<table>
<thead>
<tr>
<th>Title</th>
<th>Effect of the X-Irradiated Tumor bed on Tumor cells Part II. Effect of Tumor Bed on Cellular Radiation Sensitivity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>浦野, 宗保</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 26(10) P.1372–P.1383</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1967-01-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/17577</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
EFFECT OF THE X-IRRADIATED TUMOR
BED ON TUMOR CELLS
Part II. Effect of Tumor Bed or. Cellular Radiation Sensitivity

Muneysu URANO, M.D.
(Department of Radiology, Kyoto Prefectural University of Medicine, Kamiyoku, Kyoto.
(Director = Professor Hiroshi Kaneda)

移植前照射の腫瘍発育環境における影響
第2報 腫瘍細胞の放射線感受性におよぼす影響

京都府立医科大学放射線医学教室 主任：金田弘教授
浦野宗保

(昭和41年6月7日受付)

臨床上しばしば認められる如く，以前に放射線治療を受けた部位に再発した悪性腫瘍は，初回治療時よりも照射線に対し抵抗を示す。これを説明するのに，腫瘍細胞自体の変化，即ち，細胞が突然変異をおこすこと，放射線感受性の低い細胞のみが生存し，ある種は腫瘍発育の放射線による変化があげられてきた。

著者は前報において，腫瘍移植前に腫瘍部にレ線照射をした場合，腫瘍の発育が遅延するとともに，抵抗動物の生命延長が認められ，また理論的算出の結果の実験値が対照群に比べ小さいという3つの実験結果を報告した。今回は腫瘍腎移植前にレ線照射を受けて，それと腫瘍細胞の放射線感受性におけるどのような影響を与えるかを，ddX系雌性マウスおよび免疫無力播種を用いて検討した。

マウス右大腿部に2300radsを照射し，その3E後に塩沢肉腫細胞0.05mlを同部位に移植し，それが0.7mlに発育したとき，空気中にて種々線量を照射した。その後100日間，腫瘍の再発の有無を観察し，腫瘍を50％治癒させる線量（TCD-50）をlogitを用い算出した。

その結果，照射後100日におけるTCD-50は，対照群の5526radsであるのに比べ，腫瘍前照射を行ったものは3672radsであって，半数の腫瘍を治癒させるのに，1.33倍の線量を要することがかつた。

Extrapolation Number (N) および37％線量（D37）を推定すると，対照群ではN=1，D37=308rads，とN=3，D37=331radsの間だが，移植前照射をうけるとN=1，D37=411radsである。腫瘍前照射をうけ，移植後もその後もD37=440radsの間にある，後者において37％線量はるかに大きいことを知ることができた。

It is a well known clinical observation that tumors recurring in previously irradiated regions are more radioresistant than the original tumor. The several theories designed to explain this phenomenon, can be divided into three groups6,7,18,20: (1) the initial sublethal irradiation kills off all but a few resistant tumor cells, so that when the recurrences take place, the resistant cells comprise the tumor. (2) the initial irradiation induces a mutation towards radioresistance. (3) in addition to a change in radiosensitivity
of the tumor cells themselves, irradiation causes some changes in the host (tumor bed changes), and the affected tumor bed makes the recurring tumor behave as though more resistant to subsequent irradiation.

A previous paper described some tumor bed effects (TBE) with Takizawa-sarcoma in mice. When the tumor beds had been irradiated before tumor transplantation, the growth of the tumor was significantly decreased, the survival time of the hosts prolonged and the maximum tumor volumes (the estimated final size of tumors causing death of animals) were usually smaller.

In addition to these findings, this paper reports some investigations of the effect of tumor bed (TBE) on the radiosensitivity of malignant tumor cells.

Materials and Methods

Animals

Male mice of the ddY strain supplied by the Kansai Animal Laboratory, Kyoto, were used in all experiments. Their room temperature was kept constant during the experiments. The animals were housed in groups of eight to ten in stainless steel wire cages with wood shavings for their bedding. They were provided with standard purina pellets (made by the Funahashi-nojou Company) and water ad libitum.

