|

) <

The University of Osaka
Institutional Knowledge Archive

Title |ZEEMAMBITOREDN

Author(s) |EK, H#z

Citation |KFRKZ, 1986, EHIHwX

Version Type|VoR

URL https://hdl. handle.net/11094/1755

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka



in




SENSITIVITY ANALYSIS
IN
MULTIVARIATE STATISTICAL METHODS

1986

ToMoYuk1 TARUMI
OkAYAMA UNIVERSITY



Abstract

The present thesis discusses the sensitivity analysis in
.multivariéte statistical methods. The main objective is to
evaluéte the influence of a small change of the input data on the
result of analysis, find influential observations and judge
whether the result is stable or not;_

In Chapter 2, we show three lemmas concerning the
perturbation theory Qf eigenvalue problems assuming simple and
mu;tiﬁle eigenvalues. The formulation of the perturbation
methods is different, depending on whether the eigenvalueé of
interest are all simple or not. |

In Chapter 3, we consider a method of sensitivity analysis
in Hayashi's second method of quantification. To deVelop
sensitivity analysis we introduce weights for individuals and
evaluate the changes of eigenvalues and the scores of categgries
due to a small change of the weights for a single or multiple
individuals. Then in Chapter 4 we try to apply the idea shown in
Chapter 2 to other statistical methods and propose a unified
ﬁethod of sensitivity énalysis in descriptive multivariate
methods, which are formulated by the generalized singular valué
decomposition. The unified method can treat principal component

analysis, the third method of guantification, and canonical



correlation analysis among others.

Finally in Chapter 5 we discuss a computational aspect. We‘
perform numerical experiments and make some recommendations on
the problem of whether to choose the method based on simple
eigenvalues or that based on multiéle eigenvalues and also on the
problém of whether to use the firét order approximation or the

second order approximation.
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1 Introduction

In recent years, mainly in regression analysis many methods
have been proposed for the evaluation of the influence of a
single or multiple observations .on the result of anaiysis
(Belsley, Kuh and Welsch(1980), Coék and Weisberg(1982)). There
are two aspects in these studies. One is to detect influential
observations and the other is to evaluate the stability of the
reéult. If the result depends heavily upon a few observations we
must be very careful to form a conclusion, though we cannot
. prescribe what to do with influential observations without the
use of additional information.

The problem of influential observations is not speci?l to
regression analysis, but common to other multivariate statistical
methqu. Thus, from a similar viewpoint to the case of
regreséion analysis we propose some methods of sensitivity
analysis in multivariate methods in'a more general perspective.

.. We may consider that a statistical method is a system, a set
of data is an input and the result of analysis is an output. We
are interested in the sensitivity of this system, that is, how a

‘small change of data (input) affects the result of analysis



(output). Here we use the term "sensitivity analysis" insteaa
of "detecting influential observations", because various types of
data different from those which appear in regression analysis are
treated and not only the influence of individuals but also other
typeérof influence are discussed in multivariate methods.

As statistical methods we consider Hayashi's second method
of quantification and other descriptive multivariate methods,
which are formulated as eigenvalue problems. The methods of
quantification were developed and investigated for the purpose to
analyze qualitative data by Hayash}(1952) and his colleagues in
thé Institute of Statistical Matheﬁatics and are widely used in
many fields such as social surﬁey; behavioral science, medicine
and quality control in Japan. On the other hand, multivariate
statistical methods such as principal component analysis
(Hotelling(1933)), biplot (Gabriel(1971)), canonical correlation
analysis (Hotelling(1936)) and correspondence analysis (Benzécri
et al.(1973)) are effectively used for 1looking into multivariate
data. However, in applying these methods we sometimes feel
uncertain over how reliable or stable the result is. To evaluate
the reliability some authors introduced probabilistic models aqd
developed methods of statistical inference. See, for examﬁié
with respect to quantification methéds, Okamoto and Endo(1974),
Endo(1978), Tanaka(1978,1979), etc; From a different point of
view Tanaka (1983,1984a,1984b) and Taﬁaka and Tarumi(1986a,1986Db)
tried‘tb apply the idea of regression diagnostics and proposed
methods of sensitivity analysis iﬁ quantification methods. The

present paper consider also the sensitivity analysis in other



multivariate methods.

Asjsmall changes of input data we can treat various types.
Among them we discuss mainly the influence of the changes of
weights for a single or multiple individuals.

Thé basic idea of our sensitivity analysis can be summarized
as follows: 1)Introduce small changes of weights for a single or
multiple individuals. 2)Calculate the corresponding changes of
eigenvalues, eigenvectors and the associated quantities by using
the perturbation theory of eigenvalue problems. 3)Evaluate the
amount of influence and detect influential observations. 4)Show
their influence graphically for the convenience to make a
decision based on it.

In the above procedure of sensitivity analysis we must solve
many eigenvalue problems derived from the driginal one by
chahgiﬁg the weight for each iﬁdividual. Therefore it is
important to use a computing method which is as efficient as
possible. It is the reason why we apply the perturbation
methods.

‘As preparations we give some lemmas concernin% the
perturbation theory of eigenvalue problems in Chapter 2 (Ténaka
and Tarumi(1986b)). They are used as mathematical tools in the
folldWing‘chapters. The formulation of the perturbation theory
is'different, depending on whether the eigenvalues of interest
are all simple or not.

In Chapter 3 we propose a methqd of sensitivity analysis in
Hayashi's second method of quantification (Tanaka and Tarumi

(1986a)). Here we discuss precisely the basic idea and



formulation of sensitivity analysis.

In Chapter 4 we intend to treat other multivariate methods,
and consider the general multivariate procedure formulated by the
generalized singular value decomposition (GSVD) (Tarumi(1986)).
As shown in Greenacre(1984) and Greenacre and Underhill(1982), a
number of descriptive multivariate methods such as principal
component analysis, biplot, Hayashi's third method of
quantification aﬁd canonical correlation analysis can be
formulated by using the GSVD. Since the GSVD leads to an
eigenvalue problem, we can construct a unified method of
sensitivity analysis by using the perturbation theory of
eigehvalue problems. This unifiéd method can treat different
kinds of multivariate analysis by changing the symmetric matrix
of fhé eigenvalue problem. As individual multivariate methods we
consider principal component analysis, the third method of
quantification and canonical correlation analysis.

Finally in Chapter 5 we discuss the computational aspect of
'senSitivity analysis (Tanaka and Tarumi(1986b)). 1In actual data
analysis the eigenvalues of interest are usually all simp}e in
the strict sense. However, if there are close eigenvalués we
should better apply the perturbation method under the assumption
of muitiple eigenvalues to get the:result with high accuracy,
becaqse the method under the assumption of simple eigenvalues may
not work well in such cases. The problem whether we should use
the first order approximation or second order approximation is
another problem. To investigate such problems we perform numeri-

cal experiments and make some recommendations based on them.



2 Perturbation Theory of Eigenvalue Problems

We consider the eigenvalue problem of a KXK symmetric matrix
H, such that
(2.1) (H - 051)vg = 0, s=1,2,...,K,
and investigate how the eigenvalues and eigenvectors change when
the matrix H varies to
(2.2) H(e) = H + eH(1) 4 25(2) , ¢34(3) , .

for small €.

Generally it is well known from perturbation theory of
eigenvalue problems that, when the matrix H is expanded in a
convergent power series, all the eigenvalues 0's and eigenvectors
‘v's een also be expanded in convergent power series (Kato(}980h
Rellich(1969)).

Let us expfess the eigenvalues end eigenvectors of H(e) as

(2.3)  og(e)

05 + €9é1) + »ezgéz) + 0(83), s=1,...,K,
(2.4) Vs(e) = VS + 6Vé1) + €2Vé2) + 0(83)1 S=1,...,KI
then the coefficients of the above two equations are given by the

following lemmas. The proof of Lemma 1 is given in Tanaka(1984a).

Lemma 1. Assume that the eigenvalue of interest is simple. Then



the coefficients of the 1st and 2nd orders of (2.3)-(2.4) are
given by the following.

1st order:

Qé'l) = ng(1)vs,

Z£;) = VEH(1)VS/(OS—QI)' r#s,
(2.5) 4 z{l) = o,
1) - oyl

2nd order:

Qéz) = ng(Z)vs + ng(1)vé1),

202) = (T2 g TNV ol Ty ) /(0 -0,), rs,
(2.6) Zég) = —(vé1))Tvé1)/2,

o2 - peyald).

Lemma 2-1. Assume that the matrix H is diagonalized as
(2.7)  XTHX = diag(0y, ... , Og),
by using an orthogonal matrix X=(x1, <.« 4 Xyg) and that the

eigenvalue of interest is multiple, i.e. without lois of

3

generality

(2.8) g1= ) =gk (=g) ¢Gk+1' e e e I3 QK .

Let

(2.9)  efd) = xTuWxy, i,5=1,..0%, 121,2,

and denote the kxk matrix of {c{%),i,j=1,u.,k} by C{%). Then

the coefficients Qé1),s=1,",k of the 1st order terms of the

eigenvalues are given as the eigenvalues of C{]). If we denote

the eigenvector associated with 9;1) as gs=(gis), the linear



combination such that
k

(2.10) v, = &

s JisXi
i=1

is the limit of eigenvector Vgl ) associated with 65 ) ase+>0.

(Proof) The eigenvalue problems of H(e) can be expressed as
follows for the s-th eigenvalue 65(e) and the associated

eigenvectors vg(e).

(Bee B0V ie 28(2) 4 300300, L) (voie vl 2v2) e 3003) 4 )

2.1
( ) =(0 +€9(1)+€29(2)+€39(3)+...)(v +€v(1)+€2v(2)+€ v(3) ces)
Comparing the coefficients of € in the both side of (2.11), we
see that

(2.12)  HD v inmv(?) = o{M)v_ro vil),

From (2.7) and (2.9) the matrices can be expanded as

k K
(2.13)  H = I 0x;x] + I 0;%;%X}
= i=k+

(2.14) w(M) - 3T 3 cg;>x.x§,

where c{}) is defined in (2.9). Since the vectors Xqreeer Xy

construct an orthonormal basis of the K-dimensional vector épace,
the vector Vé1) is expressed as
K
(2.15) vl = 5 a . x;
, i=1
Substituting (2.13)-(2.15) and (2.10) into (2.12) we obtain the

following relation from the coefficients of X1k,

k
(2.16) I c
3=1

](. gJS = gé1)gls’ i=1,...,k.



This indicates that 9&1) and gg=(gjg) are the eigenvalue and the

associated eigenvector of the matrix C%%L Q.E.D.

Lemma_?-z. Assume the same conditions as in Lemma 2-1. Consider
an Srﬁhonormal basis of K-dimensional vector space such that
k
I 9igXis s=1,...,k,
(2.17) vg =4 i=1
s=k+1,...,K.
Definef
(2.18)- &P - vTaWoy, 1,321,000k,
denote the kxk submatrix of ;agg), i,j=1,...,K} by C{}) and 1et

K

(2.19)  v{l) = 5 aflly,

' i1s'Vir 1=1,2.
i=1

Then the 1st order terms of the eigenvectors and the 2nd order
terms of the eigenvalues and eigenvectors can be calculated as
follows.

