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Abstract

Two alternative versions of practicable connected kernel
theories of nuclear reactions are proposed. The basic assumption
is that the state of a many-body system can be approximated by a
superposition of two- and three-cluster states corresponding to
various possible reaction processes. The approach is based on
the concept of transitions due to particle exchange as in the
Amado—Lovelace (AL} formalism. All important three-cluster
partitions can be incorporated via multi-channel couplings in
two-cluster subsystems. The simpler of two models, which is
called the Multi Three-Cluster Coupling (MTCC) model, is a direct
extension of the AL formalism. Using the separable
representation of two-cluster potentials, the AL type coupled
equations among reaction amplitudes are postulated. The basic
assumption in this model, as well as in the AL and AGS theories,
is shown to contain some degree of inconsistency regarding the
treatment of bound state pole parts of interacting pairs. This
is remedied in the other model, which we call the Multi Two- and
Three-Cluster coupling (MTTC) model. This model can tfeat all
possible processes within the limitation of two- and
three-cluster approximation.

In the firsf stage of the application to nuclear reactions,
we employ a‘simpler version of the MTCC model that is represented
by only one three-cluster partition, but that involves absorption
effects in the two-cluster subsystems. We name it the absorption

model. The absorption model and the MTCC model are applied to



the d-a elastic scattering at Ed= 21 and 56 MeV. The results of
the analyses suggest that the explicit couplings among the
three-cluster paftitions (n,p,a), (n,d,BHe) and (p,d,BH) give
rise to the conspicuous structures in the tensor analyzing powers
at 56 MeV that have not been resolved by any other reaction

theories.
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§ 1 Introduction

1.1 General scope of three-body and many-body scattering

theories

Conventional nuclear reaction theories such as the
Distorted Wave Borﬁ Approximation (DWBA) and the Coupled Reacton
Channel (CRC) method have been applied successfully to reactions
that are essentially describable as two-body problems with
phenomenological optical potentials1’2). These treatments lose
their validity in reactions where processes moré‘complcated than
two-body are strongly coupled, Eecause such processes cannot be
treated in terms of the two-body Lippmann-Schwinger (LS)
equations even if optical potential parameters are
phenomenologically adjusted.

In order to treat nuclear reactions as three-body problems
but still within the conventional treatments, two approaches
based on the CRC method have Been proposed, which are called the
)

Coupled Continuum Channel method3 , and the Coupled Discretised

Continuum Channel method4). However, as shown in Ref. 5, in
these approaches, either a model space must be assumed or some
sort of an L2 discretization has to be introduced in order to be
able to solve a three-body LS eguation. As is made clear in Ref.
5, such procedures either do not give a convergent solution, or
else affect breakup amplitudes in a serious manner by destroying
phase relations among three particles. Futhermore, in these

conventional treatments, there can be no rearrangement channel

components in the asymptotic region. In other words, the



three-body LS equation can not satisfy all possible three-body
boundary conditions. This fact is closely related to the
non-uniqueness problem of a single three-body LS equation (a
review of this problem is given in Ref. 5). To obtain a solution
which satisfies all three-body boundary conditions correctly in
compliance with the unitarity requirement, the theory must be

6)

founded on the Faddeev formalism or some equivalent connected

kernel theories7).
The quantum theory of scattering of three-body systems based

on rigorous mathematical treatments was eatablished by Faddeev6).

Since then, this theory has been extended by many authors7). In
particular, Alt, Grassberger and Sandhas (AGS) treat scattering
amplitudes directly in operator form, and obtain a set of coupled
integral equations for amplitudes with the Faddeev kernelB).
These theories have been applied successfuly to three nucleon
problems, but there have been only a few application to nuclear

9n13) scatterings

reactions. For example, the analyses on d-a
have revealed a lot of reaction mechanisms which are inherent in
many-body scattering processes. However, the theory has been
applied only to reactions where the scattering states can be
approximately described by only one three-cluster partition, and
where each of the three clusters can be regarded as inert. This
restriction is due mainly to the fact that practical methods of
treating effects other than purely three-body partition have not
been established.

Obviously, we must develop a theory that can meet the

current interests in remarkably advanced experiments that concern



with such many-body effects. Let us compare, for example, the

4)

result of a purely three-body Faddeev calculation1 with the

experimental data on the tensor analyzing powers in u(a,d)a
mesgred at Ed=20 MeV15) and 56 MeV16). At both energies, optical
model analyses demand strong tensor terms in the potentials which
exceed the folding model values. The authors in Ref. 16 describe
that the tensor potential at 56 MeV is roughly in accordance with
the one at 20 MeV. They suggest that the anomalies in both cases
are of the same physical origins. However, our analyses 4) with
no adjustable parameters at the same energies yield different
conclusions. The observables at 20 MeV are well reproduced by
the three-body model represnted by the partition (N, N,a).
However, the data for tensor analyzing powers at 56 MeV are not
reproduced at all by this model. This fact means that the
structures in the tensor analyzing powers at 56 MeV reflect tﬂe
more complex mechanisms than the purely three-body one. This
shows that we have to construct approaches more sophisticated
than either the Faddeev or the conventional ones.

There exist the so-called N-body connected kernel

17,18) that are the generalizations of the three-body

theories
Faddeev formalism for many-body systems. These theories,
however, are difficult to apply to nuclear reactions because of
their complicated representations. Some efforts have been made
to generate effective approximation schemes to these theories.
Greben and Levin reduce the Channel Coupling Array (CCA)

18)

theory , one of the many-body scattering theories, to a set of

two-body equations and assess the validity of the DWBA and CRC



19). They introduce the bound state approximation into

schemes
the channel Green functions to avoid disconnected diagrams.

Thus,; breakup effects can not be incorporated. Without the bound
state apprximation, the CCA equation can not be solved. Hence it
seems hard to extend it to more complicated scatterings.

Another approximation scheme has been proposed by Redishzo)
based on his connected kernel equations. He decomposes the
equations into a hierachy of nested equations in increasingly
many variables. The first equation is a set of LS equations
coupling together all two-cluster channels, the second is a
two-variable integral equations for the effective interactions
appearing in the first equation, and so on. The hierachy can be
truncated at any level as one wishes, and particular partitions
can be selected within each level. This treatment offers a fine
perspective of the many-body scattering and provides a framework
for extending usual direct reaction pictures. However, here
again, for realistic analyses, it seems inevitable to introduce
further approximations or effective phenomenological stands.

In view of the discussions presented above, we conclude that
a practicable yet divergence-free connected kernel method has to
be established which embodies many—body effects reflected in

recent experimental results in a unified manner and which

complies with the unitarity requirement.



1.2 Outline of the present work

In this paper, we propose two alternative versions of
connected kernel theories that possess both practicabilityrand
versatility. We name these models the Multi Three-Cluster
Coupling (MTCC) model and the Multi Two- and Three—Clusﬁer
coupling (MTTC) model. The basic assumption is that the state of
a many-body system can be approximated by a superposition of two-
and three-cluster states corresponding to various possible
reaction prdcesses. We intend to study those nuclear direct
reaction processes that concern with a few degrees of freedom, in
view of high experimental interests in the present-day stage
relating to three-body or, at most, four-body effects. We
utilize separable two-cluster interactions to formulate the
scattering processes in a simple set of one-variable integral
equations. This makes the formalism practicable. On this basic
stand, we introduce various three-cluster partitions in addition
to the original one in order to cope with a wide class of nuclear
reactions.

In the MTCC model, various three-cluster partitions that
cause strong influence on scattering processes are explicitly
taken into accont by means of the method proposed by Ueda in his
study of 7NN and pNN system521). These partitions are coupled to
one another via possible rearragement processes between
two-cluster subsystems. Each of three-cluster partitions is
treated as a Faddeev system. All reaction processes that are
expected to be only weakly coupled to the scattering state are

not considered explicitly but are incorporated into the

- 5 -



two-cluster processes as absorption effects. The conception as
mentioned above are formulated in a set of coupled integral

equations for scattering amplitudes in a manner similar to the
Amado-Lovelace (AL) formalismzz), in which transitions between
particle channels are assumed to be due to particle exchanges.

The MTTC model is an extention of the MTCC model. It
incorporates sequential transfer processes that are missing from
the MTCC as well as the Faddeev approaches. It can be shown that
such processes amount to inducing new couplimg schemes between
three-cluster partitions in the MTCC model. As a result, the
MTTC model can treat all possible processes within the limitation
of two- and three-cluster approximation.

As mentioned above, in our models, we introduce absorption
effects into two-cluster subsystems in order to simulate
weak-coupling processes or processes more complicated than
three-cluster one. However, how to treat absorption effects in
two-cluser subsytems in a three-cluster model has been a
unsettled theoretical problem. A straightforward manner to
incorporate absorption effects is the use of a phenomenological
optical potentia123). However, this method contains a serious
problem of not knowing how to extend the complex potential to
off-shell energy regions analytically. In this regard, a
multi-channel two-body interactions has advantage. In our
models, we introduce multi-channel separable interaétions into
two-cluster subsystems. The first channel is assigned to the

two-cluster elastic channel and the second one to an inelastic

channel, and so on. We also include a dummy channel to reprsent



the effects of various reaction channels that are not considered
explicitly. The t-matrix for this multi-channel interaction is
determined by fitting various scattering data to be considerd
explicitly as well as by reproducing bound state poles. 1In
three-cluster calculations, when the components of the t-matrix
other than that of the dummy channel are utilized as inputs, it
can be shown that éuch treatment is equivalent to using the
optical potential obtained by eliminating the dummy reaction
channel from coupled Schrodinger equations. Therefore, it gives
rise to absorptions.

Our basic tool throughout the present work is a
multi-channel two-cluster interaction of separable form. This
interaction has all required properties in the MTCC and MTTC
model, i.e. not only representing the rearrangement processes
that connect various three-cluster partitioﬁs, but also
simulating absorption effects by the perturbative treatment as
mentioned above. Furthermore, the separable representation in
the two-cluster interaction enables us to deal with a set of
simple one-variable integral equations.

The simplest version of the MTCC model is to restrict to
the initial three-cluster partition only, but with the effects of
other three-cluster partitions, together with other many-body
effects, contained in two-cluster t-matrices as absorption
effects. This restricted version of the MTCC model is a
relatively simple three-cluster model but it differs from the
Faddeev theory by the inclusion of the absorption effects.