Tumor Transplantation

The tumor used was the Takizawa-sarcoma induced by Takizawa (Department of Pathology, Chiba University) by daily injections of 25 per cent fructose solution. A subline of this strain has been propagated in the Department of Radiology, Kyoto Prefectural University of Medicine, since November, 1963. A tumor cell suspension of 0.025 to 0.05 ml was injected into the subcutaneous tissue of the right thighs of mice weighing 13 to 15 grams. The method of inoculation is described in detail in the previous paper.

X-irradiation

(a) X-irradiation of the tumor bed before tumor transplantation: An X-ray machine of the Toshiba KXC-18 type was operated at 120 kvp, 25 mA. with a 1.0 mmAl filter. The HVL was 2.4 mmAl, and focus-skin distance was 30 cm. The dose rate measured with Shimazu Dose-Reader and No. 422 chamber at the same position as the tumor bed to be irradiated was 145 rads per minute.

(b) X-irradiation of the tumors: Physical factors were 160 kvp. and 25 mA. with 0.3 mmCu and 0.5 mmAl filter. The HVL was 0.53 mm Cu. The measured dose rate was 197 rads per minute at the same position as the tumor.

In both methods of X-irradiation, the right thighs of eight mice were irradiated in a 10 by 10 cm. field on a parafine plate 10 cm. thick. The animals were anesthetized by ether only to keep them motionless during their fixation.

Theoretical Consideration on 50 per cent tumor control dose

The experiment planned to determine the tumor cure dose took into account the following theoretical considerations.

From the standpoint of cellular radiation biology, Pack and Marcus (1956) established that the lethal response of single mammalian cells to radiation can be described by the multitarget survival curve given by the formula,

\[S = 1 - (1 - e^{-\frac{D}{D_{0.7}}})^N \]
where, \(S \) is the surviving fraction, \(N \) is the extrapolation number, \(D_{37} \) is 37 per cent dose, and \(D \) is the X-ray dose. When \(D \) is much larger than \(D_{37} \), this formula can be simplified as follows;

\[
S = Ne^{-\frac{D}{D_{37}}}
\]

Since their description it has been demonstrated by many investigators that this formula can be applied to the response of various mammalian and human “single” cells to irradiation.

Providing that each cell in “solid” tumors responds to irradiation independently and according to formula (1), in many tumors containing \(M \) cells the average number of cells per tumor left surviving after a dose of \(D \) rads will be \(SM \). The probability that a tumor is cured is equal to the probability that all cells in a tumor are killed, and expressed as

\[
P = e^{-SM}
\]

Substituting for \(S \) from formula (1),

\[
P = e^{-NM e^{-\frac{D}{D_{37}}}}
\]

(Munro and Gilbert, 1961)[21]

This equation can be transformed to

\[
\ln\ln P^{-1} = \ln NM - \frac{D}{D_{37}}
\]

In this equation, when \(P \) is 1/2, the X-ray dose which will destroy half of the tumors can be calculated from the equation,

\[
\frac{D}{D_{37}} = \ln NM - \ln1n 2
\]

Using this equation, Suit (1963[30, 31] and 1964[32]) evaluated the radiation response of C3H mouse mammary carcinoma and named the X-ray dose which killed half the tumor “50 per cent local tumor control dose (TCD-50).”

If \(D \) is much larger than \(D_{37} \), equation (2) is a similar function as the logit \(P^{33} \), that is, a straight line transform of logistic function;

\[
\text{logit} P = \ln\frac{P}{1-P} = a \log D + b
\]

\((a \text{ and } b \text{ are constants})\)

For the bio-assay of X-ray doses which will cure local tumors, the logit analysis was used and TCD-50 was calculated. These experiments were based on these theoretical considerations, and TCD-50 was calculated by logit analysis.

Experiments and Results

50 per cent local tumor control dose

The purpose of this experiment is to investigate the effect of tumor bed alteration induced by X-ray on the 50 per cent local tumor control dose (TCD-50). Three days before tumor transplantation, the tumor beds of the right thighs of 96 mice were irradiated by 2,000 rads. 0.05 ml of tumor cells were transplanted to each irradiated area and to thighs of 120 non-irradiated control animals. When the tumors had grown to 0.7 ml, they were irradiated in air with various dose levels as presented in table 1.

