
Title
Studies on Mathematical Methods for Asset
Allocation Problems with Randomness and
Fuzziness

Author(s) 蓮池, 隆

Citation 大阪大学, 2009, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1774

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKAThe University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka



Studies on Mathematical Methods for  

Asset Allocation Problems with  

Randomness and Fuzziness 

 
 
 

 
 

 
January 2009 

 
Takashi HASUIKE 



Studies on Mathematical Methods for  

Asset Allocation Problems with  

Randomness and Fuzziness 

 
 
 

Submitted to 

Graduate School of Information Science and Technology 

Osaka University 

 

January 2009 

 
Takashi HASUIKE 



 

Preface 
 
 

Until now, in order to deal with uncertainty in the sense of the mathematical programming, many 
studies with respect to stochastic and fuzzy programming have been performed. Stochastic 
programming is a field of mathematical methods to deal with optimization problems under 
uncertainty expressed by the stochastic fluctuation. The application areas of stochastic programming 
include many fields (inventory, finance and marketing, etc.). In the real world, production companies 
and financial institutions consider the appropriate allocation such as funds, human and product 
resource, production time, facility location, etc.. Then, optimizing the asset allocation is one of very 
important decision makings in order to maintain growth and development of corporate activities. 
However, while the decision of asset allocation may create significant future profits, it may have the 
possibility of greater loss in the case that decision makers mistake to it. Therefore, there exist a lot of 
mathematical researches with respect to the asset allocation until now, and they greatly contribute to 
the rational decision of optimal asset allocation. Most recently, such as the bankruptcy of major 
financial institution, inflation of production price and the wild ups and downs of financial markets, 
there are various uncertain conditions that it is hard to predict future production price, customer’s 
demand and economic trend. Under such uncertainty, the importance maintaining the stable 
economic growth with the future risk-aversion is re-acknowledged. 

On the other hand, with respect to the ambiguity such as lack of reliable information and decision 
maker’s subjectivity, they are assumed to be rather fuzziness than randomness. The centre of social 
behavior such as economy, investment and production is human behavior, and so it is obvious that 
psychological aspects of decision makers have a major impact on social behaviors. Then, it is also 
clear that some factors in historical data include the ambiguity. Therefore, in order to represent such 
ambiguity and subjectivity, a fuzzy number was introduced in some previous researches. The fuzzy 
number is roughly a number to represent the degrees of attribution and preference to objectives 
directly. Thus, the concept of fuzzy number is different from that of random variable. Many previous 
researches were dealt with random variables or fuzzy numbers in mathematical programming 
problems, separately. However, practical social systems obviously weave such randomness with 
fuzziness. Therefore, in the case that decision makers consider the present social problems as 
mathematical programming problems, they need to consider not only randomness but also fuzziness, 
simultaneously. 

In this thesis, we describe several types of asset allocation problems under randomness and 
fuzziness. In Chapter 2, we introduce the basic theory of stochastic and fuzzy programming. With 
respect to the stochastic programming, we mainly focus on the four deterministic programming 
problems, E model, V model, probability fractile optimization model, and probability maximization 
model. With respect to the fuzzy programming, we mainly focus on the possibility and necessity 
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programming. By introducing these programming approaches, we can solve stochastic and fuzzy 
programming problems analytically. Furthermore, considering both randomness and fuzziness 
simultaneously, we introduce fuzzy random variable and random fuzzy variable. Based on these 
programming approaches, we develop the analytical and efficient solution methods for various asset 
allocation problems in the following chapters. 

First, we focus on the portfolio selection problem which is one of most important problems in 
finance and investment fields, and combined probability and optimization theory with the investment 
behavior. It is one of the most important problems in stochastic programming, and since portfolio 
theories have focused on risk management under random and ambiguous conditions, they play an 
important role as the basis of the various social problems for the risk-management. Thus, in the field 
of portfolio selection problems, researchers have studied models that include uncertainty, and have 
proposed efficient and versatile models of appropriate risk management. Furthermore, recently, some 
researchers have also considered applying the portfolio theory to general mathematical programming 
problems such as the asset allocation in production processes and logistics. Therefore, stochastic and 
fuzzy programming based on the portfolio theory has become an important field to the mathematical 
programming from the view point of theory as well as practice. 

In Chapter 3, we propose new portfolio selection problems including random fuzzy variables. 
These proposed problems are initially not well-defined problems due to random and fuzzy variables. 
Therefore, we introduce chance constraint for the random fuzzy functions setting each confidence 
level of objects and constraints and introducing the fuzzy goals, and transform the original problems 
into the deterministic equivalent problems. However, since these problems are nonlinear 
programming problems, it is also difficult to solve them straightforward. Therefore, we manage to 
develop the analytical solution method by reducing to the previous efficient solution methods. 
Furthermore, in order to compare our proposed models with previous standard problems, we provide 
numerical examples, and show the efficiency of the proposed models under uncertainty. 

In Chapter 4, we focus on the large-scale portfolio selection problems. In order to solve them, we 
deal with the compact factorization for portfolio selection problems proposed by Konno. In this 
chapter, we extend various standard portfolio models using historical data to fuzzy portfolio 
selection problems. Then, we show that our proposed models are equivalent to original portfolio 
models in the sense of the mathematical programming. By performing the extension, the proposed 
models may be versatile to apply to various uncertain social conditions. 

In Chapter 5, we consider multi-scenario and robust portfolio selection problems. In the practical 
investment, investors receive a lot of information and predict the future return of each stock. Then, 
investors predict future returns envisaging various future situations such as a substantial fall or rise 
in stock prices, they usually assume not only one but several scenarios and expect a portfolio 
decision satisfying goals with respect to all scenarios. Therefore, we consider both randomness and 
multi-scenarios for future returns, and propose probability fractile optimization and probability 
maximization models for two situations; (a) the case that a decision maker sets a weight to each 
scenario based on statistical analysis of historical data and her or his subjectivity, and aggregate all 
objective function into one weighted function, and (b) the case maximizing the minimum aspiration 
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level among all the scenarios. Furthermore, in order to consider the case that the decision maker 
often does not assume each weight to be a fixed value due to uncertainty derived from a lack of 
reliable information and the subjectivity of the decision maker considering the robustness of the 
portfolio, but assumes them to include an interval to each weight. Coping with these situations, we 
propose robust portfolio selection problems. 

In Chapter 6, by extending the risk management methods used in the portfolio theory to 
product-mix decision problems, we propose new and versatile product-mix decision problems which 
are the most important problems in the manufactures. Particularly, applying Theory of Constraint 
(TOC) which plays an important role in the recent supply chain management, we propose several 
types of new product mix problems such as the reduction of uncertainty and the improvement of 
satisfaction of customers, workers, and decision makers. Furthermore, we develop the efficient 
solution method based on the linear programming approach by performing equivalent 
transformations to original problems. 

In Chapter 7, we consider the general 0-1 programming problems. 0-1 programming problems are 
one of the most important problems in practical management fields such as project selection 
problems, scheduling and facility location problems. However, there are few researches including 
fuzzy random and random fuzzy variables. Therefore, we propose new 0-1 programming problems 
including fuzzy random and random fuzzy variables. Furthermore, we propose the efficient strict 
solution method by combining a hybrid method with 0-1 relaxation problem and branch-bound 
method, and show the analytical efficiency comparing with previous solution methods. 

The proposed approaches in this thesis for asset allocation problems extend the previous standard 
models to more versatile models dealing with various uncertain practical conditions. We hope for the 
wide application of assets allocation problems and for the development of efficient analytical 
solution method to stochastic and fuzzy programming approaches. 
 
Osaka University                                                     Takashi Hasuike 
January, 2009 
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Chapter 1 

Introduction to Asset Allocation Problems under 

Randomness and Fuzziness 
 
 

In many asset allocation problems, the portfolio selection problem is one of the most important 
problems in financial and investment fields, and the various studies have been performed until now. 
As for the research history on mathematical approach, Markowitz (Markowitz [90]) has proposed the 
mean-variance analysis model. It has been central to research activity in the real financial field and 
numerous researchers have contributed to the development of modern portfolio theory (cf. 
Campbell.et al. [16], Elton and Gruber [31], Jorion [57], Luenberger [87]). The mean-variance 
model considers that the variance is assumed to be a risk factor and decision makers should 
minimize the total variance with satisfying the total profit more than the target value. This concept is 
same as the risk-aversion, and so the portfolio selection problem is also considered as one of the 
most important risk-management models. Furthermore, many researchers have proposed models of 
portfolio selection problems which extended Markowitz model; Capital Asset Pricing Model 
(CAPM) (Sharpe [108], Lintner [82], Mossin [94]), mean-absolute-deviation model (Konno [68], 
Konno, et al. [69]), semi-variance model (Bawa and Lindenberg [9]), safety-first model [31], Value 
at Risk and conditional Value at Risk model (Rockafellar [103]), etc.. As a result, nowadays it is 
common practice to extend these classical economic models of financial investment to various types 
of portfolio models. In practice, after Markowitz’s work, many researchers have been trying different 
mathematical approaches to develop the theory of portfolio selection. 

In previous many researches, future returns have been treated as only random variables, and the 
expected returns and variances also have been assumed to be fixed values in many previous studies. 
However, since investors receive effective or ineffective information from the real world, ambiguous 
factors usually exist in it. Furthermore, there are investors who absolutely believe in the predictive 
ability of historical data. Then, in the case that investors predict future returns envisaging various 
future situations such as substantial drop or rise of stock price, they usually assume not only one 
scenario but also several scenarios and expect a portfolio decision satisfying goals with respect to all 
the scenarios. Consequently, we need to consider not only random conditions but also ambiguity and 
subjectivity for portfolio selection problems considering possible uncertainty conditions. Until now, 
portfolio theories have focused on risk management under random and ambiguous conditions, and 
some researches have recently considered portfolio selection problems under randomness and 
fuzziness. Guo and Tanaka [41], Inuiguchi and Tanino [53], Tanaka et al. [111,112, 113] and Watada 
[119] considered the portfolio selection based on fuzzy probabilities and possibility distributions. 
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Inuiguchi and Ramik [52] considered a fuzzy portfolio selection problem and compared it with a 
stochastic programming problem. Vercher et al. [117] considered the fuzzy portfolio optimization 
under downside risk measures. Furthermore, some researchers recently considered more versatile 
portfolio selection problems under both randomness and fuzziness. Katagiri et al. [60, 61], Huang 
[49] have represented such conditions as the fuzzy random environment, and considered fuzzy 
random variables are related with the ambiguity of the realization of a random variable and dealt 
with a fuzzy number that the center value occurs according to a random variable. Thus, they 
proposed fuzzy random portfolio selection problems. Yazenin (Yazenin [120, 121]) has considered 
some models for portfolio selection problems in the probabilistic-possibilistic environment that 
profits from financial assets are fuzzy random variables. Most recently, Li and Xu [81] has 
considered a portfolio selection problems under the hybrid uncertain environment including several 
randomness and fuzziness. 