Therefore, we name this model the absorption model. Thus, the



absorption model is an immediate extension of the Faddeev theory.
We expect the model to be applicable to a wide class of nuclear
collisions which can be characterized by three-body features.
In this paper, we apply the absorption model and the MTCC
model to d-o elastic scatterings at relatively high incident
energies, and discuss many-body effects reflected in the
scattering observables. The organization of this paper is as
follows. In 8 2, we formulate the multi-channel two-body
t-matrix of separable form. The property of the t-matrix is
investigated in the negative energy region as well as in the
scattering region. The exclusion of the Pauli forbidden states
by the orthogonal projection method is also discussed. Further
we explain the conditions to be imposed upon the analytic
property of the t-matrix for the contour deformation method in
three-cluster calculations. In § 3, we describe the absorption
model as a restricted version of the MTCC model. Absorption
effects are simulated by using the multi-channel t-matrix
proposed in § 2. This model is applied to the d-a elastic
scatterings at Ed= 21 and 56 MeV. The disagreement with the
experiments at 56 MeV forces us to introduce the three-cluster
partitions (n,d,3He) and (p,d,3H) in addition to (n,p,a). In §
4, we present the MTCC model, where the scattering processes are
represented by various three-cluster partitions. According to
the spirit of the AL formalism, it is formulated in a set of
one-variable integral equations for scattering amplitudes. We
apply it to the d-o elastic scattering at Ed= 56 MeV, where thé

three-cluster partitions (n,p,a), (n,d,3He) and (p,d,3H) are



taken into account explicitly. At the end of section 4, we
mention the MTTC model as an extention of the MTCC model.

Summary and discussions are given in § 5.



g8 2 Two-body separable t-matrix with channel-coupling effects

Our basic tool throughout the present work is a
multi-channel two-body interaction of separable form. The
two-body t-matrix obtained by the interaction is used as an input
to three-body calculations in the following sections. First, the
two-body t-matrix is derived by solving coupled
Lippmann-Schwinger equations. Some remarks are given for the
case that non-orthogonal channels exist. Next, we investigate
the bound state problem and extract spectroscopic factors in
channels. In § 2.2, we describe a treatment of Pauli forbidden
states, which are projected away to infinite energy by the

24). In § 2.3, the analytic property

orthogonal projection method
of a multi-channel t-matrix is discussed that is needed for the

contour deformation in three-body calculations.

2.1 Multi-channel formulation of a separable t-matrix
We consider the system which is constructed by two composite

particles. The Hamiltonian of this system is denoted by

H = Ha + Va + K ' (2.1)

where Hu is the cluster-internal Hamiltonian, Vu is the
cluster-external interaction and Ka is the relative kinetic
energy operator between the center-of-mass of two clusters in
two-cluster partition a. First, we consider the case where no

rearrangement channels exist. Thus, there is only one

- 10 -



two-cluster partition to be considered and the operators Ha' Va
and Ka are defined uniquely. (The case when rearrangement
processes exist will be discusséd later.)

Now, we introduce a model space expanded by the eigenstates
of Ha' {]Xi> [ i=1,N} , which specify the internal bound states

of two clusters. Here, these states satisfy with the

orthogonality relations,

Xilxy> = 85y  (E3=1,M) (2.2)
Hence, the problem amounts to the multi-channel two-body problem
where the channels are defined according to the internal states

of two clusters. The two-body coupling potential V is expressed

as NxN matrix, the components of which are

Vij = <Xi[ Va [Xj> (i,j=1,N) . (2.3)
The Lippmann-Schwinger equation for the t-matrix of this coupled

two-body system is represented by
t(e) =V + V Go(e) t(e) , (2.4)

where V, Go(e) and t(e) are NxN matrices and the matrix Go(e) is
diagonal by the requirement of Eq. (2.2).
Now, a two-body multi-channel separable potential is

introduced,



V = ,g} A <gl - (2.5)

Here, A is the strength parameter and |g> is the form factor
which are expressed by the column vector corresponding to the

multi-channel couplings,

|g1>
lg,>
.2 (2.6)
lay>

The components [gi> (i=1,N) describe the relative motion of two
clusters in channel i. For example, for a p-o system, they can
be assigned to the channels such as p-a(the ground state) and
p—a*(a excited state). If needed, higer-rank interactions can be
employed but we shall maintain the form of rank-1 for simplicity.
The Lippmann-Schwinger equation, Eg. (2.4), can be solved for the
interaction given by Eg. (2.5) so that the t-matrix is

represented by the following separable form,
t(e) = |g> t(e) <g| . (2.7)

Here, t(e) describes the propagation of two interacting clusters

and is given by

1<gi|Géi)(e)]gi> - ) (2.8)

,._‘
_—
(0]
i
>
|
!
M2

i
Gél)(e) is the free Green function in channel i,

- 12 -



G(()i)(e) - (e-E) - K_ + ic -1 (2.9)

where Ei is the sum of the internal energies of two clusters in
channel i. The summation on i in Eqg. (2.8) shows the
channel-coupling effects.

Now, we discuss an important extension of this formalism to
treat a wide class of two-cluster processes. When rearramgement
channels exist, the Hamiltonian H in Eg. (2.1) must be defined to
each channel in a different manner. Therefore, the orthogonality
relations between internal states in the channels as given by Eqg.
(2.2) are no longer valid. Hence, one might consider that
serious modifications have to be brought into our formalism.
However, it is not necessary. The detailed explanation will be
deferred to Appendix A, and here only the essential points are
mentioned. In this case, the coupled channel equations contain
the non-orthogonality terms, namely the overlap integrals between
the wave functions of non-orthogonal channels which include only
the kinetic energy operators but no interactions .between two
clusters. If we define the coupling potential between the
channels in terms of only cluster—exfernal interactions such as
in Egq. (2.3), then not only that it becomes non-hermitian but the
free Green function contains non-diagonal elements. Such
treatment gives rise to troubles in our approach. However, in
our point of view, the non-orthogonality terms should be regarded
as a part of the coupling interaction. This is natural and

reasonable because they arise due to the overlaps between the

- 13 -



wave functions of non-orthogonal channels. As a result of
including the non-orthogonality terms in the coupling
interaction, the free Green function becomes diagonal and the
coupling interaction hermitian. In this treatment, the two-body
t-matrix takes the usual form expressed by Egs. (2.7)~(2.9), and
the effects of the non-orthogonality terms are incorporated into
the off-shell components of the coupling potential V. In the
determination of the two-body t-matrix as an input to three-body
calculations, we take a phenomenological stand that they are
simulated by experimental data, i.e. information at on-shell
region.

Next, we shall investigate the bound state problem with the

channel-coupling potential and extract a spectroscopic factor in

each channel. Here, we restrict ourselves to the case where

rearrangement channels do not exist. For the Hamiltonian defined

by Eg. (2.1), the Schrodinger equation is written down as
(eB—Ha—KOL)|‘PB> = VOL[‘PB> , (2.10)

where e_ and [WB> represent a binding energy and a bound state in

B

two-cluster system, respectively. Projecting Eg. (2.10) on the
i-th internal state of two clusters , [Xi>, and substituting the

coupling interaction V in Eqg. (2.5) into the equation, we obtain
(eB—Ei—Ka)]wi> = Algi> , (2.17)

where ]wi> is the i-th projection of IWB> and the factor A is

- 14 -



W > - 2 ° l 2

Therfore, from Eq. (2.11) the i-th component of ]WB> is expressed
as

(i)

]wj> = A GO

(eg) |g;> . (2.13)

The factor A is determined by the normalization condition,

N
1 = <plvy> = I <fupe , (2.14)
i=1
where
Wl = a? <qp] alPlep) el ey o> . (2.15)

Here, we find that the overlap <wi[¢i> is the probability
strength of the i-th component of the bound state ]wB> and its
square root corresponds to the spectroscopic factor of the

component.



2.2 Exclusion of Pauli forbidden states

In this subsection, we describe a method of excluding Pauli
forbidden states in two-cluster subsystems. One of the
shortcomings in the three-body Faddeev calculation has been that
the effects of the Pauli exclusion can not be treated correctly.
Indeed, two-cluster t-matrices as inputs to the calculation may
have the bound state poles corresponding to Pauli forbidden
states in the negative energy region. However, the orthogonal
projection method which has been introduced by Kukulin et al.24)
enables us to treat two-cluster systems in the subspace which is
orthogonal to forbidden states. This method is handy in our
practice because a forbidden state can be projcted away to
infinite energy by incorporating an additional potential of
separable form.

Let us consider the bound state supported by the two-cluster
separable interaction (2.5), which should be forbidden by the
Pauli priﬁciple. We denote this state by ]WB>. Following the

prescription of the orthogonal projection method, we introduce a

pseudo-potential of a rank-2 separable form,

v, = |g>r<g]| + [¥p>ac¥ ] (2.16)
where |g>k<g| is the original coupling potential and A is a
parameter which will be made to become infinity in the final

stage. Solving the modified Lippmann-Schwinger equation defined

by



tA(e) = VA + VA Go(e) tA(e) ' (2.17)

we obtain the t-matrix for the pseudo-potential,

t,(e) = b |h, > T (e) <h,| , (2.18)
A K 9=1,2 k” “A,kL 2

where |h,> is defined by

lg > (k=1)
,h > = (2.19)
|¥ 5> (k=2) ,

and Ty k/Q(e) is the (k,2) component of the 2x2 matrix TA(e),
14

1
0 |_|<g |Gy(e)|g> <g |G (e)]¥y> (2.20)

0 . Wg|Gyle)|g>  <¥ |Gyle)|¥y> .

Now, Turning to the limit A+», we obtain

0 | |<g IGO(e)]g> <g ]Go(e)[WB>

0 WYg|G (e)]g> <tolG (e)|y¥g> o (2.21)

Since ]WB> is orthogonal to scattering states, the introduction
of pseudo-potential of (2.16) does not affect the scatteing state
at all. Therefore, the sacttering observables remain exactly the

same as before. Futhermore, the bound state is shifted by A so

that by letting A+x the Pauli forbidden bound state is projected

- 17 -



away to infinity. Thus we can construct the two-clustr t-matrix,

<h (2.22)

K Tm,kz(e) 2[

in which the effects of the Pauli forbiden state are excluded.



2.3 Analytic property of a multi-channel t-matrix

A major difficulty in three-body calculations is the
treatment of. singularities of the kernel in coupled integral
equations. The rotated contour method introduced by Hetherington

and Schick25)

solved this problem, and we can perform stable
calculations on a complex integration path. However, the
succesful application of this method requires us'to have the
knowledge of the analytic property of the kernel, which includes
the two-body propagator t(e) as a source of singularities.
Therefore, in order to bring channel-coupling t-matrices into
three-body calculations, we shall investigate their analytic
properties conditioned by the rotated contour method.

In the single-channel case, the analytic property of the
two-body t-matrix is discussed on the complex plane of the
relative momentum between two clusters. However, it is not
convenient in the case of many channels because the t-matrix is
considered as the function of channel momenta which are dependent
on one another. Therefore, we introduce another variable, as in
Ref. 26, on which the t-matrix is continued analytically. we
consider the two-channel case which is relatively simple. The

relative momentum ki between two clusters in channel i is defined

by

1 = (e-E;) (i=1,2) , (2.23)

where e is the total energy, My is the reduced mass and Ei is the

- 19 -



internal energy of two clusters in channel i.

conservation,

Now, we introduce the variable z defined by

or

1/2 1/2

A u2/ z = 1_12/ k
1/2 -1 1/2

A UZ/ z = “2/ k

k

1

is related to k2
k k ,

1 B 2 I
21y 2u,

where A is defined by

A = 2u1(

by

E,-Ey)

By energy

According to Egs. (2.25) and (2.26), we can Write

and

k = A.(z + 2—1)/2

1

1
ky, = A (u2/u1)

/2

(z

-z

12

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)

Egs (2.28) and (2.29) constitute a mapping of the Riemann energy

surface to the complex z plane.