After the irradiation of the tumors the animals were observed every day. If a mouse died with a recurrent tumor, it was checked as non-controlled. If a mouse died without any visible tumor, it was excluded from the results. The TCD-50's of tumors in nonirradiated and in irradiated tumor beds were
calculated every ten days for 100 days after the irradiation. The results are shown in figure 1, and the TCD-50's evaluated in 50 and 100 days after irradiation are presented in detail in table 1. These results indicate that 100 days after tumor irradiation is enough time to observe the regrowth of irradiated tumors because the TCD-50's become constant after 60 to 70 days.

By 100 days after tumor-irradiation, 78 of the 120 mice with tumors in normal tumor beds had died with tumor-recurrence. The great majority (71) had died within 50 days and about half (36) within 30 days after irradiation. On the other hand, of the 95 mice with tumors in irradiated tumor beds, 57 had died by 100 days, 51 by 50 days and 22 by 30 days after tumor-irradiation.

Without visible tumors, of the 120 mice with tumors in normal beds 5 died within 100 days and 4 of them within 30 days. Of the 96 mice with tumors in irradiated tumor beds, 6 died without tumor-recurrence within 50 days and 7 within 100 days. (These animals were excluded from the results.)

The values of the TCD-50's clearly demonstrate tumor bed effect (TBE). Tumors in irradiated tumor beds were more radiosensitive than those in non-irradiated tumor beds.

The TCD-50 in 50 days of tumors in non-irradiated tumor beds was 5±20±110 rads, and that of tumors in irradiated tumor beds was 7054±184 rads. The TCD-50 in 100 days of tumors in normal and irradiated beds was 5526±84, and 7367±182 rads, respectively. (Fig. 2). The ratio of the TCD-50 of tumors in normal and irradiated tumor beds increased gradually with time. It was 1.19 in 30 days after irradiation, 1.30 in 50 days and 1.33 in 100 days.

![Graph](image1)

Figure 1. 50% local tumor control dose (TCD-50) of 0.7 ml. Takizawa sarcoma growing in right thighs of mice. (They were calculated every ten days after tumor-irradiation.)

![Graph](image2)

Figure 2. 50% Fer cent Local Tumor Control by 100 days after tumor-irradiation Dose
(A) Tumors growing in normal tumor beds
(B) Tumors growing in tumor beds irradiated with 2,000 rads three days before transplantation.

On the other hand, the slopes of the logit-lines in figure 1 are very steep. However, that of tumors in irradiated beds is slightly less steep than that of tumors in normal beds. This means that to get a higher percentage of cures, the ratio of the tumor control dose in normal and irradiated beds must increase.
Table 1. Local control of 0.7 ml. mouse Takizawa-sarcoma growing in right thighs, following local single x-irradiation. (Animals dying without recurrent tumor were excluded from the results)

(A) Tumors in normal tumor beds

<table>
<thead>
<tr>
<th>Tumor dose (rads)</th>
<th>4207</th>
<th>4607</th>
<th>4903</th>
<th>5286</th>
<th>5664</th>
<th>6069</th>
<th>TCD—50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor control in 50 days</td>
<td>1/18 (5.6)</td>
<td>3/20 (15.0)</td>
<td>3/18 (16.7)</td>
<td>6/20 (30.0)</td>
<td>13/20 (65.0)</td>
<td>18/19 (94.7%)</td>
<td>5420 ± 110 rads</td>
</tr>
<tr>
<td>Tumor control in 100 days</td>
<td>0/18 (0)</td>
<td>1/20 (5.0)</td>
<td>2/18 (11.1)</td>
<td>5/20 (25.0)</td>
<td>12/20 (60.0)</td>
<td>17/19 (83.5%)</td>
<td>5526 ± 84 rads</td>
</tr>
</tbody>
</table>

(B) Tumors in tumor beds irradiated with 2,000 rads, three days before tumor-transplantation