1s£ order terms of the eigenvectors :

( E{;)/(e-ei), S$=1,e00,k, izk+1,...,K,

K o
(2.200 afl) =4 {2+ z {Dallly/sef{M-0f)), i,s=1,....x,
j=k+1 it#s,
‘o, i=1,...,k, i=s.

2nd order terms of the eigenvalues'and eigenvectors :

(2.21)  of2) = g(2) . I c{afl)
-~ K ~
= Cég) + z (c:%_;))z/(g gl)l s=1'o¢-'k.
i=k+1



K .
tef2) + x e{Dall) - eo{Vallly/(e-0;),
3=1
s=1,...,k, i=k+1,...,K,
K
(2.22) af2) - \ (ef3) + L &{2lafl)
K ~
+ 2 cfDal2) —el2lafl)y/ef)-ef1)),
j=k+1
i,821,...,k, i#s,
| X |
-j§1(d§;))2/z , i=1,...,k, s=i.

From (2.9),(2.17) and (2.18) the following relations hold

between Eg%) and cg%h

k  k
/ z X gtigijé%)' for ik, jikl
t=1 m=1 o :
_ k
(2.23)  &fP) =1 1 gyyefd), for i<k, 3>k,
t=1
\ Ci%)' ' for i>k, Jok.

(Proof) The vectors vi,i=1,.",5_aiso construct an orthonormal
1)
J

~

basis of the K-dimensional vector space. Then, using cé

defined by (2.18) the matrices H and 1) are expanded as

follows.

’ k K
H = T T
(2.13)' H = 'Z QVlvi + . z Givlvi,
i=1 i=k+1
K K
(2.14)' ') = 3 3 g{bT,
i=1 j=1 J
where
(2.24) B} = P, 1<,k

Now we shall express vél) as



(2.15)" wil) = 5 alllv;, s=1,...,k.

by using the new basis (v4,...,vg). Then, substituting (2.13)'-
(2.15)' into (2.12) we obtain the following relation from the
coefficients of v; for i>k.
31+ ojafl) = eafl).

Thus
(2.25) all) = &fl)/(e-0;), s=1,...,k, i=k+1,...,K.

Next let us consider the order of €2, Comparing the
coefficients of €2 in the both sides of (2.11) we have
(2.26) H(z)vs + H(1)vé1) + Hvéz) = Géz)vs + 0&1)vé1) + Osvéz).
Substituting (2.13)'-(2.15)"' into (2.26) we obtain the following

relation from the coefficients of v; for i<k, i#s.

K
~(2 1 1 ~(1 1 1 1
cis) + gi )dis) + j=§+1 Cij)dgs).= gé )dis)'
Hence
K
A - 1 ~(2 ~(1 1 1 1
aom el G e EPaflegafh,

i,s=1,...,k, ié#s.

From the normalizing condition such that
(2.28) (vs+evé1)+€2vé2)+...)T(vs+evé1)+82vé2)+...) =1,
the coefficient of £ must satisfy the following.
(2.29) (vé”)Tvs + vgvé1) = 0.
Substituting (2.15)' into (2.29) we have
(2.30) all) =0, s=1,...,k.
Thus the equation (2.20) is proved.

If we substitute (2.13)'-(2.15)' into (2.26) and compare the

coefficients of Vg We easily have the second order term Qéz) as

10



(2.21). If we compare the coefficients of v; for i>k, we have

K |
¢f2) + 0;af2) « I cillall) = ofMafl) + o af2).
Hence
K
(2.31) af2) = &{2) + = &{Dall) - efMafl)}/(e-0;),
3=1
s=1,...,k, i=k+l,...,K.

Now we shall consider the order of €3. From the coeffi-
cients of 83,
(2.32)  HO3)ug 4 m2)e(N) L w(Ny(2) 4 pof3)
= 9é3)vs + Oéz)vé1) + Qé1)vé2) + sté3).
Substituting (2.13)'-(2.15)' into (2.32) we obtain the following

relation from the coefficients of v; for i<k, i#s.

1
K ' K ,
cfd) + 2 c{2lafl) 4+ ofMaf2) . czoefllald) eaf3’
j=1 J=k+1
2) (1 1) 4(2 3
| = 0l2)afl) + o{Maf2) . 0afl).
Therefore
‘ | _ K
(2.33)  af2) = & + zfPafl)
3=1
Ko 1 1 1
LA - egafhelM o1

i,s=1,...,k, i¢#s.
From the order of g2 in the normaliiing condition (2.28),
(2.34)  (v{2HTvg 4 (v{1)Ty(1) vg§;2’ =0 .
Substituting (2.15)' into (2.34) we easily obtain the following

equation.

(2.35) af2) = - (af{l2/2, i=1,...,k, s=i.

H ™M=

j=1

1



Lemma 3. Assume the same conditions as in Lemma 2-1. Then the
approximate eigenvalues up to the 2nd order are given as the
eigénvalues of |

(2.36) o1 + ecf{}) + e2(c{?) + q),
where
Q=( a5 ),
dii' = g cdBefll/(0-0,)

ii j=k+1 1) “1'3 j’ o

(Proof) We shall show that the‘second order perturbation to the
s-th eigenvalue of the matrix (2.36) is given by {0 + €9é1)
+€20g2)}, where Og1) and 9&2) are defined‘in Lemma 2-1 and 2-2.
It is sufficient to show that the first order perturbation to the
s-th eigenvalue of C{})+€(C{%)+Q) is given by {9é1)+€9é2)L
‘Since the eigenvalues are invariant for an orthogonal transfor-
Mation, we may consider the eigenvalue problem of the matrix
(2.38)  (0f{Ms; ) + ee{?) : e{e{1)/(0-0:)1,

ii ii §=k+1 1j *1'j j /
which is made by multiplying G=(g1{;;;gk) and its transpose from
right and left. 9é1) and gg are the eigenvalue and the associ-
‘ated eigenvector of C%%) as defined in Lemma 1. With probability
oﬂé we can assume {9;1), s=1,...,k} are all distinct. Then, by
applying Lemma 1 we may easily show that the first order pertur-
bation to the s-th eigenvalue of (2.38) is given by {9;1)+€Oé2)}

where géz’ is defined in (2.21). Q.E.D.

12



In the above we derived up to the second order perturbation
of the eigenvalues {6g(e)} and the eigenvectors {vg(e)} when the
unperturbed eigenvalue of interest is multiple. Concerning the
perturbation of a symmetric matrix with multiple eigenvalues:
several authors such as Anderéon(1963), Fujikoshi(1977),
Konishi(1975), vom Scheidt and Pﬁrkert(1983) among others havej
already studied. Our formulation is different from the first
three among the above papers in the sense that we derive
expressions of the power series expansions of multiple
eigenvalues and the associated eigénvectors explicitly, numbering
the multiple eigenvalues by the ordér of the eigenvalues o(1)'g
of YC{%). The last one discussed the case H(e)=H+eH(1) and its
results coincide with ours when H(2)=H‘3)=0. %pt the technique

used is quite different from us.

Actually we often meet with the case when the eigenvalues of
inferest are not exactly multiple bﬁt very close, i.e.
(2.39) 07 20, 2 uu. 20, £ 0pqs eee s Og .
In that case the matrix H is expressed as
K
(2.40) H = £ 0jvyv] = H + €E ,

i
i=1

where

13



_ k . K
H= ¥ O0v;viy + r 0O3;v;vsi,
i=1 Tt jaker TR
(2.41)) E = i§1(Gi—Q)Vivi/€ ,

If the magnitudes of |0;-06|'s are of the order of e, the
perturbed matrix H(e) is expanded as

(2.42) H(e) H + eall) . e2u(2) e3u(3) 4

n

H + e(H(VE) + e20(2) 4 £34(3)
Thus, applying Lemma 2-1, 2-2 and/or 3 we can obtain the asympto-

tic approximations to the eigenvaiues and eigenvectors of H(eg).

14



3 Sensitivity Analysis in Hayashi's Second Method of

Quantification

Among various quantification methods we investigate the so-
called second method of quantification; which is used for
discrimination of qualitative data.

In section 3.1 we briefly formulate Hayashi's second method
of quantification in a generalized way for the convenience to
develop the sensitivity analysis. Then in 3.2 we propose a
method of sensitivity analysis to evaluate the influence of a
single or multiple individuals on the result of analysis, in 3.3
prbpose summarized measures of the influence on the score, and
show a numerical example in 3.4. Finally in 3.5 we discussfsome
problems such as the accuracy of thé numerical computatian and
the reason why we sometimes observe rotations of the

configurations of the scores assigned to the categories.

3.1 Hayashi's second method of quantification

Suppose that we have response patterns of n individuals to

15



I+1 items as in Table 3.1, where every individual responds to one
and only one category of the outside variable and also of each

factor item.

Table 3.1 Observations for Hayashi's second method of

gquantification.
Individual Outside
No. variable ‘Item 1 Item I

12 veeeeer 12 veuc(1) veee 12 o.uc(D)

1 vV v v
2 v V4 v
‘.
o 4 v v
)
!
]
n v
v v

To represent such qualitative observations we introduce the

following dummy variables. ;

1, if the individual a responds to the i;th
(3.1) za(i) = category of the outside variable.

0, otherwise,

. 1, if the individual a responds to the 1-th

(3.2) xa(kl)£ category of the k-th factor item.

0, otherwise.

In the second method of quantification the matter of concern

is to analyze the relationship between the outside variable and

16



the factor items and discriminate the categories of the outside
variable from the information concerning the factor items. For
that purpose numerical scores S=(S19,ecerS1c(1)re=a1STTreees
SI&(I)V for the categories of I factor items are introduced so
that the categories of the outside variable can be discriminated
as well as possible by using these scores. The problem is
formuiated as the canonical discriminant analysis of the dummy
variables {x,(kl)}. By introducing the scores t=(tq,...,t, )" for
the categories of the outside variébles it can also be formulated
as the canonical correlation énalysis between {Za(i)} and
{Xa(kli} (cf. Aoyama(1965), Tanaka(1983), Niki(1981)).

Then the optimal scores t and s are obtained as the solution
to the optimization problem: '

Maximize
(3.3) t'z'wxs,
subject to the constraints

(3.4) 1. Wzt = 1 WXEys = 0, J=1,.0..,1,
(3.5) (1/N)t'z2'wzt = (1/N)s'X'WXs = 1,
where Z and X are defined as nxr and nxc matrices (c=ch(j))fsuch
as |
(3.6) Z = (z4(1)), X = (x4(kl)),

respectively. The matrices W, Ej, and 1, are defined as follows.

W diag(w1,w2,...,wn) : hxn,

Ej diag(o,.--..,o, 1,..-,1, 0,-..-.,0) . CXC,
(3.7) —— T i=1,...,1I,
c(1)+...+4c(3-1) c(j) c(i+1)+...+c(I)
1, = (1,1,...,1)" : nx1,.

where {wy,} are the weights for the individuals which we

17



introduced for the convenience to develop the sensitivity
analysis. A scalar variable N is given by the summation of.wa's
for n individuals. The two constraints (3.4) and (3.5) indicate
that the scores should have zero means and unit variances.

Some calculations by using Lagrange multipliers lead to the

following two eigenvalue problems.

(3.8) . Z'WX(X'WX)“X'Wzt - p2zZ'Wzit = 0 ,

(3.9) ° X'WZ(Z'WZ)~2'WXs - p2X'WXs = 0 .

