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     Two alternative versions of practicable connected kernel

theories of Ynuclear reactions are proposed. The basic assumption

is that the state of a many--body system can be approximated by a

superposition of two- and ' three-cluster states corresponding to

various possible reaction processes. The approach is based on

the concept of transitions due to particle exchange as in the

Amado-Lovelace (AL) forrnalism. All Å}mportant three-cluster
partitÅ}onS can be incorporated via multi-channel couplings in

two-cluster subsystems. The simpler of two models, which is

called the Multi Three-Cluster Coupling (MTCC) modeÅ}, is a direct

extension of the AL forrnalism. Using the sepascable

representation of two-cluster potentials, the AL type coupled

equations among reaction amplitudes are postulated. The basic

assumption in this model, as well as in the AL and AGS theories,

is shown to contain some degree of inconsistency regarding the

treatment of bound state pole parts of interacting pairs. This

is remedied in the other model, which we call the Multi Two- and

Three-Cluster coupling (MTTC) model. This model can treat all
                                                    'possible processes within the limitation of two- and

three-cluster approximation.

     In the first stage of the application to nuclear reactions,

we emp!oy a simpler version of the MTCC model that is represented

by only one three-cluster partition, but that involves absorption

effects in the two-cluster subsystems. We name it the absorption

model. The absorption model and the MTCC model are applied to



                               = 21 and 56 MeV. The results ofthe d-or elastic scatterÅ}ng at E                              d
the analyses suggest that the explicit couplings among the
three-cluster pgrtitions (n,p,or), (n,d,3He) and (p,d,3H) give

            vrise to the conspicuous structures in the tensor analyzing powers

at 56 }4eV that have not been resolved by any other reaction

theories.
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g l Introduction

1.1 General scope of three-body and many-body scattering
           '
     theories

      Conventional nuclear reaction theorÅ}es such as the
                                                          '                  'Distorted Wave Born Approximation (DWBA) and the Coupled Reacton
                    ' '
Channel (CRC) method have been applied successfuUy to reactions

that are essentiaUy describable as two-body problems with
phenornenoiogicai opticai potentiaisi'2'). These treatments iose

theÅ}r validity Å}n reactions where processes more' complcated than

two-body are strongly coupled, because such processes cannot be

treated in terms of the two-body Lippmann-Schwinger (LS)

equations even if optical potential parameters are

phenomenologicaUy adjusted.

     Xn order to treat nuclear reactions as three-body problems

but stiU within the conventional treatments, two approaches

based on the CRC method have been proposed, which are called the
Coupled continuum Channel method3), and the Coupled DÅ}scretised

continuum channel method4). However, as shown in Ref. sr in

these approaches, either a model space must be assumed or some
sort of an L2 discretization has to be introduced in order to be

able to solve a three-body LS equation. As is made clear Å}n Ref.

5, such procedures either do not give a convergent solution, .or

else affect breakup amplitudes in a serious manner by destroying

phase relations among three particles. Futhermore, in these

conventional treatments, there can be no rearrangement channel

components in the asymptotic region. In other words, the
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three-body LS equation can not satisfy all possible three-body

boundary condÅ}tÅ}ons. This fact is closely related to the

non-unÅ}queness problem of a single three-body LS equation (a

revÅ}ew of tbis problem is given in ReÅí. 5). To obtain a solution

which satisfies all three-body boundary conditions correctiy in

compliance with the unitarity requirement, the theory must be
founded on the Faddeev formalism6) or some equivalent connected

kernel theories7).

     The quantum theory of scattering of three-body systems based
on rÅ}gorous mathematical treatments was eatablished by Faddeev6).

Since then, this theory has been extended by many authors7). xn

particular, Alt, Grassberger and Sandhas (AGS) treat scattering

amplitudes directly in operator form, and obtain a set of coupled
Å}ntegral equations for amplitudes with the Faddeev kernel8).

These theories have been applied successfuiy to three nucleon

problems, but there have been only a few application to nuclear
                                              9Nl3)reactions. For example, the analyses on d-or                                                    scatterings

have revealed a lot of reaction mechanisms which are inherent in

many-body scattering processes. However, the theory has been

applied only to reactions where the scattering states can be

approximately described by only one three-cluster partition, and

where each of the three clusters can be regarded as inert. This

restriction is due mainly to the fact that practical methods of

treating efÅíects other than purely three-body partition have not

been established.

     Obviously, we must develop a theory that can meet the

curyent interests in remarkably advanced experiments that concern
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with such many-body effects. Let us compare, for example, the
result of a purely three-body'  Faddeev ca!culation14) with the

experimental data on the tensor analyzing powers in ct(a,d)or
                                                               '
mesgred at Ed=2o Mevi5) and s6 Mevi6). At both energies, optical

model analyses demand strong tensor terms Å}n the potentÅ}als which

exceed the fplding model values.' The a'uthors in Ref. 16 describe
                                                    '
that the tensor potential at 56 MeV is roughly in accordance with

the one at 20 MeV. They suggest that the anornalies in both cases
are of the same physicai origins. However, our ana!ysesi4) with

no adjustable parameters at the same energies yield aifferent

conclusions. The observables at 20 MeV are well reproduced by

the three-body model represnted by the partition (N, N,od.

However, the da' ta for tensor analyzing p6wers at 56 Mev are n6t

reproduced at aU by thÅ}s model. This fact raeans that the

structures in the tensor analyzÅ}ng powers at 56 MeV reflect the

more complex mechanisms than the purely three-body one. This
                                                         'shows that we have to construct approaches more sophisticated

tha'i either the Faddeev or the conventional ones.

     There exist the so-called N-body connected kernel
theories17'18) that are the generalizations of the three-body

Faddeev formalism for many-body systems. These theories,

howeveac, are difficult to apply to nuclear reactions because of

their complicated representations. Some efforts have been made

to generate' effective approximation schemes to these theories. L

Greben and Levin reduce the Channel Coupling Array (CCA)
                                              '      18)         , one of the many-body scattering theories, to a set oftheory

two-body equations and assess the validity of the DWBA and CRC
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schemesi9). They introduce the bound state approximation into

the channel Green functions to avoid disconnected diagrams.

Thusr breakup effects can not be incorporated. Without the bound

state apprxi.mation, the CCA equation can not be solved. Hence it

seems hard to extend it to more complicated scatterings.
                                                             20)     Another approximation scherne has been proposed by Redish

based on his connected kernel equations. He decomposes the

equations into a hierachy of nested equations in increasingly

many variables. The first equation is a set of LS equations

coupling together all two-cluster channels, the second is a

two-variable integral equations for the effective interactions

appea]ring in the first equation, and so on. The hierachy can be

truncated at any level as one wÅ}shes, and particular partitions

can be selected within each level. This treatment offers a fÅ}ne

perspective of the many--body scattering and provides a frafnework

for extending usual direct reaction pictures. However, here

again, for realistic analyses, it seems inevitable to introduce

further approximations or effective phenomenological stands.

     In view of the discussions presented above, we conclude that

a practicable yet divergence-free connected kernel method has to

be established which embodies rnany-body effects reflected in

recent experimental results in a unified manner and which

complies with the unitarity requÅ}rement.

-4-



1.2 Outline of the present work

     In this paper, we propose two alternative versions of

connected kernel theories that possess both practicabilÅ}ty and

versatility. We name these models the Multi Three-Cluster
                                                        'Coupling (MTCC) model and the Multi Two- and Three-Cluster

coupling (MTTC) model. The basic assumption is that the state of

a many-body system can be approximated by a superposition of two-

and three-cluster states corresponding to various possible

reaction processes. We intend to study those nuclear direct

reaction pxocesses that concern with a few degrees of freedorn, in

view of high experimental interests in the present-day stage

relating to three-body or, at most, four-body effects. We

utilize separable two-cluster interactions to formulate the

scattering processes in a simple set of one-variable integral

equations. This makes the formalism practÅ}cable. On this basic

stand, we introduce various three-cluster partitions in addition

to the original one in order to cope wÅ}th a wide class of nuclear

reac ti ons .
                                                  '
     In the MTCC model, various three-cluster partitions that

cause strong influence on scattering processes are explicitly

taken into accont by means of the method proposed by Ueda in his
                            21)                               . These partitions are coupled tostudy of TNN and pNN systems

one another via possible rearragement processes between

two-cluster subsystems. Each of three-cluster partitions is

treated as a Faddeev system. All reaction processes that are

expected to be only weakly coupled to the scattering state are

not considered explicitly but are incorporated into the
                                    '
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two-cluster processes as absorption effects. The conception as

mentioned above are formulated in a set of coupled integral
                                                'equations for scattering arnplitudes in a manner similar to the
Amado-Lovelace (AL) formalism22), in which transitions between

particie channels are assumed to be due to particle exchanges.

     The MTTC model is an extention of the MTCC rnodel. It

incorporates sequential transfer processes that are missing from

the MTCC as well as the Faddeev approaches. It can be shown that

such processes amount to inducing new couplimg schemes between

three-cluster partitions in the MTCC model. As a result, the

MTTC model can treat all possible processes within the limitation

of two- and three-cluster approximation.

     As mentioned above, Å}n our models, we introduce absorption

effects into two-cluster subsystems in order to simulate

weak-coupling processes or processes more complicated than

three-cluster one. However, how to treat absorption effects in

two-cluser subsytems in a three-cluster model has been a

unsettled theoretical problem. A straightforward manner to

incorporate absorption effects is the use of a phenomenological
                 23)                    . However, this method contains a seriousoptical potential

problem of not knowing how to extend the complex potential to
                                            .                 'off-shell energy regions analytically. In this regard, a

multi-channel two-body interactions has advantage. In our
                                                   'models, we introduce multi-channel separable interactions into

two-cluster subsystems. The first channel is assigned to the

two-cluster elastic channel and the second one to an inelastic

channel, and so on. We also include a dummy channel to reprsent
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the effects of various reaction channels that are not consÅ}dered
                                                              'explicitly. The t-matrix for this multi-channel interaction is

determined by fitting various scattering data to be considerd

explicitly as well as by reproducing bound state poles. In
            .
three-cluster calculations, when the components of the t-matrix

other than that of the dummy channel are utilized as inputs, it

can be shown that such treatrnent is equivalent to usÅ}ng the

optical potential obtained by eliminating the dummy reaction
                   'channel from coupled Schrb'dinger equations. Therefore, it gives

rise to absorptions.

     Our basic tool throughout the present work is a

multi-channel two-cluster interaction of separable form. This

interaction has all required properties in the MTCC and MTTC

modeÅ}, i.e. not only representing the rearrangement processes

that connect various three-cluster partitions, but also

simulating absorption effects by the perturbative treatment as

mentioned above. Furthermore, the separable representation in

the two-cluster interaction enables us to deal with a set of

sÅ}rnple one-variable integral equations. '
     The simplest version of the MTCC model is to restrict to

the initial three-cluster partition only, but with the effects of

other three-cluster partitions, together with other many-body

effects, contained in two-cluster t-rnatrices as absorption

effects. This restricted version of the MTCC model is a

relatively simple three-cluster model but it differs from the

Faddeev theory by the inclusion of the absorption effects.

Therefore, we name this model the absorption model. Thus, the
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absorption model is an Å}mmedÅ}ate extension of the Faddeev theory.

