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List of Symbols

AR rudder area

AR/Ld rudder area ratio

aR' non-dimensional factor representing lateral force induced by
reversing propeller

a__,a thrust coefficients in speed equation

nn’ nv .

L LY damping coefficients in speed equation

B breadth of a ship

Cb block coefficient of a hull

Cl’ C2 parameters of non-dimensional effective thrust ( Jé}O )

C3’ C4, C5 parameters of non-dimensional effective thrust ( JS<0 )

D diameter of a propeller

d draft of a ship

FN rudder normal force

f frequency in Hz

qx(x)' gradient of rudder normal force against attack angle in open water

H height of a rudder

Izz yaw moment of inertia of a ship

Jzz added yaw moment of inertia of a ship

JS apparent advance constant ( = V/nD )

Jso apparent advance constant at steady straight-running ( = VO/nOD )

JsRo apparent advance constant at initial stage of crush-astern
(=V,/n,D)

Jst apparent gdvance constant where propeller-thtrust stalls
at reversing condition

K steering quality index ( static amplification factor, rudder to
yaw rate )

Ky thrust coefficient ]

K steering quality index K at straight running

k jincrement factor of rudder inflow velocity induced by propeller

L length of a ship ( = Lpp)

1R distance between rudder and center of gravity of a ship

1P distance between pivoting point and center of gravity of a ship

1r yaw damping lever

1S sway damping lever

Ig rudder force lever

m mass of a ship

m, my added masses of a ship, longitudinal and lateral respectively
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N hydrodynamic yaw moment acting on a ship

N Né, Ng non-dimensional linear derivatives of hydrodynamic yaw moment

3
r with yaw rate, sway angle and rudder angle respectively

No hydr?dynamic yaw moment induced by reversing propeller on straight-
running

n prépeller revolution per second in general

ngy reversing propeller revolution at crush-astern

n; idlihg propeller revolution

n* ordered propeller revolution

pitch of a propeller
radius of turning path of a ship

total drqg of a ship at steady straight-running

R; dfag component dependent on rudder angle

T yaw rate- ( identical with ¢ )

T yaw acceleration

S wetted surface of a ship

SS ship's travel after propeller reversed ( i.e. crush-stopping
distance )

s propeller slip ratio ( = 1- (1-w)V/nP )

So propeller slip ratio at steady straight—running ( = 1—(l-w)V0/nOP )

T steering quality time constant, 1-st order system approximation

Tl’ T2, T3 steering quality time constants of a ship

TE time constant of a steering gear

TEe effective time constant of steering gear

Tn time constant of a main engine

t time

tg crush-stopping duration

Up propeller inflow velocity

UR rudder inflow velocity actuated by a propeller

URe effective rudder inflow velocity

UReo effective rudder inflow velocity at steady straight-running

URo rudder inflow velocity at s=0

u forward velocity of a ship

v ship speed ( = 7u2+v2 )

Vo ship speed at steady straight-running

VR relative ship speed to target

VT target ship speed

v sway velocity of a ship
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effective wake fraction at propeller position
effective wake fraction at rudder position
longitudinal hydrodynamic force

second-order derivative of longitudinal hydrodynamic force
with respect to sway velocity and yaw rate

second-order derivative of longitudinal hydrodynamic force
with respect to rudder angle

coordinate fixed to the longitudinal direction of a ship
lateral hydrodynamic force acting on a ship

non-dimensional linear derivatives of lateral hydrodynamic
force with yaw rate, sway angle and rudder angle respectively

lateral hydrodynamic force induced by reversing propeller at
straight-running

lateral deviation at crush-stopping

coordinate fixed to the lateral direction of a ship

non-linear damping factor

effective rudder inflow angle

sway angle ( = ~sin"1(v/V) )

rudder angle

half a spiral loop width

bl

wheel advance angle of an electro-hydraulic steering gear (=TEWémax
ordered rudder angle

maximum time rate of a steering gear

aspect ratio of a rudder ( = H2/AR )

density of water

density of air

phase compensation required to stabilize steering ship
heading angle of a ship

relative wind direction

heading angle of a target ship

frequency in rad./sec

empirical constant expressing the interaction between rudder
normal force and lateral hydrodynamic force acting on a ship

thrust deduction

subscript denoting the force and the moment of a bare hull
subscript denoting the force and the moment of a hull with rudder

subscript denoting the increment of the force and the moment
induced by propeller actuation
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Typical non-dimensional

