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Abstract

     The present thesis discusses the sensitivity analysis in 

multivariate statistical methods. The main objective is to 

evaluate the influence of a small change of the input data on the 

result of analysis, find influential observations and judge 

whether the result is stable or not. 

     In Chapter 2, we show three lemmas concerning the 

perturbation theory of eigenvalue problems assuming simple and 

multiple eigenvalues. The formulation of the perturbation 

methods is different, depending on whether the eigenvalues of 

interest are all simple or not. 

     In Chapter 3, we consider a method of sensitivity analysis 

in Hayashi's second method of quantification. To develop 

sensitivity analysis we introduce weights for individuals and 

evaluate the changes of eigenvalues and the scores of categories 

due to a small change of the weights for a single or multiple 

individuals. Then in Chapter 4 we try to apply the idea shown in 

Chapter 2 to other statistical methods and propose a unified 

method of sensitivity analysis in descriptive multivariate 

methods, which are formulated by the generalized singular value 

decomposition. The unified method can treat principal component 

analysis., the third method of quantification, and canonical
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correlation analysis among others. 

     Finally in Chapter 5 we discuss a computational aspect. We 

perform numerical experiments and make some recommendations on 

the problem of whether to choose the method based on simple 

eigenvalues or that based on multiple eigenvalues and also on the 

problem of whether to use the first order approximation or the 

second order approximation.
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1 Introduction

     In recent years, mainly in regression analysis many methods 

have been proposed for the evaluation of the influence of a 

single or multiple observations on the result of analysis 

(Belsley, Kuh and Welsch(1980), Cook and Weisberg(1982)). There 

are two aspects in these studies. One is to detect influential 

observations and the other is to evaluate the stability of the 

result. If the result depends heavily upon a few observations we 

must be very careful to form a conclusion, though we cannot 

prescribe what to do with influential observations without the 

use of additional information. 

     The problem of influential observations is not special to 
r 

regression analysis, but common to other multivariate statistical 

methods. Thus, from a similar viewpoint to the case of 

regression analysis we propose some methods of sensitivity 

analysis in multivariate methods in a more general perspective. 

     We may consider that a statistical method is a system, a set 

of data is an input and the result of analysis is an output. We 

are interested in the sensitivity of this system, that is, how a 

small change of data (input) affects the result of analysis
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(output). Here we use the term "sensitivity analysis" instead 

of "detecting influential observations", because various types of 

data different from those which appear in regression analysis are 

treated and not only the influence of individuals but also other 

types of influence are discussed in multivariate methods. 

     As statistical methods we consider Hayashi's second method 

of quantification and other descriptive multivariate methods, 

which are formulated as eigenvalue problems. The methods of 

quantification were developed and investigated for the purpose to 

analyze qualitative data by Hayashi(1952) and his colleagues in 

the Institute of Statistical Mathematics and are widely used in 

many fields such as social survey, behavioral science, medicine 

and quality control in Japan. On the other hand, multivariate 

statistical methods such as principal component analysis 

(Hotelling(1933)), biplot (Gabriel(1971)), canonical correlation 

analysis (Hotelling(1936)) and correspondence analysis (Benz6cri 

et al.(1973)) are effectively used for looking into multivariate 

data. However, in applying these methods we sometimes feel 

uncertain over how reliable or stable the result is. To evaluate 

the reliability some authors introduced probabilistic models and 

developed methods of statistical inference. See, for examp e 

with respect to quantification methods, Okamoto and Endo(1 974 ), 

Endo(1978), Tanaka(1978,1979), etc. From a different point of 

view Tanaka (1983,1984a,1984b) and Tanaka and Tarumi(1986a,1986b) 

tried to apply the idea of regression diagnostics and proposed 

methods of sensitivity analysis in quantification methods. The 

present paper consider also the sensitivity analysis in other 
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multivariate methods. 

     As, small changes of input data we can treat various types. 

Among them we discuss mainly the influence of the changes of 

weights for a single or multiple individuals. 

     The basic idea of our sensitivity analysis can be summarized 

as follows: 1)Introduce small changes of weights for a single or 

multiple individuals. 2)Calculate the corresponding changes of 

eigenvalues, eigenvectors and the associated quantities by using 

the perturbation theory of eigenvalue problems. 3)Evaluate the 

amount of influence and detect influential observations. 4)Show 

their. influence graphically for the convenience to make a 

decision based on it. 

      In the above procedure of sensitivity analysis we must solve 

many eigenvalue problems derived from the original one by 

changing the weight for each individual. Therefore it is 

important to use a computing method which is as efficient as 

possible. It is the reason why we apply the perturbation 

methods. 

      As preparations we give some lemmas concerning, the 

f perturbation theory of eigenvalue problems in Chapter 2 (Tanaka 

and Tarumi(1 986b) ). They are used as mathematical tools in the 

following chapters. The formulation of the perturbation theory 

is different, depending on whether the eigenvalues of interest 

are all simple or not. 

     In Chapter 3 we propose a method of sensitivity analysis in 

Hayashi's second method of quantification (Tanaka and Tarumi 

(1986a)). Here we discuss precisely the basic idea and
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formulation of sensitivity analysis. 

     In Chapter 4 we intend to treat other multivariate methods, 

and consider the general multivariate procedure formulated by the 

generalized singular value decomposition (GSVD) (Tarumi(1986)). 

As shown in Greenacre(1984) and Greenacre and Underhill(1982), a 

number of descriptive multivariate methods such as principal 

component analysis, biplot, Hayashi's third method of 

quantification and canonical correlation analysis can be 

formulated by using the GSVD. Since the GSVD leads to an 

eigenvalue problem, we can construct a unified method of 

sensitivity analysis by using the perturbation theory of 

eigenvalue problems. This unified method can treat different 

kinds of multivariate analysis by changing the symmetric matrix 

of the eigenvalue problem. As individual multivariate methods we 

consider principal component analysis, the third method of 

quantification and canonical correlation analysis. 

     Finally in Chapter 5 we discuss the computational aspect of 

sensitivity analysis (Tanaka and Tarumi(1986b)). In actual data 

analysis the eigenvalues of interest are usually all simple in 

the strict sense. However, if there are close eigenvalues we 

should better apply the perturbation method under the assumption 

of multiple eigenvalues to get the.result with high accuracy, 

because the method under the assumption of simple eigenvalues may 

not work well in such cases. The problem whether we should use 

the first order approximation or second order approximation is 

another problem. To investigate such problems we perform numeri-

cal experiments and make some recommendations based on them.
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2 -Perturbation Theory of Eigenvalue Problems 

      We consider the eigenvalue problem of a KxK symmetric matrix 

H, such that 

(2.1) (H - 051)vs = 0, s=1,2,...,K, 

and investigate how the eigenvalues and eigenvectors change when 

the matrix H varies to 

(2.2) H(c) = H + cH(1) + c2H(2) + c3H(3) + ... , 

for small e. 

      Generally it is well known from perturbation theory of 

eigenvalue problems that , when the matrix H is expanded in a 

convergent power series, all the eigenvalues 8's and eigenvectors 

v's can also be expanded in convergent power series (Kato(1980)
, r 

Rellich(1969)). 

      Let us express the eigenvalues and eigenvectors of H(e) as 

(2.3) 8s(c) = As + cos1) + e2As2) + O(c3), s=1,...,K, 
(2.4) Vs(6) = Vs + ev(1) + c2vs2) + O(c3), s=1,.. .,K, 
then the . coefficients of the above two equations are given by the 

following lemmas. The proof of Lemma 1 is given in Tanaka(1984a)
. 

Lemma 1. Assume that the eigenvalue of interest is simple . Then 

5



the coefficients of the 1st and 2nd orders 

given by the following. 

1st order: 

         As(1) = vTH(1)v , 
                     s s 

        zrs) = vrH(1)vs/(0s-0r), r#s, 
(2.5) zss) = 0, 

      vjs) = Evjrzrs)* 

r 2nd order: 

       8(2) = vsH(2)vs + VTH(1)vs1), 

       zrs) = (vrH(2)vs+vrH(l)vsl)-9Sl)vrvsl) 

(2.6) zss) = -(vsl))Tvsl)/2, 
       v(2) = Evjrzrs)• 

r

of (2.3)-(2.4) are

)/(9s-9r), ris,

Lemma 2-1. Assume that the matrix H is diagonalized as 

(2.7) XTHX = diag(81, ... , 8K), 

by using an orthogonal matrix X=(x1, ... , xK) and that the 

eigenvalue of interest is multiple, i.e. without loss of 

generality 

(2.8) 01= ... =8k (=0) #ek+1, ... , AK . 

Let 

(2.9) ci~) = xIH(1)xj, i,j=1,...,K, 1=1,2, 
and denote the kxk matrix of (cij ),i,j=1,...,k} by Cj~). Then 
the coefficients 8sl ),s=1,..,k of the 1st order terms of the 
eigenvalues are given as the eigenvalues of C4 I ), If we denote 
the eigenvector associated with 8s1) as gs=(gis), the linear
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combination such that 

k 
(2.10) vs = E gisxi 

                 i=1 

is the limit of eigenvector vs (e ) associated with G
s (F- ) as F--* 0. 

(Proof) The eigenvalue problems of H(e) can be expressed as 

follows for the s-th eigenvalue Es(c) and the associated 

eigenvectors vs(c). 

(2.11) (H-r- H(1).tc 2H(2)-w3H(3)+...)(vs.+cvs1)€c2v(2) 3v(3)+...)        =(As+cg(1)+c2As2)+c3As3)+...)(vs+cv M +c2vs2)+c3vs3)+...) 
Comparing the coefficients of e in the both side of (2.11), we 

see that 

(2.12) H(1 )vs+Hvs1) = 0 (1 )vs+0svs1) . 

From (2.7) and (2.9) the matrices can be expanded as 

            k K 
(2.13) H = E Axixi + E Aixixi, 

               i=1 i=k+1 

                 K K 

(2.14) H(1) = E E ci~ )xix~, 
                  i=1 j=1 

where c(l) is defined in (2.9). Since the vectors x1,...,xK . 

construct an orthonormal basis of the K-dimensional vector space, 

the vector vs1) is expressed as 

K (2.15) vs1) = E disxid 
                     i=1 

Substituting (2.13)-(2.15) and (2.10) into (2.12) we obtain the 

following relation from the coefficients of xi,i<k. 

k 
(2.16) E c1] 3s = es1)gi s, i=1,...,k. 

         j=1 
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This indicates that 8s1) and gs=(gis) are the eigenvalue and the 

associated eigenvector of the matrix Cj 1). Q.E.D. 

Lemma 2-2. Assume the same conditions as in Lemma 2-1. Consider 

an orthonormal basis of K-dimensional vector space such that 

k 
                E gisxi, 

(2.17) vs = i=1 

                        Xs , s=k+1,...,K. 

Define 

(2.18) cj ) = vTH(1)vj, 
denote the kxk submatrix of (EM, i,j=l,!...,K} by and let 

K 
(2.19) v(1) = E dis)vi, 1=1,2. 

                    i=1 

Then the 1st order terms of the eigenvectors and the 2nd order 

terms of the eigenvalues and eigenvectors can be calculated as 

follows. 

1st order terms of the eigenvectors : 

                       ciss=1,.... k, i=k+1,...,K, 

(2.20) dis) _ {cis)+ E cis)djs)}/(es1)-A11))s i,s=1,...,k, 
                        j=k+1 i#s, 

                        0 , i=1,...,k, i=s. 

2nd order terms of the eigenvalues and eigenvectors : 

K 
(2.21) ()(2) = css) + E cis)dis) 

                              i=k+1 

K 
             = css) + E (c%ss=1,...,k. 

                               i=k+1 
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K 

              {cis) + E cl~)d3s) - es1)d(1)}/(A-Ai), 
                             j=1 

                                                                s=1 , ... r k, i=k+1, ... , K, 

K 
(2.22) dls) _ {cis) + E cl~)d~s) 

                             7=1 

K 
                    + E 3 M d~s) - 8s2)d(1)}/(9(1)-ell)), 

                            j =k+1 is S 
                                                        i,s=1,...,k, i&s, 

K                     - E (d~s))2/2 , i=1,...,k, s=i. 
                     j=1 

     From (2.9) , (2.1 7) and (2.18) the following relations hold 

between ci~ ) and ci~) o 
                 k k 

                E E gtigmj ctm) for i <k, j <k, 
                        t=1 m=1 

k 

(2.23) cil) = E gtictl), for i<k, j>k, 
                         t=1 

                       CM                           , for i>k, j>k. 

