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    Introduction. In the recent paper [5] Kusuoka-Strook gave a 

sufficlent condition of hypoellipticity for degenerate elliptic operators 

of second order, as an application of the Malliavin calculus ( see 

Theorem 8.13 of [51 'cf. [4]). Their method is applicable even to infinitely 

degenerate elliptic operators which do not satisfy the famous sufficient 

condition given by H6rmander [2]. One of remarkable results by means 

of their condition is as follows: Let L be a differential operator 

of the form a 2 + a2 + a(x 2 a 2 in R 3 , where a 6 Cco , a(0) = 0 
           xi x 2 y 

U(x > 0 ( X, t 0 )I .a(x 1) a(-xl and a is non-decreasing in 
[0,-). Then L is hypoelliptic in R 3 if satisfies 

N lim Ix 1 log a(xl)l 0 Theorem 8.41 of [51 
       xl+ 0 

The condition N allows the infinite degeneracy of at x 0. 

For example, if a(x I ) = exp(-l/lx,16) for s > 0 *the condition (*) 

means s < 1. The main purpose of the present paper is to show the 

sufficiency of the condition (*) by using the theory of pseudodiffer-

ential operators. In [5] it is proved that the condition (*) is necessary 

for L to be hypoelliptic. The author [7] has given a simple proof of 

the necessity of N without using the Malliavin calculus. The arguments 

in [7] apply to degenerate elliptic operators of higher order ( see 

Theorem 3 of [71



    As to the operator L we remark that an operator 32 + a(xl)2a2 

      2 2 Xi y    L - a 
x 2 is hypoelliptic in R xl'y without the condition (*). 

This result is due to Fedivi [1] ( cf. [6] ), who studied the criterion 

of hypoellipticity by means of apriori estimates. Such criteria have 

been investigated by Treves [9] and Oleinik-Radkevich E8]. Our proof 

of the hypoellipticity of L will be done by improving criteria 

studied by [81 and [1]. 

    To explain the idea of the present paper we consider a simple case 

a(xl) = exp(-l/lxll6) , 6 > 0. Then L degenerate s infinitely at x, 0, 

and hence H6rmander's sufficient condition does not apply to L In 

the proof of hypoellipticity by means of*apriori estimates, the technical 

difficulty comes from the fact that for any K > 0 subelliptic estimate 

       Hull :~_ Const. (I I Lull 0 +11 ullo u 4-- C'(R 3 Y1                  K 0 

does not hold ( see Theorem 1.2 of [61 ),-.-where 11-11 s denotes the 

norm of the Sobolev space H s for real s . However, by means of 

Poincar6's inequality we have the following estimate 

         log < D >) 21s u 110 Const. Lu 110 + 11 u 110 u c- Cw(R 3 
              y 0 

                                cf. Lemma 5.1 of Section 5 

where < D > + Dy . The main idea is based on the fact that        y y 

if 0 < 6.< 1 then the repeated use of the above estimate with logarithmic 

regularity up gives the regularity up of polinomial order. 

    The plan of this paper is as follows: In Section 1 we state our 

main theorem, which is formulated for a differential operator P = 

a(x,y,D ) + g(x')b(x,y,D in R n
'y , X = (x',x"), having a slightly      x y X 

more general f orm than L see Remark 2 of Theorem I . 1 i n Secti on 1
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In Section 2 we give a new criterion of the hypoellipticity, which is 

composed of five apriori estimates. In Section 3 we show that P 

satisfies each estimate. Sections 4 and 5 are devoted to the proof of 

two lemmas, which play important roles in Section 3. The discussion of 

Section 4 is similar to the one of Section 5 of [6] and is employed to 

estimate the commutator between P and the cut off function of 

y variables. In Section 5 we estimate the commutator between P and 

the cut off function of x" variables. For this estimation we 

need a condition similar to N ( see (1.4) in Section 1 

    As studied in [61, the method of this paper seems to be extendible 

to infinitely degenerate elliptic operators of higher order, which will 

be investigated in the future. Finally we remark that the method of the 

present paper does not apply to all results of [5], for exampl e, 

the hypoellipticity of an operator x 2 a 2 + 3 2 + a(x 2 (a 2 + y 2 a 2                             2 x 
1 X 2 yl Y2 

It is also future w6rk to show the hypoellipticity for this operator 

by extending our method.



     1. Main result 

    Let P = p(x,y,Dx2D y ) be a differential operator of second order 

with C"-coefficients of the form 

                                          n ni n2 (1.1) P = a(x,Y,Dx) + g(x')b(x,y,D y in R = RX XR
Y 

                         ni nil                    1. where x (x'
,x") e RX 1,xRxll . Assume the following: 

    10) a(x,y,Dx ) and b(x,Y,D y ) are strongly elliptic with 

respect to x and y, respectively, that is, 

(1.2) Re a(x,y,~) L cll~l 2. for large 

(1.3) Re b(x,y,n) L c 21ni 2 for large Inj 

where cl and c2 are positive constants. 

                                ns 
    20) g(x') belongs to C*(Rx,) , g(O) = 0 and g(x') > 0 

for x' + 0. 

    Theorem 1.1. Let P satisfy 10) and 20). Assume that g(x') 

satisfies 

(1.4) lim Ix'11log g(x')l = 0         I
x, 1 -*0 

Then P i s hypoel I i pti c i n Rn. Namel y, for any U E D' (R n) and 

for any open set Q of R n it follows that Pu Cr COO(a) implies 

u C- C,(g2).
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    Remark 1. If x" variables do not exist this theorem is included 

in Theorem 1.1 of [6]. 

    Remark 2. Set 

          go(x') = exp(-l/jx'1 1/4 )sin 2 (1/1x'J') +exp(-l/lx'l 1/2 

Then go(x') satisfies conditions 20) and (1.4). In view of this 

function we see,that Theorem 1.1 is slightly more general than Theorem 

8.41 of [5] because go(x') is not expressed in the form go(x') = 

GW) 2 for any non-negative Cw-function see Remark 2 of Theorem 

1.1 of [61). 

    In what follows we shall tacitly use the notation in [6] and 

Kumano-go [3]. For example, we often write cc- for c- Cw 

0 if ~(x) = 1 in a neighborhood of supp

(R n)



    2. Criterion of hypoellipticity 

    In this section we shall give an improvement of the criterion 

of hypoellipticity studied by [8], [11 and refined by [6]. 

    Let a be an open set of R n and'let P(x,D x ) be a differ-

ential operator of order m with coefficients in COO(~2). We assume: 

    (I) For any compact set K of a and any N > 0 there 

exists a constant C YKA such that 

(2.1) u c- CO*(K) .      11u11O :S-Cl( 11Pu11O + 11ull-N ) 1 0 

   (II) For any compact set K of any a (jal + 0 )5 

any u > 0. and any N > 0 there exists a constant C 2 = C2 (K,a,v,N) 

such that 

(2.2) 11P u e C(K)s        (,)u11-j,j 11Pu11O + C2 11ull-N 0 

                          Oal t 0 

where p(,)(x,~) = Dap(x,~) and Dx = _ia 
                  X X* 

    (III) For any compact set K of , any a and any N > 0 

there exists a constant C 3 = C3 Ma,N) such that 

(2.3) 11P(a) C'(K)          u110 11Pu11O + 11ull-N u (_ 0 

where p(a) (X,~) 

    (IV) For any xO e 0 and any neighborhood U of xO 

there exist O(x) and *(x) f C'(U) such that 0

6
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             ~.(x) 1 in some neighborhood of xO 

               c c (,that is, 1 in a neighborhood of supp~ 

and the estimate 

(2.4) 11 P~ujj < C (K,N,~,~)( jj~Pujj + JjPujjO + jjujj _ ), u c- C'(K),               1C 4 K N 0 

holds for any compact set K of Q and any N > 0, where C 4 

is a constant depending on K, N, 0 and Here K is a 

positive number smaller than 1 , independent of K, N, ~ and 

    (V) For any compact set K of a , any a (101 + 0 ), 

any P > 0 , any N > 0 and any *(x) e C'(a) there exists a 0 

constant C 5 = C 5 Ma,p, NM such that 

(2.5) jj(~P)          (,)ull "Pull~, + C5(*11Pu11O + Hull-N 

                                u Cw(K),.(jajf 0), 

0 where K is the same as in (IV). 