]

Since ﬁhe dimension of t is generally smaller than that of s, it
may be better to solve the former than the latter and then
calculate s by substituting the obtained eigenvector t into the
equation |

(3.10) s = (1/p)(X'WX)"X'Wzt .

We can easily verify that the eigenvalue problem (3.8) has a
trivial eigenvalue p2=1 and the associated eigenvector t=1,, and
then»each eigenvector associated with pz¥1 satisfies the first
eéuation of (3.4) from the orthégonality of eigenvectors.
Similarly the eigenvalue problemA(3.9) has also an eigenvalue

pz=1 (with multiplicity I) and the associated eigenvectors

r

s=E.:1 j=1,...,I. However, we should use (3.10) and the

j e
constraint (3.4) to get s's actually.

The eigenvalue pz(¥1) is equal to the squared canonical
correlation coefficient and also correlation ratio when the
elements of the associated eigenvectors s (and t) are used as the
scores for the categories. Therefore, we should pick up the

largest g eigenvalues excepting pz=1 and use the associated

eigenvectors t's and s's as the g-dimensional scores for the

18



categories of the outside variable and the factor items, respec-
tively, where g is the number of dimensions of interest.

Note that the matrix W'/2x(x'wx)-x'w'/2 in (3.8) is uniquely
determined for different definitions of g-inverse and we may use -
anyv(X'WX)" which is easy to calculate. Generally the rank of
X'Wx-is c-I+1, because the sum of the columns of W1/2X
corresponding to the categories of any speéified item is equal to
the constant vector {w&/z}. Let X* be an nx(c-I+1) matrix which
is made from X by omitting every'last category of each item
éxcept.for the first item, then X* is, in general, of full column -
rank. We may use X*(X*'WX*)~1x*' instead of X(X'WX)~X' in (3.8).

Let the covariance matrices of thé dummy variables {z4(i)} and

{%4(k1)} be

(3.11) 519 = (1/N)z'wz, ,

(3.12) S1, = (1/N)z'WX, sfzs; (1/N) 2" Wx*,
(3.13)  S,q = (1/N)X'WX, 83, = (1/N)X*'Wx*,

then, note that Sy is diagonal, we obtain the following ordinary

eigenvalue problem

(3.14) Hu - Qu = 0 , )
where :
(3.15)  H = s7]/2s7,s35"s%,571/2,

(3.16)  u = s}{2t,

(3.17) 0 = p2.

The matrix 81(2 indicates a diagonal matrix, each element of
which is given by the square root of the corresponding element of
S91, and S{}/z is its inverse. If an eigenvector u is normalized

to satisfy u'u=1, the corresponding score vector satisfies t's| 1t

19



=1, i.e. the variance of {t'z } is equal to 1. Throughout this
chapter we use the symbol (*) to express the omission of every
last category of each item except for the first item as in the

case of X¥*,

3.2 Sensitivity analysis

3.2.1 Basic idea of sensitivity analysis

in order to evaluate the influence of a single or multiple
individuals we change the weights for individuals slightly and
investigate how the result of analysis changes.

First consider the influence of a éingle individual a.

Let the weight for the individuals be

: 1-¢, o =0 ,
(3.18) Wa'={
o 1, a'fa .

Then the covariance matrices of the dummy variables {Sjk(s),
j,k=1,2} can be expanded as

(3.19)  syp(e) = syp+(e/msif)+(e/n)2sf)+0((e/n) ), 3ik=1,2,
where the matrices Sjk's indicate the values of Sjk(eﬂs

calculated by putting €=0, and the matrices Sgkhs and S%ihs are

given by
S‘%) = S{%) = Sq1 - 2424’y
(3.20) L s{l) = sf3) - s, - 2%,
Sﬁﬁ) = Sﬁ%) = 532 - XgXy'.

Now, in the case when we wish to evaluate the influence of a

single individual we put
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(3.21) € = ¢/n.

Then the expansion (3.19) is simply expressed as
(3.22) . syk(€) = syp + es§l) + €2s{P) + 0(E3).

The matrix H(€) defined by (3.15) can be expanded as
(3.23)  H(E) = s7}/2(E)sT,(8)s53" (E)s%,(E)s71/2(E)

= H + en(1) 4+ §25(2) 4 o(83),

where
H = A'Ba,
(3.24) H(T) = a01)'ga + a'B(M)a + a'Ball),
| H(2) - a(2)pa o A'B(Z)A + a'Ba(2),
+ 2a(1)'B(1)a 4 2a(1)rpa(1) | 2a'B(1)al1),
A = s3s71/2
A < s3SI/ - (sl (],
a(2) = s¥(2)521/2 | g¥(1)g:3/25(1)
(3.25) - + (3/4)83;573/2(s{1)2 - (1/2)83,573/2s{2),
] s, S
(1) - _g¥51s341)s357,
320 - a3kl _ sh5lssPenst - saslstgal).

In the above we showed that how the eigenvalue problem
changed when the weight for a specified single individual was
slightly changed from 1 to 1-¢, Next we consider the case when
we wish to evaluate the influence of multiple individuals.

Let M be a set of m individuals and let the weights for the

individuals be
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(3.26) w

1_€' U.é—'M,
a ={

1, aéM.
Then the covariance matrices of the dummy variables {Sjk(e), j,k‘
=1,2} can be expanded as
(3.27) Sik(e) = S5k + (me/m)sil) + (me/n)2s§g) + oC(me/n)3),
where Sjk's indicate the values of Sjk(efs calculated by putting -

€=0, and the matrices SSL”S and Sgi”s are given by

(3.28)  s{]) = s{?) - sy - (1/m) 2 2z’

(3.29) s{1) = s{%) = sq, - (1/m)k§Mzkxk',
(3.30)  sf1) = sd8) - 505 - (1/m) I oxex'.

keM
In the case when we wish to evaluate the influence of multiple
individuals we put -
(3.31) £ = me/n .
Then the expansion (3.27) is also written as (3.22). Therefore
we obtain the same form of expansion (3.23) - (3.25), though the
definitions of Séﬁ)'s are different from the case of a single
individual.

| Note that, if we consider up to the first order, the first
deriVatives S;ﬂ)'s (S§£1“s) and H{!) for a set M of m
individuals are equal to the averages of those for each single
individual belonging to the set M.4.U£ilizing such relations we
can easily calculate the values which appear in the following two
sectibns for multiple individuals from those for a single

individual.
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3.2.2 The influence on the product and sum of.eigenvalues

The eigenvalues ©8's (or p2's) are equal to the -squared
correlation coefficients or the correlation ratios when the
elements of associated eigenvectors s's (and t's) are used as the
scores for the categories of I items (and the outside variables).

1

Qj or other

: : r=1 r
Therefore we can use the product Oj, the sum

no i

j=1 j=1
functions of the eigenvalues as a measure to show the degree to
which the differences among tﬁe categories of the outside
variable are expressed in the r-1 dimensional space. Let us
evaluate the influence of a small change of € by the differen-
tial coefficients as follows.

r-1

‘ da_ _a
(3.32) de('§1 Qj(e)) = de(IH(e)l)
)= e=0 e=0
= |H|tr(u-tu(1)y,
-1 '
a * _ 4
(3.33) G T oj(e)) = S-tr(H(e))
= 8:0 ) e=0
= tr(H(1)).

3.2.3 The influence on the eigenvalues and the scores
for categories

(i) The case when the eigenvalue of interest is simple

Suppose that the eigenvalue of interest 05 of the eigenvalue
problem (3.14) except for 0=1 is simple.

| Then we can use Lemma 1 in:Chépter 2, and obtain the

foiibwing power series expansion Qf the eigenvalue OS(E) and the

associated eigenvector us(E) corresponding to the expansion of
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H(e) in (3.23).

(3.34)  05(E) = o5 + E0f1) + E20(2) . 0(s3),

(3.35)  ug(€) = ug + eull) + E2u{2) + o3y,

where 9é1), Oéz), ué1) and uéz) are shown in Lemma 1.

From the values of OS(E)(=D§(E))’ahd ug(€) we can calculate tg(€)

and ss(E) by using (3.16) and (3.10), respectively.

(ii) The case when the eigenvalue of interest is multiple

Suppose that the eigenvalue'of interest is not simple and
that, without loss of generality, we are interested in the
eigenvalue 01=."=9k=0 with multiplicity k.

’ﬁow suppose that an unpertﬁfbed rXr symmetric matrix H is
diagonalizable by multiplying an érthoggnal matrix V=(vq,...,vy)

and its transpose from right and left, i.e.

o1, 0

~

0
k
(3.36)  V'HV = | ket |-

() “gr
Then we can use Lemma 2-1 and 2-2, and obtain the following
expansions. /

For small € the eigenvalues 91(5),...,0k(E) and the
associated eigenvectors u(€),...,u(€) of the perturbed matrix
(3.37) H(E) = H + enll) 4 g24(2) | 23x(3) | o(g4)
can be expanded as
(3.38) 05(8) = o + g0l1) + E20(2) 4 0(&3), s=1,...,k,
(3.39)  ug(€) = ug + gull) + E2u{?) + 0(83), s=1,...,k,

S S

where the coefficient 9;1), 9;2), uéi) and uéz) are determined by

Lemma 2-1 and 2-2 in Chapter 2.
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3.3 Summarized measures of the influence on the scores

:The influence of a small change of the weights for a single -
or multiple individuals on the scores is expressed by the differ-
ences between the unperturbed scores S (or T) and the perturbed
scores S(g) or T(g¢). Considering q(imin{r-1,2j(c(j)-1)}) dimen-

sional scores we -may summarize these differences as follows.

(1) Euelidean norm of the differences between the unperturbed and

perturbed scores

(3.40) Istey - sl /7 ls|

(3.41)  |T(&) - | / ||

(ii) Euclidean norm of the differences between the configurations

of the unperturbed and perturbed scores

(3.42)  |[s(8)s(E)' - ss'| / |ss'||

(3.43) Ir€Eryr(gy' - o' || / T ||

3.4 Numerical example

In order to show the usefulness of the proposed method we

shall apply it to a set of artificial data given in Table 3.2.
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Item
2

1

Outside
variable

Table 3.2 Artificial data.

2

Item

1

Outside
variable

e NMe—MN—Mm
=N NN~ Me—m
Ne—=ANNMe—c— NN e~
MM ANMANNNMNM -

NMNe—MNM®NN—

NMONe=MANMOOM

MM Me— NN~ N«—
=M ANNNe-—c—MmM
MANe—ee—= NN~ Ne—m™M
MMe—=Ne—c— M= NN

Meeee MANe-NMONN

MANe= N NN

—MMe—NMMe=—MN
MANNMNMANANNE N -
NANMOOANNNe—MNMM
MANNNe=MMANANM

MMM ANANNMTmM

— M ANMMANMAN MM

MM = NMe—=NAN™M
NNNNMOMe—mMmmmM
NMNMee =M e— N
N MeeMmMmAaNNm

NN~ M

—ONANMANMOMONOMON

MM N Ne=Me=—MmMm
MM e—= NNe— = Ne—N

MM e = NMAN M

MM = NN~

NANMANMe— = ONNN
—e— N ANANNN—N
NMOANNMNe=MANN
Ne= MM MANe—NANMNMmM

= (NONMe— MMM

= NANNe= MMM AN
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These data were generated as follows. First, continuous
déta were made by using the models such as |
Model 1. y;= 20x9 ;+10x5,; +5%3,+0x4; -5%x5;+5e;, i=1,2,..,60,
and | |
Model 2. yi=-20x1i-1Ox21—5x3i+0x4i+5x51+5ei, i=61,62,
where {X1i,-s%55,€4) were NID(0;1) random numbers. And then

they were transformed into categorical data by the following

rules. .