The mapping is shown in Fig. 1.

The numbers in each square bracket indicate the guadrants to

which k

1

and k

2

belong in each complex plane.

20 -



Now, we discuss the condition with which the two-channel
t-matrix has to satisfy for the roﬁated contour method in
three-body calculations. In such calculations, the contour is
usually rotated into the fourth guadrant in the complex plahe of
the relative momentum between spectators and center-of-masses of
interacting two clusters. Then, the energy e in the two-cluster
system runs on a complex path, the imaginary value of which is
positive. Therefore, in the complex z plane, the path is mapped
into region [1,1]. As a result, the two-cluster t-matrix must be

constructed with no singurality in the region [1,1].



§ 3 Three-body AGS theory with absorption effcts in tw-body

subsystems

In this section, we propose a restricted fofm of the MTCC
model, where the scattering processes are represented by only one
three-cluster partition. However, it includes absorption effects
in the two-cluster subsystems. Thus this model is an immediate
extension of the three-body Faddeev approéch. Therefore, We name
this model the absorption model. 1In § 3.1, We simulate
absorption effects in two-cluster subsystems by using the
multi-channel separable interaction proposed in § 2. In § 3.2,
the absorption model is applied to the d-q scatterings at Ed= 21
and 56 MeV. The scattering processes are represented by the
three-cluster partition (N,N,a). In the (N,qa) subsystem,
absorption effects are included. The Pauli-forbidden state of
51/2 in this subsystem is excuded by the orthogonal projection
method. As expected, absorption effects are notable at Ed= 56
Mev. At the end of this section, the discrepancy between the

theory and experiments at 56 MeV is discussed.
3.1 The absorption model

In addition to the N-d scattering, the three-body model can
be introduced naturally to the reactions between loosely-bound
projectiles and targets which are not easily excited. Now, let
us consider the collision bwtween the deuteron and such a nucleus

denoted by A for simplicity. The degree of freedom that should

- 22 -



be taken into account first of all is the three-body kinematics
between N, N and A, which is accomplished by the Faddeev theory.
The problem is how to treat effectively the many-body processes
induced by the interaction between N and A. 1In real scatterings,
there are two possible cases. One is that the elastic channel in
the subsystem is coupled weakly to other reaction channels. The
other is the case where there exist some conspicuous channels
which bring strong reflections into the elastic one. In the
former case, the treatment based on the concept of the optical
model can be applied, namely the effect of reaction processes
other than the elastic one is described by the disappearance of a
part of flux from the elastic channel. However, in the latter,
the more sophisticated approaches should be introduced. Putting
off the latter to the following section, we shall investigate the
former case and formulate our absorption model.

As mentioned in §1, the immediate introduction of a complex
potential causes a serious problem how to extend the potential to
off-shell energy regions analytically. 1In this regard, the
multi-channel interaction proposed in §2 has advantage. Let us
adopt the two-channel coupling potential of Eg. (2.5). The first
channel is assigned to the elastic N-A channel, and the second to
a hybrid channel which represents all reaction channels such as
inelastic and rearrangement ones. The two-channel form factor of

the expression (2.6) is writen as

Ig) = = - (3-1)



where k is a coupling strength parameter. Then the two-body
t-matrix for the coupling potential can be expressed by 2x2
matrix of Eq. (2.7). The elastic component t11 of the t-matrix
is determined in each partial wave by fitting the energy of a
bound state and on-shell experimental data of N-A elastic
scatterings. (Taking a higher-rank potential, it is possible to
reproduce plural bound states.) In the three-body equation, only
the elastic component obtained by the above procedure is utilized
in order to represent the two-body processes. This is justified
by the assumption that the coupling between elastic and reaction
channels are weak enough to be incorporated into the intermediate
states only.

Now we demonstrate that our treatment amounts to replacing
the N-A interaction by its optical potential Vopt and confirm
that it produces absorption effects in the elastic channel. From
Egq. (A.6) we obtain

Voor = 197> 2= gyl 6i e,y |71 (3.2)
This is derived in Appendix B. Notice fhat the denominator of
Vopt is real below the reaction threshold while it is complex
above it. On the other hand, t11 as an input to the three-body
equations is the same as the t-matrix topt of this optical
potential, which is also shown explicitly in Appendix B. Thus,

we find that t11 produces absorption effects in the elastic

channel.



3.2 An application to the d-a elastic scattering

The d-a scatteriﬁg at relatively low incident energies have
been studied well by a number of theoretical approsche59%12’27).
Among them, the three-body Faddeev calculation has been most
successful in reproducing the experimental data. Indeed, it
explains surprisingly well cross sections and analyzing powers in
breakup scatterings as well as elastic ones below Ed: 20 MeV (14
MeV CM). This fact means that the three-body effects by N,N,a
play the main role in the energy region where o can be regarded
as inert. At higher energies, however, there have been only a

13,28) and the effective approach has not yet been

few analyses
established. This is because the situation is rather complicated
at higher energies. Aside from the deuteron breakup, the first
reaction channel 3H—3He opens at the center-of-mass energy 14.3
MeV. The second channel that opens up is the 3H—d—p channel at
19.8 MeV, which is followed by a number of individual reaction
channels. For realistic analyses, it seems inevitable to take
the effects of these channels into account in some ways. Now, we
examine the validity of our absorption model by applying it in
this energy region. We adopt the three-cluster partition (N,N,a)
as a first approximation based on the success in lower energy
scatterings. First, the two-body interaction in the n-o
subsystem is constructed by the method mentioned in & 3.1. Then

we analyze the elastic scatterings a(a,d)a at Ed = 21 and 56

MeV.



3.2.1 Separable t-matrix for the N-a subsystem.

In the three-body calculations, we ignore the Coulomb force
, which is expected not to exert serious influence on kinematical
regions other than the forward scattering. Furthermore, we
igonore the mass-difference between p and n. Therefore, we
consider the p-a system and the n-o system as the same. Then, in
this system, we find the first reaction channel d—3He at 18.4 MeV
in CM. ‘The p—u* and p—n—3He channels closely follow it. To
incorporate the effect of these and other reaction channels, we
adopt the two-channel separable interaction of the form of Eq.
(2.5) with form factor (3.1). All reaction channels are bunched
together and are represented by a hybrid dummy channel. The
first channel is assigned to the elastic p-o channel and the
second channel to the dummy one. The threshold of the hybrid
channel is fixed at ﬁ2= 18.4 MeV, which is the threshold of the
d—3He channel as mentioned above. After partial wave
decomposition, we adopt the Yamaguchi type form factor as |fi>
(i=1,2) in Eg. (3.1), namely

2,21+

£.(p) = p*l/(p%+p?) (i=1,2) , (3.3)

i i
where p is the relative momentum and Qi is the orbital angular
momentum of channel i. Then the input t11 to the three-body
calculation contains the five parameters A, k, 81, 82 and 22 in
each partial wave. Here the orbital angular momentum 22 of the
hybrid channel takes only the values which would be satisfied

with the total angular momentum and parity conservation if the
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channel is regarded as one of reaction channels. The values of
these parameters are searched to reproduce the p-a phase shifts
and the absorption coefficients at Ep(lab)=0 to 55 MeV, in seven
partial waves s1/2, pl1/2, p3/2, d3/2, d45/2, £5/2 and £7/2%%).

The resulting values are shown in Table 1, and the fits to
the data in Fig. 2. It is found that the simple rank-1 separable
potential can reproduce surprisingly well the elastic scattering
data over the wide range of proton incident energies. As shown
in Fig. 2, the most striking feature of the phase shifts is the
dominance of absorption above the inelastic threshold in even
partial waves. We find that the threshold behavior of them
strongly influences on the values of 22. The notable structure
of d3/2 is due to the well-known resonance, which is of almost
pure d—3He character30). Our fit to the structure is
unsatisfactory but it is caused by the fact that we strain to
obtain the overall best fit over a wide energy range with a
simple rank-1 potential. However, we confirm that our potential

of d state has a pole in the region [1,3] of the complex z

3/2
plane defined in § 2.3. This pole is near the inelatic threshold
(z=1 and k2=0) and gives rise to the structure in Fig. 2.

Finally, we mention the exclusion of a Paull forbidden
state. Our potential of s1/2 supports a bound state at E1=
-13.09 MeV, which should be forbidden by the Pauli principle. To
avoid such unphysical bound state, two kinds of potentials have
previously been used, i.e. a repulsive and a strongly attractive
9,10)

potential . However, as mentioned in § 2.2, it is now

possible to exclude Pauli forbidden states explicitly by the
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orthogonal projection method. We adopt this method and project

the bound state of 51/2 away to infinite enérgy.

3.2.2 The d-a elastic scattering

We calculate the d-a elastic scattering in terms of the
Faddeev formalism. The scattering processes are represented by
only one three-cluster partition (N,N,a), but absorption effects
are included in the (N,a) subsytem, which is accomplished by
utilizing the t-matrix mentioned in § 3.2.1. No Coulomb force is

included. We start with the Alt-Grassberger-Sandhas (AGS)

equation8):

Uij = (1—61j)(E—HO) + kiithOUkj (i,3,k=1,2,3) , (3.4)
where particle channels 1, 2 and 3 are assigned to a(n,p), n(p,a)
and p(n,a) respectively. The use of the two-body t-matrix of

separable form enables us to reduce the AGS egquation to the

well-known Amado-Lovelace (AL) equationzz):
xij = zij + kiizik Ty Xgg o (3.5)

where Xij and Zij denote the scattering amplitude and Born
amplitude from particle channel j to i, respectively. The
propagator of interacting pair in particle channel is denoted by
T Notice that the labels which specify channel states are
omitted. Since we neglect the Coﬁlomb force, channel 3 is

identical with channel 2 except for the isospin states. Then
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Eg. (3.5) 1s reduced to

Tyq ~ 0 . 0 21272 Ty (3.6)
= , .
Trr | . Z31 2251 11 233 T To1
where the amplitudes 111 and I12 are defined by
I,; = XH/Z r I, = (x21—x31)/2 . (3.7)

The detailes of the reduction are described in Refs 9 and 10.

For the two-body interaction between two nucleons, we adopt

the separable interactions of Doleshall31), Phillips32)

Cahill and Sloan33). We take into account only the coupled

381—3D1 state. For the N-q subsystem, we employ the elastic

component of the two-channel t-matrix constructed in § 3.2.1

and

which includes absorption effcts, and in which the Pauli
forbidden state of 51/2 is excluded.
In numerical calculations, we utilize the rotated contour

)

method25 to avoid sihgularities of the kernel of Eq. (3.7).

Some remarks due to the introduction of the two-channel t-matrix

has already been mentioned in § 2.3. In solving the eguation, we
employ the Pade approximant34).