    Theorem 2.1. Assume that a differential operator P 

p(x,Dx ) satisfies above conditions (I)-(V). Then for any v cr D'(o) 

for any open set ~2'c c o and-for any real s it follows that 

Pv Q H loc(ol) implies v . EIH loc(w). 
     s s 

Therefore, P is hypoelliptic in a



    As in §2 of [6] we employ a pseudodifferential operator 

As,k,E: with a symbol <E>s(l+e<E> .)- k for real s, > 0 and 
k > 0 . We denote A simply by A                         S

'O'E: S* 

    Lemmma 2.1-( cf. Lemma 2.10 of [6]). Let P satisfy the 

condition (II). Then, for any compact set K of sj , any 6. 

 jol t 0 ), any real s any ji > 0 , N > 0, e> 0 and k > 0 

there exists a constant C C(K,~,s,p,N,k) independent of e 

such that 

(2.6) 11A P(a)Ujjo.:~- ji 11AS C'(K).         s-101,k,E k,,:PuIIO + C 11u11N ' u c- 0 

Furthermo~e, for any K of o , any real s, s', any p > 0 , 

N > 0, E:> 0 and k > 0 there exists a constant- C' = C(K,s,s, 

p,N,k) independent of such that 

(2.7) II[P,A ]U11 S. < 11 11 A Cw(K).             s,k,c ~S , k, Ju 11 s - + C' 11 u 11 -N u c- 0 

    Proof. The former assertion of the lemma is the same as in 

Lemma 2.10 of [6]. The estimate (2.7) easily follows from (2.6) and 

the expansion formula 

(2.8) [P,A I - I (-,)Ial A P E S-N              s ,k,E 0 < I a I < s+m+N ' a-T s,k,c (a) 
Q.E.D. 

    Lemma 2.2. Let ~(x) belong to Cco(~2) and let P satisfy 0 

conditions (II) and (III). Then, for any compact set K of 

any real s , any e > 0 , k > 0 there exists a constant C 

C(K,s,N,k) independent of such that 

(2.9) 11A P~u 110 C ( 11 As u 6 C'(K)~          s ,k,F- I k,,:PUIIO + Hull-N 0

8



    Proof. When s = kl= 0, the estimate (2.9) easily follows from 

the condition (III). In fact, noting the Leibniz formula 

lp'~] = X (a) P (a) /a! we have       0< jal <M 

(2.10) JJP~ujjo 11~Pujjo + JI[P,~]u1jo 

           C( 11pullo + I 11P(C'U110 
                        0< jal <M 

                           u 4 C'(K).              C( 11Pu11O +11 U11-N ) 1 0 

Here and in what follows we denote by the same notation C differ-

ent constants ( independent of e In the general case, by means of 

(2.7) we have 

   11A P~Ujjo :~_C( 11PAS u c- C'(K).      S!o k q E: k,,:~010 + 11ull-N 0 

Using the expansion formula 

(2.11) A '( CL)A(a) /a! mod S-N -,m            s,k,e 0< 1.~< s,N+'m s,k,e 
we have 

     11PA 110 C P, AW          s, k, E: 0 < I (j < s+N+m (a) s,k,Eu 110 + Ilu 11 -N 

                                              u c- Cco(K). 

0 By the similar argument in the biginning of the proof of Lemma 2.10 

of [6], it follows from (2.10) that 

      I I P~ (c,) A (a) u 110 C I ( 11PA(a), -N )1 u rz C'(K).             S,k,F- s,k eu11O + Hull 0

9



By means of (2.6) and the expansion formula similar to (2.8) we have 

     IIPA(a) U110 C( IIAS_I,i u e C'(K) .           ssk3,E: k,,PuIIO + IIuII-N )1 0 

Combining above four estimate we have (2.9). Q.E.D. 

    Lemma 2.3. Let P satisfy conditions (II) and (V). Then, for 

any compact set K of o , any a ( jalf 0 ), any real s -, any e 

   N > 0 and any k > 0 there exists a constant C = C(K,s,,,,N,k) 

independent of e such that 

(2.12) IlAs-lal k,e(*P)(a)uIIO 

<               

I As, k, e (~P) U 110+ C AS_,, k,,:Pu 110+ 11 u 11 -N 

                                          u c- Cco (K) 0 

where K > 0 and CO (a) are the same as in the condition (V). 

    Proof. The lemma follows from the almost same way as in the 

proof of Lemma 2.10 in [6]. As in its beginning, from (2.5) we 

have 

      11 4P) (a)AS -K,k,,u 11 K-1al 

             (*P) As - K, k, eu I I K + C(IIPAs-K,k,eullO+ IIuII-N 

                                        u c- CO*(K). 0 

Replace the operator P and the term IIuII-N in the proof of 

Lemma 2.10 of [6] by *P and IIPAS_ K,k,,:ullO+ IIuII-N , respectively.

10



Then it follows that 

      IIA s- I a I k, eNP) (a)u 0 

< 

            IIA s 2k,E: (*P)UjjO + C(II PAS -K2k,F-u 110 + Ilu 11 -N 

                                        C CO (K) 0 

Using (2.7) for the term JJPA S K,k2E: ullo we obtain (2.12). ~.E.D. 

    By the same way as in getting the corollary-of Lemma 2,10 of [6] 

we have 

    Corollary 2.4. Let P satisfy conditions (II) and (V). Then, 

for any compact set K of Q, any real s, s' any N > 02 e > 0 

and k > 0 there exists a constant C C(K,s,s',N,k) independent 

of E such that 

(2.13) [~P,A lu 11                 s,k,E: S 

        < C( 11 A ~Pu 0 + A                S+S k
~e S+s Klk,,:PuIIO+ IIuII-N 

                                 u e COO(K) . 0 

    Lemma 2.5. Let P satisfy conditions (II)-(V). Then, for 

any compact set K of ~z any real s, any > 02 N > 0 and 

k > 0 there exists a constant C C(K,s,N,k) independent of 

such that 

(2.14) IIA s+,c,k'E: POU 0 

      < C(II A *PU 110 + 11 As C*(K) ,              s+K,k,E k,,PuIIO+ IIuII-N u '6 0

11



where K and Cw(n) are the same as in the condition (IV). 