Quantity Typical Symbol
form
P2
mass m m'=m /_EL d
. . ! p. 4
moment of inertia 1 . =1 /[—L'd
zz zz “zz' o
force ! Y Y' =Y /%;Ldvz
' |
* p 2
\ Y Y, = YO/-Z—Ld(nD)
moment N N' = N /é;deVZ
* p .2 2
NO NO = No/'-z—L d(nD)
1]
hydrodynamic lever 1r lr = 1r/ L
yaw rate T r' = ( L/V)
time t t' = t/( L/V)
time constant T T' = T/(L/V)
?
distance Ss SS = Ss/ L
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Table 1.1 Principal particulars of ship models A,B and C

e ———————————— e ——— e ——————————————————

MODEL A B c
( uLce) (uLce ) (CONTAINER)
M.NO. 304-M 277 328

HULL

L (m) 4.000 4.400 4.000
B (m) 0. 800 0.793 0.587
d  (m 0.293 0.283 0.208
v (md) 0.769 0.822 0.277
C, 0.820 0.83] 0.568
1, () -3.10 2.94 2.00
L/B 5.00 5.55 6.81
B/d 2.73 2.80 2.83
¢, /(L/B) 0.1640 0.1497 0.0834
RUDDER

An/Ld 1/55.0 1/53.3 1/50.0
A :ASPECT RATIO 1.333 1.335 1.598
PROPELLER

D (mm) 96.9 120.6 ©150.0
P/D 0.607 0.667 1.000
E.A.R 0.720 0.651 0.700

z 5 (RIGHT) 5 (RIGHT) 5 (RIGHT)
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Table 2.1 Increment factor of rudder inflow velocity
induced- by propeller.

e et

k
MODEL A 0.572
MODEL B 0.635
MODEL C 0.562
Shiba's Experiment 0.53

behind propeéller
( reference 22 )
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Table 4.1 Parameters for simulation of ship models A,B and C.

——_—__—'——_—————_—_——___—___———=

MODEL | A B c

m' (<2C,B/L) 0.328 0.300 0.167

m'+m; 0.358 0.324 0.173

1; 0.5 0.5 0.45

X (=R./CLdv®)  2.30x1072 2.12x1072 1.46x10"°

vy t'o

Xy (=R6/ngV2) 2.88 2.74 2.25

1-w 0.37 0.36 0.67

54 0.79 0.76 0.43

C, 0.245 0.260 0.485

¢, 0.175 0.125 0.336

C, -0.21 ~0.22 -0. 335

¢, 0.20 0.21 0.51

Cs 0.06 0.06 0.19

Jet ~0.70 ~0.75 ~0.60

al, 6.43x10"2 6.55x1072 8.44x10"2

a;r 0.720 0.723 0.596

aéé (0<Jg ) 0.146 0.156 0.260
( 9<0) o : 0. : 0. \

a;n (0<J, ) 0.62x10 1.40x10” 2.13x10”
(Jg¢<de< 0) =0.54x107°  -1.19x107>  -1.47x107*
(" 3<dg)  0.16x107° 0.33x10™° 0.83x107%

an, (0<d. ) -lesaot  2arxaot -3.0ax1073
(Jst<JS< 0) 0. . . . . »
(7 9<dg,)  2.15x107 4.15x10" 5.98x10

KA/T! 0.57 0.52 0.96

Ko -14.2 -14.9 2.09

T! -24.9 -28.6 2.14

o' (rad?) -90.8 -106.  25.7
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Table 5.1 Parameters for simulation of a fully loaded
ULCC.
FULL SCALE 1/80.7 SCALED MODEL
( MODEL B )
m'  (=2C,B/L) 0.300 0.300
m'+my 0.324 0.324
' (=R, /PLdV® -2 121072
X}y (—Rt/éLdV ) 1.00x10 2.12x
(=R /P gyl
Xjs ( R6/2Ldv ) 2.47 2.74
T-w 0.52 0.36
S, 0.51 0.76
o 0.30 0.26
C, -0.222 -0.125
Cq -0.24 -0.22
Cy 0.37 0.21
Cs 0.07 0.06
et -0.506 -0.75
ay, 3.09x10‘2 6.55x1o'2
- 0.273 0.273
a' 0.143 0.159
88 5 _5
ay (09 ) 1.60x10 1.14x10
(Jg, I, 0) _1.28x107° -1.19x107°
(3 d) 0.38x107° 0.33x107°
. -4 -4
apny (0 JS ) -4.34x10 -2.47x10
(Jgp Ig 0) 0. y 0. »
( Jg Igt) 7.24x10 4.15x10
Ke/T* 0.50 0.52
K -11.9 -14.9
T -23.8 -28.6
o' (rad_2 ) -109. -106.
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Table 5.2 Parameters for stopping simulation of a ULCC
at various load conditions.

