints of (3.27) exists between amax - 1 and
umax :
Step 3. For the initial value of v, = amax- 0.5, update the value of v

using the bisection method as follows :

n+l . L .
nel vn 1/2 if admissible set exists for vn )

\Y

n+l

vn + 1/2 if no admissible set exists for vn

Y
n+l

In this way, we can determine the optimal sdlution V%, Then the DM
selects an appropriate standing objective from among the objectives

zi(x,ci,di),i=1,...,k. For notational convenience, in the following, let

it be Zl(x’cl’dl) and 1 € Il‘ Then the following linear fractional

programming problem is solved for v = vx.

L R

min zl(x,cla,d1 )

o
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, L -1, = _ R )
subject to pi(x,cia) s DiR( ui ux ) qi(x.dia), i € IIU 13 (3.28)

R -1, = L ,
pi(x,cia) 2 DiL( ui v¥* ) qi(x,dia), i€ I2U 13
L < R .
ajax = bja’ J=1,....m, XxX20.

In order to solve this linear fractional programming problems, we

can use Charnes-Cooper's (1862) variable transformation :

t = 1/q.x.d¥), v = D, (3.29)
i lo

and formulate the following standard linear programming problems:

L

min C
lo

y

. L -1, = R .
subject to Ciy VY s DiR( ui ux ) dia y, 1€ IIU 13

R -1, = _ L ,
Cig ¥ a DiL( uj V% ) dia y , 1€ 12U 13 (3.30)
R -
dla y = 1
L R L
{ aja, bja) y s 0, Jj=l,...,m, yea0.,

For convenience in our subsequent discussion, assume that the
optimal solution yx to (3.30) satisfies the following conditions:

L -1 R

Cia y% = DiR( u1 - vx ) dia yx , | € IIU ISR

R _ -1, = _ L .

Cia y¥ = DiL( My vx ) dia vy , | € 12U I3L
where 13 = I3L U ISR and I3L N I3R = ¢ ,

) L R . R L .
Then it must be observed here that ¢, , d. (i€, Ul,.), ¢, , d; (i €
e io 1 3R io io

I, UTI, ) and aL bR (j=1 m) are o-level optimal parameters for any
2 3L Jo’ Tja ey

M-«~Pareto optimal solution.
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The relationships between the optimal solutions to (3.30) and the
M-x-Pareto optimal concept of the Gu-MOLFP can be characterized by fhe

following theorems.

Theorem 3.1
If x%¥ is a unique optimal solution to (3.27), then x* is a

M-a-Pareto optimal solution to the Ge-MOLFP.

(Proof)

Assume that x* is not an M-«-Pareto optimal solution to the Ge-MOLFP.

) L R . R L . L
Then, since Co’ dia (i € I1 U I3R)’ Cia’ dia (i € 12 U ISL) and aja,
b?a (j=1,...,m) are a-level optimal parameters to the Go-MOLFP, there
exist x € X(a,b) and (a,b,c,d) € La(Z,B,E,a) such that
“1(21(X’Ci’di)) 2 ui(zi(x*,cli‘a, d?a)), i € I1 U I3R ;
ui(zi(x,ci.di)) 2 ui(zi(x*,c§a, d%a)), i € I2 U I3L )
with strict inequality holding for at least one i. Then it holds that
max (u, - u.(z.(x*,cL , &
i €1. UT 1 1 1 la 1o
1 3R
2 e ?axU : ( ui - ui(zi(x ’Ci’ di)) )
1 3R
2 max (n - u (z (x ,Cl.‘,dR)))
i €1. UT i 17 ia ie
1 3R
max (u - u.(z.(x*,cR , &
i €1 Ui i i ™ ic e
2 3L
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P-4 max ( ui - ui(zi(x ’Ci’ di)) )

€1, U1,
2 max (- mtzx &, d& N
o Vg

which contradicts the fact that x»* 1is a unique optimal solution to

(3.27). Q.E.D.

Theorem 3.2

If x* is an M-e-Pareto optimal solution to the Ga-MOLFP, then x% is

an optimal solution to (3.27) for some U = ( Myseoes .

{(Proof)

Assume that (x%,v¥) is not an optimal solution to (3.27) for any u

satisfying
- L R _ )
ui - ui(zi(x*,cia, dia)) = VX, i€ II U 13R
- iz e, d )= v, i€1,UI
i i Mo Vi ’ 2 3L

Then there exists x € X(a,b) such that

- L R - . ,
ui ui(zi(x, Cly dia)) < ui Ui(zi(x*’é;a' &?a)), i€ I1 U ISR’
- R L - R .
ui uj(zi(x, Cia’ dia)) < ui ui(zi(x*,cia, &;a)), i€ 12 U IBL‘

. . L R L R .
This implies that ui(zi(x,cia, dia)) > ui(zi(x*,cia, dia))’ i€ I1 Ul

3R’
woz LR L dE ) >z, R, d )), 1 €1, U 1, . which contradicts
i 71 i’ Vi i “i Mg Tia” 2 3L’

the fact that x* is an M-«a-Pareto optimal solution to the Ge-MOLP. Q.E.D.
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It should be noted here that for generating M-a-Pareto optimal
solutions using Theorem 3.1, uniqueness of solution must be verified.
In general, however, it is not easy to check numerically whether an
optimal solution to (3.30) is unique or not.

Consequently, in order to test the M-o-Pareto optimality of a
current optimal solution x*, we formulate and solve the following linear

programming problem

_ k
w = max |} €
i=1
subject to

L _ L R R .

pi(x,cia) + Ei = Zi(x*’cia'dia)qi(x’dia)’ i € 11U ISR’ (3.31)
R _ R L L i

Pi(x,cia) - ei = Zi(x*’cia’dia)qi(x’dia)’ 1 € IQJ ISL’

L R . o

aJ(x)(ﬁbJa,J-l,...,m, XZO; GIZ Dq l"lqa--,k.

Let x and € be an optimal solution to (3.31). If w = 0, then x* is an
M-a-Pareto optimal solution. In case of w > 0 and consequently at least

one ég > 0, we perform the following operations.

Step 1. Solve the following problem for any 2 such that EQ > 0.
min Zg(x’cga’dga)

subject to

L R _ - L R ST
Zi(x’cia’dia) = Zi(x'cia’dia) {il €= 0} N {IIU I

R}’

-61-



z x, R b ) = z B Ldi) (1 E=0)n (LU Iy ), 3.3
z xoch,df ) s z ockLd ) (1] Ep 0) 0 {1V I ),

z (x,c5 a2 z, G Ld ) (1] &) 0} N (LU Iy ),

a‘;ax s B3, si=t.m. o xz0.

where zg(x,cga,dga) is defined as :

L .R
z&(x,cga,dga), Q€ IIU IBR’

ZQ(X’CQa’an) 4

R .L

Step 2. Test the M-a-Pareto optimality for the solution to (3.32).

Step 3. If w = 0, stop. Otherwise, return to step 1.

Repeating this process at least k-1 iterations, an M-a-Pareto

optimal solution can be obtained.
3.3.3 Interactive Algorithm

Now given the M-a-Pareto optimal solution for the degree « and the
reference membership values specified by the DM by solving the
corresponding minimax problem, the DM must either be satisfied with the
current M-«-Pareto optimal solution and «, or update his/her reference
membership values and/or the degree «. In order to help the DM express

his/her degree of preference, trade-off information between a standing
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membership function and each of the other membership functions as well as
between the degree « and the membership functions is very useful. Suéh a
trade-off information is easily obtainable since it is closely related to
the simplex multipliers of the problem (3.30).

To derive the trade-off information, we define the following
Lagrangian function L corresponding to the problem (3.30).

