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Introduction. In the recent paper [5] Kusuoka-Strook gave a

suffic{ent condition of hypoellipticity for degenerate elliptic operators
of second order, as an application of the Malljavin calculus ( see
Theorem 8.13 of [5], cf. [4]). Their method is apnlicable even to infinitely
degenerate elliptic operators which do not satisfy the famous sufficient
condition given by Hormander [2]. One of remarkable results by means
of their condition is as follows: Let L be a differential operator
of the form 32 + 32 + g(x )232 in R , where g eC”, o(0) =0,
X{ Xo 17 %y ,

c(x1) >0 ( X1 $0), c(x]) = c(-X]) and o is non-decreasing in
- [0,). Then L is hypoelliptic in R3 if ¢ satisfies
(*) Tim ]x] Tog c(X])] =0 ( Theorem 8.41 of [5] ).

Xq¥ 0 .
Thé condition (*) allows the infinite degeheracy of ¢ at Xy = 0.
For example, if c(x]) = exp(-]/|x]|6) for § > 0 the condition (*)
means & < 1. The main purpose of the present paper is to show the
sufficiency of the condition (*) by using the theory of pseudodiffer-
ential operators. In [5] it is proved that the condition (*) is necessary
for L to be hypoe]liptic. The author [7] has given a simple proof of
the necessity of (*) without using the Malliavin calculus. The arguments

in [7] apply to degenerate elliptic operators of higher order ( see

Theorem 3 of [7] ).



As to the operator L we remark that an operator 'ai + 0(X1)232
1

y
)2(2 ) s hypoelliptic in Ri]’y

This result is due to Fedi¥ [1] ( cf. [6] ), who studied the criterion

without the condition (*).

of hypoellipticity by means of apriori estimates. Such criteria have
been investigated by Treves [9] and Oleinik-Radkevich'[S]. Our proof -
of the hypoellipticity of L will be done by improving criteria
studied by [8] and [1].

To explain the idea of the present paper we consider a simple case
c(X]) = exp(-]/[x]IG) , 8§ >0. Then L degeneratgs infinitely at X, = 0,
and hence Hormander's sufficient condition does not apply to L . In

the proof of hypoellipticity by means of apriori estimates, the technical

difficulty comes from the fact that for any « > 0 subelliptic estimate
.3
lull, < Const. ([[Lullg *1lullg), u & CaERY,

does not hold ( see Theorem 1.2 of [6] ), where ||°||s denotes the
norm of the Sobolev space Hs for real s . However, by means of

Poincaré's'inequality we have the following estimate
‘ 2/6 w3
1 Tog <D,>) /8uly < Const.(|[Lully+llully). ue ChRY),

( cf. Lemma 5.1 of Section 5 ),
where < qy> = /1 + D§ . The'main idea is based on the fact that
if 0 <& <1 then the repeafed use of the above estimate with logarithmic
reqularity up gives the regularity up of polinomial order.
The plan of this paper is as follows: ‘In Section 1 we state our
main theorem, which is formulated for a differential operator P =
a(x,y,Dx) + g(X')b(x,y,Dy) in R?_,x= (x',x"), having a slightly

XY
more general form than L ( see Remark 2 of Theorem 1.1 in Section 1 ).



In Section 2 we give a new criterion of the hypoellipticity, which is
composed of five apriorf estimates. In Section 3 we show that P
satisfies each estimate. = Sections 4 and 5 are devoted to the proof of
two lemmas, which play important ro]es in Section 3. The discussion of
Section 4 is similar to the one of Section 5 of [6] and is employed to
estimate the commutator between P and the cut off function of -

y variables. In Section 5 we estimate the commutator betwgen P and
the cut off function of x" variables. For this estimation we

need a condition similar to (*) ( see (1.4) in Section 1 ).

As studied in [6], the method of this paper seems to be extendible
to infinitely degenerate elliptic operators of higher order, which will
be investigated in the future. Finally we remark that the method of the
present paper does not apply to all results of [5], for example,
the hypoellipticity of an operator xg a§1 + aiz + a(x1)2(3§]+ y%asz ) .
ft is also future work to show the hypoellipticity for this operator

by extending our method.



1. Main result

let P = P(X’y’Dx’Dy) be a differential operator of second order
with C”-coefficients of the form
. ny

. . n
- i 1 s n _ 2
(1.1) P = a(x,y,Dx) + g(x )b(x,y,Dy) in R = Ry ny

9

nl nll
where x = (x',x") e RX1XRX1 . Assume the following:

1°) a(x,y,D,) and b(x,y,Dy) are strongly elliptic with

respect to x and y, respectively, that is,
(1.2) Re a(x,y,&) ;,c]lslz, for large || ,
'(1.3) Re b(x,y,n) > c2|n|2 for large |n],
where <y and ¢, are positive constants.

nl
2°) g(x') belongs to Cm(Rx]) , g(0) =0 and g(x') > 0

for x' $0.

Theorem 1.1. Let P satisfy 1°) and 2°). Assume that g(x')

satisfies

(1.4) Tim
x'| -

Ix*[{Tog g(x*)| =0 .

0

Then P is hypoelliptic in R". Namely, for any u e 2'(R™) and
for any open set @ of R" it follows that Pu € C™(e) implies

u eC7(q).



Remark 1. If x" variables do not exist this theorem is included

in Theorem 1.1 of [6].

Remark 2. Set
go(x') = exp(-]/lx'|1/4)sin2(1/|x1) +exp(-1/|x'|1/2).

Then go(x') satisfies conditions 2°) and (1.4). In view of this
function we see .that Theorem 1.1 is slightly more genefa] than Theorem
8.41 of [5] because go(x') js not expressed in the form go(x') =
o(x')2 for any non-negative C -function o ( see Remark 2 of Theorem

1.1 of [6]).

In what follows we shall tacitly use the notation in [6] and
Kumano-go [3]. For example, we often write ¢ cc ¢ for ¢ , v € Cg(Rn)

if ¢(x) =1 in a neighborhood of supp ¢ .



2. Criterion of hypoellipticity

In this section we shall give an improvement of the criterion
of hypoellipticity studied by [8], [1] and refined by [6].
Let @ be an open set of R" and let P(x,DX) be a differ-

ential operator of order m with coefficients in C7(Q). We assume:

(I) For any compact set K of @ and any N > 0 there

exists a constant Cy = C1(K,N)v such that
2.0)  ullg <€ (MPully +lully) »  ue c0).

(II) For any compact set K of o, any 8 (|8] #0 ),
any u >0 and any N > 0 there exists a constant C2 = CZ(K,B,u,N)

such that
(2.2)  llP(gull yg = wllPully + Cllully o uecq),

(1g] $0),
where p(B)(x,s) = Dsp(x,g) and D, = -i3,.