LOADING

e BALLAST-1 BALLAST-TI FULL
¢ (m) 11.04 11.34 22.9
trim (3L ) | 1.29 0.72 0.
by the stern

1/D 1.15 0.58 1.62

C, 0.746 0.788 0.831

B/d 5.80. 5.64 2.80

m’ 0.269 0.284 0.300

m'+m! 0.278 0.293 0.324

X, 1.40x1072 1.40x1072 1.00x1072

C, - ; 0.30

C, ] ; ~0.222

C, ~0.24 -0.19 ~0.24

c4 0.37 0.29 0.37

Cs 0.067 0.053 0.067

al, 5.06x10™2 4.79x10"2 3.00x1072

al (0<d ) - ; 1.60x107°
(J t<JS 0) -3.10x107°  -2.26x107°  -1.28x107°
(7 9y 0.87x107° 0.63x107° 0.38x107°
Jlo<d ) - - _4.38x107"
(J <9<0) 0. 0. 0.
(1 9<dg)  1.75x107° 1.27x1073 7.28x10""




Table 6.1 Principal particulars of E-series models as employed in the present
ship simulator studies.

MODEL NOMINATIONS E50- S E40- S E25- S E10- S E5- S

|

-0 -0 -0 -0 -0
-5 -5 -5 -5 -5
-10 -10 ~-10 -10 -10
-25 -25 -25 -25 -25
HULL
L (m) 300. 240. 150. 50. 25.
B (m) 50. 36.92 21.43 8.33 4.55
d (m) 20. 14.77 9.32 3.33 1.82
A (M-T) 246,000. 107,320. 18,417. 1,068. 159.
Cb 0.8 0.8 0.6 0.75 0.75
L/B 6.0 6.5 7.0 6.0 5.5
B/d 2.5 2.5 2.3 2.5 2.5
RUDDER
AR/Ld 1/60 1/60 1/60 1/45 1/40
A 1.5 1.5 1.5 1.5 1.5
PROPELLER
D (m) 8.0 6.5 5.0 2.0 1.0
P/D 0.65 0.65 1.0 0.75 0.75

D/L 1/37.5 1/36.9 1/30. 1/25. 1/25.

148}



Table 6.2

ship simulator studies.

MODEL NOMINATIONS

Characteristic coefficients of E-series models

as employed in the present

-S F40- S E25- S E10- S E5- S
- 0 - 0 - 0 - 0 - 0
-5 -5 -5 -5 -5
-10 -10 210 -10 -10
-25 _25 -25 _25 _25
m'+m! 0.286 0.262 0.186 0.267 0.294
X, (CS/Ld) 0.952x10™2 0.916x10 0.605x10" 0.934x1072 1.061x1072
XL 1.76 1.68 2.62 1.60 1.68
T-w 0.60 0.60 0.80 0.63 0.60
s, 0.459 0.43 0.352 0.34 0.429
C, 0.334 0.339 0.315 0.349 0.287
C, ~0.308 ~0.313 -0.252 ~0.295 ~0.230
C, -0.267 ~0.271 ~0.252 ~0.279 -0.230
C, 0.513 -.522 0.420 0.490 0.383
Cs 0.089 0.070 .084 0.093 0.077
Iey -0.433 -0.433 -0.500 ~0.474 ~0.500
. 3.33x1072 3.49x1072 3.39x1072 3.50x1072 3.61x10™2
N 0.761 0.749 0.666 0.777 0.768
als 0.103 0.107 0.205 0.133 0.143
Lo(0<d ) 1.77x10 2.26x10 7.02x10 1.00x10™% 6.88x10
(Jpsd <0 ) -1.42x107° -1.81x107° -5.62x107° ~8.03x107° -5.58x10"°
( 9g<dgy) 0.47x107° 0.47x107° 1.87x107° 2.68x107° 1.85x107°
al (0<d ) -6.13x107% -7.72x107% -1.69x1073 ~2.12x1073 -1.38x1073
( Jg<dgy) 1.02x10-3 1.29x1073 2.81x1073 3.52x107% 2.30x1073

STT



Table 6.3 Ship speed and propeller revolution at steady running of the E-series models.