On the other hand, in previous portfolio selection models, the future return is usually assumed to 
be a random variable derived from statistical analysis based on historical data. Then, when a 
decision maker considers the case under randomness and fuzziness, she or he often assumes that the 
future return has ambiguous factors due to quantity of received information and her or his 
subjectivity is based on the long experience of the investment. Thus, the future return may be dealt 
with a random variable whose parameters are assumed to be fuzzy numbers based on the decision 
maker’s subjectivity. Therefore, in this thesis, we propose portfolio selection problems with each 
future return treated as a random fuzzy variable which Liu (Liu [83, 84]) defined. There are a few 
studies of random fuzzy programming problem (Katagiri et al. [58, 59], Huang [48]). Most recently, 
Huang has proposed a portfolio selection model including random fuzzy variables [47]. However, 
there is no study of the random fuzzy portfolio selection problem which is analytically solved and 
introducing a fuzzy goal considering decision makers’ intentions with respect to a target profit. 
Furthermore, we propose a bi-criteria random fuzzy portfolio selection problem including both goals 
of total future profit and probability fractile level to the target profit. In the real world, it is natural to 
consider maximizing the probability fractile level, just as maximizing the total profit. Therefore, this 
proposed model may be more versatile model applying to various investment situations than 
previous portfolio models. 
Thus, comparing with previous and recent researches of portfolio selection problems, it is clear to 
make advance in various mathematical and practical studies considering randomness and fuzziness. 
On the other hand, most production companies face many decision-making problems, such as 
scheduling, logistics, data mining, and resource allocation. Particularly, the product-mix problem, 
which considers the appropriate decision to the production amount of products, is one of major and 
important problems in production companies, and recently many researchers also have proposed 
various models focused on minimizing the total cost arising from the production processes of firms 
(for example, Letmathe and Balakrishnan [78], Li and Tirupati [80], Morgan and Daniels [93], and 
Mula et al. [97]). Then, some recent articles have elaborated on studies of production planning 
problems that include such ambiguous situations (Mula et al. [95, 96], Vasant [116]). Furthermore, in 
order to cope with such changes in the manufacturing environment, production companies need to 
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possess some degree of flexibility to remain competitive and profitable. Therefore, flexibility in 
manufacturing operations, particularly product-mix flexibility, becomes more important in order to 
respond more quickly to changes in the environment. It also makes it possible to deal with demand 
volatility. Since the study by Browne et al. [14] in classifying and distinguishing different flexibility 
types, many authors have provided different interpretations of flexibility types that are related to 
product-mix flexibility, job flexibility (Buzacott [15]), product flexibility (Browne et al. [14], Hyun 
and Ahn [50], Sethi and Sethi [107], and Son and Park [109]), process flexibility (Sethi and Sethi 
[107]), and product-mix flexibility (Berry and Cooper [11], Gerwin [35], Grubbström and Olhager 
[40], and Olhager [99]). Most recently, Gong and Hu [39] has developed a product-mix flexibility 
model that comprises labor flexibility, machine flexibility, routing flexibility, and information 
technology, with product-mix flexibility measured by an economic index.  

Furthermore, some researchers have also considered applying the portfolio theory to problems in 
production processes. Lau and Lau [74] considered the inventory control problem based on the 
mean-variance approach. Gan et al. [34] defined a new concept of supply chain coordination based 
on the Pareto-optimality criterion and the flexibility to adjustment of some parameters, under the 
condition that one or more agents are risk-averse, and proposed efficient solution methods for 
coordinating the supply chain. Choi et al. [21] focused on the mean-variance analysis of a single 
supplier and a retailer supply chain under a return policy. Most recently, Choi et al. [22] considered 
channel coordination in the supply chain based on the mean-variance approach. Thus, the portfolio 
theory has been applied to some problems in production processes, particularly supply chain 
management. Supply chain management is one of the most important managerial problems. Ding 
and Chen [25] recently studied the coordination issue of a three-level supply chain selling short life 
cycle products in a single-period model, and constructed the so-called flexible return policy by 
setting the rules of pricing while postponing the determination of the final contract prices. 

However, in most approaches to product-mix decision problems, randomness and fuzziness are 
considered separately; but to represent real product-mix decision cases under the changes of future 
customers’ demands and a large amount of effective and ineffective information in the real market, it 
may not be valid to consider future profits as fixed values, random variables, or fuzzy variables. 
Rather, they should be considered as product-mix decision problems that integrate randomness and 
fuzziness. Furthermore, in most previous studies, the main focus is not on the concept of flexibility 
in responding to many different future scenarios. For example, we assume that decision makers 
consider product-mix decision problems by including various elements of randomness and fuzziness 
to represent uncertain situations in the real world. As a result, they decide on an unduly strict original 
product-mix decision. If an unpredictable situation occurs in the future, then they will not earn the 
profit predicted, due to the limitation of the constraint, even when randomness and fuzziness are 
included in the model. Therefore, it is important to introduce flexibilities such as considering several 
future scenarios and their levels of satisfaction, in terms of the target total profit and the upper values 
of constraints. At present, no model considers random and ambiguous situations, flexibility and the 
level of satisfaction for objective function and constraints simultaneously, particularly in the case of 
models that include probabilistic future returns. Therefore, in this thesis, we focus on product-mix 
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decision problems, in order to take several constraints into account, including randomness, 
ambiguity, and flexibility. Under such uncertain conditions and flexibilities, if the original plan is to 
function appropriately and smoothly, then it is most important to undertake appropriate risk 
management, such as the reduction of uncertainty and the improvement of satisfaction of customers, 
workers, and decision makers. 

In mathematical programming problems, these problems with randomness and fuzziness are called 
stochastic and fuzzy programming problems (for example, Liu [83, 84]), and are not well-defined 
problems due to the existence of random and fuzzy variables. Therefore, we need to set some 
criterion to solve these problems analytically in the sense of the deterministic equivalent 
mathematical programming. In this thesis, we introduce chance constraints setting the target values 
to objects and original constrains, and the original problems are usually transformed into nonlinear 
programming problems. Since it is almost impossible to obtain their global optimal solution directly, 
we construct the efficient solution method to obtain the global optimal solution by performing the 
equivalent transformation for several nonlinear programming problems. 

 4



 

Chapter 2 

Basic Theories of Stochastic and Fuzzy 

Programming 
 
 

2.1 Stochastic Programming 
 

In the real world, there are many cases of decision making under randomness such as human and 
machine errors, statistical analysis based on historical data, etc.. Stochastic programming has been 
developed as the probabilistic generalization of mathematical programming and has played a 
important role in the mathematical programming in the sense of theory as well as practice such as 
agriculture, inventory, finance, production, etc.. In the sense of the mathematical programming, 
previous studies are dealt with stochastic programming approaches based on the probability theory 
in order to consider randomness. In the 1950s, stochastic programming has been set up 
independently by Beale [10], Dantzig [24], Charnes and Cooper [19] and others who have observed 
that for many linear programs to be solved, the values of coefficients are not known precisely. They 
have suggested to replacing the deterministic view by a stochastic one assuming that these unknown 
coefficients or parameters are random and their probability distribution is known and independent of 
the decision variables. Then, many basic models for the stochastic programming have been proposed 
by some researchers until now, such as the two stage problem, (Beale [10], Danzig [24], Everett and 
Ziemba [32], Walkup and Wets [118]), the multi-stage problem (Dupacova [30]), the chance 
constrained approach (Charnes and Cooper [19, 20], Prekopa [101]), the various types of stochastic 
problems connected with a game theory and an information theory. In the following discussion, we 
mainly focused on in the framework of deterministic models for the stochastic programming, which 
are closely related to this thesis. 

The stochastic objective function of the stochastic programming problem is handled by its 
certainty equivalent in the framework of deterministic models in order to solve analytically. The 
stochastic programming problem including random variable  is formulated as follows: ξ

( )
( )

Maximize  ,

subject to  , 0,  1, 2,...,i

f

g j≤ =

x

x

ξ
ξ m

 

With respect to this problem, several types of deterministic mathematical programming problems are 
considered. 
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2.1.1 Deterministic mathematical programming problems for the stochastic programming 
 
(a) Expected value model 
The first type of stochastic programming is called expected value model (E model), which optimizes 
some expected objective functions subject to some expected constraints. This problem is basically 
formulated as follows. 

( )
( )

Maximize  ,

subject to  , 0,  1,2,...,i

E f

E g j m

⎡ ⎤⎣ ⎦
⎡ ⎤ ≤ =⎣ ⎦

x

x

ξ

ξ
 

where ( ),E f⎡⎣ x ξ ⎤⎦  denotes the expectation of ( ),f x ξ . E models are indeed a popular method 

for dealing with stochastic optimization problems. However, in the practical decision making, it is 
argued that the decision maker need consider the variance, since it may not be desirable to optimize 
the expected value when its variance is very large. 
 
(b) Variance model 
In a way similar to E model, variance model (V model), which is dealt with one of important factors 
to random variables and optimizes some variance objective functions subject to some constraints, is 
considered by some research areas. This problem is basically formulated as follows. 

( )
( )

Minimize  ,

subject to  0,  1, 2,...,i

V f

g i m

⎡ ⎤⎣ ⎦
≤ =

x

x

ξ
 

where ( ),V f⎡⎣ x ξ ⎤⎦  denotes the variance of ( ),f x ξ . V models are also indeed a popular method 

for dealing with stochastic optimization problems. Furthermore, as the natural extension to E model 
and V model, EV model with the following objective function incorporating two conflicting objects 
such as 

( )
( )

( ) ( )
,

,  E , ,
,

E f
f p V f

V f

⎡ ⎤⎣ ⎦ ⎡ ⎤ ⎡− ⋅ ⎤⎣ ⎦ ⎣⎡ ⎤⎣ ⎦

x
x x

x
ξ

ξ ξ
ξ ⎦  

where p  is the positive weight coefficient on the variance like a penalty cost. 

 
(c) Stochastic chance constraint programming 
E models and V models are very popular, but there are many situations in which E models and V 
models are not applicable. Therefore, as opposed to E models and V models, the second type of 
stochastic programming is considered, called chance-constrained programming (CCP). CCP offers a 
powerful tool of modeling stochastic decision systems with assumption that the stochastic 
constraints will hold at least the confidence level provided as an appropriate safety margin by the 
decision maker. 
  First, we introduce the following chance constraint to provide a confidence level α  at which it is 
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desired that the stochastic constraints hold: 

( ){ }Pr , 0,  1,2,...,ig i m α≤ = ≥x ξ  

 

 
0 

( ),g x ξ

Fig 2.1. Stochastic constraint  ( ){ }Pr , 0g ≤x ξ

 
CCP is initialized by Charnes and Cooper [19, 20] and subsequently developed by many researchers. 
In stochastic environment, we introduce the following CCP model maximizing the target value: 

( ){ }
( ){ }

Maximize  

subject to  Pr ,

                 Pr , 0,  1, 2,...,i

f

f f

g i m

β

α

≥ ≥

≤ = ≥

x

x

ξ

ξ

 

 

f 

( ),f x ξ

 

Fig 2.2. Stochastic constraint ( ){ }Pr ,f f≥x ξ  

 
Particularly, as a special case of CCP, we have considered the following problem: 

( )

1

1

Maximize  

subject to  Pr

                 ,  1, 2,...,

n

j j
j

n

ij j i
j

f

r x f

a x b i m

β
=

=

⎧ ⎫⎪ ⎪⎪ ⎪≥ ≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

≤ =

∑

∑

 

where  is the random variable to occur according to a normal distribution jr ( 2,j jN r σ )  with the 

mean jr  and the variance . In case that the covariance matrix is , the probability of that 2
jσ V
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1

n

j j
j

r x
=
∑  is over f  is equivalently transformed into the following form using the property of 

normal distribution: 

1 1 1

1

1

Pr Pr

                                     

            

n n n

j j j j j jn
j j j

j j t t
j

n

j j
j

t

r x r x f r x
r x f

r x f

β β

β

= = =

=

=

⎧ ⎫⎪ ⎪⎪ ⎪− −⎪ ⎪⎧ ⎫ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪≥ ≥ ⇔ ≥ ≥⎨ ⎬ ⎨⎪ ⎪ ⎪⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⇔ Φ ≥⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

∑ ∑ ∑
∑

∑

V V

V

x x x x

x x

⎪⎬⎪⎪

1

                         
n

t
j j

j

f r x Kβ
=

⇔ ≤ −∑ Vx x

 

where ( )Φ ⋅  is the distribution function of the standard normal distribution , and  is 

-percentile point, i.e. . As is easily known, 

(0,1N ) Kβ

β ( )1Kβ β−=Φ
1

n
t

j j
j

r x Kβ
=

−∑ Vx x  is convex in the 

case of 1 2β≥ . 