(III) For any compact set K of Q@ , any o and any N > 0

there exists a constant C3 = C3(K,a,N) such that

(2.3)  1p{®hully <csClipully +llull ), e COK) .

(a)

where p %’ (x,£) = 3;p(x,E).

(IV) For any Xg € @ and any neighborhood U of Xg
there exist ¢(x) and u(x) € CS(U) such that



¢(x) =1 1in some neighborhood of Xg s

¢ cc ¥ (,that is, v = 1 in a neighborhood of supp¢ ),

and the estimate

(2.4) [ Poull < CuUkN0,)( llwpull .+ [IPully +llull_y ), ue €K,

holds for any compact set K of @ and any N > 0, where C4
is a constant depending on K, N, ¢ and ¢ . Here k 1is a

positive number smaller than 1, independent of K, N, ¢ and .

(V) For any compact set K of o, any 8 (|g8] #0),
any u>0,any N>0 and any u(x) e C;(Q) there exists a

constant Cp = C5(K,e,u, N,p) such that

(2.5)  P) (gyull gy < ullwPull, + CsClIPully +Ilull ),

c-|8] &
ue CSK), ([sl 0),

where « is the same as in (IV).

Theorem 2.1. Assume that a differential operator P =

p(x,Dx) satisfies above conditions (I)-(V). Then for any ve D'(Q) ,
for any open set Q'cc¢ @ and for any real s it follows that

loc(n') 1hp11es v'e'H]OC(Q').

Pv ¢ H s

Therefore, P 1is hypoelliptic in Q.



As in §2 of [6] we employ a pseudodifferential operator

A with a symbol <&>>(1+e<e> )'k for real s, ¢ >0 and

S,k,s
k>0 . We denote As,O,e simply by Ag-

Lemmma 2.1 ( cf. Lemma 2.10 of [6]). Let P satisfy the
condition (II). Then, for any compact set K of @ , any 8-
(/8] $0), anyreal s ,any u>0,N>0,e>0 and k >0
there exists a constant C = C(K,8,s,u,N,k) independent of 'e

such that

(2.6) ”AS-IBI,k,eP(B)UHO; u ”As,k,epullo + Cllufl - ue Co(K).

Furthermo?e, for any K of o, any real s, s', any pn> 0,
N>0, e>0 and k > 0 there exists a constant  C' = C'(K,s,s’,

usN,k) independent of ¢ such that
@.7) g g, Jull gz llng o Pullge + €l ully s u e CGOK.

Proof. The former assertion of the lemma is the same as in
Lemma 2.10 of [6]. The estimate (2.7) easily follows from (2.6) and

the expansion formula

| nlel (o) Y
(2.8)  [Poa., - ( A P e sV
s,k,e 0< |§| < stmN ol s,k,e  (a)

Q.E.D.

Lemma 2.2. Let ¢(x) beiong to CS(Q) and let P satisfy

conditions (II) and (III). Then, for any compact set K of @,
any real s , any >0, k>0 there exists a constant C =

C(K,s,N,k) 1independent of ¢ such that

(2.9) IIAS,k,€P¢U“0 < C(]] As’k’ePu”0 +llull y)s ue Co(K).



Proof. When s =k = 0, the estimate (2.9) easily follows from
the condition (III). In fact, noting the Leibniz formula '
[P,¢] = ) ¢(Q)P(°‘)/a1 we have

0<|al<m

(2.10) ”P‘WHO < “q>Pu”0 +||[P,¢]u||0

cClipullg + 5 fplelugy)

<la| <m

fia

< COllPullg +llull_y) 5 ue cylk).

Here and in what follows we denote by the same notation C differ-
ent constants ( independent of ¢ ). In the general case, by means of

(2.7) we have

IlAS,k,eP¢ul|.0 ;C( ”PAS,k,ed)u”O + ”u”—N) s U e C;(K).

Using the expansion formula

(2.11) A, &= % ‘ N -m
0< |af < s+N+m

| (a) -
s,K,e ¢(a)As,k,e /ol mod §

we have

(a)
0< Ia%< 5+N+I,LP¢(°‘)AS,|(,€U “O + “u"-N )s

IIPAS,k,e¢u||0 < c(
ue CS(K)-

By the similar argument in the biginning of the proof of Lemma 2.10

of [6], it follows from (2.10) that

||p¢(a)/\§fg,euuo < ¢ ||PA§°‘,)<,euno tllull )y ue K.

9
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By means of (2.6) and the expansion formula similar to (2.8) we have

1PASEE il = CClAG_o s, cPullg +llullyds ue CHL).

Combining above four estimate we have (2.9). Q.E.D.

Lemma 2.3. Let P satisfy conditions (II) and (V). Then, for
any compact set K of @, any 8 ( [g[# 0 ), any real s ; any ¢ ,
w,N>0 and any k >0 there exists a constant C = C(K,s,u,N,k)

independent of ¢ such that

(2.]2) ”AS'IBI,k,Q(wP)(B)UHO

<ullag o oPullgrCling. i Pull llull_y )
ue Co(K) s
where « > 0 and y ¢ CS(Q) are the same as in the condition (V).

Proof. The lemma follows from the almost same way as in the
proof of Lemma 2.10 in [6]. As in its beginning, from (2.5) we

have

” (wp)(B‘)AS.-K,kgsu” K'IB‘
culling_ o ull, +clipng_ o ullg*llull_y)
ue CO(K).

Replace the operator P and the term IluH_N in the proof of

Lemma 2.10 of [6] by P and “PAs-n,k,eu”0'+llu”-N , respectively.



11

Then it follows that
Ias 11k, e P (g)ullg
<uling y WPhullg+ Ol Pag_ ullg* llul ),
u e c;(K).
Using (2.7) for the term IIPAS_K K sullo we obtain (2.12). Q.E.D.

By the same way as in getting the coro]]aﬁy'of Lemma 2,10 of [6]

we have

°

Corollary 2.4. Let P satisfy conditions (II) and (V). Then,

for any compact set K of @, any real s, s' , any N > 0, >0
and k > 0 there exists a constant C = C(K,S,s',N,k) independent

of e such that
(2.13)  ||LwPoag \ Jull
‘u € CO(K).

Lemma 2.5. Let P satisfy conditions (II)-(V). Then, for
any compact set K of @ , any real s, any ¢ > 0, N> 0 and
k >0 there exists a constant C = C(K,s,N,k) independent of ¢

such thét
(2.14) |lAS+K,k,€P¢u”0

< ¢l As+|<,k,e"’P“||0+|| Ag i, Pullg*llull y)s u e ColK),



12

where « and ¢, ¢ ¢ Cg(g) are the same as in the condition (IV).

Proof. It follows from (2.7) that

”A‘S*‘K,k,qusu ”0
< COllPag  oull *+llull )y ue CH(K).