<table>
<thead>
<tr>
<th>Tumor dose (rads)</th>
<th>5409</th>
<th>5821</th>
<th>6203</th>
<th>7173</th>
<th>7819</th>
<th>8573</th>
<th>TCD—50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tumor control in 50 days</td>
<td>0/15 (0)</td>
<td>3/15 (20.0)</td>
<td>5/16 (31.3)</td>
<td>7/14 (50.0)</td>
<td>9/13 (69.2)</td>
<td>14/15 (87.5%)</td>
<td>7057 ± 184 rads</td>
</tr>
<tr>
<td>Tumor control in 100 days</td>
<td>0/15 (0)</td>
<td>1/15 (6.7)</td>
<td>4/16 (18.8)</td>
<td>5/14 (35.7)</td>
<td>9/13 (69.2)</td>
<td>14/15 (87.5%)</td>
<td>7357 ± 187 rads</td>
</tr>
</tbody>
</table>

The 50 per cent local tumor control doses (TCD-90) of tumors in normal beds and in irradiated beds are 6207 and 8784 rads, respectively. The ratio with TCD-90 in 100 days is 1.42, which is higher than the ratio with TCD-50.

From these results alone it is impossible to analyse the radiosensitivity of Takizawa-sarcoma cells, because any data concerned with 37 per cent dose and extrapolation number was not given in this experiment.

Radiosensitivity of Takizawa-sarcoma cells

To analyse the radiosensitivity of Takizawa-sarcoma cells another experiment was planned. When tumors grew up to 0.7 ml. in the right thighs of animals after transplantation, they were irradiated with 500 to 2,000 rads in vivo. Within one hour after irradiation, 0.025 ml. of the irradiated tumor cells were transplanted to 15 normal mice in every dose levels. These tumor volumes were measured every two days and growth curves were calculated according to the formula of logistic curve expressed as follows:

$$V_t = \frac{K}{1 + ae^{-bt}}$$

(The method of measuring and calculating the tumor volumes has been described in a previous paper).

In this formula $V(t=0)$ reveals the viable tumor cell volume at the time of transplantation providing that tumor cells begin to grow without any initial delay in growth or mitosis (Fig. 3). The surviving fraction after irradiation was calculated by comparing the $V(t=0)$ values of every irradiated cells with that of normal cells.

From these results, with the least square method, the extrapolation number (N) was 1.7 (1—3) and the 37 per cent dose (D_{37}) was 326 rads (Fig. 4). These values ignore the initial growth delay and radiation induced mitotic delay. It was demonstrated that mitotic delay and X-ray dose have a linear correlation, using Chinese Hamster Cells (Elkind et al., 1963). However, it is unknown whether same correlation is observed in Takizawa-sarcoma or not, and it is also unknown what kind of correlaton there is between initial tumor growth delay and radiation-induced mitotic delay. Therefore, the cellular radiosensitivity of Takizawa-sarcoma was analyzed with N = 1.7 (1—3) and D_{37} = around 326 rads.
Discussion

It has been demonstrated that the irradiation of tumor beds before transplantation causes tumor cells to behave as though more radioresistant to subsequent irradiation. The lethal dose for tumors grown in irradiated tumor beds, when evaluated as TCD-50 in 100 days, had to be multiplied by that for tumors in normal beds by a factor of 1.33. In discussing these findings, it is necessary to analyse the data from the aspect of cellular radiation sensitivity.

The extrapolation number and 37 per cent dose for Takizawa-sarcoma cells were roughly estimated as 1.7 (1—3) and around 320 rads, respectively. Substituting these values for N and D_{37} in equation (3), the number of cells in a 0.7 ml tumor, when the TCD-50 is 5526 rads, is calculated as 1.3 \times 10^7. Hemocytometrically 6 (4—9) \times 10^6 cells were counted in one cubic millimeter, so the 0.7 ml tumor used in these experiments would contain 4.2 (2.9—6.3) \times 10^6 cells. Between these two values, there is a difference of a factor of 32 (22—48). This is considered that 32 cells is the number of surviving cells required for irradiated tumor to grow again.

