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Synopsis

Energy bands for the 3de electrons of Ti3+ in the high temperature

structure of TiCl, are-calculated by the tight-binding approximation.

3
Cubic symmetry around each T13+ is assumed and transfer between the

3p atomic orbitals of C1~ and 3de atomic orbitals of T13+ is considered.
Two singlet bands and two doublet bands with no dispersion have been
obtained. The dispersionless character is discussed by constructing
Wannier functions, 3de energy bands in the diétorted structures

of the T13+ lattice are also calculated. A distortion of the Ti

3+
brings in a dispersion and an overlap of the bands through tﬁe intra-
band mixing. For three types of distorted structure denoted as
antidimerizatioq, dimerization, and sheared structures, the electronic
energy is found to be lowered. The relative stability at zero of
temperature of these distorted structures is studied by comparing the
total energy of the electron-lattice coupled system, and it is found
that the antidimerization structure is the most stable. Self-
consistency conditions to determine the chemical potential and the
displacement of Ti ions at finite temperatures are derived in the
mean field approximation. Temperature variation of the displacement
and‘the transition temperature of the second order are calculated.

The paramagnetic susceptibility is calculated on the basis of the
obtained energy bands in both the undistorted and distorted structures.

Possibility of superlattice structure and effects of the interband

mixing are discussed.
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§1, Introduction

The o, and Yy modifications of TiCl, show a phase tramsition at

3
217 K as indicated by remarkable changes in the magnetic suscepti-
eq s 1 . 1) . s 2)
bility, lattice constants, electrical conductivity, and

3)

electronic absorption spectrum. In their high temperature phase
the T13+ ions form honeycomb lattices which intervene into the
close-packed structure of the C1 ionms, hexagonal close—packed in
the o modification and cubic close-packed in the vy modification.

1)

The magnetic susceptibility observed by Ogawa shows different
temperature dependence above and below 217 K: in the high temper-
ature range the susceptibility increases linearly with decreasing
temperature and shows around 260 K a broad maximum, whereas below
217 K it decreases steeply and then shows a weak temperature depend-
ence. Furthermore, the observed susceptibility is almost isotropic
from 77 K to 370 K. No magnetic ordering was found by neutron

4)

diffraction experiment on the 0-TiCl, powder sample at 4 K.

3

However, a recent experiment of far—-infrared transmission at 80 K4)
indicates a lowering of crystal symmetry. These experimental
results indicate that the phase transition is related to lattice
distortion but not to magnetic ordering. In this paper we study
theoretically what the nature of the phase transition really is.
As shown in §2 thé two-dimensional energy bands for the 3de
electrons of Ti3+ in the high temperature phase have a special
character. Two singlet bands and two doublet bands, all with no

. .
dispersion, are obtained. As a T13 ion has one 3d electron and

. L3+ .
the unit cell of each layer contains two Ti~ ions, the lowest singlet



band is fully occupied at 0 K by 3d electrons of up and down spins.
A distortion of the T13+ lattice will,4however, cause dispersion
of each band as well as a splitting of each excited doublet band,
and for large enough distortion an overlap of the bands may occur.
When overlap occurs between the lowest band and the first excited
band, electrons will be redistributed ovef the overlapped bands
and the total electronic energy will be lowered. This decrease
of energy may overcompensate the increase of the elastic lattice
energy due to the distortion and may give a spontaneous distortion.
Thermal excitation may then cause a phase transition to the undis-
torted lattice at a certain temperature.

In 82 energy bands for the 3de electrons of Ti3+ in the high

temperature structure of TiCl, are calculated by the tight-binding

3
approximation. The dispersionless character is discussed by
constructing Wannier functions. In 83 we calculate the energy bands

in distortedstructures of the T13+ lattice. Three types of dis-
torted structure are considered which are called the antidimerization
structure, the dimerization structure, and the sheared structure.

In 84 the total energies (electronic energy -+ lattice energy) of

the three distorted structures are calculated and by comparing them
the most stable distorted structure at 0 K is determined. The self~
consistent equations to determine both displacement of Ti iomns and
chemical potential at finite temperatures are derived and soived.

In §5 the paramagnetic susceptibility is calculated for both the

distorted and undistorted structures. In 86 discussions are given.



§2. Electronic Band Structure in Undistorted Lattice
2.1 Formulation

The crystal structures of the o and Yy modiﬁicationé of TiCl3
are such that the Ti ions form honeycomb lattices which intervene
into the colose-packed structure of the Cl ions, hexagonal close-
packed in the o modification and cubic close-packed in the Y modifi-
cation.(see Fig. 2-1) We take a unit sandwich structure out of the
crystal of TiCl3, which consists of one honeycoﬁb lattice of T13+
and two close-packed Cl1 layers that enclose it from both sides.
Each Ti3+ is surrounded by six Cl™ in octahedral configuration as
shown in Fig. 2-2. The unit cell, defined by lattice vectors a
and b, contains two T13+ (I and I) and six C1 (1,2,...,6).
We consider only the low energy triplet state de for Ti3+ in the
cubic crystalline field and denote the three wave functions as £,
N, T which are respectively of the yz, zx, Xy types, the coordinate

axes being the local cubic principal axes shown in Fig. 2-2. We

construct tight-binding Bloch functions

-1/2 Z

exp(ik*R _)E(xr-R_ ), etc., (2.1)
o my my

Eu(r,k) =N

where R.mu is the position vector of the uth atom (u=I,I) in the
mth unit cell and N the number of unit cells. Similarly we
construct Bloch functions from the 3p orbitals of the six Cl in

the unit celi, px(r-Rmu), Py(r—Rmu)’ pz(r—Rmu), u=1,2,...,6, as

= _1/2 1lre —
pr(r’k) =N E exp (ik Rmu)px(r Rmu), etc.. (2.2)



Transfer integral and overlap integral for any pair out of
these 24 Bloch functions will be assumed to arise only through
nonorthogonal atomic orbitals, such as T of Ti3f(I) and P, of C1 (5),
z of Ti3+(H3 and,py of Gl (5), and either & of Ti3+(1) orrn of
Ti3+(n) and P, of C1 (5). (see Fig. 2-3) All these nonorthogonal
atomic orbitals give the same transfer integral y and the same
overlap integral S. We have only these two parameters Yy and S in
our calculation. Transfer and overlap between a p orbital of omne
Cl and another p orbital of an adjacent Cl will be neglected.
The de orbitals and the 3s or 4s orbital of a neighboring Cl are
orthogonal, provided the cubic configuration of the atoms is exact,(*)
so that we neglect s orbitals. Also, we do not consider 4p orbitals
of C1 for the reason of their high energy. A deviation from cubic
symmetry of the atomic arrangements will bring in small nonorthogo-
nality for otherwise orthogonal atomic orbitals, but we shall not
consider such a situation in the present study. Even with strict
cubic symmetry of the atomic configuration, the layer structure of

the crystal of TiCl, will give rise to a potential of noncubic

3

symmetry which will produce a transfer integral between orthogonal

atomic orbitals, if small, and also a splitting of the de level.

(*) With the use of the lattice constants of TiCl3 observed at
room temperature the angle between two octahedral bonds, for
example Ti(I)-C1l(5)-Ti(Il), is estimated to be about 88° in both

o~ and y-modifications.



All these will be neglected.. Ouf treatment is in essence to také
an antibonding molecular orbital for a Ti-3de and the surrounding
Cl1-3p's to construct the 3d band (bonding molecular orbital if we
consider the Cl-3p band).