. L R _
L = clay + n( dlay 1)

L -
) Lpl o,y - Dipty V*’d?ay }

-+

iEIlu IBR
+ ¥ LI DTI{( B-vod y - &y
i€1.U 1 i i i 1o 1o

2 3L

m
L R

Jj=1
where n, I

iLe KYR,and AJ are simplex multipliers corresponding to the

constraints in the problem (3.301}.

Here, we assume that the problem (3.30) has a unique and
nondegenerate optimal solution satisfying the following conditions.

(1) HiR > 0, i€ Il U ISR’ i =1,

(ii)y X

iL > 0 i €1,V IS

2 L
Then by using the results in Haimes and Chankong (1979), the

following expression holds .

a(zl(x,c%a.d?a)) R
3 - n.d®y, i€l UL, i1, (3.34)
a(zi(x,cl{a,d?a)) IR™1e L= 3R
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8(zl(x,cli‘a, lfan . |
_ - = -T.dvy., 1eLuUTl (3.35)
3z (x,c&X ,d¥ » iLoe 27 8L
1 1o lo

Furthermore, using the strictly monotone decreasing or increasing

property of DiR(’) and DIL(‘) together with the chain rule, if DiR(.) and

DiL(’) are differentiable at the optimal solution to (3.30), it holds
that
L R , L R
aul(zltx,cla,dla)) . dR DIR(Zl(X c1 ’dia)) c I 0 »
- L R, iRiayD,(( LR”" Iggs 171,
aui(zi(x’cia’dia) iR z. (X, c1 ody
(3.36)
3u, (z (x,cL ,dR }) D (z, (X, cL ) R 1)
171 lo’ o _ T dL IR* ™1 le’ ia i € 1.U 3.37
- L = T dieY R Lo oV I3, (3.37)
u, (z; (x, & _,db ) D}, (z; (x,c} ))
i’ i iL i’ il

Regarding a trade-off rate between “1(’) and « , the following

relation holds based on the sensitivity theorem (Fiacco 13983).

L R L
u, (z, (X,c- ,d* ) ad ot
R P T L R 1o 1o
ot = Diplz)Gcipndy ) ) e Y P N Ty Y
SC%Q -1.- ad?a
+ iGIZUI Tip { g ¥ - Djptyy- veipg = v}
1Y IsR :
+i€IZUI 1L(DL - kg Sy - o v )
oY I3
L R
m Ja; 3b .
+ LA —513, - —5*3;‘5 )y (3.38)
=1

It should be noted here that in order to obtain the trade-off rate

information from (3.363)-(3.37), all the constraints of the problem (3.30)
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must be active for the current optimal solution y%, and y* must satisfy

the M-o-Pareto optimality test. Therefore, if there are inactive

constraints, it 1is necessary to replace ﬁi for inactive constraints by

u.(z.(x*,cL ,dR )) + v or u.(z.(x*,cR ,dp ) + v, and solve the
I =i e’ Tila i i e’ Tl

corresponding problem (3.30) for obtaining the simplex multipliers.
Following the above discussions, we can now construct the

interactive algorithm in order to derive the satisficing solution for the

DM from among the M-a-Pareto optimal solution set. The steps marked with

an asterisk involve interaction with the DM.

Step 0. Calculate the individual minimum and maximum Of each objective
function under given constraints for « = 0 and « = 1.

Step 1%, Elicit a membership function ui(zi(x’ci*di)) from the DM for

each of the objective functions.

Step 2%, Ask the DM to select the initial value of « (0 & o« § 1) and set

the initial reference membership values Di= 1, i=1,...,K.

Step 3. For the degree « and the reference membership values specified
by the DM, solve the minimax problem and perform the M-a-Pareto
optimality test.

Step 4x%. The DM is supplied with the corresponding M-o-Pareto optimal
solution and the trade-off rates between the membership
functions and the degree «. If the DM is satisfied with the
current membership function values of the M-a-Pareto optimal
solution and «, stop. Otherwise, the DM must update the

reference membership wvalues and/or the degree « by considering
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the current values of the membership functions and together with
the trade-off rates between the membership functions and the |

degree «, and return to step 3.

Here it should be stressed for the DM that (1) any improvement of
one membership function can be achieved only at the expense of at least
one of the other membership functions for some fixed degree «, and (2)
the greater value of the degree « gives worse values of the membership

functions . for some fixed reference membership values.
3.3.4 Numerical Example

To illustrate the proposed method, consider the following three

objective linear fractional programming problems with fuzzy parameters.

-~

fuzzy nmin ZI(X’CI) Ja) (-x1 + c13) / (—x2 + 9)

fuzzy max 22(x,c2) Ja} (x1 + 023) / (-x2 + 7)

- -

fuzzy equal  zg(x,dg) 4 (X, +2) / (=X, + dgg)

subject to

x €X 4 {x %) |25 +x -1450,

2x; + 5%, -30 50, x; &0, i=1,2 )
where 513, 523 and 553 are fuzzy numbers whose membership functions are:
UEIS(Cls) = max (1 - | ¢ g - 11.5 f, 0),
u523(c23) = max (1-0.5]¢4-81,0),
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N .

11 12 c 7 c 10.5 i1 d

33

~

Fig. 3.3 Fuzzy numbers c13, C d33

23’

uy (d,,) = max (1 - 2 | d33 - 10.7% |, 0 ).

Now, suppose that the interaction with the hypothetical DM establishes

the following simple linear membership functions for the three objective

functions.
1 Z4 s 0.5
Ul(zl) = DIR(ZI) = (—z1 + 3)/2.5 0.5 =3 2y s 3
0 3 =S Z)
0 z, & 1
u,(zy) = Dy(z) = f(z, - 1)/4 I Sz, 5
1 5 s Z,
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3
DSL(ZS) = (1023)/3 0 s Z3 s 0.3
u3(23) = 1 Zg = 0.3
DSR(ZS) = (1.2 - 23)/0.9 0.3 s 24 2 1.2
0 1.2 s Z3

Also assume that the hypothetical DM selects the initial value of the

degree o to be 0.5, and the initial reference membership values (ﬁl, ﬁ2,

ﬁs) to be (14715, 61/80, 233/315). Then. the corresponding M-o-Pareto

optimal solution can be obtained by solving the following problem.

min Y
x € X
subject to
_1 -
(—x1 + 11) = DIR( u1 - v ) (-x2 + 9)

v ) (-x, + 7)

=
I

(x, + 9) = D

1 2L 2 2
_1 -
(x2 + 2) s DSR( u3 - v} (-x1 + 1)
_1 -
(x2 + 2) = DSL( u3 - V) (-x1 + 10.5)

Solving this problem by combined use of the bisection method and the
simplex method of linear programming, we obtain the optimal solution vx =
1/5. For obtaining the corresponding optimal values of the decision
variable x%, we solve the following linear programming problem for vx =
1/5.

min -y, + 1lly
yEY 1 3
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subject to

-1

yl + 9y3 P-4 D2L( U, - v* ) (-y2 + 7y3)

2

_1 -
y2 + 2y3 s DSR( u3 - V% ) (—y1 + 11y3)

-1

_y2 + 9y3 = 1

2y, + 5y, -30y5 $ 0, y, 2 0, i=1,2,3 },

1
and

y = (x,1)0¢t, t = 1/(-X,+9)

As a result, we obtain the optimal solution y» = (yf, Y§, Y§) = (2/3,

172, 1/6). The corresponding optimal values of the objective functions

L

la

Yo z% 4 za(x*,dR

R
Vo Z¥ b Z, (%%, C 3

X3, ZT Q zl(x*.c o

a), and the membership
functions u¥ a ui(z;) i=1,2,3, and the simplex multipliers (“§L’ HgL,
H§R) can be obtained as follows:

X% = (xf, X8) = (4, 3). (2§, 2%, z%) = (7/6, 1374, 5/7),

(uf. u§, ug) = (11/15, 9/16, 34/63),

(HﬁL' H§L’ H?R) = (154/111, 0, 371/111).