In view of the expansion formula (2.11) we have

IPag _oull,
<CllPong ol + 1 Ps 2t ull +llull ),
= S,Kye 'k 0< |a|<S+m+N+K CL S,Ks€ K -

u e CS(K).

By means of (2.9) with s=«,k=0 and (2.6) we have for |a| 3 O

D all ccCleal®) ull + 1l y)

3

[IPo( )2
b C(”AS-IQI"'K,k,SPu “0+ ”u”,N )3 u € CS(K)«:

The conjunction of above three estimates gives

(2.18) | Agy i, Poullg
< CONPong \ ull +llag o Pullg+llull_y)s ue ColK).

Substituting ‘AsAk U into (2.4) we obtain

(2.16) IlP¢AS,k,Eu"K
< CCllvpag y ullx lIPag o wllg* llull_y), v e C5K).

Noting estimates (2.7) and (2.13), we obtain (2.14) from (2.15)
Q.E.D.

and (2.16).



Remark. Set k = sO+m+N+K for Sg > 0. Then, for any

veH,NnE (K the estimate

=N
gy i Povllg

< C0lAgp i, 9PVl * llag y PYlig+ IIvil )

holds, where s < S and C 1is a constant independent of «.
This fact follows from (2.14) by the same way as in the remark of

Lemma 2.11 in [6].

Proof of Theorem 2.1. Let’ X0 be any fixed point in @

and Tet y(x) ¢ Cyla’) such that y(x)= 1 in a neighborhood

U(xo) of Xq- Then, for any natural number 2 we can find finite

L

sequences {¢j}J

. [} ®,
=1 ? {wj}j.__] a CO(Q ) such that

91 €< ¥y cchdr ey  "TTCCd, ccyy ccy
and we have
(2.17) ||P¢qu|K;C(K,N,¢j,wj)(”ijU”K"‘HPU”o*'”U”,ﬂ)’
ueCyK), (§=T1,..002),

for any K of @ and N > 0, where « is some positive number.
Indeed, from the condition (IV), we can take $], @1 ¢ CS(U(XO))
such that $]<:Q §7 » & =1 in some neighborhood V(xo) of X
and satisfies (2.4). For xo and the neighborhood V(x,) we

can take again §,, ¥, € Cg(v(xo)) such that $pccd 5 , §, =1

13
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in some neighborhood of Xg and satisfies (2.4). Repeating these
steps ¢ times, we have sequences {$j} §=] , {ﬁj}§=] C CS(Q'),

-~ ~

| = ‘= i = L
Set ¢j ¢,Q,-j+] s lPJ' wg_j.ﬂ (J=1,...,2). Then, {¢j}j=]

and {wj}§=] are desired sequences. As well-known, for v e E'
there exists a N > 0 sucht that v e H-N' Let us choose 2
bigger than (s+m+N)/« . By means of Lemma 2.11 in [6] and its

remark, for ¢v e Hy0 E'(K) (, where K = supp y ) the estimate

(2.18) lag vl < Clng , Poqvilg +lloqgviiy)

holds for a constant C dindependent of ¢ and k = s+m+N.
From (2.17) and the remark of Lenma 2.5 if is éasy to see that if

k = s+mtN, then for any s' <s the estimate

(2.]9) IIAsl’k"EPdJJ-V“O = ” As"k’ep(bjd’j'ﬂv”o

< ¢l AS',k,eijV “0"’ “As'-—K,k,qu’j+]V”0+ “f‘PV"_N )

holds because of ¢jP¢j+] = ¢jP and ¢j+]v = ¢j+]¢v. From
(2.18) and (2.19) we have

”As,k,e¢1V”0
< Ol Ay, iPYllg *liag_ o Popvilg+ llwvll_y)

Applying (2.19) to the second term of the right hand side, we have
gk, et1vllg = Ul Ag y wqPYilg+IIag_ y 9oPVIlg

* g i, Poarllg + Ty )-



Applying again (2.19) to the third term on the right hand side, and

repeating the same procedure, we have
2 .
s,k etrflo = €6 L a5k, 2% llo

Since ijv € HS from the hypothesis of the theorem, and since

A Pes™ for any € > 0 , we obtain from (2.17) of [6]

S-Kl,k,s
2
llag i, 01vllg = € J,g] 195PVllg sy +Hlwvlly)

< COwPvll o+l wvil_y )
Letting ¢ tend to 0 , we finally obtain
loqvilg = CUlwPvllg + 1wl ).

This shows v belongs to HS in some neighborhood of Xg-
Since Xq is arbitrary point in Q' we can complete the proof.

Q.E.D.

15
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We end this section by the following corollary:

Corollary 2.6. Assume that for a constant C we have

(2.20) p(x,g) 0 if lg'] < Cleg"| and |g"| Targe enough,

where ¢ = (£',£"). Then we can ameliorate Theorem 2.1. Namely,
we can replace the multi-index 8 = (8',8") .in conditions (II) and (v)

by the multi-index B8' with respect to x' variables ( x = (x',x") ).

Proof. Take a symbol x(g) in S? 0 such that x =1 on
{le'] > cle"1n {lg] »2} and x =0 on {[g'] < Cle"|/2y N\ {|g] <T12-

If Pv ¢ Hloc(n') we have (1- x(Dx))v e ng;(n') and Pyv =

Pv - P(1 - x)v e Hloc(ﬂ') because it follows from (2.20) that
there exists a microlocal parametfix of P on supp (1-x).

Since ¢ and ¢' are equivalent on supp x , we can replace the
pseudodifferential operator As,k,s by a pseudodifferential

)-k '>5 . which permits the

operator with a symbol ( 1 +e<g'> <g

amelioration of Theorem 2.1. Q.E.D.



3. Proof of Theorem 1.1

Let P = p(x,y,D,,D ) = A+ gB = a(X,y,Dx) + g(x‘)b(x,y,Dy)

denote the differential zperator in Theorem 1.1. In view of Theorem 2.1,
for the proof of Theorem 1.1 4§t suffices to show that P satisfies
conditions (I)-(V) in Section 2. ( Talking more accurately about the
plan of the proof, we shall use Corollary 2.6 in checking (V) ).

Since conditions (I)-(V) are stated for a compact set K of R",

we may assume, without loss of generality, that g(x') and coefficients

of A and B belong to 8°(R"), and g(x') satisfy for any >0
(3.1) g(x") 2C_ >0 on {|x'| >¢}.

Lemma 3.1. Set Q_ = {(x,y) ¢ R" ; |x'| <e}. Then, for any
e >0, any o , any real s and any N > 0 there exist constants

C(e,s,N) and C(e,a,s,N) such that
(3.2)  ully < CleasMCIPullgp *llull )

3.3 Pl < Clesn s ClIPullgy +llully ),

w, N
u e CO(R ~ Qe)..
Proof is the same as in Lemma 3.1 of [6].