Using 24 Bloch functions expressed by Eq. (2.1) and Eq. (2.2)
we construct energy matrix H(k) and overlap matrix S(k). The band

energy E is then obtained from the equation
det|K(E,k)| = det|H(k) - ES(K)| = O. (2.3)
If we write

K(E,k) = | Kdd de (2.4)

K K
pd PP)>

then Kdd is a diagonal matrix of dimension 6 with equal diagonal

elements - E, where €, is the energy of the de level in the

€4 d

crystal. K.PP is also diagonal with equal diagonal elements EP-E.

We write €, =€ .~ and set €_=0. Taking a matrix
dp d p P
ACE,K) = 1 —Kdéde (2.5)
¢ I
pp pd ?
we have
K(E,K)A(E,k) = Kdd—deKP;Kpd 0 (2.6)

0 K 1y

op Npdidddp] ,



so that we have

eff| _ -1 _ .
det|R, ;7| = dethdd-—deKpprdl = 0. (2.7)

The method used here is known as folding down of the secular equa-

tion. The effective matrix Kggf is calculated to be

Kggf = (5g, = BT + x(E) (4 0 0 0 e ey (2.8)
0 4 O ey 0 e,
0 0 4 ey e, 0
0 ei e§ 4 0 O
ei 0 e§ 0 4 O
\ eg e 0 0 0 4§,
where
x(E) = (y - ES)°/E, e, = exp(ikeT,), (2.9)
Tl’ Tz, T3 being vectors that join a T13+ to its three nearest

neighbor Ti3+'s (see Fig. 2-1). All ei's in the matrix Eq. (2.8)
will be replaced by 1 if we transform the matrix by a diagonal

i * * % =
matrix of elements e%, e3, el, ez, e3, el, since eleze3 1.

A further transformation by a unitary matrix



=21 1 1 1 1 1), w=exp(2mi/3) (2.10)
/6 2 2
1 w w 1 w w
1 w2 w 1 w2 w

eff

ad as follows;

will diagonalize K

0 -
K3q(B) =

sdp+6x(E)—E

€, +3x(E)-E
X()

d
adp+3x(E)-E
edp+2x(E)—E
Edp+5x(E)—E

edp+5x(E)—E .

(2.11)
Setting the resulting diagonal elements equal to zero:

€, +nx(E) -E =0, n=2,3,3,5,5,6 (2.12)

dp

we obtain energy eigenvalues as



E(n) = ——1—2 [€dp ~ 2nys + /edpz +4ny(y—edps)]. (2.13)

2(1-nS8")

From Eq. (2.12) we also obtain another six solutions which are given
by the expression similar to E(n) with negative sign in front of

the square root. These energy eigenvalues correspond to six 3p
band energies. Since we may assume (Y/Edp)2<<l and Sz<<l, we have

2

E(n) = €, + nf, r=1_4¢ 5% - 2s. (2.14)

dp

Y is expected to be negative so that I'>0. Hence the singlet state
for n=2 has the lowest energy, and two doublets for n=3 and n=5 and
another singlet for n=6 have higher energies.

Eigenfunctions are obtained as follows. Corresponding to the
transformation with A(E,k) of Eq. (2.5), one has d-p hybridized

Bloch functions in the form

d, + Z PLACEK) ;s
J
where di stands for one of the six d Bloch functions of Eq. (2.1),
Pj for one of the 18 p Bloch functions of Eq. (2.2), and A(E,k)ji
are the matrix elements of -K;;Kpd in Eq. (2.5). One has following

explicit expressions of the d-p hybridized Bloch functions:



C o2, L, . _ .
Bp = N UL - Arglmeygpy + e3aPgy = eg0p,, t+oef,ops )]s
nt = N2 - Adtepy - eyap, + ehp. - etip, )]
I I 2'713%1z 237 2x 23" 3x 13%6z" 7?
bp = N IR - Ag(egapyy — eoPyuy t efoPsy ~ ef3P) 15
(2.15)
! = -1/2 —_ o—]: x® * - - )
Ep =N [ Angledapy  F efyPy, - ep3Pyy ~ e1oPg) s
LI -1/2 — .l - a% -
Ng =N Ing - Ag(efapyy - e3Py, e3Py, T e13P5,) 1
e Y R | * - |
tp =N oy - Aglefapy. * efoPg + o eggPsy ~ epaPg) 1

' where eij=exp[ik-(Ti—Tj)/3], A=-2(y-ES)/E, and N= 1+A2—4KS.
With the use of Eq. (2.12) one obtains the relation between A and

Y as

o1 _A-25 L
= — € h 2 (A ZS)Edp. (2.16)

21 (@m® 9

Furthermore, using Eq. (2.16), one obtains for I' of Eq. (2.14) a

simple expression (to order Az):

(2.17)

The final Bloch functions can be written as follows:
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v, = —‘;1—5 [(efg] +eln +efr) - (eEn +egny +e zm)]

(the first singlet),

. _1__ 1 Rt 2 % v ] B 2 ]
Y2a+ [(eptprwesnp+wiejty) + (eyby+uwegny +ure iy)l

/6
¢2b+ = similar expression with w and w2 interchanged

(the first doublet),

w2a— and wa_ = gimilar to the above with - in the middle

(the second doublet),

¢l+ = gimilar to wl— with + in the middle

(the second singlet). (2.18)

Considering a Ti3+ site and the surrounding six Cl sites, we
will see that the coefficients eij in the functions Eq. (2.15)
just cancel the phases of the respective p Bloch functions at the
Cl sites relative to the phase of the d Bloch function at the
central Ti3+ site, since (Ti-Tj)/3 are the vectors joining the
six C1  sites to the central T13+ site. Hence, the Bloch functions
Eq. (2.15) can be constructed from d-p hybridized molecular orbitals
or LCAQO's of the form

A
LI - — - -
EI EI 5 ( p2y+p3y P, +p52), etc., (2.19)

Z

where ) depends slightly on n as seen by Eq. (2.16). However,
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n dependence of A can be safely neglected. In fact, the Wannier
functions constructed from each band are linear combinations of

the molecular orbitals Eq. (2.19) and have forms similar to Eq.

(2.18):

(€1 +n7 + 2 5 By +ny +Th),

" 1 2 1 - n " 2 1"
(gI + wny + w (41 (gn + wnp + w C]I)’ (2.20)

1"t 2 " 1" " 2 " "
(EI +wny + ch) ¥ (E]I +w'np + wcn).

Here E;, n%, ;;, ~E", -n£? —;%:, for example for the firgt func-
tion, are associated with the six corners of each hexagon of the
honeycomb lattice in the way shown in Fig. 2-4 with letters written
outside each hexagon. Neighboring Wannier functions are orthogonal
for the reason that there is no p orbital shared by two Wannier
functions. Since we have assumed no transfer between orthogonal
atomic orbitals, there is also no transfer between Wannier.functions.

The zero width of all the bands results in this way.
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2.2 Numerical calculation

We estimate the parameters edp’ A, and S. The Madelung
potential energy was calculated for the Ti3+ site and for the C1
site, and we obtained 1.129 Ryd. (by the Evjen method) and -0.790
Ryd. (by the Ewald metho@), respectively. Experimental values
of the ionization energy of the free T13+ and the electron affinity
of the free Cl atom are 1,958 Ryd. and 0.237 Ryd., respectively.