From (3.36) and (3.37), the trade-off rates among the membership
functions become as follows:
D, (z%)
L, R
D2L(z§)

au, (zx)
i s GO
au2(25)
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154 T -1/2.5
= - — (0, -1, 7) (2/3, 1/2, 1/6)
11 174

= 2464/1665 ,
aul(zf) . dR . D' (zr)
- - §R S y D (
dug (zp) 3R (7
371 T -1/2.5
= - T (""1; Ds 11) (2/3; 1/2; 1/6)
111 -1/0.9

7791/5550 .

Concerning the trade-off rate betweeh “1(21) and «, from (3.38), we have

BUI(ZT) 1 adga
—_— = DIR(Z*) { c V5t H§R R( u3 - yx ) v )
o Ja
30 R
+ H§L(
= -718/1665 .

Observe that the DM can obtain his/her satisficing solution from
among an M-o-Pareto optimal solution set by updating his/her reference
membership values and/or the degree o on the basis of the current values
of the membership functions and the degree « together with the trade-off

rates among the values of the membership functions and the degree «.

3.4 Conclusion
In this chapter, we have proposed an interactive decision making

method for multiobjective linear fractional programming problems with

fuzzy parameters by considering the imprecise nature of human judgement.
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Similar to the previous chapter, the following desirable features of our

proposed method will be summarized for the linear fractional objectives

extension in this chapter.

(1)

(2)

(3)

(4)

(5)

(6)

The experts' ambiguous understanding of the nature of the parameters
in the problem-formulation process can be incorporated.

The fuzzy 9goals of the DM can be quantified by eliciting the
corresponding membership functions, which may be nonlinear.

For the degree « and the reference membership values specified by
the DM, the corresponding M-a-Pareto optimal solution can be easily
obtained by solving the minimax problems based mainly on the well
known linear programming method.

M-o-Pareto optimality of the generated solution in each iteration is
guaranteed by performing the M-a-Pareto optimality test.

The trade-off information between the membership functions and the
degree o« 1is easily obtainable, since it is closely related to the
simplex multipliers of the minimax problems.

The satisficing solution of the DM can be derived efficiently from
among M-o-Pareto optimal solutions by updating his/her reference
membership values and/or the degree o based on the current values of
the M-o-Pareto optimal solution together with the trade-off

information between the membership functions and the degree «.

In the next chapter, multiobjective nonlinear programming problems

with fuzzy parameters are considered as a nonlinear generalization of

chapter 2 and 3.
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CHAPTER 4

INTERACTIVE DECISION MAKING FOR MULTIOBJECTIVE NONLINEAR
PROGRAMMING PROBLEMS WITH FUZZY PARAMETERS

4.1 Introduction

In this chapter, attention is now focused on multiobjective
nonlinear programming problems with fuzzy parameters, which reflect the
experts' ambiguous or fuzzy understanding of the nature of the parameters
in the problem-formulation process. Such general multiobjective
nonlinear  programming problems with fuzzy parameters were first
formulated by Orlovski (1983,1984). He presented two approaches to the
formulated problems by making systematic use of the extension principle
of Zadeh (1975) and demonstrated that there exist in some sense
equivalent nonfuzzy formulations. Unfortunately, however, no interactive
decision making methods have been proposed.

In this chapter, in order to deal with the multiobjective nonlinear
programming problems with fuzzy parameters characterized by fuzzy
numbers, the concept of M-«-Pareto optimality is introduced on the basis
of the «-level sets of the fuzzy numbers. Then by considering the fuzzy
goals of the decision maker (DM), a new interactive decision making

method using augmented minimax problems is presented in order to derive
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the satisficing solution of the DM efficiently from among an M-a-Pareto

optimal solution set as a nonlinear generalization of chapters 2 and 3.

4.2 Problem Statement and Solution Concept

In general, the multiobjective nonlinear programming (MONLP) problem

is represented as the following vector-minimization problem:

min £(x) A (fl(x),fz(x),,..,fk(x)) (4.1)
subject to x€X={x€f | 9;(x) &0, J=l,....m }
where x is an n~-dimensional vector of decision variables, fl(x)....,fk(x)

are k distinct objective functions of the decision vector X, 9,(x},...,

1

gm(x) are m inequality constraints, and X 1is the feasible set of

constrained decisions.

Fundamental to the MONLP is the Pareto optimal concept, also known
as a noninferior solution. Qualitatively, a Pareto optimal solution of
the MONLP is one where any improvement of one objective function can be
achieved only at the expense of another. Mathematically, a formal

definition of a Pareto optimal solution to the MONLP is given below:
Definition 4.1 (Pareto optimal solution)

x¥ € X is said to be a Pareto optimal solution to the MONLP, if and

only if there does not exist another x € X such that fi(x) s fi(x*).
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i=1,...,k, with strict inequality holding for at least one i.

In practice, however, it would certainly be more appropriate to
consider that the possible values of the parameters in the description of
the objective functions and the constraints usually involve the ambiguity
of the experts' understanding of the real system. For this reason, in
this chapter, we consider the following multiobjective nonlinear

programming problem with fuzzy parameters (MONLP-FP) :

-~

(x,a ),...,fk(x.ak)) (4.2)

), f 5

min f(x,a) § (f;(x,a

17772

subject to x € X(b) p { x € E' | g;(x.b) 50, J=l,...m )

- -~ - -~ ~

where ai = (ajl"“’ ipi j jl,...,quJ) represent respectively

a vector of fuzzy parameters involved in the objective function fi(x,gi)
and the constraint function gj(x,ﬁj). These fuzzy parameters are assumed
to be characterized as the fuzzy numbers introduced by Dubois and Prade

(1978,1980). We now assume that 5” and b is in the MONLP-FP are fuzzy

numbers whose  membership functions are u~ (a._ ) and ug (b, )
aj. ir is Js

respectively. For simplicity in the notation, define the following

vectors:
al = (all, ,alpl), bj = (le' .,quj)
a = (al’ 9ak)9 a = (al9 . k)s b = (bly- qu)g b = (b19 --sbm)

-74~



Then we can introduce the following «-level set or a-cut (Dubois and

o~

Prade 1980) to the fuzzy numbers 5ir and bjs‘

Definition 4.2 (x-level set)

The «-level set of the fuzzy numbers Eir(i=l,...,k, r=1,...,pi) and

-~

b (d=l,....m, s=1,...,4;) 15 defined as the ordinary set La(E,ﬁ) for

which the degree of their membership functions exceeds the level «:

La(a,b) = { (a,b) | g (air) 2 o, 1=1,...,K, r=1,...,pi ;
ir
ugjs(bjs) 2 a, J=l,...,m, s=1,...,qj } (4.3)

For a certain degree «, the MONLP-FP (4.2) can be understood as the
following nonfuzzy «o-multiobjective nonlinear programming («-MONLP)

problem.

)youosf (X,8,))

min f{x,a) o (f K

), f,(x,a

(x,a)),1,(x,a,

1 k

subject to  x € X(b) 4 {xe® | qj(x,pj) $0, j=1,...,m } (4.4)

(a,b) €L (a.b)
(44

It should be emphasized here that in the «-MONLP the parameters
{a,b) are treated as decision variables rather than constants.
On the basis of the a-level sets of the fuzzy numbers, we introduce

the concept of «-Pareto optimal solutions to the o«-MONLP.
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Definition 4.3 (x-Pareto optimal solution)
x* € X(b%) is said to be an a-Pareto optimal solution to the «-MONLP

(4.4), if and only if there does not exist another x € X(b) and (a,b) €
La(S,S) such that f,(x,a;)) & f,(x%,ax ), i=l,...,k, with strict

inequality holding for at least one i, where the corresponding values of

parameters ax and b are called «-level optimal parameters.