 

 
Kβ

( )0,1N

Fig 2.3. Standard normal distribution and -percentile point β
 
(d) Probability maximization model 
In a way similar to probability fractile optimization model, we introduce the probability 
maximization model as follows: 

( ){ }
( ){ }

Maximize  Pr ,

subject to  Pr , 0,  1, 2,...,i

f f

g i m α

≥

≤ = ≥

x

x

ξ

ξ
 

 

The probability maximization model maximizes the probability that ( ,f )x ξ  exceeds a given goal 
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f . If the objective function ( ,f )x ξ  is equal to be  where  is the random variable 

to occur according to a normal distribution 

1

n

j j
j

r x
=
∑ jr

( 2,j jN r σ ) , it is known that the maximization of this 

probability is equivalent to the maximization of the fractional function 1

n

j j
j

t

f r x
=

−∑
Vx x

. 

 
 

2.2 Fuzzy Programming 
 

For centuries, probability theory and error calculus have been the only models to treat uncertainty. 
However, a lot of new models recently have been introduced for handling incomplete numerical and 
linguistic information, decision maker’s subjectivity, etc.. For example, “old man”, “reputable”, 
“similar”, “satisfactory”, “large number”, “approximately equal to 10”. They are not tractable by the 
classical set theory nor probability theory. In order to deal with such uncertainty, Zadeh [122] first 
defined the fuzzy set theory, and the fuzzy set theory has been well developed and applied in a wide 
variety of real problems. The notion of the fuzzy set is non-statistical in nature and the concept 
provides a natural way of dealing with problems in which the source of imprecision is the absence of 
sharply defined criteria of class membership function rather than the presence of random variables. 
Concept of fuzzy set is as follows: 
 
Definition 2.1 

A fuzzy set  in a universe A X  is a mapping from X  to [ ]0,1 . For any x X∈  the value 

 is called the degree of membership of ( )A x x  in . A X  is called the carrier of the fuzzy set 

A . The degree of membership can also be represented by x  instead of ( )A x . The class of all 

fuzzy sets in X  is denoted by ( )F x . 
 
The notion of fuzzy variable is first introduced by Kaufmann [65] and then it appeared in Zadeh 
[123, 124] and Nahmias [98]. 
 
Definition 2.2 

A fuzzy variable is defined as a function from the possibility space  to the real line ( )( , , PoPΘ Θ )s
R . Subsequently, let  be a nonempty set, and  be the power set of Θ . For each Θ ( )P Θ

( )A P∈ Θ , there is a nonnegative number { }Pos A , called its possibility, such as 

(i) , and { } { }Pos 0,  Pos 1φ = Θ =
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(ii) { } {Pos sup Posk k k k }A A∪ =  for any arbitrary collection { }kA  in . ( )P Θ
 
Definition 2.3 

Let  be a fuzzy variable on the possibility space ξ ( )( ), , PoPΘ Θ s . Then, its membership 

function is derived from the possibility measure Pos by 

( ) ( ){ }Posx xμ θ ξ θ= ∈Θ =  

 

Furthermore, let  be fuzzy variables defined on the possibility space (,  1, 2,...,ia i n= )
( )( ), , PoPΘ Θ s , respectively. Their membership function are also derived from the possibility 

measures as follows: 

( ) ( ){ }Pos ,  1,2,...,
ia i i ix a x iμ θ θ= ∈Θ = = n  

 
From these definitions, the following theorem holds. 
 
Theorem 2.1 

Then, the membership function ( )a xμ  of  is derived from the membership 

functions 

( 1 2, ,..., na f a a a= )

( ),  1, 2,...,
ia x iμ = n  as follows: 

( ) ( ) ( ){ }
1 2

1 21, ,...,
sup min , ,...,

i
n

a a ii nx x x R
nx x x f x x xμ μ

≤ ≤∈
= =  

 
Definition 2.3 coincides with the extension principle of Zadeh. Now let us illustrate the operation on 
fuzzy variables. 
 
Example 2.1 

We introduce a trapezoidal fuzzy variable represented by ( )1 2 3 4, , ,r r r r  of crisp numbers with 

, whose membership function can be denoted by 1 2 3r r r r< < < 4

( )

( )

( )

( )

1
1 2

2 1

2 3

4
3 4

4 3

1

0 otherwis

x r r x r
r r

r x r
x

r x r x r
r r

μ

⎧ −⎪⎪ ≤ ≤⎪⎪ −⎪⎪⎪ ≤ ≤⎪⎪⎪=⎨⎪ −⎪ ≤ ≤⎪⎪ −⎪⎪⎪⎪⎪⎩⎪ e.
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1r 2r 3r 4r x

( )xμ

1

 

Fig. 2.4. Membership function of trapezoidal fuzzy number 
 

Thus, the fuzzy variable is useful tools for the decision making under uncertain environment. 
Then, the fuzzy mathematical programming has been developed for treating uncertainty in the 
setting of optimization problems. Until now, there are many studies from the theoretical as well as 
from the computational point of view (for example, Dubois and Prade [27], Hasuike and Ishii [45], 
Inuiguchi et al. [51], Liu [83, 84], Luhandjura [88], Maeda [89], Sakawa [105], Zimmermann [126]). 
In fuzzy programming problems, the objective function is fuzzy-valued and there is no universal 
concept of optimal solutions to be accepted widely. Therefore, it is important to define some 
concepts for the fuzzy objective functions and constraints and to investigate their properties. With 
respect to this viewpoint, there are many ideas such as parametric linear programming problems in 
order to obtain a reasonable optimal solution (Tanaka et al [111, 112]), possibility and necessity 
programming problems (Inuiguchi & Ramik [52], Katagiri et al. [61, 62]), interactive programming 
problems (Katagiri et al. [63], Sakawa [105]), etc.. 
 
2.2.1 Possibility and necessity measure 
 

In deterministic problems of the fuzzy programming, possibility and necessity measures are 
introduced. Possibility theory was first proposed by Zadeh [124], and developed by many 
researchers such as Dubois and Prade [28, 29]. Now, let a and b be fuzzy variables on the possibility 

spaces ( )( )1 1, , PoPΘ Θ 1s  and ( )( )2 2 2, , PosPΘ Θ

)s

, respectively. Then,  is a fuzzy event 

defined on the product possibility space , whose possibility is 

a b≤

( )( , , PoPΘ Θ

{ } ( ) ( ){ }
,

Pos sup a b
x y R

a b x x x yμ μ
∈

≤ = ∧ ≤  

where the abbreviation Pos represents possibility. This means that the possibility of  is the a b≤
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largest possibility that there exists at least on pair of values ,x y R∈  such that x y≤ , and the 

values of  and b  are a x  and , respectively. y

More generally, the possibility of fuzzy event is provided as follows: 
 
Definition 2.4 

Let  be fuzzy variables, and (,  1, 2,...,ia i n= ) )(: ,  1, 2,...,n
jf R R j m→ =  be continuous 

functions. Then, the possibility of the fuzzy event characterized by  ( )1 2, ,..., 0,j nf a a a ≤

( 1, 2,..., )j m=  is as follows: 

( ){ }
( ) ( ) ( ){ }

1 2

1 2

1 21, ,...,

Pos , ,..., 0,  1, 2,...,

sup min , ,..., 0,  1, 2,...,
i

n

j n

a i j ni nx x x R

f a a a j m

x f x x x j mμ
≤ ≤∈

≤ =

= ≤ =
 

 
In a similar way to the possibility measure, the necessity measure of a set A is defined as the 
impossibility of the opposite set Ac. 
 
Definition 2.5 

Let ( )( ), , PoPΘ Θ s  be a possibility space, and A  be a set in . Then, the necessity 

measure of 

( )P Θ

A  is defined by 

{ } { }Nec 1 Pos cA A= −  

 

Thus, the necessity measure is the dual of possibility measure, i.e.  for 

any 

{ } { }Pos +Nec 1cA A =

( )A P∈ Θ . 

 
Example 2.2 

Let us consider a trapezoidal fuzzy variable  and the target fixed value . From 

the definitions of possibility and necessity, we obtain the following results: 

( 1 2 3 4, , ,r r r rξ = ) λ
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{ } { }
42

31
1 2 3

2 1 3 4

11

Pos ,   Nec

0 otherwise 0 otherwis

rr
rr r r r

r r r r

λλ
λλξ λ λ ξ λ λ

⎧⎧ ⎪⎪ << ⎪⎪ ⎪⎪ ⎪⎪ −− ⎪⎪⎪ ⎪≤ = ≤ ≤ ≤ = ≤ ≤⎨ ⎨⎪ ⎪− −⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎩

4

e

r  

 

1r 2r 3r 4r x

( )xμ

1

λ

{ }Pos ξ λ≤

 

Figure 2.5. Possibility measure for the trapezoidal fuzzy number 
 

 1r 2r 3r 4r x

( )xμ

1

{ }Nec ξ λ≤

λ

Figure 2.6. Necessity measure for the trapezoidal fuzzy number 
 
2.2.2 Fuzzy chance constrained programming 
 

In a way similar to the stochastic chance constraint, we introduce the fuzzy chance constraint. 

Assume that x  is a decision vector, ξ  is a fuzzy vector,  is a return function, and ( ,f x ξ)
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( ) ( ), ,  1, 2,...,jg j=x ξ m

m

 are continuous functions. Since the fuzzy constraints  

do not define a deterministic feasible set, a natural idea is to provide a possibility  where it is 
desired that the fuzzy constraints hold. Thus, we introduce the chance constraint as follows: 

( ), 0jg ≤x ξ

α

( ){ } ( )Pos , 0 ,  1, 2,...,jg jα≤ ≥ =x ξ  

 
Using these fuzzy stochastic constraints and the similar manner of the stochastic programming, we 
first introduce the possibility fractile optimization model as follows: 

( ){ }
( ){ } ( )

Maximize  

subject to  Pos ,

                Pos , 0 ,  1, 2,...,j

f

f f

g j

β

α

≥ ≥

≤ ≥ =

x

x

ξ

ξ m

 

where  and  are the predetermined confidence levels. Then, in a similar way to this approach, 

we also introduce the following possibility maximization model. 

α β

( ){ }
( ){ } ( )

Maximize  Pos ,

subject to  Pos , 0 ,  1, 2,...,j

f f

g jα

≥

≤ ≥ =

x

x

ξ

ξ m
 

where f  is the predetermined confidence level to the object. In order to solve these problems, 

there are various types of solution approaches using not only deterministic programming approaches 
but also genetic algorithm (GA), neural network (NN), and the other heuristics. 
 
 

2.3 Fuzzy Random and Random Fuzzy Programming 
 
  In previous many researches considering uncertainty, randomness and fuzziness are 
separately-considered. However, in the real world, there are many cases which need to be considered 
both randomness and fuzziness, simultaneously, and so it is insufficient to deal with either random or 
fuzzy variables. 