In a pilot experiment, various numbers of tumor cells were inoculated into the right thighs of mice. Tumors were able to grow in two of the five mice receiving 10 cells and four of the five receiving 100 cells.

These facts support the hypothesis that 10 to 100 surviving cells are needed for irradiated tumor to recur.

In table 2, 37 per cent doses (D_{37}) were calculated from equation (3) with an extrapolation number (N) of 1 to 3 and the number of cells needed for tumor-regrowth, 10 to 100. The curves of the cellular surviving fractions of Takizawa-sarcoma cells could be drawn between a straight line with N=1 and D_{37}=306 rads, and a curve with N=3 and D_{37}=331 rads, as shown in figure 5.
It was demonstrated that, in air, the TCD-50 in 100 days of 0.7 ml solid Takizawa-sarcomas growing in beds irradiated with 2,000 rads before transplantation was 7367 rads, and the ratio of TCD-50 in irradiated beds to that in normal beds was 1.33. These results show that it is important to analyze how the extrapolation number and 37 per cent dose changed.

In some situations, the radiation sensitivity of mammalian cells was demonstrated to be modified at the point of an extrapolation number at other than a 37 per cent dose. It was proved by Dewey (1960)\(^8\) that in the X-ray survival curve of human liver cells, not only the 37 per cent dose but also the extrapolation number was higher when they were irradiated in nitrogen than in oxygen. Bagshio (1962)\(^1\), Mohler and Elkind (1963)\(^1\), and Humphrey et al. (1963)\(^\text{17}\) showed that 5-bromodeoxyuridine (BUDR) increased the X-ray response of mammalian cells in vitro and decreased the extrapolation number in X-ray survival curves. Moreover, the extrapolation number was modified by different kinds of radiation (Hornsey and Silini, 1963\(^\text{13}\) and Berry and Andrews, 1963\(^\text{20}\)), by temperature variation and substances in the medium: at the time of irradiation (Beer et al., 1963\(^\text{25}\)). From these results it might be concluded that, in conditions in which the cellular radiation sensitivity is decreased, the extrapolation number becomes higher.

In the present experiments, it was expected that in the radiation response curve of Takizawa-sarcoma cells grown in irradiated beds, the extrapolation number and 37 per cent dose would increase. However, there is no way of knowing how the extrapolation number was modified. Therefore, the radiosensitivity of these cells was analyzed under the assumption that the extrapolation number did not change in the irradiated tumor beds.

The TCD-50 of Takizawa-sarcoma in beds irradiated before transplantation was 7367 rads in 100 days; i.e. higher than the 5525 rads of tumors in normal tumor beds. It was stated above that 10 to 100 cells are needed to cause an irradiated tumor to recur and that the extrapolation number is between 1 and 3 (average 1.7). Substituting these values in equation (3), 37 per cent doses were calculated and are shown in table 2. The radiation surviving fraction of these cells could be drawn between a straight line that have, N = 1 and D\(^{N\text{=1}}\) = 411 rads and a curve with N = 3 and D\(^{N\text{=}3}\) = 440 rads, as shown in figure 5. The ratio of D\(^{\text{37}}\) of tumors in irradiated beds to that of tumors in normal beds was 1.33.

In explaining the acquired radioresistance of tumors recurring in previously irradiated regions, three possible mechanisms have been proposed by many authors\(^6\),\(^7\),\(^18\),\(^20\): selection of tumor cells, induction of mutation towards radioresistance, and tumor bed changes. In other words, it may be considered that

Table 2. Calculated 37 per cent doses (D\(_{37}\)) computed extrapolation number (N) as 1-3 and number of surviving cells necessary for tumor regrowth as 10-100, where the 50 per cent local control dose was assumed to be 5526 rads (tumors in normal tumor beds -A-) or 7376 rads tumors in irradiated tumor beds -B-).