For practical purposes, however, since only local solutions are
guaranteed in solving a scalar optimization problem by any standard
optimization technique, unless the problem is convex, we deal with local

o~Pareto optimal solutions instead of global «-Pareto optimal solutions.

Definition 4.4 (local «-Pareto optimal solution)
x% € X(bx) is said to be a local a-Pareto optimal solution to the

«~-MONLP (4.4), if and only if there does not exist another x € X(b) N
N{x%;r) and (a,b) € La(S,S) N N(ax,bxir') such that f;(x,a;) S f; (xx,ax),

i=1,....,k, with strict inequality holding for at least one i, where the

corresponding wvalues of parameters a» and bx are called a-level local

optimal parameters and N(x¥;r) denotes the set {x|x € B, Ix - x| < r }.

4.3 Interactive Decision Making under Fuzziness

4.3.1 Fuzzy Goals
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As can be immediately seen from Definition 4.4, usually, (local)
a-Pareto optimal solutions consist of an infinite number of points,'and
the DM must select his/her (local) satisficing or compromise solution
from among (local) «-Pareto optimal solutions based on his/her subjective
Judgement.

However, considering the imprecise nature of the DM's judgement, it
is natural to assume that the DM may have imprecise or fuzzy goals for
each of the objective functions in the «-MONLP (4.4). In a minimization
problem, a fuzzy goal stated by the DM may be to achieve “substantially
less " than A . This type of statement can be quantified by eliciting
a corresponding membership function.

In order +to elicit a membership function ui(fi(x,ai)) from the DM
for each of the objective functions fi(x,ai) in the «~MONLP (4.4), we

first calculate the individual (local) minimum f?in and maximum f?ax'of

each objective function fi(x,ai) under the given constraints for « = 0

and o« = 1. By taking account of the calculated individual (local)
minimum and maximum of each objective function, the DM must determine

his/her subjective membership function “i(fi(x’ai)) which is a strictly
monotone decreasing function with respect to fi(x,ai). Fig. 4.1

illustrates the graph of the possible shape of the membership function

representing the fuzzy goal to achieve substantially less than Ai'

It is now appropriate to point out that, in the fuzzy approaches, we
can treat two types of fuzzy goals; namely, fuzzy goals expressed in

words such as " fi(x,ai) should be in the vicinity of Ci" (called
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ui(fi(x;ai))

1

fi(x,ai)
Fig. 4.1 Monotone decreasing membership function

fuzzy equal) as well as " fi(x,ai) should be substantially less than A1

or greater than Bi" (called fuzzy min or fuzzy max). Such a generalized

a-MONLP (Ge-MONLP) problem may now be expressed as:

fuzzy min fi(x,ai) (i € Il)
fuzzy max fi(x,ai) (i € 12)
fuzzy equal fi(x,ai) (i € 13) (4.5)

subject to X € X(b), (a,b) € La(E.E)

where I1 U I2 U 13 = {1,2,...,k }.

In order to elicit a membership function from the DM for a fuzzy

goal like "fi(x,ai) should be in the vicinity of Ci"’ it is obvious that

we can use different functions to the left and right sides of Ci’
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As an example, Fig. 4.2 illustrates the graph of the possible shape of
the fuzzy equal membership function representing the fuzzy goal to be'in

the vicinity of Ci‘

ui(fi(x,ai))

1k

fi(x,ai)

Fig, 4.2 Fuzzy equal membership function

When fuzzy equal is included in the fuzzy goals of the DM, it is

desirable that fi(x,ai) should be as close to Ci as possible.

Consequently, the notion of (local) «-Pareto optimal solutions defined in
terms of objective functions cannot be applied. For this reason, we
introduce the concept of (iocal) M-a~Pareto optimal solutions which is
defined in terms of membership functions instead of objective functions,

where M refers to membership.
Definition 4.5 ({local) M-a-Pareto optimal solution)

x¥ € X(bx) 1is said to be a (local) M-«-Pareto optimal solution to

the Go-MONLP (4.5), if and only if there does not exist another x € X(b)
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{ N N(xxr)), (a,b) € La(E,B) { N N(ax,bx:r')) such that ui(fi(x,ai)) P
ui(fi(x*,af)),i=1....,k, with strict inequality holding for at least one

i, where the corresponding values of parameters a* and b* are called

a-level (local) optimal parameters.

Having elicited the membership functions “i(fi(x’ai))’ i=l,...,kK
from the DM for each of the objective functions fi(x,ai). i=l,...,k, if

we introduce a general aggregation function

uD( u(f(x,al)), « ) = H)( ul(fl(x,al)),..., H<(§<(x,qk)), o ) (4.6)

a 9general fuzzy a-multiobjective decision problem (Fe-MODP) can be

defined by:
max uD( p(fix,a)), « ) (4.7)
subject to
(x,a,b) €EPle, «a€ [0, 1] (4.8)

where P(a) is the set of M-«-Pareto optimal solutions and corresponding
a-level optimal parameters to the Ge-MONLP.

Probably the most crucial problem in the Fe-MODP is the
identification of an appropriate aggregation function which well

represents the human decision makers' fuzzy preferences. If uD(.) can be

explicitly identified, then the Fo-MODP reduces to a standard
mathematical programming problem. However, this rarely happens and as an
alternative, it becomes evident that an interaction with the DM is

necessary.
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Throughout this section we make the following assumptions.

Assumption 4.1

The fuzzy goals of the DM can be quantified by eliciting the
corresponding membership functions through the interaction with the DM.
AsSumption 4.2

uD(.) exists and is known only implicitly to the DM, which means the
DM cannot specify the entire form of uD(.). but he/she can provide local

information concerning his/her preference. Moreover, it is strictly

increasing and continuous with respect to “i(') and «.

Assumption 4.3

All fi(x,ai), i=l,...,k and all gj(x,bj), Jj=t,...,m are continuously

differentiable in their respective domains.

4.3.2 Minimax Problems

Having determined the membership functions for each of the objective
functions, in order to generate a candidate for the (local) satisficing
solution which 1is also (local) M-a-Pareto optimal, the DM is asked to
specify the degree « of the «a-level set and the reference levels of
achievement of the membership functions, called the reference membership
values. Observe that the idea of the reference membership values (e.q.
Sakawa, Yumine and Yano 1984a,b; Sakawa and Yano 1984a,1985f) can be
viewed as an obvious extension of the idea of the reference point of

Wierzbicki (1979a).
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209

For the DM's degree o and the reference membership values ﬁl
i=1,...,k, the following minimax problem is solved in order to generate
the (local) M-«-Pareto optimal solution, which is in a sense close to
his/her requirement or better than that if the reference membership

values are attainable.

min max ( u, - wy (f; (X,80) ) (4,9)
X € X(b) 18isk

(a,b) € L (3,b)
[+

or equivalently

min Y, (4.10)
subject to ai - o fi(x,a)) S v, i=l,...0K 4.11)
x € X(b), (a,b) € La(E,E) (4.12)

Fig. 4.3 illustrates a graphical description of the minimax problem in a
membership space.

The relationships between the (local) 6ptimal solutions of the
minimax problem and the (local) M-«-Pareto optimal concept of the

Ga-MONLP can be characterized by the following theorems.