The results at Ed(Lab) = 21 and 56 MeV are shown in Figs. 3
and 4. The experiments have been performed in Tsukuba35) and
RCNP' ).  The solid lines indicate the calculations in which both
effects of absorption and the Pauli exclusion are included. We

32)

adopt the YY7 potential of Phillips as the N-N interaction,
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which is rank-1 with 7 % deuteron D-state probability. As shown
in Fig. 3, quite good agreements with the data are obtained in
the analyzing powers as well as the cross section atrEd= 21 MeV,
which improwve the Charnomordic's resultsg). However, at Ed= 56
MeV the data can not be reproduced well, especially the analyzing
powers at eCM> 90°. The fact that our simple model succeeds at

Ed= 21 Mev but fails at 56 MeV indicates the need to include more

reaction channels at Edz 56 MeV. The details will be discussed
later.

The absorption effects due to the hybrid reaction channel at
18.4 MeV (CM) in the (N,a) subsystem are investigated. We
re-adjust the potential parameters and construct a single-channel
interaction which reproduces well the p-o phase shifts but has no
absorption. The results of three-body calculations with this
interaction are shown by the dashed lines in Figs. 3 and 4. At
Ed= 21 MeV, the difference between the results with and without
absorption effects are not appreciable. On the other hand, the
effect of the coupling to the hybrid reaction channel is large at
Ed= 56 MeV. This is to be expected because no reaction channel
opens at Ed= 21 MeV, whereas the incident energy of Ed= 56 MeVv,
is well above the threshhold of the hybrid channel.

We also investigate the effects of the Pauli exclusion. The
dashed-dot lines in Figs. 3 and 4 represent the calculations
without the Pauli exclusion of the s1/2 bound state in the (N,a)
subsystem. Comparing with the results including the Pauli

exclusion (solid lines), we find that the effect is relatively

small at Ed= 21 MeV but it is large at 56 MeV. This fact can be
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explained qualitatively by the following consideration. First,
for the Pauli exclusion to be effective, the incident wave (prior
to the application of the Pauli exclusion) has to penetrate to
within the interaction region. The shallowness of the potential
as evidenced by the smallness of the binding energy (-13.09 MeV)
of this Pauli-forbidden state has the conseguence that at high
energies the mismatching of wave numbers inside and outside the
potential is immaterial and hence the transmission to within the
interaction region can occur relatively freely, while at low
energies the mismatching is large and therefore the transmission
is hindered. Therefore, we expect the effect of the Pauli
projection to be small at Ed= 21 MeV but to become substantialrat
56 MeV.

Next, we examine to what extent the results depend on the
property of the N-N potentials utilized in the three-body
calculations. In d-a scatterings below Ed= 21 MeV, the effect of
the tensor force in the coupled 3S1—3D1 partial wave has been
discussed by a number of authors. Based on the three-body
calculation of the elastic sacttering at Ed= 12 MeV, Charnomordic
et al.9) claim that the presence of the tensor force is not
essential for both cross section and analyzing powers. On the
other hand, the recent analyses of the’breakup reactions at Ed=
12 and 21 MeV by Ishikawa et al.36) indicate that the double
differential cross section and the vector analyzing power are
explainable without the tensor force, but for the tensor
analyzing powers, the inclusion of the tensor force is essential.

We perform the computations with a number of N-N interactions
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beside the YY7 potentials. In Figs. 5 and 6, the dashed lines

represent the results with the YY0 potential of Cahill and

Sloan33), which is rank-1 with no deuteron D state. The

comparison with the results by YY7 (solid lines) shows that at

E 21 MeV the tensor force is indispensable for reproducing the

d=
data of the analyzing powers, T20 and T22. At Ed= 56 MeV,

results with YY0 are almost null for the tensor analyzing powers
at forward angles eCM< 90° and fail to reproduce the experimental

data.

We have also performed the calculation with the 2T4

)

which is of rank-2 with 4% deuteron

D-state probability and which reproduces the experimental 3D1

phase shifts as well as 381 phase shifts. As shown in Fig. 7,

potential of Doleshall31

the difference between the results with YY7 and with 274 are not
appreciable but in the tensor analyzing power T20, the fit to the
data by 2T4 is somewhat worse than the fit by YY7. This is
puzzling and needs further investigation. we mention that at Ed=
56 MeV the results with other tensor potentials YY432)(rank—1)

31)(rank—Z) do not exhibit substantial changes in the

and 2T7
results with YY7 in all observables.

Finally, in Fig. 8, we show the results with and without
f-waves in the (N,a) subsystem at Ed= 56 MeV. The inclusion of
the f-waves gives rise to a large contribution at large deuteron

scattering angles. At Ed= 21 MeV, we find that the contribution

of the f-waves is almost null.

§ 3.2.3 Discussions



In this section, we propose the absorption model, and
apply it to the d-a elastic scatterings at Ed = 21 and 56 MeV.
The reasons why we choose these two energies are the following:

(1) At 21 MeV, the three-body model with no absorption effects
has previously shown to be successful. Hence, we can
check the absorption model by comparing with the previous
results.

(2) As mentioned already, at 56 MeV the situation is rather
complicated, since there are various reaction channels
such as 3He +3H, n+d+3He and n+p+u* beside n+p+a.
Therefore it is interesting to examine the validity of the
absorption model.

As expected, at 21 MeV, the present results reproduce the
experimental data well, and even improve previous results
somewhat. The absorptive effects in the (N,a) system are found
to be small. On the other hand, at 56 MeV absorption effects are
notable. However, the conspicuous diffraction-like structures in
the data of analyzing powers can not be reproduced.

In investigating the cause of the disagreement, we should
recall the assumption imposed on the absorption model that the
couplings between elastic and reaction channels in the (N,aq)
subsystem are weak enough to be incorporated as absorption
effects. Now, we scrutinize this assumption. The fact that the
resonance in the d3/2 partial wave is almost purely d—3He
character, as mentioned in § 3.2.1, suggests that the coupling

between the p-o and the d—3He channel is not weak. Futhermore,

the reaction cross sections of p+a - d+3He above the threshold
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amount to nearly 50 per cent of the total reaction cross sections
of p+a scttarings37). In view of these data and the results of
the present analyses, we consider that the validity of the above
assumption is doubtful and that the effects of the d—3He channel
should be investigated explicitly. However, the explicit
treatment of the d—3He channel in the (n,a) subsytem forces us to
introduce a new three-cluster partition (n,d,3He). The method
that is capable of treating various three-cluster partitions will

be proposed in the next section, and the effects of the partition

(n,d,3He) will be investigated.



§ 4 The Multi Three-Cluster Coupling (MTCC) model

In the MTCC model, various three-~cluster partitions in
addition to ‘the initial partition are introduced, corresponding
to possible processes to be considered explicitly. They are
coupled to one another via two-cluster rearrangement processes,
and each of which is treated as a Faddeev system. This model is
applied to the d-a elastic scattering at Ed= 56 MeV, where the
absorption model is not successful. As we show, the MTCC effects
are evident especially at large angles. Only process missing
from the MTCC model within the limitation of the two- and
three-cluster approximation is the process of sequential
transfer. At the end of this section, we mention briefly the
Multi Two- and Three-Cluster coupling (MTTC) model which succeeds

in incorporating this process.

4.1 The MTCC model

The absorption model proposed in § 3 is the three-body model
represented by only one three-cluster partition, although it
includes the coupling between the elastic and reaction channels
in the two-body subsystems as absorption effects. As discussed
in § 3.2.3, the method lose the validity when the coupling
between the elastic and reaction channels become strong because
the weak-coupling assumption breaks down. The explicit
consideration of such two-cluster reaction processes requires the

introduction of new three-cluster partitions which differ from
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the original one. The formulation of a practical unified theory
of nuclear reactions in which scattering processes among various
three-cluster partitions are coupled has not been reported to
date. The MTCC model accomplishes this problem. The basic
conception of the model may be described as follows. Various
three-cluster partitions which are coupled strongly to one
another are taken into account explicitly. Each of them is
treated as a three-body Faddeev system and is coupled to other
three-cluster partitions via interactions between two-cluster
subsystems. Other reaction processes which do not affect the
scattering state appreciably are incorporated into two-cluster
processes as absorption effects.

We formulate the above concept in a manner similar to the
Amado-Lovelace (AL) formalismzz). For each three-cluster
partitions, there is a triad of three-particle channels each
consisting of an interacting pair of particles and a spectater
particle. We impose two-basic rules for the MTCC approach.

Rule 1 In each Faddeev system, the transition between

particle channels is due to particle exchange.
Thé only exception to Rule 1 is the Coulomb interaction which
is not considered in the present work. If needed, the effect can
be treated in an approximate manner.

Rule 2 Interacting pairs can break up into two clusters

but spectator particles can not.
Under these rules, possible rearrangement or inelastic processes

between interacting pairs which belong to various Faddeev systems

generate the couplings between the Faddeev systems. The
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scattering processes are represented by a superposition of
various three-cluster processes. By the use of separable
interactions, we arrive at a set of coupled integral equations
among reaction amplitudes of the AL form.

The model may be best explained by means of the explicit
example of the d-a scattering. In addition to (n,p,a), let us
consider, for example, the three-cluster partitions (n,d,3He) and
(p,d,3H). The three-cluster partition (n,d,BHe) can be coupled
to the partition (n,p,a) via the rearrangement process between
two-cluster channels (d,3He) and (p,a). Similarly, the
partitions (p,d,3H) and (n,p,a) are coupled to each other wvia the
two-cluster process (d,3H)++(n,a). We can also cosider the
three-cluster partition (n,p,a*) which can be coupled to (n,p,a)
via the two-cluster inelastic process (p,a*)++(p,a). In this
thesis, for simplicity, we consider only the partitions (n,d,3He)
and (p,d 3H). The MTCC processes as mentioned above are
presented schematically in Fig. 9. Each square box represents a
Faddeev system, and each particle channel in the box is assigned
a channel number. The interacting pairs are indicated inside
parentheses. In the box on the left, the particles N2 and N3
symbolize the nucleon. Since we ignore the Coulomb force, and
since the total isospin of this system is zero, the pair of N

2

and N, in each particle channel constructs the antisymmetric

3

isospin state,

- ( pn - np) . (4.1)

V2



In the box on the right in Fig. 9, the particle N represents the
nucleon, and the particle A symbolizes the nuclei 3He or 3H.
Similarly the pair of N and A in each particle channel constructs
the isospin 'state, the eigen value of which is zero,

2 (3 -ndme) . (4.2)

)

The interaction between each pair of particle channel in a box is
due to the exchange of the particle shown along the
double~-pointed arrows. Each Faddeev system is connected to
others via the two-cluster rearrangement processes (N2,u)++(A,d)
and (N3,a)++(A,d) which are indicated by the dashed lines.
Explicitly, they are the processes (p,a)++(3He,d) and
(n,a)++(3H,d). If other three-cluster partitions are needed,
they can be taken into account by adding corresponding Faddeev
systems. In the above MTCC approach, the effect of all other
reaction processes that are coupled weakly to the scattering
state can be incorporated into the two-cluster subsystems as
absorption effects.