We expect the model to be applicable to a wide class of nuclear

collÅ}sions which can be characterized by three-body features.
                      .t
     In thi$ paper, we apply the absorption model and the MTCC

model to d-ct elastic scatterings at relatively high incident

energies, and discpss many-body effects reflected in the

scattering observables. The organization of this paper is as

follows. In g 2, we formulate the multi-channel two-body

t-matrix of separable form. The property of the t-matrix is

investigated in the negative energy region as well as in the

scattering region. The exclusion of the Pauli forbÅ}dden states

by the orthogonal projection method is also discussed. Further

we explain the conditions to be imposed upon the analytic

property of the t-matrix for the contour deforrnation method in

three-cluster calculations. In g 3, we describe the absorption

model as a restricted version of the MTCC model. Absorption

effects are simulated by using the multi-channel t-matrix

proposed in g 2. This model is applied to the d-ct elastic

scatterings at Ed= 21 and 56 MeV. The disagreement with the

experiments at 56 MeV forces us to introduce the three-cluster
                                              'partitions (n,d,3He) and (p,d,3H) in addition to (n,p,or). in g

4, we present the MTCC model, where the scattering processes are

represented by various three-cluster partitions. According to

the spirit of the AL formalism, it is formulated in a set of

one-variable integral equations for scattering amplitudes. We
                                                              '
apply it to the d-or e!astic scattering at Ed= 56 MeV, where the
three-cluster partitions (n,p,or), (n,d,3He> and (p,d,3H) are
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taken into

rnention the

Summary and

account explicitly. At the end of
                    ' MTTC modei as an extention of the

 discussions are given Å}n g 5.

section 4, we

MTCC model.
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S2 Two-bod se arable t-matrix with channel-cou lin effects

     Our basic tool throughout the present work is a

multi-channel two-body interaction of separable form. The

two-body t-matrix obtained by the interaction is used as an input

to three-body calcplations in the following sections. First, the

two-body t-rnatrix is derÅ}ved by solving coupled

Lippmann-Schwinger equations. Some remarks are given for the

ease that non-orthogona! channels exist. Next, we investigate

the bound state problem and extract spectroscopic factors in

channels. rn g 2.2, we describe a treatment of Pauli forbidden

states, which are projected away to infinite energy by the
                            24)orthogonal projection method . In g 2.3, the analytic property

of a multi-channel t-matrix is dÅ}scussed that is needed for the

contour deformation in three-body calculations.

2.1 Multi-channel forrnulation of a separable t-rnatrix

     We consider the system which is constructed by two cornposite

particles. The HarnUtonian of this systern is denoted by

                 H= Hct+Va"Kor t (2.1)

where Hct is the cluster-internal Hainiltonian, Va is the

cluster-external interaction and K is the relative kinetic                                 ct
energy operator between the center-of-mass of two clusters in

two-cluster partition a. First, we consider the case where no

rearrangement channels exist. Thus, there is only one
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two-cluster partition to be considered and the operators H , V
                                                          or ct
and Kct are defined uniquely. (The case when rearrangement

processes exist will be discussed later.)

     Now, we introduce a model space expanded by the eigenstates

of Hct, {lxi> l i=1,N} , which specify the internal bound states

of two clusters. Here, these states satisfy with the

orthogonality relationst

                <Xilxj> = 6ij (Å},j=1,N) . <2.2)

Hence, the problem amounts to the multi-channel two-body problem

where the channels are defined according to the internaÅ} states

of two clusters. The two-body coupling potential V is expressed

as NxN matrix, the components of whieh are

                Vij = <xil V. lxj> (i,j=1,N) . (2.3)

The Lippmann--Schwinger equation for the t--matrix of this coupled

two-body systern is represented by

                 t(e) =V+V Go(e) t(e) , (2.4)

where V, Go(e) and t(e) are NxN matrices and the matrix Go(e) is

diagonal by the requirement of Eq. (2.2).

     Now, a two-body multi--ehannel separable potential is

introducedt

                               -- 11 -



                       V= lg> X<gl . (2.s)

Here, A is the strength pararneter and lg> is the form factor

which are expressed by the column vector corresponding to the

multi-channel couplings,

                             lgi>
                             lg2>
                   lg> = •                                                           (2.6)
                        -- -                             lgN>

       '
The corRponents lgi> <Å}=1,N) describe the relatÅ}ve rnotion of two

clusters in channel Å}. For example, ior a p-or system, they can

be assÅ}gned to the channels such as p-or(the ground state) and
   *p-a (a exctted state). rf needed, higer-rank interactions can be

empÅ}oyed but we shall maintain the form of rank-1 for sirnplicity.

The Uppmann-SchwÅ}nger equation, Eq. <2.4), can be solved for the

interaction given by Eq. (2.5) so that the t-matrix is

represented by the following separable form,

                  t(e)= lg> T(e) <gl . (2.7)

Here, T(e) describes the propagation of two interacting clusters

and is given by

                           N            T(e) = ( x-i - iE.i<gilG6i)(e)lgi> )-i . (2.s)

 a)Go (e) is the free Green function in channel i,

                               -12-



            G6i)(e) = ( (e-Ei) -.Kct + ie ]-i , (2.g)

                            '

where Ei is. the sum of the internal energies of two clusters in

channel i. The summation on i in Eq. (2.8) shows the

channel-coupling effects.

     Now, we discuss an irnportant extension of this formalism to

treat a wide class of two-cluster processes. When rearramgement
                                          'channels exist, the HarnUtonian H in Eq. (2.1) must be defined to

each channel in a different rnanner. Therefore, the orthogonality

relations between internal states in the channels as given by Eq.

<2.2) are no longer vaiid. Hence, one might consider that

serÅ}ous modificatÅ}ons have to be brought into our formalism.

However, it is not necessary. The detailed explanation will be

deferred to Appendix A, and heye only the essential points are

mentioned. In this case, the coupled channel equations contain

the non-orthogonality terms, narnely the overlap integrals between

the wave functions of non-orthogonal channels which include only

the kinetic energy operators but no interactions between two

clusters. rf we define the coupling potential between the
                                                   -                                    '
channels in terms of only cluster-external interactions such as

in Eq. (2.3), then not only that it becomes non-hermitian but the

free Green function contains non-diagonal elements. Such

treatment gives rise to troubles in our approach. However, in

our point of view, the non--orthogonality terrns should be regarded

as a part of the coupling interaction. This is natural and

reasonable because they arise due to the overlaps between the
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wave functions of non-orthogonal channels. As a result of

including the non-orthogonality terms in the coupling

interaction, the free Green function becomes diagonal and the

coupling interaction hermitian. In this treatment, the two-body

t-matrix takes the usual form expressed by Eqs. (2.7)rv(2.9), and

the effects of the non-orthogonality terms are incorporated Å}nto

the off-shell components of the coupling potential V. In the

determination of the two-body t-rnatrix as an input to three-body

calculations, we take a phenomenological stand that they are

simulated by experimental data, i.e. information at on-shell

reglon.

     Next, we shall investigate the bound state problem with the

channel-coupling potential and extract a spectroscopic factor in

each channel. Here, we restrict ourselves to the case where

rearrangement channels do not exist. For the Hamiltonian defined

by Eq. (2.1), the Schrodinger equation is written down as

               (eB-Hor-Kor)IWB> = VorIYB> , <2.lo)

where eB and IYB> represent a binding energy and a bound state in

two-cluster system, respectively. Projecting Eq. (2.10) on the

i-th internal state of two clusters , lxi>, and substituting the

coupling interaction V in Eq. (2.5) into the equation, we obtain

                 (eB-Ei-K.)lÅëi> = Algi> , (2.ii)

 '
where IWi> is the i-th projection' of IYB> and the factor A is
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defined by

                          N
                    A= ZX
                         j=1

Therfore, from Eq. (2.11) the

as

                  lthj.> = AG

The factor A is determined by

              1 = <YBiYB>

where

         <wilwi> = A2 <gi} G

Here, we find that the overlap

strength of the i-th component

square root corresponds to the

component.

<gjlwj> • (2.i2)
              '
i-th component of IWB> is expressed

(Å})o (eB) lgi> • (2.13)
                                 '
the normalization condition,

                        '   N
= ii.1<th il ib i> ' (2e1 4)

6Å})(eB) G6i)(eB) lgi> • (2•is)

 <whilVi> is the probability

 of the bound state leB> and its

 spectroscopic factor of the

-- 15 --



2.2 Exclusion of Pauli forbidden states

     In this subsection, we describe a method of excluding Pauli

forbidden states in two-cluster subsystems. One of the

shortcornings in the three-body Faddeev calculation has been that

the effects of the Pauli exclusion can not be treated correctly.

Indeed, two-cluster t-rnatrices as inputs to the calculation may

have the bound state poles corresponding to Pauli forbidden

states in the nega'tive energy regiDn. However, the orthogonal
projection method which has been introduced by Kukulin et al.24)

enables us to treat two-cluster systems in the subspace which is

orthogonal to forbidden states. This method is handy in our

practice because a forbidden state can be projcted away to

infinite energy by incorporating an additional potential of

separable forrn.

    Let us consider the bound state supported by the two-cluster

separable interaction (2.5), which should be forbidden by the
         'Pauli principle. We denote this state by IYB>. Following the

prescription of the orthogonal projection method, we introduce a

pseudo-potential of a rank-2 separable form,

                 VA = lg>X<gl + IYB>A<YBI , (2.i6)
                                  '                                        '

where lg>X<gl is the original coupling potential and A is a

parameter which will be made to become infinity in the final

stage. Solving the modified Uppmann--Schwinger equation defined

by
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                tA(e) = VA +VA Go(e) tA(e) , (2.17)

we obtain the t-matrix for the pseudo-potentialr

           tA(e) =' k,Jel.il,2 lhk> TA,k2<e) `h21 s (2•ls)

where lhk> is defined by

                         lg > (k=i)
            lhk' = lwB, (k.2) , (2.lg)

and TA,kÅí(e) is the (k,2) component of the 2x2 matrix TA(e),

   TA(e)-[(t-i R-i]-[[:.lgg,`21i,gl [:.lgg[g]I:g>,]]-i.(2.2o)

Now, Turning to the limit A+co, we obtain

   T.(e)-[ (t'i g j-[:e.lgo[e.IIg; [g,,Igo[e.lie\:ij ] -1 (2.2i)

Since IWB> is orthogonal to scattering states, the introduction

pf pseudo-potential ofi (2.16) does not affect the scatteing state

at all. Therefore, the sacttering observables remain exactly -the

sarne as before. Futhermore, the bound state is shifted by A so

that by letting AÅÄco the Pauli forbidden bound state is projected
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away to

in whÅ}ch

infinity. Thus

      t (e) =
      • co              kr

 the effects of

we

Åí

Åí=1

the

can construct the two-clustr t-rnatrix,

,2lhk> Too,kse(e) `h2l (2.22)

 Pauli forbiden state are excluded.

-18-



2.3 Analytic property of a multi-channel t-matrix

                                                        '     A major difficulty in three-body calculations is the

treatment oÅí singularities of the kernel in coupled integral

equations. The rotated contour method introduced by Hetherington
and schick25) solved this pToblem, and we can perform stable

calculations on a complex integration path. However, the

succesful application of this method requires us to have the

knowledge of the analytic property of the kernel, which includes

the two-body propagator T(e) as a source of singularities.

Therefore, in order to bring channel-coupling t-rnatrices into

three-body calculations, we shall investigate their analytic

properties conditioned by the rotated contour rnethod.

    Mn the single-channel case, the analytic property of the

two-body t-matrix Å}s discussed on the complex plane of the

relative momentum between two clusters. H6wever, it is not

convenient in the case of many channels because the t-matrix is

considered as the function of channel momenta which are dependent

on one another. Therefore, we introduce another variable, as in

Ref. 26, on which the t-matrix is continued analytically. we

consider the two-channel case which is relatively simple. The

relative momentum k. between two clusters in channel i Å}s defined
                   i
by

                   k?
                    i = (e-Ei) (i=1,2) , (2.23)
                   2Ui

where e is the total energy, pi Å}s the reduced mass and Ei is the
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internal energy of two clusters in channel i. By energy

conservation, kl is related to k2 by

                     '                 kl - k2 . E2-El . (2•24)
                 2U1                        2U2

Now, we introduce the variable z defined by

              A ul/2 z = u>12 kl' + pl /2 k2' , (2•25)

                                                              'or

                                    '                                                                '             A pl/2 z-1 = vl/2 kl - vll /2 k2 r (2•26)

         '
where A is defined by

                                   '                                        '
                      A2 = 2ul(E2-El) . (2.27)

                      .. t                                       '
According to Eqs. (2.25) and (2.26), we can write

                      '
                   ' kl = A (z + z- 1' )/2 , (2.2s)

                      '                                                             'and

                                112                                         -1                  k2 =A (V2/Pl) (Z -z )/2 . (2.2g)
                                                              '                 '

Eqs <2.28) and (2.29) constitute a mapping of the Riemann energy

surface to the complex z plane..The mapping is shown in Fig. 1.