Theorem 4.1
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If (x*,a%,b%) is a unique (local) optimal solution to the minimax
problem for some ﬁi, i=1,...,k, then x* is a (local) M-a-Pareto optimal

solution and a%,b* are a-level (local) optimal parameters to the

Ga-MONLP.

uz(fz(x,az))

=

112 P

) (£, (3%, a§) === == e
w(£(x*,a%*))

e e e e e o e o e e e e — =

t
!
1
|
]
|
|
!
!
]
i
i
1
1

0 pl(fl(x*,a’i"))

=1
[y

ul(fl(x,al))
Fig. 4.3 Minimax problem

{Proof)

Assume that x* is'not a (local) M-«-Pareto optimal solution or ax,bx

are hot a-level (local) optimal parameters to the Ge-MONLP, then there

exists x € X(b)( N N(x*,r)), (a,b) e'Lu(Z,E)( N N(a%,b*;r')) such that
u(f(x,a)) > u(f(xx,ax)). This implies that 1 - wu(f(x,a)) < u -
u(f(x*,a%)), where n(f(x,a)) = ( ul(fl(x’al))""’”k(fk(x’ak)) ) and B =

( ul,..., ”k ). Then it holds that
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max ( u, - w (f, (6,8,0) ) S max ( u - (£ (xx,a%)) )
1Sisk 1sisk

which contradicts the fact that (xx,a%,bx) is a unique (local) optimal
solution to the minimax problem. Hence x* 1is a (local) M-a-Pareto
optimal solution and ax,bx are o-level (local) optimal parameters to the

Go-MONLP. Q.E.D.

Theorem 4.2

If x* is a (local) M-a-Pareto optimal solution and ax,bx are a-level
(local) optimal parameters to the Gu-MONLP, then there exist Ei,i=1,....k

such that (xx,ax,bx) is a (local) optimal solution to the minimax

problem,

(Proof)

Assume that (xXx,ax,bx) 1is not a (local) optimal solution to the

minimax problem for any ﬁi,i=1....,k, satisfying

u1 - ul(fl(x*,af ) = ... = uk - pk(fk(x*,ag )) .

Then there exists x € X( N N(xx,r)) and (a,b) € L_(a,D)( N N(ax,bxir*))

such that

max ( n, - u (f, (x%,a%)) ) > max (b, - w (f, (x,a )) ).
1sisk ! R 1 1sisk ! U1 A

This implies that

max ( u.(f.(x*,af)) -

(f. (x,a.)) ) < 0
1818k 1 1 1

i

hence
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ui(fi(x*,af)) - ui(fi(x,ai)) < 0 4, i=1,...K

must hold, which contradicts the fact that xx* is a (local) M-«-Pareto
optimal solution and ax,bx are a-level (local) optimal parameters to the

Ga-MONLP, and the theorem is proved. Q.E.D.

4.3.3 Augmented Minimax Problems

In order to circumvent the necessity to perform the (local)
M-a-Pareto optimality test in the minimax problems, for the nonlinear
case, it 1is reasonable to use augmented minimax problems instead of

minimax problems. For the DM's degree o« and the reference membership

values ﬁi’

i=l,....k, the following augmented minimax problem is solved
for generating the (local) M-o-Pareto optimal solution, which is in a
sense close to his/her requirement or better than that if the reference

membership values are attainable.

=

min { max ¢ Li - w (f (6,a,0)) 4P )
X € X(b) 1sisk i=1

(a,b) € La(E,E) , (4.13)

(- u (3 ) )

or equivalently

=

min v + pPY(n - (f (X,8)) ) (4.14)
=1 | 17 1

subject to Di - ow a0 & v, sl Lk, (4.15)
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X € X(b), (a,b) € La(E,B). (4.16)

Such an augmented minimax problem can be viewed as a modified fuzzy
version of the augmented Tchebycheff norm problem of Steuer and Choo
(1983) or Choo and Atkins (1983).

The relationships between the (local) optimal solutions of the
augmented minimax problem and the (local) M-«-Pareto optimal concept of

the Ge-MONLP can be characterized by the following theorems.

Theorem 4.3

If (x%,a%,bx) is a (local) optimal solution to the augmented minimax
problem for some ﬁi, i=l,...,K, then x% is a (local) M-a-Pareto optimal

solution and ax,b% are a-level (local) optimal parameters to the

Ga-MONLP.

(Proof)
Assume that x* is not a (local) M-a-Pareto optimal solution or ax,bx

are not w«a-level (local) optimal parameters to the Ge-MONLP, then there

exists x € X(b)( N N(x*,r)), (a,b) € La(E,B)( N N(a*,b%;r')) such that

u(f(x,a)) > wu(f(xx,ax)). This implies that u - w(f(x,a)) < u-
u(f{xx%,a%)), where u(f(x,a)) = (ul(fl(x’al))""’Lk(fk(x’ak))) and u =
( ul,..., uk }. Then it holds that

max ( b, - u (f.(x,a.)) ) S max ( W - u (f (x%,3%)) )
1sisk * b ! 1sisk 11 A
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This means that

k
max ( b, - u (f,(x,a,))) + pY¥ Cu - u(f (x,a)))
1sisk U i i i i=1 i 17 B
- 1% -
¢ max (y, - uy, (f, (x%,a%))) + P Cu - (f (xx%,a%)))
1518k 1 1 1 1 i=1 1 1 1 al

which contradicts the fact that (xx,ax,bx) is a (local) optimal solution
to the augmented minimax problemn. Hence x#% is a (local) M-«a-Pareto
optimal solution and ax,bx are «-level (local) optimal parameters to the

Goa-MONLP. Q.E.D.

Theorem 4.4

If x¥ is a (local) M~-a-Pareto optimal solution and ax,b* are a-level
(local) optimal parameters to the Ga~MONLP, then there exist Di,i=1,...,k

such that (xx,ax,bx} 1is a (local) optimal solution to the augmented

minimax problem for sufficiently small positive 0.

(Proof)

Assume that (xx%,ax,bx) is not a (local) optimal solution to the

augmented minimax problem for any Di,i=1,...,k, satisfying

ul - ul(fl(x*,af)) = L, uk - pk(f(x*,ag)) .

Then there exists x € X( N NGxx,r)), (a,b) € L (a,b)( N N(ax,bxir')) such

that

x

max Wy - W (f; (x%,a%)) )+ D‘F Cu - u Of) (x%,8%)) )

1sisk ! i=1
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K
> max (B, - w(f.(x,a.)) ) + PY (b -u(f (x,a)) ).
1sisk | i i iz 1 I TR

This implies that

max ( u, (f. (x*¢,a%)) - u, (f.(x,a,)) )
151 SK i1 i i i i

Kk

+ piZjl( ui(fi(x*,aze)) - (fi (x.ai)) ) ¢ D

Now if either any ui(fi(x*,af)) - ui(fi(x,ai)) is positive or all
ui(fi(x*,af)) - ui(fi(x,ai)), i=1,....,K, are zero, this inequality would

be violated for sufficiently small positive p. Hence

ui(fi(x*,af)) - “i(fi(x’ai)) < 0, i=l,...K

must hold, which contradicts the fact that x* is a (local) M~«-Pareto
optimal solution and a%,bx are «-level (local) optimal parameters to the

Ga-MONLP, and the theorem is proved. Q.E.D.

As can be seen from the above proofs, it must be observed here that
an obvious advantage of the augmented minimax problem over the usual
minimax problem is that, because of the presence of the augmented term,
(local) M-o~-Pareto optimality is guaranteed -without the uniqueness
assumption for the solution.