Fuzzy random and random fuzzy variables are mathematical descriptions for fuzzy stochastic 
phenomena, and are defined in several ways. The notion of fuzzy random variable is first introduced 
by Kwakernaak [72]. This concept is then developed by several researchers such as Puri and Ralescu 
[102], Kruse and Meyer [70], and Liu and Liu [85]. Roughly speaking, a fuzzy random variable is a 
measurable function from a probability space to a collection of fuzzy variables. In other words, the 
fuzzy random variable is a random variable taking fuzzy values. This mathematical definition is 
provided as follows: 
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Definition 2.6 

Let ( ), ,B PΩ  be a probability space,  the set of fuzzy numbers with compact supports and 

X measurable mapping . Then, X is a fuzzy random variable if and only if given 

,  is a random interval for any 

( )F R

( )FΩ→ R

ω ∈Ω ( )Xα ω [ ]0,1α∈ , where  is a α -level set of the 

fuzzy set . 

( )Xα ω

( )X ω

 
Example 2.3 
With respect to the relation between weather conditions and sales volumes of drinks, let the weather 
condition; hot, warm or cool be a random variable. Then, let the sales volume of drinks to each 
weather condition be a fuzzy number. In this case, the predicted future volume of drinks considering 
these randomness and fuzziness is represented a fuzzy random variable as follows (see Figure 2.7). 
 

 
Fig 2.7. Example of fuzzy random variable 

20% 30% 50%
cool warm hot

( )μ ω

100 200 300 

1

0

: probability 

ω
 
The above definition of fuzzy random variables corresponds to a special case of those given by 
Kwakernaak [72] and Puri and Ralesu [102]. The definitions of them are equivalent to the above 
case because a fuzzy number is a convex fuzzy set. Though it is a simple definition, it would be 
useful for various applications. Then, in a way similar to stochastic and fuzzy programming, we  
have introduced the chance constraint based on the study of Liu. Assume that  is a decision 

vector,  is a fuzzy random vector, 

x

ξ ( ,f ξ)x  is a return function, and  

are constraint functions. Then, the following problem is a fuzzy random programming problem: 

( ), ,  1, 2,...,ig i=x ξ m

m
( )
( )

Maximize  ,

subject to  , 0,  1, 2,...,i

f

g j≤ =

x

x

ξ
ξ

 

 
Now, let us consider the chance of fuzzy random event. Recall that the probability of the random 
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event and the possibility of the fuzzy event are defined as a real number. However, for a fuzzy 
random event, the primitive chance is defined as a function rather than a number. 
 
Definition 2.7 

Let  be a fuzzy random vector on the probability space ( ) , and ( 1 2, ,..., nξ ξ ξ=ξ )

)

, , PrAΩ

(: ,  1, 2,...,n
jf R R j m→ =  be continuous functions. Then, the primitive chance of fuzzy 

random event characterized by ( ) ( ),  1, 2,...,jf j=ξ m  is a function from [0,1] to [0,1], defined 

as  

( ) ( ){ }( )
( )

( )

Ch 0,  1, 2,...,

0,  
sup Pr Pos

1,2,...,

j

j

f j m

f

j m

α

β β

≤ =

⎧ ⎫⎧ ⎫⎪ ⎪⎧ ⎫⎪ ⎪≤⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪= ∈Ω ≥ ≥⎨ ⎨ ⎨ ⎬ ⎬⎪ ⎪ ⎪ ⎪ ⎪=⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭

ξ

ξ
ω α⎪⎬⎪⎪

 

 
Using these chance constraints, we introduce the following chance constrained programming for the 
fuzzy random programming: 

( ){ }( )
( ){ }( )

Maximize  

subject to  Ch , ,

                 Ch , 0 ,  1, 2,...,i j j

f

f f

g j

γ δ

α β

≥ ≥

≤ ≥ =

x

x

ξ

ξ m

 

where parameters  and δ  are predetermined confidence levels. , ,j jα β γ

On the other hand, Liu [83, 84] initialized the concept of random fuzzy variable. The primitive 
chance measure of random fuzzy event was defined by Liu as a function form [0,1] to [0,1]. In detail, 
a random fuzzy variable is a fuzzy variable on the universal set of random variables, and the 
mathematical definition is provided by Liu as follows: 
 
Definition 2.8 

A random fuzzy variable is a function  from a possibility space ξ ( )( ), , PoPΘ Θ s  to collection 

of random variables R . An -dimensional random fuzzy vector  is an 

-tuple of random fuzzy variables . 

n ( )1 2, ,..., nξ ξ ξ=ξ

n 1 2, ,..., nξ ξ ξ

 
That is, a random fuzzy variable is a fuzzy set defined on a universal set of random variables.  
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Example 2.4 

With respect to random variable   which is assumed to be a normal distribution , in 

the case that the mean value  is assume to be a fuzzy number due to ambiguity, variable  is a 

random fuzzy variable characterized by the following function in Fig. 2.8: 

ξ ( )2,N m σ

m ξ

 

0.8 1.0 0.8 : possibility 

 
Fig. 2.8. Example of random fuzzy normal distribution 

 
From the definition and example, random fuzzy variables not only include ambiguity and 
subjectivity into random variables, but also consider surrounding congeneric random distributions to 
the original random distribution, simultaneously. 

Furthermore, the following random fuzzy arithmetic definition is introduced. 
 
Definition 2.9 

Let  be random fuzzy variables, and 1 2, ,..., nξ ξ ξ : nf R → R

)

 be a continuous function. Then, 

 is a random fuzzy variable on the product possibility space ( 1 2, ,..., nfξ ξ ξ ξ= ( )( ), , PoPΘ Θ s

( )n

n

, 

defined as 

( ) ( ) ( )( )1 2 1 1 2 2, ,..., , ,...,n nfξ θ θ θ ξ θ ξ θ ξ θ=  

for all . ( )1 2, ,..., nθ θ θ ∈Θ

 
From these definitions, the following theorem is derived. 
 
Theorem 2.2 

Let  be random fuzzy variables with membership functions , , respectively, and iξ iμ 1,2,...,i=

: nf R → R ) be a continuous function. Then,  is a random fuzzy variable 

whose membership function is 

( 1 2, ,..., nfξ ξ ξ ξ=

( ) ( ) ( ){ }1 21,1
sup min , ,...,

i i

i i ni nR i n
f

η
μ η μ η η η η η

≤ ≤∈ ≤ ≤
= =  
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for all Rη ∈ , where ( ){ }1 2, ,..., ,  1, 2,...,n i iR f R iη η η η= ∈ = n . 

 
By introducing such fuzzy random and random fuzzy variables into the mathematical 

programming problems, we can deal with various types of practical social problems under both 
randomness and fuzziness. In the following chapters, we consider many asset allocation problems 
with random variables, fuzzy numbers, fuzzy random and random fuzzy variables, and develop the 
analytical solution method in the sense of the deterministic mathematical programming. 
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Chapter 3 

Random Fuzzy Portfolio Selection Problems 
 
 

Since the mean-variance analysis model proposed by Markowitz (Markowitz [90]), portfolio 
selection problems have been the centre of research activities in the real financial field, and 
numerous researchers have contributed to the development of modern portfolio theory. In most of 
these previous studies, future returns have been treated as only random variables, and the expected 
returns and variances also have been assumed to be fixed values. However, since investors receive 
reliable or unreliable information from the real world, ambiguous factors usually exist in it. 
Furthermore, there are investors who absolutely believe in the predictive ability of historical data. 
Consequently, we need to consider not only random conditions but also ambiguous and subjective 
conditions for portfolio selection problems. Until now, some researchers have proposed fuzzy 
portfolio selection problems considering such fuzziness (for example, Guo & Tanaka [41], Inuiguchi 
and Ramik [52], Tanaka et al. [111, 112], Watada [119]) Furthermore, there are recently some 
portfolio models to deal with both randomness and fuzziness as fuzzy random variables (Katagiri et 
al. [60, 61]). In the studies [60, 61], fuzzy random variables were related with the ambiguity of the 
realization of a random variable and dealt with a fuzzy number that the center value occurs 
according to a random variable. Then, Yazenin (Yazenin [120, 121]) considered some models for 
portfolio selection problems in the probabilistic-possibilistic environment, that profitabilities of 
financial assets are fuzzy random variables.  

On the other hand, in previous portfolio selection models, the random variable to future return is 
basically derived from statistical analysis based on historical data. Then, when a decision maker 
considers the current trend in the financial market under randomness and fuzziness, she or he often 
assumes that the random distribution is unconfirmed and the future return has ambiguous factors 
because of quantity of received information and her or his subjectivity based on the long experience 
of the investment. Thus, the future return may be dealt with a random variable whose parameters are 
assumed to be fuzzy numbers due to the decision maker’s subjectivity. Therefore, in this chapter, we 
propose portfolio selection problems with each future return to treat as a random fuzzy variable 
which Liu (Liu [83, 84]) defined. There are a few studies of random fuzzy programming problem 
(Katagiri et al. [58, 59], Huang [48]). Most recently, Huang has proposed a portfolio selection model 
including random fuzzy variables [47]. However, there is no study of the random fuzzy portfolio 
selection problem which is analytically solved and introducing a fuzzy goal considering decision 
makers’ intentions with respect to a target profit. Furthermore, we propose a bi-criteria random fuzzy 
portfolio selection problem including both goals of total future profit and probability fractile level to 
the target profit. In the real world, it is natural to consider maximizing the probability fractile level 
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just as maximizing the total profit. Therefore, this proposed model may be more versatile model 
applying to various investment situations than previous portfolio models. 

With respect to these mathematical programming problems including randomness and fuzziness, 
since they are not well-defined problems due to randomness and fuzziness, it is necessary that we 
consider a certain optimization criterion so as to transform these problems into well-defined 
problems. In this chapter we formulate two problems using chance constraints: (a) possibility fractile 
optimization problem, (b) possibility maximization problem. However, since they are usually 
transformed into nonlinear programming problems, it is difficult to find a global optimal solution 
directly. Therefore, in this chapter, we construct an efficient solution method to obtain a global 
optimal solution of deterministic equivalent problem including more complicated constraints. 
 
 

3.1 Formulation of the Random Fuzzy Portfolio Selection Problem 
 

The previous studies on random and fuzzy portfolio selection problems often have considered not 
standard mean-variance model but safety first model introducing probability or fuzzy chance 
constraints based on a standard asset allocation problem. Therefore, in this chapter, we deal with the 
following portfolio selection problem involving the random fuzzy variable based on the standard 
asset allocation problem to maximize the total future return. 