. n!
Lemma 3.2. Let qfx') be a function in CQ(RXI) such that
= : i - 1o
for any a % O, $g(q) = O on {|x']<e 1, whgre bo(a) = Dx'% -
Then, for any € > 0, any real s and any N > 0 there exists

a constant C(g,s,N) such that

(3.0) NIPaglully < Cless M) IIPullgq + llull_y)s u e CTRY).



The lemma easily follows from Lemma 3.1 by the same way as
in the proof of Lemma 3.2 of [6].
Lemma 3.3. For any u>0 and any N > 0 there exists a

constant C(u,N) such that

(3.5)  lully < wllPullg+ CluwN) Jlully » u € cy(R).

Proof. From conditions 1°) and 2°) for P it is easy to see
2 i 1/2 2 2
(3.6) ([0 ulld +lla(x") Dullg < Cl Re(Pu,u) + luflg)

<CClIPulld +1lull3), uecSRM .
1

n ;
1 ® 1 1 1
Let ?§x ) € CO(RX.) such that supp.ﬁ)c{lx | < e,¢0(x ) =1

on{|x'| < e/2}. Then, on account of Poincaré's inequality we have

’

(3.7) ligpllg< 8Nl D> ully < 8(e)ll D> ully s ue RN

where 6&(c) + 0 (e+0). From (3.7) and the estimate obtained

by setting u =¢ _uin (3.6) we have

0

||¢0u”0 < Ca(e)( ”Pq)ou”D 'flld)ouno), u e C;(Rn). '

Using this and the preceding two lemmas we obtain (3.5), by the
similar way as in the proof of Lemma 3.3 of [6]. Q.E.D.

It follows from Lemma 3.3 that P satisfies the condition (I).

Now, we shall check conditions (II) and (III).

Lemma 3.4. For any 8 (|8/#0 ), any u and N> 0

there exists a constant C(B,ﬁ,N) such that

18
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®, 0N
(3-8)  Pgyull g = wllPullg* CloawM) [lull y & ue CHRM.
For any o and any N > O there exista a cinstant C(a,N) such that
' _ ®, 0N
(3.9) 1P ully < ClaaM)(IIPully +llull ) u e CIRY).

Proof. On account of (3.5) it suffices to check (3.8) for
1

|| =1 and (3.9) for |a] =1 . It is clear that for |af

we have
”P(a)uuo ;C(“<Dx>u”0 +”g(x')<Dy>u“o) s U € C:(Rn).
(la] = 1).

From this and (3.6) we have (3.9) for |a|= 1. Since g(x') is

non-negative function we have

laxlg(x')l = G vg(x') 1in a neighborhood of x' = 0,
J .

(j=1,...,n})
9 b} 'l ]
for a constant C, ( see Remark 1 of Theorem 1.1 of [6]). In

view of this inequality we have for |g|=1
1P(gyull g < ClI<Deully +llg(gy(x') <Dsullg* llglx)<Dyoull g )

1/2

< Clli<dpully +llax)2<0ul),

©, n
u ¢ CO(R ).

Since we have
(3.6)"  |kDsullq+ lla(x") Y2 <D sully < C(Re(Pu,u)+1|ul] o)
. x Ullg ™ 19 y Uil & ’ 0
< wul[Puflg + Cull ullg, ue CE(R")

for any p > 0 and some constant Cu , we get (3.8) for [B] = 1.

Q.E.D.



In order to check conditions (IV) and (V) we state two
preparatory lemmas which will be proved in the following two

sections.
Lemma 3.5. Let « .be equal to 1/3. For any

N > 0 there exists a constant C(N) such that
(3.10) l]g(x") <D >]+'<u[| < CN)Y([IPullq + lull ue Co(RM)
. g y 0 = 0 -N)’ 0 °

Lemma 3.6. Let « be 1/3 and let ¢1(x") and y(x") be
e ——— nu . 1
functions in CS(RX].) such that 4 ce b . Then, for any N >0

there exists a constant C(N) such that

(3.11)  [IlPsqlull < CONICIlwPull, +IlPullg +llull )5 ue Cg(RM).

We give a corollary to Lemma 3.5.

n
Corollary 3.7. Llet « be equal to 1/3 and Tet ¢,(y) ¢ CS(R 2y,

Y
For any N > O there exists a constant C(N) such that

o, N
(3.92)  [IPasplull, = COOCIPullg * Ilully) » ue CGRY) .
Proof. Let f(g,n) be a symbol in S? o Such that

f=1 on {lg| <Inl¥n Clel + Inl21 1,
(3.13)

supp f < {le|< 2|al} O { [gl*+|n] 2 1/2} -
Since P is microlocally elliptic on {|g| > |n|} it is easy to see
(3.14) NQ=Full 1y * TP Full

<COllPully *llully) » ue CoRY .
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In view of the microlocal ellipticity of P we also have

; 1+ :
(3.15) [ILP,0pTfull, < CUlIg(x*) <D> " ullg+ [[Pullg + llull _y ).
Together with (3.14), estiamtes (3.15) and (3.10) give (3.12).

Q.E.D.

We shall show that P satisfies the condition (IV). Since
P = p(x,y,Dx,Dy) is elliptic except x' = 0 and the assumptions
of p are invariant under the translation with respect to x" and
y variables, it suffices to check the condition (IV) for the origin
and its érbitrary neighborhood U = UX.xenny . Let ¢(x,y) be
a CS(U) function such that  ¢(x,y) = ¢4(x')91(x")s,(y), where
9g(x") e‘Cg(Ux.) satisfies ¢g( .y =0 near x' =0 for la] %0 .

Note that for u € CS(R")

P¢(X’.Y)u = Pq’o(X' )¢'l (X“)d’z(.Y)u

01Pogoou + [P2o]oge,u

979gPoou + 0 [P,ogJosu + [P,41]0q00u
= ¢Pu + ¢100[P,0o1u + 01 [P 05T0ou + [P,oq]egeou .

Let u(x,y) be a CS(U) function such that w(x,y) = ¢0(x')¢](x")w2(y)
and ¢ ¢ <« v (.in particular ¢ € < ¥y ). Then it follows from

Corollary 3.7, Lemma 3.2 and Lemma 3.6 that for « = 1/3

(3.16)  lIpaull, < cCllvpull, +lIPullg+ flull ), u  CIRY).
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Indeed, the estimate is obvious because we see by means of Lemma 2.2
that for any real s and any &(x,y) € C*(R") there exists a

constant C(s,¢) such that

(3.7) lPdully < S CIPullg +lull_y), e C5RY.