Hence

€q = 1.129 - 1.958 = -0.829, €P = -0.790 - 0.237 = -1.027,
Edp = ed - ep = 0.198 Ryd.
This is a rough estimate for several reasons. If we take a
5) 3+

calculated value™ of 2.046 Ryd. for the ionization energy of Ti™ ,

then we have €., =0.110 Ryd.. We have neglected electronic

dp

polarizations of the Cl ions in the crystal of TiCl The

30
ionization energy and the electron affinity may take slightly
different values in the crystal. Also, the charge distribution
resulting from partial covalent bonding and antibonding between
Ti and Cl, i.e., the charge distribution to result from our band
model, would be slightly different from that of the purely ionic
crystal.
. . .3+
We have calculated S using the Slater functions for Ti and

Cl™ as a function of their distance (see Fig. 2-5). For the

cbserved distance, 2.45 K, we obtained S=0.14, which may be an
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overestimated value because of the nature of the Slater functions.
A should exceed 25 as Yy should be negative, and we assume values
of A around 3S. For S=0,1 and A=3S the energy separation I given
by Eq. (2.17) is estimated to be 0.0605 eV=704 K. In Fig. 2-6

for various valuesvof S and A we show the band energies calculated

with the use of Eq. (2.13).
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Figure Captions

Fig. 2-1. The crystal structure of o (a) and vy (b) modifications

Fig.
Fig.
Fig.
Fig.

Fig.

of TiClB.

2-2. A sandwich layer of TiCl3.
2-3. Indirect d-d hybridization through a 3p orbital.
2-4, The Wannier function for the lowest singlet band.

2-5. Plot of the overlap integral S vs. the Ti-Cl distance p.

2-6. S and A dependence of the de band energies.



15

ol —TiCl,

Fig. 2-1a



16

¥-TiCl,

o TP
® Cl

Fig. 2-1b



17

Ti*
upper Cl°~
51

3
ha

3

N1

- Fig.2-2



Fig.2-3

-== N

ST



Fig.2-4

61



0.20

0.10

Fig.2-5

P (QB)

0¢



21

E (mRyd)
=~.
15 | (2) - ™
\\\\\\\ ?. ._\_"\\(3)
(1) — .__..:.i“_z_:--h
10 -
—_ (1

ES o l | 1 1

0.07 0.08 009 0.10

A
(4) 0.30

(3) 0.27
(2) 0.24
(1) 0.1

Fig. 2-6



22

§3. Electronic Band Structure in Distorted Lattice
3.1 Formulation

As mentioned before, in the high temperature phase of the TiCl3
crystal the Ti3+ ions form honeycomb lattices thch intervene into
the close-packed structure of the Cl1 ioms. Each Ti3+ is surrounded
by six Cl1~ ions in octahedral configuration as shown in Fig. 2-2.

The unit cell contains two T13+ ions (I and T) and six C1 ions
a,2,...,6). In the previous section we calculated the de bands
in the high temperature structure and obtained dispersionless
singlet and doublet bands. We now calculate the band energies in
a distorted lattice. Here we consider three types of distortion
of the T13+ lattice, -denoted as antidimerization, dimerization,
and shear, Whicﬁ are shown in Fig. 3-1.

In the previous calculation of the energy bands in the high
temperature structure two parameters Y and S were used, the transfer
and overlap integrals, respectively, between nonorthogonal atomic
orbitals of a T13+ and its nearest neighboring cl . In avdistorted
~ structure we must consider changes in S and Y and additional
overlap and transfer integrals between those atomic orbitals which
have become nonorthogonal due to distortion. We calculate these

+
quantities to first order in Ti3 displacement Or. For the change

of S and the new overlap integrals we have

[¢p¢d€dr - J¢p<¢d€>o - j¢p<grad¢d€>odm‘r*, (3.1)
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where suffix O means the value at the position in the undistorted
lattice. For the integral in the right-hand side of Eq. (3.1)
we have three different integrals, S', Sé, and S%. For example,

for Ti3+ at site I and Cl1 at site 5 (see Fig. 2-2), these are

s'

IPSX(BCI/3Y)0dT = JP52(3§I/3Y)OdT, -
Sé = IPSy(aCI/ax)OdT = fpsy(BEI/Bz)odT, (3.2)

s! = -!pr(anllaz)odT = —[pSZ(anI/ax)ode

where EI(myz) etc. are the de atomic wave functions at site I and
psx(cx) etc. the p atomic wave functions at site 5, x, y, and z
representing local cubic axes shown in Fig. 2-2. The arrangements
of the wave functions are illustrated in Fig. 3-2. Thus, for small
displacement 8r, S changes to S+S'Sr and two additional overlap
integrals, Sé&r and S%Sr, are introduced. Similarly, the transfer
integral Yy changes to y+y'Sr and twovadditional transfer integrals,
Yédr and Y&6r, are considered.

As in §2, we calculate the band energy in the tight-binding
approximation. Using 24 Bloch functions we construct energy
matrix H(k) and overlap matrix S(k). The band energy E is obtained

from the equation

det |K(E,k)| E det|H(k) - ES(k)| = O. (3.3)
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We can write

R(E,k) = | K, de (3.4)
K K
pd pp |’
where
Kdd = (Ed-E) 16, and Kpp = (€p-—E)I18.

16 and 118 are unit matrices of dimension 6 and dimension 18,

respectively, and Ed and EP the energies of the 3de and 3p levels

in the crystal. We write €, =€ .~-€_ and set € _=0. K is the
dp d p P pd
(0)
d

sum of KP of the undistorted lattice and AKpd which is linear

in the displacement. The matrix element of K;g)+K is shown in

pd
Appendix 1. The effective matrix Kggf(E,k) defined by Eq. (2.7)

now changes to first order in dr by

eff _ . (0) -1
AKdd = [de Kpp AKPd + (h.c.)]. (3.5)
eff

Solving dethdd (E,k) |=0 with the use of the same transformations
as those used in §2, we obtain band energies E(k) as functions of
the displacement. The energy eigenvalues are obtained in the

following form:
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the first singlet:

© ,_ YTBDS
E, (k) = E + M,
1- 1- V[ 2 e
(egp) " +8Y(v-5ey )
the first doublet:
(0)
-E S
_ (0 Y™ By , aa _ ,.ab
E, (k) = Ej} +/ - . M F 0T,
(edp) +12Y(Y—Sedp)
(3.6)
the second doublet:
0)
Y-E, ’S
E, (k) = Eég) + - 2 22 3 2P|,
\/(edp) +20Y(Y—Sedp)
the second singlet:
. (0)
~-E S
_ (0 YR
El+(k) = E + M,

1+
2 +
V/(adp) 4—24y(y—S€dp)

aa
where Mi’ M,

, and Mib are linear in the displacement 8r and are
functions of wavevector k as shown in Appendix 2; Each band has

a dispersion. The band energies in the undistorted lattice are
denoted by the superscript (0) and are given by Eq. (2.13).

In Eq. (3.6) we neglected the qﬁadratic term in 6r and considered

only the intraband mixing due to the lattice distortion.
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3.2 Numerical results

The additional parameters involved are estimated as follows:
s', Sé and S% are calculated using the Slater fgnctions for 3d§
orbitals of T13+ and for 3p’s of C1'. We obtain S':Sé:S%==l:2.91
:0.30 for the observed Ti-Cl distance p0=2.45 A in the undistorted
lattice. We set, as an example S5'=0.0655 (a,ul)_l. The ratios
of Yé and Y% to y' are assumed to be similar to those of S& and S%
to S'. Further, a relation y'/y = aS'/S is assumed, o being an
ajustable parameter that varies between 1/2 and 2. As discussed in
§2, Y is related to the covalency parameter A through Eq. (2.16),
and Edp was estimated to be 0.198 Ryd.. Hence in our calculations
S, A and o remain disposable parameters.