0 

    Proof. It follows from (2.7) that 

      IIA S+K,k,e P~u 110 

                                                                                    CO        < C( IIPA u ~E- CO(K).              s
,k,E:o 11 + IIuII-N 

In view of the expansion formula (2.11) we have 

       PA s
,k,Eo 11 K 

      < C( JIP~A u1i + P~ (a) As                s,k,e K 0 < I a I < s+m+N+K k,,u 11 K + Ilu 11 -N 

                                         u c- COO(K) . 0 

By means of (2.9) with S = K, k =0 and (2.6) we have for jai 0 

     11 P~(")A(a) U11 :S_ C ( I IPA (a) U11               s ,k , E K s,kIE: ,+ IIuII-N 

                  < C( IIA Pu C'(K) .                         s-lal+K,k,e 110+ IIuII-N )1 u 0 

The conjunction of above three estimates gives 

(2.15) A S+K,k,e P~u 110 

       < C( IIP~A U11 + IIA Pu u & C"(K) .                s
,k,e K s,k,,E 110 + I1uII-N )1 0 

Substituting As
,k,e u into (2.4) we obtain 

(2.16) IIP~As,k, eu 11 K 

        C( II~PA u 11 + 11 PA u cr C'(K).                s ,k,e K s,k,E:UIIO+ IIuII-N 0 

Noting estimates (2.7) and (2.13), we obtain (2.14) from (2.15) 

and (2.16). Q.E.D.

12



    Remark. Set k = s 0 +m+N+K for s 0 > 0. Then, for any 

v Q H-N n E' (K) the estimate 

      11A S+K,k,e P~v 110 

      < C( 11A *PV 110 + 11 AS                S+K 9 k, F- , k, , Pv 110 + v 11 -N 

holds, where s < s and C is a constant independent of F-           = 0 

This fact follows from (2.14) by the same way as in the remark of 

Lemma 2.11 in [6]. 

    Proof of Theorem 2.1. Let x 0 be any fixed point in o' 

and let ~(x)~E C-(W) such that *(x)=- 1 in a neighborhood 

0 U(xo) of xo. Then, for any natural number z ; we can find finite 

sequences C- C 00 W) such that                   1 0 

           *1 c c ~2 C *2 c c 

and we have 

(2.17) Py < C (K,N,~j,~j) *jPu 11,, + 11 Pu 110 + Ilu 11 -N 

                   u c- C'(K), j 0 

for any K of a and N > 0, where K is some positive number. 

Indeed, from the condition (IV), we can take ~1' ~l <- C-(U(xo)) 

0 such that 1 in some neighborhood V(xo) of xO 

and satisfies (2.4). For x 0 and the neighborhood V(xo) we 

can take again such that - C C* 2             $21 C'O*(V(xO)) 02 1 $2

13



in some neighborhood of x 0 and satisfies (2.4). Repeating these 

steps z times, we have sequences {; I ~ 1 1 {- Y, CO W) .                            i J= *j lj=l C CO 

Set ~j = Y_j+l , j Y_j+l Then, {OA                                                                   J=l 

and {~jj~ are desired sequences. As well- known, for v c- E' 
       J= 

there exists a N > 0 sucht that v c- H-N* Let us choose z 

bigger than (s+m+N)/K By means of Lemma 2.11 in [6] and its 

remark, for ~lv & H -N E'(K) (, where K = supp the estimate 

(2.18) JjAs9,k9E:fiVjjO < CQjAs,k,,PfiVIIO + 11fivII-N 

holds for a constant C independent of c and k = s+m+N. 

From (2.17) and the remark of Lenima 2.5 it is easy to see that if 

k = s+m+N, then for any s' < s the estimate 

(2.19) IIA sl P~jv 110 11 As. ~j+-' v 110 
                .qkgF- k,,P~ I 

       < C( 11 A *j PV 110 + IIAS                s gksE: --K,k,,P~j+lvIIO+ 11~*VII-N 

holds because of *jP~j+l and ~j+,v = ~j+l~v- From 

(2.18) and (2.19) we have 

      JjAs9k9 E:~l V 110 

        < C( 11 A *JPVIIO+IIA                s9ktE: S-K,k,P2VIIO+ 11"11-N 

Applying (2.19) to the second term of the right hand side, we have 

        As, k, Efi V 0 :S_ C As, k, ~l Pv 110 + I I As_,,, k, r:.*2pv 0 

                + IIA P~3VIIO + II*vII-N                                    s'2K,k,e

14



Applying again (2.19) to the third term on the right hand side, 

repeating the same procedure, we have 

                           21 

      IIA sk .e~,V 110 C( jjl 11 A s-K(j-1 ) kge*jpv 110 

                     + IIA 
S-KI, k, P'Pv 11 + 11 *v 11 -N 

Since *jPv e Hs from the hypothesis of the theorem, and since 

As-Kt,k,e P C- 8-N for any e > 0 , we obtain from (2.17) of [61 

z 

      IIA s ,k,,E: 01 v 110 C( I 11~jPvIIs-K-(j-l) +11 *VII-N                             j-1 

                  < C *Pv 11 s + -N 

Letting e tend to 0 , we finally obtain 

     11~lvlls~-~- C(II *PvIIs + 11"114 

This shows v belongs to H s in some neighborhood of x 0* 

Since x 0 is arbitrary point in a' we can complete the proof. 

                                              Q.E.D.

and

15
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    We end this section by the following corollary: 

    Corollary 2.6. Assume that for a constant C we have 

(2.20) P(X,E) f 0 if IE'l < CIE"I and IE"I large enough, 

where Then we can ameliorate Theorem 2.1. Namely, 

we can replace the multi-index a = in -conditions (I r I) and (V) 

by the multi-index a' with respect to x' variables x = (x"x11) 

    Proof. Take a symbol X(E) in S 0 such that X 1 on                                        l
"O 

JIE'l L CIE"11 n fj~j L 21 and X = 0 on I I E' I :S_ C I E" 1/21 0 f1cl < 

If Pv c- Hloc(Q') we have (1- X(D ))v cr Hloc(Q') and PXv 
         s x s+m 

Pv - P(l - X)v e Hloc(2, because it follows from (2.20) that 

S there exists a microlocal parametrix of P on supp (1-X). 

Since ~ and are equivalent on supp X , we can replace the 

pseudodifferential operator A s ,k,F- by a pseudodifferential 

operator with a symbol I +E<E'>)-k <C'>S . which permits the 

amelioration of Theorem 2.1. Q.E.D.
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    3. Proof of Theorem 1.1 

    Let P = p(x,y,D x D y ) = A + gB = a(X,Y,D x ) + g(x')b(x,y,D 
y 

denote the differential operator in Theorem 1.1. In view of Theorem 2.1, 

for the proof of Theorem 1.1 it suffices to show that P satisfies 

conditions (I)-(V) in Section 2. ( Talking more accurately about the 

plan of the proof, we shall use Corollary 2.6 in checking (V) ). 

    Since conditions (I)-(V) are stated for a compact set K of R n 

we may assume, without loss of generality, that g(x') and coefficients 

of A and B belong to B"(R n) , and g(x') satisfy for any > 0 

(3.1) g(x,) > C e > 0 on ~{Jxll > 

n 

     Lemma 3.1. Set n. = {(x,y) E R ; Ix'l <ej. Then, for any 
  > 0, any any real s and any N > 0 there exist constants 

C(e,s,N) and C(e,a,s,N) such that 

(3.2) llulls :S_C(E:,s,N)( llpulls -2 + llull-N )1 

(3.3) lip (a) ulls ~LC(e,a,s,N)( JlPull S-lal + llull-N )1 

                                      u E C"(R n Q 0 

    Proof is the same as in Lemma 3.1 of [6]. 

n 

    Lemma 3.2. Let 4 X') be a function in C"O(R x such that 
for any a ~ 0, ~O(a) = 0 on {lx'l.:~-e 1, where ~O(ct) = Dal                                            x 10 -

Then, for any > 0, any real s and any N+> 0 there exists 

a constant C(Els,N) such that 

(3.4) ll[P,~~ulls < C(E:,s,N)( llpulls-l + llull-N )' u c- C'(R n). 