The numbers in each square bracket indicate the quadrants to ..

which kl and k2 belong in each complex plane. ,
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     Now, we discuss the condition with which the two-channel
                                  '
t-matrix has to satisfy for the rotated contour method in
three-body calculations. rn such calculations, the contour is

usually rotate' d into the fourth quadrant in the complex plane of

the relative momentum between spectators and center-of-masses of

interacting two cl,usters. Then, the energy e Å}n the two-cluster

system runs on a complex path, the imaginary value of which is

positive. Therefore, in the complex z plane, the path is mapped

into region [1,1]. As a result, the two-cluster t-matrix must be

constructed with no singurality in the region [1,1].
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g3 Three-bod AGS theor with absor tion effcts in tw-bod
ESJU2EYE!9II!EbSSteMS

     In this section, we propose a restricted forrn of the MTCC

model, where the scattering processes are represented by only one

three-cluster partition. However, it includes absorption effects

in the two-cluster subsystems. Thus this model is an immediate

extension of the three-body Faddeev approach. Thereforer We name

this model the absorption model. In g 3.1, We simulate

absorption effects in two-cluster subsystems by using the

multi-channel separable interaction proposed in g 2. In g 3.2,

the absorption model is applied to the d-ct scatterings at Ed= 21

and 56 MeV. The scattering processes are represented by the

three-cluster partÅ}tion (N,N,a). In the (N,ct) subsystemr

absorption effects are included. The Pauli-forbidden state of

sl/2 Å}n this subsystem is excuded by the orthogonal projection

method. As expected, absorption effeets are notable at Ed= 56

MeV. At the end of this section, the discrepancy between the

theory and experÅ}ments at 56 MeV is discussed.

   '
3.1 The absorption model
              '

    In addition to the N-d scattering, the three-body model can

be introduced naturally to the reactions between loosely-bound

projectiles and targets which are not easily excited. Now, let

us consider the collision bwtween the deuteron and such a nucleus

denoted by A for simplicity. The degree of freedom that should
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be taken into account first of aU is the three-body kinematics

between N, N and A, which is accornplÅ}shed by the Faddeev theory.

The problern is how to treat eÅífectively the rnany-body processes

induced by the interaction between N and A. In real scatterings,

there are two possible cases. One is that the elastic channel in

the subsystem is coupled weakly to other .reaction channels. The

other is the case where there exist sorne conspicuous channels

which bring strong reflections into the elastic one. In the

forrner case, the treatment based on the concept of the optical

model can be applied, namely the effect of reaction processes

other than the elastic one is described by the disappearance of a

part of flux from the elastic channel. However, in the latter,

the more sophÅ}sticated approaches should be introduced. Putting

off the latter to the following section, we shall investigate the

former case and formulate our absorption model.

     As rnentioned in gl, the immediate introduction of a complex

potential causes a serious problem how to extend the potential to

off-shell energy regions analytically. In this regard, the

multi-channel interaction proposed in g2 has advantage. Let us

adopt the two-channel coupling potential of Eq. (2.5). [Vhe first

channel is assigned to the elastic N-A channel, and the second to

a hybrid channel which represents all reaction channels such as

inelastic and rearrangement ones. The two-channel form factor of

the expression (2.6) is writen as
                                           .

                      Igi> vii-K lfi>
            lg> = lg2> = ,/. If2> r <3'i)
                                            '                                                 '
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where K is a coupling strength parameter. Then the two-body

t-matrix for the coupling potential can be expressed by 2x2

matrix of Eg. (2.7). The elastic component t                                                of the t-matrix                                             11
is determined in each partial wave by fitting the energy of a

bound state and on-shell experimental data of N-A elastic

scatterings. (Taking a higher-rank potential, it is possible to

reproduce plural bound states.) In the three-body equation, only

the elastic component obtained by the above procedure is utUized

in order to represent the two-body processes. This is justified

by the assumption that the coupling between elastic and reaction

channels are weak enough to be incorporated into the intermediate

states only.

     Now we demonstrate that our treatment amounts to replacing

the N-A interaction by its optical potential V                                                  and confirrn                                              opt
that it produces absorption effects in the elastic channel. From

Eq. (A.6) we obtain

          V.pt = lgi> ( A-i - <g21 G62)(e)lg2> )-i . (3.2)

                                      '
This is derived in Appendix B. Notice that the denominator of

Vopt is real below the reaction threshold while it is cornplex

above it. On the other hand, tll as an input to the three-body

equations is the same as the t-rnatrix t                                          of this optical                                      opt
potential, which is also shown explicitly in Appendix B. Thus,

we find that tll produces absorption effects in the elastic

channel.
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3.2 An application to the d-or elastic scattering

     The d-or scattering at relatively low incident energies have
been studied well by a number of theoretical approsches9N12r27>.

Among them, the three-body Faddeev calculation has been most

successful in reproducing the experimental data. Indeedr it

explains surprisingly well cross sections and analyzing powers in

breakup scatterings as well as elastic ones below Ed-"" 20 MeV (14

MeV CM). This fact means that the three-body efÅíects by N,N,or

play the main role in the energy region where or can be regarded

as inert. At higher energies, however, there have been only a
            13,28)                   and the effective approach has not yet beenfew analyses

established. This is because the situation is rather complicated

at higher energies. Aside from the deuteron breakup, the first
reaction channel 3H-3He opens at the center-of-mass energy 14.3

Mev. The second channel that opens up is the 3H-d-p channel at

19.8 MeV, which is followed by a number of individual reaction

channels. For realistÅ}c analyses, it seerns inevitable to take

the effects of these channels Å}nto account Å}n some ways. Now, we

examlne the validity of our absorption model by applying it in

this energy region. We adopt the three-cluster partition (N,N,od

as a first approximation based on the success in lower energy

scatterings. Firstr the two-body interaction in the n-ct

subsystem is constructed by the rnethod mentioned in g 3.1. Then
we analyze the elastic scatterings or(a,d)or at Ed = 21 and 56

                                 'MeV.
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3.2.1 Separable t-matrix for the N-ct subsystem.

     !n the three-body calculations, we ignore the Coulornb force

r which is expected not to exert serious influence on kinematical

regions other than the forward seattering. Furtherrnore, we

igonore the mass-difference between p and n. Thereforer we

consider the p-or system and the n-ct system as the same. Then, in
this system, we find the first reaction channel d-3He at 18.4 Mev

in cM. The p-ct* and p-n-3He channe!s closely follow it` [Po

incorporate the effect of these and other reaction channels, we

adopt the two--channe! separable interaction of the form of Eq.

(2.5) with forrn factor (3.1). Ail reaction channelS are bunched

together and are represented by a hybrid dummy channel. The

first channel is assigned to the elastic p-or channel and the.

second channel to th g dummy one. The threshold of the hybrid

channel is tixed at E2= 18.4 MeV, which is the threshold of the
d-3He channel as mentioned above. After partial wave '

decomposition, we adopt the Yamaguchi type form faetor as lfi>

(Å}=1,2) in Eq. (3.1), namely

              fi(p) = pÅíil(p2+B2., )Åíi'1 (i=1,2) , (3.3)

where p is the relative momentum and 2i is the orbÅ}tal angular

momentum of channel i. Then the input tll to the three-body

calculation contains the five parameters Xr K, Bl, B2 and 22 in

each paxtial wave. Here the orbital angular mornentum Åí2 of the

hybrid channel takes only the values which would be satisfied

with the total angular momenturn and parity conservation if the
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channel Å}s regarded as one of reaction channels. The values of

these parameters are searched to reproduce the p-or phase shifts

and the absorption coefficients at E (lab)=O to 55 MeV, in seven
                                    p
partial waves sl12, pl/2, p3/2, d3/2, ds/2, fs/2 and f7/229).

     The resulting values are shown in Table 1, and the fits to

the data in Fig. 2. It is found that the simple rank-1 separable

potential can reproduce surprisingly well the elastic scattering

data over the wide range of proton incident energies. As shown

Å}n Fig. 2, the most striking feature of the phase shÅ}fts is the

dominanee of absorption above the inelastic threshold in even

partial waves. We find that the threshold behavior of them

strongly influences on the values of 22. The notable structure

of d3/2 is due to the well-known resonance, which is of almost
pure d-3He character30). our fit to the structure Å}s

unsatisfactory but it is caused by the fact that we strain to

obtain the overall best fit over a wide energy range with a

sirnple rank-1 potential. However, we confirm that our potential

of d3/2 state has a pole in the region [1,3] of the complex z

plane defined in g 2.3. This pole is near the inelatic threshold

(z=1 and k2=O) and gives rise to the structure in Fig. 2.

     Finally, we mention the exclusion of a Pauli forbidden

state. Our potential of sl/2 supports a bound state at El=

-13.09 MeV, which should be forbidden by the Pauli principle. To

avoid such unphysical bound state, two kinds of potentials have

previously been used, i.e. a repulsive and a strongly attractive
potential9'iO). However, as mentioned in g 2.2, it is now

possible to exclude Pauli forbidden states explicitly by the
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orthogonal projection method. We adopt this rnethod and project
                                           'the bound state.of sl12 away to infinite energy.

3.2.2 The'd-a elastic scattering

     We ealculate the d-or elastic scattering in terms of the

Faddeev formalism. The scattering processes are represented by

only one three-cluster partition (N,N,or), but absorption effects

are included in the (N,or) subsytem, which is accomplished by

utilizing the t-matrix rnentioned in g 3.2.1. No Coulomb force is

included. We start with the Alt-Grassberger-Sandhas (AGS)
equation8):

        z) ij)(E-Ho) ' kZ.itkGoUkj (irjrk=1,2,3) , (3.4)       U,. = <1-6

where particle channels 1, 2 and 3 are assÅ}gned to ct(n,p), n(p,or)

and p(n,or) respectively. The use of the two-body t-matrix of

separable form enables us to reduce the AGS equation to the
                                       22)well-known Arnado-Lovelace (AL) equation :

                   Xij = Zij + kZv, Zik Tk Xkj , (3.s)

where X., and Z.. denote the scattering amplitude and Born
       1]               1]
amplitude from particle channel j to i, respectively. The

propagator of interacting pair in particle channel is denoted by

T,. Notice that the labels which specify channel states are
 i
omitted. Since we neglect the Coulomb force, channel 3 is

identica! with channel 2 except for the isospin states. Then
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Eq. (3.5) is reduced to

   [lllj.= [z:,j"(2z;, T, -:,i:T?,1 Fl" r (3t6)

where the amplitudes Ill and I12 are defined by

           Ill = Xll/2 , r12 = (X21-X31)/2 . (3.7)

The detailes of the reduction are described in ReÅís 9 and 10.

     For the two-body interaction between two nucleons, we adopt
                                       31)                                                    32)the separable interactions of Doleshall , Phillips                                                        and
                33)                   . We take into account only the coupledCahill and Sloan

33 Sl- Dl state. For the N-or subsystern, we employ the elastic

component of the two-channel t-matrix constructed in g 3.2.1

which includes absorption effcts, and in which the Pauli

forbidden state of sl/2 is excluded. .
     In numerical calculations, we utilize the rotated contour
method25) to avoid singularities of the kernel of Eq. (3.7)•

                                                               '
Some remarks due to the introduction of the two-channel t-matrix
                         '                                                             '                                                                '                                                       'has already been mentioned in g 2.3. In solving the equation, we
                           34)employ the Pade approximant .

     [rhe results at Ed(Lab) = 21 and 56 MeV are shown in Figs. 3
                                                      35)and 4. The experiments have been perforrned in Tsukuba                                                         and
RcNp16). The solid lines indicate the calcuiations in which both

effects of absorption and the Pauli exclusion are ineluded. We
adopt the yy7 potential of phiuips32) as the N-N interaction.,

                               -29-



which is rank-1 with 7 O-o deuteron D-state probability. As shown

in Fig. 3, quite good agreements with the data are obtained Å}n
                                                    'the analyzing powers as well as the cross section at Ed= 21 MeVr
which improxxe the Charnomordic's results9). However, at Ed= 56

MeV the data can not be reproduced well, especially the analyzing

powers at ecM> 900. The fact that our simple rnodel succeeds at
                                                       'Ed= 21 Mev but fails at 56 MeV indicates the need to include more

                       = 56 MeV. The details will be discussedreaction channels at E                      d
later.