1, if X51<-0.5,
(3.44) X3; ={ 2, if -0.5¢x4;< 0.5,

3, if 0.5¢xy; .

1, if yi £-10,
(3.45) Y; =12, 4if -10<y; < 10,

3, if  10<y; .

Choosing Y as the outside variable and X9,..4Xg as the
factor items we apply Hayashi's second method of quantification
to these data. A

{

Since there are 3 categories of the outside variable, Qe can

obtain up to 2 dimensional scores. The eigenvalues (or

- correlation ratios) are (2-0.66414 and p3=0.18611 and their
asséciated eigenvectors give the | optimal scores for the
éategories. The eigenvectors s and t associated with p% are
shown in Table 3.3. Looking'at the elements of these
eigenvectors (=category scores) we observe that the order of

the scores for each item is 1<2<3 or 1>2>3 except for those of
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" Table 3.3 The result of analysis by Héyashi's second

method of quantification (Axis 1).

Item NO. 1

Freq.

1 2 (19)

2 : ( 18)

3 : ( 25)
Item NO. 2
Freq.

1 ¢ (17)

2 ¢ ( 24)

3 : ( 21)
Item NO. 3
Freq.

1 : ( 21)

2 : ( 23)

3 : ( 18)
Item NO. 4
Freq.

1 ¢ ( 21)

2 ¢ ( 23)

3 : ( 18)
Item NO. 5
Freq.

1 : ( 22)

2 : ( 20)

3 : ( 20)

Cat.score

-1.12237.

-0.23090
1.01924

Cat.score

-0.38009
-0.08216
0.40159

Cat.score
-0.08859
-0.03507

0.14816

Cat.score
0.01856
-0.15916
0.18172

Cat.score
0.09163
-0.11235
0.01156

Range
2.14161

Range
0.78168

Range
0.23675

Range
0.34088

Range
0.20397

Partial cor.
0.31703

Partial cor.
0.54635

Partial cor.
0.16002

Partial cor.
0.07997

Partial cor.
0.05290

Outside variable

Freq.
( 16)
( 22)

1
2
3 ( 24)

Cat.score
-1.14756
-0.15130

0.90373

Eta-squaare

0.66412

( Correlation ratio )
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the fourth and fifth items. This fact corresponds well to
the model(Model 1) used to generate the data.

Next we apply the sensitivity analysis of the first ofder
approximation by setting E:O.j. Changing o from 1 to 62 we
calcdlate the proposed measures of influence. The results are
showh in Table 3.4. From the nature of our model it is obvious
that £he second axis is not important. It is noted that the
individual No.61 and No.62 (which were generated differently from
the others) 1look influential‘especially with respect to the
méasurés such as ij% and p%'for which the first axis plays
important roles. Actually, if we omit the individual No.61 or
62, the largest eigenvalue becoﬁés p%=0.70130 or p%=0.75931,

either of which is much larger than the original value p%

=0.66414,

3.5 Discussion

We proposed a method to evaluate how the result of Hayéshi's
secbnd method of quantification changes when the weightffor a
single or multiple individuals chanées.

In the above example we evaluated the proposed measures of
influence of each individual'by applying simple differentiation

‘and the perturbation theory of eigenvalue problems. The fact

that the individuals No. 61 and No. 62 are influential was found
particularly by the measures é%—z Qi and 9{1). Note that the
i ,

former was obtained without using the perturbation theory of
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Tabel 3.4 The result of sensitivity analysis.

(8)

No (1) (2) (3) (4) (5) (6) (7)
1 -0.1888 -0.8811 -0.8292 -0.0519 0.0413 0.0306 0.0615 0.0472
2 1.0306 1.8762 0.4507 1.4256 0.0547 0.0322 0.0774 0.0457
3 -0.5546 -1.1608 -0.4525 -0.7083 0.0375 0.0250 0.0590 0.0385
4 0.5618 1.1970 0.4878 0.7092 0.0387 0.0345 0.0562 0.0511 "
5 0,9960 1.5498 0.0696 1.4802 0.0303 0.0291 0.0430 0.0456
6 -0.4988 -1.2837 -0.7399 -0.5438 0.0396 0.0281 0.0709 0.0422"
7 -0.8376 ~-1.2927 -0.0436 -1.2491 0.0379 0.0230 0.0545 0.0352
8 -0.2416 -0.4775 -0.1581 -0.3195 0.1162 0.0325 0.1641 0.0494
9 -0.9715 -1.3786 0.1171 -1.4957 0.0680 0.0131 0.0963 0.0221
10 -0.7492 -1.1889 -0.0844 -1.1045 0.0329 0.0215 0.0484 0.0332
11 0.6499 1.1151 0.1896 0.9254 0.0386 0.0289 0.0552 0.0454
12 -0.7430 -1.0904 0.0395 -1.1299 0.0356 0.0124 0.0510 0.0211
13 0.9168 1.7142 0.4637 1.2506 0.0291 0.0222 0.0436 0.0342
14 -0.0423 -0.5376 -0.6583 0.1208 0.0583 0.0250 0.0871 0.0409
15 1.0306 2.0169 0.6461 1.3708 0.0407 0.0299 0.0581 0.0446 -
16 -0.1945 -0.8065 -0.7137 -0.0928 0.0383 0.0282 0.0604 0.0444
17 -0.1088 -0.7845 -0.8624 0.0779 0.0532 0.0276 0.0792 0.0438
18- 0.5653 1.2892 0.6085 0.6806 0.0563 0.0364 0.0798 0.0515
19 -0.0229 -0.3230 -0.4009 0.0778 0.0604 0.0207 0.0865 0.0368
20 1.2095 2.0778 0.3564 1.7214 0.0423 0.0255 0.0602 0.0364
21 -0.,1820 -0.5158 -0.3359 -0.1799 0.0391 0.0242 0.0620 0.0379
22 -0.2813 -0.7633 -0.4720 -0.2913. 0.0388 0.0246 0.0599 0.0381
23 -0.4883 -0.7064 0.0401 -0.7464 0.0317 0.0156 0.0469 0.0253
24 -0.7097 -1.0505 0.0253 -1.0758 0.0394 0.0180 0.0574 0.0285
25 0.8531 1.7977 0.7129 1.0848 0.0550 0.0421 0.0782 0.0616
26 -0.6026 -1.2957 -0.5396 -0.7561 0.0387 0.0260 0.0659 0.0395
27 0.0020 -0.2606 -0.3663 0.1057 0.0671 0.0204 0.0956 0.0366
28 0.0900 -0.0690 -0.2842 0.2152 0.0670 0.0196 0.0957 0.0359
29 -0.1330 -0.6895 -0.6797 -0.0097 0.0482 0.0275 0.0687 0.0437
30 0.5817 1.2978 0.5862 0.7116 0.0656 0.0372 0.0936 0.0526
31 -0.2547 -0.2156 0.2333 -0.4489 0.0678 0.0092 0.0973 /0.0159
32 -0.0423 -0.5376 -0.6583 0.1208 0.0583 0.0250 0.0871 0.0409
33 . -0.7199 -1.0407 0.0601 -1.1009 0.0602 0.0110 0.0859 0.0193
34 -0.3369 -0.2923 0.2986 -0.5910 0.0449 0.0257 0.0638 0.0407
35 -0.0436 -0.5007 -0.6045 0.1037 0.0655 0.0232 0.0931 0.0392
36 -0.8967 -1.2958 0.0755 -1.3713 0.0485 0.0122 0.0685 0.0209
37.-0.1232 -0.5565 -0.5153 -0.0412 0.0740 0.0231 0.1045 0.0390
38 -0.1732 -0.7330 -0.6561 -0.0769 0.0414 0.0289 0.0604 0.0453
39 0.8326 1.3998 0.2031 1.1967 0.1086 0.0381 - 0.1539 0.0613
40 -0.5546 -1.1608 -0.4525 -0.7083 0.0375 0.0250 0.0590 0.0385
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Tabel 3.4 (Continued)
No (1) (2) (3) (4) (5) (6) (7) (8)
41 -0.2303 0.1406 0.6772 -0.5366 0.0732 0.0283 0.1034 0.0445
42 -0.4004 -0.9013 -0.4146 -0.4867 0.0412 0.0244 0.0666 0.0380
43 -0.0989 -0.4885 -0.4717 -0.0167 0.0518 0.0237 0.0732 0.0396
44 0.6851 1.3855 0.4918 0.8937 0.0602 0.0320 0.0851 0.0453
45 -0.0278 0.3190 0.5012 -0.1823 0.0901 0.0244 0.1277 0.0404
46 -0,4883 -0.7064 0.0401 -0.7464 0.0317 0.0156 0.0469 0.0253
47 0.9464 1.8019 0.5236 1.2782 0.1363 0.0426 0.1929 0.0672
48 -0.8695 -1.3733 -0.0890 -1.2842 0.0501 0.0162 0.0710 0.0261
49 -0.2087 -0.8511 -0.7459 -0.1051 0.0431 0.0274 0.0612 0.0436
50 0.0119 -0.4218 -0.6108 0.1890 0.0627 0.0232 0.0934 0.0392"
59 -0.0583 -0.5538 -0.6475 0.0937 0.0372 0.0288 0.0593 0.0452
52 -0.1732 -0.7330 -0.6561 -0.0769 0.0414 0.0289 0.0604 0.0453
53 -0.3857 -0,.7475 -0.2316 -0.5159 0.0402 0.0242 0.0594 0.0380
54 0.0644 -0.1804 -0.3855 0.2051 0.0318 0.0242 0.0499 0.0380
55 -0.1814 -0.6079 -0.4651 -0.1428 0.0314 0.0243 0.0510 0.0379
56 -0.5363 -0.5977 0.2915 -0.8892 0.0521 0.0081 0.0737 0.0150
57 0.8289 1.7285 0.6674 1.0611 0.0350 0.,0294 0.0526 0.0440
58 0.9176 1.7276 0.4806. 1.2469 0.1173 0.0468 0.1657 0.0727-
59.-0.2416 -0.4775 -0.1581 -0.3195- 0.1162 0.0325 0.1641 0.0494
60 -0.2538 -0.4985 -0.1616 -0.3369 - 0.0393 0.0244 0.0588 0.0385
61 1.4752 3.2474 1.4257 1.8217 0.0849 0.0565 0.1226 0.0853
62 0.6005 4.3460 4.7818 -0.4358 0.1500 0.0219 0.2157 0.0379
Notes.
2 2

1) The measures are (1)

j

( I_Ip ), (2)55_( z p ). (3);1201. (4)502.
J

(5)u8(e) sli/isit , (6)l[Tee)-Th/ATH , (7)S(e)s(e)'-SS u/uss n
(8)|T(e)T(e) =TT /JTT"}| .

2) The measures (5)~(8) are calculated by using unidimensional

score (i.e. g=1).
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eigenvalue problems. Therefore, if there are so many individuals
that it is practically difficult to apply the perturbation theory
n times, we may first select influential individuals roughly by
the former measure and then investigate the precise 1nfluence ofv
the selected individuals by the other measures.