In Fig. 3—3‘we show the calculated dispersion curves for the
lowest singlet band and the lower doublet band in the antidimeriza-
tion, dimerization, and shear structures. The values of 8r/T used
in these calculations correspond to the respective equilibrium
displacement at 0 K, which will be determined self-consistently as
shown later. We have calculated the density of states of the first
singlet band and the first doublet band as functions of 8r, for the
antidimerization, the dimerization, and the shear, respectively.

For small displacement a gap exists between the singlet band and
the doublet band. If the magnitude of the displacement exceeds
some critical wvalue 6rc, the lower branch of the doublet band

overlaps with the lowest singlet band. Such behavior is shown

in Fig. 3-4. The obtained values of Grc/T are 0.84, 0.75, and

0.67% for the antidimerization, the dimerization, and the shear
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respectively. For 6r>6rc the Fermi level in the distorted structure
lowers as shown in Fig. 3-5 and the electronic energy decreases
proportional to 5r—6rc. On the other hand thgre is an .increase of
the lattice energy due to interatomic forces which is proportional

to (Sr)z. An equilibrium displacement at 0 K is determined frdm

the balance of these two energies.
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Figure Captions

Fig. 3-1. Three kinds of lattice distortion. Two Ti ions in the
unit cell shown by the dotted line move against each other.

Fig. 3-2. Additional overlap integrals. When the Ti ion is displaced
in the direction shown by the arrow, each integral takes a
positive value.

Fig. 3-3. The dispersion curves for the de band in the antidimerized
(a), dimerized (b), and sheared (c) structures. Assumed
magnitude of the displacement is the equilibrium value
in the distorted structure ét 0 K.

Fig. 3~4. The density of states of low lying three bands for Or/T =
0.75%. The lower two bands are separated by a small gap
for the antidimerization (a), are just touched for the
dimerization (b), and overlap each other for the shear (c).

Fig. 3-5. The de band structure for the antidimerized (a), the
dimerized (b), and the sheared (c) lattices in their equi-
librium states at 0 K. The whole structure is almost

symmetric about its center.
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84, Phase Tramnsition

Under the assumption of a small distortion of the Ti3+ lattice,

the energy change of the k-state of the Zth band can be written as
0)

E,, = ES
i

ik + 6rgik. (4.1)

The Helmholz free energy is given by

F = c6r2/2 + uNel - kBT.Z In[l + exp{(u—Eik)/kBT}], (4.2)

1,

where Nel is the total number of electrons and U is the chemical

potential, and ¢ is elasticity constant. From 3F/36r = 0 and

9F/d%u = 0, we obtain

=_1
St = - < ‘Z g8, E () (4.3)
i,k
and
Nep = L £(E), (4.4)
ik

where f(Eik) is the Fermi distribution function. Egqs. (4.3) and
(4.4) are the self-consistency equations to determine both 8r and
H as functions of temperature. By taking the limit of 6r = 0 in

Eq. (4.3) we obtain the equation determining the transition point Tc:

1 (0) (0)
kBC—ZE(E ST )L - £(E; T)]ng,

(4.5)

) _ (0)

f(EiO) T) = 1/[exp{(E] )T} + 11,
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(0)

where | denotes the chemical potential in the undistorted

lattice. In the derivation of this equation we used the relation

} g, =0, . (4.6)

which is satisfied for each band <.

At the zero of temperature the total energy in the distorted
lattice measured from that in the undistorted lattice is given by

E, . = igk[Eikf(Eik) - D1+ esr’r2, 6.1

where the first and the second terms are the electronic aﬁd lattice
energies, respectively. Within the approximation of taking intra-
band elements and linear terms in 8r, the center of each band in
the distorted lattices unchanges, since Eq. (4.6) holds good.
As mentioned in 83, for §r smaller than Grc there is no'change of
the electronic energy due to the distortion and the total energy
increases as a function of 8r, which is given by c6r2/2. For d&r
larger than Grc there is a decrease of the electronic energy which
can be written approximately as b(8r - Src), where b and Brc_are
determined by S' and y' and the additional overlap and transfer
integrals together with S and Y. Therfore, if ¢ is smaller than
b/ZGrC, the total energy as a function of 8r shows a behavior
described by the curve (a) in Fig. 4-1. Namely one.maximum and

one minimum exist and the latter corresponds to an equilibrium
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displacement at 0 K, When ¢ equals to b/26rC the total energy
becomes as the curve (b) in Fig. 4-1. In the cace of c>b/26rc
the total energy has the lowest value at Sr=0 and therefore the
undistorted structure is most stable, With the aid of the group
theoretical consideration given in Appendix 4 we find that the
three types of lattice,éistortion considered here correspond to

a phonon mode at the zone-center. So that ¢ is related to the
phonon frequency. In fact, as discussed in detail in Appendix 3,

we obtain the relation

i

c 2NMw .\, (4.8)

where M is the mass of Ti ion, w, the phonon frequency and N the

0
number of unit cells. Using Eq. (4.8), we actually calculated
the total energy as a function of 8r/T (T is the distance between
n.n. T13+ions), assuming the following values of the parameters:
S = 0.07, 0.08, 0.09, and 0.10, A = 35, o = 2, and w, = 130cm L.
The results are shown in Fig. 4-2. Comparing the minimum energies
of the antidimerization; the dimerization, and the shear, we
concluded that the antidimerization is most stable at the zero
temperature.

At finite temperatures we must solve the self~consistency
equations (4.3) and (4.4) to determine 8r and the chemical potential

U Assuming the same parameters as those used

in the above calculation we obtained two solutions for Jr, except
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8r = 0, in the lbw temperature range 0{T<Té(see Fig. 4-3). The
smaller one corresponds to a maximum free energy and the larger

one to a minimum free energy. For,T(':<T<Tc we obtain only one
self-consistent solution for 8r which gives a minimum free energy.
For T>‘.Tc there exists no self-consistent solution except 8r = 0.

The temperature Tc corresponds to the second order transition point.
If we plot the free energy as a function of 8r, it will vary with
temperature as shown in Fig. 4-4. We verified such temperature
variation of the free energy by calculating the temperature dependence
of the second derivative of the free energy at 8r = 0, The
calculated equilibrium displacements that give theminimum free
energy are- plotted in Fig. 4-5 as functions of temperature.

If we plot Or normalized by its value at O K as a function of
normalized temperature T/Tc, we obtain the almost similar curves for
the cases of S = 0.07, 0.08, 0.09, and 0.10. Both the anti-
dimerization and the dimerization have the same transition point,
because the expression of 8ix for the former differs only in its
sign from that for the latter and Tc depends on (gik)z. The
transition temperature for these two types of distortion is higher
than that for the shear. GrC/T, Sr(T=0) /T, and Tc are listed in
Table 4-1. For fixed values of the tight-binding parameters we
have a critical phonon frequency W, that gives the upper limit of
the instability condition, which is given approximately by c=b/26rc.

wc is also listed in Table 4-1.