    The absorption effects due to the hybrid reaction channel at

18.4 MeV (CM) in the (N,od subsystem are investigated. We

re-adjust the potential parameters and construct a single-channel

interaction which reproduces well the p-ct phase shifts but has no

absorption. The results of three-body calculations with this

interaction are shown by the dashed lines in Figs. 3 and 4. At

Ed= 21 MeVi the difference between the results with and without

absorption effects are not appreciable. On the other hand, the

effect of the coupling to the hybrid reaction channel is large at

Ed= 56 MeV. This is to be expected because no reaction channel

opens at Ed= 21 MeV, whereas the incident energy of Ed= 56 MeV,

ls well above the threshhold of the hybrid channel.

     We a!so investigate the effects of the Pauli exclusÅ}on. The

dashed-dot lines in Figs. 3 and 4 represent the calculations

without the Pauli exclusion of the s                                       bound state in the (N,or)                                    1/2
                                                               'subsystern. Comparing with the results including the Pauli

exclusion (solid lines), we find that the effect is relatively

small at Ed= 21 MeV but it is large at 56 MeV. This fact can be
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explained qualitatively by the following consideration. First,

for the Pauli exclusion to be effective, the incident wave (prior

to the application of the Pauli exclusion) has to penetrate to

within the ,interaction region. The shallowness of the potential

as evidenced by the srnallness of the binding energy (-13.09 MeV)

of this Pauli-forbidden state has the consequence that at high

energies the mismatching of wave numbers inside and outside the

potential is immaterial and hence the transmission to within the

interaction region can occur relatively freely, while at low

energies the mismatching is large ahd therefore the transrnission

is hindered. Therefore, we expect the eEfect of the Pauli
                                                              'projection to be small at Ed= 21 MeV but to become substantial at

56 MeV.

    Next, we exarnine to what extent the results depend on the

property of the N-N potentials utilized in the three-body
               'ca!culations. In d-or seatterings below Ed= 21 MeV, the effect of
the tensor force in the coupled 3sl-3Dl partia! wave has been

discussed by a number of authors. Based on the three-body

calculation of the elastic sacttering at Ed= 12 MeV, Charnomordic
      9)         claim that the presence of the tensor force is notet al.
        '
essential for both cross section and ana!yzing powers. On the

other hand, the recent analyses of the breakup reactions at Ed=
                               36)12 and 21 MeV by Ishikawa et al.                                   indicate that the double

differential cross section and the vector analyzing power are

explainable without the tensor force, but for the tensor

analyzing powers, the inclusion of the tensor force is essential.

We perform the computations with a number of N-N interactions
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beside the YY7 potentials. In Figs. 5 and 6, the dashed lines

represent the results with the YYO potential oÅí Cahill and
sloan33), which is rank-1 with no deuteron D state. The

comparison .with the results by YY7 (solid lines) shows that at

Ed= 21 MeV the tensor force is indispensable for reproducing the

data of the analyzing powers, T2o and [V22. At Ed= 56 MeV,

results with YYO are almost nuU for the tensor analyzing powers

at forward angles ecM< 900 and fail to reproduce the experimental

                   'data.

     We have also performed the calculation with the 2T4
potential of Doleshan31) which is of rank-2 with 4-oo deuteron

D-state probability and which reproduces the experimental 3D
                                                            1
phase shifts as well as 3Sl phase shifts. As shown in Fig. 7,

the difference between the results with YY7 and with 2T4 are not

apprecÅ}able but in the tensor analyzing power T2ot the fit to the

data by 2T4 is soTnewhat worse than the fit by YY7. This is

puzzling and needs further investigation. we mention that at Ed=
                                                   32)56 MeV the results with other tensor potentials YY4                                                      (rank-1)
and 2T731)(rank-2) do not exhibit substantial dhanges in the

results with YY7 in all observables.

    Finally, in Fig. 8, we show the results with and without

f-waves in the (N,od subsystem at Ed= 56 MeV. The inclusion of

the f-waves gives rise to a large contribution at large deuteron

scattering angles. At Ed= 21 MeV, we find that the contribution

of the f--waves Å}s almost null.

g 3.2.3 Discussions
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     In this section, we propose the absorption model, and

apply Å}t to the d-ct elastic scatterings at Ed = 21 and 56 MeV.

The reasons why we choose these two energies are the following:

  (1) At 21 MeV, the three-body model with no absorption effects

       has previously shown to be successful. Hence, we can

       check the absorption model by comparing wit.h the prevÅ}ous

       results.

  (2) As mentioned already, at 56 MeV the situation is rather

       complicated, since there are varÅ}ous reaction channels
       such as 3He +3H, n+d+3He and n+p+ct* beside n+p+or.

       Therefoxe it is interesting to examine the validity of the

       absorption model.

As expected, at 21 MeV, the present results reproduce the

experimental data well, and even improve previous results

somewhat. The absorptive effects in the (N,ct) system are found

to be small. On the other hand, at 56 MeV absorption effects are

notable. However, the conspieuous diffractÅ}on-like structures in

the data of analyzing powers can not be reproduced.

     In investigating the cause of the disagreement, we should

recall the assumption irnposed on the absorption model that the

couplings between elastic and reaction channels in the (N,or)

subsystem are weak enough to be incorporated as absorption

effects. Now, we scrutinize this assumption. The fact that the
                     partial wave is almost pureiy d-3Heresonance in the d                  3!2
           'character, as mentioned in g 3.2.1, suggests that the coupling
between the p-or and the d-3He channel is not weak. Futhermore,

the reaction cross sections of p+or -F d+3He above the threshold
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amount to nearly 50 per cent of the total reaction cross sections
                 37)                    . In view of these data and the results ofof p+ct scttarings
                                                     '
the present analyses, we consider that the validity of the above
assumption is doubtful and that the effects of the d-3He channel

should be investigated explicitly. However, the explicit
treatment of the d-3He channel in the (n,od subsytem forces us to

introduce a new three-cluster partition (n,d,3He). The method

that is capable of treating various three-cluster partitÅ}ons will

be proposed in the next section, and the effects of the partition
(n,d,3He) wiu be investigated.
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g4 The Multi Three-Cluster Cou lin (MTCC) model

     In the MTCC model, various three-cluster partitions in

addition to 'the initial partition are introduced, corresponding

to possible processes to be considered explicitly. They are

coupled to one another via two-cluster rearrangement processes,

and each of which is treated as a Faddeev system. This model is

applied to the d-ct elastic scattering at Ed= 56 MeV, where the

absorption model is not successful. As we show, the MTCC effects

are evident especially at Å}arge angles. Only process missing

frorn the MTCC model within the limitation of the two- and

three-cluster approximation is the process of sequential

transfer. At the end of this section, we mention briefly the

Multi Two- and Three-Cluster coup!ing (MTTC) model which succeeds

in incorporating this process.

4.1 The MTCC rnodel

    The absorption model proposed in g 3 is the three-body model

represented by only one three-cluster partition, although it

includes the coupling between the elastic and reaction channels

in the two-body subsysterns as absorption effects. As discussed

in g 3.2.3, the method lose the validity when the coupling

betweeri the elastic and reaction channels become strong because

the weak-coupling assumption breaks down. The explicit

consideration of such two-cluster reactÅ}on processes requires the

introduction of new three-cluster partitions which differ from
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the orÅ}ginal one. The formulation of a practical unified theory

of nuclear re.actions in which scattering processes among various

three-cluster partitions are coupled has not been reported to

date. The MTCC model accomplishes this problem. The basic

conception of the model may be described as follows. Various

three-cluster partitions which are coupled strongly to one

another are taken into account explicitly. Each of thern is

treated as a three-body Faddeev system and is coupled to other

three-cluster partitions via interactions between two-cluster

subsystems. Other reaction processes which do not affect the

scatteri.ng state apprecÅ}ably are incorporated into two-cluster

processes as absorptÅ}on effects.

     We formulate the above concept in a manner similar to the
                             22)                                . For each three-clusterAmado-Lovelace (AL) formalism

partitions, there is a triad of three-particle channels each

consisting of an interacting pair of particles and a spectater

particle. We impose two-basic rules for the MTCC approach.

     Rule 1 In each Faddeev system, the transition between

               particle channels is due to particle exchange.

The only exception to Rule 1 is the Coulomb interaction which

is not considered in the present work. !f needed, the effect can

be treated in an approximate rnanner.

     Rule 2 Interacting pairs can break up into two clusters

               but spectator particles can not.

Under these rules, possible rearrangement or inelastic processes

between interacting pairs which belong to various Faddeev systems

generate the couplings between the Faddeev systems. The
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scatterÅ}ng processes are represented by a superposition of

various three-cluster processes. By the use of separable

interactions, we arrive at a set of coupled integral equations

among reaction amplitudes of the AL form.

     The model may be best explaÅ}ned by means of the explicit

example of the d-ct scattering. In addition to (n,p,or), let us
consÅ}der, for example, the three-cluster partÅ}tions <n,d,3He) and

(p,d,3H). The three-cluster partition (n,d,3He) can be coupled

to the partition (n,p,or> via the rearrangement process between
two-clustex channels (d,3He) and (p,od. similarly, the
                                            'partitions (p,d,3H) and {n,p,or) are coupled to each other via the

two-cluster process (d,3H)+-"F(n,or). we can also cosider the

                             *three-cluster partition (n,p,or ) which can be coupled to (nrpra)
                                          *via the two-cluster inelastic process (p,ct )++(p,or). In this
thesis, for simplicity, we consider only the partitions (n,d,3He)

and (p,d 3H). The MTcc processes as mentÅ}oned above are

presented schematically in Fig. 9. Each square box represents a

Faddeev system, and each particle channel in the box is assÅ}gned

a channel number. The interacting pairs are indicated inside

parentheses. In the box on the left, the particles N2 and N3

symbolize the nucleon. Since we ignore the Coulomb force, and

since the total Å}sospin of this system is zero, the pair of N                                                             2
and N3 in each particle channel constructs the antisymmetric

isospin state,

                     l(pn-np) . (4.o
                    /2
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In the box on the right in Fig. 9, the particle N represents the
nucleont and the particle A symbolizes the nuclei 3He or 3H.

Similarly the pair of N and A in each particle channel constructs

the isospin'state, the eigen value of which is zero,

                  1 3 3                     (p H-n He). (4.2)                 /i

The interaction between each pair of particle channel in a box is

due to the exchange of the particle shown along the
                                '
double-pointed arrows. Each Faddeev system is connected to

others via the two-cluster rearrangement pxocesses (N2rod-,-+(A,d)

and (N3,ct)e(A,d) which are indicated by the dashed lines.
Explicitly, they are the processes (p,od-(3He,d) and

(n,or)e(3H,d). If other three-cluster partitions are needed,

they can be taken into account by addÅ}ng corresponding Faddeev

systems. In the above MTCC approach, the effect of all other

reaction processes that are coupled weakly to the scattering

state can be incorporated into the two-cluster subsystems as

absorption effects.

     Now we formulate the MTCC processes in a set of coupled

equations. The dynamical inputs to the theory are two-cluster

t-matrices. The separable multi-channel t-rnatrix introduced in S

2 has all required properties to described the MTCC processes.

Not only it represents the rearrangement processes that connect

various three-cluster partitions, but also it simulates

absorption effects by the perturbative treatment as in the

absorption model. By the use of the separable t-matrix, the
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rules imposed upon the MTCC processes enable us to postulate the

followÅ}ng AL type coupled channel equation among scattering

amplitudes,

           .