Since €=e/n, the result for €=1/n (i.e. e€=1) just corres-
ponds. to the omission of a specified individual. To show the
~degree of approximation we compare the eigenvalues calculated by
thetéerturbation method and the exact method. When we put €=1/62
for the.individual No. 1 and appiy the perturbation theory of
first order of €, the relative errors of the two largest
eigenvalues |9asy(g)‘9exact(g)l/Qexact(g) are 0.011 and 0.008,
respectively. If the accuracy is nof satisfactory, we must
considerbthe\order of €2 or more.

In our example the difference between the two eigenvalues is
not small. However, in general if there exist some eigenvalues
which are close to each other, the approximation becomes poor
because of the terms 1/(84-6;) in the second orders of the
eigenvalues and the first and second orders of the eigenvectors.
If~éS;9-, the absolute value of {u(1)} and then the norm of
{u Js+su(1)} become very large, though the constraints on the
norms of eigenvectors are included in the formulation. In such
cases we should use the perturbation theory under the assumption
of multiple eigenvalues rather than under the assumption of
simple eigenvalues. We shall discuss such computational problems
in Chapter 5. |

We usually express the scores t's and s's graphically in a
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low dimensional vector space to grasp the relationship among the
categories. 1In such figures we sometimes observe the phenomena
that rotations occur also in the second method of quantification
as shown in Tanaka(1984b) in the case of the third method. Such‘
pheﬁomena can be explained mathematically as follows.

When we assume simple eigenvalues, the scores t(EVsA
calculated include the terms of 1/(64-0;), s#i in

(1)_ X PRI (1) . ( -0.
u = us s ulH u;/(0.-0:).
js ids jils i ﬁAs i

If there exists a pair (65,8) such that 65=6; among the
eigenValues of interest (i.e. s;iiq), the absolute values of
u}é)'s tend to be large as aiready mentioned. Then the
coordinates of t(€) (or s(£)) in?the g-dimensional space move
much from t (or s).

‘ Now let us consider the change of the configuration of t's
(or”s's). The (i,i)-th diagonal élement of TT' indicates the
squared Euclidean distance from the‘centroid to the i-th category
and the (i,i')-th off diagonal eiement indicates the inner
product of the two vectors from the centroid to the i-th and
i'-th categories. Hence we can measure the change of the mutual
reiationship among the categories with some functions of
T(E)T(€)'-TT'. This matrix can be rewritten as follows.

T(E)T(E)'-T7' = (V7 errT) ) 4 0(E2)
= Es™ M2y Myyrg-1/2,5-1/2yyr (g-1/2) (1)
+s71/2(uMy gy 1) 1)s-1/2y | o(E2)
In the expression of the right hand side only ulMytegu1)e

includes the terms 1/(95-91), s#i. However, it can be expressed

by
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u(Myteyu()
q
= I z {usuiH(1)usui + uiuéH(1)uiué}/(Os— 0;).
s=1 i>qg
Notice that the right hand side does not include the terms 1/(95-’
0;) for 1<s,i<qg. Therefore, even if there are some pairé (s,i)'s
such that OSZGi among the eigenvalues of interest, the change of
the configuration measured with T(€)T(€)'-TT' is not large unless
the smallest difference between the eigenvalues of interest and‘
the remaining is not very small. Thus, when there are some close
paifsl (65,0;) among the eigenvalues of interest {91,...,0q} but
the‘ eigenvalues of interest are far from the remaining
eigénvalues, it is expected that.fhe change of the coordinates is
large but the change of the mutual' relationship among the
catéé;ries is small. This means a rotation. When we assume
muitiple eigenvalues, the tranSformation from (V1,...,Vk) to

(ui,...,uk) suggests the same propérty.

“ ~As the number of individuals increase, the influence of each
onev'individual decreases and the main concern becomes to detect
influéntial sets of individuals. For investigation oﬁ the
influence of multiple individuals it may not be practic;l to
consider all possible combinations of individuals. But
fortunately the first derivatives H(1), U(1), (1) and S(1) for a
set- of individuals are equal to the summations of the
corresponding ‘derivatives for each individual belonging to the
set. So the influence of a set of the individuals which have

similar T(1) and/or s(1) values beéomes large. To collect such

individuals cluster analysis may be . useful.
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4 Sensitivity Analysis in Descriptive Multivariate Methods

As shown in Greenacre(1984) and Greenacre and Underhill
(1982), a number-of descriptive multivariate methods including
the quantification methods (and correspondence analysis) are
formulated by using the generalized sinéular value decomposition
(GSVD). Since the GSVD leads to an eigenvalue problem, a unified
method of sensitivity analysis can be constructed by using the
perturbation theory of eigenvalue problems.

First in 4.2 we briefly explain a unified formulation of
various descriptive methods based on the GSVD, which was
discussed in Greenacre(1984). Then we develop a sensit}vity
analysis procedure of the generalized analysis to evaluaté the
inflgence of a small change of input data on the singular values,
singular vectors and the corresponding row and/or column profiles
by using the perturbation theory'of eigenvalue problems.

We introduce several measures for the amount of influence.
Numerical examples are shown to illustrate the usefulness of the

proposed method, and finally discussion and summary are given.
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4.1 Unified formulation of multivariate methods by the generalized
singular value decomposition

Generalized singular value decomposition(GSVD): Suppose that A

is a matrix. of order nxp and of rank K and that @ and ¢ are
positive definite matrices of order nxn and pXp, respectively.
Then A can be decomposed as
K
k=1
where

(4-2) N'QN = I, M‘@M = I] Da = diag[ 0.1,..., aK]'

N= [n’],ooo'nK]' M= [m‘]'.o-’mK]-
It is known that the following general analysis procedure based
on the GSVD includes various multiVariate methods as special

cases (Greenacre(1984)).

General analysis procedure

1) Transform the data matrix Y to the matrix A by preprocessing
' 14

t

of some type of centering.

2) Apply the GSVD to the matrix A for giVen Q and ¢ and obtain-
- the singular values ({oy} and the left and right singular
| vectors {ng} and {my}.

3) Compute the scores for rows and columns by

(4.3)  F =N03() » G =Mg)D8r) s

where the matrices with the subscript (L) indicate the sub-

matrices of L columns of the full matrices.
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The methods such as principal component analysis, biplot,
canonical correlation analysis, Hayashi's second and third
methods of quantification and correspondence analysis are treated
a§ special cases of the above general procedure with appropriate
A, @, ¢, a and b. Here as a matter of convenience to develop
sensitivity analysis we shall formulate those multivariate
methods in somewhat generalized manner introducing weights for

individuals. The result are summarized in Table 4.1.

Let the Cholesky decomposition §f a positive definite matrix
8 (or ¢) be '
(4.4) @ = (2'/2)(@'/2)T,
or
(4.0)" ¢ = (87/2)(07/2)T,

-1/2 (or

where 91/2 (or @1/2) is a lower triangular matrix and
6'1/2) is 1its inverse. Then the generalized SVD problem is
transformed into the following ordinary SVD problem.

(4.5) B = UDVT,

R

where

(4.6) B = (2'/2)Tas!/2,

(4.7) vuvTu =1, V'V = I.

The matrices N and M are calculated as

(4.8) N = (2°V/2)Ty,

(4.9) M = (o7V/2)Ty,

From this ordinary SVD problem we obtain an eigenvalue problem

such as
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Table 4.1 Multivariate methods formulated by the
generalized singular value decomposition.

‘ Transformed
Method matrix A Q ® a b Note
(1)Principal _ _ Dwzdiag(w1,...,wh)
component  Y-11DY/R D,/n I 1 0 indicates weights
-analysis for rows.
n= kak
(2)Biplot ~ 1=(1,...,1)T
(Type 1) -1 ymn D/ 1 1 0
(Type 2. o o 4 : 0 1
Covariance
biplot) ,
(Type 3 « v v 1/2 1/2
Symmetric '
biplot)

(3)Quantifi- D'y (w)~! DD, Dw) O 0 Y:data matrix
cation ], D, =diag(Y1)
De(w)=diag(Y'D,1)

’ -1 -1
(4)Corres- D, YD, (w) DD, Dc(w) 1 1
pondence
analysis

(5)Canonical S{}(w)s12(w)85;(w) Sjk(w):sample
correlation 811(w) Szz(w) 1 1 covariance
analysis matrix

(Also,

canonical

discriminant

analysis,

Quantifi-

cation [ )
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(4.10) H = vDZvT,
where
(4.11) H = (91/2)TaTqag1/2,

Thus, to perform the general analysis procedure we should first
solve the eigenvalue problem (4.10) and obtain the eigenvalues Dé
and_eigenvectors (or the right singular vectors) V. Then after
calcuiating U by the relation

(4.12) U = BvDZ',

we can get the coordinates F and G by the following equations.
(4.13) F = (2"/2)Ty ;)02 1),

(4.14) G = (e7/2)Ty D0 ;).

4.2 Sensitivity analysis

4.2.0 Basic idea of sensitivity analysis

.Here we consider to evaluate the influence of a small change
of the input data to the result of analysis. Though we can treat
various types of change, we discuss mainly the influence of the

4

change of weights for a single or multiple individuals.

Let the weights for the individuals be

1-e, k=i,
(4.15) Wi = { (single individual case)
1 k#i,
or
1-e, k&I,
(4.16) Wy = { (multiple individual case)
/ 1 ké1,

where i and I are a specified individual and a specified set of
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individuals, respectivély. Theh the matrix H in (4.11) can be
expressed as a power series of € as follows by Taylor expansion.
(4.17) H(e) = H + ed(V) & €2u(2) 4 o(e3d),

where H is the value of H(g) for,é=0 and the matrices H(1) and
H(2) can be easily calculated for each multivariate method.

When € varies slightly, the matrix H(e) varies according to
the expression (4.17). The problem is to evaluate efficiently
how ﬁhe eigenvalues Dg, the eigenvectors V and also the
coordinates G and/or F vary correspondingly. Our basic idea is
as follows. First calculate thefchange of the matrix H. Next
evaluate the changé of Dé and V based on the perturbation theory
of eigenvalue problems. Then obtain the change of the
intermediate quantities U, N, M and finélly the coordinates F, G

by Taylor expansion.

4.2.1 Perturbation of the eigenvalués and the associated
eigenvectors

It is known that, when the matrix H&:)=(hjj-E )) is expanded
in a power series convergent in a neighborhood of ¢€=0, there
exist power series of the eigenvalues Os(s)'s and the
eigenvectors vs(e)'s all convergent in a neighborhood of €=0.

0

(4.18) o4(¢) + €0l + €20(2) 4+ 0(e3), s=1,...,k.