Now we formulate the MTCC processes in a set of coupled
equations. The dynamical inputs to the theory are two-cluster
t-matrices. The separable multi-channel t-matrix introduced in §
2 has all required properties to described the MTCC processes.
Not only it represents the rearrangement processes that connect
various three-cluster partitions, but also it simulates
absorption effects by the perturbative treatment as in the

absorption model. By the use of the separable t-matrix, the
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rules imposed upon the MTCC processes enable us to postulate the
following AL type coupled channel equation among scattering

amplitudes,

ZBYTY5X6Q , (4.3)
where XBa and ZBa denote the séattering amplitude and the Born
amplitude from particle channel o to B, respectively. The
propagator TY6 represents the propagation of interacting two
clusters where the transition takes place between the two-cluster
subsystems in particle channels y and §. It is expressed
explicitly by Eqg. (2.8); Since 1 is common to all reaction
processes 1in coupled two-cluster systems, Togr for example, is
the same as Top OF Tyy for particle channel 2 and 4 shown in Fig.
9.

Eg. (4.3) can be depicted by the diagram shown in Fig. 10.
The scattering amplitude X is represented by a large circle. The

Born amplitude ZBa is written explicitly as
> > > >
Zpo(dgrdgiE) = (1-85 )<ag|<gg(pg) [Go(E) g (P )>[qy,> - (4.4)

where aa is the momentum of the spectator relative to the

centr-of-mass of the interacting pair in particle channel «.

Similarly for EB. The two—bédy internal momenta Ba and EB are

expressed as the linear combinations of Ea and EB in an usual
38)

manner . The form factors [ga> and |g8> are taken from the

two-body t-matrices of particle channel a and B respectively,

- 39 -



which are explicitly shown in Eq. (2.7). They are depicted by
the small semi-circles at both ends of the diagram representing
the three-body frée Green function GO(E). The two-body
propagator~TY6 is shown by two horizontal lines connecting ZBY
and Xéa with a twist to indicate the channel coupling between vy
and 6.

For detailed discussions, we give the explicit expression of
Eq. (4.3) for the d-a scattering depicted in Fig. 9. At first,
it should be noticed that there are two possible particle
channels inducing this reaction, channel 1 and channel 5. In the
initial sate of particle channel 1, the deuteron is described as
the bound state of p and n, and o as the spactator. On the other
hand, in particle channel 5, the deuteron is the spactator and q
is expressed as the bound state of p and 3H, or n and 3He.

Denoting the initial particle channel by i (i=1,5), the equation

(4.3) is written as the following matrix form,
X, = Z ., + 2 1 X, , (4.5)

where X i and Z ; are column vectors, while Z and T are sguare

matrices. The matrices Z, T and X ; are given by

¢ 3
0 245 %33 O
Z,, 0 Z,5 O
Z3q Z35, O 0
Z = 0 0 0 0z (4.6)
45 %46
0 0 54 O Zgg
0 0 s Lgs O




T11 0 0 0 0
0 Too 0 Toy 0 0
0 0 T33 T34 0 0
T = 0 T T T 0 0 (4.7)
42 43 44
0 0 0 0 T55 0
0 0] 0 0 T66
(
X3
£53
X .
3i
X . = (4.8)
~ 1 X4i
X5 i
X4

For each initial particle channel, the column vector Z i composed

by Born amplitudes is given by

7 . = 31 7 _ = (4.9)

0 265

Since Eg. (4.5) is linear, the full MTCC amplitude for the d-g
scattering which we denote by X is expressed as the superposition
of the amplitudes originating from both initial particle

channels, i= 1 and 5, namely



(4.10)

X = 2 + 2 T X , (4.11)

where Z is defined by

(4.12)

In Fig. 11, we show the processes involved in particle
channel 1 (process (a)) and particle channel 5 (process (b)}.
The deuteron in process (a) is represented as the bound state
pole of the pair (p,n), while the g particle in process (b) is
considered to be the bound state pole of the pair (n,3He). By
Rule 2, in process (a) the deuteron can break up into p and n but
the o particle can not. On the other hand, in process (b) the g«
particle can break up into n and 3He, but the deuteron can not.
Hence, particle channel 1 and particle channel 5 are clearly
distinguishable throughout the MTCC processes. However, due to
this classification of the processes involving the d+g state
according to Rule 2, the expressions of the elastic scattering
observables become restricted to the sum of the individual
transition probabilities corresponding to the d+a states in
channel 1 and 5. Let us denote bf X, the k-th element of the

k

column vector X which is explicitly expressed as
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X = X + Xk5 (k=1v6) . (4.13)
In compliance with the unitarity requirement, the differential
cross section of the elastic scattering is given by the sum of
the individual cross sections to the final d+a states in channel

1 and 5, namely

do

a0 (4.14)

where a kinematical factor is suppressed. The unitarity relation
which demands Eqg. (4.14) is explicitly shown in Appendix C.
Before closing this subsection, we resolve a question of
double counting. In Fig. 12, we show one of the lowest order
diagrams of transition from particle channel 1 to 6. The time
runs from left to right. The neutron in the deuteron is denoted
by n, and the neutron in the o particle by n,- The two-cluster
processes inside the square box is represented by the two-body
t-matrix with the channel coupling (p,a)++(d,3He). As the
t-matrix is determined from the p-a scattering data, the lowest
order diagrams of the t-matrix contains the diagram shown in Fig.
13. When the square box of Fig. 12 is replaced by Fig. 13, we
have the possibilities of Fig. 14 (a) and (b). The problem of
double counting arises if both of these processes are present in

Fig. 12 and in Z of the coupled system of the partition

65
(n,d,3He). We assert that this is not the case since, as we

explain below, Fig. 14(a) is not a part of Fig. 12 while Fig.
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14(b) is not included in Z In Fig. 14(a), the interaction of

65°

n, with p occurs at A between the interactions at B and C.

1
Therefore, this process is not contained in Fig. 12 in which n,
must remain free between the vertices B and C of Fig. 13. On the
other hand, in Fig. 14(b) the interaction A occures before the
vertex B, and n, is bound in the a particle at the time of
interaction at A. This situation is completely excluded from Z65
since we determine the two-body t-matrix of particle channel 6 by

the n,-d scattering data where, in the initial state, n, has to

2

be free prior to the last interaction at A between n, and p in

the deuteron.



4.2 An application to the d-a elastic scattering

4.2.1 Formulation
In this subsection, we apply the MTCC model to the d-qg

elastic scattering at E 56 MeV. As discussed in § 3.2.3, the

a=
analyses by the absorption model suggest that in additien to
(n,p,a) the three-cluster partitions (n,d,3He) and (p,d,3H) exert
strong influence on the scattering processes in this energy
region. These effects can not be treated sufficiently in the
absorption model because they can only be taken into account as
absorption effects in the two-cluster subsystems. The MTCC model
enables us to take into consideration various three-cluster
partitions explicitly. Let us take the three-cluster partitions
(n,p,a), (n,d,BHe) and (p,d,3H) since these are the most
important ones at this energy. Other reaction processes can be
incorporated into the two-cluster subsystems as absorption
effects. Since we neglect the Coulomb force and ignore the mass
differences between p and n and between 3He and H, the MTCC
processes can be shown schematically by Fig. 9. The set of
integral equations which describe these processes is given by Eg.

(4.1717). Written explicitly, this becomes

Xy= Z12T22%0% 21373383+ (21T %21 3T34) %y

Xp= g2y T e t233T33%3%253T34%y

X3= Z39+L31T X +235T50%) *232T24%y

X4= %45 tlysT5X5%246T6%6
Xg= ZeaT42%o%l54T43%3%254T44%y *l56T6%g
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6= %65 *264T42%2%%64743%3%264T44%4%%65T5%s

(4.15)

where X, is the transition amplitudes to particle channel k,

k
which is explicitly shown in Eq. (4.13). The consideration of
isospin states and the identity of nucleons N2 and N3 lead to the

symmetric properties for Born amplitudes and propagators:

(4.16)

and

(4.17)

In Appendix D, the relations (4.16) are explicitly derived.
Using Egs. (4.16) and (4.17), the coupled equations (4.715) are

reduced to the following set of equations.

Y= 212T22%2 *212T24%y
Vo= Zpq %2244 ¥y “Z33Tp0Y “Z35T54%y
X4= Zys *245T5%5+246T6%g
Xg= 2754T42Y5 *254T44%y *256T6%6
X6= Zg5 *2254T42Y2 *264T44%4 t265T5%5
(4.18)
Here we have introduced the antisymmetric amplitudes:
Y, = X,/2 Y, = (Xym X5)/2 (4.19)



Egq. (4.18) is numerically solved. When the coupling between two
Faddeev systems in Fig. 9 is turned off (the case of Ty T34™
0), Eg. (4.18) separates into two sets of integral equations,
each of which represents the usual three-body AL equations. One
of them is identified with Eq. (3.6). Therefore, numerical
calculations are no more difficult than the pure three-body model
and can be performed by the usual techniques, i.e. the contour

5) and the Pade approximant34). As mentioned in §

deformation2
4.1, the elastic scattering observables are represented by the

sum of the individual transition probabilities to the final d+q

states in channel 1 and channel 5. The differential cross
section is given by Eq. (4.14), which is rewritten by using Eq.
(4.13) as

do 2 2

ao = |X11+X15] + ]X51+X55[ . (4.20)

The analyzing powers can also be expressed in a similar manner.
At the present stage of calculation, there remains an
ambiguity as to the sign of Tog- For explanation, let us look at

the lowest order diagrams for the transitions from channel 1 to

channel 1 and from channel 5 to channel 1. These processes are
shown in Fig. 15. Both processes (a) and (b) are parts of the
elastic scattering, which are superposed in Eg. (4.20). 1In

process (a), the deuteron of initial particle channel 1 is
described as the composite particle of nucleons N2 and N3, and
its state is constructed by the interaction between N2 and Né.

Here we denote it by d1. On the other hand, in process (b), the
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deuteron of inital particle channel 5 is the spectator, which we

symbolize by 4d The information of the internal state of d5 is

5-
implicitly included in the values of two-cluster propagator Toy
which is determined by the experimental data corresponding to
A+d5 - N3+a. Hence, the guestion arises how to define the

relative phase of the state d1 to d. in order to identify the

5
initial state d1+u in process (a) with the initial state d5+a in
process (b). The case is the same for the alpha particle of
initial channel 1 in process (a) and of initial channel 5 in
process (b). Thus, there exists an ambiguity of relative phase
between the amplitudes corresponding to process (a) and process
(b). However, this ambiguity ought not to exist, since the d+a
state in particle channel 1 is related with the d+a state in
particle channel 5 by the transition corresponding to Fig. 15(a)
in itself. 1Indeed, the spectator deuteron in particle channel 5
is connected to the spectator ¢ in particle channel 1 due to
two-cluster propagator Toy- The propagator Toy in the coupled
system (A,d5)++(N3,a) takes real values below the lower
threéholds of A—d5 and N3—a, so that the ambiguity of relative
phase is reduced to the ambiguity of relative sign only.
Therefore, in order to remove completely the ambiguity as
mentioned above, we must determine the sign of Togr However,
this can not be performed in the present state of calculation,
because Toy is as an input to the MTCC calculation determined
phenomenologically by the scattering observables in this coupled

two-cluster subsystem. The sign of Tog will be determined

uniquely by investigating the interference between the amplitudes
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of nuclear part and Coulomb part in A+d5 - N3+a scattering, since
we can obtain the Coulomb amplitude with no ambiguity. This is
under investigation. In the present work, we calculate the
elastic scattering observables for two possible cases according
to the ambiguity of the sign of Toyr which remains unresolved.