             XBct = ZBor + .f.7scB) g Zf3yTy6X6. t (4•3)

                  '
                              '
where X          and Z                  denote the scatterÅ}ng amplitude and the Born       B or               Bor
amplitude from particle channel or to B, respectively. The

propagator T y6 represents the propagation of interactÅ}ng two

clusters where the transÅ}tion takes place between the two-cluster

subsystems in particle channels y and 6. It is expressed

explicitly by Eq. (2.8). Since T is common to all reaction

processes in coupled two-cluster systemsr T24r for exampler is

the same as T22 or T44 for particle channel 2 and 4 shown in Ng.

9.

     Eq. (4.3) can be depicted by the diagram shown in Fig. 10.

The scattering amplitude X Å}s represented by a large circle. The

Born amplitude Z Bor is written explicitly as

                                                               '       ++   ZBor(qB,qoe;E) = (i-6Bor)`EliBl`gB(PB)lGo(E)ig,,(S.)?lEli.> , (4•4)

where 6ct is the momenturn of the spectator relative to the

centr-of-mass of the interacting pair in particle ehannel ct. ,
                        'similarly for &B. The two-body internal momenta 5or and 5B are

expressed as the linear combinations of aor and &B in an usual

      38)         . The form factors Igor> and lgB> are taken from themanner

two-body t-matrices of particle channel or and B respectively,
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which are explicitly shown in Eq. (2.7). They are depicted by

the sraall semi-circles at both ends of the diagram representing

the three-body free Green function Go(E). [Vhe two-body

propagator•T y6 is shown by two horizontal lines connecting Z3y

and X6ct with a twist to indicate the channel coupling between y

and 6.

     For detailed discussions, we give the explicit expression of

Eq. (4.3) for the d-or scattering depicted in Fig. 9. At first,

it should be noticed that there are two possible particle

channels inducing this reaction, channel 1 and channel 5. In the

initial sate of particle channel 1, the deuteron is described as

the bound state of p and n, and a as the spactator. On the other

hand, in particle channel 5, the deuteron is the spactator and ct
is expressed as the bound state of p and 3H, or n and 3He.

Denoting the initial particle channel by i (i=1,5), the equation
                                                      '(4.3) is written as the following matrix form,

                lgÅ}= zi+zT 2si , (4.s)

where 5 i and k i are column vectors, whÅ}le Z and T are square

matrices. The matrices Z, T and 2S i are given by

                   O Z12 Z13 O O O
                  Z21 O Z23 O O O
                  Z31 Z32 O O O O
           z=                                                           (4.6)                    O O O O Z45 Z46
                    O OO Zs4 O Z56 '
                    O O O Z64 Z65 O
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'T =

T 11
o

o

o

o

o

 o

T 22
 o

T 42
o

o

 o

 OT
T33 T
T43 T

o

o

o

24

34

44
o

o

 o
 o
 o
 o

T 55
 o

 o
 o
 o
 o
 o

T 66

'

(4.7)

ii=

X li
X 2i
x 3i
X 4i
X 5i
X 6i

.

(4e8)

For

by

 each

Born

 initial particle channel,

amplitudes is given by

the column vector .Z. z• COMposed

NZ i=

o

z 21
z 31

o

o

o
l

i5=

 o
 o

 o
z 45
 o

 z  65
.

(4.9)

Since Eq. (4.5) is linear, the

scattering which we denote by

of the amplitudes originating

'channels, i= 1 and 5, namely

 full

X is
N
from

 MTCC amplitude for the d-or

expressed as the superposition

both initial particle
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                    5= il+ is • (4.10)

The full amplÅ}tude X satisfies the integral equation,
                   .v

                  X=Z+ZTX , (4.11)                  '.V .V N

where Z is defined by
      jv

                    .Z. = .Z. 1' NZs • (4.12)

     In Fig. 11, we show the processes involved in particle

channel 1 (process (a)) and particle channel 5 (process (b)).

The deuteron in process (a) is represented as the bound state

pole of the pair (p,n), while the or particle in process (b) is
considered to be the bound state pole of the pair (n,3He). By

Rule 2, in process (a) the deuteron can break up into p and n but

the or particle can not. On the other hand, in process (b) the or
particle can break up into n and 3He, but the deuteron can not.

Hence, particle channel 1 and particle channel 5 are clearly

distinguishable throughout the MTCC processes. However, due to

this classification of the processes involving the d+ct state

according to Rule 2, the expressions of the elastic scattering

observables become restricted to the sum of the individual

transition probabUities corresponding to the d+or states in

channel 1 and 5. Let us denote by X                                     the k-th element of the                                   k
column vector X which is explÅ}citly expressed as
              .v
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                 Xk = Xkl+ Xks (k=IN6) . (4.13)
                                                     '

In complianqe with the unitarity requirement, the differential

cross section of the elastic scattering is given by the sum of

the individual cross sections to the final d+or states in channel

1 and 5, Ramely

                 [ll il -- l xi l2 +l xsl2 , (4•i 4)

where a kinematical factor is suppressed. The unitarity relation

which demands Eq. (4.14) is explicitly shown in Appendix C.

     Before closing this subsection, we resolve a question of

double counting. In Fig. 12, we show one of the lowest order

dÅ}agrarns of transÅ}tion frorn particle channel 1 to 6. The time

runs fxom left to right. The neutron in the deuteron is denoted

by nl and the neutron in the or particle by n2. The two-cluster

processes inside the square box is represented by the two-body
t-matrix with the channel coupling (p,od++(d,3He). As the

t-matrix is determined from the p-or scattering data, the lowest

order diagrams of the t-matrix contains the diagram shown in Fig.

13. When the square box of Fig. 12 is replaced by Fig. 13, we

have the possibilities of Fig. 14 (a) and (b). The problem of

double counting arises if both of these processes are present in

Fig. 12 and in Z                   of the coupled system of the partition                65
(n,d,3He). we assert that this is not the case since, as we

explain below, Fig. 14(a) is not a part of Fig. 12 while Fig.
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14(b) is not included in Z6s. !n Fig. 14(a), the interaction of

nl with p occurs at A between the interactions at B and C.

Therefore, this process is not contained in Fig. 12 in which n                                                             1
must remain.free between the vertices B and C of Fig. 13. 0n the

other hand, in Fig. 14(b) the interaction A occures before the

vertex B, and n2 is bound in the ct particle at the time of

interaction at A. This situation is cornpletely excluded from Z6s

since we determine the two-body t-matrix of particle channel 6 by

the n2-d scattering data where, in the initial state, n2 has to

be free prior to the last interaction at A between nl and p in

the deuteron.
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4.2 An application to the d-or elastic scattering

4.2.1 Formulation
     In thi.s subsection, we apply the MTCC model to the d-ct

elastic scattering at Ed= 56 MeV. As discussed in g 3.2.3, the

analyses by the absorption model suggest that in addition to
(nrprod the three-cluster partitions (n,d,3He) and (p,d,3H) exert

strong influence on the scattering processes in this energy

region. These effects. can not be treated sufficiently in the

absorption model because they can only be taken into account as

absorption effects in the two-cluster subsystems. The MTCC model

enables us to take into consideration various three-cluster

partitions explÅ}cÅ}tly. Let us take the three-c!uster partitions
                     '(n,p,a), (n,d,3He) and (p,d,3H) since these are the most

important ones at this energy. Other reaction processes can be

incorporated into the two-cluster subsystems as absorption

effects. Since we neglect the Coulomb force and ignore the mass
differences between p and n and between 3He and H, the MTCc

processes can be shown schematically by Fig. 9. The set of

integral equations which describe these processes is given by Eq.

(4.11). Written explicitly, this becomes

 Xl= Z12T22X2+Z13T33X3+(Z12T24+Z13T34)X4
 X2= Z21+Z21TIXI+ +Z23T33X3+Z23T34X4
 X3= Z31+Z31TIXI+Z32T22X2 +Z32T24X4

 X4= Z4s +Z4sTsXs+Z46T6X6
 Xs= Zs4T42X2+Zs4T43X3+Zs4T44X4 +Zs6T6X6
                             '
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 X6= Z6s +Z64T42X2+Z64T43X3+Z64T44X4+Z6sTsXs

             '
where Xk iS the transition amplitudes to particle channel k,
                           'which is explicitly shown in Eq. <4.13). The consideration of

isospin states and the Å}dentity of nucleons N2 and N3 lead to the

symmetric properties for Born amplitudes and propagators:

                 Z12= -Z13 , T24= -T34 (4.16)
                                            '
and

                  T22"T33 • (4.17)

In Appendix D, the relations (4.16) are explicitly derived.

Using Eqs. (4.16) and (4.17), the coupled equations (4.15) are

reduced to the following set of equations.

 Yl= Z12T22Y2 +Z12T24X4
 Y2= Z21 +2Z21TIYI -Z32T22Y2 -Z32T24X4

 X4= Z4s +Z4sTsXs+Z46T6X6
 Xs= 2Zs4T42Y2 +Zs4T44X4 +Zs6T6X6
 X6= Z6s +2Z64T42Y2 +Z64T44X4 +Z6sTsXs
                                                           (4.18)

Here we have introduced the antisymmetric amplitudes:

            Yl = Xl /2 , Y2 = <X2- X3)12 (4.1 9>
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Eq. (4.18) is numerically solved. When the coupling between two
                                                'Faddeev systems in Fig. 9 is turned off (the CaSe Of T24= T34=

O), Eq. (4.18) separates into two sets of integral equations,

each of which represents the usual three-body AL equations. One

of them is identified with Eq. (3.6). Therefore, numerical

calculations are no more difficult than the pure three-body model

and can be perforrned by the usual techniques, i.e. the contour
deformation25) and the pade approximant34). As mentioned in g

4.1, the elastic scattering observables are represented by the

sum of the individual transition probabUities to the final d+ct

states in channel 1 and channel 5. The dÅ}fÅíerentÅ}al cross

section is given by Eq. (4.14), which is rewritten by using Eq.

(4.13) as

             dds02 = lxll+xlsl2+ixsl+xssl2 . (4.2o)

The analyzing powers can also be expressed in a similar manner.

     At the present stage of calculation, there remains an

arnbiguity as to the sign of T24. For explanation, let us !ook at

the lowest order diagrams for the transitions from channel 1 to

channel 1 and from channel 5 to channel 1. These processes are

shown in Fig. 15. Both processes (a) and (b) are parts of the

elastic scattering, which are superposed in Eq. (4.20). Tn

process (a), the deuteron of initial particle channel 1 is

described as the composite particle of nucleons N2 and N3, and

its state is constructed by the interaction between N2 and N3.

Here we denote it by dl. On the other hand, in process (b), the
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deuteron of inital particle channel 5 is the spectator, which we

symbolize by ds. The inforrnation of the internal state of ds is

implicitly included in the values of two-cluster propagator T24

which is determined by the experimental data corresponding to

A+ds ÅÄ N3+or• Hencet the question arises how to define the
           'relative phase of the state dl to ds in order to identify the

initial state dl+or in process (a) with the initial state ds+ct in

process (b). The case is the same for the alpha particle of

Å}nitial channel 1 in process (a) and of initÅ}al channel 5 Å}n

process (b). Thus, there exists an ambiguity of relative phase

between the arnplitudes corresponding to process (a) and process

(b). However, this arnbiguity ought not to exist, since the d+or

state in particle channel 1 is related with the d+or state in

particle channel 5 by the transition corresponding to Fig. 15(a)

in itseif. Indeed, the spectator deuteron in particle channel 5

is connected to the spectator ct in particle channel 1 due to

two-cluster propagator T24. The propagator T24 in the coupled

system (Atds)-e+(N3ror) takes real values below the lower

thresholds of A-ds and N3-ct, so that the arnbiguity of relative

phase is reduced to the ambiguity of relative sign only.

Therefore, in order to remove cornpletely the ambiguity as

mentioned above, we must deterrnine the sign of T24. Howeverr

this can not be performed in the present state of calculation,

because T24 is as an input to the MTCC calculation determined

phenomenologically by the scattering observables in this coupled

two-cluster subsystem. [rhe sign of T24 will be determined

uniquely by investigating the interference between the amplitudes
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of nuclear part and Coulomb part in A+ds + N3+or scatteringr since

we can obtain the Coulomb amplitude with no ambiguity. This is

under investigation. In the present work, we calculate the

elastic scattering observables for two possible cases according

to the arnbiguity of the sign of T24, which remains un]resolved.