S

- (1) 2,(2) o(e3 -
(4.19) vg(e) = vg + evg + €°vg + O(e”), s=1,...,K.
K denoting the number of dimensions of interest. The coeffi-
cients 9&1), Qéz), vé1) and véz) are obtained by the lemmas in

Chapter 2.
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4.2.2 Perturbation of the singular values and the singular

vectors
The singular values ag(€), the left singular vectors N(s)’
and the right singular vectors M(e€) are expressed by using the
Tayior series expansions as follows.
(4.20) oag(e) = ag + eaé1) + ezaéZ) + 0(83),

(4.21) N(e) = N + ent1) 4 ¢2§(2) 4 o(e3),

(4.22) M(g)

n

M + €M(1) + EZM(Z) + 0(83),
where

o 9;/2,

S

081/ (204),
1042V /ag - (a{1))2/a }/2,

(4.23){ olV)
al2)

n(T) = alMel/2ypzt 4 a(e1/2)(Nypy]
+ ae?/2y(N)p-1 _ as'/2yp;'p{1)p-1,
| N(2) = al2)61/2yp 1 4 A1) (51/2)(Nyp:T
(4.24) + al1)g1/2y(1)p=1 _ a1 g1/2yp 1p(T)p-1
. A(¢1/2)(2)VD&1 + A(¢1/2)(1’v‘1)ua1
- a(e'/2)(Myptp(1)p=1 _ a¢'/2y(V)p-1p(1)p-T

/
+ a01/2y(2)p1 4 pel/2y(p;1)(2), ‘

(4.25)( m(1) = (o=1/2)(NTy | (6-1/2)Ty(1)
{ M(2) o (671/2)()Ty , (=1/2)(NTy(1) , (6=1/2)Ty(2)

(4.26) (p,~")(2) = p ~1p (Vp ~1p (V)p -1 _ p ~Tp (2)p -1,
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4.2.3_Perturbation of the coordinates gi rows and columns

The

of € as follows.

(4.27)

(4.28)

. where

(4.29)

(4.30)

F(eg) =

G(eg) =

F(1) =

F(z) =

F + er(1) 4 £2p(2) o(ed),

G + eG(1) + €2G(2)+ 0(83)1

AN/ 2y ypacl) + A(‘1’1/2’(1)V(L)Da

+ ae'/2v{11p37]) (a-1)a0 2 (1) 057808l

al2)o1/2y ipacd ) o age1/2)(2)y o patl

+ A®1/2V§ {Da(L) + (a-1)a0"/2 V(L)DG(L)D (ﬁ)

+

+

+

ae'/2v 1 p271,,

(a-1)(a-2)Ad /ZV(L)DQ(L)(Da(ﬁ))Z

A(1)(q)1/2)(1 )V(L)Dgzl)

1 1/2
2al )¢ / Vf ;DG(L)
2(a- 1)A‘1’¢1/2V( )Dau%)n(1
2(a- 1)A(¢1/2>‘ "V (1, D3 (%D

2(a- 1)A¢1/2V{ ;Da(L)Da(ﬁ)’

-1/2 ~b
(¢ 1/ )TV(L)Da(L)’
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coordinates F(e) and G(e¢) are expanded in power

)

) (¢_1/2)(1)TV( )Db(L) + (071/2)Ty{1)pb

series



+ b(o-1)(2=1/2)Ty b2, (D{1] )2
+ b(e~1/2)Ty 1 )pB7l n{7},

+ 2(071/2) (M Tyfph

+ 2b(e~1/2)(MTy , pbel Dl

+ 20(0-1/2) Ty (1 )0kl pd 1Y,

The first and second order terms in the expansions of’ Q(e)'1/2
and'v<I>(€)'1/2 are given by
(e-1/2)(1) = (=120
- —o-1/2(1/2y1q-1/2,

(4.31) 4 (9-1/2)(2)

(1/2) (" 1/2)
_a-1/2(Q1/2)1q-1/2(g1/2)1g-1/2
_(1/2ye-t2g1/2yg-1/2,
and .
(¢-1/2)(1) - (¢—1/2)u
- _¢-1/2(¢1/2)-¢-1/2’
(4.32)7 (071/2)(2) = (1/2)(e=1/2)1+
- ¢-1/2(¢1/2)-¢—1/2(¢1/2)-¢—1/2
~(1/2)071/2(1/2) 11 g=1/2,
The differential coefficients of ghe matrices 91/2 and ¢1/é can
be calculated easily when these méfrices are diagonal as in the
case of PCA, biplot, Hayashi's third method of quantification and
correspondence analysis. However, when they aré not diagénal as
in the case of canonical correlation analysis, we must apply

Taylor expansion to the Chqlesky decomposition.
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4.2.4 Perturbation of the matrix H

We must consider the matrices H, A, & and Q for each method.

(1)Principal component analysis
From Table 4.1 the matrix H is given as follows by using the

weights w=(w)) in the case of principal component analysis.

1 1,,T T 14T
(4.33) H(w) = H(Y—H11 DwY) DW(Y—H11 DwY)

Substituting (4.15) into (4.33) and expanding with respect to € we

obtain
. Ch.L (1) , <2p(2 3
(4.34) hyyr(e) = hyyr + ehjjl + € hJJ? + 0(e3),
where
4.35) h.., = - % =Y. Ry :
( ) ]Jl nk=1(yk3 YJ)(Yle YJt) ’

(4.36) h'!) (single

hjjl/n - (Yij_yj)(yijl-le)/nr

33 individual)
= /) (hyge - 3y vggeevy o m, TERaS )
(4.37) ni2) - hyjo/n? - 20y, =Y, (y340-¥0) /02, (single)
= (m/n)?thyy, - L i) yggFg0 /m (multiple)
_(iéIyij/m - §j)(iiiyij./m - §j.)}
(4.38) §j = k§1 ykj/n .

Similarly, expanding the transformed matrix A(w) with respect to
€ we get
(4.39) akj(E) = apy + Eaﬁ%) + €2a§§) + 0(53),

where
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(4.40) agy = Ykj ~— Yy

(1) _ .
(4.41) akj = aij/n k#i,
(single)
= aij/n - aij : k=i,
(1)
(4.42) a,.’' = L a,./n k&1,
K3 jer 3
. (multiple)
= ¥ a../n - a,. K&I,
ier *J k3
(4.43) aé?)-= ai./n2 k#i,
] J , (single)
2
= 3j5/n7 - ayy/n k=t
. (2) 2 .
(4.44) al?) = 3 a, . /n k&I,
kI jep 13
(multiple)
m
=— Ya,. - Za,./n k&I,
n2 ieI 1] it k3

From Table 4.1,

Q(e)

(I-€J;)/(n-€)

(4.45)

(1/m)I + (1/n)e{(1/n)I - J;}
« (1/n)2e2((1/n)1 - 351 + o(ed). ;
where Ji is a diagonal matrix with 1 in its (i,i) element énd 0's
in the other elements. Since the matrix Q(g) is diagonal, their
differential coefficients are calculated as
(4.46){ @2yt = /29720,
@'/2yrr o (c1/m073/20)2 + (172907 2,

and the differential coefficients Q' and Q'' are given by

(4.47)i Q' {(1/n)I - J;} / n,

Qll

2{(1/n)I - 34} / n?.
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Thus in the case of PCA or biplot Qe-can evaluate the expansion
(4.27)>by substituting (4.47) into (4.46), (4.46) into (4.31),
(4.37) into (4.29) and (4.30), and finally (4.29) into (4.27).
Since the matrix ¢ is a constant ﬁatrix, it is obvious that
(4.48) (9=1/2)(1) = (9-1/2)(2) _ o,

Substituting (4.48) into (4.31) and (4.31) into (4.28) we can

evaluate the expression (4.28).

(2)Hayashi's third method of quantification and correspondence
analysis
In the case of Hayashi's third method of quantification the

matrix H(w) is given by

(4.49) H(W) = Do(w)~"/2yTp p-Typ_(w)-1/2,
This matrix is expanded in a power series of € as in (4.17),

where the 0-th to 2nd order terms are given as

n y,. Yyt
(4.50) h,., = 3§ K
I k=1 Tk {95850 |
. h.., y.. Vst Vi Vs
: (1) 33 ij ij ij ij .
(4.51) h.., = ( + ) - ' (single)
, 33 2 Cj cj. r, /cjcj.
hoov Vi Yea Yis Yoo /
= ¢ (> + 2Ll - 1 2Ll (nuitiple)
T2 j' 0 dier Fil%yCy:
Yis Yian Y Vi
(4.52) n'2) (P43 fi3t 3. 7ig,2 343’2,
J3J jj "4 c. C. 8' c. 8 c..
3 3 ] J
V.. Yist YVi: Vaion
-1 1] 1) ij ij .
2 ( c. * c..) r, [Tc.c., ' (single)
\ 3 j iv 7373
h 1 Yi- Yi-l '
= "'{Z( z —El ) ( Z—jéL- ) (multiple)
3] ier 3 ier 5

y..‘ Yz
+ g( X —%la)z + %( g —=3 )2}
ier 5 ier ©5°



Yij Yij iy Yi4
- % (2 é + 2 ; )z rl c é
i€l 735 el 73! ieI i/ i

The transformed matrix A(w) is expanded as in the form of (4.39),
where the coefficients are given by

(4-53) akj = ykj/(rkcj)’

() Yig .
(4.54) akj = akj cj k#i,
y (single)
=a,.—+  +a,. k=i,
13 ey ij
(4.55) all) oo . il k 41
- . - . ’
kJ k) e ©
y (multiple)
= a, . J-—d + a k&r,
kj ieT cj kj
(2) _ Yiy (2 | .
ingle
ca (2, My k-i(s e
B aij cj cj i
(2) Yij 2
4,57 . = . k&I
( ) ayj akj(igI S ) # '
y v (multiple)
=a((z3l,2, 2l K&,
) ier 4 ier 5

From Table 4.1, § and ¢ are both diagonal matrices whose
diagonal elements are given by
(4.58) wkk(g) = rk - Eri,

(4.59) ¢jj(€) = Cj - Eyij-

The differential coefficients become

(4.60)  wpy = -ri, wgg = 0,

! = =Y. H
(4-61) ¢jj - Yljr ¢JJ O'
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Thus by wusing (4.60) and (4.61) we can obtain the first and
second order terms of F and G. ((®1/2)' and (¢1/2)" are
expressed with &, &' and ¢'' as in the case of (91/2)' and

(@'/2)'" in (4.46).)

Correspondence analysis is equivalent to Hayashi's third
method of quantification except for the normalization of

coordinates.

(3)Canonical correlation analysis (CCA)
- The matrix H(w) is expressed by
(4.62) H(w)=522(w)‘1/2321(w)s11(w)“1s12(§)(szz(w)‘1/2)T,
which is expanded as in (4.3), where the 0-th to 2nd order terms
arefgiven as follows.
H{1) = ROVQRT 4ro(1IRT 4+ ror(1)T

(4.63){ H(2) - R(2)gRT ,Rro(2)RT . Rror(2)T
+ RODQIDRT 4 RONDGRIT | po(1)R(1)T

- where
Q = 558718y,
ot = sfi)syisy; - spi87]s{])s7isq, + sp¢57]s{}
(4.6004 o'?) = s{P)s7lsy, - si)siis{])silsy, + s§])sils{])
+ 831871811)s77s{1 871815 - s3957s{} 578

- 551871s{] )511 41) + 521511551

R = s53}/2

(4.65)] U = _g31/2(5142)(1)g51/2
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r(2) _

/

s53/2(s142) (1)s51/2(s142) (1) g31/2
s33/2(s142) (2)531/2

The transformed matrix A(w) is expanded as in the form of (4.39),

where the coefficients are given by

(4.66)

(4.67)

(4.68)

A =
A1) _

al2) _

" The covariance

(4.69)

(4.70)
(4.71)

where
(4.72)

(4.73)

(4.74)

]
s{2,

511 (w)

S12(w)

SZZ(W)

n
el
-

o

1}

C(m/n)2(Sqq - (1/m) I (x;-%) (x4-%) ",

571512533

-s715{1 57151253} + s7is{})s 33
-57181253388))s31,

(s71)(2)s1,83) + s7]s{3)s3)}
5718120833 (2) - 311 s{1)s71s{})s3}
s7184] )511512522552)322

571545)5525§3)552-

matrices can be expressed as

= 519(g) = 599 + es{%) + ezs{%) + 0(edy,
= 812(8) = S12 + GS%}) + €ZS{%) + 0(63),
= 522(5) = Szé + €S§%) + €ZS§§) + 0(83),

(m/n){Sqq - (1/m) T (x%;-%)(x;-%x)"'},
i€T
i&l

- ((1/m) T x;-x)((1/m) I x4-%X)'},
i&t iel

—1,(2 1 1) -1 - -
(s71)(2) - s71si] )311 i1 )s11 - 51154%)51}-

2 1
s{3), s}

and Sé%) denoting the similar formula with

respect to the covariance matrices between the first and second

group of variables and within the second group of variables.