0



    The lemma easily follows from Lemma 3.1 by the same way as 

in the proof of Lemma 3.2 of [6]. 

    Lemma 3.3. For any 11> 0 and any N > 0 there exists a 

constant C(p,N) such that 

                                       6 COO(R n) . (3.5) llullo < pllPullO+ C(,,,N) llull-N u 0 

    Proof. From conditions 10) and 20) for P it is easy to see 

(3.6) 11<0 >ull 2 + llg(x, ) 1/24 >u 11 2 < C( Re(Pu,u) + Ilull 2          x 0 y 0 = 0 

               =< C( 11 Pull 2 + Hull 2 u & CcO(R n)                      0 0 0 

                n i 
Let ~(x') Cr COO(R ) such that supp.~ c{lx'l < e,~ W)    Id 0 X' 

0 0 
onjlx'l < E/21. Then, on account of Poincar6s inequality we have 

(3.7) 11(yllo:S_ 6(e) 11 <Dx,> ullo :S_ S(e)ll <Dx> ullo , u C- C'(R n) 51 

0 where 6(e) 4- 0 (e+ 0). From (3.7) and the estimate obtained 

by setting u 0 u in (3.6) we have 

     14110 ~izcd(E:)( llp~ull'o .+ I I~Op 110 u c- Cm(R n). 

0 Using this and the preceding two lemmas we obtain (3.5), by the 

similar way as in the proof of Lemma 3.3 of [6]. Q E.D. 

    It follows from Lemma 3.3 that P satisfies the condition (1). 

Now, we shall check conditions (II) and (III). 

    Lemma 3.4. For any a 0 ), any p and N > 0 

there exists a constant C(a,p,N) such that

18



                                                19 

(3.8) IIP(,)ull _,,, < u ll Pull 0+ C(a.u,N) u 6 COO(R n).                             llull-N 0 

For any a and any N > 0 there exista a cinstant C(a,N) such that 

(3-9) llP(a)ullO < C(a.N)( llPullO u cr C_(R n).                          + 11 u 11 -N )1 0 

    Proof. On account of (3.5) it suffices to check (3.8) for 

Jai = I and (3.9) for jai = 1 It is clear that for Jai = 1 

we have 

      llP(a)ullO :~_ C(11< Dx>ullO + llg(x') < Dy>ullO u c- C'(R n). 

0 

                         (lal ). 

From this and (3.6) we have (3.9) for Jai= 1. Since g(x') is 

non-negative function we have 

           lqx~g(x,)l :S.-C, /9(7) in a neighborhood of x' = 0, 
                    i ( j = 1, ... ' ni ) 

for a constant C 1 see Remark 1 of Theorem 1.1 of [6j). In 
view of this inequality we have for jai= 1 

     iip(,)ull_,,, C( ll< Dx>u-110 + llg(,)(x') < D y >Ullo+ lig(x')<Dy>ull 0 

                C(11< DX>ullO + llg(x,) 1/2 < D y >ullO )9 

                                        u & COO(R n) 0 

Since we have 

(3.6)' lk DX>ullO + lig(x,) 1/2 <D y >ullO ~.C(Re(Pu,u)+'llull 0) 

                 Pu 110 + C u 0 , u E. C'(R n) 

0 for any U > 0 and some constant C 
U , we get (3.8) for lal 1. 

                                                     Q.E.D.



    In order to check conditions (IV) and (V) we state two 

preparatory lemmas which will be proved in the following two 

sections. 

    Lemma 3.5. Let K be equal to 1/3. For any 

N > 0 there exists a constant C(N) such that 

(3.10) < D > J+K U11 0 :S u COO(R n).        11g(x' y _ C(N)( JjPujjO + Hull-01 0 

    Lemma 3.6. Let ic be 1/3 and let ~(x") and *(x") be 
                 n"                M 1 f

unctions in C 0 (R x1l) such that Then, for any N > 0 

there exists a constant C(N) such that 

(3.11) 11CP,~]ull < C(N)( jJVPujj u c- C'(R n).                          + 11PU11O + Hull -N )1 0 

K 

    We give a corollary to Lemma 3.5. 

    Corollary 3.7. Let K be equal to 1/3 and let Yy) cr C'(R n2                                             0 y 

For any N > 0 there exists a constant C(N) such that 

                                 ) , u e C'(R n) (3.12) HEPI~21ull, C(N)( JjPujjO + Hull-N 0 

    Proof. Let f(C,n) be a symbo 1 in S 0 such that                                          1 , 0 

      f= I on (JEJ L InIj n I JEJ + Inj> 1 Is 

(3.13) 
      supp f <:. {jEj< 21-nil IEI+Inl > 1/21 

Since P is microlocally elliptic on -fjEj L 17111 it is easy to see 

(3.14) 11(1-f)ull l+K + II[P,flull, 

                                u e C'(R n)                Lc( 11pullo + Hull-N 0

20



 In view of the microlocal ellipticity of P we also have 

 (3.15) 11 lp'~2]f u 11 ~, :s- C( 11g(x') < D y >I+K u110+ 11Pu11O+ 11ull-N 

 Together with (3.14), estiamtes (3.15) and (3.10) give (3.12). 

                                                     Q.E.D. 

     We shall show that P satisfies the condition (IV). Since 

 P = p(x,y,D x D y ) is elliptic except x' = 0 and the assumptions 

 of p are invariant under the translation with respect to x" and 

 y variables, it suffices to.check the condition (IV) for the origin 

 and its a rbitrary neighborhood U = U x1XU x11XU y Let ~(x,y) be 
         '0  a C' 0 (U) function such that ~(x,y) 00(x')~l(x")02(y)' where 

 ~O(X') C--C'(U ) satisfies 0 near x' = 0 for jal ~ 0          0 X' 

 Note that for u c- C'(R n) 0 

       P~(xly)u = POO(x')Ol(x")02(y)u 

             = ~JN02u + 1P1Ol1V2u 

             = ~lq~2u + 011P'001~2u + 1P1OlN02u-

               ~Pu + ~1~01PI~2]u + OIEP'00102u + IP4                                   1N~2u 

 Let *(x,y) be a Cw(U) function such that *(X,Y)               0 0(x)~I(x")Yy) 
 and 0 c c- (An particular 0, c c-~l ). Then it follows from 

 Corollary ,3.7, Lemma 3.2 and Lemma 3.6 that for K = 1/3 

 (3.16) 11POU'll C( 11*PU 11 Cw(R n).             K K + IIPUIIO+ 11ull-N )' U c- 0

21



22

Indeed, the estimate is obvious because we see by means of Lemma 2.2 

that for any real s and any ~(x,y) - C(R n) there exists a 

constant C(s J) such that 

(3.17) P~u 11 s C (s, Pu + u 11 _N u c- COO(R n).                                s 0 

    To complete the proof of Theorem 1.1 it remains to check the 

conditon (V). Note Corollary 2.6 at the end of Section 2 and the fact 

that p(x,y,E,q) + 0 if 0 < jnj .:S_jEj and JEJ large enough. Then 

it suffices to show, in place of the condition (V), that for any 

multi-index a + 0 with respect to only y Variables, and for any 

 > 0 and any N > 0 there exists a constant C = C(a,u,N) such that 

(3.18) jj(~P)(~)Uil" _J~j '_-:S_)'114P)u11~' 