(Proof) The vectors vi,i=1,...,K also construct an orthonormal 

basis of the K-dimensional vector space. Then, using ciM 

defined by (2.18) the matrices H and H(1) are expanded as 

r follows. 

             k K 

(2.13)' H = E evivi + E eivivi, 
                i=1 i=k+1 

                 K K 

(2.14)' H(1) = E E oi~)viv~, 
                  i=1 j=1 -

where 

(2.24) ci~) ), 1<i,j<k. 
Now we shall express vs1) as
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K 

(2.15)' vsl) = E dfS)vi, s=1,...,k. 
                    i=1 

by using the new basis (v1,...,vK). Then, substituting (2.13)'-

(2.15)' into (2.12) we obtain the following relation from the 

coefficients of vi for i>k. 

      cis) + Aid(s) = Adls). 
Thus 

(2.25) dis) = ciss=1,...,k, i=k+1,...,K. 

     Next let us consider the order of c2. Comparing the 

coefficients of 0 in the both sides of (2.11) we have 

(2.26) H(2)Vs + H(1)vs1) + Hvs2) = As2)vs + ASl)vSl) + Asvs2). 
Substituting (2.13)'-(2.15)' into (2.26) we obtain the following 

relation from the coefficients of vi for i<k, i#s. 

K 

       cis) + 0(1)d1 ) + E 31] )d(1) = es1)d(1)) 
                              j =k+1 Is is 

Hence 

(2.270 dis) = {cis) + E c~)d~)}/(Al)-Al)), 
                j=k+1 i> s s i 

                                              i,s=1,...,k, i#s. 

From the normalizing condition such that 

(2.28) (vs+evsl)+e2vs2)+...)T(vs+evsl)+e2vs2)+...) = 1, r 
the coefficient of c must satisfy the following. 

(2.29) (vsl))Tvs + vsvsl) = 0. 
Substituting (2.15)' into (2.29) we have 

(2.30) dss) = 0, s=1,...,k. 
Thus the equation (2.20) is proved. 

     If we substitute (2.13)'-(2.15)' into (2.26) and compare the 

coefficients of vs we easily have the second order term ()(2) as
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(2.21). If we compare the coefficients of vi for i>k , we have 

K 
       3(2)        is + Aidis) + E ci~)d~s) = As1)dis) + 0 dis)) 

                            j=1 

Hence 
K 

(2.31) dis) = {cis) + E 
j cij )d]$) - As1)dis                                    =1 

                                                       s=1,...,k, i=k+1,...,K. 

      Now we shall consider the order of c3 . From the coeffi-

cients of e3, 

(2.32) H(3)v + H(2)v(1) + H(1)v(2) + Hv(3) 
                  S s s s 

           AS3)vs + As2)vs1) + As1)vs2) + Asvs3). 
Substituting (2.13)'-(2.15)' into (2.32) we obtain the following 

relation from the coefficients of vi for i<k, i1s . 

       cis) + E c13M d(1) + A(1)d(2) + E c(~)d(2) + Ad(3) 
                 j -1 3s 1 is j=k+1 1] 7 s is 

             9(2 )d(1) + A(1)d(2) + Ad(3) 
                     s is s is is 

Therefore 

                 E E )d~s ) (2.33) dis) _ {cis) + K 
                           j=1 

K 
                + E ci~)d~s) = @(2)d(1)}/(Q(1)-g(1))'1' 

                       j=k+1 
                                                     i,s=1,...,k, iAs. 

From the order of e2 in the normalizing condition (2 .28), 

(2.34) (vs2))Tvs + (vs1))Tvs1) + VTV(2) = 0 . 
Substituting (2.15)' into (2.34) we easily obtain the following 

equation. 

K 
(2.35) dis) = - E (djs))2/2 , i=1,...,k, s=i. 

                    j=1 

                                                                          Q.E.D.
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Lemma 3. Assume the same conditions as in Lemma 2-1. Then the 

approximate eigenvalues up to the 2nd order are given as the 

eigenvalues of 

(2.36) 9I + ccfl) + e2(CI1 ) + Q), 

where 

         Q = ( qii- ). 

(2.37) K 
       gift = E ci~)c1l /(8-o ) . 

                 j =k+1 

(Proof) We shall show that the second order perturbation to the 

s-th eigenvalue of the matrix (2.36) is given by {9 + c9 1) 

+e29s2)}, where 41) and 8s2) are defined in Lemma 2-1 and 2-2. 
It is sufficient to show that the first order perturbation to the 

s-th eigenvalue of C.~ ~)+e (C1(~)+Q) is given by { 9s1)+eo (2) }. 
Since the eigenvalues are invariant for an orthogonal transfor-

mation, we may consider the eigenvalue problem of the matrix 

K 
(2.38) (0(1)6 ) + s{cii~ + E j 

l 

                                 j=k+1 i 

which is made by multiplying G=(g1,'...,gk) and its transpose from 

right and left. 0 (1 ) and gs are the eigenvalue . and the associ-

ated eigenvector of Cii) as defined in Lemma 1. With probability 
one we can assume {41 ), s=1,...,k} are all distinct. Then, by 
applying Lemma 1 we may easily show that the first order pertur-

bation to the s-th eigenvalue of (2.38) is given by { 9S1)+cOs2) } 

where g(2) i s defined in (2.21). Q.E.D.
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     In the above we derived up to the second order perturbation 

of the eigenvalues {8s(e)} and the eigenvectors {vs(e)} when the 

unperturbed eigenvalue of interest is multiple. Concerning the 

perturbation of a symmetric matrix with multiple eigenvalues 

several authors such as Anderson( 1963), Fujikoshi(1977), 

Konishi (1 975) , vom Scheidt and Purkert(1 983) among others have 

already studied. Our formulation is different from the first 

three among the above papers in the sense that we derive 

expressions of the power series expansions of multiple 

eigenvalues and the associated eigenvectors explicitly, numbering 

the multiple eigenvalues by the order of the eigenvalues G(1 )'s 

of C11). The last one discussed the case H(e)=H+eH(1) and its 
results coincide with ours when H(2)=H(3)=0. Jut the technique 
used is quite different from us.

     Actually 

interest are 

(2.39) 01 

In that case 

(2.40) H = 

where

 we 

not 

02 

the 

K 

i=1

 often meet with the case when the 

 exactly multiple but very close, 

    ... = 9k # 0k+1' ... , 8K . 

 matrix H is expressed as 

0ivivi = H + EE ,

eigenvalues of 

i.e.

r
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         _ k K 
         H = E OvivI + E Aivivi, 

                i=1 i=k+1 

        _ k 
(2.41) E = E (8i-8)vivi/E , 

                 i=1 

k 
        A = E Ai/k . 

                i=1 

If the magnitudes of I 9i-GI's are of the order of E, the 

perturbed matrix H(E) is expanded as 

(2.42) H(E) = H + EH(1) + E2H(2) + E3H(3) + ... 

               = H + E(H(1)+E) + E2H(2) + E3H(3) + ... . 

Thus, applying Lemma 2-1, 2-2 and/or 3 we can obtain the asympto-

tic approximations to the eigenvalues and eigenvectors of H(E) .

r
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3 Sensitivity Analysis in Hayashi's Second Method of 

  Quantification 

     Among various quantification methods we investigate the so-

called second method of quantification, which is used for 

discrimination of qualitative data. 

      In section 3.1 we briefly formulate Hayashi's second method 

of quantification in a generalized way for the convenience to 

develop the sensitivity analysis. Then in 3 .2 we propose a 

method of sensitivity analysis to evaluate the influence of a 

single or multiple individuals on the result of analysis, in 3 .3 

propose summarized measures of the influence on the score, and 

show a numerical example in 3.4. Finally in 3.5 we discusss 
f some 

problems such as the accuracy of the numerical computation and 

the reason why we sometimes observe rotations of the 

configurations of the scores assigned to the categories.

3.1 Hayashi's second method of quantification 

     Suppose that we have response patterns of n individuals to
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I+1 items as 

and only one 

factor item. 

   Table 3.1

in Table 

category

3.1 

of

  where every 

 the outside

Observations for 

quantification.

individual responds to one 

variable and also of each

Hayashi's second method of

Individual 
     No.

 Outside 

  variable 

1 2 ...... r

 ,Item 

1 2 ...

1 

c(1 )

  Item I 

1 2 ...c(I)

1 

2 

a 

n

V

V

V

V

V

V

V

V V

V

V

V

     To represent such qualitative observations we introduce the 

following dummy variables. 
r 

                     1, if the individual a responds to the i-th 

(3.1) za(i) = category of the outside variable. 

                      0, otherwise. 

                     1, if the individual a responds to the 1-th 

(3.2) xa(kl)= category of the k-th factor item. 

                      0, otherwise. 

     In the second method of quantification the matter of concern 

is to analyze the relationship between the outside variable 
and
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the factor items and discriminate the categories of the outside 

variable from the information concerning the factor items. For 

that purpose numerical scores s=(s1 1 ,...,s1 c(1 ) ,...,sI1,...0' 

SIC(,))' for the categories of I factor items are introduced so 

that the categories of the outside variable can be discriminated 

as well as possible by using these scores. The problem is 

formulated as the canonical discriminant analysis of the dummy 

variables {xa(kl)}. By introducing the scores t=(t1 ,...,tr)' for 

the categories of the outside variables it can also be formulated 

as the canonical correlation analysis between {z
a(i)} and 

{xa(kl)} (cf. Aoyama(1965), Tanaka(1983), Niki(1981)). 

     Then the optimal scores t and s are obtained as the solution 

to the optimization problem: 

         Maximize 

(3.3) t'Z'WXs, 

        subject to the constraints 

(3.4) 1nWZt = 1nWXEjs = 0, j=1,...,I, 

(3.5) (1/N)t'Z'WZt = (1/N)s'X'WXs = 1, 

where Z and X are defined as nxr and nxc matrices (c=Ejc(j)) such 

as 

(3.6) Z = (za(i)), X = (xa(kl)), 

respectively. The matrices W, E1, and 1
n are defined as follows. 

             W = diag(w1,w2,...,wn) : nxn, 

(3.7) Ej = diag(0....... 0, 1~, 0....... 0) : cxc,                                                                                      j =1 , ... , I , 
                    c(1)+...+c(j-1) c(j) c(j+1)+...+c(I) 

             1n = (1,1,...,1 )' nxl, . 

where {w.} are the weights for the individuals which we

17



introduced for the convenience to develop the sensitivity 

analysis. A scalar variable N is given by the summation of w
a's 

for n individuals. The two constraints (3.4) and (3.5) indicate 

that the scores should have zero means and unit variances . 

      Some calculations by using Lagrange multipliers lead to the 

following two eigenvalue problems. 

(3.8). Z'WX(X'WX)-X'WZt - p2Z'WZt = 0 , 

(3.9) X'WZ(Z'WZ)-Z'WXs - p2X'WXs = 0 . 

Since the dimension of t is generally smaller than that of s, it 

may be better , to solve the former than the latter and then 

calculate s by substituting the obtained eigenvector t into the 

equation 

(3.10) s = (1/p)(X'WX)-X'WZt . 

We can easily verify that the eigenvalue problem (3.8) has a 

trivial eigenvalue p2=1 and the associated eigenvector t=1
r, and 

then each eigenvector associated with p2~1 satisfies the first 

equation of (3.4) from the orthogonality of eigenvectors. 

Similarly the eigenvalue problem (3.9) has also an eigenvalue 

p2=1 (with multiplicity I) and the associated eigenvectors 

s=Ej 1 c, j =1 ,..., I. However, we should use (3.10) and the 

constraint (3.4) to get s's actually. 

     The eigenvalue p2(~1) is equal to the squared canonical 

correlation coefficient and also correlation ratio when the 

elements of the associated eigenvectors s (and t) are used as the 

scores for the categories. Therefore, we should pick up the 

largest q eigenvalues excepting p2=1 and use the associated 

eigenvectors is and s's as the q-dimensional scores for the

18



categories of the outside variable and the factor items, respec-

tively, where q is the number of dimensions of interest. 