To complete the proof of Theorem 1.1 it remains to check the

conditon (V). Note Corollary 2.6 at the end of Sectijon 2 and the fact

that p(x,y,&,n) 30 if 0 < |n|l<|eg] and |g| large enough. Then
it Suffices to show, in place of the condition (V), that for any
multi-index B8 + 0 with respect to only y variables, and for any

u> 0and any N> 0 fheke exists a constant C = C(é,u,N) such that
3.18 - .
(3.18) {102 (zull 3 2ull (WPhull,

+ c({[pully +llull ), u e c(RM) .
From now on we shall prove the following estimate -stronger than (3.18)

(3.19) 1) gyl g = CCIIPullg* llull y)s w e CER™,

| (18l+ 0 ).
By means o6f (3.5), the estimate (3.19) is obvious if |B] > 3.

Note that for 0 < |g] <2

(wP)(é) = (wA)(é) +‘9(X')(¢B)(é).
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It follows from Lemma 3.5 that for « = 1/3 and 0 < |§| <2

g (x*)(48) (zyull 3 ;Ilg(x')<0y>]+'<u||0
< COlPulgtllull ), ue cgRM.

On the other hand, for the case |g| = 2 it follows from (3.6) that
-~ K - ‘
1) (gyull 3y < Cll< D, ullg
e
<ol Pullg+llull ), v CRM),
we have from the ellipticity of A with respect

and for |B| =1
to x variables

2 .
II(#’A)(E)U”K_WI < Cll<Dy>"ull 4
-1
< CCI[ A <D, ,D > ullg +ullg)

<l Aull__q +ll<0 > ull g+l ull)

<cCllpull__y + llg(x)Bull _#liD,>ullg + llullg)

<cllIPullg* IHully)s u e CoR™

Here we used (3.5), (3.6), Lemma 3.5 and the fact that
”[A <D ,D >'<']]u ln <C I|<D >2<D D .>K-2U |
R Sl 0 = X X"y 0

< C i< Dx>'<u”0

Thus we obtain (3.19), which completes the proof of Theorem 1.1.
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4., Proof of Lemma 3.5

As stated in the proof of Lemma 3.4, from the property of

non-negative function we have for any 8 with |g| <2

in a neighborhood of x' = 0,
where CB is a constant depending on g. Since P is elliptic

except for x' = 0 the estimate (3.10) holds for u ¢ Cg(Rn\xﬂa),
where a2, is the same as in Lemma 3.1. In view of Lemma 3.2 it
suffices to show (3.10) for wu € C8(95)° Therefore, we may assume
that (4.1). holds for all x' by modifying g(x') out of some
neighborhood of x' = 0.

Let Fy(t), $7(t) and §,(t) be C”-functions in [0,=) such

that
supp §(t) < [0,1), §y(t) =1 on [0,1/2],
supp $}(t)<: [0,2), $H(t? =1 on [0,1],
supp $o(t) c (1,%), F,(t) =1 in [2,)

and

(4.2) o+ %=1 in [0,m).

Set a(g,n) = (l£|6+<n>4)]/6. Then A(g,n) satisfies inequalities

(2.5) and (2.6) in [6], so it is a basic weight function associated

with pseudodifferential operators.



Lemma 4.1.  Set xj(x"s&,n) = 8:(g(x")alg,n)) (1§ =0,1,2).

J
Then Xj(x',Dx,Dy) belongs to g0 » where 1= (1,...,1)

ALTL,8 _
and @ = (61,...,6ni,0,...,0), 8, = 1/2. Furthermore we have
(4.3) X.I + X2 = I,

The Temma follows from (4.1) and (4.2), by the same way as in the
proof of Proposition 5.1 of [6]. ( About the definition of SA 1.6
see Definition 2.3 of [6] ). '

Lemma 4.2. Thére exists a constant CO such that
(4.4) “g(xl <Dy> ‘ ”0 < CO( ”PV] ”0 ”V] ”0) s, (k=1/3),

if vy = x(x',D,D Ju for u e CO(R").

y

!

Proof. Let $3(t) be a C”- function in [0,») such that
supp $53(t) € [0,3), $5(t) =1 on [0,2].

Set x3(x',n) = $3(g(x')x(0,n)). Then, clearly we have
x3(x',Dy)v]= v . Using the fact that g(x') ;,3<n;2/3

on supp x3(X',n) we have

ol )] < Bl e

From this and (3.6) we obtain (4.4). Q.E.D.

As in §5 of [6], we consider an operator ﬁ(x,y,Dx,Dy)
which is obtained by modifying p(x,y,Dx,Dy) in " a neighborhood

of x'=0" as follows: Set
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p(x,y,8.n) = alx,y,g) + (g(x")alg,n) + x5(x',8,n))
-1
xA(g,n)" b(x,y,n).
Then we have

Lemma 4.3. P = 5(x,y,Dx;Dy) belongs to Si 1.5 aNd p(X,Y¥>Z,n)

» &
satisfies (H)-condition, in the following sense:

i) There exists a constant Cy > 0 such that
(4.5) [P(X,¥1€,n)| ;,cox(a,n)z for large [g[+|n].

ii) For any o and 8 there exists a constant CmB such that
)$~ B-|al

(4.6) 153 (oy.5n)/B(xy,50) | £ C (e

for 1érge le]+|n]
where & = (61,...,6n].,0,...,0), 8, = 1/2.

The proof is done by using (4.1), similarly as in the proof

of Proposition 5.3 of [6].

By means of Proposition 2.7 of [6] and Lemma 4.3 we have a

. -2 = 2
parametrix Q & Sl’]’& such that for P € SA’]’&
(4.7) I=QP+K, Kesg™,
furthermore

2 0

Q= QoQ-‘ ’ QO € sx,],&s s Q] € 8}\,]’(5 s

(4.8) ,
5(Qg) = Bx.y,E,m)"" for large |g|+[n| .
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Lemma 4.4. Set v, = xZ(xF,DX,Dy)u for u e C;(Rn).

Then, for any N >0 there exists a constant C(N) such that

]+ 1 2
(4.9) [|<DX,Dy> Kv2”0 +|lg(x") <Dy> V2”O
< CONCI1Pv,llg + Ilull_y )s
where «= 1/3.

Proof. By checking symbols of

T+c ; 2 ’ - 0
<DX,Dy> Q and g(x )<Dy> Qy Wwe see that they belong to 8A,1,£‘
Note that ﬁxz = sz mod 87 . In view of (4.7) and (4.8) we obtain

(4.9) by means of Lz—boundedness of the operator belonging to

0

SA,],&

( see Proposition 2.5 of [6]). Q.E.D.