(S;éz)(1) and (S;éz)(z) are calculated by the differentiation of
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the Cholesky decomposition shown later.

Canonical discriminant analysis (CDA) is included in CCA where
the variables of the first grdup are the dummy variables
expressing the mutually exclusive categories of an item.
Hayashi's second method of quantification is a special case of
CDhA where the variables of the second group are also given as the

dummy variables expressing the categories of several items.

Differential coefficients of Cholesky decomposition
A positive definite symmetric matrix A can be decomposed

into the product of a lower triangular matrix G and its transpose

GT, i.e.

(4.75) A =

GGT,

The elements of G are calculated by

1/2
(3.11) 14
351/914+
i-1

2 . 1/2

(aj; - T g55) "7
s=1
i-1

(aji - s§1gisg]s)/g11'

at1/%ais/2,

-a77/2(aj1)%/4 + a7i/?a;
2

al1/911 - aj1911/(911) %,

aj31/911
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/2,

i,

i1

i<j

i>j.

(2a191+a51911)/(917)2

we easily obtain the differential coefficients.

j>1



(4.77)»» + 2aj1(gi1)2/(911)3,

i-1
S P L 1/2 .
9137 30845 - 2 L 9is9is)/9i5 11
ty_ 1{ 'l_zig‘l( l2+ ll)}/ 1/2 ->1
9iiT 21345 o 9is * Jig9is! /954 1
i-1
1 ] ) L 3/2
- glag; - zs£1gisgis)gii/gii
i-1
" ' _ ' 1 _ .
9317 1851 = I (935945%935955) /955 <3
i-1 5
1]
- (aji - S§1gisgjs)gii/(gii) ’
i-1
vy _ L I ] - 1t 1 ] ] Tt . 2 ]
95:= (a5 o (918935%2916955%91595¢) /9y 143
i-1 : 5
) ] ] ]
- 2{aji - 551(915935*'915935)}gli/(gll)
i-1 )
L
i-1 '
y N2 3

4.3 Measures of the amount of influence

To express the amount of influence we can consider the
following measures.
(1) Differential coefficient of the sum of eigenvalues(squared

singular values)
d (1)
=2 9, (g) = tr H
(2) Differential coefficient of the product of eigenvalues
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(squared singular values)

-d
== 1 9, (¢)
de Kk k €=0

(3) Differential coefficient of each singular value

= |H|tr(H a1,

(1)

d
ap T =-ge% (&)

=0
(4) Euclidean norm of the differential coefficients of the

coordinates F (or G) normalized by e |l (or |G| )

RO N Nt Ay
(5) Euclidean norm of the'differential coefficient of the
configurations FFT (or GGT) normalized by |FFT|| (or “GGT“ )

Iz (eT + rr(DT IIFFT"

IIG“)GT + GG“)T” / "GGT“

In the above we used the differential coefficients to
measure the amounts of influencevfor the sake of simplicity.
.When we apply the second or higher order perturbation we should
use the difference such as Ok(e)—ok(O) and oy (€)-a,(0) instead of

a

A& k(s) and

the differential coefficients such as
. e=0

N

a
(g) .
de k £=0

4.4 Numerical examples
(1) Principal component analysis

As an illustration we analyzed the data given in Table 4.2,

which is a part of the result of a survey on food acceptance

52



Table 4.2 Food acceptance data : acceptance patterns of 12
drinks in 10 groups
(mean values in 9 point rating scale).

Category

Individual 1 2 3 4 5 6 7 8 9 10
1 4.6 5.0 6.0 5.4 5.4 4.7 4.2 4.2 4.1 4.4
2 4.6 5.1 6.7 7.2 6.5 3.3 3.6 4.2 4.3 3.6
3 6.1 6.3 7.1 6.8 6.6 6.5 6.8 7.2 6.8 7.4
4 6.1 6.7 6.6 5.8 5.5 5.8 6.0 6.0 5.7 5.8
5 6.2 6.8 6.2 6.6 5.5 5.0 6.3 6.3 6.2 5.8
6 7.4 7.3 6.8 6.7 6.8 6.3 6.3 5.0 6.4 5.2
7 8.t 6.8 6.7 6.3 5.9 7.8 7.0 6.3 6.7 6.1
8 7.8 6.6 6.4 6.2 5.8 7.6 6.6 5.9 5.9 5.2
9 7.0 5.3 5.3 4.8 4.2 6.7 5.1 4.7 4.2 4.3

10 6.9 6.9 6.2 5.6 5.0 5.6 5.8 4.5 3.9 3.3
11 7.6 6.6 5.8 5.3 5.3 6.9 6.4 5.5 5.5 5.7

12 7.0 5.6 4.3 4.3 4.2 6.5 5.7 5.3 4.8 4.2

Notes.

(1)Individuals{drinks): 1.wine, 2.beer, 3.green tea,
4.black tea, 5.coffee, 6.milk, 7.Calpis(lactic acid drink),
8.orange juice, 9.powdered juice, 10.coke, 11.soda pop,
12.Nectar(fruit juce).

(2)Categories(groups): 1.male -15, 2.male 16-20, 3.male 21-30,

4.male 31-40, 5.male 41-, 6.female -15, 7.female 16-20,
8.female 21-30, 9.female 31-40, 10.female 41-.
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(Toda and Tanaka(1968)). Each value in the table means to what
degree each of 12 drinks is accepted in each of 10 groups defined
by age and sex. In order to investigate the mutual relationship-
among 10 groups and/or 12 drinks, we applied principal component
anal&sis to these data. The result is shown in Fig. 4.1. From -
the configuration of the points wévcan construct some clusters of
rows (individuals, in this case foods) and/or columns(categories,
in this case groups)

Néxt to investigate the'stébility of the above result we
applied the sensitivity analysis. The measures of the amount of
influence defined in section 3 are calculated by changing the
weight for each individual fromv1 to 1-e in turn. The results
aré éhown in Table 4.3. Since the individual No. 2 looks
relatively influential, accdrding to this table, we evaluated the
influence of the individual No. 2 precisely. Fig. 4.2 shows the
changes of coordinates of rows and columns due to a small change
of the weights for the individual No. 2 from 1 to T-e (e=0.3).
Though a small clockwise rotation is observed in this figure, the
influénce is so small that it does not affect the interpretqtion.

;
(2) Hayashi's third method of quantification
| We applied Hayashi's third method of quantification to the
data given in Table 4.4, which is also a part of the result of
the survey on food acceptance. Each mark in the table means
whether each of 12 foods is accepﬁed(1) or not(0) in each of 10
groups. The result is shown in Fig. 4.3. Here the coordinates

are normalized so that the variance in each dimension is equal to
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Fig.4.1 Column profiles(circle) and row profiles(triangles)
between the first and the second axis.
(Principal component analysis)
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Table 4.3 The amount of influence of each drink
(Principal component analysis).

No af1) oV g rMyzurl 1rrTy wetM/uct UeaT
1T -0.12656 0.05502 0.10732 0.14814 0.07606 0.10775
2 -0.22018 -0.11471 0.50171 0.69883 0.34506 0.48108
3 -0.05548 -0.04978 0.29677 0.42626 0.22680 0.31843
4 0;09098 0.05450 0.03981 0.05745 0.02787 0.03763
5 0.06614 0.02165 0.08436 0.12208 0.07404  0.09970
6 0.06043 0.04626 0.07911 0.11j21 0.07763 0.11134
7 -0.10014 0.06423 0.04302 0.06089 0.02893 0.04159
8 0.02453 0.05329 0.07256 0;10286 0.05041 0.07267
9 0.05186 -0.07470 0.20171 0.27874 0.13197 0.18527

10 0.04397 0.03356 0.11047 0.15276 0.10409 0.14837

11 0.06952 0.03222 0.08478 0.12188 0.04683 0.06617

12 0.07492 -0.12154 0.20062 0.27851 0.16546  0.23712

Note. |FFT| and IGGT| mean (F(DpTpr(MTy 4 LFFT| and

e gTeac( 1T 4 (GGT| , respectively.
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Fig.4.2 Changes of the row and column profiles when the weight
for individual 2 is slightly changed form 1 to 1-¢
(e=0.3). o
Small marks indicate the profiles for the original data,
and large marks indicate the profiles for the perturved
data. (Principal component analysis)
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Table 4.4 Food acceptance data : acceptance patterns of 12
foods in 10 groups.

B Category
Individual 1 2 3 4 5 6 7 8 9 10
| | 1 1 1 0 0 1 1 1 1 0
2 0 0 0 0 1 1 0 0 0 1
3 1 1 1 1 0 1 1 1 1 0
4' 0 1 1 1 1 1 1 1 1 1
5 1 1 1 1 1 1 1 1 1 1
6 1 1 0 0 0 1 1 0 0 0
7 1 1 1 1 0 1 1 0 1 0
8 0 1 1 1 1 0 1 1 1 1
9 1 1 1 1 1 0 0 0 0 1
10 1 1 0 1 1 1 0 1 1 1
11 0 0 1 1 0 0 1 1 1 1
12 0 1 1 1 1 0 1 1 1 1

Notes. %
(1)Individuals(foods): 1.curry and rice, 2.iced noodles, 7/
3.flield noodles, 4.miso soup, 5.sukiyaki, 6.croquette, ’
7.ham, 8.sliced raw fish, 9.broiled eel,
10.Japanese hotchpotch, 11.Chinese cooked vegetables,
12.cooled tofu. :

(2)Categories(groups): 1T.male -15, 2.male 16-20, 3.male 21-30,
4.male 31-40, S5.male 41-, 6.female -15, 7.female 16-20,
8.female 21-30, 9.female 31-40, 10.female 41-.

(3)The figure "1" indicates that the food is accepted in the

group in the sense that the mean scores using a 9-point scale
"is larger than 6.0 and figure "0" indicates the opposite.
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Fig.4.3 Column profiles(circle) and row profiles(triangles)
between the first and the second axis.
(Hayashi's third method of quantification)
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the corresponding eigenvalue as in correspondence analysis. Also
in this analysis we may construct some clusters of the points of
rows and/or columns.