     Note that the matrix W1 /2X(X'WX)-X'W1 /2 in (3.8) is uniquely 

determined for different definitions of g-inverse and we may use 

any (X'WX)- which is easy to calculate. Generally the rank of 

X'WX is c-I+1 , because the sum of the columns of W1 /2X 

corresponding to the categories of any specified item is equal to 

the constant vector {wa/2}, Let X* be an nx(c-I+1) matrix which 

is made from X by omitting every last category of each item 

except. for the first item, then X* is, in general, of full column 

rank. We may use X*(X*'WX*)-1X*' instead of X(X'WX)-X' in (3.8). 

Let the covariance matrices of the dummy variables { za(i) } and 

{xa(kl)} be 

(3.11) S11 = (1/N)Z'WZ, 

(3.12)' S12 = (1/N)Z'WX, S12 (1/N)Z'WX*, 
(3.13) S21 = (1/N)X'WX, S22 = (1/N)X*'WX*, 
then, note that S11 is diagonal, we obtain the following ordinary 

eigenvalue problem 

(3.14) Hu - Ou = 0 , 

where 

(3.15) H = S1112S12S221S21S11/2~ 
(3.16) u = S1(2t, 
(3.17) 8 = p2. 

The matrix S~~2 indicates a diagonal matrix, each element of 
which is given by the square root of the corresponding element of 

511, and S-1/2 is its inverse. If an eigenvector u is normalized 

to satisfy u'u=l, the corresponding score vector satisfies t'S11t
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=1, i.e. the variance of {t'z
a} is equal to 1. Throughout this 

chapter we use the symbol (*) to express the omission of every 

last category of each item except for the first item as in the 

case of X*.

3.2 Sensitivity analysis 

3.2.1 Basic idea of sensitivity analysis 

      In order to evaluate the influence of a single or multiple 

individuals we change the weights for individuals slightly and 

investigate how the result of analysis changes. 

      First consider the influence of a single individual a . 

     Let the weight for the individuals be 

(3.18) wat= 
                Li 1 

Then the covariance matrices of the dummy variables {Sjk(E)
, 

j,k=1,2} can be expanded as 

(3.19) Sjk(E) = Sjk+(E/n)S~k)+(E/n)2S~k)+O((E/n)3), j,k=1,2, 
where the matrices Sj k's indicate the values of Sj k(E )'s 

calculated by putting E=0, and the matrices Sw's and S~k)'s are 
given by 

         S11 ) = S12) ) = S11 - zaza 

r (3.20) Si2) = S12) = S12 - zaza', , 
          S22) = S22) = S22 - xaxa'. 

Now, in the case when we wish to evaluate the influence of a 

single individual we put 
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(3.21) ' E = E:/n. 

Then the expansion (3.19) is simply expressed as 

(3.22). Sjk(E) = Sik + ES~k) + 6-2S(2) + O(E3). 
The matrix H(E) defined by (3.15) can be expanded as 

(3.23) H(E) = S-11/2(e)S12(e)S221(E)S21(e)S11/2(e) 
             = H + EH(1) + E2H(2) + O(E3), 

where 

            H = A'BA, 

(3.24) H(1) = A(1)'BA + A'B(1)A + A'BA(1), 

          H(2) = A(2)'BA + A'B(2)A + A'BA(2), 

                + 2A(1)'B(1)A + 2A(1)'BA(1) + 2A'B(1)A(1) , 

        A = S21S11/2, 

     f A(1) = 5211)S11/2 - (1/2)S21S11/2511). 
        A(2) = S*12)S11/2 - S*21 (1)S11/2511) 

(3.25) + (3/4)S21S11/2(S11))2 - (1/2)S21S11/2511). 
                          *-1            B = S22 , 

           B(1) = S*-1S*(1)S*-1,                  22 22 22 

        B(2) _ -B(1)S221)S221 - S221S2j2)S221 - S221S221)B(1). 

     In the above we showed that how the eigenvalue problem 

changed when the weight for a specified single individual was 

slightly changed from 1 to 1-c . Next we consider the case when 

we wish to evaluate the influence of multiple individuals . 

     Let M be a set of m individuals and let the weights for the 

individuals be 
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                     1-e, cEM, 
(3.26) wa 

                   1 , a M. 

Then the covariance matrices of the dummy variables {Sjk(e), j,k 

=1,2} can be expanded as 

(3.27) Sjk(C) = Sjk + (me/n)S(k) + (me/n)2S~k) + O((me/n)3), 
where Sjk's indicate the values of Sjk(e)'s calculated by putting 

e=0, and the matrices S3 k)'s and S~ k)'s are given by 
(3.28) S11) = S11) = S11 - (1/m) E zkzk', 

                                      kEM 

(3.29) 812) = S12) = S12 - (1/m) E zkxk', 
                                      kEM 

(3.30) S22) = S22) = S22 - (1/m) E xkxk'. 
                                 keM 

In the case when we wish to evaluate the influence of multiple 

individuals we put 

(3.31) e = me/n . 

Then the expansion (3.27) is also written as (3.22). Therefore 

we obtain the same form of expansion (3.23) - (3.25), though the 

definitions of S3k)'s are different from the case of a single 

individual. 

     Note that, if we consider up to the first order, the first 

derivatives S~ k )'s (S 7 k1 )'s) and H (1 ) for a set M of m 
individuals are equal to the averages of those for each single 

individual belonging to the set M.. Utilizing such relations we 

can easily calculate the values which appear in the following two 

sections for multiple individuals from those for a single 

individual.

22



3.2.2 The influence on the product and sum of eigenvalues 

      The eigenvalues 9's (or p2's) are equal to the squared 

correlation coefficients or the correlation ratios when the 

elements,of associated eigenvectors s's (and t's) are used as the 

scores for the categories of I items (and the outside variables). 

                                                  r-1 r-1 
Therefore we can use the product II. ej, the sum E 9 1 or other 

                               j=1 j=1 

functions of the eigenvalues as a measure to show the degree to 

which the differences among the categories of the outside 

variable are expressed in the r-1 dimensional space. Let us 

evaluate the influence of a small change of e by the differen-

tial coefficients as follows. 

            d r-1 d (3.32) dE( II 9.(E)) = dE(IH(c)I) 
                    1 E

=0 E=0 

                          IHItr(H-1H(1)), 
                 r-1 

(3.33) dE( E 9j(E)) = dEtr(H(E))             1 E=0 I E=0 
                         tr(H(1)). 

3.2.3 The influence on the eigenvalues and the scores 
      for categories 

(i) The case when the eigenvalue of interest is simple 

     Suppose that the eigenvalue of interest 9s of the eigenvalue 

problem (3.14) except for 0=1 is simple. 

     Then we can use Lemma 1 in Chapter 2, and obtain the 

following power series expansion of the eigenvalue Q
s(E) and the 

associated eigenvector us(E) corresponding to the expansion of 
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H(e) in (3.23). 

(3.34) Qs(E) = As + E@(l) + E2@52) + O(E3), 

(3.35) us(E) = us + Eus1) + E2us2) + O(e3), 
where 9(1), g(2), u(1) and u(2) are shown in Lemma 1 .          S s s s 

From the values of As(E)(=pS(E)) and us(e) we can calculate ts(e) 
and ss(e) by using (3.16) and (3 .10), respectively. 

 (ii) The case when the eigenvalue of interest is multiple 

      Suppose that the eigenvalue of interest is not simple and 

that, without loss of generality, we are interested in the 

eigenvalue 01= ...=Ak=A with multiplicity k . 

      Now suppose that an unperturbed rxr symmetric matrix H is 

diagonalizable by multiplying an orthogonal matrix V=(vl
,...,vr) 

and its transpose from right and left , i.e. 

                   Al 0 
                                                                             - ,A 

(3.36) V'HV = k0k+1 

             0 Or 
Then we can use Lemma 2-1 and 2-2 , and obtain the following 

expansions. 

     For small a the eigenvalues Al(e) ,...,Ak(E) and the 

associated eigenvectors ul(E),...,uk(E) of the perturbed matrix 

(3.37) H(E) = H + EH(l) + E2H(2) + E3H(3) + O(E4) 

can be expanded as 

(3.38) 05(E) = A + EAs1) + E2As2) + O(E3), s=1,...,k, 
(3.39) us(e) = us + Eus1) + E2us2) + O(E3), s=1,...,k, 
where the coefficient Os(l) , As2) , u(s1) and u(s2) are determined by 
Lemma 2-1 and 2-2 in Chapter 2. 
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3.3 Summarized measures of the influence on the scores 

     The influence of a small change of the weights for a single 

or multiple individuals on the scores is expressed by the differ-

ences between the unperturbed scores S (or T) and the perturbed 

scores S(e) or T(E). Considering q(<min{r-1,Ej(c(j)-1)}) dimen-

sional scores we may summarize these differences as follows. 

(i) Euclidean norm of the differences between the unperturbed and 

perturbed scores 

(3.40) IIS(E) - SII / IISII 

(3.41) JIT(£) - TII / IITII 

(ii) Euclidean norm of the differences between the configurations 

of the unperturbed and perturbed scores 

(3.42) 11S(E)S(e)' - ss'I1 / IISS'II 

(3.43) IIT(C)T(e)' - TT' II / IITT' II

3.4 Numerical example 

     In order to show the usefulness of the proposed method we 

shall apply it to a set of artificial data given in Table 3.2.
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Table 3.2 Artificial data.

Outside 

variable

Item 

1 2 3 4 5

Outside 

variable

Item 

1 2 3 4 5
3 

2 

1 

2 

1 

1 

2 

3 

2 
2

3 

1 

1 

3 

2 

1 

2 

3 

2 

2

3 

3 

1 

2 

1 

1 

3 

1 

2 

2

3 

2 

1 

1 

2 

2 

1 

2 

1 

3

1 

1 

3 

2 

2 

2 

1 

1 

1 

3

3 

3 

3 
1 

2 

2 

1 

1 

2 

1

2 
3 
2 
1 
3 
2 
3 

3 
3 
1

2 
3 
2 
1. 

3 
2 
3 
3 
2 
1

1 
3 
2 
3 

2 
2 
2 
3 
3 
1

2 

1 

2 

2 

3 

1 

1 

2 

2 

1

1 
2 
1 
1 

2 
2 
1 

3 
1 
3

1 

1 

2 

3 

1 

1 
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3

1 
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2 

3 

3

1 

1 
3 
1 
3 
2 
2 
2 

3 
3

3 
2 
2 
2 
1 
3 
3 
2 

2 
3

2 
2 
3 
3 
2 
2 

3 
1 

3 
3

3 
2 
2 

3 
2 

2 
2 
1 

3 
1

1 
3 
3 
1 

2 
3 
3 
1 
3 

2
1 
1 
2 
2 
2 
1 

3 
3 
3 
2

1 
1 

2 
2 
3 
1 
3 
3 
3 
1

2 
1 

3 
3 
2 
1 
2 
2 
3 
3

2 

3 

2 

2 

3 

2 

1 

3 

2 

2

1 
1 
2 
1 
2 
2 
2 
2 
1 
2

2 

2 

3 

2 

3 

1 

1 

2 

2 
2

3 

3 
1 
1 
1 

2 
2 
3 
3 
1

3 
3 
1 
1 
1 
2 
3 
2 
3 
1

3 
3 
1 
2 
2 
1 
1 
2 
1 
2

3 
2 
3 
1 
1 
3 
3 
3 
2 
1

3 
3 
1 
1 
2 
2 
1 

3 
1 
3

2 
2 
1 
2 
3 
1 
2 

1 
3

1 

3

2 

1

2 

1

3 

1

3 

3

1 

3
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      These data were generated as follows. First, continuous 

data were made by using the models such as 

  Model 1. yi= 20x11+10x21+5x31+0x41-5x51+5ei, i=1,2,..,60, 

and 

  Model 2. Yi=-20x11-10x21-5x31+0x41+5x51+5ei, i=61,62, 

where {xii,..,x5i,e1} were NID(0,1) random numbers. And then 

they were transformed into categorical data by the following 

rules.