\
Lemma 4.5. For any N > 0 there exists a constant C(N)

such that for j = 1,2 we have
w, N
(4.10) ||[P,><J.]u||K 5__C(N)( ||Pul|0+ ||u||_N ), ue€ CO(R )
where « = 1/3.
Proof. It follows from Lemmas 4.1 and 4.3 that we have the

expansion formula

5 = ylel, (a)z(8) 3-Ng/2 -N
Pl = g qarby e T @@ B SRy

( cf. (2.10) of [6] ),

ﬁhere N0 = 3N+6. From (4.7) we have



[P’Xj] = [P9XJJQP
- | ol (@)5(8)gp/atal N
= - Igl d
0< |ats| <N0( D (5)P(a) Pratel mod By
. cr s e (a)s (B) 1/2
In view of (4.6) it is not difficult to see X;(g) ( ﬂ) € 8 1.8
: - K 1/2 .
for |a+g| $ 0. Noting A = <Dx’Dy> ¢ SA,],O we obtain (4.10).

Q.E.D.

Noting Lemma 3.3 and using the division u = Xqu + Xyu
for u e CS(R"), as in the proof of Lemma 4.1 of [6] we obtain
(3.10) by means of Lemmas 4.2, 4.4 and 4.5. We have completed

the proof of Lemma 3.5.
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5. Proof of Lemma 3.6

In this section we denote ¢](x“) and wl(x") in Lemma 3.6
simply by ¢(x") and u(x"), respectively. Let « be 1/3 and

use the division u = XqU ot oxpu T vy F Vo

for u e CS(R“) in the preceding section. By means of Lemmas 4.4
and 4.5 it is easy to see that for any N > 0 and any ¢(x") €
CS(RXI) there exists a constant C(N,¢) such that

(5.1)  [ITPeIvp Il < G I[Pullg+ flull_y)s u e CGRY,

because [P,¢] belongs to 8} g- In view of Lemmas 3.3 and 4.5,

for the proof of Lemma 3.6 it suffices to show for a constant

C(¢,v)
(5.2)  [[[Psolville = Closw) (Nl wPvill o +1IPullg+ Il ullg),

nll
provided that ¢, v ¢ CS(RXI) satisfy o¢cc ¥

It follows from the hypothesis (1.4) of Theorem 1.1 that

for any s > 1 there exists a cg > 0 such that
(5.3) |x'| < (s log<n> )'] on  supp x,

if <n> 2Cg s

because (x',£,n) € supp X1 implies »g(x')<n>2/3 <3 . Set

_ ~ _]. : A ‘ . 'l .
hM(Dy) = §2(M <Dy>) for a M > 3, where ¢,(t) ¢ C'(R') is the same
as in s4. Let f(gz,n) be the symbol in S? 0 defined by (3.13)

in Section 3 .
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Set
— 1 , o,
(5.4) w = hM(Dy) X1(x ,Dx,Dy)f(Dx,Dy)u for u e CO(R )

and let Ks denote an.operator with a symbol slog<n>. To make
clear the idea of this section, first we shall prove (5.2) by

assuming that coefficientsof P are independent of VY.

Lemma 5.1. Assume that coefficients of P are independent
of y. For any real s > 1 there exists a Ms > 3 such that for

w defined by (5.4) with M 2 Mg we have

~2 ~
(5.5)  [IRawllg+ lig <Dowlly = CollPwlly >

where C0 is a constant independent of s , and moreover for any
nll

integer k >0 and any ¥(x") € Cg(Rxl) the estimate

IR 25 wlly + )

~k+1
s Ag

(5.6) <D >wlly < CqlIPA

holds with the same constant Cj. in (5.5) (independent of k and ¢ ).
Proof. By setting u = w in (3.6) we have
~ 2 i 1/2 2
(.77 N<npwlld + llatx)/2<ou|f
2
< C( Re(Pw,w) +||w|[0 ).

Here and in what follows we denote different constants independent
of s by the same notation C. Since it follows that [P,Ks] =0

from (5.7) we obtain

2 1y 1/2 2
(5.8)  ll<oulld + Nlatx')/% <Dowllg

1

< C( Re(PEw,iw) + Wl D).
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From this we see that for any u>0 there exists a constant C
H

independent of s such that

1/2

(5.9) ||<Dx>w[|02+||9(><') <Dy>W”02

~ 2 ~<1 2 2
< ulligu + ¢ Clpizwl E + mll B

By means of Poincare's inequalities it follows from (5.3) that

for a constnat C independent of s we have

(5.10)  ||{s Tog <o) 2 < ¢|[p, il 2
LER0) = TR LA R

1f M>=CS ,

where w 1is the Fourier transform of w with respect to y .
In fact, in view of (5.3) and (5.4) we have
suppw < {(xon) 5 Ixql = (s 1og<n>)'1 }

Integrating (5.70) with respect to n we obtain
- 02 2 . 2
G0 ligld <cn vy ¢ < cleould ).

Set M, = max (Mg Ce> 3). Then, combining (5.9). and (5.11)we

have
~ ’ we]
IR wllg+ ll<Dowlly < CCIPRS Wiy + liwlly)

for w with M ;=Ms' Replacing w by‘KSW' we obtain .(5.5)- because
C"szuo is estimated above by Higwu()/z if M, s large enough such

that 2C < log <n> on supp w . The derivation of (5.5) is still

valid even if we replace w by KE& w for any integer k >0 and

. _n .
any § € cO(Rxl). So, we obtain (5.6). Q.E.D.



31

Lemma 5.2. Assume that coefficients of P are independent
of y. Let s> 1 and let w be defined by (5.4) witﬂ M ;=M;,
where MS is defined by “Lemma 5.1. Let ¢, ¢ eCZ(RZl) satisfy
¢ ¢« ¢ . Then there exists a constant C;

= C](¢,¢) independent of s such that for any integer N > 0

“N+1 - ~N N+1,N
(5.12) ||A5 <D >¢wlly <2C; [l AuePull g+ C N ClIPw]l g+ [lwll o) -

Proof. For any integer N > O there exists a sequence

{ p.(x") }N'] < Cm(Rn]) such that
SR 0+

$cc Py ccPp cc™T ey cc ¥

and for a fixed integer 20;=2 ~we have

(5.13) |D§" wjl < (CZN)IB| for |Bg| < s
where G, = Qz(¢,w,zb) is a constant independent of j and N.

In fact,-we can find such a sequence by dividing N times a space
between supp ¢ and the complement of {x" ; =11 and by
noting Lemma 1.1 of Chapter V of [10] ( The coﬁstant C, is given
in the form C2 = 52 %9 for a constant 62 independent of 20).

In view ofr[P,Ks] =0 ,it follows from (5.6) that
~N+1 ~N _ ~N
(5.14) | A <Dy>eWllg = Co ”PAS_‘PWHO = Co ”ASP‘W)]WHO

~N ~N
< Col NiNepully + 11RNCPLoTupwllg)-



Noting that the estimate
HA [P,0] ¢1w||0 < C “A <D >1p]w||0

holds for a constant C' independent of s and N , from (5.14)

and (5.6) we have

~N-

(5.15) 1A%l >omlly < 0||A¢Pw1|0+cc PR uwll -

By means of (5.13), there exists a constant Cé independent of

s, J and N such that

~N_'
(5.16)  [Iag ITPovs1 wyuqwllg

1 2 ”N-. ~N_
< (G "N JIRG™ wayqwllg* CoN [IAQ

s J+1 <D >¢J+1w[|0

Assume that for a fixed N we have slog<n> ;=CéN on supp W ,
where w 1is the Fourier transform of w with respect to y.