<table>
<thead>
<tr>
<th>Number of surviving cells</th>
<th>37 per cent dose (D(_{37}))</th>
<th>(N = 1)</th>
<th>(N = 1.7)</th>
<th>(N = 2)</th>
<th>(N = 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>((A))</td>
<td>((A))</td>
<td>((A))</td>
<td>((B))</td>
<td>((B))</td>
</tr>
<tr>
<td></td>
<td>(208)</td>
<td>411</td>
<td>300</td>
<td>400</td>
<td>237</td>
</tr>
<tr>
<td></td>
<td>(100)</td>
<td>354</td>
<td>472</td>
<td>342</td>
<td>456</td>
</tr>
</tbody>
</table>

\[D(A)/D(B) = 1.33\]
Figure 5. Calculated surviving fraction Takizawa-sarcoma cells in 0.7 ml. tumors, by estimating that 10 to 100 cells are necessary for the regrowth of irradiated tumors.

(A) Tumors growing in normal tumor beds.
(B) Tumors growing in tumor beds irradiated with 2,000 rads three days before transplantation.

This phenomenon depends on some changes occurring in the tumor cells themselves or in tumor beds.

In regard to radiation-induced alterations in the tumor cells themselves, many conflicting results have been reported.

Whitfield and Rixon (1950) observed in cell culture studies that repeatedly irradiated strain L mouse cells were less sensitive than the original ones. However, using many strains of mouse tumor, Pearson (1959) demonstrated that the lethal radiation dose of serially irradiated tumors was the same as that of nonirradiated tumors. Kaneta and Muta (1960) irradiated Yoshida sarcoma in vivo up to 94 generations (total dose was 87,500 R.) and found that the degree of tumor regression was higher for the preirradiated than the non-irradiated control line.

Rhynans and Newcombe (1960) induced radioresistant lines of strain L mouse fibroblasts by repeated irradiation and showed that the number of chromosomes was a little lower in cells with acquired resistance. Muta's experiments (1964) supported these results. However, Berry (1963) demonstrated an opposite fact that diploid P-388 lymphocytic leukemia was slightly radiosensitive than tetraploid. Till (1961) examined the radiosensitivity of various cell lines whose chromosome number varied from 53 to 139 and concluded that chromosome number was independent of radiosensitivity. Révézé et al. (1963) investigated the relationship between chromosome number and radiosensitivity of two lines of Ehrlich ascites carcinoma (ELD and ELT) and serially irradiated lines of ELD and also found no consistent relationship.

Measuring non-protein sulphhydryl (NP-SH) levels of these cell lines, Révézé et al. (1963) reported that the increased NP-SH level per cell is associated with increased resistance of the cells to anoxic irradiation. Radiosensitivity has been also found to have a correlation with chromosome size (Wakonig-Vaartaja, 1963) or $\frac{C_{34}}{C_{40}}$ (Schubert, 1954).
From these results, it is not possible to conclude that the changes induced in cells by repeated irradiation have a consistent relationship with the occurrence of acquired radioresistance, although in some cases there is a definite correlation.

Montgomery and Warren (1953, using Gardner mouse lymphosarcoma) and Conger and Luippold (1957, using Ehrlich mouse ascites tumor) failed to obtain radioresistant lines in "in vivo" studies. They concluded that the phenomenon of acquired radioresistance could be explained on the basis of the radiosensitivity of the tumor cells themselves.

Nice (1957) obtained resistant tumors of mouse 1316 lymphatic leukemia. Tumors were irradiated with 500 R when they were 1 cm in diameter. Recurrent tumors were irradiated twice more with 500 R. After the third irradiation, the tumors were radioresistant. However, when these tumors were transplanted to non-irradiated mice, they reacted to radiation in the same way as the original tumors. This experiment appears to indicate that the effect of irradiation on the tumor bed is one of the factors operating in acquired local resistance to irradiation, and not only its effect on tumor cell population, i.e., selection or cellular mutation towards radioresistance.

In the present experiments, non-treated tumor cells were transplanted to irradiated tumor beds, and these tumors were less radioresistant than tumors in normal beds.