1

1

Maximize

ˆsubject to , 0 , 1,2, ,

n

j j
j

n

j j j j
j

r x

a x b x b j n

=

=

≤ ≤ ≤ =

∑

∑

�

"

 (3.1)

where the parameters and variables are as follows: 

jr� : Future return of the j th financial asset assumed to be a random fuzzy variable 

ja : Cost of investing the j th financial asset 

b : Limited upper value with respect to fund budgeting  

ˆ
jb : Limited upper value of each budgeting to the j th financial asset 

n : Total number of assets 

jx : Budgeting allocation to the j th financial asset 

 
In this chapter, we denote randomness and fuzziness of the coefficients by the "dash above" and 
"wave above", i.e., “−” and “~”, respectively. In portfolio selection problems, each future return is 
generally considered as a random variable distributed according to the normal distribution 

. However, for the lack of effective information from the real market, we assume the case ( 2,j jN m σ )
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where the expected return includes an ambiguity and the probability distribution of each future 
return is represented with the following form based on the introduction obtained by Hasuike [43] and 
Katagiri [58]: 

( ) ( ) ( )

( )

( )

( )

2

2

,

1 exp , 1, ,
2 ,2

0 ,  

j

j
j j j

j

j
j jM

j j j jj
j

j j j j

m t
L m t m

z M
,

f z t t m
R m t m

t m m t

α
α

μ
σ βπσ

β

α β

⎧ ⎛ ⎞⎪ − ⎟⎪ ⎜ ⎟⎪ ⎜ − ≤ ≤⎟⎜⎪ ⎟⎟⎜⎜⎪ ⎝ ⎠⎪⎛ ⎞ ⎪⎟−⎜ ⎪⎟⎜ ⎪ ⎛ ⎞⎪⎟= − = =−⎜ ⎨⎟ ⎟⎜⎜ ⎟ ⎟⎪ ⎜ < ≤ +⎜ ⎟ ⎟⎪⎟⎜ ⎜⎝ ⎠ ⎟⎪ ⎟⎜⎜⎝ ⎠⎪⎪⎪⎪ < − + <⎪⎪⎩⎪

�

�
"j n

L R= = ( ) ( )1 1 0L R= =

 
(3.2)

where  and  are strictly decreasing and continuous reference functions to satisfy 

,  and the parameters 

( )L x ( )R x

( ) ( )0 0 1 jα  and jβ  represent the spreads 

corresponding to the left and the right sides, respectively, and both parameters are positive values. 

When the future return jr�  is a random fuzzy variable characterized by formula (3.2), the 

membership function of jr  is expressed as 

( ) ( ) ( ){ }2sup , ,  
j j

j
j j j j jr M

s
s N sμ γ μ γ σ γ= ∀ ∈Γ�� ∼ j  (3.3)

where  is a universal set of normal random variable. Each membership function value Γ ( )
jr jμ γ  is 

interpreted as a degree of possibility or compatibility that jr�  is equal to jγ . Then, the objective 

function 
1

n

j j
j

Z r x
=

=∑� �  is defined as a random fuzzy variable characterized by the following 

membership function on fixed the parameters jx : 

( ) ( )
1

1

sup min ,  
j

n

j j jrZ j n
j

u u xμ μ γ γ
≤ ≤

=

⎧ ⎫⎪ ⎪⎪ ⎪= = ∀ ∈⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑� �

γ
u Y  (3.4)

where ( )1,..., nγ γ=γ  and Y  is defined by 

1

,  1,...,
n

j j j
j

Y x jγ γ
=

⎧ ⎫⎪ ⎪⎪ ⎪= ∈Γ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ n  (3.5)

 
From definitions (3.4) and (3.5), we obtain 
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( ) ( )
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(3.6)

where . ( )1,..., ns s=s

Furthermore, we discuss the probability 
1

Pr
n

j j
j

r x fω
=

⎧ ⎫⎪ ⎪⎪ ≥⎨⎪ ⎪⎪ ⎪⎩ ⎭
∑� ⎪⎬  which is a probability that the 

objective function value is greater than or equal to an aspiration level f . Since 
1

n

j j
j

r x
=
∑� is 

represented with a random fuzzy variable, we express the probability 
1

Pr
n

j j
j

r x fω
=

⎧ ⎫⎪ ⎪⎪ ⎪≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑�  as a 

fuzzy set  and define the membership function of  as follows: P� P�

( ) ( ) ( ){ }{ }

( ) ( ){ }
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1 1 1

sup Pr

          sup min Pr ,  ,
j

ZP
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n n n
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μ ω ω σ
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= = =

= = ≥

⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜⎪ ⎪⎟= = ≥ ⎜⎨ ⎬⎟⎜ ⎟⎪ ⎪⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑∑

�

� ∼
s

x
 (3.7)

 
Here, since original problem (3.1) is not a well-defined problem due to including random fuzzy 
variable returns, we need to set a criterion with respect to probability and possibility of future returns 
for the deterministic optimization. In general decision cases with respect to investment, an investor 
usually focused on maximizing either the goal of the total profit or that of achieve probability. 
Therefore, we propose three single criteria random fuzzy portfolio selection problems introducing a 
chance constraint; (a) expected return maximization model and mean-variance model, (b) possibility 
fractile optimization model, (c) possibility maximization model. 
 
 

3.2 Single Criteria Optimization Models for Random Fuzzy Portfolio Selection 
Problems 
 
3.2.1 Expected return optimization model and mean-variance model 
 

In previous researches, mean-variance models for portfolio selection problems based on 
Markowitz model are introduced. In this chapter, we formally introduce the expected return 
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maximization model for random fuzzy portfolio selection model as follows: 

( )

1

Maximize

ˆsubject to , 0 , 1,2, ,
n

j j j j
j

E Z

a x b x b j n
=

≤ ≤ ≤ =∑

�

"
 (3.8)

 

In this problem,  means an expected value derived from the following expression: ( )E Z�

( ) ( ) ( ) ( )
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∑
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∼
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This means that  is expressed with a fuzzy set. Consequently, problem (3.8) is a fuzzy 

optimization problem for portfolio selection problems and is solved by using results of previous 
studies on fuzzy portfolio selection models (For example, Carlsson et al. [17, 18] and Vercher et al. 
[117]). Furthermore, we formally introduce the following mean-variance model: 

( )E Z�

( )
( )

1

Minimize

subject to ,

ˆ                 , 0 , 1, 2, ,

G

n

j j j j
j

V Z

E Z r

a x b x b j n
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≤ ≤ ≤ =∑

� ;

"

 
(3.10)

where  is a minimum target value of the total future profit and Gr ( ) GE Z r� ;  means that the total 

expected return is approximately more than . Then, Gr ( )V Z  means a variance and 

 due to not including random and fuzzy variables in each variance. Therefore, 

problem (3.10) is equivalently transformed into the following problem: 

( )
1 1

n n

ij i j
j j

V Z x xσ
= =

=∑∑
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1 1

1

Minimize
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∑
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 (3.11)

 

This problem is also a fuzzy portfolio selection problem due to  involving fuzzy numbers. ( )E Z�
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Therefore, we can take the fuzzy optimization approaches to obtain the optimal portfolio. 
 
3.2.2 Possibility fractile optimization model with respect to the total profit 
 

In the case that a decision maker sets the target values of probability fractile level  and 
possibility fractile level  using the chance constraint, maximizing the target future return 

β
h f  is 

mainly considered. Therefore, in this section, we consider a possibility fractile optimization model 
with respect to the future returns. This model is formulated as the following form: 
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In this problem, the constraint ( ) ,  P p h pμ ≥ ≥� β  is transformed into the following form: 
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(3.13)

where ( )R x∗  is a pseudo inverse function of  in membership function (3.2). Then, we 

transform problem (3.12) into the following problem: 
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Next, we consider the transformation of probability chance constraint ( ){ }Pr u fω ω β≥ ≥ . Then, 

it follows that  
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is a random variable with the standard normal distribution. Therefore, we obtain the following 
transformation of probability chance constraint: 
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where  is the distribution function of the standard normal distribution and . In 

this chapter, we consider 

( )F y ( )1K Fβ β−=

1
2

β ≥  due to the following assumptions: 

(a) In the practical decision making, almost all decision makers do not select a portfolio whose 
achievement probability for the goal of total return is less than half. 

(b) In mathematical programming, ( )( )
1 1

n n

1

n

j j j ij i j
j j

m R h x K x xβα∗

= =

+ −∑
i

σ
=

∑∑  is a concave 

function in the case that 
1
2

β ≥ . 

Accordingly problem (3.14) is transformed into the following equivalent deterministic problem: 
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In this problem, we find that the decision variable f  is involved only in first constraint and 

maximizing f  is equivalent to maximizing ( )( )
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Therefore, problem (3.15) is also transformed into the following problem: 
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(3.16)

 
Since problem (3.16) is equivalent to a convex programming problem, its global optimal solution 
surely exists. However it is difficult to solve it directly because problem (3.16) includes the square 
root term. Therefore, we consider the equivalent transformation of problem (3.16). 
    First, for simplicity of the following discussion, we do transformations of variables as follows 
since a symmetric variance-covariance matrix is a positive definite matrix: 
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Furthermore, we reset . From these transformations 

of variables, problem (3.16) is transformed into the following problem: 

ˆ,  ,  ,  ,  j j j j jm m a a b b b b′ ′ ′ ′→ → → → →y x j
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This problem still includes a square root term. Therefore, we introduce the following auxiliary 
problem using a parameter R  not including the square root term: 
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Since this problem is a quadratic convex programming problem, we solve problem (3.19) more 
easily than problem (3.18). This problem is equivalent to the model derived from study of Ishii and 
Nishida [54]. Therefore, in a similar way to the solution method of the study, we obtain the strict 
optimal portfolio of problem (3.18). Furthermore, in previous researches ([54], Katagiri et al. [60, 
61]), each variance is considered to be independent. However, since we consider the 
variance-covariance matrix with respect to each variance in this chapter, we find that this model is 
the extended version of previous models and the solution method derived from the study [54] is 
extended to the general case of portfolio selection models. 
 
3.2.3 Possibility maximization model with respect to the achievement probability 
 

In Subsection 3.2.2, the possibility fractile maximization model with respect to the total profit 
has been considered. On the other hand, in the case that a decision maker sets the target value of total 
future profit f , they consider a portfolio selection maximizing the probability that they earn future 
returns more than the target value f . In this subsection, we consider the possibility maximization 

model with respect to the probability. First of all, we introduce a basic probability maximization 
model as follows: 
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However, since this objective function includes random fuzzy variables, it is not a well-defined 
problem. Therefore, introducing the possibility chance constraint to the objective function, we set the 
target level  of possibility and introduce the following problem: h

( )
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Maximize
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ˆ                  , 0 , 1,2, ,

P

n

j j j j
j

p h p

a x b x b j n
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μ β
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"

 
(3.21)

 
In a manner similar to transformation (3.13), problem (3.21) is transformed into the following form: 
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Since 
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0
n n
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i j

x xσ
= =

>∑∑  and Kβ  is a strictly increasing value with respect to , this problem is 

equivalently transformed into the following problem: 
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(3.23)

 
Furthermore, in a way similar to transformation in Subsection 3.2, we reset the variables, and 
problem (3.23) is transformed into the following form: 
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Since this problem is equivalent to the model derived from the previous study of Ishii and Nishida 
[57], we apply the solution method in the study to this problem and obtain the strict optimal solution. 
In the study, each variance is assumed to be independent. In this chapter, we consider the 
variance-covariance matrix with respect to each variance, and so this model is the extended model of 
[57] and the solution method is extended to the general case of probability maximization models. 
 