~N-3j+1
<llag J

Then, since we have C. NIIA 'quo wllg it follows

from (5.16) that

~N-j ~N-j
IPRY Tpgullg < I1EY Juspul

+ CN( IRy

Applying (5.6)  to the second term of the right hand side we

obtain

“N-j “N-j -j-1, -
(5.17) “PAS J‘PjW”Q ;f”As ijpw‘llo“ ¢ C2N ”PA i- J+]W||0

~N-3
+]w”0 * ”As te Dx>‘pj+1w”0 )
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By means of (3.9) in Lemma 3.4 we have

(5.18)  [IP.udwlly < CC IPwllg+ flwlly)

where C" 1is a constant independent of s and N. In view of (5.13),

there exists a constant C'3 independent of s, j, and N such that

“\ijllo 5.C3”1PW”0 ( J= 0,,.,,N-], lpo = ¢ )o
= 201 " .
Set C; = max (CoC3, CoC'Css CoCaCas CoCoC" ). Then it follows

from (5.15), (5.17) and (5.18) that
(5.19) [|A <D sowl|  <Cq ||ANoPwl| + Nf]cj N1 N3 gpu |
y by U WG <4y liAgY 07 4T E s 0

+ SN el + lwllg )

if s log <n> ;C]N on supp W .

From this we obtain (5.12) if slog <n> 2C4N on supp w because
J N | A -Jwallo iHA \J;Pwll0 . . We can remove the assumption
s]og <> >='C]N on supp w . In fact, if s log <n> ;C]N on

supp w it follows from (5.6) that the estimate
"'N'*‘] A § N ~ N 5 [ N
I8¢ <Dy>ewllg < C5(C{N)) As<Dx>wl_]0 ;COC3(C]N) ||Pw[|0

holds for some constant C:'3 independent of s, j and N‘.

Taking Cq such that C] P4 COC:'3 furthermore we can complete the
proof of the lemma. Q.E.D.
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Lemma 5.3. Assume that coefficients of P are independent
of y. Let s>1 and let W, ¢ and ¢ be the same as in
Lemma 5.2.  Then there existsapositive number <t ( <1/3)

independent of s and a constant C(¢,p) such that
ST
(5.20) 11D >""<D,>amll g <Cls,9) (Il <D > wPull,
tlipwll + wllg)-

Proof. It follows from (5.12) that for any integer N > 0

| 222N 2.
(5.12)" 13 <0 ol § < 8511 RSuPull g + 263
h J - | P + o . . 2N+2 !
where | wlh) ||w||0 . Multiplying both sidesby < (2N+2)

2N

for 0 <t <1/3 and using the stirling formula N ;zeZN(ZN)!we have

| sy 2N+2 L
(5.21) ”%Sg)ﬂ_rl | <Dy >¢w| dxdn
cN+c) !

fin

1S\ 2N n
8c 2 IJ ( log <n>7) Iwalzdxdn
(2N)!

2

)N 2 N=1,2,....,

2
+ 2c] (Tc]

N ‘
where Pw denotes the Fourier transform of Pw with respect to .

Let Iy denote the right hand side of (5.21). Multiplying both

sides of (5.12)' by 12N+]/(2N+1)! again , we also see that
J[(]og ™) > g% dudn /(201)1 < I

because we have log<n>° > 1 by means of M >3 . Hence we have
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- 2N+1 1Sy 2N+2
Tog <n>™) (log <n>) ~2
@L__________ + Alog<n> ) .
(5'22)” (2N+1) ! (aneg)r < Dtwl dxdn < 2Ty

Note Zo(log > T)Mml = <>>7 and take 1 small enough such
m=

that  <Cje < 1. Then, summing (5.22) with respect to N = 1,2,...

we obtain (5.20) because it follows from Lemma 5.1 that
2 S\m ~ 1.2 ’
JJ zo(log > T) |<Dx>¢w{ dxdn/m! 1is estimated above by the :constant
m: .

times of Jz. Q.E.D.

Assume that coefficients of P are independent of y. Since
t 1is independent of s we can choose s > 1 such that ST = K-
= 1/3. For s chosen above take M, of Lemma 5.1. Then,
since [[<D,>¢w||  is estimated above by C( H<Dy>K<DX>¢wM0-+

<0 ullg) it follows from (5.20) and .(3.6) that
I <Dawll < COllwPw]l - +I[Pwllg+I[[Pullg+lully)

holds with w defined by (5.4) with M 2 M. Since 1 - hM(Dy))F
€ §7° and P is microlocally elliptic on supp (1 - f) it is

easy to see that

((5.23) [0-Fullyy, + IO full

@, N
+|IIPfull . +[10P.hyIfull - <CUIPullg +[lullg)s u e ColRT).
By means of above two estimates we obtain
(5.24) <0 0w Il < CCllwPv Il + IIPullg+ llullg)

which shows that.(5.2) holds. Indeed, (5.2) follws from (5.24)
with ¢ replaced by D§"¢ (laf =1).
From now on we shall consider the case when coefficients of

P depend on y.



Lemma 5.4. There exists an integer my > 0 depending only on
the dimension n of. (x,y) variables and satisfying the fo]]ow1ng
For a fixed integer N > 0 take a sequence { v }j=1 C CO(R ")
in the proof of Lemma 5.2 such that the integer %9 of (5.13) is
sufficiehtly larger than my- Then, there exists a constant C4

independent of j and N such that for any s > 1 the estimate

- ~k ] 2
(5.25) ”[P’As]"pjw”() ;C4N(||<Dx>Asij|IO+llg(x /

D >A s¥s W”o
+ (M2 Il + €N O]l 7¥n ]
4 s'j "0 "4 s M -1
Jok € {0,150 0N s wg =6 5 Yy =¥

holds with w defined for u e CS(R") by (5.4).

Proof. Since each term of (5.25) has a common devisor sk

it suffices to show it when s = 1. Take a symbol f(£,n) in S? 0

.such that
f=1" on supp f
supp £ < { [g]l<3[nl} O {|g]+|n] > 1/3].
Note
- -kzvk -k ~k
[P, A ]w w = [P, A ]A fA]w W+ [P, A]]A] (1-f)¢ X1ﬂ\]hMu
= QR%ij + RK%hMu s
and set

¢2(n's%,y,€.m) = (Togen'>)*p(x,y,€.n) ( Tog <n>) *F(e,n).