Table 4-1

A=13S, a=2,8" = 0.065(a.u.)"t,

47

Antidimerization
S Grc/T 8r(T=0) /1 T, Té w,
0.07 0.74 % 3.43% 235K 8 K 146 cm T
0.08 0.84 4.28 355 105 152
0.09 0.95 5.10 507 138 157
0.10 1.07 6.04 715 175 166
Dimerization
S GrC/T Sr(T=0)/1 Tc Tc': w,
0.07 0.65% 2.59% 235K 85 K 139 cm !
0.08 0.75 3.16 355 105 143
0.09 0.84 3.84 507 138 145
0.10 0.94 4.68 715 175 150
Shear
S SrC/T Sr(T=0)/1 Tc Té mc‘
0.07 0.59 % 2.63% 218K 87 K 136 cm T
0.08 0.67 3.24 322 115 139
0.09 0.76 3.93 465 145 143
0.10 0.84 4.76 657 182 146
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Figure Captions

Fig. 4-1. Plot of the total energy as a function of &r. The broken
lines and the dotted curve show the energy gain in the
electron system and the lattice energy, respectively.

Fig. 4~2. The total energy change vs. 8r/T calculated for the three
kinds of distorted lattice.

Fig. 4-3. Self-consistent solutions at finite temperatures.

Fig. 4-4, Plot of the free energy as a function of 8r and T.

Fig. 4-5. Temperature variation of the equilibrium displacement

determined self-consistently.
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§5. Magnetic Susceptibility

In this sectioﬁ we study tempefature variation of the paramag-
netic susceptibility due to the phase transition based on our model.
The general expression of the paramagnetic susceptibility for band

electron is given by

loe]

X(T) = ZuBz—ki—T-J £(E)[1 - £(E)] D(E) dE, (5.1)

where f(E) is the Fermi distribution function and D(E) denotes the
density of states per spin. As obtained in 82, in the undistorted
phase there are six dispersionless bands and the density of states

are expressed as
D(E) = N[S(E) + 28(E-T) + 28(E-3I') + S(E-4T)1, (5.2)

where I' represents the energy separation between the lowest singlet
band and the lower doublet band. By inserting Eq.(5.2) into

Eq.(5.1), x(T) is given by the following expression:

< (T) = ZNUBZBX[ 1 . + 2exp(FB) . + 2exp(3TR) .
(1+x) {1+xexp(TB) } {1+xexp(3TBR) }
+»’ exp(4I'B) 1, ) (5.3)
{1+xexp(4PB)}2
where
x = exp(-up) (B = 1/kBT), A (5.4)

and U is the chemical potential determined self-consistently by

the equation
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1, 2 L2 1 _
1+x I+xexp(T'B) 14+xexp (3I'R) T+xexp(4TR)

1. (5.5)

In the diétorted phasé the paramagnetic susceptibility is calculated
by Eq.(5.1), using thebdensity of states calculated in §3land the
chemical potential determined self—conSistently in 84. Especially
at the zero temperature X is given by the usual expression of the

Pauli paramagnetism:

x(0) = 2mu*D(E), (5.6

where D(EF) is the density of states at the Fermi level.

The susceptibilities calculated above and below Tc are shown in
Fig. 5-1 by the full curves. Here we take the antidimerization as
the distortion below Tc and the four curves (1), (2), (3), and (4)
correspond to the cases of $=0.07, 0.08, 0.09, and 0.1, respectively.
For comparison, we also calculate the susceptibilities below Tc with
the use of Eq.(5.3) which is useful only above Tc’ and show the
results by the dotted curves in Fig. 5-1. The measured one is
shown by the broken curve. As observed by Ogawa, the lattice constant
a varies with temperature and especially near Tc it increases abruptly
with increasing temperature. Such effect can be taken into account
by using the different values of the overlap integral S for each -
region below and above Tc' Therefore if>we consider that the suscep-
tibilities below and above Tc'are given by the curve (4) and the
curve (1), respectively, we can explain qualitatiﬁely the observed

temperature dependence of the susceptibility.
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Figure Captions

Fig. 5-1. Temperature variation of the paramagnetic susceptibility.
‘The full curves show the calculéted results for the un-
distorted-structure above Tc and for the antidimerized
structure below Tc. The susceptibility for the undistorted
lattice varies with temperature below Tc as shown by the
dotted curves. The broken curve shows the experimental

result.
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§6. Discussion
a) Possibility of superiattice strﬁéture

Now we are concerned with such‘a lattice distortion that chaﬁges
the lattice periodicity, but presérves inversion symmetry.
Refferring to Appendix 4, we find that fhe corresponding phonon
modes thét satisfy the above requirements are those at zone-
boundary M points only, and have wavevector Q=~a*/2, ib*/2, and
i(a*+b*)/2. Again, confining ourselves-to the displacement of
Ti jons parallel to their sheet, we obtain two kinds of the indef
pendent M point mode. Both of them belong to Ag irreducible
representation of this point. The lattice periodicity modulated
by these modes becomes two times larger than the basic periodicity
in the direction of either or both of the basis wvectors. In order
to examine whether the lattice distortions corresponding to M point
modes occur or not, we calculated the transition point for these
types of distortion on the basis of Eq. (4.5). If we assume the
same phonon frequency as that for I point Eg mode discussed in 8§83
and 4, the transition point was not found at finite temperatures.
In general the phonon frequency for Ag mode at M point may differ
from that for Eg mode at the zone-center. Therefore we examined
the maximum phonon frequency for M point Aé modes, which defines
the upper limit of the instability criterion, and found that it
was much lower than that for I' point Eg mode. Then, at the present
stage; we may conclude that the electron-lattice coupled syétem is
most stabilized by the lattice distortion of the antidimerization

type, if the phase tramnsition occurs.
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b) Effect of interband mixing

In this paper we have studied the effect of the intraband-
mixing only, namely the band overlapping resulting from the splitting
of the doublet bands and the broadening of each band. However,
when‘two bands happen to cross at a certain point‘in the Brillouin
zone, the interband coupling will bring in an energy gap between
the two bands around the cross point. In order to determine the
energy gap, however, we must solve the seqular equation exactly.
Although we have not yet carried out the exact calculation, from
the dispersion curves obtained in 83, we can imagine that the band
crossing arises along lines in the k-space, and along them energies
remarkably change. Then if we count the number of Bloch states
that fall into a limited energy range, we will see that the crossing
points are only their minority, if included, and among their
majority the interband mixing does not exist. Furthermore, since
this interband effect causes a repulsion between the energy of the
lowest singlet band and that of the excited doublet band, the total
energy in the distorted lattice becomes lower than that calculated
in this paper. Namely, the interband effect‘also contributes to
the stabilization of the distorted lattice. Thus we can expect
that the results obtained in this paper 1s not affected in

essence by the interband effect.

¢) Effect of electron correlation

In this paper we have neglected effects of the electron correlatiom.
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We may only expect that the cqrrelation effects enhance the para-
magnetic susceptibility‘above the transition temperature, because

the 3de bands in the undistorted lattice are quite narrow. It is

a difficult and fufthef problem to examine the effects of the electron
correlation on the phase transifion in the electron-lattice coupled

systen.
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Appendix 1. Matrix Element of Kpd f AKpd
We show the matrix elements of K;g) + AKpd in Table Al.

Here the displacement vector of uth Ti ion (u=I,II) is written as

-
8r = 8r ( x "
u oy 2,05

(A1.1)

-
where xﬁ, yﬁ, and zﬁ denote the direction cosines of 8r, with

H

respect to the local principal axes. We set

for antidimerization
=Y
8r_ = 8r(1/VZ, -1/Y2, 0) =-6}’I[ ,

for dimerization

6%, = 8r(-1/YZ, 1/Y2Z, 0) =-87,
for shear

> 5

5, = Sr(-L/YE, <1//6, 218 ==y .
We write

AO =Y - ES,

A=vy'" - Es’',
o=y, - ES,
= v 4
II Yo Esﬂ.