 

3.3 Bi-criteria Optimization Model for Random Fuzzy Portfolio Selection 
Problems 
 
   In Section 3.2, the goal of probability fractile level  is assumed to be a fixed value. Then in 
Section 3.2, the goal of total future profit 

β
f  is assumed to be a fixed value. On the other hand, in 

practical situations, the relation between the target future return f  and probability  is 

ambivalent, and a decision maker considers increasing the goal of total profit and that of probability, 
simultaneously.  Furthermore, considering many real decision cases and taking account of the 
vagueness of human judgment and flexibility for the execution of a plan, a decision maker often has 
subjective and ambiguous goals with respect to  and 

β

β f such as “The achievement probability is 

hopefully more than .”, and “Total future return 1β
1

n

j j
j

r x
=
∑ �  is approximately larger than 1f .”, 

respectively. In this section, we propose the more flexible model considering the aspiration level to 
both goals of the total future return and achievement probability, simultaneously. In this chapter, we 
represent these subjective and ambiguous goals with respect to  and β f  as fuzzy goals 

characterized by a membership function. First, the fuzzy goal for minimum target value of total 
profit f  is given as follows: 
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f g f f f f
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μ
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 (3.25)

where ( )Fg f  is a strictly increasing continuous function. In a similar way to the total profit, we 

introduce the fuzzy goal of achievement probability as the following form: 
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where ( )pg w  is a strictly increasing continuous function. Furthermore, using a concept of 

possibility measure, we introduce the degree of possibility as follows: 
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Fig. 3.1. The degree of possibility 

 
From this possibility measure, we consider the following possibility maximization problem: 
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In this problem, the constraint ( )pP
G ≥∏ �
� h   and ( )G f hμ ≥  are transformed into the following 

inequality: 
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Therefore, we transform problem (3.29) into the following problem: 
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Furthermore, using the property of normal distribution, we do the transformation to the stochastic 
constraint and problem (3.31) is equivalent to the following equivalent deterministic problem: 
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It should be noted here that problem (3.32) is a nonconvex programming problem and it is not solved 
by the linear programming techniques or convex programming techniques. However, since a 
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decision variable  is involved only in first constraint, we introduce the following subproblem 
involving a parameter : 
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In the case that we fix the parameter , problem (3.33) is equivalent to a convex programming 

problem. Furthermore, let 

q

( )x q  and ( )Z q  be an optimal solution of problem (3.33) and its 

optimal value, respectively. Then, the following theorem holds. 
 
Theorem 3.1 

For  satisfying 0 1, q q< < ( )Z q  is a strictly increasing function of . q

 
Proof. 

We assume . Let   and  be optimal solutions of problem q′< q ( )qx ( )q′x ( )P q  and ( )P q′ , 

respectively. From the relations that ( )R q  is a decreasing function and ( )1
pg q

K −  is an increasing 

function with respect to , the following inequality holds. q
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Therefore, this theorem holds.  ,
 

 32



 
                                 3. Random Fuzzy Portfolio Selection Problems 

                                                                                                                                                                                                                     

Let  denote  satisfying q̂ q ( ) ( )1
FZ q g q−= . Then the relation between problems (3.32) and 

(3.33) is derived as follows. 
 
Theorem 3.2 

Suppose that  holds. Then 0 h∗< <1 )( )( ˆ ˆ,x q q  is equal to ( ),x h∗ ∗ . 

 
Proof. 

From Theorem 1, we obtain ( )( ) ( ){ } ( ) ( ) ( ) ( )1

1 1

,  
p

n n

j j j ij ig q
j j 1

n

j
i

g x q q m R q x q K x q x qα σ−
∗

= =

= + −∑ ∑∑
=

 is a 

strictly decreasing function of . Therefore, in problem (3.32), if q ( )( ) ( )1,  Fg x q q g q−> ,  ,q q∃ ′>

( )( ) ( )( ) ( )1,  ,  Fg x q q g x q q g q−′ ′> ≥ . Furthermore, ( )( ) ( )( ) ( )1ˆ ˆ,  ,  ,  Fq q g x q q g x q q g q∃ −′ ′ ′≥ ≥ =ˆ ˆ .  

Consequently, this theorem holds.  ,
 
Therefore, since problem (3.33) is the same problem as problem (3.16), we develop the following 
solution procedure using the solution procedure in Section 3, Theorems 2 and 3 extending the results 
obtained. 
 
Solution procedure 
Step 1: Elicit the membership function of a fuzzy goal for the probability with respect to the 

objective function value. 

Step 2: Set  and solve problem (3.33). If the optimal objective value 1q ← ( )Z q  of problem 

(3.33) satisfies ( ) ( )1
FZ q g q−≤ , then terminate. In this case, the obtained current solution is 

an optimal solution of main problem. 

Step 3: Set  and solve problem (3.33). If the optimal objective value 0q ← ( )Z q  of problem 

(3.33) satisfies ( ) ( )1
FZ q g q−> , then terminate. In this case, there is no feasible solution and 

it is necessary to reset a fuzzy goal for the probability or the aspiration level f . 

Step 4: Set  and . 1qU ← 0qL ←

Step 5: Set 
2

q qU L
γ

+
←  

Step 6: Solve problem (3.33) and calculate the optimal objective value ( )Z q  of problem (3.33). If 

 33



 
3. Random Fuzzy Portfolio Selection Problems 
                                                                                                                                                                                                                     

( ) ( )1
FZ q g q−> , then set  and return to Step 5. If qU ← q ( ) ( )1

FZ q g q−≤ , then set 

 and return to Step 5. If qL ← q ( ) ( )1
FZ q g q−= , then terminate the algorithm. In this case, 

 is equal to a global optimal solution of main problem. ( )q∗x

 
Problem (3.33) includes various situations in the real world; for example, in the case that a 

decision maker does not consider the flexibility of the goal with respect to the total profit, i.e., 
Z f≥ , problem (3.33) degenerates to the following problem: 
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Since we apply the solution method to this problem by changing  into ( )1
Fg q− f , we obtain the 

strict optimal solution of problem (3.34). Furthermore, in the case that all fuzziness and flexibilities 
are removed, problem (3.33) degenerates to a basic safety first model for portfolio selection 
problems. Consequently, we find that problem (3.33) is more flexible problem reflecting on practical 
situations and decision maker’s subjectivity for making a choice of randomness, fuzziness and 
flexibility. 
 
 

3.4 Numerical Example 
 

In order to compare our proposed models with other models for portfolio selection problems, let 
us consider an example shown in Table 1 based on data introduced by Markowitz [90]. This data 
have been used in previous many studies concerning portfolio problems.  
 
3.4.1 Markowitz ‘s historical data set 
 

Let us assume that each return is distributed according to a normal distribution and that each mean 
is a symmetric triangle fuzzy number shown in Table 3.1. 

Then, we introduce the asset allocation rate  to each security, and its upper value 

is assumed to be 0.2. In this chapter, we compare our proposed model (3.29) in Subsection 3.4 with 
Carlsson et al. model [18] and Vercher et al. model [117]. In studies [18] and [117], this Markowitz 

(,  1, 2,...,9jx j= )
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data is used as a numerical example. These previous two models include the possibilistic mean value 
and variance. Each model is formulated as the following form with respect to the Markowitz 
historical data in Table 3.1. 
 
 

Table 3.1. Sample data from Markowitz’s historical data and their fuzzy number 

Returns Sample mean SD Fuzzy number to sample mean 
R1 0.066 0.238 (0.066, 0.01) 

R2 0.062 0.125 (0.062, 0.02) 

R3 0.146 0.301 (0.146, 0.02) 

R4 0.173 0.318 (0.173, 0.08) 

R5 0.198 0.368 (0.198, 0.1) 

R6 0.055 0.209 (0.055, 0.01) 

R7 0.128 0.175 (0.128, 0.05) 

R8 0.118 0.286 (0.118, 0.08) 

R9 0.116 0.290 (0.116, 0.06) 

 
(Our proposed model) 
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where each fuzzy goal is as follows: 

( )

( )

( ) ( )

( )

1 0.12
0.08 0.08 0.12

0.02
0 0.08

G F

f
ff g f f

f

μ

⎧ ≤⎪⎪⎪⎪ −⎪⎪= = ≤ ≤⎨⎪⎪⎪⎪ ≤⎪⎪⎩

( )

( )

( ), ( )

( )

1 0.8
0.7 0.7 0.8

0.1
0 0.7

G p

p
pp g p p

p

μ

⎧ ≤⎪⎪⎪⎪ −⎪⎪= = ≤ ≤⎨⎪⎪⎪⎪ ≤⎪⎪⎩

 

 
(Carlsson et al. model) 
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(Vercher et al. model) 
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where  is the target value set by the decision maker, and   are 

parameters of trapezoidal fuzzy number  and shown in Table 3.2 based on study 

[117] as follows: 

ρ ( ),  ,  ,  ,  1,2,...,9j j j ja b jα β =

( , ,j j j ja b α β )

 
Table 3.2. Each parameter value based on study [117] 

Returns ja  jb  jα  jβ  

R1 0.070 -0.011 0.273 0.386 

R2 0.089 0.052 0.227 0.140 

R3 0.136 0.018 0.211 0.622 

R4 0.238 0.161 0.468 0.467 

R5 0.325 0.062 0.491 0.346 

R6 0.094 -0.064 0.298 0.258 

R7 0.164 0.090 0.222 0.192 

R8 0.196 0.104 0.415 0.391 

R9 0.196 0.104 0.420 0.391 
 
In this numerical example, we assume , and solve these problems and obtain optimal 

portfolios shown in Table 3.3. 

0.12ρ=

 
Table 3.3. Each optimal solution with respect to three problems 

 1x  2x  3x  4x  5x  6x  7x  8x  9x  

Our model 0 0.003 0.134 0.197 0.188 0.028 0.194 0.142 0.114

Carlsson et al. 0.002 0.024 0.190 0.166 0.199 0.012 0.115 0.123 0.169

Vercher et al. 0.145 0.200 0 0.200 0 0 0.200 0.200 0.055

 
From the optimal portfolios, we find that the optimal portfolio for our model selects higher return 
securities such as R4, R5 and R7 than the others. Then, it is similar to the optimal portfolio for 
Carlsson et al. model. This means that our model and Carlsson et al. model mainly consider 
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maximizing the total profit, while Vercher et al. model considers minimizing the downside risk of 
the investment, measured by the mean-semi-absolute deviation. On the other hand, some rates of 
asset allocations for our model such as securities R4 and R7 are similar to those of Vercher et al. 
model. 
   Furthermore, we consider two cases; (a) Returns of all securities become more increasing up to 
10 percents than the sample means in Table 3.1, (b) Returns of all securities become more decreasing 
up to 10 percents than the sample mean in Table 3.1. With respect to each case, we randomly 
generate 100 sample data according to the uniform distribution and calculate the total return of each 
model. 
 

Table 3.4.  Total return with respect to each model of the 10 percent increase case 
 Average value Maximum value Minimum value Variance (100 samples)

Our model 0.1545 0.1596 0.1503 3.683×10-6

Carlsson et al. 0.1539 0.1593 0.1498 3.743×10-6

Vercher et al.  0.1177 0.1210 0.1141 2.322×10-6

 
Table 3.5. Total return with respect to each model of the 10 percent decrease case 

 Average value Maximum value Minimum value Variance (100 samples)

Our model 0.1401 0.1454 0.1359 3.693×10-6

Carlsson et al. 0.1395 0.1449 0.1354 3.801×10-6

Vercher et al. 0.1063 0.1214 0.1030 2.254×10-6

 
From Tables 3.4 and 3.5, the total return of our model is the highest among three portfolio models 
even if returns become more increasing and decreasing than the expected returns. Furthermore, in 
the case of comparing our model with Carlsson et al. model, each average return is nearly equal, but 
variance of these 100 samples for our model is lower than that of Carlsson et al. model. On the other 
hand, Vercher et al. model achieves a diminution of the risk in Tables 3.4 and 3.5. However, the 
mean value of the total return of Vercher et al. model is much less than that of our proposed model. 
Consequently, we find that our proposed model is applied to other various cases in practical 
investments, particularly the case where the decision maker finds the way to earn maximum profits 
in stead of accepting some degree of risks. 
 