                     + C( 11Pu11O + 11ull-N )1 u c- C'(R n) 

0 From now on we shall prove the following estimate-stronger than (3.18) 

(3. 19) u e C'(R n),                     C( 11Pu11O+'11u11-N 0 

0 By means 6f (3.5), the estimate (3.19) is-obvious i f 3. 

Note that for 0 < JR1 < 2 

      4p)(5) = (*A) (i) + g(x')(*B) 6)*
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It follows from Lemma 3.5 that for K = 1/3 and O'< < 2 

       g(x')(~B)(,)ujj,,_ <I I g(x') < Dy> 1+K U110 

                                   u C- C-(R n).           < C( 11PU110+11ull-N 0 

On the other hand, for the case 2 it follows from (3.6) that 

      11 (*A) (~)u 11,,_ .;, :S_CII<Dx>'ullo 

                                        u t Cco(R n),                  C( 11 Pu 110 +-11 u 11 A 0 

and for 1 we have from the ellipticity of A with respect 

to x variables 

      

I I (*A) (~)u 11,,_ I C 11 < DX> 2 u 11. K-1 

                < C(II A <D D > K-1 ui1O+ 11U110 
                                x y 

                =< C( 11 Au 11 K--l + 11 < D x >KU110+11 U110 

               <C( 11pull K-1 + 11 g(x')Bu 11 '_~11<Dx>u il 0 + 11 u 110 

                                 u (- C'(R n).               <C( IIPUIIO+ 11ull-N 0 

Here we used (3.5), (3.6), Lemma 3.5 and the fact that 

      11 [A, < DX,D y >K-l]ujjO :S_C ll<Dx> 2 < DX,D y > K-2 u 110 

K 

                      :S_ C 11 < D x > U110 

Thus we obtain (3.19), which completes the proof of Theorem 1.1.



    4. Proof of Lemma 3.5 

    As stated in the proof of Lemma 3.4, from the property of 

non-negative function-we have for any a with- al :S_2 

(4.1) 10 g(x,)l ~~_ C g(x,) 

X 

                               in a neighborhood of x' 0, 

where C a is a constant depending on a. Since P is elliptic 

except for x' = 0 the estimate (3.10) holds for u c- COO(R n 0 

where Q is the same as in Lemma 3.1. In view of Lemma 3.2 it 

                                                             00 

suffices to show (3.10) for u E C 0 (a 
E: ). Therefore, we may assume 

that (4.1).holds for all x' by modifying g(x') out of some 

neighborhood of x' = 0. 

    Let P' (t) , '"' (t) and ~ (t) be C"O-functions in [0,-) such        ~O 01 2 

that 

           "(t) c
- [O'l) (t) = i on [0,1/21,        supp oo 00 

       supp ~J(t) C [0,2), 01(t) = 1 on [0,1], 

        supp r- (t) = 1 in [2,-)'           ~2 02 

and 

                     A- 'IV 

(4.2) ~l + 02 = 1 in [0,-). 

Set x(~,n) 6 +<n> 4 ) 1/6. Then X(E,n) satisfies inequalities 

(2.5) and (2.6) in [61, so it is a basic weight function associated 

with pseudodifferential operators.
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     Lemma 4.1. Set Xj(x',E,n) j 0,1,2 

Then xj(x',Dx5DY) belongs to 8 0
, where 

and n1105 ... 50), 6 k 1/2. Furthermore we have 
1 

(4.3) XI + X2 

    The lemma follows from (4.1) and (4.2), by the same way as in the 

proof of Proposition 5.1 of [6]. ( About the definition of Sm 

see Definition 2.3 of [6] 

    Lemma 4.2. There exists a constant C 0 such that 

(4.4) 11g(x) < Dy> 1+K V1.110 :S_ CO( JJPVI 110 + JIV1 110 K = 1/3 

if V, = XI(x',Dx,D )u jor u e C'(R n). 
              y 0 

    Proof. Let ~3 (t) be a Coo- function in [0,-) such that 

        supp ' (t)C [0,3), "' (t) = I on [0,2].           03 ~3 

Set X3(x'5n) = 'Yg(x')X(OIn)) . Then, clearly we have 

X3(x',D y )v I = v I' Using the fact that g(x') < 3<n> 2/3 

on suPP X3 WA we have 

        lg(x,)<n> 1+K 1/2 <n>                     X31 :S, Y'739(x') 

From this and (3.6) we obtain (4.4). Q.E.D. 

    As in 95 of [6], we consider an operator P-(X,ysD
x,D y 

which is obtained by modifying p(x,y,D 
x D y ) in " a neighborhood 

of x' = 0 " as follows: Set

24



        5(x,y,E,n) a(x,y,E) + (g(x'.)x(E,n) + XO(x',E,n)) 

                                    XX(E,-n)- 1 b(x,y,TI). 

Then we have 

    Lemma 4.3. V= P(x,y,D .0y) belongs to 83 and 5(x,y,~.n)                             x X 51 31 65 
satisfies M-condition, in the following sense: 

    i). There exists a constant c 0 > 0 such that 

(4.5) 1 ~ (x,y, ~!, Cox (E, n) 2 for large 1~1+jnj. -

    ii) For any and a there exists a constant C aa such that 

(4.6) 15 (a) (x,Y,E 2TI)/5(X,y,E,n) I C X(E,T,)"- a 

                             for large jEj+jnj 

where (61 3...26ni '0'...,0), 6k = 1/2. 

    The proof is done by using (4.1), similarly as in the proof 

of Proposition 5.3 of [61.. 

    By means of Proposition 2.7 of [6] and Lemma 4.3 we have a 

parametrix Q e 8-2 such that for 9 2                 X,I,& >"1,65 

(4.7) 1 = QP + K , K c- 8-' 

furthermore 

        Q = QOQ, I QO e 9-2 I ,ffi I Q, 80                         X, 

(4.8) 
a(QO) = 5(x,y,E,n)- 1 for large IEI+Ifll
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    Lemma 4.4. Set v (x,',D D )u for u e C M (R n).                     2 ~ X2 x y 0 

Thenj for any N >,O there exists a constant C(N) such that 

(4.9) < Dx,D y > I+K V2110 + 11g(x') < D y > 2 v 2110 

                 < C(N)(IlPv                         2110+ 11ull-N 

where K= 1/3. 

    Proof. By checking symbols of 
      1+K 2 0 <D 

x D y > Q0 and g(x')<D y > Q0 we see that they belong to 
Note that PX2 PX2 mod 8-co In view of (4.7) and (4.8) we obtain 

(4.9) by means of L 2_boundedness of the operator belonging to 

8 0 ( see Proposition 2.5 of [61). Q.E.D.  X
'l as 

    Lemma 4.5. ~or any N > 0 there exists a constant C(N) 

such that for j = 1,2 we have 

(4.10) :~_ C (N) ( u e C'(R n),      11 [P'Xi ]U 11 K 11 Pu 110 + Ilu 11 -N 0 

where K = 1/3. 

    Proof. It follows from Lemmas 4.1 and 4.3 that we have the 

expansion formula 

                                                   83-NO/2 -N        EP'Xil P (a) X, I '6S '2/3                0 < la+aj < N 0 

                            cf. (2.10) of [6] 

where N 0 = 3N+6. From (4.7) we have

,1/2
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In 

for

for 

(3. 

the

P     lplx~] lplx~]Q-

               I (-, ) I al x (cc) P( OQP/Cl! a! mod 8- N            0 < la+al <N 0 i(a) (a) 2/3, 

view of (4.6) it is not difficult to see xj(a)p(a)Q C- 9-112                                    ( 
0) (00 ix , 1 9 as 

 la+al f 0. Noting A = <D D > K C- 81/2 we obtain (4.10).                      K x y X,11,0 

                                              Q.E.D. 