The phase factors are defined as follows:

e, = exp(1k°Ti), eij = exp[lk'(Ti—Tj)IBJ,
(i, = 1, 2, 3)

(A1.2)

(A1.3)

(Al.4)

(AL.5)

(A1.6)

(A1.7)
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where Ti is a vector that joins ith nearest neighbor pair of Ti
ions. e, and eij come from the phase factor of the de Bloch

function and that of the 3p Bloch function, reépectively.
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Appendix 2. Matrix Element of Aijf
We write the matrix elements of AKzgf as follows:

Anglf (E,k:81) = (y- ES)/E

¥k Y, ) Y, (K) ,‘P' x) ¥, (k) \Pl‘*(k),

2a+ 2b+ 2a~ 2b |

¥ W oM M:_ ME N M Ml_)__ M __:

s (0 Sl N O

o1+ (1) | | u? my2 "> uy,

¥, (K M2 | M2P w2

¥, (1) PP Mr?
¥, ) - M, Jo
- | (A2.1)

where each element is a function of wavevector k, emergy E, and
displacement d&r. The energy dependence of the element arises

from the first order derivatives of the transfer energy of the form

A(E) = y' - ES',
= ' o 1

o(E) = 1P ESO, (A2.2)
- A ' _ v

H(g) = Y ESW.

Also the wavevector dependent functions are introduced as follows:

£, = (1/3)cos 3x;, £,,(K) = (1/3)(cos 3x, * cos 3xy),
gl(k) = (1/3)cos X535 gZi(k) = (1/3)(cos Xq3 * cos xlz),
h, (k) = (1/3)(cos 3x, * & cos'3x3->,
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£10) ——(1/3)sin 3x. fé;(k) =-(1/3) (sin 3x, * sin 3x),

l’
gi(k) =—(l/3)sin-x23, géi(k) =-(1/3) (sin x3i * sin Xlz)’
hj(k) =-(1/3)(sin 3x, * © sin 3x,), R (A2.3)
where w = exp(21i/3), x; = kT, X, = ke (T, - Tj) (i,j = 1,2,3),

and Ty is 'a . vector that joins 7th nearest neighbor pair of Ti ioms.
With the use of Eq.(A2.2) and Eq.(A2.3) one obtains the explicit
expression of the element:

intraband elements for antidimerdization

Mi(E,k;Gr) = i/iar[o(E){zfl(k) f2+(k) - 2g1(k) + g2+(k)}

1

M:a(E,k;Sr) = Mzb(E,k;Sr)

= i/iér[o(E){sz(k) - f2+(k) + gl(k) - g2+(k)/2}

- I(E) {2g, (k) ~ g, (K)}],
12D (B, k3 81)= +/Z6r[0(E) (0 {2£, (K) + g, (1) + g,, (10} - b (1))
+ M@0 e (10 + gy, (O} ~ MBIW],  (a2.4)
interband elements for antidimerization
M, (B, k;60)=—1/26r [0(E) {(1-w) &](1)/2 + u’g)_(K)/2
- Zwai(k) + hy(k)}
+ H(E){(l-m)éi(k) + ngé_(i)}J,

>, (E,k;6r)=-iv26r[ c.c. of the above 1. (A2.5)

Here we considered the elements among the first singlet band and
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the first doublet band.

intraband elements for shear
M, (5,380 = £/B6xlo(® g, (0 - £, (0} + I, (91,
M:a(E;k;Gr) = M:b(E,k;Gri |

= +/6sr[a(E){£,_(K) - g, (K)/2} + I(B)g, (K1,
1P (8, k5 61)= £/B0x[0(E) ((1-0) /3L-£, (187, (10} = h_(1)

- H(E)(l—w)/S{gl(k) + gz+(k)}'+ A(E) (1-w) /31.

(A2.6)

1

The expression for dimerization is obtained by changing the sign
of that for antidimerization. For antidimerization and dimerization

we have the following relation among the interband elements:

1@ _ b Y B -

M_+ M, M, =M,
aa _  bb ab _ _ba

M =M, M, = M, (A2.7)
a _,b. % _a _ b [*

M, =0 ) = A = - )T,

If we take only the intraband elements and consider the energy
shift in the de band to first order in 8r, we can replace E in
the intraband element with each energy eigenvalue in the undistorted

phase.
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Appendix 3. Electron-Phonon Intera;tion and Phase Transition

In this appendix we'dispuss thévphase transition on the basis
of the electron-phonon interaction; We considér the linear
coupling of the eleétron system discussed in §2 of the téit to
single phonon mode épecified by wavevecﬁor q and branch A. Then

the relevant Hamiltonian is given by

(0) .+

_ +
H= hqu(bqkb i Cik

+1/2) + ) E

4
ik

qA k

(A3.1)

.,.
+ Y JI D,,(k,q\)C., C..b ., + (h.c.)],
i, 4k ij ik+q jk qA ,

where Cik(Cik) denotes the creation(annihilation) operator of the

electron having wavevector k and energy Eio) and bZA(qu) the
Boson operator of the phonon with frequency wa. The coupling

constant Dij(k,qk) strongly depends on Bloch states. So that
its dependence on electronic states should be correctly taken into
consideration. The lattice distortion corresponding to the phonon

mode defines the new Boson operator

?ql = bql - b, - ',(A3.2)
ith b=-37 D, (k)< C >* /(@

where <e*+++> peans the thermal average over the whole system.

Eq. (A3.2) suggests that the normal coordinate for this phonon mode

shifts the vibrational center to the amount of
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51(a) =_<2h/wqg>l/2 b. | . (A3.4)

An atomic displacement of the Hth atom in the ith unit cell is

given by
> =1/2 =, .
Sr(u,i) = (NMﬁ) €(qi,n) S6r(qr) exp(lq'Ri), (A3.5)

where Z(qk,u) is the polarization vector for the uthratom~of mass
Mﬁ’ Ri the position vector of the Zth unit cell, and N the number
of unit cells. Using Egs.(A3.2), (A3.3), and (A3.4), we obtain

the transformed Hamiltonian

H=H,+H',

0
_ + 2 0) +
Hy = qux(Bq}\qu +1/2) + wq)\ér(qk) /2_ + . kEi cikcik
1/2 + ,
+ izjg[ar(ql)(wqxlzh) Dy (6,a) gy, Cop + (huc)],
(A3.6)
H' = J JID..(k,q\) (Cl, . C.. = <Cl . C..»)B . + (h.c.)]
so5k 2V kg ik ik+q k7 Tgh Gl
(A3.7)

In the mean field approximation H' vanishes and band energies
in a distorted lattice are obtained by diagonalizing the last two

terms in HO' So the energy eigenvalue is written to first order
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in dr(qX) as follows:

(O | | '
Eik = Ei + 6r(q)) gik(qk)f (A3.8)
where i specifies a subband and k is taken in the Brillouin zone
for the distorted lattice. gik(ql) is a function of—Dij(k,qK),

+
Dij(k_q,qk)etc..