3.4.2 Tokyo Stock Exchange data 
 

Furthermore, in order to show the usefulness of our proposed model more clearly, we consider 
another numerical example based on the data of securities on the Tokyo Stock Exchange. Let us 
consider ten securities shown in Table 3.6, whose mean values and standard deviations are based on 
historical data in the decade between 1995 and 2004. 
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Table 3.6. Sample data from Tokyo Stock Exchange 
Returns Sample mean SD Fuzzy number to sample mean 

R1 0.055 0.445 (0.055, 0.05) 

R2 0.046 0.289 (0.046, 0.03) 

R3 0.035 0.306 (0.035, 0.06) 

R4 0.114 0.208 (0.114, 0.08) 
R5 0.043 0.253 (0.043, 0.02) 

R6 0.034 0.269 (0.034, 0.01) 
R7 0.018 0.230 (0.018, 0.01) 

R8 0.171 0.297 (0.171, 0.10) 
R9 0.087 0.388 (0.087, 0.07) 

R10 0.080 0.318 (0.080, 0.02) 

 

In a way similar to subsection 3.3.1, parameters  of trapezoidal 

fuzzy numbers  based on study [117] are shown in Table 3.7 using the historical data. 

(,  ,  ,  ,  1, 2,...,10j j j ja b jα β = )

)( , ,j j j ja b α β
 

Table 3.7. Each parameter value based on the historical data 

Returns ja  jb  jα  jβ  

R1 -0.123 0.005 0.239 0.868 

R2 -0.069 0.069 0.301 0.467 

R3 -0.129 0.025 0.200 0.713 

R4 0.005 0.177 0.198 0.235 

R5 -0.082 0.114 0.217 0.323 
R6 -0.052 0.108 0.290 0.382 

R7 -0.056 0.067 0.236 0.369 
R8 -0.060 0.193 0.310 0.456 

R9 -0.093 0.130 0.312 0.626 

R10 0.009 0.236 0.563 0.264 

 
Using these data in Tables 3.6 and 3.7 and introducing the following fuzzy goals; 

( )

( )

( ) ( )

( )
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we solve problems in subsection 3.3.1. Then, we set the parameter  in the Vercher et al. model as 

, and obtain optimal portfolios for three models shown in Table 3.8, respectively.  

ρ
0.06ρ=
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Table 3.8. Each optimal solution with respect to three problems 

 1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  
Our model 0.051 0.078 0.083 0.200 0.095 0.055 0.029 0.200 0.108 0.102

Carlsson et al. 0 0 0 0.200 0 0.200 0 0.200 0.200 0.200
Vercher et al.  0 0 0 0.200 0.200 0.200 0.200 0.200 0 0 

 
Subsequently, we consider the case where an investor purchases securities at the end of 2004 
according to each portfolio shown in Table 3.8. Then, the total return of three models at term ends of 
2005 and 2007 become the following values shown in Table 3.9, respectively. 
 

Table 3.9.  Total return at term ends of 2005 and 2007 

 Term end of 2005 Term end of 2007 

Our model 0.3058 0.3318 
Carlsson et al. 0.2194 0.2395 

Vercher et al.  0.2852 0.2743 

 
Table 3.9 obviously shows that our proposed model earns much higher profits than Carlsson et al. 
model and Vercher et al. model. Then, from Table 3.8, the optimal portfolio of our proposed model is 
well-decentralized compared to previous standard fuzzy models. Therefore, our proposed model may 
be an appropriate model in the sense of the general risk management that investors should keep a 
diversified portfolio. Consequently, we find that our proposed model is much useful than the 
previous standard fuzzy models in current investment markets. 
  Furthermore, we consider several investor’s subjectivities such as optimistic, pessimistic and 
neutral. Using the numerical example in Tables 3.6 and 3.7, we assume that each investor has the 
different sample mean, and consider the following three types of investors as Table 3.10. 
 

Table 3.10. Sample mean of each subjectivity 

 Pessimistic Neutral Optimistic 
R1 (0.030, 0.05) (0.055, 0.05) (0.070, 0.05) 

R2 (0.031, 0.03) (0.046, 0.03) (0.061, 0.03) 

R3 (0.005, 0.06) (0.035, 0.06) (0.065, 0.06) 

R4 (0.074, 0.08) (0.114, 0.08) (0.154, 0.08) 

R5 (0.033, 0.02) (0.043, 0.02) (0.053, 0.02) 

R6 (0.029, 0.01) (0.034, 0.01) (0.039, 0.01) 

R7 (0.013, 0.01) (0.018, 0.01) (0.023, 0.01) 

R8 (0.121, 0.10) (0.171, 0.10) (0.221, 0.10) 

R9 (0.052, 0.07) (0.087, 0.07) (0.121, 0.07) 

R10 (0.070, 0.02) (0.080, 0.02) (0.090, 0.02) 
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Subsequently, in the case of optimistic investor, we deal with the possibility measure in our proposed 
model. On the other hand, in the case of pessimistic investor, we deal with the necessity measure. In 
these assumptions, we solve them using the our proposed approaches and obtain the following 
optimal portfolios. 
 

Table 3.11. Each optimal solution with respect to three subjectivities 

 1x  2x  3x  4x  5x  6x  7x  8x  9x  10x  

Pessimistic 0.033 0.080 0.018 0.200 0.110 0.087 0.060 0.200 0.071 0.141

Neutral 0.051 0.078 0.083 0.200 0.095 0.055 0.029 0.200 0.108 0.102
Optimistic 0.045 0.081 0.091 0.200 0.088 0.048 0.024 0.200 0.109 0.114

 
Then, in a similar manner to Table 3.9, we consider the case where an investor purchases securities 
at the end of 2004 according to each portfolio shown in Table 3.11. Then, the total return of three 
models at term ends of 2005 and 2007 become the following values shown in Table 3.12, 
respectively. 
 

Table 3.12.  Total return at term ends of 2005 and 2007 

 Term end of 2005 Term end of 2007 

Pessimistic 0.2504 0.2712 

Neutral 0.3058 0.3318 

Optimistic 0.3174 0.3434 

 
From Table 3.12, we find that the optimistic investor earn the highest future return among three 
subjectivities. Therefore, this result may mean that the trend of the financial market in this term is 
booming. 
 
 

3.5 Random Fuzzy CAPM Model 
 

  In portfolio theories, Capital Asset Pricing Model (CAPM) proposed by Sharpe [108], Lintner 
[82], and Mossin [94] has been used in many practical investment cases by not only researchers but 
also practical investors. The main advantage of CAPM is easily-handled since the relation between 
returns of each asset and market portfolio such as NASDAQ and TOPIX can be represented as the 
following linear equation. 

1 2
j j jr d d r= + m  

where is the return of market portfolio, and  and  are inherent values derived from mr
1
jd 2

jd
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historical data in investment fields. However, market portfolio  is not entirely equal to 

NASDAQ and TOPIX, and so it is almost impossible to observe  exactly in the investment field. 

Furthermore, in the case that the decision maker predicts the future return using CAPM, it is obvious 

that market portfolio  also occurs according to a random distribution. Therefore, considering 

these situations, we propose a random fuzzy CAPM model which is assumed  to be a random 

fuzzy variables. 

mr

mr

mr

mr

First, we mainly reconsider the following basic random fuzzy programming problem: 

1
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(3.35)

 

Subsequently, using CAPM, let us assume that coefficients of objective functions 1 2
j jr d td= + �� j  

where  and  are constants, and 1
jd 2

jd t�  is a random variable with variance  and mean  

characterized by the following membership functions: 

2
jσ jm�
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where  and ( )L x ( )R x  are nonincreasing reference functions to satisfy , 

 and the parameters  and  represent the spreads corresponding to the left and 

the right sides, respectively, and both parameters are positive values. In this case that the return 

coefficient 

( ) ( )0 0L R= =1

0( ) ( )1 1L R= = iα iβ

jr�  is a random fuzzy variable characterized by (3.36), the membership function of jr�  

is expressed as 
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where  is a universal set of normal random variable and  is a probability density Γ ( 2,j j jT m σ
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function for the random variable with mean  and variance . Then, the objective function jm 2
jσ

1

n

j j
j
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=∑ �  is defined as a random fuzzy variable characterized by the following membership 
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where ( )1,..., nγ γ=γ . Furthermore, we discuss probabilities 
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(3.39)

 
Subsequently, since problem (3.35) is not a well-defined problem due to including random fuzzy 
variable returns, we need to set a criterion with respect to probability and possibility of future returns 
for the deterministic optimization. In general decision cases with respect to investment, an investor 
usually focused on maximizing either the goal of the total profit or that of achieve probability.  
Therefore, in this subsection, we propose a possibility maximization model for probability 
maximization model in random fuzzy programming problems. 
 
3.5.1 RFP model: possibility maximization model for probability maximization model 
 

In this subsection, we mainly consider the case that a decision maker sets the target value f  and 

she or he considers a multi-criteria programming problem maximizing the probability such as the 
objective function is more than the target value f .  First of all, we introduce a basic probability 

maximization model introducing the probability chance constraint as follows: 
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However, a decision maker usually has a goal that she or he would like to earn the probability 

more than 1p . Furthermore, taking account of the vagueness of human judgment and flexibility for 

the execution of a plan in many real decision cases, we give a fuzzy goal to the target probability as 

the fuzzy set characterized by a membership function. In this subsection, we consider the fuzzy goal 

of probability ( )G pμ �  which is represented by, 
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where  is a strictly increasing continuous function. Furthermore, using a concept of 

possibility measure, we introduce the degree of possibility as follows: 

( )pg ω

( ) ( ) ( ){ }sup min ,  P GP p
G pμ μ=∏ � ��
� p  (3.42)

 

Using this degree of possibility, we consider the following possibility maximization model for the 

probability maximization model: 

( )Maximize
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�
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x
 (3.43)

 

This problem is equivalently transformed into the following problem by introducing a parameter h: 

( )
Maximize

subject to ,  P

h

G h XΠ ≥ ∈�
� x

 (3.44)

 

In this problem, each constraint  is transformed into the following inequality: ( )P GΠ ≥� h
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where  is a pseudo inverse function defined as ( )L h∗ ( ) ( ){ }supL h t L t∗ = ≥ h . 

From this transformation, problem (11) is equivalently transformed into the following problem: 
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Furthermore, we do the transformation to the stochastic constraint as follows: 
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Consequently, problem (3.46) is transformed into the following problem: 
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This problem is transformed into the following problem by introducing the pseudo inverse function 
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Problem (3.49) is a nonconvex programming problem, and so an optimal solution of this problem is 

not necessarily obtained by usual nonlinear programming approaches. However, in the case that the 

value of parameter h is fixed, constraints of this problem are reduced to a set of linear inequalities. 

This means that an optimal solution of this problem is obtained by using simplex method of linear 

programming approach and bisection method for parameter h. 
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Consequently, we construct the following analytical solution method. 

 

Solution procedure 

STEP1: Elicit the membership function of a fuzzy goal for the probability with respect to the 

objective function value. 

STEP2: Solve problem (3.49) in the case . If an optimal solution is obtained, it is a strict 

optimal solution of main problem and terminate this algorithm. Otherwise, go to STEP3. 

1h=

STEP3: Solve problem (3.49) in the case . If there is no feasible solution, terminate this 

algorithm. In this case, there is no feasible solution and it is necessary to reset a fuzzy goal 

for the probability. Otherwise, go to STEP4. 

0h=

STEP4: Set  and . 1hU ← 0hL ←

STEP5: Set  and 1k k← +
2

h h
k

L Uh +←  

STEP6: If 1k kh h ε+ − <  for the sufficiently small number , go to STEP8. Otherwise, go to 

STEP7 

ε

STEP7: Solve problem (3.49). If an optimal solution is obtained ( )x k , reset  and return to 

STEP5. If there is no feasible solution, reset  and return to STEP5. 

hL ← h

hhU ←

STEP8: ( )x k  is an optimal solution and terminate this algorithm. 