 Noting Lemma 3.3 and using the division u = x I U + X 2 u 

 u 6 Cw(R n) , as in the proof of Lemma 4.1 of [6] we obtain 

0 10) by means of Lemmas 4.2, 4.4 and 4.5. We have completed 

proof of Lemma 3.5.

1/2

N

I
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    5. Proof of Lemma 3.6 

    In this section we denote 01(x") and *,(x") in Lemma 3 .6 

simply by ~(x") and *(x"), respectively. Let K be 1/3 and 

use the division u = XJU ' X2' '~ 'l ' v2 

for u e COO(O) in the preceding section. By means of Lemmas 4 .4 

0 and 4.5 it is easy to see that for any N >.O and any O(x") E 
    n"  - 1 C

o   (Rx,,) there exists a constant C(N,~) such that 

               C(N,O) u s C'(R n) (5-1) 11 EPIOIV2 11 11Pu11O+ 11ull-N 0 

because EP,O] belongs to 81 In view of Lemmas 3.3 and 4.5,                          1
,0-

for the proof of Lemma 3.6 it suffices to show for a constant 

(5.2) 11 EP, Olv, 11, C(~,*) ( 11 Ov 1 11 K + 11P-U 110 + 11 u 110 

                        n" 

provided that 0, COOO(Rx satisfy 0 c 

    It follows from the hypothesis (1.4) of Theorem 1.1 that 

for any s > 1 there exists a c > 0 such that s 

(5.3) jx,j < (s log<n> )-l on supp X, 

                        if <n> > CS 

because (x',E,Ti) E supp X1 implies g(x')<n> 2/3 < - 3 Set 

h (D <D :~) for a M > 3, where' (t) c- COO(R. is the same M Y) = 
~02 (M y 02 

as in §4. Let f(g,n) be the symbol in S 0 defined by (3.13)                                            1 
, 0 

in Section 3
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Set 

(5.4) w = h (DY) xl(x',D D )f(DX,Dy)u for u e COO(Rn)             M x y 0 

and let A s denote an.operator with a symbol slog <n>. To make 

clear the idea of this section, first we shall prove (5.2) by 

assuming that coefficientsof P are independent of y. 

    Lemma 5.1. Assume that coeffici:ents of P are independent 

of y. For any real s > 1 there exists a M > 3 such that for S 

w defined by (5.4) with M > M we have 

s (5.5) IIA 2 wjjO+ 11~s <Dx>wllo CO JjPwjjO 

s '
Where C 0 is a constant independent of s and moreover for any 

                                     n 1 
integer k > 0 and any ~(x") 6 CO*(R H) the estimate                         0 x 

(5.6) jj~ k+l~ w1jo + jj~k+l < Dx>~w 110 z~=Co jjp~k ~wjjo 
          s S S 

holds with the same constant C 0- in (5.5) (independent of k and 

    Proof. By setting u = w in (3.6) we have 

(5.7)~ 11 < Dx>w 11 2 + llg(x,) 1/2 < D >wII 2             0 y 0 

                  C( Re(Pw,w) +jjwjj 2 

0 Here and in what follows we denote different constants independent 

of s by the same notation C. Since it follows that [P,~ s 0 

from (5.7)we obtain 

           2 1/2 2 (5.8) 11<D x >wIIO + lig(x,) <D y >W110 

                                                        --I - 2 
                    C( Re(PA s w,A s W) + 11W110



From this we see that for any 1, >0 there exists a constant C 
P 

independent of s such that

       < D >w 11 2 + 11 g(x, ) 1/2 <D >W 2        x 0 y 110 

                      2 1 2 2 
                U11ASWIl + C 11PA- W11 + 11wil                         0 s 0 0 

By means of Poincare's inequalities it follows from (5.3) that 

for a constnat C independent of s we have 

(5.10) 11'(s I Og <Tj>)~ 11 1 n
j) =<' C JID ~1- 11 2                  L 2 (R x 1 L 2 (R nj) 

                           x x 

                           if M > C                              ~ s 

where ~ is the Fourier transform of w with respect to y 

In fact, in view of (5.3) and (5.4) we have 

         supp w C {(x,n) 1xil :s- (s log<n>)-

Integrating (5-10) with respect to Ti we obtain 

             2 2 2               < C JID w1jo < CII<Dx>wllo (5.11) 11 ~swllo x I -

Set Ms = max (MO, c s 3). Then, combining (5.9), and .(5.11 )we 

have 

A       11 Z s w1jo + 11<Dx>W110 < C 11'P'- w 110 + 11w 110 

s for w with M > M Replacing w by'A W we obtai-n .(5.5). because 
                             S' s 

                                                -2 
C11 ~s w1jo is estimated above by JjAs w1jo /2 if Ms is large enough such 

that 2C :~_ log <q> on supp w The derivation of (5.5) is still 
                                       -k-

valid even if we replace w by A ~ w for any integer k >-O and 
             n s 

a . ny C- C'o(Rx,,). So, we obtain (5 - .6). Q.E.D.
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    Lemma 5.2. Assume that coefficients of P are independent 

of Y. Let s > 1 and let w be defined by (5.4) with M > M 
                                                                         nil S 

where M is defined by '5.'l . Let C_ COO(R satisfy 
       s 0 x 

         Then there exists a constant C 1 

 C independent of s such that for any integer N > 0 

(5.12) 11 A N+1.-~D >~wjjo :S_2C, 11 A N~pw 110 + CN+l N N ( 11 Pwil 0 + 11 W11 0          s X S 

    Proof. For any integer N > 0 there exists a sequence 
                           nil        N 1 1 

 4ij (x") I - C, Cw(R such that        j=l 0 X 

            cc ~l cc *2 cc cc ~N-l cc 

and for a fixed integer 9,0> 2 .-.we have 

(5.13) 1Dx-l *jl _:L (C2 N)IO for jal < to 

where C ") is a constant independent of j and N. 0 

In fact, we can find such a sequence by dividing N times a space 

between supp and the complement of {x" 1 1 and by 

noting Lemma 1.1 of Chapter V of E101 ( The constant C 2 is given 

in the form C 2 2 to for a constant C 2 independent of 1 0 

In view of EP,AS] 0 it follows from (5.6) that 

(5.14) 11 A N+.1 <D >~W11O.:S-co 11PA N jj~Np~*Jwjjo        S' x sklo = Co s 

                   -N I ~N[
p' ~]~lw 110                Co( 11 A S~Pwllo + I S
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Noting that the estimate 

      I, ~N[p'o] *1w,10 L C, I, ~N < Dx > *lwjj 0 
           S s 

holds for a constant C' independent of s and N , from (5.14) 

and (5-6) we have 

(5.15) 11 A~ N+1< D <Coll-NOpwjjO+ C2C, jjp~N-l*lw       s X>Ow 110 As 0 s 110 

By means of (5.13), there exists a constant C2' independent of 

S, i and N such that 

      -N-j[p'~j] ~j+lwjjo (5.16) IIAS 

           < (C I N) 2 11 ~N-j ~j+lwjjo+ C~N II&j                 2 s s <D x >~ j+lwIIO 

Assume that for a f i xed N we have s I og <n> > c,'N on supp 

where w is the Fourier transform of w with respect to y. 