MODEL NOMINATIONS ES0- S E40- S E25- S E10- S E5- S

-0 -0 -0 -0 -0
-5 -5 -5 -5 -5
-10 -10 -10 -10 -10
-25 -25 -25 -25 -25
rpm  knot rpm  knot rpm  knot. rpm  knot rpm  knot

(ops )(m/s ) (xps )(m/s ) (xps )(m/s) (rps)(m/s) ( rps )( m/s)

96.0 14.58 112.5 14.58 138.8 18.20 240.0 12.15 420.0 9.72

Nav.F (1.60) (7.50) (1.88) (7.50) (2.31) (9.38) (4.00) (6.25) (7.00) (5.00)
76.8 11.66 90.0 11.66  111.1 14.60 192.0 9.72  33.0 7.78
hab.F (1.28) (6.00) (1.50) (6.00) (1.85) (7.50) (3.20) (5.00) (5.60) (4.00)
61.4 9.33 72.0  9.33 88.8 11.66 153.6 7.78  268.8 6.22
H (1.02) (4.80) (1.20) (4.80) (1.48) (6.00) (2.56) (4.00) (4.48) (3.20)
46.1 7.00 54.0 7.00 66.6 8.75 115.2 5.83  201.6 4.67
S (0.77) (3.60) (0.90) (3.60) (1.11) (4.50) (1.92) (3.00) (3.36) (2.40)
30.7 4.67 36.0 4.67 44.4 5.83 76.8 1.89  134.4  3.17
D.S (0.51) (2.40) (0.60) (2.40) (0.74) (3.00) (1.28) (2.00) (2.24) (1.60)
0. 0. 0. 0. 0. 0. 0. 0. 0. 0.
STOP
- - - - -44.4 - -76.8 - -134.4 -
D.S.A (-0.74) (-1.28) (-2.24)
-30.7 - -36.0 - -66.6 - -115.2 - -201.6 -
S A (-0.51) (-0.60) (-1.11) (-1.92) (-3.36)
-46.1 - -54.0 - -88.8 - -153.6 - -258.8 -
H.A (-0.77) (-0.90) (-1.48) (-2.56) (-4.48)
-61.4 - -72.0 - -111.1 -192.0 - -336.0 -

EA (-1.02) (-1.20) (-1.85) (-3.20) (-5.60)

9Tl



Table 6.4 Non-dimensional coefficients in yaw equation of E-series models

MODEL NOMONATIONS E50- S E50- 0 E50- 5 E50-10 E50-25
F40- S F40- 0 E40- 5 E40-10 E40-25
E25- S E25- 0 E25- 5 E25-10 E25-25
E10- § E10- 0 E10- 5 E10-10 E10-25
E 5-5 E5-0 E 5- 5 E 5-10 E 5-25
28, : SPIRAL LOOP WIDTH  STABLE 0° 5° 10° 25°
K' 1.6 % -2.24 -1.30 -0.60
T 3.2 w -4.48 -2.60 -1.20
T 0.35 0.35 0.35 0.35 0.35
TS 0.60 0.60 0.60 0.60 0.60
o' ( rad ?) 0.30 o -15.4 -11.6 -8.70
T ( sec ) 2.5 2.5 2.5 2.5 2.5
|émax|( deg/sec ) 3.0 3.0 3.0 3.0 3.0
ap/TiT 0.024 0.024 0.024 0.024 0.024

CONSTANT

LTI



Table 6.5 R.M.S.and frequency band of external noise as applied
at the present ship simulator studies.

"

p——
—_—

EXTERNAL NOISE N5-1 N5-2 N10-1 N10-2 N25-1 N25-2 N50-1 N60-2 N50-3
NOMINATIONS
v &ﬁ (deg/s) 0.40 0.20 0.22 0.11 0.092 0.046 0.050 0.025 0.008
TH ( sec ) 0.796 0.971 1.305 1.592 2.228
TL ( sec ) 1.592 1.942 2.610 3.183 2.228
SHIP MODEL E5- S E10- S E25- S E50- S E50-10
APPLIED -0 -0 -0 -0
-5 -5 -5 -5
-10 -10 -10 -10

-25 -25 -25 -25

811
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Fig. 1.1 Co-ordinate system,



MODEL A

Lop 4.000 m Ag/Ld : 1/55.0
B : 0.800 m D : 0.09655 m
d 0.293 m
v : 0.769 m
¢, : 0.820
\\\\ N _LW.L.
== & \ =

AP 14 | 93 FP

Fig. 1.2 Body plan and bow and stern profile of model A.
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MODEL B

Lop 4.400 m Ap/Ld : 1/53.3

B : 0.793m v D : 0.1206 m
d 0.283 m

vV . 0.822 m3

C, : 0.831

\

Fig.