(3.44)

(3.45)

Xji =

Yi =

1, if xj 1<-0. 

2, if -0.5<xj1< 0. 

3, if 0.5<xj1 

1, if y1 <-10 

2, if -10<y1 < 10 

3, if 10<y1 .

5, 

5,

     Choosing Y as the outside variable and X1 ,..,X5 as the 

factor items we apply Hayashi's second method of quantification 

to these data. 

     Since there are 3 categories of the outside variable, we can 

obtain up to 2 dimensional scores. The eigenvalues (or 

correlation ratios) are p2 =0.6641 4 and p2'=0.1861 1 and their 
associated eigenvectors give the optimal scores for the 

categories. The eigenvectors s and t associated with 02                                                                      1 are 

shown in Table 3.3. Looking at the elements of these 

eigenvectors (=category scores) we observe that the order of 

the scores f or each item i s 1 < 2 < 3 or 1 > 2 > 3 except for those of
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Table 3.3 The result 

method of

 of analysis by 

quantification

Hayashi's 

(Axis 1 ).

second

Item

1 . 

2 . 

3 .

NO. 1 
 Freq. 

 ( 19) 
 ( 18) 
 ( 25)

Cat 
 -1 

 -0 

1

.score 

.12237 

.23090 

.01924

Range 

2.14161
Partial cor. 

  0.31703

Item

1 . 

2 . 

3 .

NO. 2 
 Freq. 

 ( 17) 
 ( 24) 
 ( 21)

Cat 
 -0 

 -0 

0

.score 

.38009 

.08216 

.40159

Range 

0.78168

Partial cor. 

  0.54635

Item

1 . 

2 . 

3 .

NO. 3 
 Freq. 

 ( 21) 
 ( 23) 
 ( 18)

Cat 
 -0 

 -0 

0

.score 
.08859 
.03507 
.14816

Range 

0.23675
Partial cor. 

  0.16002

Item

1 . 
2 . 
3 .

NO. 4 
 Freq. 

 ( 21) 
 ( 23) 
 ( 18)

Cat 

0 
 -0 

0

score 

01 856 

1 591 6 

181 72

Range 

0.34088

Partial cor. 
  0.07997

Item

1 . 

2 . 
3 .

NO. 5 
 Freq. 

 ( 22) 
 ( 20) 
 ( 20)

Cat 

0 
 -0 

0

score 

09163 

1 1 235 

01 1 56

Range 
0.20397

Partial cor. 
  0.05290

Outside variable

1 . 

2 . 

3 .

Freq. 
( 16) 
( 22) 
( 24)

Cat 
 -1 

 -0 

0

score 

14756 

1 51 30 

90373

Eta-squaare ( Correlation ratio )

0.66412
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 the fourth and fifth items. This fact corresponds well to 

 the model(Model 1) used to generate the data. 

       Next we apply the sensitivity analysis of the first order 

 approximation by setting e=0.3. Changing a from 1 to 62 we 

 calculate the proposed measures of influence. The results are 

 shown in Table 3.4. From the nature of our model it is obvious 

 that the second axis is not important. It is noted that the 

 individual No.61 and No.62 (which were generated differently from 

the others) look influential especially with respect to the 

measures such as Ejp? and p? for which the first axis plays 
important roles. Actually, if we omit the individual No .61 or 

62, the largest eigenvalue becomes p,=0.70130 or pi=0.75931, 
either of which is much larger than the original value p? 
=0.66414. 

3.5 Discussion 

      We proposed a method to evaluate how the result of Hayashi's 

r 
second method of quantification changes when the weight for a 

single or multiple individuals changes. 

      In the above example we evaluated the proposed measures of 

influence of each individual by applying simple differentiation 

and the perturbation theory of eigenvalue problems . The fact 

that the individuals No. 61 and No. 62 are influential was found 

particularly by the measures d E 0. and 9M. Note that the                                  d
e i i 

i 

 former was obtained without using the perturbation theory of 
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Tabel 3.4 The result of sensitivity analysis.

No (1 ) (2) (3) (4) (5) (6) (7) (8)'

1 

2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

19 
20 
21 

22 
23 

24 
25 
26 
27 
28 
29 

30 
31 
32 
33 
34 
35 

36 
37. 
38 
39 
40

-0.1888 -0.8811 -0.8292 -0 

 1.0306 1.8762 0.4507 1 
-0.5546 -1.1608 -0.4525 -0 

 0.5618 1.1970 0.4878 0 
 0.9960 1.5498 0.0696 1 

-0 .4988 -1.2837 -0.7399 -0 
-0 .8376 -1.2927 -0.0436 -1 
-0.2416 -0.4775 -0.1581 -0 
-0.9715 -1.3786 0.1171 -1 
-0.7492 -1.1889 -0.0844 -1 

 0.6499 1.1151 0.1896 0 
-0.7430 -1.0904 0.0395 -1 

 0.9168 1.7142 0.4637 1 
-0...0423 -0.5376 -0.6583 0 

 1.0306 2.0169 0.6461 1 
-0.1945 -0.8065 -0.7137 -0 
-0.1088 -0.7845 -0.8624 0 

 0.5653 1.2892 0.6085 0 
-0.0229 -0.3230 -0.4009 0 

 1.2095 2.0778 0.3564 1 
-0.1820 -0.5158 -0.3359 -0 
-0.2813 -0.7633 -0.4720 -0 
-0.4883 -0.7064 0 .0401 -0 
-0 .7097 -1.0505 0.0253 -1 

 0.8531 1.7977 0.7129 1 
-0.6026 -1.2957 -0.5396 -0 

 0.0020 -0.2606 -0.3663 0 
 0.0900 -0.0690 -0.2842 0 

..-0.1330 -0.6895 -0.6797 -0 
 0.5817 1.2978 0.5862 0 

-0 .2547 -0.2156 0.2333 -0 
-0 .0423 -0.5376 -0.6583 0 
-0 .7199 -1.0407 0.0601 -1 
-0 .3369 -0.2923 0.2986 -0' 
-0.0436 -0 .5007 -0.6045 0 
-0.8967 -1.2958 0.0755 -1 
-0.1232 -0.5565 -0.5153 -0 
-0.1732 -0.7330 -0 .6561 -0 

 0.8326 1.3998 0.2031 1 
-0 .5546 -1.1608 -0.4525 -0

.0519 

.4256 

.7083 

.7092 

.4802 

.5438 

.2491 

.3195 

.4957 

.1045 

.9254 

.1299 
.2506 
.1208 
.3708 
.0928 
.0779 
.6806 
.0778 
.7214 
.1799 

.2913 

.7464 

.0758 

.0848 

.7561 

.1057 

.2152 

.0097 

.7116 

.4489 

.1208 

.1009 

.5910 

.1037 

.3713 

.0412 

.0769 

.1967 

.7083

0.0413 0. 
0.0547 0. 
0.0375 0. 

0.0387 0. 
0.0303 0. 
0.0396 0. 
0.0379 0. 
0.1162 0. 
0.0680 0. 
0.0329 0. 
0.0386 0. 
0.0356 0. 
0.0291 0. 
0.0583 0. 
0.0407 0. 
0.0383 0. 
0.05.32 0. 
0.0563 0. 
0.0604 0. 
0.0423 0. 
0.0391 0. 

0.0388 0. 
0.0317 0. 

0.0394 0. 
0.0550 0. 
0.0387 0. 
0.0671 0. 
0.0670 0. 
0.0482 0. 
0.0656 0. 
0.0678 0. 
0.0583 0. 

0.0602 0. 
0.0449 0. 
0.0655 0. 

0.0485 0. 
0.0740 0. 
0.0414 0. 
0.1086 0. 
0.0375 0.

0306 0 
0322 0 
0250 0 

0345 0 
0291 0 
0281 0 
0230 0 
0325 0 
01 31 0 
0215 0 
0289 0 
01 24 0 
0222 0 
0250 0 
0299 0 
0282 0 
0276 0 
0364 0 
0207 0 
0255 0 
0242 0 

0246 0 

01 56 0 
01 80 0 
0421 0 
0260 0 
0204 0 
01 96 0 
0275 0 
0372 0 

0092 0 
0250 0 
0110 0 
0257 0 
0232 0 

01 22 0 
0231 0 
0289 0 
0381 0 
0250 0

.0615 

.0774 

.0590 

.0562 

.0430 

.0709 

.0545 

.1641 

.0963 

.0484 

.0552 

.0510 

.0436 

.0871 

.0581 

.0604 

.0792 

.0798 

.0865 

.0602 

.0620 

.0599 

.0469 

.0574 

.0782 

.0659 

.0956 

.0957 

.0687 

.0936 

.0973 

.0871 

.0859 

.0638 

.0931 

.0685 

.1045 

.0604 

.1539 

.0590

0 
0 
0 
0 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

r0 

0 
0 
0 
0 
0 
0 
0 

0 
0

.0472 

.0457 

.0385 

.0511 

.0456 

.0422 

.0352 

.0494 

.0221 

.0332 

.0454 

.0211 

.0342 

.0409 

.0446 

.0444 

.0438 

.0515 

.0368 

.0364 

.0379 

.0381 

.0253 

.0285 

.0616 

.0395 

.0366 

.0359 

.0437 

.0526 

.0159 

.0409 

.0193 

.0407 

.0392 

.0209 

.0390 

.0453 

.0613 

.0385
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No

    Tabel 3.4 

(1 ) (2)

(Continued) 

(3) (4) (5) (6) (7) (8)

41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62

-0. 
-0. 
-0. 

 0. 
-0 . 
-0. 

 0. 
-0. 
-0. 

 0. 
-0. 
-0. 
-0. 

 0. 
=0. 
-0.  

.0. 
 0. 

.-0. 
-0. 

 1. 
 0.

2303 
4004 
0989 
6851 
0278 
4883 
9464 
8695 
2087 
0119 
0583 
1732 
3857 
0644 
1814 
5363 
8289 
91 76 
2416 
2538 
4752 
6005

 0.1406 
-0.9013 
-0.4885 

 1 .3855 

 0.3190 
-0.7064 

 1 .8019 
-1 .3733 
-0.8511 
-0 .4218 
-0 .5538 
-0.7330 
-0.7475 
-0.1804 
-0.6079 
-0.5977 

 1 .7285 
 1 .7276 

-0.4775 
-0.4985 

 3.2474 
 4.3460

0 
-0 
-0 

0 

0 
-0 
-0 

-0 
-0 
-0 
-0 

0 
0 

0 
-0 
-0 

1 
4

.6772 -0. 

.4146 -0. 

.4717 -0. 

.4918 0. 

.5012 -0. 
.0401 -0. 
.5236 1 . 
.0890 -1 . 

.7459 -0. 

.6108 0. 

.6475 0. 

.6561 -0. 

.2316 -0. 

.3855 0. 

.4651 -0. 

.2915 -0. 

.6674 1 . 

.4806 1. 

.1581 -.0. 

.1616 -0. 

.4257 1. 

.7818 -0.

5366 
4867 
0167 
8937 
1823 

7464 
2782 
2842 
1 051 
1890 
0937 
0769 
51 59 
2051 
1 428 
8892 

0611 
2469 
31 95 
3369 
8217 
4358

0 
0 
0 

0 

0 
0 
0 

0 
0 
0 
0 

0 

0 
0 
0 
0 
0 
0

0732 
0412 
0518 
0602 

0901 
0317 
1363 
0501 
0431 
0627 
0372 
0414 
0402 
0318 
0314 
0521 

0350 
1173 
1162 
0393 
0849 
1500

0 
0 
0 

0 

0 
0 
0 

0 
0 
0 
0 

0 

0 
0 
0 
0 
0 
0

0283 
0244 
0237 
0320 

0244 
01 56 
0426 
01 62 
0274 

0232 
0288 
0289 
0242 
0242 
0243 
0081 

0294 
0468 
0325 
0244 
0565 

0219

0 
0 
0 

0 

0 
0 
0 

0 
0 
0 
0 

0 

0 
0 
0 
0 

0 
0

.