Then, since we have CjNjjA N-JWJIO :~ -N-j+l                           _11AS W110 it follows 

from (5.16) that 

          p~N -i -N-j         s ~jwjjo LIJAS *jPwjjO 

                    + CjN( jj~N-j+l~j+lwjjO+ IIA N-j < D >~j+lwll 0 
                                  s s x 

Applying (5.6) to the second term of the right hand side we 

obtain 

                 -N -N -N * 1 
(5.17) 11 PA s- ~jWjjo IIAS- *jPwjjO+ CO CjNjjPAS-j- ~j+lwllo 

                            1 N-1 , *N



By means of (3.9) in Lemma 3.4 we have 

(5.18) 11 [P,~Iwjjo :S_ C"( JjPwjjO + JjwjjO 

where V is a constant independent of s and N. In view of (5.13), 

there exists a constant C3 independent of s, j, and N such that 

            11* - ( j ~O               jw11O I-C3-11~wIIO 

Set C 1 = max (C 0 C 32 C 2 CIC C21c" Then it follows                 0 32 C 0 CiC31 CO 
from (5.15), (5.17) and (5.18) that 

(5.19*) jj~ N+1 <D >kl C A, N-1 C i Ni-1 A N -i*PW 0       S x 0 1 11 S*Pwllo+,
jxl 1 s 

                   + CN N N-1 11PW110 + 11w11O 

                   if s log <n> > C 1 N on supp w 

From this we obtain (5.12) if slog <Tl>> C N on supp because 

C i Ni 11 ~N -J~Pwjjo '~S -N 1 s _jjAS~PWjjO . We can remove the assumption 

s I og <Tl> > C N on supp w In fact, if slog <n> < C N on         = 1 = 1 

supp ~ it follows from (5.6) that the estimate 

   PA N+1 <-D >Owj[O.:S- C A <D>wj~ COC~(C,N)N jjpwjjO     s ~X ;(ClN )Nil - s x 

holds for some constant C; independent of s, j and N. 
Taking C1 such that C, Z COC~ furthermore we can complete the 

proof of the lemma. Q.E.D.
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     Lemma 5.3. Assume that coefficients of P are independent 

of y . Let s > 1 and let w, ~ and * be the same as in 

Lemma 5.2. . Then there exists apositive number T ( < 1/3 

independent of s and a constant C(~,~) such that 

(5.20) 11<D > ST <D >o 11 -         y X O.:~- C < D y >S'~Pw 110 

                       + 11PW110 + 11WHO 

    Proof. It follows from (5.12) that for any integer N > 0 

(5.12)- A N+1<D >~Wjj 2 < 8C 21, A N*pwll 2 + 2C 2N+2 N 2N 1 2 
               s x 0 1 s 0 

where J = JjPwjjO+ JjwjjO . Multiplying both sidesby 2N+2 /(2N+2) 

                                      2N 2N for 0 < T < 1/3 and using the stirling formula N 
< e (2N)!we 

            log <,,~rs 2N+2 2 (5.21) 1 <D >~wj dxdq      ff (e-_N+2)! x 

             < 8C 2 ff log <r,>TS)2N ~P ' w 12 dxd,               I (2N)! 

                   + 2C 2 kc e) 2N 1 2 N = 1,2 ..... 
                 1 1 

where Pw denotes the Fourier transform of Pw with respect to y. 

Let IN denote the right hand side of (5.21). Multiplying both 

sides of (5.12)' by T 2N+1/(2N+I)! again , we also see that 

      (log <n>TS)2N+l j< D > ~~fl 2 dxdq /(2N+1)! < I                            x N 

because we have log<q> s > I by means of M >3 . Hence we have 
                                           s =

have
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             Ts 2N+l Ts) 2N+-2        (log <n> (log <n> 2 
(5.22) + < D >~w I dxdn < 2-1        (2N+1)! (2N+2)! x N 

              00 

Note 1 ( I og <rl> TS)M/M! = <n>ST and take T small enough such 
        M-0 
that -rC I e < 1. Jhen, summing (5.22) with respect to N = 1,2 .... 

we obtain (5.20).because it follows from Lemma 5.1 that 

ff 2 rS)ml<D >~wl'2 dxdn/m!: it ~estimat    I ( 1 Og <Tl> x ed above by the~constaht 
     111-0 

2 times of J Q.E.D. 

    Assume that coefficients of P are independent of y. Since 

T is independent of s we can choose s > 1 such that ST = K-

  1/3. For s chosen above take M s of Lemma 5.1. Then, 

since ll<D X>oll K is estimated above by C(11<D y >K<D X>ollo + 

11 < D x > ullo it follows from (5.20) and.(3.6) that 

      11 <D x >~w 11 K -:s- C( ll*Pwll K + 11PWRO + 11pullo + llullo 

holds with w defined by (5-.4) with M > M Since (I h (D f                                                  = S* M y 

e 9-- and P is microlocally elliptic on supp (1 - f) it is 

easy to see that 

(5.23) 11 (1 -f)U 11 1+K + 11 (1-hM )fu 11 1+K 

        + 11 [P,f lull + Jl[P,hMlful1 < C(Ilpullo + llullo u 6 COO(R n 
                           K K 0 

By means of above two estimates we obtain 

(5.24) <-D x >0 1 11 K L- C *Pv 11 K + 11pullo+ llullo 

which shows that'. (5.2) holds Indeed, (5.2) follws from (5.24) 

with ~ replaced by Do,.~ (Jaj 

x 

     From now on we shall consider the case when coefficients of 

P depend on y.



     Lemma 5.4. There exists an integer m 0 > 0 depending,only on 

the dimension n of. (x,y) variables and satisfying the following: 
                                                                            nil                                                    N-1 I For a fi

xed integer N > 0 take a sequence i jj =I C- Coco(RXII) 

in the proof of Lemma 5.2 such that the integer zo of (5.13) is 

sufficiently larger than m 0* Then, there,exists a constant C 4 

independent of i and N such that for an s > 1 the estimate 

y (5.25) [P A k N( Jj< Dx> ~k WHO + 11g(x' ) 1/2<D >A k yllo          S]~PIIO C4 s Y s 

                + (C N) 2 11A k N 0 11 ~k h U11-1                      4 s*jwllO+ C4 s M 

            j,k *0 'PN 1P 

hold s with w defined for u c- C W (R n ) by (5.4). 0 

     Proof. Since each term of (5.25) has a common devisor s k 
0 it suffices to show it when s = 1. Take a symbol f(E,q) in S 1,0 

.such that 

         f = I' on supp f 

      supp f c I E I L31 Tjj} 0 {jEj+jqj > 1/31. 

Note 

                -k k k--k -k - - k k 
       [P , A Ily 1P'A 11A 1 fAlY + [P , A IIA 1 (1-f)*iX,fAl h M u 

                  Q -k y + R- k h                  AI A 1 MU 

and set 

        q 0 (n',x,y,E,n) = (log<fl'>) k p(x'y'E'T1)( log <n>)- k?(E").
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Then we have the expansion of the symbol of Q 

(5.26) a( - I a"(( log <n>)k )Dap(x,y,~,n log <n>)-k-
            <jai <2 y 

             

.3 1 (1- e) 2 Os-ff e-'z-~ 
                1Y1=3, 0 Y! 