36



37

Then we have the expansion of the symbol of Q

(5.26) o(Q) =- 7 3%*(log <) )0%(x,y, €,n) ( Tog <n>) XF(z,n)/al
1 2 .
_ (1-8) _ -iz-¢-
3|Y|Z3J.0 y! { % JJ ©

aﬁTD;qO(n+ec,x,y+z,a;‘ﬁ")’dzdc') de

= q] (Xsy’gsn)_ + qz(xaysgsn)-

It is clear that ||q1(x,y,Dx,Dy)ij§wH0 is estimated above by the
_first three terms of the right hand side of (5.25) with s =1 .

If qz(x,y,g,n) denotes the symbol of qz(x,y,Dx,Dy)wj(x")x](x,DX,Dy)
0 1 g and in view of (5.13)

we see that semi-norms of 52 defined by

f(Dx,Dy) <Dx’Dy> then we have g, €S

O = max sup (13,2 oy | alen) 1218

E
20 Jal+lelzr p2n

( Z = 0,],2,...,.?,0-271 )

L+2n

. are estimated above by CZN , Where Cz is a constant inde-

pendent of N. Then it follows from Theofem 1.6 of Chapter .7
~ -1~k . .
of [3] that Iqu(x,y,Dx,Dy) <Dx’Dy> 1A1hM(Dy)ulb is estimated
above by the fourth term of the right hand side of (5.25) with
s = 1. By noting iheueXpansion of fhe éymbo] of R we can easily

see 1IRR$hMUH0 s estimated above by the same term. Q.E.D.



] be the same as in

Lemma 5.5. Let Mys ¢s ¥ and. { w }N
Lemma 5.4. Then for any s > 1 there exists a constant Cg = C5(4,9)

independent of s, j and N such that the estimate

Il ~k+2 1/2

(5.27) P w[]0+ ||A <Dx>¢ W[ g+ ”A g(x') <Dy> leW”o

O” k+1

< C [[Phgusull+ N hall 1) >

j’ke{OS"',N} ’q}0=¢ ’wN=w b

holds for w defined by (5.4) with M ;=Ms , where Ms is a constant

independent of N and j.

Proof. By setting u = Kiij in (3.6) we have

1/2

“k 2 '
(5.28) ”<Dx>As¢jw“0 + [lg(x") <Dy> i ¥ wHO

~k ~k ~k 2
§=C(Re(PASij, As?jW) + HASijHO )

<k+1

;C(RE(PT\E—]ijw’ A \P-W)

s

b Re([P, 135 B, Ky ) + 11i9,l O)

Here and in what follows we denote by the same notation C different

constants independent of s, j and N . Note
~ 4~=1~k
[P.aq 10y Agwsw

s ynelzk ol Lk
= [P,y 1A fAstpjw+[P,A]v]A] (1--f)¢jx]_fAshMu .

- n ik ~k
= QoAg¥;W + RoAghyu - 3

where f is the .same as in the proof of Lemma 5.4. By noting



the expansion of c(Q0 ) as (5.26) we see that

N ~k 1 2
llaghgesully < CCIIDAgumlly+ llg(x)"
m
~k
N O |25 nul ok

Similarly we obtain

Mo\ ~k
| Rgifhyully < O O [ RShyull
Consequently, for any u>0 and some constant Cu we
(5.29)  Re([P.E;Ti7 B aws K% W)
) 221 s3]
< ul ko oropll  +llg(x)/2<n > Ko il 2
0 2
e c (N0 Al + 1Al ).

<D >A ‘P W”o

obtain

It follows from (5.28) and (5.29) that for any u>0 there

exists a constant CL such that
- 2 12 - k. oy 2
ko> asvgullg +lla(x') 2 b > agupulg

<

~k+ , k- 3
&8 Tyl &+ o CIPEE w113

~k 2 0
+”As¢jw”0 ] “A hMu“ ]
( cf. (5.9) ).

From this we obtain (5.27) with k replaced by k-1

k+1

1 ~k 2 2
L IRSlZ 2 (7201 Ry w2

because we have

if Ms is large enough. Q.E.D.
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Lemma 5.6. Let My-s ¢ and ¢ Be the same as iﬁ Lemma 5.4.
Let s >1 and Tet w be a function defined for u e CS(R") by
(5.4) with M > Mg, where M. s the Same as in Lemma 5.5.
Then , there exists constant C; = C](¢,¢) and Cg =

C6(¢,¢) independent of s such that for any integer N > 0

~N+1 <N .
(5.30) [lag <D >ewll <2C, A wPwlly

N+] N
AW Pl + Nully)

ma+1
o™ N
+ CN s NI || uHO
Proof. For a fixed N > 0 assume that slog<n> > 2C,4CeN

on supp W. Then it follows from Lemmas 5.4 and 5.5 that

(5.31) N7, wllg < 1720 PRyl + o O 2K Tl

because we have 2C,C Nllﬂkw w| |lAk+]¢ w[ln and we may assume
4~5 s'j "o 0

Cs > 1. Erom (5.31) we have

k+1
||

~k ~k
(5.32) ||P1\sq;jwu0 <2 ||A5ijw||0 '+ ZCN u]| -1

By the similar way as in the proof of Lemma 5.4, it is easy to see

1 lZ]IIEP(“),XEJwJ-WIIO < oI Aol N Ol Kl
(5.33) ¢ 1417

) ZJI[P(“),A';]ijIIO < o O nll
In view of [P,wj] = Y ) wJ(a) ( )/u

0< |a] <

, it follows from (5.13)
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and (5.33) that the estimate
~N_j
(5.38)  [IagTPwsTug,qully
" 2 ~N'j " ~N'j
;(C4N) ”AS ‘Pj.}.]wno + C4N“As <DX>‘1’j+]W“0

m
[1 O ~k
+ 04 N ||AShMul|_]

holds in place of (5.16). Then, by using (5.32) and (5.27) ( instead
of (5.6) ), we can obtain (5.30) as in the proof of Lemma 5.2 because

it follows that
L "
CIN (IR Ihyull ;< INAghyull

~N -1
;HAS <Dy> hMu ”0
-
< sl
if slog <n> ;=C]N on supp u s

where J is the Fourier transform of u with respect to y .
When slog <n> < C;N on supp u the estimate (5.30) is obvious.

Q.E.D.

Ag—}n Ehe prdof of Lemma 5.3 it follows from Lemma 5.6 théf we

have

(5.35) || <D, >"<D >awlly <Clo,0) (Il <D >*"wPull g + [IPullg + [lullg )

because we have, in view of st =« = 1/3 ,

o  2m.+2
N
N=0

st 2Nt < o

From (5.35) and (5.23) we also have (5.24) when coefficients of P
depend also on y. Since (5.2) follows from (5.24), we have

completed the proof of Lemma 3.6.
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