1034 
0666 
0732 

0851 
1277 
0469 
1929 
0710 
0612 

0934 
0593 
0604 
0594 
0499 
0510 
0737 

0526 
1657 
1 641 
0588 
1226 

21 57

0 
0 

0 

0 

0 
0 
0 

0 
0 
0 
0 

0 

0 
0 
0 
0 
0 

0

0445 
0380 
0396 

0453 
0404 
0253 
0672 
0261 

0436 
0392 , 
0452 
0453 
0380 
0380 
0379 
01 50 

0440 
0727 
0494 
0385 
0853 

0379

Notes. 

1) The measures are (1)a ( I[ p2), (2)d ( E p2), (3)d p2, (4)d p2,                    de . j de J de 1 de 2 

  (5)4S(0-sll/lls(( , (6)((T(e)-TII/QTII , (7)I(S(c)S(e)'-SS'II/j(SS'(( 
  (8)uT(e)T(e)'-TT'((/I{TT'(( . 

2) The measures (5)-(8) are calculated by using unidimensional 

   score (i.e. q=1).
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eigenvalue problems. Therefore, if there are so many individuals 

that it is practically difficult to apply the perturbation theory 

n times, we may first select influential individuals roughly by 

the former measure and then investigate the precise influence of 

the selected individuals by the other measures . 

      Since E=e/n, the result for e=1/n (i.e. a=1) just corres-

ponds_to the omission of a specified individual. To show the 

degree of approximation we compare the eigenvalues calculated by 

the perturbation method and the exact method . When we put E=1/62 

for the. individual No. 1 and apply the perturbation theory of 

first order of s, the relative errors of the two largest 

eigenvalues IBasy(E)-Qexact(E)I/eexa ct(E) are 0.011 and 0.008, 
respectively. If the accuracy is not satisfactory , we must 

consider the order of e2 or more. 

      In our example the difference between the two eigenvalues is 

not small. However, in general if there exist some eigenvalues 

which are close to each other , the approximation becomes poor 

because of the terms 1/(9
s-Bi) in the second orders of the 

eigenvalues and the first and second orders of the eigenvectors . 

If•9s=8i, the absolute value of {ups)} and then the norm of 
{ujs+Eu~s)} become very large, though the constraints on the 
norms of eigenvectors are included in the formulation . In such 

cases we should use the perturbation theory under the assumption 

of multiple eigenvalues rather than under the assumption of 

simple eigenvalues. We shall discuss such computational problems 

in Chapter 5. 

     We usually express the scores is and s's graphically in a
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 low dimensional vector space to grasp the relationship among the 

 categories. In such figures we sometimes observe the phenomena 

that rotations occur also in the second method of quantification 

as shown in Tanaka(1984b) in the case of the third method . Such 

phenomena can be explained mathematically as follows. 

      When we assume simple eigenvalues, the scores t(E)'s 

calculated include the terms of 1/(A
s-Ai), sAi in 

        ups) = E u~ius'H(1)ui/(As-Ai). 
              iAs 

If there exists a pair (G
s,gi) such that 8s=Gi among the 

eigenvalues of interest (i.e. s,i<q), the absolute values of 

u~ s )'s tend to be large as already mentioned. Then the 
coordinates of t(E) (or s(E)) in the q•-dimensional space move 

much from t (or s). 

     Now let us consider the change of the configuration of is 

(or s's). The (i,i)-th diagonal element of TV indicates the 

squared Euclidean distance from the centroid to the i-th category 

and the (i,i')-th off diagonal element indicates the inner 

product of the two vectors from the centroid to the i-th and 

i'-th categories. Hence we can measure the change of the mutual 

relationship among the categories with some functions of 

T(E)T(E)'-TV. This matrix can be rewritten as follows . 

     T(E)T(E)'-TT' = E(T(1)T'+TT(1)') + O(E2) 

                   = E{(S-1/2)(1)UU'S-1/2+5-1/2UU'(S-1/2)(1) 

                        +S-1/2(U(1)U'+UU(1)')S-1/2} + O(s2) 

In the expression of the right hand side only U(1)U'+UU(1)' 

includes the terms 1/(e s-ei), s#i. However, it can be expressed 

by 
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         U(1)U'+UU(1)' 

q 
               E E {uSUIH(l)usu! + uiusH(l)uius}/(QS- 9i). 

                   s=1 i>q 

Notice that the right hand side does not include the terms 1/(Qs-

AO for 1<s,i<q. Therefore, even if there are some pairs (s,i)'s 

such that Bs-9i among the eigenvalues of interest , the change of 
the configuration measured with T(£)T(e)'-TT' is not large unless 

the smallest difference between the eigenvalues of interest and 

the remaining is not very small. Thus, when there are some close 

pairs (As,Bi) among the eigenvalues of interest {01,...,gq} but 

the eigenvalues of interest are far from the remaining 

eigenvalues, it is expected that the change of the coordinates is 

large but the change of the mutual relationship among the 

categories is small. This means a rotation . When we assume 

multiple eigenvalues, the transformation from (v
1,...,vk) to 

(ul,...,uk) suggests the same property. 

      As the number of individuals increase , the influence of each 

one individual decreases and the main concern becomes to detect 

influential sets of individuals . For investigation of the 
r 

influence of multiple individuals it may not be practical to 

consider all possible combinations of individuals . But 

fortunately the first derivatives H(1) , U(1), T(1) and S(1) for a 

set of individuals are equal to the summations of the 

corresponding derivatives for each individual belonging to the 

set. So the influence of a set of the individuals which have 

similar T(1) and/or S(1) values becomes large . To collect such 

individuals cluster analysis may be .useful.

34



4 Sensitivity Analysis in Descriptive Multivariate Methods

      As shown in Greenacre(1984) and Greenacre and Underhill 

(1982), a number of descriptive multivariate methods including 

the quantification methods (and correspondence analysis) are 

formulated by using the generalized singular value decomposition 

(GSVD). Since the GSVD leads to an eigenvalue problem, a unified 

method of sensitivity analysis can be constructed by using the 

perturbation theory of eigenvalue problems. 

     First in 4.2 we briefly explain a unified formulation of 

various descriptive methods based on the GSVD, which was 

discussed in Greenacre(1984). Then we develop a sensitivity 
r 

analysis procedure of the generalized analysis to evaluate the 

influence of a small change of input data on the singular values , 

singular vectors and the corresponding row and/or column profiles 

by using the perturbation theory of eigenvalue problems . 

     We introduce several measures for the amount of influence . 

Numerical examples are shown to illustrate the usefulness of the 

proposed method, and finally discussion and summary are given.
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4.1 Unified formulation of multivariate methods by the generalized 
    singular value decomposition 

Generalized singular value decomposition (GSVD): Suppose that A 

is a matrix of order nxp and of rank K and that 0 and (D are 

positive definite matrices of order nxn and pxp, respectively. 

Then A can be decomposed as 

K 
(4.1) A = NDaM' = E aknkmk, 

                         k=1 

where 

(4.2) N'QN = I, M'4M = I, Da = diag[ a1,..., aKl, 

        N = [nl,...,nKl. M = [ml,...,mK]. 

It is known that the following general analysis procedure based 

on the GSVD includes various multivariate methods as special 

cases (Greenacre(1984)). 

General analysis procedure 

1) Transform the data matrix Y to the matrix A by preprocessing 

   of some type of centering. 

2) Apply the GSVD to the matrix A for given Q and (D and obtain 

   the singular values {ak} and the left and right singular 

   vectors {nk} and {mk}. 

3) Compute the scores for rows and columns by 

(4.3) F = N(L)Da(L) , G = M(L)Da(L) , 
   where the matrices with the subscript (L) indicate the sub-

   matrices of L columns of the full matrices. 
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     The methods such as principal component analysis, biplot, 

canonical correlation analysis, Hayashi's second and third 

methods of quantification and correspondence analysis are treated 

as special cases of the above general procedure with appropriate 

A, Q, 4, a and b. Here as a matter of convenience to develop 

sensitivity analysis we shall formulate those multivariate 

methods in somewhat generalized manner introducing weights for 

individuals. The result are summarized in Table 4.1. 

     Let the Cholesky decomposition of a positive definite matrix 

Q (or U be 

(4.4) Q _ (Q1/2)(Q1/2)T, 

or 

(4.4)' ( _ ((D1/2)((D1/2)T, 

where 521/2 (or (D1/2) is a lower triangular matrix and Q-1/2 (or 

4)-1/2) is its inverse. Then the generalized SVD problem is 

transformed into the following ordinary SVD problem. 

(4.5) B = UDaVT, 

r where 

(4.6) B = W/2)TAg1/2. 

(4.7) UTU = I, VTV = I. 

The matrices N and M are calculated as 

(4.8) N = (Q-1/2)TU, 

(4.9) M = OD-1/2 )TV. 

From this ordinary SVD problem we obtain an eigenvalue problem 

such as
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Table 4.1 Multivariate methods 

    generalized singular

 formulated by the 
value decomposition.

Method

Transformed 

matrix A 0 0 a b Note

(1) Principal 
  component 
  analysis

(2)Biplot 
(Type 1)

(Type 2 
Covariance 
biplot)

Y-11TDWY/n` Dw/n I

Y-11TDWy/n Dw/n I

// /,

1

1

0

0

0

1

Dw=diag(w1,...,wn) 
indicates weights 
for rows. 

n= Ekwk 

1=(1,...,1)T

(Type 3 
Symmetric 
biplot)

G 1/2 1/2

(3)Quantifi-
  cation IL

(4)Corres-
 pondence 

 analysis

(5) Canonical 
  correlation 
  analysis 

(Also, 
canonical 
discriminant 
analysis, 

Quantifi-
cation IL )

Dr1YDC(w)-1 DrDw Dc(w)

Dr1YDC(w)-1 DrDw Dc(w)

S11(w)S12(w)S22(w) 
         S11(w)

0

1

S22(w) 1

0

1

1

Y:data matrix 
Dr diag(Y1) 
DC (w)=diag(YTDW1)

Sjk(w):sample 
     covariance 

      matrix
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 (4.10) H = VDaVT, 
where 

(4.11) H = ((p1/2)TATS?A(D1/2. 

Thus, to perform the general analysis procedure we should first 

solve the eigenvalue problem (4.10) and obtain the eigenvalues Da 

and eigenvectors (or the right singular vectors) V . Then after 

calculating U by the relation 

(4.12) U = BVDa 1 , 

we can get the coordinates F and G by the following equations . 

(4.13) F = (c-1/2)TU(L)Da(L), 

(4.14) G = ((D-1/2)TV(L)Db(L). 

4.2 Sensitivity analysis 

4.2.0 Basic idea of sensitivity analysis 

     Here we consider to evaluate the influence of a small change 

of the input data to the result of analysis . Though we can treat 

various types of change, we discuss mainly the influence of the 

change of weights for a single or multiple individuals . / 

     Let the weights for the individuals be 

                11-e, k=i, 
(4.15) wk = (single individual case) 

              1 ki, 

or 

               11-c, kEI, (4
..16) wk = (multiple individual case) 

           1 1 k6t-I, 

where i and I are a specified individual and a specified set of 
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individuals, respectively. Then the matrix H in (4.11) can be 

expressed as a power series of c as follows by Taylor expansion. 

(4.17) H(c) = H + dH(1) + c2H(2) + O(c3), 

where H is the value of H(c) for.c=0 and the matrices H(1) and 

H(2) can be easily calculated for each multivariate method. 

     When c varies slightly, the matrix H(c) varies according to 

the expression (4.17). The problem is to evaluate efficiently 

how the eigenvalues D2                              a, the eigenvectors V and also the 

coordinates G and/or F vary correspondingly. Our basic idea is 

as follows. First calculate the change of the matrix H. Next 

evaluate the change of Da and V based on the perturbation theory 

of eigenvalue problems. Then obtain the change of the 

intermediate quantities U, N, M and finally the coordinates F, G 

by Taylor expansion.

4.2.1 Perturbation of the eigenvalues and the associated 
       eigenvectors 

     It is known that, when the matrix H(e )=(hjj'(c )) is expanded 

in a power series convergent in a neighborhood of c=0, +-here 

exist power series of the eigenvalues 0s(c)'s and the 

eigenvectors vs(c)'s all convergent in a neighborhood of c=0. 