.Next we applied the sensitivity analysis. Table 4.5 shqws
the measures of the amount of influence calculated by changing
the weight for each individual iﬁ?furn. According fo this table
the ihdividual No. 2 looks influential. So we evaluate the. .
influence of the individual Né.z preciseiyu Fig. 4.4 shows the
changéé of coordinates of rows and columns when the weight for
the individual No. 2 is slightlj changed from 1 to 1-¢£ (e=0.3).
Also in this case we can observgra rotation. However, mutual

relationship among points seems stable.

4.5 Discussion and summary

Our concern is how the result of analysis changes when the
weight for a single or multiple individuals changes slightly.
Our sensitivity analysis procedure is as follows. )

Step 1. Evaluate the influence of each individual in éurn
by changing its weight form 1 to 1-¢ and summarize the
result in a table.

H'Step 2. Find influential individuals by checking the-table.

Step 3. Show the influence of a single or multiple
influential individuals graphically,'and judge how it affects the
intérpretation.

In step 1 we must calculate the influence of each individual
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Table 4.5

The amount of influence of each food

(Hayashi's third method of quantification).

No of 1) ofV qF grl FET we(/kel  (GeTY
1 -0.01799 0.01698 0.31761‘ 0.43181 0.22560 0.21346
2 -0.01998 -0.06012 1.05495 1.13861 0.86456 0.42685
3 -0.00894 0.01578 0.34883 0.37623 0.28163 0.18620
4 0.01576 0.01965 0.15369 0.20508 0.16321 0.22235
5 0.02748 0.02199 0.07456 0.14373 0.12980 0.25876
6 -0.04151 -0.01582 0.73377- 0.78745 0.55648 0.26463
7 -0.01504 0.01604 0.27783 '0.46187 0.17792 0.19534
8‘ 0.00719 0.00222 0.40792 0.33359 0.35367 0.20694
9 0.01675 0.00388 0.16598 0.28537 0.20292 0.30475
10 - 0.02375 0.00883 0.18457 0.27547 0.18662 0.26529
11 0.00533 -0.03165. 0.41789 0.45864 0.32476 0.21517
12 0.00719 0.00222 0.40792 0.33359 0.35367 0.20694

Note. [FFT| and (GGT | mean §F VrT+rr(VTI / |rFT| and

e eTiae( VT / fccTy , respectively.
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Fig.4.4 Changes of the row and column profiles when the weight
for individual 2 is slightly changed form 1 to 1-¢
(e=0.3).

Small marks indicate the profiles for the original data,
and large marks indicate the profiles for the perturved
data. (Hayashi's third method of quantification)
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in turn. When the number of individuals increases the amount of
calculation becomes large. Thérefore it is very important
pfactically to use a numerical method which is as efficient as
possible. From such viewpoint we avoided to apply exact methods
to solve eigenvalue problems, and instead we used‘the
perturbation theory of eigenvalue problems. | ‘

The formulation of the perturbation theory are different
depending on whether we can assume the eigenvalues of interest
are all simple or not. The precise computational problems are
fully discussed in Chapter 5.

For evaluation of the stability of the result so called
jackknife method and bootstrap meghod are also useful. If we put
€=1 our method just correspondsrto thé'jackknife method. The
bootstrap method requires, in géneral, much computing time.
The;efore, if a large scale computer is available and if the‘
evaiuation of the stability is a critical problem we shouldvuse

the_bootstfap method.
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5 Computational Aspect of Sensitivity Analysis

Iﬁ this chapter we discuss the computational aspect of
sensitivity analysis in multivariate methods which are formulated
as eigenvalue problems of symmetric matrices.

Since we must evaluate the eigenvalues and eigenvectors of
slightly different matrices many timeg‘in order to search for
influential observations, we should use a computing method which
is as efficient as possible. From such a viewpoint we applied
the perturbation theory in our sensitivity analysis. But the
perturbation methods are different, depending on whether the
eigenvalues of interest are all simple or not. Of course in
actual data analysis the eigenvalues of interest are usual%y all
simple in the strict sense. However, if there are élose
eigenvalues we should better apply the perturbation method under
the assumption of multiple eigenvalues to get the result with
high accuracy, because the method under the assumption of simple
- eigenvalues does not work well ih'such cases. The problem
whether we should use the first order approximation or second
order approximation is another problem.

We investigate six computational methods based on the
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perfurbation theory and compare their degrees of accuracy
numerically, and discuss the switching policies among those

methods of computation.

5.1 Computational methods

For the computation of eigenvalues and eigenvectors of each

matrix H(e) we may apply the following methods.

(EM) Exact method to solve each eigenvalue problem of H(eg) by

' ' an ordinary numerical procedure.

(PS1) Perturbation method of first ordér'assuming simple
eigenvalues based on Lemma 1 in Chapter 2.

(PS2) Perturbation method of second’order assuming simple
eigenvalues based on Lemma 1‘in Chapter 2.

(PM1) Perturbation method of first order assuming multiple
eigenvalues based on Lemma 2-1 in Chapter 2.

(PM2) Perturbation method of second order assuming multiplg
eigenvalues based on Lemma;2?2 in Chapter 2.

(PM'1)Modification of PM1. The method to compute eigenvalues
of first order approximation by using Lemma 3 in Chapter
2 and obtain eigenvectorsrby solving linear simultaneous
equations.

(PM'2)Modification of PM2. The méthod to compute eigenvalues

of second order approximation by using Lemma 3 in Chapter

2 and obtain eigenvectors by solving linear simultaneous
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equations.

As is mentioned before there are various sources which bring,
small changes of the matrix H, and, in general, we must evaluate
the eigenvalues and eigenvectors of slightly different matrices
many times. Therefore, it is practically importanf to choose the
procgdure which is as efficientAqs possible, if its computation
error is not so large. So if théfresult of any one perturbation
method is accurate we should better choose it.

In applying the perturbation methods the appropriateness of

the assumption of simple eigenvalues depends on the closeness of
_the‘eigenvalues of interest. The_choice between the first order
perturbation or second order perturbatién depends on the size of
€. In order to investigate the effects of the closeness of the
eigenvalues of interest and the size of € we performed numerical
egpgriments as shown below. The déta are generated according to

the following model.

Model: A
H(e) = H + en(1) 4 ¢25(2),
where

H = 0ququy + ... + O4u,uy,

wy = (1/2 1/2 -1/2 -1/2)",
u, = (1/2 -1/2 1/2 -1/2)',
uy = (1/2 -1/2 -1/2 1/2)*,
uy = (1/2 1/2 1/2 1/2)'.

g1=3+A, 92=3—A, 93=0.5, G4=O,
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H(2)=(h{%)), hi%) : [-1,1) uniform random number.
2=1,2

First, to investigate the effect Qf the closeness of eigen-
valﬁes, we generated ten sets of H(eg)'s by putting €=0.1 (fixed)
and A=0.01,0.05,0.10(0.10)0.50, and calculated their eigenvalues
and eigenvectors by the above EM~PM'2 methods. The results are
summarized in Table 5.1. Ffom this table we find that,

() when A is large, the eigenvalues and eigenvectors are
caldﬁléted accurately by all of.the PS, PM and PM' methods, but
(:)wﬁen A decreases, the accuracy of the PS method grows worse
while the PM and PM' methods are still satisfactorily accurate,
and

GDthere is no clear difference in accuracy between the PM and

PM' methods.

From (2.5)-(2.6) we can interpret that the main source of the
errors due to the closeness of eigenvalues is the term 64-6, in
the denominator in the second equation of (2.5). So, whenfsome
eigénvalues are close to each other the first order terms 6f the
éigenvectors will be inaccurate and in consequence the second
order terms of the eigenvalues and eigenvectors will be also
inaccurate. 1In such cases the norms of the eigenvectors “vS“'s
wiii deviate from 1.0 though the equations (2.5)-(2.6) are
, formglated under the constraint |vg|=1. From this standpoint we

drew the scatter diagram of the norm and the error of eigenvector

in Fig. 5.1. It seems that the norms of eigenvectors actually
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Fig. 5.1 Relationship between the norm and the amount
of error of eigenvector. ;
Notes.

(1) The x- and y- axes indicate the maximum of the norms of
eigenvectors and the sum of the Euclidean norms of errors
of eigenvectors, respectively.

(2) The marks x and + indicate the results of the perturbation
assuming simple eigenvalues (PS1) and those assuming
multiple eigenvalues (PM1), respectively.

(3) The points whose x-values are more than 1.3 are omitted in
the above figure.
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deviate from 1.0 in most cases when the errors of eigenvectors
are large. So we may find whether the error of the PS method is
large or not by checking the norms of eigenvectors. In Fig. 5.1
there are three cases where the norms of eigenvectors do not
deviate much from 1.0 but the §alues have large errors. The
rotations of axes of the firstjand second eigenvectors are

observed in these three cases.

Next, to investigate the effect of the size of ¢, we
generated ten sets of H(e)'s by putting A=0.5(fixed) and
€=0.01,0.05,0.10,0.20, and calculated the eigenvalues and eigen-
vécﬁors. The results are shown in Tablg 5.2. From this table we
can see the following.

C) When € is small, the eigenvélues and eigenvectors are
calculated accurately by both of the first order and second order
perturbation methods. |

C)When € increases, the accuracies of the both methods grow
worse. However, the rate of growing worse is a little slower in
the case of the second order perturbation. ;
Fig. 5.2 shows the relationship between Oéz) and the error of the
eigenvector based on the PS1 method. This figure suggests that we
can find the case where the error 6f first order perturbation of

eigenvector is large by checking QéZL
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Fig. 5.2 Relationship between [e20(2)| ang
the amount of error of eigenvector. ;
Notes.

(1) The x- and y- axes indicate the maximum of |529é2)|,
s=1,2 and the sum of the Euclidean norms of errors
of eigenvectors, respectively.

(2) The marks X and + indicate the results of the first

order perturbation (PS1) and those of the second
order perturbation (PS2), respectively.
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5.2 Discussion and summary

We considered six computational methods based on the pertur-
bation theory assuming simple or multiple eigenvalues. Then we
applied them to the artificially generated matrices H(g) and
compared their degrees of accufacy. The results showed that,
when there are close eigenvalues among those of interest, the
methods assuming simple eigenvalues do not work well and that,
when € is large, the second order perturbation is a little better
than thé first order perturbation.

Fromvthe viewpoint of computing speed the PS1 method is the
best; So we recommend to use the PS1 method in the ordinary
case. When the closeness of eigenvaluestcauses the inaccuracy of
thé PS1 method, the norm of eigenvector usually deviates from
1.0. "Therefore we can switch over to the,PM1 method in such
céses.

.~'Comparing with the difference between PS ahd PM the
difference between the 1st and Zna orders is relatively small.
However, if we wish to switch from the 1st to the 2nd or vice
versa we may consider as follows. »ﬁhen we have already obg;ined
0&1) and vé1), it is easy to cOmpute Oéz) in addition to 9&1) and
vé1). If we compute Oéz) in the first order perturbation
additionally and to check the value»of EZGéz) or egéz)/0é1), we
can find the case when the first Qrder perturbation gives poor
approximation.

In our sensitivity analysis we first search for influential

observations by checking each individual in turn and then
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investigate the effects of the influential observations precisely
by the aid of graphical representatidn. Usually we must evaiuate
the eigenvalues and eigenvectors of slightly different matrices
many times at the first step. So we recommend to use the
approximate method such as PS1 or PM1 especially at the first
step from the viewpoint of computing speed. We may use the exact
methdd at the second step when we need the result with high

accuracy even if it requires much time.
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