                        -Y 0 
                        ,Dyq (n+6C,x,y+Z,~',-n*,)dzd~ de                      n y 

              ql(x,y,&,ri) + q 2(xlyl&"n 

It is clear that llql(x,y,Dx,D ),P~ A kw1j. is estimated above by the 
                      y 1 0 

first three terms of the right hand side of (5.25) with s = 1 

if q 2(X,Y,&,n) denotes the symbol of q2(x,y,DX,Dy )*j(x")X,(A,,,Dx,DY) 

0 f(D x D y ) <D x D y > then we have ~2 c- SX,1,8 and in vi-ew of (5.13) 
we see that semi-norms of q 2 defined by 

          - (0) 
= - - (a)       I q 21 max sup flq 2 (

~)(X'Y'&,n)l x(&,n )Jaj-ds~j         k al < 2n             1a1+1 
R 

                          0,1,2,...,t 0 -2n 

                      z+2n are estimated above by C 
k N where C is a constant inde-

pendent of N. Then it follows from Theorem 1.6 of Chapter.7 

                                          1-k of [3] that jjq 2 (x,y,D x D y ) <D x D y >- A 1 h M (D y )uj~ is estimated 

above by the fourth term of the right hand side of (5.25) with 

s = 1. By noting the expansion of the symbol of R we can easily 

k see 11RA 1 h M u1jo is estimated above by the same term. Q.E.D.
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    Lemma 5.5. Let m09 an&{ IN-1 be the same as in                                     j=l 

Lemma 5.4. Then for any s > 1 there exists a constant C = C                                            5 5(~'*) 

independent of s, j and N such that the estimate 

(5.27) 11~ k+2 k+l k+l 1/2       A s yllo+ Ns < D X>~jw 110 + I I ~s g W < D y > y 110 

            < C ( JJPA ky 110 + N m A k+l h U11-1                   = 5 s s M 

            j,kc-{O,...,Nj , ~0= *N "~ ~ $ 

holds for w defined by (5.4) with M > M where M is a constant 
                                     s s 

independent of N and j. 

k     Proof. By setting u = A s *jw in (3.6) we have 

          k 2 1/2 > ~k 2 (5.28) Il< D x >A s y1lo + llg(x,) <D y sy 110 

                      - k ~k - k 2 
            C (Re (PA SY, SY) + 11 A syllo 

               C (Re (P~ k-l *jw, k+l * W) 
                        s s 

               + Re([P,~ ]A -I~k * W,~k w) +11~k~jwjj 2), 
                                   s s s 0 

Here and in what follows we denote by the same notation C different 

constants independent of s, j and N Note 

          i~-l ~k,~jw 

s 

                          1--k k 
           [P,A 1 ]A fA ? i W+-[P,A I A 1 (1 -,f)*jxlfA s h M u 

         QO-k ~k              A s *jw + R 0 s h M U 

where is the.same as in the proof of Lemma 5.4. By noting



the expansion of a( Q0 ) as (5.26) we see that 

       1 A- k k 1/2< >A W11 0         QO w1jo ~S_C( ll<Dx>A ~ wllo+ 11g(x') D. -k            s s i y s i 

                                    m 0 - k 
                   + N 11A h U11 

                                    s M 

Similarly we obtain 

      11 R ~kh u 0 CNm1 A- k h U11-1          0 s M s M 

Consequently, for any li> 0 and some constant C P we obtain 

(5.29) Re([P , A i~-l~k W, ~k Y)                  1 s S 

       < ]I( 11<D >A k W11 2 + 11 g(x, ) 1/2 <D > A k ~ wil 2               x s i 0 y s i 0 

                         m 0 -k 2 -k 2 
             + C 

11 N. I I AShMU 11 _1 + JJAS~ i W11 0 

 It follows from (5.28) and (5.29) that for any I,> 0 there 

 exists a constant C' such that 

               -k 2 1/2 k " 2 
       jj< D X > A syllo + llg(x,) < Dy>. A SY 110 

                jj~k+l*jwjj 2 + C'. -1*j w 'I-                     ( 11 p~l               < 11 10                            s 0 . s 

                 + jj~k~,w 1, 2 _+ mO I ~k h,u 112                                 s 0 s -1 

                          ( cf. (5.9) ). 

 From this we obtain (5.27) with k replaced by k-l because we 

         C, ~k~jw 112 < (1/2) 11 A k+l ~jw 112                 S 0 s 0 

if M s is large enough. Q.E.D.

have
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     Lemma 5.6. Let mo, ~ and be the same as in Lemma 5.4. 

 Let s > 1 and let w be a function defined for u e C"O(R n ) by 

0 

 (5.4) with M > M . where M is the same as in Lemma 5.5.               ~ S s 

 Then , there exists constant C I and C6 

 C 6(~'~) independent of s such that for any integer N > 0 

         -N+l N 
(5.30) IIA < D >oll ~2C        S x 0- 11A s ~Pw 11 0 

               • CN+l N N ( IIPwIIO + llullo 

                • C 6 N 0 s N N! 11 ullo 

     Proof. For a fixed N > 0 assume that s I og <n> > 2C C N                                             4 5 

on supp w. Then it follows from Lemmas 5.4 and 5.5 that 

                -k m 

(5.31) II[P A N wIIO :~_ 1/211 PA k 110 + CN Oil A k+l h ull -I               s s s M 

                         A -k+l because we have 2C 4 C 5 N 11A S~ i W110 IIA s *jw 110 and we may assume 
C 5 > 1. From (5.31) we have 

           -k -k m 0 - k+l 
(5.32) JIPA s*jwIIO L 2 JIASP~jWllo + 20 IIA s h Mull -1 

By the similar way as in the proof of,Lemma 5.4, it is easy to see 

            ~k k 0 11 ~k U11-1              s ]~ j w 110 C~N 11 ASY 110 + C~N s h M 
(5.33) 

(cc) -k m 0 - k        HIP A s lyljo C4N 11 A s h Mu 11 -1 -
        a 1 =2 

In view of [P,~jl Iv a) P(a)/a! 9 it follows from (5.13) 
                    0 < < 2
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and (5.33) that the estimate 

(5.34) ,AN -J1P'~jNj+lwIIO 

s 

        < (C"N) 2 IIA N W11 + C11 . N IIA N-j < D ~j+lwllo            4 s j+l 0 4 S x 

                     m 0 -k 
         + C 4 N IIA 

S h Mu 11 -1 

holds in place of (5.1.6). Then, by using'(5.32) and (5.27) instead 

of (5.6) ), we can obtain (5.30) as in the proof of Lemma 5.2 because 

it follows that 

        CJNJ jj~N -Jh U11_1 -N          1 s M AshMu 11_1 

                        < II'A N <D > -- I h ullo 
                                S y 

                  < SN N! 11 h U110 

M 

                    if S log <n> > C1 N on supp u 

where u is the Fourier transform of u with respect to y 

When s log <Tl> < C1 N on supp u the estimate (5.30) is obvious. 

                                        Q.E.D. 

    As in the proof of Lemma 5.3 it follows from Lemma 5.6 that we 

have 

(5.35) <D y >ST<D x >~w 110.~_C(~,~) < D y > ST *PwIIO + IIPwIIO+ HU110 

because we have, in view of 'ST = K = 1/3 

               CO 2m 0 +2 2N 2 
           I N (ST) (N! ) /(2N)! < -

                 N=O 

From (5.35) and (5.23) we also have (5.24) when coefficients of P 

depend also on y. Since (5.2) follows from (5.24), we have 

completed the proof of Lemma 3.6.
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