(4.18) 9s(c) = 8s + cOs1) + c2As2) + 0(c3), s=1,...,K. 
(4.19) vs(c) = Vs + cvs1) + c2vs2) + O(c3), s=1,...,K. 
K denoting the number of dimensions of interest. The coeffi-

cients G(1), G(2), v(1) and v(2) are obtained by the lemmas in 
          s s s s 

Chapter 2.
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4.2.2 Perturbation of the singular values and the singular 

       vectors 

     The singular values as(e), the left singular vectors 

and the right singular vectors M(e) are expressed by using 

Taylor series expansions as follows. 

(4.20) as(e) = as + east) + E2as2) + 0(e3), 

(4.21) N(e) = N + EN(1) + e2N(2) + O(E3), 

(4.22) M(E) = M + cM(1) + e2M(2) + O(E3), 

where 

        as = 01/2, 

(4.23) as(') = 0(1)/(2as), 

      as2) _ {gs2)/as - (as1))2/as}/2, 

       N(1 ) = A(1 ),~1/2VDa1 + A((D1/2) (1 )VDa1 

              + A(D1/2V(1)D-1 - A(D1/2VD-1D(1)D-1 
                                a a a a 

      N(2) = A(2),~1/2VDa1 + A(1)((D1/2)(1)VDa1 

(4.24) + A(1)(D1/2V(1 )D-1 - A(1 )(D1/2VD-1D(1 )D-1 
                                    a a a a 

            + A((D1/2)(2)VDa1 + A((D1/2)(1)V(1)Da1 

           - A((D1/2)(1)VDa1Da1)Da1 - A(D1/2V(1)Da1Da1)Da1. 

            + AO/2V(2)Dal + A(D1/2V(Da 1)(2) 

, (4.25) M(1) = ((D-1/2)(1)TV +.((D-1/2)TV(1), 

       M(2) = ((D-1/2)(2)TV + ((D-1/2)(1)TV(1) + ((D-1/2)Tv(2) ,

N(E) 

 the

(4.26) ( Da-1)(2) = Da-1 Da(1)Da-1Da(1)Da-1 - Da-1Da(2)Da-1,
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4.2.3 Perturbation of the coordinates of rows and columns 

     The coordinates F(c) and G(c) are expanded in power 

of c as follows. 

(4.27), F(e) = F + cF(1) + 6202) + 0(e3), 

(4.28) G(e) = G + cG(1) + e2G(2) + O(e3), 

where 

       F = A(D1/2V(L)Da(L), 

      F(1) = A(1)(D1/2V(L)Da(L) + A(~1/2)(1)V(L)Da(L) 
           + A(D1/2VJL;Da(L) + (a-1)A~1 /2 V(L)Da(L)D(a~L), 

(4.29) 

      F(2) = A(2)(D1/2V(L)Da(L) +.A((D1/2)(2)V(L)Da(L) 
           + A(D1/2VJL;Da(L) + (a-1)A~1/2V(L)Da(L)D(a(L) 
             + (a-1)(a-2)A(D1/2V(L)Daa(L)(D(a 0 2 

           + 2A(1)(4)1/2)(1)V(L)Da~L) 
            + 2A(1)(p1/2vN a;Da(L) 

           + 2(a-1)A(1)(D1/2V(L)Da(L)Da(L) 
          + 2A((D1/2)(1)V~LlDa(L) 

             + 2(a-1)A(4)1/2)(1)V(L)Da(L)D(a(L) 
           + 2(a-1)A(D1/2vj1 Daa(L)Da(L), 

       G = ((D-1/2)TV(L)Dab(L), 

    1G(1) = ((D-1/2)(1)TV(L)Db + ((D-1/2)TV(L)Db 
              + b((D-1/2 )TV(L)Da(L)D(a()), 

(4.30) 

       G(2) _ ((D-1/2)(2)TV(L)Dba(L) + ((D-1/2)TV(L)Da(L)

series

i
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The 

and

          + b(b-1)(4)-1/2)TV(L)Da(L)(D(lL))2 
         + b(D-1/2)TV(L)Da(L)D(~(~) 
          + 2(4)-1/2)(1)Tvjl bb (L) 

          + 2b(4)-1/2)(1)TV(L)Da(L)Da(~) 
        + 2b(4)-1/2)TVjL~Dub~L)Da~U) . 

 first and second order terms in the expansions 

0(e)-1/2 are given by 

  c (Q-1/2)(1) _ (Q-1/2)t
(4.31)

and

(4.32)

The differential 

be calculated 

case of 

correspondence 

in the 

Taylor

of S2(E)-1/2

(52-1/2)(2) _ (1/2)(52-1/2)1,, 

(,-1/2)(1) _ (~-1/2)I 

             _ -0-1/201/2)'(D-1/2, 

(0-1/2)(2) _ (1/2)(4-1/2),t 

              ~-1/201/2) 1(D-1/2(1/2) '(D-1/2 

              _(1/2)(D-1/2(01/2)tt(D-1/2. 

r fferential coefficients of the matrices 01/2 and (D1/2 can 

       easily when these matrices are diagonal as in the 

PCA, biplot, Hayashi's third method of quantification and 

        analysis. However, when they are not diagonal as 

case of canonical correlation analysis, we must apply 

expansion to the Cholesky decomposition.
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4.2.4 Perturbation of the matrix H 

     We must consider the matrices H, A, 0 and Q for each method. 

(1)Principal component analysis 

     From Table 4.1 the matrix H is given as follows by using the 

weights w=(wk) in the case of principal component analysis. 

(4.33). H(w) = n(Y-n11TDwY)TDw(Y-n11TDwY) 
Substituting (4.15) into (4.33) and expanding with respect to e we 

obtain 

(4.34) hJ1i(e) = h1J' + shj3 ) + e2h(~) + O(c3), 
where 

                   1 n - -(4.35) hi7 , = n E ( Ykf -Yj) (Ykj, -yj,) , 
                    k=1 

(4.36) h!'! = h..,/n - (y..-y.)(y..,-y.l)/n, (single 
         JJ JJ 1J 7 lJ J individual) 

             = (m/n){h.., E (Yi
J-YJ)(YlJ-y7v)/m},(multiple                       ii iEI individuals) 

(4.37) h~~) = hji,/n2 - 2(yij-yj)(y..t-Yi,)/n2, (single) 

              = (m/n)2{h~., - E (yip-yj)(yij,-y.,)/m (multiple) 
                            iEI 

                           -( E Y 
13 ../m - y J .)( E y1..J,/m - yJ.,)}                           iEI ir ,I 

       _ n 
(4.38) yj = E yki /n . 

                     k=1 

Similarly, expanding the transformed matrix A(w) with respect to 

c we get 

(4.39) akj(e) = akJ + eak~) + e2ak~) + O(e3), 
where 
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(4.40) akj = Ykj - yj, 

(4.41) akj ) = aid /n k~i, 
                                                   (single) 

              = aid/n - ail k=i, 

(4.42) a(1) = Z a../n k~I,          kJ i6I 13 

                                                 (multiple) 
               E aiJ/n - akj kEI, 

(4.43) a( ) = aid/n2 k~i, 
                                                   (single) 

               aid/n2 - aid/n k=i. 

(4.44) a(2) = E a../n2 kfI,          kJ ILI 1J 

                                                 (multiple) 
                 m E 

a, . - E a /n keI, 
                n2 i~I 1] ic-I kj 

     From Table 4.1, 

        S2(e) = (I-cJi)/(n-e) 

(4.45) = (1/n)I + (1/n)e{(1/n)I - ii) 

              + (1/n)2e2{(1/n)I -.Ji} + O(e3). 

where ii is a diagonal matrix with 1 in its (i,i) element 

in the other elements. Since the matrix Q(e) is diagonal, 

differential coefficients are calculated as 

(4.46) (521/2)' = (1/2)52-1/252', 
     1 (S21/2),, _ (-1/4)52-3/2(S2 )2 + (1/2)52-1/2SZtI 

, and the differential coefficients Q' and Q'' are given by 

(4.47) S' = {(1/n)I - Ji} / n, 

       1 '' = 2        Q 2{(1/n)I - Ji} / n .

r 

and 0's 

 their
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Thus in the case of PCA or biplot we can evaluate the expansion 

(4.27) by substituting (4.47) into (4.46), (4.46) into (4.31 ), 

(4.31). into (4.29) and (4.30), and finally (4.29) into (4.27). 

Since the matrix 4D is a constant matrix, it is obvious that 

(4.48) ((D-1/2)(1) = (,~-1/2)(2) = 0. 

Substituting (4.48) into (4.31) and (4.31) into (4 .28) we can 

evaluate the expression (4.28). 

(2)Hayashi's third method of quantification and correspondence 

   analysis 

     In the case of Hayashi's third method of quantification the 

matrix H(w) is given by 

(4.49) H(w) = Dc(w)-1/2YTD wDr1YDc(w)-1/2, 

This matrix is expanded in a power series of c as in (4 .17), 

where the 0-th to 2nd order terms are given as 

               n Yki yki' 
(4.50) hjj, = E r c.c., '              k=1 k 4 J J 

          (1) Yi' yi'' - yii yij'             -~ (4.51) h.., _ , (single)         JJ 2~( + cj,) ri cjc., 
              h Yi Yi Y Y , 

             = ii, E ( j + ---~) - E ii ii , (multiple)                2 ic-
I cj cj , iEI ri r cj cj , 

        !2) 1 Yij Yij ' 3 yij 2 3Y11' 2 
                                                   J~) ) (4.52) hjj, = hjj,(4 cJ cJ, + 8( c. + 81C 

               1 yij 
+ Yij yii '                  - 2 ( 

c. c.,) r.J c
JcJ, (single) 

             h{1( E Y1j )( E y1] ) (multiple)                      4 
cj ia -I cj ' 

                    + 8( E y13 )2 + 3 E YCJ )2} 
                             iEI JI J, 
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                     1 yi' Yi'' yi7 ' yi''            _~ -Z J 

                           j ia-I j ' i.4 I Ii V cj cj ' 

 The transformed matrix A(w) is expanded as in the form of (4 .39) 

where the coefficients are given by 

(4.53) akj = ykj/(rkcj), 

(4.54) akj) = akj c k?i, 

J 

                    Y (single) 
                aij l13- + aij k=i, 

3 

                                                                                                      .. 

(4.55) akj) = akj E y--~ - k 4 I, 
                     i6I J 

                      Yl (multiple) 
                 akj E - + akj k (-- I, 
                  iE I J 

                   y. (4.56) akj (2) = akj ( aJ ) 2 k4i, 

J 

                       Yi' 2 yi' (single) 
               aij { ( 

cJ ) + cJ + 1 } k=i.                      J 3 

(4.57) akj (2) = akj ( E c7 ) 2 k j I, 
                  i&I J 

                                                   (multiple) 
                {( E Y1] )2 + E Y~~-+ 1 } k~I.                ak

J i~I c1 i61 J 

     From Table 4.1, 0 and (P are both diagonal matrices whose 

diagonal elements are given by 

(4.58) wkk(e) = rk - cri, 

(4.59) ~jj(e) = cj - cyij. 

The differential coefficients become 

(4.60) wkk = -ri, wkk = 0, 

(4.61) ~Jj = -Yij, ~J! = 0. 
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Thus by using (4.60) and (4.61) we can obtain the first and

second order terms of F and 

expressed with 0, 4' and 0 

(Q1/2) " in (4.46).)

G. (((D1/2)' and ((D1/2)" are 

' as in the case of (p1/2)' and

     Correspondence analysis is equivalent to Hayashi's third 

method of quantification except for the normalization of 

coordinates.

(3)Canonical correlation analysis (CCA) 

     The matrix H(w) is expressed by 

(4.62) H(w)=S22(w)-1/2521(w)S11(w)-1512(w)(S22(w)-1/2)T, 

which is expanded as in (4.3), where the 0-th to 2nd order 

are given as follows. 