Thus, the differential cross section is expressed either by Eq.

(4.20) or by

             gs02 = IXII-Xlsl2+lxsl-xssl2 . (4.21)

4.2.2 Two-cluster interactÅ}ons for the MTCC calculation

     Before presenting results, we describe the two-cluster

interactions used in the MTCC calculation. For the coupled

(N2rct) and (drA) systems connecting particle channel 2 to 4 ( or

the coupled (N3,or) and (d,A) systems connecting particle channel

3 to 4), we construct the multi-channel separable t-matrix by the

following simplified procedures. In g 3.2.1, the two-body

t-matrix for the coupled (N,od system has been constructed, where

the (N,ct) channel is coupled to a second dummy channel. The

dummy channel contains the effect of (d,A) and the rest' of

reaction channels. (Notice that the potential parameters have

been determined by fitting only p-or elastic scattering data.)

Here, we split this second channel into two, one for (d,A) with

weight w and the other for the rest with weight 1-w. As

discussed in g 3.2.3, in the p-ct scattering the rearrangement
process to the (d,3He) channel palys an important role above its
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threshold. Futhermore, our main aim in the present calculation

consists in investigating the effects of the partition (N,d,A)

which is coupled to (N2,N3,or) through this rearrangement process.

Therefore, for simplicity, we set w=1.0 and utilize the resulting

two-channel t-matrix as an input to the MTCC calculation. For

the (N2,N3) subsystem in particle channel 1, we take the coupled
3sl-3Dl state into account and adopt the yy7 potential which is

mentioned in g 3.2.2.

     For the other two-cluster subsystems in particle channel 5

and 6, we also employ simplified interactions with the Yamaguchi

type form factors. In the (N,d) system in particle channel 6, we
consider only the 2Sl/2-4Dl12 partial waves where the bound

states 3He or 3H exist. To describe the two-channel interaction,

the same formulas as Eqs (2.5), (3.1) and (3.3) are adopted where
            2the channel Sl/2 is assigned to the channel number 1 and the
channel 4D              to the channel number 2. The potential parameters          1/2
are searched to reproduce the binding energy as well as the phase
                                         39>shifts of 2s                and the mixing parameters                                             in low energy p-d            1/2
scatterings. Xn Table 2, we list the resulting values of the

parameters. This potential supports a bound state at the bound
state energy of 3H (E= -6.26 Mev relative to the threshold energy

of n-d). The fits to the 2Sl!2 phase shifts and the mixing

parameters are shown in Fig. 16. For the (N,A) subsystem in
particle channel s, we limit ourselves to only the lso partÅ}al

wave which sustains the bound state or. We utilize the

single-channel separable potential of rank-2, namely
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                V = Ailgi><gil + X21g2><g21 , (4.22)

with the Yamaguchi type form factor

               gi(p) = i 1 ( p2 + B2., ) (L=i,2) .                                                           (4.23)

The potential parameters Xl, X2, Bl and B2 are determined by

reproducing the binding energy 20.64 MeV of the or particle and by
fitting the phase shifts40) of low energy n-3He scatterings. The

resulting values of the parameters are shown in Table 3 and the

                                                            'fits to the phase shifts in Fig. 17.

4.2.3 Results and discussions

     The results of preliminary calculation for the elastic

scattering at Ed= 56 MeV are shown in Fig. 18. The solid and the

dashed lÅ}nes indicate the MTCC results corresponding to two

possible choice of the sign of T24 mentioned in g 4.2.1. [rhe

dot-dashed !ines are pure three-body calculations without the
couplings to the partitions (n,d,3He) and (p,d,3H), which are

given in g 3.2.2 (with no absorption effects). In the cross

section, the MTCC results represented by the solid lines are

better than the result of the pure three-body rnodel and
                                                   oreproduces the experimental data well up to ecMor 150 . 0n the

other hand, in the analyzing powers, the fits to the data are

still poor, but the MTCC effects are seen to give rise to notable

oscillations that can not be seen in the pure three-body

calculations. The MTCC effects are evident at large angles and

are caused by the processes such as shown in FÅ}g. 15(b)r which
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are inhernt in this model. These facts mean that it is

necessary to include the couplings among the three-cluster
partitions (n,p,od, (n,d,3He) and (p,d,3H) in order to reproduce

the experirnental data, especially those conspicuous

diffraction-like patterns in the analyzing powers.

    The fits to the experirnental data are rather poor for the

tensor analyzing powers. In order to assess the quality of the

fits to the data, Å}t is important to remark two limitations in

the present ca!culation. One is the practical limitation due to

the use of the simplified two-cluster interactions. The other is

fundamental that is concerned with the limitation of. the MTCC .

model. First, we conSider the former problem. As mentioned

previously, for the coupled (N2,ct) and (d,A) system we utilize

for simplicity a potential which is obtained by fitting only the

p-ct elastic scatterÅ}ng. In a full scale investigation, we should

adopt the interactÅ}on which reproduces all available experimental

data on N2+ct scattering. To see to what extent the present
potential can reproduce the scattering data of p+ct + d+3He and

d+3He + d+3He, we compare the result for the excitation function

of the d+3He oF d+3He scattering at goO (cM) with the experimental

data41) in Fig. Ig. The fit to the data is not good above

E (Lab) or 5 MeV. A similar situation exists for the p+or -> d+3He
 p
scattering also. For the (N,d) and (N,A) system, we also use the

simplified potentials. !n each of them, we consider only one
partial wave which supports the bound state 3H (3He) or or, and

therefore a number of partial waves which seem to exert important

influence on the sacttering state are missing, for exampl.e, the

                                      '
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4S3!2 wave for the (N,d) system, or the 3sl wave for the (N,A)

system. All these facts mean the importance of improving the
                                                          'two-cluster interactions.

     We examine the other limitation which is Å}nherent in the

MTCC modl. Although the rnodel can describe three-cluster

processes where various three-cluster partitions are coupled to

one another, it can not incorporate some physically important

processes that are possible even within the limitation oi the

two- and three-cluster coupling model. These are the sequential

transfer processes, a typical diagram of which is shown in Fig

20. rf we succeed in incorporatÅ}ng systematically these

processes into the MTCC model, the d+or states in particle channel

1 and 5 are unified. This can be explained in Fig.. 20. [Phe

process corresponding to the left-hand side of the dashed line is

involved in Zs4 in the MTCC processes, but the process

corresponding to the right-hand side of the dot-dashed line is

included in Z21. Hence, the d+or state between the dashed and the

dot-dashed lines shouid be uniquely defined. This will eliminate

the restriction in the MTCC model, expressed by Eq. (4.14). !n

other words, a new coupling scheme between the three-cluster
   'partitions (n,p,ct) and (n,d,3He) is introduced via the d+or state

between the dashed and the dot-dashed lines in Fig. 20, which is
   '                                                               'expected to cause conspicuous influence on the elastic scattering

observables. The next subsection will be devoted to the

consideration of such an extention of the MTCC model.

     Sumrning up the application to the d-ct elastic scattering,

MTCC effects are clearly shown at large angles in the cross
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section and

data, it is

interactions

MTCC model.'

the analyzing

necessary not

 but also to

 powers. To reproduce the experimental

 only to improve two-cluster

extend the theoretical framework of the
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4.3 An extention of the MTCC model

     A physically important diagram missing from the MTCC model

is the process of sequential transfer. In Fig. 21, we show a

typical diagram for the MTCC model ot Fig. 9. Since we observe

Rule 2, the only possible process is the exchange of one cluster

at a time back and fdrce between the interacting pair and the

spectator, but never the process in which two or more particles

are exchanged in one direction as shown in Fig. 20. Theses

sequential transfer processes may have important influence on

scattering observables for some reactions.

     In this subsection, we describe the method which enable us

to incorporate sequential transfer processes into the MTCC model

within the two- and three-cluster approximation. We name such an

extension of the MTCC model the Multi Two- and Three-Cluster

coupling (MTTC) model. The general description of the method for

the system of six nucleons has been given in Ref. 42. Here, we

restrict ourselves to a typical type of sequential transfer

processes as shown in Fig. 20, where the d+or state intervene

between two successive particle exchanges. As discussed in g

4.2.2, this type of processes is expected to remove the

restriction Å}n the MTCC model expressed by Eq. (4.14).

     First, we investigate the basic assuraption which causes this

restriction. As mentioned in g 4.1, in Fig. 11, the d+or state is

included in both process <a) and process (b). The or particle in
process (b) can break up into n and 3He, while in process (a) it

can not. This restriction imposed on the spectator a in process
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(a) is due to Rule 2. Now, let us introduce a process where this
spectator ct breaks up into n and 3He. This is shown in Fig. 22,

where the neutron is exchanged between the or particle and the

interacting•pair (p,n). This process can be decomposed into

process (a) and process (b) in Fig. 23, where (n,p)b represents
 'the deuteron and (n,p)c the continuum states of the interacting

pair (p,n). Here, it should be noticed that physically process

(a) is the same as a part of Z6s in the MTCC model, which is

shown in Fig. 24. To be consistent with the inclusion of Z                                                           6sr
and to remain withÅ}n the two- and three-cluster model, we should

allow process (a) in Fig. 23. If we identify (n,p)b and or in
Ng. 23 (a) with d and the bound state of (n,3He) in Fig. 24, we

can treat this diagram in exact2y the same manner as the allowed

diagrams. The process of Fig. 23 (b) can not be treated in the

three-cluster model, because it contains a four-cluster diagram.

All of the above considerations hold similarly for the spectator

d in Fig. 11 (b). Thus we replace Rule 2 by the following rule.

    Rule 2' All vertices with continuum states of the '
              interacting pair as daughters are forbidden.

Under this rule, together with Rule 1, we can introduce

sequential transfer processes as shown in Fig. 20 within the two-

and three-cluster coupling model. This unÅ}fies the d+or states in

particle channel 1 and 5 in the MTCC model depicted in Fig. 9.

     In order to implement the above idear the re-definition of

channels is necessary. The inclusion of the process in Fig. 23
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(a) raises the problem of double counting, because this process

is the sarne as a part of Z6s in the MTCC model. In the MTCC

model, this problem is settled by imposing Rule 2, since then the

process in Fig. 23 (a) becomes forbidden. In the MTTC model, it

is resolved by the following re-definition of channels. Let us

write again the definition of particle channel 1 and 5 in the

                                                           'MTCC model,

               (N2,N3) + or (particle channel 1) ,

               (N ,A ) + d (particle channel 5) ,

where the parentheses indicate interacting pairs. These channels

are replaced by

               (N2,N3)c + or ( channel lc ) ,

               (N ,A )c +d ( channel 5c ) ,

                    d + or ( channel 7 } ,

where ( N2,N3 )c and (NrA )c denote only the continuum
states of interacting•pairs (N2,N3) and (N,A) respectively.

Other channel are the same as in the MTCC model. By extracting

the d+ct state from both particle channels 1 and 5 in the D4TCC

model, the possibility of double counting is removed.

     By irnposing both Rule 1 and Rule 2', and by using the

re-defined channe!s, we can describe the MTTC processes in the

same rnanner as Eq. (4.3) in the MTCC model. In solving the

equation, the differences from the MTCC calculation are the use
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of the propagator oÅí re-defined channels lc, 5c and 7, and the

use of two-cluster verticies or + N + A and d ÅÄ N2+ N3. These

quantities are obtained by the following procedures. Let us
          'symbolize the above verticies by P + Q + R. FÅ}rst, we introduce
                                        '
the separable representation of a two-cluster potential between Q

and R for angular momentum eigenstatesr

from which

      v(p', p) = X

it follows

   t(p',p ; /s) =

g(pi) g(p) '

g(p') T(vis) g(p)

(4.

(4.