NN\

9% FP

1.3 Body plan and bow and stern profile of model B.
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MODEL C

Lyp ¢ 4:000 m Ag/Ld 17500

B : 0.587 m D : 0.1500 m
d 0.208 m

Vo o0.277 m

C, : 0.568

' 4
AP 1Z! 93, FP
Fig. 1.4 Body plan and bow and stern profile of model C.

A
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ship model —=

1-t)T = Wt - Fx : effective thrust

Fx : towing force

’Rt : resistance of hizli

Fig. 1.5 Definition of effective thrust.
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\\
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MODEL B | a-07/1
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13,7 , .
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A 7.0 &%\Q
v 4.7 -~ ‘V\ v
RNy ). =Y
1 L 1 Ny S nD
-2 _1 1 2‘\\
‘ e
rd
Ve
A/‘, i"‘" N ‘F-o'z ® N=-10.0
) : =-10.0 rps
/ =
7’
‘ 1 2
MODEL C r a-7/po*n
g N=14.0 rps 9.4“;
10.4 .
o0 7.0 ’ibi;*; V: SHIP SPEED
A 4.0 -
\"4 1.5
V.
é | Q%\% 1 JS-WD
- -1 0 T "y 2
{ . ~
. 4 &5""-..-@4 f
/ ® N=-10.0 rps A
\ /4 ‘4 —80
A - B - 6.0
"' . A - 4.0
/ 1 -0.8 v - 3.0
V4 |

Fig.1.6 Measured (l—t)T/pD4n2

’

. STRAIGHT LINE APPROXIMATION

models A, B and C.
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A

MODEL A Y’

’ n
O : n=24.0 rps _0.04 ; e
o : 180 p
A 120 y4
% WITHOUT PROPELLER V4
A : n=- 8.8 rps o
m: -11.0

V=0.60 m/s

P

J

p|

10°

SWAY ANGLE :

| 0.01

0.02

Fig. 1.7 Lateral force and yaw moment versus sway
angle B at various propeller slip, model A.



MODEL B Y A///

: n= 18.0 rps -
15.0 ’
10.0 y

: WITHOUT PROPELLER

: n=- 8.0 rps
-16.0 0.02

- opXDOO

V=0.80 m/s

P

1

10°

10°

SWAY ANGLE :P

/ -0.02

Fig. 1.8 Lateral force and yaw moment versus sway angle B
at. various propeller slip, model B.
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Y!
0.1
MODEL € i }(
/
:n= 7.0 rps,V=0.60 m/s //
7.0 0.90
7.0 1.50

: WITHOUT PROPELLER
: n=-4.0 rps,V=0.90 m/s

-10.0 0.90

eP»pXPOO

SWAY ANGLE : P
1 1 1

L
-20° 10° 20°
P
L ]
-20° 20°

-0.02

Fig. 1.9 Lateral force and yaw moment versus sway angle B
at various propeller slip, model C.
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MODEL A -Y’
O : n=24.0 rps - 0.04
a: 18.0
A 12.0
X : WITHOUT PROPELLER
A : n= 8.8 rps
o
//
A +—

40°

Fig.

1

.10

400
RUDDER ANGLE :§

| -0.01

u4102

Lateral force and yaw moment versus rudder
angle & at various propeller slip, model A.
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MODEL B ' =Y’
O : n= 18.0 rps F0‘04
O: 15.0
A 10.0
X : WITHOUT PROPELLER
A: n=- 3.0 rps
®: -16.0 | 002

RUDDER ANGLE: §

Fig. 1.11 Lateral force and yaw moment versus rudder
angle 8§ at yvarious propeller slip, model B.



MODEL C

O : n= 7.0 rps,V=0.60m/s
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Fig. 1.12 Lateral force and yaw moment versus rudder
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Fig. 6.8 Crush-stopping distances and durations of E series
models.
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