       H(1) = R(1)QRT.+RQ(1)RT + RQR(1)T 

(4.63) H(2) = R(2)QRT +RQ(2)RT + RQR(2)T 

            + R(1)Q(1 )RT + R(1)QR(1 )T + RQ(1)R(1 )T 

where 

      Q S21 S1 1 s12 
      Q(1 ) = S21) S1 1 S1 2 - S21 S1 1 S1 1) S1 1 1S12 + S21 S1 1 S12 ) 

(4.6.4) Q(2) = S21 )S11S12 - S21 )S11S11 )S11S12 + S21 )S11S12) 
             + S 21S1111 S S-1S12)S-1S 

               21 11 11 11 11 11 12 - 21 11 1 11 12 

    S21S11S11 )S-111S121) + S21S11S21 ) 

      R = S22/2 

(4.65) R(1) = -S22/2(S11/2)(1)5212/2                      22

terms

r
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      R(2) = S22/2(S 2)(1)S22/2(52~2)(1)S22/2 
           S22 /2(s1 2)(2)S22/2 , 

The transformed matrix A(w) is expanded as in the form of (4 .39), 

where the coefficients are given by 

(4.66) A = S11S12S22, 

(4.67) A(1) = -S11S11)S11S12S22 + S11S12)S22 
           -S11S12S22S22)022, 

(4.68) A(2) = (S11)(2)S12S21 + S11S12)S22 

          + S11S12(S22)(2) - S11S11)S11S12)S22 

         + S11S11)S11S12S22S22)S22 

         S11S12)S22S22)S22. 

The covariance matrices can be expressed as 

(4.69) S11(w) = S11(c) = S11 + ES 111) + E2S11) + 0(c3) , 
(4.70) S12(w) = S12(c) = S12 + cS12) + c2S12) + O(s3), 

(4.71) S22(w) = S22(c) = S22 + cS22) + c2S22) + O(c3), 
where 

(4.72) S11) = (m/n){S11 - (1/m) E (xi-x)(xi-x)'}, 

r (4.73) S12) = (m/n)2{S11 - (1/m) E (xi-x)(xi-x)', 

                        ((1/m) E xi-x)((1/m) E xi-x)'}, 
                           i&I 

(4.74) (511)(2) = S11S11)S11S11)S11 - S-                               11 lS11)S11-

S1(2), S(2), S22) and S22) denoting the similar formula with 
respect to the covariance matrices between the first and second 

group of variables and within the second group of variables. 

(S222)(1) and (S222)(2) are calculated by the differentiation of 
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the Cholesky decomposition shown later. 

Canonical discriminant analysis (CDA) is included in CCA where 

the variables of the first group are the dummy variables 

expressing the mutually exclusive categories of an item. 

Hayashi's second method of quantification is a special case of 

CDA where the variables of the second group are also given as the 

dummy variables expressing the categories of several items. 

Differential coefficients of Cholesky decomposition 

     A positive definite symmetric matrix A can be decomposed 

into the product of a lower triangular matrix G and its transpose 

GT, i.e. 

(4.75) A = GGT. 

The elements of G are calculated by 

       g11 = (a11) 1/2 ' 

       gj1 = aj1/g11, j>1, 

                     i-1 2 1/2 
(4.76) gii (aii E gis) ' i>1 

                           s=1 

r 

                            i-1 
        gji= (aji - E gisgjs)/gii• i<j 

                            s=1 

        gji= 0, i>j. 

From (4.76) we easily obtain the differential coefficients. 

      g11 = a11/2a11/2, 
       g11 = -a-3/2(ail)2/4                             + a11/2a11/2,               11 

       gj1 = aj1/g11 - aj1g11/(g11 )2• j>1 

    gj1 = a!1/g11 - (2aj1g11+aj1g11)/(g11 )2 j>1 
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(4. 77),

4.3 Measures 

     To 

followin 

(1) Differential 

singular 

(2) Differential

 + 2aj1 (gi' 1 )2/(g11)3. 

       1 i-1 gii 2(aii 2sE1gisgis)/9ii2 i>1 
   ~~ 1 ~~ i-1 gii= 2{aii - 2s=1(gis + gisgis)}/g1/2 i>1 

      _ 1{a. - 21E1g! g • )g'/g3/2         4 ii 
s=1 is is ii 

                  i-1 
gii= {aji - E (gisgjs+gisgjs)}/gii i<7 

                 s=1 

                   i-1 2 

       aji s=1gisgjs)gii/(gii) ' 
                 i-1 

gji {aji 
sE1(gisgjs+2gisgjs+gisgjs)}/gii i<3 

                     i-1 
      2{aji E (gi

sgjs+gisgjs)}gii/(gii)2                      s =1 

                   i-1 
      (aji E gisgjs)gii/(gii)2 

                   s=1 

                    i-1 
     +2(aji 
sElgisgjs)(g! )2/(gii)3= = ii 

     of the amount of influence 

express the amount of influence we can consider the 

g measures. 

          coefficient of the sum of eigenvalues(squared 

 values) 

ae ek(e) tr H(1)   k 1e=0 = 
            coefficient of the product of eigenvalues 
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(squared singular values) 

      do 1I 8k(e)I = IHItr(H-1H(1) )               k c=0 

(3) Differential coefficient of each singular value 

        ak1) = Beak (e )              I e=0 
(4) Euclidean norm of the differential coefficients of the 

coordinates F (or G) normalized by II F II (or II G II ) 

    IIF(1)II / IIFII , JIG(1)II / IIGII 

(5) Euclidean norm of the differential coefficient of the 

configurations FFT (or GGT) normalized by II FFT II (or II GGT II ) 

       IIF(1 )FT + FF(1 )TII / IIFFTII 

      JIG(1) )GT + GG(1 )TII / IIGGTII 

      In the above we used the differential coefficients to 

measure the amounts of influence for the sake of simplicity. 

When we apply the second or higher order perturbation we should 

use the difference such-as 8k(c)-Ak(0) and ak(e)-ak(0) instead of 

the differential coefficients such as aeOk(c)~ and 
                                                                                  c=0 

dak(e) f 

    

I c=0 

4.4 Numerical examples 

(1) Principal component analysis 

     As an illustration we analyzed the data given in Table 4.2, 

which is a part of the result of a survey on food acceptance
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Table 4.2 Food acceptance data : 
     drinks in 10 groups 

     (mean values in 9 point

acceptance patterns of 12

rating scale).

Individual 1 2 3

 Category 

4 5 .6 7 8 9 10

1 4.6 5.0 6.0 5.4 5.4 4.7 4.2 4.2 4.1 4.4

2 4.6 5.1 6.7 7.2 6.5 3.3 3.6 4.2 4.3 3.6

3 6.1 6.3 7.1 6.8 6.6 6.5 6.8 7.2 6.8 7.4

4 6.1 6.7 6.6 5.8 5.5 5.8 6.0 6.0 5.7 5.8

5 6.2 6.8 6.2 6.6 5.5 5.0 6.3 6.3 6.2 5.8

6 7.4 7.3 6.8 6.7 6.8 6.3 6.3 5.0 6.4 5.2

7

8

8.1 6.8 6.7 6.3 5.9 7".8 7.0 6.3 6.7 6.1

7.8 6.6 6.4 6.2 5.8 7.6 6.6 5.9 5.9 5.2

9 7.0 5.3 5.3 4.8 4.2 6.7 5.1 4.7 4.2 4.3

10 6.9 6.9 6.2 5.6 5.0 5.6 5.8 4.5 3.9 3.3

11 7.6 6.6 5.8 5.3 5.3 6.9 6.4 5.5 5.5 5.7

12 7.0 5.6 4.3 4.3 4.2 6.5 5.7 5.3 4.8 4.2

Notes. 
 (1)Individuals (drinks): 1.wine, 2.beer, 3.green tea, 

    4.black tea, 5.coffee, 6.milk, 7.Calpis(lactic acid 
    8 . orange juice, 9.powdered juice, 1 0.coke, 1 1 .soda 

    12.Nectar(fruit juce).

drink), 

pop,

(2)Categories(groups): 1.male -15, 2. 
   4.male 31-40, 5.male 41-, 6.female 

   8.female 21-30, 9.female 31-40, 10

male 16-20, 3. 
 -15, 7.female 

.female 41-.

male 21-30, 
 16-20,
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(Toda and Tanaka(1968)). Each value in the table means to what 

degree each of 12 drinks is accepted in each of 10 groups defined 

by age and sex. In order to investigate the mutual relationship 

among 10 groups and/or 12 drinks, we applied principal component 

analysis to these data. The result is shown in Fig. 4.1. From 

the configuration of the points we can construct some clusters of 

rows (individuals, in this case foods) and/or columns(categories, 

in this case groups) 

     Next to investigate the stability of the above result we 

applied the sensitivity analysis. The measures of the amount of 

influence defined in section 3 are calculated by changing the 

weight for each individual from 1 to 1-c in turn. The results 

are shown in Table 4.3. Since the individual No. 2 looks 

relatively influential, according to this table, we evaluated the 

influence of the individual No. 2 precisely. Fig. 4.2 shows the 

changes of coordinates of rows and columns due to a small change 

of the weights for the individual No. 2 from 1 to 1-E (c=0.3). 

Though a small clockwise rotation is observed in this figure, the 

influence is so small that it does not affect the interpretation. 

(2) Hayashi's third method of quantification 

     We applied Hayashi's third method of quantification to the 

data given in Table 4.4, which is also a part of the result of 

the survey on food acceptance. Each mark in the table means 

whether each of 1 2 foods is accepted(1) or not (0) in each of 1 0 

groups. The result is shown in Fig. 4.3. Here the coordinates 

are normalized so that the variance in each dimension is equal to
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Table 4.3 The amount of influence of 
   (Principal component

each drink 
 analysis).

No ail ) all ) tF(1)G /(LFLt IIFFTf ([G(1 )L /ILGI( Il GGT ((

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12

-0 

-0 

-0 

0 

0 

0 

-0 

0 

0 

0 

0 

0

.12656 0 

.22018 -0 

.05548 -0 

.09098 0 

.08614 0 

.06043 0 

.10014 0 

.02453 0 

.05186 -0 

.04397 0 

.06952 0 

.07492 -0

.05502 

.11471 

.04978 

.05450 

.02165 

.04626 

.06423 

.05329 

.07470 

.03356 

.03222 

.12154

0.10732 

0.50171 

0.29677 

0.03981 

0.08436 

0.07911 

0.04302 

0.07256 

0.20171 

0.11047 

0.08478 

0.20062

0.14814 

0.69883 

0.42626 

0.05745 

0.12208 

0.11121 

0.06089 

0.10286 

0.27874 

0.15276 

0.12188 

0.27851

0.07606 

0.34506 

0.22680 

0.02787 

0.07404 

0.07763 

0.02893 

0.05041 

0.13197 

0.10409 

0.04683 

0.16546

0.10775 

0.48108 

0.31843 

0.03763 

0.09970 

0.11134 

0.04159 

0.07267 

0.18527 

0.14837 

0.06617 

0.23712

r

Note. ((FFT IL and (LGGT lL 

LL G (1) GT+GG (1) T ((

mean fl F(1 )FT+FF(1 )T IL / 

/ LL GGT (( , respectively.

ILFFT(( and
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data. (Principal component analysis)
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Table 4.4 Food acceptance data : acceptance patterns of 12 
            foods in 10 groups.

Individual 1 2 3

 Category 
4 5 6 7 8 9 10

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12

1 

0 

1 

0 

1 

1 

1 

0 

1 

1 

0 

0

1 

0 

1 

1 

1 

1 

1 

1 

1 

1 

0 

1

1 

0 

1 

1 

1 

0 

1 

1 

1 

0 

1 

1

0 

0 

1 

1 

1 

0 

1 

1 

1 

1 

1 

1

0 

1 

0 

1 

1 

0 

0 

1 

1 

1 

0 

1

1 

1 

1 

1 

1 

1 

1 

0 

0 

1 

0 

0

1 

0 

1 

1 

1 

1 

1 

1 

0 

0 

1 

1

1 

0 

1 

1 

1 

0 

0 

1 

0 

1 

1 

1

1 

0 

1 

1 

1 

0 

1 

1 

0 

1 

1 

1

0 

1 

0 

1 

1 

0 

0 

1 

1 

1 

1 

1

Notes. 

 (1)Individuals(foods): 1.curry and rice, 2.iced'noodles , 
    3.flield noodles, 4.miso soup, 5.sukiyaki , 6.croquette,!     7

.ham, 8.sliced raw fish, 9.broiled eel ,     10
.Japanese hotchpotch, 11.Chinese cooked vegetables

,     1 2
. cooled tofu. 