23)

24)

Here s is the

system, and

square of the two-body total energy in the CM

T(/S) = x-1 - f dp p2
    2g(p)

vis-E<p)+ie

-1

' (4. 25)

where E includes the rest mass. The t-matrix is

Åíitting the scattering data corresponding to the

as well as reproducÅ}ng the bound state energies

Then, we decompose it into the bound state pole

continuum state part tc,

 determined by

 Q+R scattering

of Q and R.

part t        and the      b

t = tb ' tc r (4. 26)

and express both tb and tc in separable forms:
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                   tb=f(P') Tb(/S) f(P) (4.27)

where

                 Tb(/s) =11(vis + ie - rn) (4.28)

The continuum state part tc is defined by Eq. (4.26). In

general, its separable representation requires a multi-rank form,

               t. = ,Åí, hi(p') T21](y/g) hj<p) . (4.2g)
                    1,]
                                                             '

[ehese equations define the propagators Tb and Tc and the form

factors f(p) and hi(p), which are required as inputs to the MTTC

calculation.

     Thus we can incorporate sequential transfer processes as

shown in Fig. 20 in a consitent rnanner. In general, the MTTC

model can include all possibble processes within the limitation

of two- and three-cluster coupling rnodel.
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g 5 Summary and conclusions

                       '
     Xn this paper, we propose two alternative versions of

connected kernel theories of nuclear reactions, which are called

the MTCC model and the MTTC model. In these models, various

reaction processes, elastic, inelastic, rearrangement and breakup

processs, are treated in a unified rnanner in compliance with the

unitarity requirement. In the MTCC model, the scatterÅ}ng

processes are represented by a superposition of three-cluster

processes where a number of important three-cluster partitions

are coupled to one another. Each of the three-cluster partitions

is treated as a Faddeev system and is coupled to others via

two-cluster rearrangement processes. Other reaction processes

that are weakly coupled to the scattering state can be

incorporated into the two-cluster processes as absorption

eEfects. By the use of multi-channel two-cluster interactions of

separable forrtt, we formulate these processes in a set of

one-variable integral equations for reaction amplitudes similar

to the Amado-Lovelace form. The MTCC rnodel is an important

extension of the three-body Faddeev approach in that it can treat

a wÅ}de class of nuclear reactions. It has the advantage over the

existing N-body connected kernel theories in that it is

practicable. The MTTC model, an extension of the MTCC model,

includes the process of sequential transfer so that it can treat

all possible processes within the limitation of the two- and

three-cluster approximation.

     The simplest application to nuclear reactions of the MTCC
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model is the calculation of scattering processes in which only

one three-cluster partition is considered, but with absorption

effects in two-cluster subsystems. This an immediate extension

of the three-body Faddeev approach and we name it the absorption

model. In gg 3 and 4, we apply the absorption model and the MTCC
                                                            'model to the d-or elastic scatterings at Ed= 21 and 56 MeV. We

choose these scatterings for the following reasons. The d-ct

scattering at relatively low incident energies (Ed E 20 MeV) have

been studied well in terms of Faddeev formalism, where the

scattering processes are represented by the three-cluster

partition (N,N,or). This rnodel has succeeded in explaining

surprisingly wel! the cross sections and analyzing powers at low

energies. However, at higher energies, there have been only a

few limited analyses since the effective approach has not yet

been established. This is due to the fact that at higher

energies various reaction channels are open, and for realistic

analyses it is necessary to incorporate the effects of these

channels in addition to the deuteron breakup. Indeed, the data

for analyzing powers at 56 MeV show the conspicuous

diffraction-like patterns that is expected to be caused by the

coupling to various reaction channels. Thus, while at 21 MeV we

can check our models by comparison with the previous results of

pure three-body calculations, at 56 MeV we can investigate the

many-body effects reflected in the scattering observables

according to our sophisticated models.

     Xn the analysis of the absorption model, we take the

three-cluster partition (N,N,or). As expected, at 21 MeV the
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absorption model reproduces the experirnental results weli and

improves previous three-body calculaons. However, at 56 MeV the

absorption model can not reproduce the notable structures of

analyzing powers as seen in the data, although absorption effects

are apparent at large angles. The cause of such disagreement

with the data should be ascribed to the basic assumption of the

absorption. model that the scattering state are represented by one

three-cluster partition (N,N,a), and that the effects of other

reaction processes are weak enough to be incorporated into the

(N,ct) subsystem as absorption effects. There are evidences that
the three-cluster partitions (n,d,3He) and (p,d,3H) are strongly

coupled to the scattering state at higher energies. For example,
the reaction cross sections of p+or ÅÄ d+3He above the threshold

amount to 50 per cent of the total reaction cross sections of p+ct

scatterings. This fact suggests that we should take the
three-cluster partitions (n,d,3He) and (p,d,3H) into

consideration to reproduce the experimental results at 56 MeV.

     The MTCC model enables us to treat these three-cluster

partitions explicitly. Since the main aim in the present

MTCC calculation is to investigate the effects of the coupling to

the three`cluster partitions, we utilize simplifÅ}ed two-cluster
interactions for coupled Faddeev systems (n,d,3He) and (p,d,3H).

The results of preliminary calculation for the d-ct elastic

scattering at Ed= 56 MeV exhibit notable oscillations in the

tensor analyzing powers, and the coupling effects to the newly

added three-cluster partitions are clearly seen at large angles.

These facts indicate that it is indispensable to include the
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couplings arnong relevant three-cluster partitions for the

analyses of the d-ct scattering in this energy region to be
                                                      '               'realistic.

     A physScally irnportant diagram missing from the MTCC model

is the process of sequential transfer. In g 4.2.3 and g 4.3, we

show that the introduction of sequential transfer processes

amounts to inducing new coupling shemes between three-cluster

partitions in the MTCC model. For certain reactions, it can

exert an irnportant influence on scattering observables. This

can be accornplished in the MTTC model.
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Appendix A

Non-ortho onalit terms and effective interactions

     For sirnplicity, let us consider the case of two coupled
rearrangement channels such as the (N,or) and (d,3He) channels in

the N-or scattering. The Hamiltonian of the system can be

expressed as

                    H= Hi"Vi'Ki r (A•1)

where Hi is the cluster-internal Hamiltonian, Vi is the

cluster-external interaction, and Ki is the relative kinetic

energy operator between the center-of-mass of two clusters in

channel i. Let xi be the eigenstate of Hi with the eigenvalue

ei. By assumption, the wave function Y of the system is

expressed as a superposition of xl and X2:

                    W= whIXI"th2X2 ' (Ae2)

Substituting Eq. (A.2) Å}nto the Schr5dinger equation (H-e)Y =O,

we find the following set of coupled equations for Åë1 and Åë2:

         [(e-ei)-Ki]lVi> = Vi"Qi> +Vi2lil)2> r

         [(e-e2)-K2]lth2> = V21Iel> +V22Ith2> , (A.3)
                                                  '

where we have defined the 2Å~2 coupling interaction V by

                  ' '
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          Vll= (XlIVIIXI), V22 = (x2iV2ix2), (A.4a)

      Vi2IÅë'2> =(xiIH-elx2tu2>, V2il"i> =(x2IH-elxiÅëi>r (A•4b)

                         '
                 are non--local. The interaction V defined above          and Vwhere V               21       12
is manifestly hermitian. It is important to realize that V12 and

V21 contain the non-orthogonality terms. Equation (A.4b) can

be rewritten as

        Vi2lwh2> =(xiIV2lx2e2>-(xil[(e-e2)-K2]lx2th2>, (A•sa)

        V21Ith1> =(x21Vllxlth1>-<x21[(e-el)-Kl]lxlth1> • (A•sb)

        '

The non-orthogonality terms are the second terms on the

rÅ}ght-hand sides. Notice that they contribute only off the

energy shell. Since xl and x2 axe two-cluster states of

different compositions, their overlap becomes null at the

asymptotic region. Therefore, the non-orthogonaiity terms are of

short range, and so is the coupling interaction V without the

Coulomb interctions. From Eqs. (A.3) and (A.4), we obtain the
                                                 'following Lippmann-Schwinger equation for Y:

                W=O+ Go VY, <A.6)
where
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           w- [:1] , Åë-[Si) , ,..,,

                                                              '
                    '
Åë1 being the incident wave in channel 1. Here, Go(e) is diagonal

and is given by

                 '           Go(e) - (G6])(e) .620)(.) , <"'8)

where

               (i)                                      -1              Go (e)=[(e-ei)-Ki+ ie] . (A.9)

     Had we defined the coupling potential in terms of the

cluster-external interactions alone without the non-orthogonality

terms, then we would have obtained, instead of Eq. (A.3),

   [(e-ei)-Ki]lÅëi>+(x"(e-e2)-K2lx2th2>= Viiivi> +Wi2le2> r

   [(e-e2)-K2]lth2>+(x2l(e"--el)-KllXlVl>= W21ith1> +V22ith2> ,

where the coupling interactions are

      Wl2lth2>=(xlIV2lx2th2> and W21ith2>=<x2IVIlxlVl> •

Notice that the non-orthogonality terms now appear on the

left-hand sides. Thus, the "free" Green function acquires

non-diagonal elements. Besides, the coupling potential on the
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right-hand sides oÅí the above equations is non-hermitian. rn
contradistinction to this, we have t' ransferred the burden of the
            '
non-orthogonality of xl and x2 to the off-shell property of the

coupling intieraction in Eqs (A.3) and (A.6). In fact, the

non-orthogonality terrns should be regarded as a part of the

coupling interaction since they arise due to the overlap between

Xl and x2• This makes the free Green function diagonal and the

interaction hermitian. Since the non-orthogonality effects are

already Å}n the off-shell part of the interaction, we should treat

xl and x2 as if they were orthogonal to each other Å}n order to

avoid double counting. We rnight simply say that we have chosen

the representation in which xl and x2 are orthogonal.
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Appendix B

Se arable o tical otential with cou lin effects

     In this appendix, we derive Eq. <3.2) and prove that

topt= tll. FrOrn Eq• (A•6), we eliminate channel 2 and obtain

                 '
                Vi = Åëi + G6i)<e) v.ptÅëi r (B.1)

where the "optical potential"  Vopt is given by

                           (2)                                         (2)                                     -1         V.pt= Vll+ V12[1- Go (e)V22] Go (e)V21 . (B.2)
                                      '                                  '
Using Eq. (2.5) here, we find

               Vopt = Xlgi> [i+ X<g21g>] <g21 r (B•3)

where

           lg> = [ i-x G6?)(e)Ig2><g21 ]-iG62)(e)lg2> •• '(B•4)

Equation (B.4) leads to the following integral equation for k>:

            lc> = G62)(e)lg2> + x G62)(e)lg2><g21g> • <B•s)

From this we find

      <g21g> = [ i-x <g21G62)(e)Ig2> ]'i<g2IG62)(e)Ig2> . (B.6)

                                                 '                                   '
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Substituting this expressÅ}on into Eq. (B.3), we obtain

                Vopt=lgl> A.pt(e) <gll (B.7)
                                                 '           -
with

           X.pt(e) '= [ A-i- <g21G62)(e)lg2> ]'-1 . (B.s)

                            'This is Eq. (3.2). Now, using Eq. (B.7), the Lippmann-Schwinger
                                            '             'equation

                                   (1 )                                     (e) t                                                          (B.9)               topt = Vopt ' Vopt Go                                          opt

is easily solved, and the result is

       topt = lgi> [ x5bt(e) - <giIG6i)(e)lgi> ]-i<gi1

                           2            = lgi> [ X-i -ii.i <gilG6i)(e)lgi> ]-i<gil • (B.io)

This proves the assertion made near the end of g 3.1.
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Appendix C
!tllg,Sglu2gl,ALLgp2nm!!lg-!!llsgg-!ggst lat theMTCCmodel

                    '
                                '
          v     Xn this appendix, we derive the unitarity relation in the

MTCC model for the d-or seattering depicted in Fig 9. The

derivation is based on R'ef. 43. We start from the matrix forrn of

Eq. (4.3), namely

               '

                 X(E) = Z(E) + Z(E)T(e)X(E) , (C.1)