In the mean field approximation, the free energy is calculated

with the use of the unperturbed Hamiltonian H, and expressed as

0

2 2
F = qu Sr(qA)"/2 + uNel

~ kT izkln[l + expl(u - Eik)/(kBT)}], - (43.9)

where U is the chemical potential, and Ne the number of electrons,

1

and Ei is given by Eq. (A3.8). Here the contributions of the

k
lattice viblation are omitted other than the increaée of the
eléstic energy  expressed in the first term in Eq. (A3.9). So that
the elasticity constant ¢ introduced in Eq. (4.2) of the text

is related to the phonon frequency qu. With thg aid of the
group theoretical consideration given in Appendiﬁ 4, we find that
the three types of latfice distortion discussed in §3 correspond

to an optical phonon moae at the zoné—center, which beélongs to
doubly degenerate Eg representation, Thus, using Eq.(A3.5) and

neglecting the displacement of Cl ions, we have for a Ti ion fg(q=0,

Eg)l = 1/vV/2 and obtain the relation
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c = ZNMmOZ, (43.10)

where Wy represents the frequency of the ngmxhaat P‘point, and
M the mass of Ti ion, and N is the number of unit cells.

Next we calculate the intraband elements in the tight-binding
approximation. Using the folding down method of the seqular eqation,
we obtain the efféctive‘matrix for the 3de Bloch states in the
distorted structure. It ié of infinite dimension except for the
case of a commensurate distortion, and is written in the form

eff _
Kdd (E’k,qx) -

see {¥(k-q)} {¥()} {Y(k4+q)} -

0
{¥(k-q)} Kyq(E) AR, (k=q,k3E) 0
0
Y | ARy, (e k-q;E) Kgq (ED AK 4 4 (k, k+q3E)
{¥(ktq) } 0 AR, ; (lctq, k3 E) Kgd(E)

with AR, (k,k+q;E) = {(y-ES)/E}Sr(qh) Mj,(k,k+q,};E) etc., (A3.11)

where 6r(q}) represénts the normal coordinate for the lattice
viblational mode, and {¥(k)} means the six 3d Bloch functions in

the undistorted phase given by Eq. (2.17) of the text, and Kgd(E)v
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is also given by Eq. (2.11). The iﬁtraband elements of

M&d(k,k+q,A;E) are written as follows:
M&d(k’,k-‘-qs)\;E) = - | ' ’ A (A3.12)

¥, (k) ¥y (eke) Yy (k) ¥y (k) ¥, (kbq) ¥, (k)

-~

| EETRLY M,
aa ab
¥oas(® M, M,
¥ ab,* bb
2b+(k) (M+) M+
v ) M
¥, (k) W
b, * b
¥, () ofP) M°
L J

where each element is a function of k, q, and E, and also depends
on the additional tight-binding parameters S', Y' etc. and the
polarization vector Z(ql,ﬁ) of the uth Ti ion (ﬁ=I,I[). After
some laborious calculation, we obtain the explicit exﬁression of

the intraband element as given in Table A3.
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Table A3. Generalized expression of intraband element

DB [(214/VB) £4l-(a,-0-0, q,+0-0) ~ (9-0,0) ~ 2(q,+0+b, a,-0)}
| +(e 1, /V2) ¥§{—<qa-e—¢, q;+e—¢)j+ (¢-6,6)}
+(ey/V8) £41-(q, -6+, qb+9+¢5 + 2(-9-6,0) + (q_+0-¢, q,-6)}
+(ep,/V2) fi{(qa-e%¢, qb+e+§) ~ (q+0-0, q,-6)}]

+A(E) [ (e, //6) £.13(q +0, —q_) - (g, q,) +(q-9,q,-9)
+ 2(0,4)}
+(€nY//5) fi{—(qab+¢, ~q,,,) + (q,+0, q,) - (q_ -9, q,-)
10 (E) [(e 1, /VB) £ -k ta +0-9, k +q ~0-0) + (k_, -0+d, —k_ +0)
—3(kab+ka+qa, —kab+kb+qb+¢) + 2(—ka+qa+9+¢, —ka+qb—6)}
+(eIY/¢§) fi{(ka+qb+9—¢, kb+qa—6—¢) - (kab-e+¢, ~k_, +0)
=~k pHk b, kg Hoba He) + kel -0, k-l -¢) )
(e //8) £ l-(-k +0+9, ~k_~0+9) + (k_+q -0, —k_ +q +0-0)
_3(kab_kb+qab_¢’ _kab_ka_qab) + 2(ka+qa+e’ kb+qb_e_¢)}
+(€DY//§) £ {-(-k +0+9, ~k_~0+9) + (k_,+q_ -0, —k_,+q +6-0)
+ (kab_kb+qab_¢’ —kab—ka—qab) - (ka+kb+qa+qb+¢’

ké+kb+qa+qb+¢)}]
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HI(E) [ (£, /VB) £ {-(k_ +q_, —kég+qb+¢) ¥ (-bs -k -0)
- 2(k *q ,k +q, +9)}

Hepy /YD) £yl-Gepta, kyta) + (oo, —k -0)}
Hepg//8) fyl-Gopra 9, —kpta) = 20k ¢, k)
+ (ktq_+d, k +q +6)}

+(Ey/V2) £ Gk a0, ~k_+q,) — (k+q +6, k +q, +$)}]
+H(E)[(€I]X//5) £ {(k +q -0+0, k +q +0) - (k_+q, -6+9, k +q_+0) |

+ (k +6-0, —k 4 -6-0) + (k_,+q_+0-¢, -k_, +q, ~6-¢)

+ 2(-k,+q -6, ~k_+q +0+9) - 2(-k, -0, -k _+6+¢)}

+(€nw//§) fY{—(ka+qa—6+¢, kb+qb+e) + (ka+qb-e+¢, ka+qa+8)

- (kab+e—¢, -kab—e_d)) + (kab+qa+e—¢’ -kab+qb—e_¢)}]

where k =k -k
a

b a b’ Qap = 957 Y and

fo(k , k)

x&as Ky (1/6)[exP(ika) - exP(ikb)],

£y 0k, 1) = (1/6) [exp(ik)) + exp(iky)].

The addition or the subtraction of theffbrm

. + esvee =
fu(al’bl) + fa(aZ’bZ) + * fa(ai,bi) (o = X,Y)
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is written as follows:
fd{(al,bll)f—‘ (ay,by) % eoee (ai,_bi)}.'
Here a wavevector ié written as
* * :
k=(k a +k b)/@m),
and a polarization vector of the ﬂth,Ti ion (ﬁ=I,I[) as

e(qi,y) = sﬁX<X + €

uY ¥

where X and Y are unit vectors in the X and Y directions, respectively

shown in Fig. 2-2 in the text.

We set
6=¢=20 for M# and M _,
6 =21/3, ¢ =0 for M,” and MO°,
0 =-21/3, ¢ =20 for Mﬁ? and Mﬁb,
6 =0, ¢ = 2m/3 for Mi? and Mﬁb,
6 =0, ¢ =-2m/3 for M_'ia and MEa,

and take the upper or the lower in the double sign according to the

sign in the suffix of M.
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Appendix 4. Lattice Vibrational Mode
We show in Fig. A4-1 the two-dimensional Brillouin zone for the
undistorted lattice of TiC13.

. 3+, . - .
structure contains two Ti ions and six Cl1 iomns. So there are

The unit cell of the sandwich

twentyfour normal modes of the 1gttice'vibration. In Table A4

we list therirreducible representatioﬁ of the normal mode at the
symmetry point in the Brillouin zone together with its'point group.
From the group theoretical consideration we also obtain a basis

set of symmetrical coordinates that reduces a dynamical qatrix to
submatrices according to the irreducible representation. The
symmetrical coordinate is constructed from tﬁe displacements either
of Ti ions or of Cl ioms The vibrational patterns expected from

the symmetrical coordinate are summarized as follows:

I' point modes

A1g modes; expansive or compressive vibrations of C1 ions
parallel and perpendicular to their sheets.
(These two modes are normal modes.)