Added insight can be obtained by comparing the isoquant of the
augmented minimax problem

- k -

b= b (f (X,8,)0) 4 piZ:l( W - u(f (x,g)) ) = constant,

i=l,...,K (4.17)

with the isoquant of the minimax problem
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uo- o ow(f(x.a;)) = comstant , i=1,....K (4.18)

in the membership function space as depicted in Fig. 4.4.

ny(£,(x,a,)) \

/
N
N
N
N
N

0 ﬁl w, (£, (x,2,))

Fig. 4.4 Isoquants of the minimax problem and

the augmented minimax problem

Observe that, in Fig. 4.4, the normal vectors of the isoquant of the
augmented minimax problem and the minimax problem become (-p,...,-B,-1-P,
-9,...,-P) and (0,..,0,-1,0,...,0) respectively, it trivially follows

that the cosine of the angle 8 between these two normal vectors is given

by cos 8 = ( 1+p ) / y 1+ 2p + kp2 . Hence we have
8 = tan (VKL 0/ (1 +p)). (4.19)

This relation shows that © is monotone increasing with respect to p.
Thus, for sufficiently small positive scalar, augmented minimax problems

overcome the possibility to generate weak M-a-Pareto optimal solutions as
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was shown in Theorems 4.3 and 4.4. Hence augmented minimax problems are
attractive for generating M-o-Pareto optimal solutions even Aif
appropriate convexity assumptions are absent.

Naturally, P should be a sufficiently small, but computationally
significant, positive scalar. However, for practical purposes, a

computationally significant lower bound of P may be

p = 1pl@b)-ctl (4.20)
where a and b are the figures of max ( u, - u (f (x,a )) ) and
; i 7 i
1sisk
Zifl( Li - ui(fi(x,ai))) in the first and second terms in the augmented

minimax problem (4.13) respectively and ¢ is the precision figure of the
computer. Usually, since the values of a and b are unknown in advance,
if we roughly estimate a = b, then we have

p = 107t

In most cases, a computationally significant value of p = 10 o~ 1072

should suffice.

4.3.4 Algorithm Using Augmented Minimax Problems

Now given the (local) M-«-Pareto optimal solution for the degree «
and the reference membership values specified by the DM by solving the
corresponding augmented minimax problem, the DM must either be satisfied
with the current (local) M-o«-Pareto optimal solution and «, or update the
reference membership values and/or the degree «. In order to help the DM
express his/her degree of preference, trade-off information between a

standing membership function and each of the other membership functions
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as well as between the degree « and the membership functions is very
useful. Fortunately, such a trade-off information is easily obtainéble
since it 1is closely related to the strict positive Lagrange multipliers
of the augmented minimax problem.
To derive the trade-off information, we first define the Lagrangian
function L for the augmented minimax problem (4.14)-(4.16) as follows:
K

L = v + pigl( uo- ui(fi(x,ai)) )

k m
u - _ g
+ DOl - o)) v LA 9;06b;)
i=1 J=1
K ore LY
+ B e -~ (a4 > (@ - u~ (L)) (4.21)
i=1 r=1 T A ir j=1 s=1 7 l‘535 s

In the following, for notational convenience, we denote the decision
variables in the augmented minimax problem (4.14)-(4.16) by v = (Xx,v,a,b)
and let wus assume that the augmented minimax problem has a unique local

optimal solution y* satisfying the following three assumptions.

Assumption 4.4

y*¥ 1is a regular point of the constraintsvof the augmented minimax
probiem.
Assumption 4.5

The second-order sufficiency conditions are satisfied at y» .
Assumption 4.6 |

There are no degenerate constraints at yx .

Then the following existence theorem, which is based on the implicit

-01-



function theorem (Fiacco 1883), holds.

Theorem 4.5
Let y* = (x%,v%,a%,bx) be a unique local solution of the augmented
minimax problem (4.14)-(4.16) satisfying Assumptions 4.4, 4.5 and 4.6.

Let X* = (Au*,ka*,kb*,hg*) denote the Lagrange multipliers corresponding

to the constraints (4.15)-(4.16). Then there exist a continuously
differentiable vector valued function y(.) and A(.) defined on some
neighborhood N(a%) s0 that y(e*) = y%, Alax) = A%, where v(o) is a
unique local solution of the augmented minimax problem for any a« € N{ax)
satisfying Assumptions 4.4, 4.5 and 4.6, and M(«) 1is the Lagrange

multiplier corresponding to the constraints (4.15)-(4.16).

In Theorem 4.5,
k

X\llnéfll{)v+pi=zl( W - ui(fi(x,aﬁ)) )y | ul—ul(fi(x,ai))Sv,

i=1,....k, X € X(b), (a,b) € La(S,B) }

can be viewed as the optimal value function of the augmented minimax
problem (4.14)-(4.16) for any o € N(ax). -~ Therefore, the following

theorem holds under the same assumptions in Theorem 4.5.
Theorem 4.6

If all the assumptions in Theorem 4.5 are satisfied, then the

following relation holds on some neighborhood N(ax) of .
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K

3 (v + pigl( wo- ui(fi(x,a].))) )
J o
3 L kK Py . m o 9 b
= 5—3 = Z Z Air + Z Z Ajs (4.22)

If all the constraints (4.15) of the augmented minimax problem are
active, namely if v(ax) = Li - b (f) (xCa®) 3y (0%))), i=1,...,k, then the

following theorem holds.

Theorem 4.7

Let all the assumptions in Theorem 4.6 be satisfied. Also assume
that all the constraints (4.15) of the augmented minimax problem are
active, Then it holds that

3ui(fi(x,ai)) i X P q.

3 o o= % 1+Pk i=1 r=1

i=1,...,k . (4.23)

Regarding a trade-off rate between “l(fl(x’al)) and Ui(fi(x’ai)) for

each i=2,...,K, Dby extending the results in Haimes and Chankong (13979},

it can be proved that the following theorem holds (Yano and Sakawa 1985).

Theorem 4.8
Let all the assumptions in Theorem 4.7 be satisfied. Also assume

that the constraints (4.15) are active. Then it holds that
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aui(fi(x,ai)) >\u* 0

- 2 1=2,,..,K . (4.24)

au, (f, (x,3,)) yayx AP

It should be noted here that in order to obtain the trade-off rate
information from (4,23) and (4.24), all the constraints (4.15) of the

augmented minimax problem must be active. Therefore, if there are

inactive constraints, 1iif 1is necessary to replace Ei for inactive

constraints by ui(fi(x*,af)) + v* and solve the corresponding augmented
minimax problem for obtaining the Lagrange multipliers.

Following the above discussions, we can now construct the
interactive algorithm in order to derive the (local) satisficing solution
for the DM from among the (local) M-«-Pareto optimal solution set. The
steps marked with an asterisk involve interaction with the DM.

min

Step 0 Calculate the (local) individual minimum ] max

and maximum fi
of each objective function fi(x) under the given constraints for

« =0 and o = 1.

Step 1% Elicit a membership function ui(fi(x,éi)) from the DM for each

of the objective functions.
Step 2% Ask the DM to select the initial values of o« (0 € « § 1) and set

the initial reference membership values ﬁi(l)= 1, i=1,...,K.

Set the iteration index r=1.

Step 3  Set Di = ai‘rl i=1,...,k, solve the corresponding augmented
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minimax problem to obtain the {(local) M-e«-Pareto optimal

(r) ),a(r)

solution x , f(x(r ) and the membership function value

ufx T, o)

)) together with the trade-off rate information
between the membership functions and the dedgree «.
Step 4% If the DM is satisfied with the current levels of

ucf(x'F), o)

), i=1,...,k of the (local) M-«-Pareto optimal
solution and «, stop. Then the current (local) M-a-Pareto

optimal solution fxT’,a™?y = ¢ fl(x(r),air)),...,

fk(x(r),aér)) ) is the (local) satisficing solution of the DM.

Otherwise, ask the DM to update the current reference membership

(r) (r)

values ﬁi and/or the degree « to the new reference

(r+1) . (r+1)

membership values Di ,i=1,...,k and/or the degree « by

considering the current values of the membership functions
together with the trade-off rates between the membership

functions and the degree «. Set r=r+l and return to Step 3.

Here it should be stressed for the DM that ™ (1) any improvement of
one membership function can be achieved only at the expense of at least
one of the other membership functions for some fixed degree «, and (2)
the greater value of the degree o« gives worse values of the membership

functions for some fixed reference membership values.