The tumor bed effect (TBE) on tumor cells was first noted many years ago (Murphy et al., 1923; Russ and Scott, 1927, and 194). The delay of tumor growth and prolongation of life of tumor-bearing animals have been reported to be due to TBE (Stenstrom et al., 1955, 1956, Vermund et al., 1958, and Summers et al., 1964). A smaller theoretical maximum tumor volume was also demonstrated as a TBE (Urano, 1966). It was discussed in the previous paper that (1) diffusible toxic factors, (2) connective tissue changes, (3) retarded capillary formation and (4) changes in vascular function were the main mechanisms of TBE. These factors might cause the tumor cells to be under-nourished, mainly hypoxic. Gray (1957) discussed the role of oxygenation in radiotherapy as follows: "From clinical and histological observation it has been inferred that the tumor bed, and particularly its degree of vascularisation, plays a very important role in successful radiotherapy. Experimentally it has frequently been observed that whether cells are irradiated in vivo or in vitro they suffer considerably less damage if they are anaerobic than if they are aerobic at the time of irradiation. These two streams have made contact from time to time. They meet again today".

In other words, pretreatment irradiation of the tumor bed reduces the blood supply to the tumor cells and probably thereby decreases cellular radiation sensitivity. This is considered to be a mechanism similar to the indirect effect of oxygenation in radiotherapy that has been reported by many investigators.

This evidence might offer a different opinion to the concept of dose fractionation. Depending on Elkind's of recovery, Fowler and Alper et al. (1963) designated Dq as the dose represented by the intersection of the straight portion of a survival curve with an extrapolation number of N on the 0.10 per cent survival abscissa, and stated that the relationship between a single dose D1 and n fractioned dose Dn required to obtain the same survival rate as with D1 if each dose is large enough to bring the survival to the straight part of the cell survival curve, can be expressed as "Dn-D1%/(n-1) Dq". According to this theory the extrapolation number (N) and 37 per cent dose (D37) are constant during the fractionated radiotherapy. However, in the present experiments cellular radiation sensitivity was altered even by
tumor bed changes induced by previous irradiation. These findings suggest that, in vivo, D_{57} (and N?) may gradually increase during the fractionated treatment.

Summary

The effect of X-irradiated tumor beds on cellular radiation sensitivity was investigated.

Tumor bed effect (TBE) was clearly demonstrated, when the 50 per cent local tumor control dose (TCD-50) in 100 days of a 0.7 ml. Takizawa-sarcoma was calculated by logit analysis. The TCD-50 in 100 days of tumors in normal tumor beds was 5526 rads, while that of tumors in tumor beds irradiated before transplantation was 7397 rads. The ratio of TCD-50 in irradiated beds to that in normal beds was 1.33.

When it was presumed that 10 to 100 cells are enough to cause irradiated tumors to recur, survival curves of Takizawa-sarcoma cells in a 0.7 ml. tumor could be drawn between a straight line with as extrapolation number (N) of 1 and a 37 per cent dose (D_{37}) of 363 rads and a curve with $N=3$ and $D_{37}=331$ rads. On the other hand, survival curves of tumor cells in irradiated tumor beds could be drawn between a line with $N=1$ and $D_{37}=411$ rads, and a curve with $N=3$ and $D_{37}=446$ rads. The ratio of D_{37} of the tumor in irradiated tumor beds to that of tumor in non-irradiated tumor beds was 1.33.

Tumor bed changes due to irradiation, especially changes of vascularisation, are considered to be a main factor of acquired radioresistance of tumors recurring in previously irradiated regions.

Acknowledgement

I wish to acknowledge to Professor Hirotzu Kanda for his constant guidance in this investigation. Thanks also given to Professor A. Kuwagaki (Department of Mathematics, Kyoto Prefectural University of Medicine) for his kind assistance of mathematics, and to staffs in Department of Radiology, Kyoto Prefectural University of Medicine for their kind technical assistance.

References

32) Idem: The effect of x-rays upon tumour growth when the tumour itself is not irradiated. ibid., 18 (1944), 277—278.
37) Idem: Response of spontaneous mammary carcinoma of the C3H mouse to x-irradiation given under...
conditions of local tissue anoxia, ibid., 3: (1963), 497—509.

Japanese