A2g modes; vibration of Ti ions perpendicular to their
sheet, and shear mode of Cl’s parallel to their
sheets.

Eg modes; two kiﬁds of independent vibration of Ti iomns

' discussed in 883 and 4, and six kinds of Cl

ions"mode, the ‘four beingrparallel to their sheets
(see Fig. A4-2) and thé fwd perpendicular to them.

Here we considered the even parity modes only.
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M point modes
The periodicity of these vibrational modes is two times
larger than the basis periodicity in the direction of either

or both of the basis vectors.

Ag modes; one kind of Ti ions® vibration parallel to their
sheet shown in Fig. A4-3, and five kinds of complex
vibration of Cl ioms.

Bg modes; similér to Ag modes but the direction of ionic

displacement rotated by 90° around the c-axis.

When two Ti ions in the unit cell move against each other, the
lattice distortion of this type is described by the normal coordinate
for the phonon modes considered here, because inversion symmetry
is preserved only at I' and M points. For this reason and by
reference to the conjecture found by Ogawa and Emeis et al. we

examined only the even parity phonon modes in this Appendix.
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Table A4, Irreducible representation of phonon mode

symmetry point irreducible representation
point group of normal phonon mode
2A, + 2A, + 4E
1g 2g g
T D3d
. +»Alu + 3A2u + 4Eu
K C3v 5Al + 3A2 + 8E
M C 6A + 6B + 5A + 7B
2h g g u u
z 02 11A + 13B
T, T' CS 11A + 13B
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Figure captions

Fig. A4-1. Two-dimensional Brillouiﬁ zone for the éandwich structure.

Fig. Aé—i. The symgetrical coordinétes of C1 ions for T point Eg'
mode. Another two coofdinates are obtained by rotating
the coordinates shown in the figure about the two-fold
Y axis.

Fig. A4-3., The displacement of Ti ions dqrresponding to M point Ag

mode having wavevector a*/2 (a) and (a* + b*)/2 (b).
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" Fig. A4-1
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(O upperClt’

{7y lowerCl™

Fig. A4-2



Fig. A4-3a

TZV



Fig. A4-3b

[4A
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Appendix 5. Lattice Distortion Corresponding to M Point Mode
Here we consider the three de bands having lower energies in

the undistorted phase and their intraband elements. The effective

matrix Kzgf for M point modes is written in the_form.
eff _ " '
Kdd (E,k,Q) = | (A5.1)
¥ 00 ¥y (ebq) ¥, (0 Yoy (R ¥, (kHQ) ¥y ()
r
€4 -E GrM_x
¥, () g :
+2A0 /E AO/E
*
6rM_ Sd -E
¥, (k+Q) P2
XAO/E +2AO /E
aa ab
edp-E 5rM4 érM.+
¥oar (K 2 0
+3A0 /E XAO/E xAO/E
e, -E &M semPP
dp + +
w2b+(k) 0 +3A 2/E xA_/E xA [E
0 0 0
* *
GrMia 6rM£a €4,-E
¥y (HQ) 7 0
XAO/E XAO/E +3A0 /E
* *
arMiP 6rM£b B €4o-E
¥op (KHQ) 0 oy
xBo/E XA JE +30,7/E |,
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with A (E) =Y - ES,

where M, M>? etc. of the nondiagonal elements depend on k, Q(=

+
ta*/2, tb*/2, *(a* + b*)/2) and E, and they are derived from
Table A3 in Appendix 3, and 8r stands for the normal coordinate

for M point phonon modes.

In 82 of the text we have obtained the following relation:

2 : :
€ap + (m+1)AO (E)/JE - E (A5.2)
2 -
=- {1 - (m+1)s HE - E;) (B - Epm)/E, (m=1,2,2)
where
Eqp = ——~—3;——~—§-[ed - 2(m+1)YS
2{1-(m+1)s°} P
+ /(. )% + 4@1)YA (. )]
dp 0 dp’
Epm = gimilar to the above with - in front of the

square root,

So EdlandEd2 are energy eigenvalues in the undistorted phase for
the first singlet and first doublet, respectively. If we take

only the intraband elements and use Eq. (A5.2), the seqular equation

det| k2EE, Q] =0

is reduced to the following two equations:
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: | .
E - E Ory, (E)M, (E)
det b 17+ = 0, (A5.3a)
Gryl(E)M+(E) Ejp — E
i T ab
Ed2 - E 0 | (S'ryz.(]i'.)l\'l.+ (E) Sryz(E)M*'(E)
0 E.. - E 6ry, (E)MP2(E) Sry,(E)M °(E)
dot a "~ 2By 2y -0
Lk ) % b4
Gryz(E)Mia(E) G;yz(E)M]ia(E) Egy - E 0
£3 * )
sry, (B (B)" Sry, (M0 (E) 0 E,, - E

(A5.3b)

where
(B = Bo(B)/[( - @rl)S)(E - E D], (@=1,2).

If we consider the energy correction only to first order in 6r,
we can, as is easily verified, replace the variable E in the non-
or E in
dl d2

the undistorted phase according to the band relevant to the equation.

diagonal elements (in Eq.(A5.3)) with the energy E

In this approximation, the eigenvalue problem given by the secular
equation (A5.3) is reduced to the usual one of the diagonalization
of Hamiltonian. AAnd then the nondiagonal elements can be regarded
as the intrabénd mixing elements that arise through the electron-
phonon interaction. Namely, we obtain the effective Hamiltonian
for the six Bloch states as follows;

eff _

Hdd -
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P00 ¥y () ¥y (0 ¥op (1) ¥y (HQ) Wy (kHQ)

f

Wl“(k) | Egq o - 6rM1 - ‘ h
¥, (k) | orey Ey
W2a+(k) Ed2 0 6rMa 6rMab
¥, (k) 0 Eg, oM _ s,
¥, (kHQ) Srit  rik_ Ey, 0
¥, (HQ) srMx,  Srmx 0 Ey, ’
L )
(A5.4)
where
My = M (6,038,080 (B ) /e, )7 + 8y (ey 01Y2,

_ qaa . 2 1/2
M = M_,_. (k,Q,EdZ)AO(EdZ)/[(Edp) + 12YA0(edp)] ’

= mPP . 2 1/2
MU, Q3B ) A (B p) /T(E4 )™ + 12¥AG (g D177,

o

_ ab . 2 1/2
Moo= M, (k,Q,Edz)Ao(Edz)/[(edp) + 12YA0(edp)] s

= M2 (k. 0: 2 1/2
Mpa™ M (G QE B (B yp) /(e )" + 12YAG (e D177,

and §r stands for the normal coordinate for the lattice vibrational

mode specified by wavevector Q.

The six eigenvalues of Hzgf are obtained as follows: ’
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By * arIMil,

dl
E,, * 8c//3l6, + (6,7 + ¢ 2M2, (45.5)
and By, * 8r/VZ[G, + ((;22 - G32)1/2]1/2,
where -
6, = 1M 1% e |7 |2 |
e | R A R S e | YA
and Gy = leaMzb + MbaMgl .

So that, from the coefficient of 6r in Eq. (A5.5) (including the
sign), we obtain the explicit expression of gik(QX) introduced in

§3 of the text.
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