4,4 Conclusion
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As a nonlinear generalization of the previous two chapters, an
interactive decision making method for multiobjective nonlinéar
programming problems with fuzzy parameters has been proposed in this
chapter. Although the general conclusions of this chapter is essentially
same as in chapters 2 and 3, the following is a brief summary of the

desirable features of our proposed method.

(1) The experts' ambiguous understanding of the nature of the parameters
in the problem-formulation process can be incorporated.

(2) The fuzzy goals of the DM can be quantified by eliciting the
corresponding membership functions, which may be nonlinear.

(3) For the degree o and the reference membership values specified by
the DM, the corresponding (local) M-a-Pareto optimal solution can be
obtained by solving the augmented minimax problems based on the
nonlinear programming method.

(4) With the augmented minimax problems, (local) M-«-Pareto optimality
of the generated solution in each iteration is guaranteed.

(5) The trade-off information between the membership functions and the
degree « 1is easily obtainable, since it is closely related to the
Lagrange multipliers of the augmented minimax problems.

(6) The (local) satisficing solution of the DM can be derived
efficiently from among (local) M-a-Pareto optimal solutions by
updating his/her reference membership values and/or the degree o
based on the current values of the (local) M-a-Pareto optimal
solution together with the trade-off information between the

membership functions and the degree «.
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CHAPTER 5

INTERACTIVE COMPUTER PROGRAMS AND ILLUSTRATIVE NUMERICAL EXAMPLES

5.1 Computer Programs

Interactive decision making processes for multiobjective linear,
linear fractional and nonlinear programming problems with fuzzy
parameters discussed thus far include eliciting a membership function for
each of the objective functions together with reference membership values
and degree o from the DM. Thus, mitigation and speed-up of computation
works are indispensable to this approach, and interactive utilization of
computer  facilities 1is highly recommended. Based on the methods
described in chapters 2, 3 and 4, we have developed corresponding
interactive computer programs for solving multiobjective linear, linear
fractional and nonlinear prodramming problems with fuzzy parameters. The
entire programs are written in FORTRAN, because FORTRAN language is
popular among many scientists and also almost all computer facilities are
available for loading the programs with minor changes.

OQur programs include graphical representations by which the DM can
visualize the shapes of his/her membership functions, and he/she can find
incorrect assessments or inconsistent evaluations promptly, revise them

immediately and proceed to the next stage more easily. Each of our
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computer programs is composed of one main program and several
subroutines. The main program calls in and runs the subprograms with
commands indicated by the user (DM). The major commands prepared in our

computer programs are summarized as follows.

(1) MINMAX: Displays the calculated (local) individual minimum and
maximum of each of the objective functions under the given
constraints for « = 0 and « = 1.

(2) MF: Elicit a membership function from the DM for each of the
objective functions.

(3) GRAPH: Depicts graphcally the shape of the membership function for
each of the objective functions.

(4) GO Derives the (local) satisficing solution for the DM from
among the (local) M-a-Pareto optimal solution set by
updating the reference membership values and/or the degree

.

(5) STOP: Exists from the program.

(6) SAVE: Saves all the necessary information, which has been put in,
in a file.

(7) READ: Restores the information which was saved in the file.

In all of our computer programs, the fuzzy parameters, which reflect
the experts' ambiguous understanding of the nature of parameters in the
problem-formulation process, are assumed to be characterized by the fuzzy
numbers whose membership functions are either linear or exponential as

shown in Fig. 5.1 or Fig. 5.2 respectively.
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PE(P)

0
P1 p2 P3 P4 P
Fig. 5.1 Linear membership function
PE(P)
1 b
0

Fig. 5.2 Exponential membership‘function

Each of the membership functions for the fuzzy parameters can be

determined by specifying the four points pl, p2, p3, p4 together with

the types of its left and right functions (linear or exponential).
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M-~a-Pareto optimal solutions for multiobjective linear or linear
fractional programming problems are calculated by solving the minimax
problems on the basis of the simplex method of linear programming.

For multiobjective nonlinear programming problems, (local)M-o-Pareto
optimal solutions are obtained by solving the augmented wminimax problems
instead of minimax problems using the revised version of the generalized
reduced gradient (GRG) program (Lasdon, Fox and Ratner, 1974) called GRG2
(Lasdon, Waren and Ratner, 1580). In GRG2 there are two optimality
tests, i.e.,

(1) to satisfy the Kuhn-Tucker optimality conditions, and
(2) to satisfy the fractional change condition
| FM - OBJTST | < EPSTOP x | OBJTST |

for NSTOP times consecutive iterations. FM is the current objective

value and OBJTST is the objective value at the start of the previous

one dimensional search. NSTOP has a default value of 3.

In our computer programs, the DM can select his/her membership
functions in a subjective manner by considering the rate of increase of
membership of satisfaction from among the following five types of
functions; linear, exponential, hyperbolic, hyperbolic inverse and
piecewise linear functions. Then the parameter values are determined
through the interaction with the DM, In the following discussions
concerning membership functions, it 1is convenient to deal with the

nonlinear case. Here, except for the hyperbolic functions, it is assumed

- . 0 - .
that ui(fi(x,ai)) = 0 if fi(X) s fi and ui(fi(x,aj)) 1 if fi(x,ai) >

fi, where f? is an unacceptable level for fi(x,ai), f% is a completely
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desirable level for fi(x,ai), and f? represents the value of fi(x,ai)
such that the degree of membership function ui(fi(x,ai)) is a.

{1) Linear membership function
For each objective function, the corresponding linear membership
function is defined as follows:

N 0 1 _ .0
wf (a0 = Cfi(xaa) - £ )/ Cfp = £ (5.1)

The linear membership function can be determined by asking the DM to

specify the two points, f? and f§, within f?ax and len_ Fig. 5.3
illustrates the graph of the linear membership function.
ui(fi(x,ai))
1
!
]
]
{
I
]
!
|
1
|
i
|
0
1 0
£ £, £, (x,a,)

Fig. 5.3 Linear membership function

(2) Exponential membership function
For each objective function, the corresponding exponential

membership function is defined by:

_ _ _ - 1 _
b (6,00 = o {1 - exp(-R (£, (x,a) f‘l’ ) /U f(l) )Y}, (5.2)
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where o > 1, Bi >0 or o < 0, Bi < 0.

The exponential membership function can be determined by asking the DM to

min

0.5 max and fi

specify the three points, fQ, fi‘ and fi, within fi

i , where Bi

is a shape parameter. Fig. 5.4 illustrates the graph of the exponential

membership function.

up (£, (x,a,))

1

0.5 be———m—n S

h
e b= f———— — —

fi fi fi(x,ai)

Fig. 5.4 Exponential membership function

{3) Hyperbolic membership function
For each objective function, the corresponding hyperbolic membership
function is defined by:

ui(fi(x’ai)) = (1/2) tanh ( ai(fi(x’ai) - Bi)) + (172}, (5.3)

where o >0 or oy < 0.

The hyperbolic membership function can be determined by asking the DM to

0.25
i

0.5

and fi max

, within £1°° and f'i“”‘

specify the two points, f , where o is

a shape parameter and Bi is associated with the point of inflection.

Fig. 5.5 illustrates the graph of the hyperbolic membership function.
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ui(fi(X,ai))

1

0.25

Fig. 5.5 Hyperbolic membership function

{(4) Hyperbolic inverse membership function
For each objective function, the corresponding hyperbolic inverse
membership function is defined by:

1

ui(fi(x,ai)) = aitanh (Bl(fi(x’ai) - Ti)) + (1/72), (5.,4)

where o >0, Bi >0 or Bi < 0.