Thus, the differential cross section is expressed either by Eq.

(4.20) or by

do

2 2
an~ = 1¥17%slT v X5 X5 (4.21)
4.2.2 Two-cluster interactions for the MTCC calculation
Before presenting results, we describe the two-cluster
interactions used in the MTCC calculation. For the coupled
(Nz,a) and (d,A) systems connecting particle channel 2 to 4 ( or

the coupled (N3,a) and (d,A) systems connecting particle channel
3 to 4), we construct the multi-channel separable t-matrix by the
following simplified procedures. In § 3.2.71, the two-body
t-matrix for the coupled (N,a) system has been constructed, where
the (N,a) channel is coupled to a second dummy channel. The
dummy channel contains the effect of (d,A) and the rest of
reaction channels. (Notice that the potential parameters have
been determined by fitting only p-a elastic scattering data.)
Here, we split this second channel into two, one for (d,A) with
weight w and the other for the rest with weight 1-w. As
discussed in § 3.2.3, in the p-a scattering the rearrangement

process to the (d,3He) channel palys an important role above its
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threshold. Futhermore, our main aim in the present calculation
consists in investigating the effects of the partition (N,d,3)
which is coupled to (N2,N3,a) through this rearrangemeht process.
Therefore, for simplicity, we set w=1.0 and utilize the resulting
two-channel t-matrix as an input to the MTCC calculation. For
the (N2,N3)
3 3

S1— D1 state into account and adopt the YY7 potential which is

mentioned in § 3.2.2.

subsystem in particle channel 1, we take the coupled

For the other two-cluster subsystems in particle channel 5

and 6, we also employ simplified interactions with the Yamaguchi

type form factors. In the (N,d) system in particle channel 6, we
consider only the 281/2—4D1/2 partial waves where the bound
states 3He or 3H exist. To describe the two-channel interaction,

the same formulas as Egs (2.5), (3.1) and (3.3) are adopted where
the channel 251/2 is assigned to the channel number 1 and the

channel 4D to the channel number 2. The potential parameters

1/2
are searched to reproduce the binding energy as well as the phase

39) in low energy p-d

shifts of 281/2 and the mixing parameters
scatterings. In Table 2, we list the resulting values of the
parameters. This potential supports a bound state at the bound
state energy of 3H (E= -6.26 MeV relative to the threshold energy
of n-d). The fits to the 281/2 phase shifts and the mixing
parameters are shown in Fig. 16. For the (N,A) subsystem in
particle channel 5, we limit ourselves to only the 1So partial

wave which sustains the bound state g¢. We utilize the

single-~channel separable potential of rank-2, namely



vV = )\1[g1><g1] + )\2,g2><g2[ , (4.22)

with the Yamaguchi type form factor

g;(p) = 1./« p° + Bf ) (i=1,2) . (4.23)

The potential parameters A1, A2’ 81 and 82 are determined by
reproducing the binding energy 20.64 MeV of the o particle and by

40) of low energy n—3He scatterings. The

fitting the phase shifts
resulting values of the parameters are shown in Table 3 and the

fits to the phase shifts in Fig. 17.

4,.2.3 Results and discussions

The results of preliminary calculation for the elastic
scattering at Ed= 56 MeV are shown in Fig. 18. The solid and the
dashed lines indicate the MTCC results corresponding to two
possible choice of the sign of Toy mentioned in § 4.2.1. The
dot-dashed lines are pure three-body calculations without the
couplings to the partitions (n,d,3He) and (p,d,BH), which are
given in § 3.2.2 (with no absorption effects).. In the cross
section, the MTCC results represented by the solid lines are
better than the result of the pure three-body model and
reproduces the experimental data well up to eCM: 1500. On the
other hand, in the analyzing powers, the fits to the data are
still poor, but the MTCC effects are seen to give rise to notable
oscillations that can not be seen in the pure three-body
calculations. The MTCC effects are evident at large angles and

are caused by the processes such as shown in Fig. 15(b), which
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are inhernt in this model. These facts mean that it is
necessary to include the couplings among the three-cluster
partitions (n,p,a), (n,d,3He) and (p,d,3H) in order to reproduce
the experimental data, especially those conspicuous
diffraction-like patterns in the analyzing powérs.

The fits to the experimental data are rather poor for the
tensor analyzing powers. In order to assess the quality of the
fits to the data, it is important to remark two limitations in
the present calculation. One is the practical limitation dug to
the use of the simplified two-cluster interactions. The other is
fundamental that is concerned with the limitation of the MTCC
model. First, we consider the former problem. As mentioned
previously, for the coupled (Nz,a) and (d,A) system we utilize
for simplicity a potential which is obtained by fitting only the
p-a elastic scattering. In a full scale investigation, we should

adopt the interaction which reproduces all available experimental

data on N2+a scattering. To see to what extent the present
potential can reproduce the scattering data of p+a - d+3He and
3 3

d+ He » d+ He, we compare the result for the excitation function
=]
of the d+3He > d+3He scattering at 90 (CM) with the experimental

data41)

in Fig. 19. The fit to the data is not good above
Ep(Lab) ~ 5 MeV. A similar situation exists for the p+a - d+3He
scattering also. For the (N,d) and (N,A) system, we also use the
simplified potentials. 1In each of them, we consider only one

3H (3He) or o, and

partial wave which supports the bound state
therefore a number of partial waves which seem to exert important

influence on the sacttering state are missing, for example, the
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483/2 wave for the (N,d) system, or the 381 wave for the (N,A)
system. All these facts mean the importance of improving the
two-cluster interactions. |

We examine the other limitation which is inherent in the
MTCC modl. Although the model can describe three-cluster
processes where various three-cluster partitions are coupled to
one another, it can not incorporate some physically important
processes that are possible even within the limitation of the
two- and three-cluster coupling model. These are the sequential
transfer processes, a typical diagram of which is shown in Fig
20. If we succeed in incorporating systematically these
processes into the MTCC model, the d+a states in particle channel
1 and 5 are unified. This can be explained in Fig. 20. The
process corresponding to the left-hand side of the dashed line is
involved in 254 in the MTCC processes, but the process
corresponding to the right-hand side of the dot-dashed line is
included in 221. Hence, the d+a state between the dashed and the
dot-dashed lines should be uniquely defined. This will eliminate
the restriction in the MTCC model, expressed by Eg. (4.14). In
other words, a new coupling scheme between the three-cluster
partitions (n,p,a) and (n,d,3He) is introduced via the d+a state
between the dashed and the dot-dashed lines in Fig. 20, which is
expected to cause conspicuous influence on the elastic scattering
observables. The next subsection will be devoted to the
consideration of such an extention of the MTCC model.

Summing up the application to the d-a elastic scattering,

MTCC effects are clearly shown at large angles in the cross
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section and the analyzing powers. To reproduce the experimental
data, it is necessary not only to improve two-cluster

interactions but also to extend the theoretical framework of the

MTCC model.



4.3 An extention of the MTCC model

A physically important diagram missing from the MTCC model
is the process of sequential transfer. In Fig. 21, we show a
typical diagram for the MTCC model of Fig. 9. Since we observe
Rule 2, the only possible process is the exchange of one cluster
at a time back and force between the interacting pair and the
spectétor, but never the process in which two or more particles
are exchanged in one direction as shown in Fig. 20. Theses
sequential transfer processes may have important influence on
scattering observables for some reactions.

In this subsection, we describe the method which enable us
to incorporate sequential transfer processes into the MTCC model
within the two- and three-cluster approximation. We name such an
extension of the MTCC model the Multi Two- and Three-Cluster
coupling (MTTC) model. The general description éf the method for
the system of six nucleons has been given in Ref. 42. Here, we
restrict ourselves to a typical type of sequential transfer
processes as shown in Fig. 20, where the d+a state intervene
between two successive particle exchanges. As discussed in §
4.,2.2, this type of processes is expected to remove the
restriction in the MTCC model expressed by Eqg. (4.14).

First, we investigate the basic assumption which causes this
restriction. As mentioned in § 4.1, in Fig. 11, the d+aq state is
included in both process (a) and process (b). The o particle in
process (b) can break up into n and 3He, while in process (a) it

can not. This restriction imposed on the spectator a in process
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(a) is due to Rule 2. Now, let us introduce a process where this
spectator o breaks up into n and 3He. This is shown in Fig. 22,
"where the neutron is exchanged between the o particle énd the
interacting. pair (p,n). This process can be decomposed into
process (a) and process (b) in Fig. 23, where (n,p)b represents
the deuteron and (n,p)C the continuum states of the interacting
pair (p,n). Here, it should be noticed that physically process
(a) is the same as a part of Z65 in the MTCC model, which is
shown in Fig. 24. To be consistent with the inclusion of 265’
and to remain within the two- and three-cluster model, we should
allow process (a) in Fig. 23. If we identify (n,p)b and ¢ in-
Fig. 23 (a) with d and the bound state of (n,3He) in Fig. 24, we
can treat this diagram in exactly the same manner as the allowed
diagrams. The process of Fig. 23 (b) can not be treated in the
three-cluster model, because it contains a four-cluster diagram.
All of the above considerations hold Similarly for the spectator

d in Fig. 11 (b). Thus we replace Rule 2 by the following rule.

Rule 2' All vertices with continuum states of the

interacting pair as daughters are forbidden.

Under this rule, together with Rule 1, we can introduce
sequential transfer processes as shown in Fig. 20 within the two-
and three-cluster coupling model. This unifies the d+o states in
particle channel 1 and 5 in the MTCC model depicted in Fig. 9.

In order to implement the above idea, the re-definition of

channels is necessary. The inclusion of the process in Fig. 23
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(a) raises the problem of double counting, because this process
is the same as a part of 265 in the MTCC model. 1In the MTCC
model, this problem is settled by imposing Rule 2, since then the‘
process in Fig. 23 (a) becomes forbidden. In the MTTC model, it
is resolved by the following re-definition of channels. Let us

write again the definition of particle channel 1 and 5 in the

MTCC model,

(N2,N3) + qQ (particle channel 1) ,

(N ,A ) + d (particle channel 5) ,
where the parentheses indicate interacting pairs. These channels
are replaced by

(N, N3) o+ «a ( channel 1_ ) ,

(N ,A )c + d ( channel SC ) ’

d + a ( channel 7 ) ’

where ( N2,N3 )c and ( N , A )c denote only the continuum

states of interacting.pairs (N2,N3) and (N,A) respectively.
Other channel are the same as in the MTCC model. By extracting
the d+oa state from both particle channels 1 and 5 in the MTCC
model, the possibility of double counting is removed.