 (2)Categories(groups): 1.male -15, 2.male 16-20 , 3.male 21-30,     4
.male 31-40, 5.male 41-, 6.female -15, 7 .female 16-20,     8
. female 21-30, 9. female 31-40, 1 0 . female 41-. 

(3)The figure "1" indicates that the food is accepted in the 
    group in the sense that the mean scores using a 9-point scale 

    is larger than 6.0 and figure "0" indicates the opposite .
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the corresponding eigenvalue as in correspondence analysis. Also 

in this analysis we may construct some clusters of the points of 

rows and/or columns. 

     Next we applied the sensitivity analysis. Table 4.5 shows 

the measures of the amount of influence calculated by changing 

the weight for each individual in'turn. According to this table 

the individual No. 2 looks influential. So we evaluate the. 

influence of the individual No. 2 precisely. Fig. 4.4 shows the 

changes of coordinates of rows and columns when the weight for 

the individual No. 2 is slightly changed from 1 to 1-E; (e=0.3). 

Also in this case we can observe a rotation. However, mutual 

relationship among points seems stable. 

4.5 Discussion and summary 

     Our concern is how the result of analysis changes when the 

weight for a single or multiple individuals changes slightly. 

Our sensitivity analysis procedure is as follows. 
y 

    Step 1. Evaluate the influence of each individual in turn 

by changing its weight form 1 to 1-c and summarize the 

result in a table. 

    Step 2. Find influential individuals by checking the table. 

    Step 3. Show the influence of a single or multiple 

influential individuals graphically, and judge how it affects the 

interpretation. 

     In step 1 we must calculate the influence of each individual

60



Table 4.5 The amount of 

   (Hayashi's third

influence 
method of

of each food 

 quantification).

No all ) all ) II F(1 )II 1AFII ((FFT I( It G(l )(t /I(Gt II GGT l(

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12

-0 

-0 

-0 

0 

0 

-0 

-0 

0 

0 

0 

0 

0

.01799 

.01998 

.00894 

.01576 

.02748 

.04151 

.01504 

.00719 

.01675 

.02375 

.00533 

.00719

0 

-0 

0 

0 

0 

-0 

0 

0 

0 

0 

-0 

0

.01698 

.06012 

.01578 

.01965 

.02199 

.01582 

.01604 

.00222 

.00388 

.00883 

. .03165 

.00222

0.31761 

1 .05495 

0.34883 

0.15369 

0.07456 

0.73377 

0.27783 

0.40792 

0.16598 

0.18457 

0.41789 

0.40792

0.43181 

1.13861 

0.37623 

0.20508 

0.14373 

0.78745 

0.40187 

0.33359 

0.28537 

0.27547 

0.45864 

0.33359

0.22560 

0.86456 

0.28163 

0.16321 

0.12980 

0.55648 

0.17792 

0.35367 

0.20292 

0.18662 

0.32476 

0.35367

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0 

0

21346 

42685 

18620 

22235 

25876 

26463 

19534 

20694 

30475 

26529 

21517 

20694

Note. II FFTI( and /(GGT II 

II G (1) GT+GG (1) TI{

mean ((F(1 )FT+FF(1 )T I( / 

/ II GGTI( , respectively.

II FFTI( and

r
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   data. (Hayashi's third method of quantification)
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in turn. When the number of individuals increases the amount of 

calculation becomes large. Therefore it is very important 

practically to use a numerical method which is as efficient as 

possible. From such viewpoint we avoided to apply exact methods 

to solve eigenvalue problems, and instead we used the 

perturbation theory of eigenvalue problems. 

     The formulation of the perturbation theory are different 

depending on whether we can assume the eigenvalues of interest 

are all simple or not. The precise computational problems are 

fully discussed in Chapter 5.      

,For evaluation of the stability of the result so called 

jackknife method and bootstrap method are also useful. If we put 

e=1 our method just corresponds to the jackknife method. The 

bootstrap method requires, in general, much computing time. 

Therefore, if a large scale computer is available and if the 

evaluation of the stability is a critical problem we should use 

the bootstrap method.

r
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5 Computational Aspect of Sensitivity Analysis 

     In this chapter we discuss the computational aspect of 

sensitivity analysis in multivariate methods which are formulated 

as eigenvalue problems of symmetric matrices. 

     Since we must evaluate the eigenvalues and eigenvectors of 

slightly different matrices many times in order to search for 

influential observations, we should use a computing method which 

is as efficient as possible. From such a viewpoint we applied 

the perturbation theory in our sensitivity analysis. But the 

perturbation methods are different, depending on whether the 

eigenvalues of interest are all simple or not. Of course in 

actual data analysis the eigenvalues of interest are usually all 

simple in the strict sense. However, if there are close 

eigenvalues we should better apply the perturbation method under 

the assumption of multiple eigenvalues to get the result with 

high accuracy, because the method under the assumption of simple 

eigenvalues does not work well in such cases. The problem 

whether we should use the first order approximation or second 

order approximation is another problem. 

     We investigate six computational methods based on the
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perturbation theory and 

numerically, and discuss 

methods of computation.

compare their degrees 

the switching policies

of accuracy 

among those

5.1 Computational methods 

     For the computation of eigenvalues and eigenvectors of each 

matrix H(E) we may apply the following methods. 

  (EM) Exact method to solve each eigenvalue problem of H(E) by 

        an ordinary numerical procedure. 

  (PS1) Perturbation method of first order assuming simple 

        eigenvalues based on Lemma 1 in Chapter 2. 

  (PS2) Perturbation method of second order assuming simple 

        eigenvalues based on Lemma 1 in Chapter 2. 

  (PM1) Perturbation method of first order assuming multiple 

        eigenvalues based on Lemma 2-1 in Chapter 2. 

  (PM2) Perturbation method of second order assuming multiple 

         eigenvalues based on Lemma 2-2 in Chapter 2. 

  (PM'1)Modification of PM1. The method to compute eigenvalues 

         of first order approximation by using Lemma 3 in Chapter 

        2 and obtain eigenvectors by solving linear simultaneous 

        equations. 

  (PM'2)Modification of PM2. The method to compute eigenvalues 

        of second order approximation by using Lemma 3 in Chapter 

        2 and obtain eigenvectors by solving linear simultaneous
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         equations. 

     As is mentioned before there are various sources which bring 

small changes of the matrix H, and, in general, we must evaluate 

the eigenvalues and eigenvectors of slightly different matrices 

many times. Therefore, it is practically important to choose the 

procedure which is as efficient as possible, if its computation 

error is not so large. So if the result of any one perturbation 

method is accurate we should better choose it. 

     In applying the perturbation methods the appropriateness of 

the assumption of simple eigenvalues depends on the closeness of 

the eigenvalues of interest. The choice between the first order 

perturbation or*second order perturbation depends on the size of 

e. In order to investigate the effects of the closeness of the 

eigenvalues of interest and the size of a we performed numerical 

experiments as shown below. The data are generated according to 

the following model. 

Model: 
r 

          H(e) = H + cH(1) + e2H(2), 

where 

          H = 91ulu1' + ... + 94u4u4, 

          ul = (1/2 1/2 -1 /2 -1/2)', 

         u2 = (1/2 -1/2 1/2 -1/2)', 

          u3 = (1/2 -1/2 -1/2 1/2)*', 

         N = (1/2 1/2 1/2 1/2)'.. 

            91=3+A, 02=3-A, 03=0.5, 04=0,

66



         H(Q)=(hl~)), hl~) : [-1,1] uniform random number. 
                                            Q,=1,2 

     First, to investigate the effect of the closeness of eigen-

values, we generated ten sets of H(e)'s by putting c=0.1 (fixed) 

and £=0.01,0.05,0.10(0.10)0.50, and calculated their eigenvalues 

and eigenvectors by the above EM-PM'2 methods. The results are 

summarized in Table 5.1. From this table we find that, 

 1O when 0 is large, the eigenvalues and eigenvectors are 

calculated accurately by all of the PS, PM and PM' methods, but 

O2 when t decreases, the accuracy of the PS method grows worse 
while the PM and PM' methods are still satisfactorily accurate, 

and 

   there is no clear difference in accuracy between the PM and 

PM' methods. 

From (2.5)-(2.6) we can interpret that the main source of the 

errors due to the closeness of eigenvalues is the term 0s-gr in 

the denominator in the second equation of (2.5). So, when. some 

r eigenvalues are close to each other the first order terms of the 

eigenvectors will be inaccurate and in consequence the second 

order terms of the eigenvalues and.eigenvectors will be also 

inaccurate. In such cases the norms of the eigenvectors {1 vs 11 's 

will deviate from 1.0 though the equations (2.5)-(2.6) are 

formulated under the constraint 11vs11=1. From this standpoint we 

drew the scatter diagram of the norm and the error of eigenvector 

in Fig. 5.1. It seems that the norms of eigenvectors actually
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Fig. 5.1 Relationship 

of error of
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eigenvector.
norm and the amount

Notes. 

 (1) The x- and y- axes indicate the maximum of the norms of 
     eigenvectors and the sum of the Euclidean norms of errors 

     of eigenvectors, respectively. 

 (2) The marks x and + indicate the results of the perturbation 
     assuming simple eigenvalues (PS1) and those assuming 

     multiple eigenvalues (PM1), respectively . 

 (3) The points whose x-values are more than 1 .3 are omitted in      th
e above figure.
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deviate from 1.0 in most cases when the errors of eigenvectors 

are large. So we may find whether the error of the PS method is 

large or not by checking the norms of eigenvectors . In Fig. 5.1 

there are three cases where the norms of eigenvectors do not 

deviate much from 1.0 but the values have large errors . The 

rotations of axes of the first and second eigenvectors are 

observed in these three cases. 

      Next, to investigate the effect of the size of . c, we 

generated ten sets of H(e)'s by putting L=0.5(fixed) and 

e=0.01,0.05,0.10,0.20, and calculated the eigenvalues and eigen -

vectors. The results are shown in Table 5 .2. From this table we 

can see the following. 

    When E is small, the eigenvalues and eigenvectors are 

calculated accurately by both of the first order and second order 

perturbation methods. 

 5~ When e increases, the accuracies of the both methods grow 

worse. However, the rate of growing worse is a little slower in 

the case of the second order perturbation . 

Fig. 5.2 shows the relationship between @(2) and the error of the 

eigenvector based on the PS1 method. This figure suggests that we 

can find the case where the error of first order perturbation of 

eigenvector is large by checking g(
S2).
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     of eigenvectors, respectively. 

 (2) The marks x and + indicate the results of the first 
     order perturbation (PS1) and those of the second 

     order perturbation (PS2), respectively.
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5.2 Discussion and summary 

     We considered six computational methods based on the pertur-

bation theory assuming simple or multiple eigenvalues. Then we 

applied them to the artificially generated matrices H(c) and 

compared their degrees of accuracy. The results showed that, 

when there are close eigenvalues among those of interest, the 

methods assuming simple eigenvalues do not work well and that, 

when a is large, the second order perturbation is a little better 

than the first order perturbation. 

     From the viewpoint of computing speed the PS1 method is the 

best. So we recommend to use the PS1 method in the ordinary 

case. When the closeness of eigenvalues causes the inaccuracy of 

the PS1 method, the norm of eigenvector usually deviates from 

1.0. Therefore we can switch over to the PM1 method in such 

cases. 

     Comparing with the difference between PS and PM the 

difference between the 1st and 2nd orders is relatively small. 

However, if we wish to switch from the 1st to the 2nd or vice 
r 

versa we may consider as follows. When we have already obtained 

g(1) and v(1), it is easy to compute g(2) in addition to g(1) and 
 s s s s 

vs1 ). If we compute g(2) in the first order perturbation 

additionally and to check the value of e2gs2) or eg(2)/g(1), we 

can find the case when the first order perturbation gives poor 

approximation. 

      In our sensitivity analysis we first search for influential 

observations by checking each individual in turn and then

74



investigate the effects of the influential observations precisely 

by the aid of graphical representation. Usually we must evaluate 

the eigenvalues and eigenvectors of slightly different matrices 

many times at the first step. So we recommend to use the 

approximate method such as PS1 or PM1 especially at the first 

step from the viewpoint of computing speed. We may use the exact 

method at the second step when we need the result with high 

accuracy even if it requires much time.
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