The hyperbolic inverse membership function can be determined by asking

the DM to specify the three points, f?, f?.25 and f?’s, within f?ax and

fmin

i where Bi is a shape parameter and Ti is associated with the point

of inflection. Fig. 5.6 illustrates the graph of the hyperbolic inverse

membership function.
(5) Piecewise linear membership function

For each objective function, the corresponding piecewise linear

membership function is defined by:
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u; (£, (x,a,))

-fi(x,ai)

Fig. 5.6 Hyperbolic inverse membership function

N.
1
u (f; (x,3)) = j§1 aij[ £, (6,80 - 94 | + Rfj(x,q) + 1 (5.5)
where
%5 T Wy Y% By E (ti,Ni+1+ PIRER
T, = (Si,Ni+1+ 5{1)72. (5.6)

That 1is to say, it is assumed that ui(fi(x,ai)) = tirfi(x’ai) + sir for

each segment gi s fi(x,ai) s gir’ where tir is the slope and si is

r-1 r

the y-intercept for the section of the curve initiated at 9i and

r-1
terminated at gir' The piecewise linear membership function can be
determined by asking the DM to specify the degree of membership in each

of several values of objective functions within f? and f%. Fig. 5.7

illustrates the graph of the piecewise linear membership function.
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ui(fi(x,ai))

1

Fig. 5.7 Piecewise linear membership function

It should be noted here that for the fuzzy equal membership
functions, the DM can select his/her left and right functions from among
the same types of membership functions previously described above

(excluding the hyperbolic ones).

5.2 1Illustrative Examples with Computer Outputs

We now demonstrate the interaction processes for multiobjective

linear, linear fractional and nonlinear programming problems with fuzzy

parameters using our corresponding computer programs by means of several

illustrative numerical examples which are designed to test each of the

programs.

Example 5.1 (Linear Problem)
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Consider the following three objective linear programming problem

with fuzzy parameters.
fuzzy min zl(x,cl) = c“x1 - 4x2 + x3
fuzzy max zz(x,cz) = —3x1 + c22x2 + x3
fuzzy equal ZS(X’CS) 5x1 + x2 + c33x3
subject to
a“x1 + a12x2 + 3x3 S 12, x1 + 2x2 + a23x3 -4 b2
xi = 0, i=1,2,3
The nmembership functions for the fuzzy numbers 511,....523, ﬁé,

~

cll"“’E33 are explained in Table 5.1, where L and E represent

respectively linear and exponential membership functions.

Table 5.1 Fuzzy numbers for Example 5.1

t P, P, Py P, left right
511 0.00, 2.00, 2.00, 2.50 L E
522 -1.25, -0.75, -0.75, =-0.25 E E
Ca3 -0.25, 0.00, 0.00, 1.00 E E
511 0.00, 3.00, 3.00, 4.00 L L
512 0.50, 1.00, 1.00, 1.50 E L
a5, 0.50, 1.00, 1.00, 1.50 E E
52 8.00, 12.00, 12.00, 14.00 L E
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In applying our computer program to this problem, suppose that the
interaction with the hypothetical DM establishes the following membership
functions and the corresponding assessment values for three objective

functions in the o«-MOLP.

. , 0 0.5 i _ _ _
. exponential ( ZIR, ZIR v Z4R ) = ( 30, -10, -25)

. L 0 0.25 _0.5, _ _ _ _
22 ¢ hyperbolic inverse ( ZZL. ZZL s Z2L ) = ( -8, -7.5, -6.5 )

) 0 0.5 _1 _
left exponential ( Z3L’Z3L ,ZSL) = (12, 14, 15 )
23
right linear ( z0_, zl )y = (18, 15)
3R’ “3R ’

In the following 1illustrations, interaction processes using the
time-sharing computer program under TSS of MELCOM COSMO 700S digital
computer in the computer center of Kagawa University in Japan are

explained through the aid of some of the computer outputs.

[1lustration 5.1
Using the MINMAX command. the calculated individual minimum and

maximum of each of the objective functions Zl’ 22 and z3 for ¢« = 0 and

o« = | are displayed.
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COMMANL 2

TMINMAX
INDIVIDUAL MINIMUM AND MAXIMUM FOR ALFA=1
1 MINIMLM 1 MAX IMUM
_________ e i s e e 0 S ot e e s 2 i o e i S i e e 0 ot ke e e s v S S 2 S s S et e s 1 e o b
Z¢( 1) I 24, 0000 1 ' 2. 0000
Z( 2 1 ~1Z2.0000 1 4., 00Q0
Z( 3) I - D000 1 20. 0000

INDIVIDUAL MINIMUM AND MAXIMUM FOR ALFA=0

I MINIMLIM I MAX ITMUM
__________ e i e it e i e s i St e he St e e s o S 14 et 4o e o it S0 s e St P e s re B e B4 S S et 4 g Pt
2¢ 1) I —28. D000 I 35,0000
202y 1 -4, 0000 1 4., 0000
20 3y 1 ~-1.0000 1 70,0000

Illustration 5.2

The MF command is utilized to determine the membership functions for

each of the objective functions Zy» 22 and Zg sequentially. Here the

interaction with the hypothetical DM establishes that the first
membership function should be exponential, the second hyperbolic inverse
and the the third exponential and linear. For each type of membership
functions, the corresponding assessment values are input in a subjective
manner by considering the calculated individual minimum and maximum of

each of the objective functions.

COMMAND 2
*MF
INFUT THE ORJECTIVE FUNCTION NUMEBER:

1
INFUT FUZZY GOAL:
(1) FUZZY MAX
(2) FLUZZY MIN
(3) FUZZY EGLIAL
DO YOU WANT LIST OF MEMBERSHIF FUNCTION TYPE 7
TYES
LIST OF MEMRERSHIF FUNCTION TYFE
(1) LINEAR
(2) EXPONENTIAL
(3) HYPERROLIC
(4) HYPERBOLIC INVERSE
() PIECEWISE LINEAR
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INFUT MEMEERSHIE FUNCTION TYFE:
INFUT THREE FOINTS(Z1,2%2.2%) SUCH THAT
M(Z1)=0.0 ( Z1 : UNACCEFTAELE LEVEL )
M(Z2) =0, 5
M(ZZ)=1.0 ( ZZ : TOTALLY DESIRAELE LEVEL
TRO —10 -5
ANCITHER MIET 7
“YES
INFUT THE CRJIECTIVE FUNGTION NUMEER:
INFUT FUZZY GOAL:
(1) FUZZY MAX
(Z) FUZZY MIN
(3) FUZZY EQUAL
1
D0 YOU WANT LIST OF MEMBERSHIF FUNCTION TYRE 7
N
INFUT MEMEERSHIF FUNCTION TYFE:
w4

INFUT THREE FOINTS(Z1.22.23) SUCH THAT
M(Z1)=0.00 ( Z1 @ UNACCERTABLE LEVEL )
M(Z2) =0, 25
M(Z3) =0, 50

T TS —b, S

ANOTHER MZET 7

PYES
INFUT THE CORJECTIVE FUNCTION NUMBER:
0z

INFUT FUZZY GOAL:
(1) FLZZY MAX
(z) FLUZZY MIN
(2) FUZZY EGQUAL
w3
N0 YO WANT LIST OF MEMEERSHIF FUNCTION TYFE 7
N :
INFUT LEFT AND RIGHT TYFE:

e et e e e o e o e et e o LEFT oo o e e oo s o ot o s e e
INFUT THREE POINTS(Z1.722,Z3) SUCH THAT
M(Z1)=0,0 { Z1 * LINACCEFTABRLE LEVEL )
M(Z2)y=0.5 .
M(ZZ)=1.0 ( Z3 : TOATALLY DESIRABLE LEVEL
12 14 1%
~~~~~~~~~~~~~~~~~~~~~~~~ RIGHT —==m—r e e
INFUT TWD POINTS(Z1.Z2) SUCH THAT
M{Z1)