By imposing both Rule 1 and Rule 2', and by using the
re-defined channels, we can describe the MTTC processes in the
same manner as Eg. (4.3) in the MTCC model. 1In solving the

equation, the differences from the MTCC calculation are the use
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of the propagator of re-defined channels 1c’ 5c and 7, and the
use of two-cluster verticies o - N + A and d - N2+ N3. These
quantities are obtained by the following procedures. Let us
symbolize the above verticies by P »- Q + R. First, we introduce

the separable representation of a two-cluster potential between Q

and R for angular momentum eigenstates,

Vip', p) = X g(p') g(p) , (4.23)

from which it follows

t(p',p ; Vs) = g(p') T(/s) g(p) (4.24)

Here s is the square of the two-body total energy in the CM

system, and

2 -1
_ -1 > g(p)
T(/s) = A - [ dpp — , (4.25)
Vs-B(p)+ie
where E includes the rest mass. The t-matrix is determined by

fitting the scattering data corresponding to the Q+R scattering
as well as reproducing the bound state energies of Q and R.

Then, we decompose it into the bound state pole part t, and the

b

continuum state part tc’

p * t ’ (4.26)

and express both tb and tc in separable forms:
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t, = £(p') rb(/E) f(p) (4.27)
where

Tb(/E) = 1/(/s + ie - m) (4.28)

The continuum state part tc is defined by Egq. (4.26). In

general, its separable representation requires a multi-rank form,

to = I Py(e") o) (/5) nyp) . (4.29)
These eguations define the propagators Th and T and the form
factors f(p) and hi(p), which are required as inputs to the MTTC
calculation.

Thus we can incorporate sequential transfer processes as
shown in Fig. 20 in a consitent manner. In general, the MTTC
model can include all possibble processes within the limitation

of two- and three-cluster coupling model.



§ 5 Summary and conclusions

In this paper, we propose two alternative versions of
connected kernel theories of nuclear reactions, which are called
the MTCC model and the MTTC model. In these models, various
reaction processes, elastic, inelastic, rearrangement and breakup
processs, are treated in a unified manner in compliance with the
unitarity requirement. In the MTCC model, the scattering
processes are represented by a superposition of three-cluster
processes where a number of important three-cluster partitions
are coupled to one another. Each of the three-cluster partitions
is treated as a Faddeev system and is coupled to others via
two-cluster rearrangement processes. Other reaction processes
that are weakly coupled to the scattering state can be
incorporated into the two-cluster processes as absorption
effects. By the use of multi-channel two-cluster interactions of
separable form, we formulate these processes in a set of
one-variable integral equations for reaction amplitudes similar
to the Amado-Lovelace form. The MTCC model is an important
extension of the three-body Faddeev approach in that it can treat
a wide class of nuclear reactions. It has the advantage over the
existing N-body connected kernel theories in that it is
practicable. The MTTC model, an extension of the MTCC model,
includes the process of sequential transfer so that it can treat
all possible processes within the limitation of the two- and
three-cluster approximation.

The simplest application to nuclear reactions of the MTCC
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model is the calculation of scattering processes in which only
one three-cluster partition is considered, but with absorption
effects in two-cluster subsystems. This an immediate extension
of the three-body Faddeev approach and we name it the absorption
model. In §8 3 and 4, we apply the absorption model and the MTCC

model to the d-a elastic scatterings at E 21 and 56 MeV. We

a-
choose these scatterings for the following reasons. The d-o
scattering at relatively low incident energies (E < 20 MeV) have
been studied well in terms of Faddeev formalism, where the
scattering processes are represented by the three-cluster
partition (N,N,a). This model has succeeded in explaining
surprisingly well the cross sections and analyzing powers at low
energies. However, at higher energies, there have been only a
few limited analyses since the effective approach has not yet
‘been established. This is due to the fact that at higher
energies various reaction channels are open, and for realistic
analyses it is necessary to incorporate the effects of these
channels in addition to the deuteron breakup. Indeed, the data
for analyzing powers at 56 MeV show the conspicuous
diffraction-like patterns that is expected to be caused by the
coupling to wvarious reaction channels. Thus, while at 21 MeV we
can check our models by compafison with the previous results of
pure three-body caléulations, at 56 MeV we can investigate the
many-body effects reflected in the scattering observables
according to our sophisticated models.

In the analysis of the absorption model, we take the

three-cluster partition (N,N,a). As expected, at 21 MeV the
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absorption model reproduces the experimental results well and
improves previous three-body calculaons. However, at 56 MeV the
absorption model can not reproduce the notable structures of
analyzing powers as seen in the data, although absorption effects
are apparent at large angles. The cause of such disagreement
with the data should be ascribed to the basic assumption of the
absorption model that the scattering state are represented by one
three-cluster partition (N,N,a), and that the effects of other
reaction processes are weak enough to be incorporated into the
(N,a) subsystem as absorption effects. There are evidences that
the three-cluster partitions (n,d,3He) and (p,d,BH) are strongly
coupled to the scattering state at higher energies. For example,
the reaction cross sections of p+a -+ d+3He above the threshold
amount to 50 per cent of the total reaction cross sections of p+a
scatterings. This fact suggests that we should take the
three-cluster partitions (n,d,BHe) and (p,d,3H) into
consideration to reproduce the experimental results at 56 MeV.
The MTCC model enables us to treat these three-cluster
partitions explicitly. Since the main aim in the present
MTCC calculation is to investigate the effects of the coupling to
the three-cluster partitions, we utilize simplified two-cluster
interactions for coupled Faddeev systems (n,d,3He) and (p,d,3H).
The results of preliminary calculation for the d-a elastic
scattering at Ed= 56 MeV exhibit notable oscillations in the
tensor analyzing powers, and the coupling effects to the newly
added three-cluster partitions are clearly seen at large angles.

These facts indicate that it is indispensable to include the
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couplings among relevant three-cluster partitions for the
analyses of the d-a scattering in this energy region to be
realistic.

A physicaily important diagram missing from the MTCC model
is the process of sequential transfer. In § 4.2.3 and § 4.3, we
show that the introduction of seguential transfer processes
amounts to inducing new coupling shemes between three-cluster
partitions in the MTCC model. For certain reactions, it can
exert an important influence on scattering observables. This

can be accomplished in the MTTC model.
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Appendix A

Non-orthogonality terms and effective interactions

For simplicity, let us consider the case of two coupled
rearrangement channels such as the (N,c) and (d,3He) channels in
the N-o scattering. The Hamiltonian of the system can be

expressed as
H = Hi + Vi + Ki ’ (A.1)

where Hi is the cluster-internal Hamiltonian, Vi is the
cluster-external interaction, and Ki is the relative kinetic
energy operator between the center-of-mass of two clusters in
channel i. Let X5 be the eigenstate of Hi with the eigenvalue

e, - By assumption, the wave function ¥ of the system is

expressed as a superposition of X4 and Xo*
¥ = W1X1 + wZXZ . (A.2)

Substituting Eq. (A.2) into the Schrodinger equation (H-e)¥ =0,

we find the following set of coupled equations for w1 and wz:
[(e—e1)—K1]|w1> = V11!w1> +V12Iw2> ’
[(e_ez)_K2]|w2> = V21IUJ1> +V22]w2> , (A.3)

where we have defined the 2%x2 coupling interaction V by
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V11= (X1,V1IX1)I V22 = (XZIVZIXZ)' (A.4a)
Vgl =(xqlH-elxpuys Vgl =(xylH-elxqy>,  (2.4b)

where V12 and V21 are non-local. The interaction V defined above
is manifestly hermitian. It is important to realize that V12 and
V21 contain the non-orthogonality terms. Equation (A.4b) can

be rewritten as

V12|w2> =(X1IV21X2w2>_(X1,[(e—ez)“Kz]IX2w2>r (A.5a)

Vor > =061V, Ixqv>-(x, | [le=e ) K T x 0>« (A.5b)

The non-orthogonality terms are the second terms on the
right-hand sides. Notice that they contribute only off the
energy shell. Since y, and x, are two-cluster states of
different compositions, their overlap becomes null at the
asymptotic region. Therefore, the non-orthogonality terms are of
short range, and so is the coupling interaction V without the
Coulomb interctions. From Egs. (A.3) and (A.4), we obtain the
following Lippmann-Schwinger equation for VY:

y =9 + G, V VY , (A.6)

0

where



1'4 = 0] = (A.7)

¢1 being the incident wave in channel 1. Here, Go(e) is diagonal

and is given by

( Gé1)(e) )
G (e) = (A.8
0 0 Géz)(e) '
where
c{i) ey = [(e-e,)-K.+ ie] ] (A.9)
0 i) Ky - .

Had we defined the coupling potential in terms of the
cluster-external interactions alone without the non-orthogonality

terms, then we would have obtained, instead of Egq. (A.3},
[(e-eq)-KyT]b >+ (x| (emey)-Ky[xpu0= Vyq o> +W o e
[(e-ey)-KyT Uy o+ (xy] (emey ) =Ky lxqby>= Wog[by> Voo luy>

where the coupling interactions are

Wiplv =0 Vo Ixgy>  and Wy, Jwy =0 |V Ixg0e>
Notice that the non-orthogonality terms now appear on the

left-hand sides. Thus, the "free" Green function acquires

non-diagonal elements. Besides, the coupling potential on the
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right-hand sides of the above equations is non-hermitian. In
contradistinction to this, we have transferred the burden of the
non-orthogonality of X1 and X2 to the off-shell property of the
coupling interaction in Egs (A.3) and (A.6). In fact, the
non-orthogonality terms should be regarded as a part of the
coupling interaction since they arise due to the overlap between
X1 and X5 e This makes the free Green function diagonal and the
interaction hermitian. Since the non-orthogonality effects are
already in the off-shell part of the interaction, we should treat
X1 and X, as if they were orthogonal to each other in order to
avoid double counting. We might simply say that we have chosen

the representation in which and are orthogonal.
X1 X2



Appendix B

Separable optical potential with coupling effects

In this appendix, we derive~Eq. (3.2) and prove that

topt 11

_ (1)
b = 0q G T (e) Vet

where the "optical potential" VOpt is given by

- (2) -1 (2)
Vopt™ Vi1* Vyoll- Go(@)Vyo] = Gym (@) vy,
Using Eg. (2.5) here, we find
Vopt = AMay> [T+ A<g,]e>] <g,]

where

g5 = [ 1-2 6{? o) g, 1776( P (e) g,y .

Equation (B.4) leads to the following integral equation for

.

lg> = Géz)(e)[g2> + A Géz)(e)lgz><92|€> .

From this we find

<g215> = [ 1-) <g2]Gé2)(e)]g2> ]_1<92|Gé2)

(e)]g,> .

= t,,. From Egqg. (A.6), we eliminate channel 2 and obtain

(B.1)

(B.2)

(B.3)

- (B.4)

| &>

(B.5)

(B.6)



Substituting this expression into Eg. (B.3), we obtain

= lg1> A (e) <g1| (B.7)

Vopt opt

with

1

- <92lGé2)(e)lgz> 1. (B.8)

Aopt(e) = [ A
This is Egq. (3.2). ©Now, using Eq. (B.7), the Lippmann-Schwinger

equation

- (1)
topt = Vopt * Vopt G0 (&) toop (B.9)
is easily solved, and the result is
_ -1 (1) -1
Eopt = 199> [ Agpp(e) = <gq[Gy "(e)[gy> 17 <gy]
= Jg,> [ A7 I et (e)lg.> 17T<q, | (B.10)
= 19 Tio, 91l 91 EAR :

This proves the assertion made near the end of § 3.1.