             '
where E is the total energy and e represents the energy of

two-cluster subsystems which is related to E by energy

conservation. The square matrices Z(E) and T(e) are symmetric,

which follows from the symmetric properties of Born amplitudes

and propagators: '
             ZaB(Ilior,EliB; E) = ZB.(EliB,Eli.; E) r <C•2)

                                      '

                    TctB(e)=TBct(e) . (C.3)

Hencer from Eq. (C.1) we obtain

                                                              '
                 X(E) = z(E) + X(E)T(e)Z(E) . (C.4)

Both Eqs. (C.1) and (C.4) can be solved for Z(E) to derive

               z(E) = x(E) [1 + T(e)x(E)]-1 (c.s)
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and

                                                     '                                          -1                                              . (C.6)              . Z(E) = X(E) [1 + X(E)T(e>]

We now let E+=E+is in (C.5) and E-=E-ie in (C.6>, and subtract

the equations with the result

         Z(E')-z(E-) = x(E')[1+T(e')x(E")]-1

                         - [1+x<E-)T(e-)]-'l x(E-) . (c.7)

Multiplying (C.7) froin the left.by [1+X(E )T(e )] and frorn the

right by [1+T(e')X(e+)], we finally have

                      '      X(E")-X(E-) '
         = [Z(E')-Z(E-)] + X(E')T(e')[Z(E")-Z(E-)]

         + [Z(E')-Z(E')]T(e')X(E")

         + X(E-)[T<e")-T(e"-)] X(E')

         + X<E-)T(e-)[Z<E')-Z(E-)]T(e')X(E') . . (C.8)

Now we limit ourselves to the case that the total energy'E is
below the lowest three-body breakup thresholds. Then, Z(E+) and

Z(E ) are real:

                                                          '
                   Z(E') = Z(E-) = Z(E) . ' (C.9)

Therefore Eq. (C.8) is reduced to

                             '
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          X(E")--X(E') = X(E-)[T(e")-T(e-)] X(E") . (C.10)

                                                              'Here, we take matrix elements of Eq. (C.10) in momentum space

into explicit consideration, then .

     XQ,B("qct,ZliB; E')-x.B(?li.,ZliB; E-)

  =y%fdEli X.y(Eli.,Eli; E-) [Ty6(E'- h2q212u'Y)-T.y6(E--h2q212u'Y)]

          . Å~X6B(?lir-q"B; E') • (c.ii)

Now, we Å}mpose another restrictÅ}on that no two-body channels are

open except the d+or channel at energy E. From Eq. (C.11) it

follows that
                               '

     Xo,B<"qor,'qB; E')-X.B(-q"'.r"qB; E-)

    = -'n'y.i,s p(qo) fdSllao X.y(-q"".,Elio; E-} xyB(ao,'qB; E') , (c.12)

where we denote by ao the incident relative momentum between d

and ct, and p(qo) is defined by

                   p(qo)=pY qo lh2 . (c.i3)

Using the fact that Z(E) is real and that XorB(E+)= Xctg(E-), we

obtain

                                                  '
    IM XctB(lli.r?liB; E"}

                              - 73 -



= -T Z
    y=1,5

p(qo) fdgqo  )k "XY or ( q   ÅÄ+        )xct,qo; E yB{ao,&B; E") • (C.1 4)

          .
Thus we obtain the

we can derive

unitarity relation (C.14). From. Eq. (C.1 4)

Im (X       +X         15     11

 . -z p<qo)

+Xsl

 fdst

+X  55

+[qo

)

IXI1+xlsl2 + lxsl+xssl2 ]
' <C.15)

where the labels

expression Eq. (4

section follows.

for

.14)

momenta

 for the

are

 d-or

suppressed. From Eq. (C.

 elastic scattering cross

15) the
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Appendix D

Definition of isos in states and s mmetric ro erties of Born

am litudes and ro a ators in the MTCC model for the d-or elastic

E992t!!!91!Ulgt

     To derive the symmetric properties expressed by Eq. (4.15),

we consider explicitly the isospin states in particle channels

depicted in Fig. 9. Let us denote the isospin State in particle

channel j by IIj>. The states llj> O=1,6) are defined as

follows.

l[1>

iI2'

i[3>

l!4>

l]s>

l[6>

Here, two particles inside

interacting pair and

to the definition of

the definitions (D.1)

. 1 [ (np)ct - <pn)ct ]
  /5

. 1 [ (pct)n - (nor)p ]
  /7

. 1 [ (nor)p - (pct)n ]
  /7

. 1 [ (d 3He)n - (d 3H)p ]
  /i

. 1 [ (3He n)d - (3H p)d ]
  /7

. 1 [ (n d)3He - (p d)3H ]
  /7

      the parenthesis indicate the

another particle is the spectator,

particle channels depicted in Fig.

r (D.2) and (D.3), we can derive
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<D.1)

(D.2)

(D.3)

•(D.4)

(D.5)

(D.6)

  according

  9. From
the isospin



coupling coefficients included in the Born amplitudes Z12 and

                '
                     '

               <Illl2> =1 i <rlll3> = -1 . (D.
                                 '

These relations, together with the identity of nucleons N2 and

N3r lead to the symmetrÅ}c property for the Born amplitudes:

                         Z12=-Z13 • (D•
                 '
     Next, the overlaps <I2il4> and <I31I4> included in the

propergators T24 and T34 respectively are explicitly shown as

        '
               1 [ <(por)ni(d3He)n> + <(nor)pl(d3H)p> ] (D•    <I21I4> =
              /7

and
                                                          '
    `i31]4> = v,i [-<{pct)nl(d3He)n> - <(nor)pi(d3H)p> ] . (D.

from which it follows that

                             '

                        T24= -T34 • (D.

7)

8)

9>

10)

11)
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Table 1

The state (Åí1,j) of the N-or channel, and the values of Åí2

potential parameters that reproduce the p-or phase shifts

abso]rption coefficients of Refs 29 and 30• For Bl, B2r K

see Eqs. <2.5), (3.1) and (3.3>. For the second component
(3•1), K is understood to have the dimension fm-2(22-2!).

 and

and

and

 in

the

A,

Eq.

(21rj) Åí2 Bl(fm'1) B2(fm-1) K
X(Mevfm-(2i+1))

S 1/2
p 3/2
p 112
d 5!2
d 3/2
f 7/2
f 512

2

1

1

2

o

3

3

1.5711
1.6326
1.3240
2.9940
2.8033
2.2255
1.6560

1.8641
2.5726
O.65885
1.3015
2.4166
1.3723
1.7831

o.

o.

o.

o.

o.

o.

o.

98227
39775
60572Å~1O
54632Å~1O
29224Å~1O
37643Å~1O

82947

-3
-3

-3

-3

-13683
-4201.3
-620.25
-O.12sssxlo7
           6-O.55874Å~1O
           7-O.19468Å~1O
           6-O.22683Å~1O

Table 2

The values of

partial waves
to the 2s
        1/2
Blt B2, K and

component in
fm-2(22-Åíi).

 the potential parameters

 in the (N,d) system. The

channel and the second to

 X, see Eqs. (2.5), (3.1)

Eq. (3.1), K is understood

of coupled 2Sl12-4Dl/2

 first channel is assigned
the 4D          channel. For      1!2
and (3.3).' For the second

 to have the dimension

B1(frn -i ) B2(fm-i) K A(MeVfm--  (2,+1 )
)

4.1332 1.3488 O.44437 -5305.4



Table 3

The values of

(N,A) systern.

the

 Fbr

potential

 Blr B2r X

parameters

1 and A2,

 of

see

ls
  o
Eqs.

partial

 (4.22)

wave

and

 in the

(4.23).

Bl(fm'1) B2(fm-1)         -1Xl(MeVfm •) x
2

( MeVÅírn
-1 )

O.36956 O.38028 -84. 71 3 68. 025



Jtlisll!!gggRl!2,g2recatons

Fig. 1

Fig. 2

Fig. 3

Fig.

Fig.

4

5

The compex z plane into which the Riemann surface of a

twd-channel t-matrix is mapped. The parentheses

indicate whether kl and k2 are positive, nagativer

imaginary or negative imaginary, respectively. The

numbers in each square bracket denote the quadrants to

which kl and k2 belong in each complex plane.

The N-or pase shifts and absorption coefficients obtained

by the parameter values listed in Table 1. The dots are

the data points of Ref. 29. For the d3/2 stater the

triangles and the squares are the data taken from

Ref. 30.

The d-ct elastic scattering cross sectÅ}ons and vector and

                            (Lab)=21 MeV. Thetensor analyzing powers at E                           d
experimental points are taken from Ref. 35. The solid

lines are with full effects of absorption and the Pauli

exelusion. The results without absorption effects are

given by the dashed lines, and those without the Pauli

exclusion are shown by the dot-dashed lines. The NN

 potential utilized is the YY7 of Ref. 32.

The results for the d-ct elastic scattering at E                                              (Lab)=56                                             d
MeV. The data are taken from Ref. 16. See the caption of

FIg. 3 for other details.

Comparison of the results for the d-or elastic scattering

at Ed=21 MeV calculated by using the YY7 and YYO

potentials. The results are shown by the solid and



Fig. 6

Fig. 7

Fig. 8

Fig. 9

Fig.

Fig.

Fig.

Fig.

Fig.

10

11

12

13

14

Fig. 15

dashed lines, respectively, for the YY7 and YYO.

Comparison of the results for the d-ct elastÅ}c scattering

at Ed=56 MeV calculated by using the YY7 and YYO

potential. See the caption of Fig. 5.

Comparison of the results for the d-or elastic scattering
                                                  'at Ed=21 MeV calculated by using the YY7 and 2T4

potentials. The results are shown by the solid and

dashed lÅ}nes, respectively, for the YY7 and 2T4.

The results of the d-or elastic scattering without the

f-waves in the (N,od subsystern (dashed lines) are

compared with those inciuding the f-waves (solid lines)

     (lab)=56 MeV.at E    d
The schematic diagram of the MTCC model as applied to a

simplified model of the d-ct scattering. For detailed

explanation, see the text.

The diagramatic representation of Eq. (4.3}. For

detailed explanation, see the text.

Two-body processes involved in the (d,ct) system in (a)

particle channel 1 and (b) particle channel 5 of Fig. 9.

A lowest order diagram of transition from particle

channel 1 to 6.
The lowest order two-body process for p+ct + d+3He.

Two possible processes obtained by repracing the
two-body process p+or + d+3He in Fig. 12 by Ng. 13. The

vertical lines connecting two particle lines represent

interactions. The time runs from left to right.

The !owest order diagram from particle channel 1 to



Fig.

Fig.

Fig.

Ng.

Fig.

Fig.

Fig.

Fig.

Ng.

    particle. channel 1 (process (a)) and from particle

    chann61 5 to particle channel 1 <process (b)).
16 The phase shifts of 2s                              and the mixing parameters in                          1/2
       ' 24' the Coup!ed Sl/2- Dl12 partial waves of N-d scattering,

     which are obtained by the parameter values listed in

     Table 2. The dots are the data taken from Ref. 39.
17 The N-3He phase shifts of lso partial wave obtained

    by the parameter values listed in [Vable 3. The dots are

    the data points of Ref. 40.

18 The results for the d-or elastic scattering at E                                                    (Lab)=56                                                   d
    MeV. The solid and dashed lines correspond to two

    possible choice of the sign of T24. The dot-dashed line

    are pure three-body calculations given in Fig. 4 (with

    no absorption).
Ig The differntial cross sections for 3He(d,d)3He at the

    center of mass angle 90.0 , obtained by the simplified

    potential for the coupled (N2,or) and (d,A) system, which

    is mentioned in g 4.2.2. The solid circles are the data

    taken'from Ref. 41.

2P A typical diagram for a sequential trnsfer. The time

    runs from left to right.
                                                    '
21 A typical diagram of the MTCC process of Fig. 9.

22 An exarnple of dÅ}agrams which includes breakup of the

                                            '    spectator pt.

23 The process of Fig. 22 is decomposed into process (a)

    and process (b).

24 A part of the processes included in Z6s. See Fig. 9 for

    particle channels.
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