Appendix C

Unitary relation in the MTCC model

In this appendix, we derive the unitarity relation in the
MTCC model for the d-a scattering depicted in Fig 9. The
derivation is based on Ref. 43. We start from the matrix form of

Eg. (4.3), namely

X(E) = Z(E) + Z(E)1(e)X(E) , (C.1)

where E is the total energy and e represents the energy of
two-cluster subsystems which is related to E by energy
conservation. The square matrices Z(E) and t(e) are symmetric,
which follows from the symmetric properties of Born amplitudes

and propagators:

Zo5(dysdg7 E) = Zg (35,85 E) (C.2)
Tas(e) = TBa(e) . (C.3)

Hence, from Eg. (C.1) we obtain
X(E) = Z(E) + X(E)T1(e)Z(E) . (C.4)

Both Egs. (C.1) and (C.4) can be solved for Z(E) to derive

Z(E) = X(E) [1 + T(e)X(E)] (C.5)

- 71 -



and

Z(E) = X(E) [1 + X(E)T(e)]_1 . (C.6)

We now let E'=E+ie in (C.5) and E =E-ie in (C.6), and subtract

the equations with the result

2(E¥)-2(E”) = X(EM)[1+1(e)x(E¥) ]

1

- [1+X(E7)1(e” )]  X(E7) . (C.7)

Multiplying (C.7) from the left by [1+X(E )t(e )] and from the

right by [1+1(e")X(e¥)]1, we finally have

X(EY)-X(ET)

[Z(ET)-Z(ET)] + X(E )t(e )I[Z(ET)-Z(E7)]

[Z(ET)-2(E7) It (et)x(ET)

+

+

X(ET)[t(eT)-1(eT)] X(EV)

+ X(ET)1(eT)[Z(ET)-2(ET) It(e™)X(ET) . - (C.8)
Now we limit ourselves to the case that the total energy E is
below the lowest three-body breakup thresholds. Then, Z(E+) and
Z(E ) are real:

z(EY) = Z2(E7) = Z(E) . (C.9)

Therefore Eqg. (C.8) is reduced to
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X(EY)-X(ET) = X(E)It(ef)-1(e”)] X(E") . (C.10)

Here, we take matrix elements of Eq.

(C.10) in momentum space

into explicit consideration, then

Xog(8qrdg7 BN -X 0 (& ,Ggi ET)

- Zsfda Koy (dqrd7 BT) [T (E'= h?q®/2uY)-1_ o (E"-h?q?/2u")]
Y

(C.11)

Now, we impose another restriction that no two-body channels are

open except the d+o channel at energy E. From Eq. (C.11) it
follows that

> > + > > -
= -m I elag) Jaog X, (@, 807 BT) X 5(&;, 85 BT, (C.12)
Y="1.

where we denote by ao the incident relative momentum between d

and o, and p(qo) is defined by

olay) = u' g, /h? (C.13)

*

Using the fact that Z(E) is real and that XQ B(E—)' we

+
B(E )= Xa
obtain



* > > _4 > >
plgag) fdﬂao X a'dgrdgi E7) X g(dg,qgi E

*y . (C.14)

Thus we obtain the unitarity relation (C.14). From Eg. (C.14)

we can derive

Im (X +X_ ., +X

11+%15%X5¢+¥X55)

|2 + | Xo, +X

51*¥551° 1 (C.15)

= -7 p(qo) fano { |X11+X15

where the labels for momenta are suppressed. From Eg. (C.15) the
expression Eg. (4.14) for the d-a elastic scattering cross

section follows.



Appendix D

Definition of isospin states and symmetric properties of Born

amplitudes and propagators in the MTCC model for the d-o elastic

scattering

To derive the symmetric properties expressed by Eqg. (4.15),
we consider explicitly the isospin states in particle channels
depicted in Fig. 9. Let us denote the isospin state in particle
channel j by [Ij>. The states le> (j=1,6) are defined as

follows.

1,0 = ~ { (ap)a - (pn)a ] (D.1)
V2

1,> = —L— [ (pa)n - (na)p ] (D.2)
V2

1> = == [ (na)p - (pa)n I (D.3)
V2

1, = [ (@ 3#e)n - (@ *H)p ] (D.4)
v 2

|I.> = —— [ (PHe n)a - (PH p)d ] (D.5)
V2

1,5 =——1 (n &% - (p )71 ] (D.6)
V2

Here, two particles inside the parenthesis indicate the
interacting pair and another particle is the spectator, according
to the definition of particle channels depicted in Fig. 9. From

the definitions (D.1), (D.2) and (D.3), we can derive the isospin
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coupling coefficients included in the Born amplitudes Z12 and

Z13:

<IqlT,> =1 R b . (D.7)

These relations, together with the identity of nucleons N2 and

N lead to the symmetric property for the Born amplitudes:

3’

(D.8)

Next, the overlaps <I,'I,> and <I3]I4> included in the

propergators Tog and LEY respectively are explicitly shown as

<12|I4> = —%f [ <(pa)n](d3He)n> + <(na)p](d3H)p> ] (D.9)
V2

and

<I|I,> = —%f [—<(pa)nl(d3He)n> - <(na)pl(d3H)p> 1. (D.10)
3174 /2
from which it follows that

(D.117)
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Table 1
The state (21’j) of the N-a channel, and the values of 22 and the
potential parameters that reproduce the p-o phase shifts and

absorption coefficients of Refs 29 and 30. For 81, 62, k and A,

see Egs. (2.5), (3.1) and (3.3). For the second component in Eqg.

(3.1), K is understood to have the dimension fm 2(¥27%1)

(2,,3) b, B (tm) B, (fmh) " A(MevEm™ (Z1+1)
s 1/2 2 1.5711 1.8641 0.98227 -13683

b 3/2 1 1.6326 2.5726 0.39775 ~4201.3

b 1/2 1 1.3240 0.65885 0.60572x10"° -620.25

d 5/2 2 2.9940 1.3015 0.54632x1073 -0.12858x10/
da 3/2 0 2.8033 2.4166 0.29224x1073 ~0.55874x10°
£ 7/2 3 2.2255 1.3723 0.37643%x10° 3 ~0.19468x10"
£ 5/2 3 1.6560 1.7831 0.82947 ~0.22683x10°
Table 2

The values of the potential parameters of coupled 281/2—4D1/2

partial waves in the (N,d) system. The first channel is assigned
to the 281/2 channel and the second to the 4D1/2 channel. For
61, 82, k and A, see Egs. (2.5), (3.1) and (3.3). For the second
component in Eg. (3.1), kx 1is understood to have the dimension

fm“z(/@z—gl).

s1<fm‘1) Bz(fm_T) < A(Mevem™ (1+1),

4.1332 1.3488 0.44437 -5305.4




Table 3

The values of the potential parameters of 1SO partial wave in the

(N,A) system. For B,s By, Ay and A,, see Egs. (4.22) and (4.23).

1 1 1 1

81(fm_ ) Bz(fm— ) k1(Merm_ ) Kz(Merm— )

0.36956 0.38028 -84.713 68.025




Figure captions

Fig.

Fig.

Fig.

Fig.

Fig.

1

The compex z plane into which the Riemann surface of a
two-channel t-matrix is mapped. The parentheses
indicate whether k1 and k2 are positive, nagative,
imaginary or negative imaginary, respectively. The
numbers in each square bracket denote the gquadrants to
which k1 and k2 belong in each complex plane.
The N-o pase shifts and absorption coefficients obtained
by the parameter values listed in Table 1. The dots are
the data points of Ref. 29. For the d3/2 state, the
triangles and the squares are the data taken from
Ref. 30.
The d-a elastic scattering cross sections and vector and
tensor analyzing powers at Ed(Lab)=21 MeV. The
experimental points are taken from Ref. 35. The solid
lines are with full effects of absorption and the Pauli
exclusion. The results without absorption effects are
given by the dashed lines, and those without the Pauli
exclusion are shown by the dot-dashed lines. The NN
potential utilized is the YY7 of Ref. 32.
The results for the d-o elastic scattering at Ed(Lab)=56
MeV. The data are taken from Ref. 16. See the caption of
FIg. 3 for other details.
Comparison of the results for the d-o elastic scattering
at E_ =21 MeV calculated by using the YY7 and YYO

d
potentials. The results are shown by the solid and



Fig.

Fig.

Fig.

Fig.

Fig.:

Fig.

Fig.

Fig.

Fig.

Fig.

15

dashed lines, respectively, for the YY7 and YYO.
Comparison of the results for the d-q elastic scattering

at E_=56 MeV calculated by using the YY7 and YYO

d
potential. See the caption of Fig. 5.
Comparison of the results for the d-o elastic scattering

at E. =21 MeV calculated by using the YY7 and 2T4

d
potentials. The results are shown by the solid and
dashed lines, respectively, for the YY7 and 2T4.

The results of the d-a elastic scattering without the
f-waves in the (N,a) subsystem (dashed lines) are
compared with those including the f-waves (solid lines)
at Ed(lab)=56 MeV.

The schematic diagram of the MTCC model as applied to a
simplified model of the d-a scattering. For detailed
explanation, see the text.

The diagramatic representation of Eg. (4.3). For
detailed explanation, see the text.

Two-body processes involved in the (d,a) system in (a)
particle channel 1 and (b) particle channel 5 of Fig. 9.
A lowest order diagram of transition from particle
channel 1 to 6.

The lowest order two-body process for p+oa - d+3He.

Two possible processes obtained by repracing the
two-body process p+o - d+3He in Fig. 12 by Fig. 13. The
vertical lines connecting two particle lines represent

interactions. The time runs from left to right.

The lowest order diagram from particle channel 1 to



Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

Fig.

16

17

18

19

20

21

22

23

24

particle channel 1 (process (a)) and from particle
channel 5 to particle channel 1 (process (b)).

The phase shifts of 2S and the mixing parameters in

4
1/2

which are obtained by the parameter values listed in

1/2

the‘coupled 28 D1/2 partial waves of N-d scattering,
Table 2. The dots are the data taken from Ref. 39.

The N—3He phase shifts of 1SO partial wave obtained

by the parameter values listed in Table 3. The dots are
the data points of Ref. 40.

The results for the d-o elastic scattering at Ed(Lab)=56

MeV. The solid and dashed lines correspond to two
possible choice of the sign of Tog- The dot-dashed line
are pure three-body calculations given in Fig. 4 (with
no absorption).

)3

The differntial cross sections for 3He(d,d He at the

center of mass angle 90.0 , obtained by the simplified
potential for the coupled (Nz,a) and (d,A) system, which
is mentioned in § 4.2.2. The solid circles are the data
taken from Ref. 41.

A typical diagram for a sequential trnsfer. The time
runs from left to right.

A typical diagram of the MTCC process of Fig. 9.

An example of diagrams which includes breakup of the
spectator qa.

The process of Fig. 22 is decomposed into process (a)
and process (b).

A part of the processes included in Z65' See Fig. 9 for

particle channels.
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