 

3.5.2 Numerical example 

 
In order to illustrate our considering situation that the proposing solution method is applied, we 

give a numerical example. We assume that there are four decision variables, three constraints and 
three scenarios to all parameters. Then, the constant parameters values are given as the following 

Tables 3.13. In this numerical example, we assume that random fuzzy variables it�  occur according 

to uniform distributions. Then, mean values and interval values for distribution function of it�  are 

given as the following Table 3.14. Subsequently, each mean value  is a symmetric triangle fuzzy 

numbers 

im�

,γ δ  where γ  is the center value and  is the spread value. δ
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Table 3.13. Parameters values of coefficients in objective functions 
 Scenario 1 Scenario 2 Scenario 3
1
1id  0.3 0.5 0.1 

1
2id  0.1 0.2 0.2 

1
3id  0.2 0.1 0.4 

1
4id  0.2 0.2 0.3 
2
1id  0.4 0.3 0.3 
2
2id  0.4 0.5 0.4 
2
3id  0.2 0.1 0.2 
2
4id  0.4 0.3 0.4 

 
Table 3.14. Mean values and distribution functions of random fuzzy variables 

 Scenario 1 Scenario 2 Scenario 3 

im�  0.3,0.1  0.5,0.2  0.2,0.1  

Interval 0.1 0.15 0.05 

 
Furthermore, each fuzzy goal for the probability to each scenario is given as follows: 

( )

0 0.7
0.7 0.7 0.9,  1,2,3

0.2
1 0.9

iG i

ω
ωμ ω ω

ω

⎧ <⎪⎪⎪⎪ −⎪⎪= ≤ < =⎨⎪⎪⎪⎪ ≤⎪⎪⎩

�
 

From these data in Tables 3.13 and 14, we set the target value of total profit which is 0.42, and solve 

the mini-max problem based on Problem (3.49). Then, we obtain the following optimal solution 
 

Table 3.15. Optimal solution of problem (3.49) 

1x  2x  3x  4x  
0.080 0.110 0 0.810 

 
Subsequently, comparing the proposed model with the case not including fuzzy variables, each 

optimal solution is given as the following Table 3.16. 

 
Table 3.16. Optimal solutions of three problems 

 1x  2x  3x  4x  
Not Fuzzy 0.140 0 0.158 0.702 

Problem (3.49) 0.080 0.110 0 0.810 
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From the result in Table 3.16, we find that the rate of portfolios between 2x  and 3x  in Problem 

(3.49) is opposite to the basic stochastic problem including fuzzy numbers. This means that decision 

variables to be the higher rate of  tend to be chosen in our proposed model. Therefore, by setting 

the random fuzzy variable as the market portfolios which is represented the investor’s subjectivity, 

we find that the optimal portfolio largely changes and our proposed model may provide the more 

appropriate portfolio suited to each investor. 

2
ijd

 
 

3.6 Conclusion 
 

In this chapter, we have considered portfolio selection problems involving ambiguous expected 
returns distributed according to the normal distribution, and proposed several models of random 
fuzzy portfolio selection problems; (a) Single criteria optimization model, (b) Bi-criteria 
optimization model introducing a fuzzy goal to the probability and the target future returns. Since 
each problem is equivalent to a parametric nonlinear programming problem, we have constructed 
each efficient solution method involving the procedure of solving a parametric convex programming 
problem to find a global optimal solution. Then, by comparing the proposed model with other 
standard fuzzy portfolio models using two numerical examples, we have found that the proposed 
model has been applied to more flexibly and changeable cases than two previous models. 
Furthermore, we have considered the random fuzzy CAPM model which had been a useful tool of 
the investment, and found that the proposed model was solved analytically and efficiently by using 
the linear programming approach and the bisection algorithm on the parameter. 

In the future, we will apply these random fuzzy portfolio selection problem and solution methods 
to other asset allocation problems, combinational optimization models and multi-period problems. 
Nonetheless, the new proposed models of portfolio selection problems and their efficient solution 
methods will allow us to solve more complicate problems in real situations under more random and 
ambiguous conditions. 
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Chapter 4 

Fuzzy Extension for Large-Scale Portfolio 

Selection Problems 
 
 

In Chapter 3, we focused on various random fuzzy portfolio selection problems. These problems 
are based on mean-variance models or safety first models extending the Markowitz model. On the 
other hand, in the mathematical programming, the mean-variance model is generally formulated as a 
quadratic programming problem to minimize the variances or maximize the total profit, and so the 
use of large-scale mean-variance models is restricted to the stock portfolio selection in spite of the 
recent development in computational and modeling technologies in financial engineering. Therefore, 
in order to solve the mean-variance model more efficiently, Konno and his research group [68, 69] 
have proposed the mean-absolute derivation model by introducing the compact factorization based 
on historical data. This model has been approximately formulated as a linear programming problem 
and been solved in shorter calculation time than a corresponding mean-variance model. After 
Konno’s studies, many researchers have applied the compact factorization approach to standard 
portfolio selection problems such as safety-first models, Value-at Risk (VaR), etc.. However, in these 
previous researches, the subjectivities of investors and ambiguity of received information are not 
considered. In practice investment cases, it is necessary to take various uncertain conditions such as 
not only randomness but also fuzziness into consideration. Due to such uncertainty, since it is 
difficult that investors know precise information, they need to make appropriate decisions to 
optimize the portfolio under uncertainty based on their own sense of the present market.  

Therefore, the main object in this chapter is to extend previous large-scale portfolio selection 
problems using historical data analysis such as the compact factorization to under stochastic and 
such fuzzy environments. The proposed models include many previous stochastic and fuzzy 
portfolio selection problems by considering the parameters setting, and so the proposed models may 
become versatile to apply various investment situations. However, in the sense of the deterministic 
mathematical programming, these mathematical models are not well-defined problems due to 
random and fuzzy variables, and so we need to set a criterion for each objective or constraint 
involving random and fuzzy variables in order to solve them analytically using the mathematical 
programming. In this chapter, using the hybrid programming approach to the stochastic approach 
such as the compact factorization and fuzzy programming approach such as the possibility 
programming, we perform the deterministic equivalent transformations to main problems. 
Furthermore, deterministic equivalent problems derived from such stochastic and fuzzy 
programming problems are generally complicate problems, and so it is often difficult to apply the 
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standard programming approaches to these problems. Therefore, we develop the efficient and 
analytical solution method to each proposed model considering the analytical strictness and simple 
usage in practical investment situations. 
 
 

4.1 Formulation of Portfolio Selection Problems Based on Historical Data 
 
In this chapter, the following parameters and variables are used: 

r : Mean value of n-dimensional Gaussian random variable row vectors 
V : Gaussian random variance 

Gr : Minimum value of the goal for expected total return 

ija : Cost coefficient of jth decision variable to ith constraint 

ib : Maximum value to ith constraint 

x : n-dimensional decision variable column vector of the budgeting allocation 
 
Then, we assume that the main object in the following problems based on the Markowitz model is 
minimizing the total risk, which generates in the case that a decision maker earns the total profit of 
assets or products more than the target value. Then, in simplify of the following discussion, we also 

assume that the coefficients of parameter  are only fuzzy numbers. In the case that cost 

coefficients of constraints are assumed to be fuzzy or random variables, we discuss to the problems 
including such fuzzy or random variables in the same manner. 

jr

 
4.1.1 Portfolio selection problem based on mean-variance theory 
 

First, we introduce the mean-variance model proposed by Markowitz [90], which is one of the 
traditional and important mathematical approaches for portfolio selection problems. This model has 
proposed the following mathematical programming problem as a portfolio selection problem: 
(Mean-variance model) 

( )

1

Minimize ( )
subject to

                  ,  

t

t
G

n

j j
j

V
E r

a x b
=

=
= ≥

≤ ≥∑

V

0

x x x
x r x

x

 
(4.1)

 
The mean-variance model has long served as the basis of financial theory. This problem is a 
quadratic programming problem, and so we find the optimal solution using standard convex or 
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nonlinear programming approaches. However, it is not efficient to solve the large scale quadratic 
programming problem directly. Furthermore, in the case that a decision maker expects the future 
return of each product, she or he doesn’t consider only one scenario of the future return, but often 
several scenarios based on the historical data and the statistical analysis. 

In this regard, in order to perform the re-formulation of original mean-variance model (4.1), we 
introduce multi-scenario to the future returns and the following compact factorization approach. Let 

 be the realization of random variable  about the scenario , sjr sR s ( )Ss ,...,2,1= , which we 

assume to be available from historical data and from subjective prediction of decision makers. Then, 
the return vector of scenario i is as follows; 

( ) (1 2, ,..., ,  1 2s s s snr r r s , ,...,S= =r )

)

 (4.2)

where n is the number of total asset. We introduce the probabilities for each scenario as follows: 

{ } (Pr ,  1,2...,s Sp s S= = =r r  (4.3)

 
We also assume that the expected value of the random variable can be approximated by the average 
derived from these data. Particularly, we let  

1

S

j j
s

r E R p r
=

⎡ ⎤≡ =⎢ ⎥⎣ ⎦ ∑ s sj  (4.4)

Then, the mean value  and variance  derived from the data are as follows: ( )xE )(xV

( )
1 1 1

n n S

j j s sj j
j j s

E r x p r x
= = =

⎛ ⎞⎟⎜= = ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑ ∑ ∑x  (4.5)

 

( ) ( )
2

1 1

2

1 1 1 1 1 1

        

S n

s sj j
s j

S n n S n n

s sj j s sj j jk j k
s j j s j k

V p r x E

p r x p r x x xσ

= =

= = = = = =

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟⎜ ⎟= − =⎟⎜ ⎜ ⎟⎟⎜ ⎜ ⎟⎜ ⎟⎟⎜ ⎝ ⎠⎝ ⎠

∑ ∑

∑ ∑ ∑ ∑ ∑∑

x x
 (4.6)

 

For simplify of the following discussion, we assume each probability  to become same value sp

S
1

. From above parameters, we transformed mean-variance model (4.1) into the following problem 

using the compact factorization approach from (4.2) to (4.6): 
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( )
2

1 1

1

1 1

1Minimize

1subject to

                  ,  ,  

S n

sj j j
s j

S

j sj
s

n n

j j G j j
j j

r r x
S

r r
S

r x r a x b

= =

=

= =

⎛ ⎞⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

=

≥ ≤

∑ ∑

∑

∑ ∑ 0x ≥

 (4.7)

 

Furthermore, introducing parameters ( )
1

,
n

s sj j j
j

z r r x
=

= −∑ ( )Ss ,...,2,1= , we equivalently 

transformed problem (4.7) into the following problem: 

( ) ( )

2

1

1

1

1 1

1Minimize

subject to 0,  1, 2,...,

1                   ,

                  ,  ,  

S

s
s

n

s sj j j
j

S

j sj
s

n n

j j G j j
j j

z
S

z r r x s

r r
S

r x r a x b

=

=

=

= =

− − = =

=

≥ ≤ ≥

∑

∑

∑

∑ ∑ 0x

S
 (4.8)

 
Since this problem is a quadratic programming problem not to include the variances, we set each 
parameter and solve it more efficiently than original model (4.1). However, this problem is not a 
linear programming problem which is easily solved using the efficient linear programming 
approaches. 
 
4.1.2 Portfolio selection problem based on mean-absolute deviation theory 
 

In order to solve mean-variance model (4.1) efficiently, Konno [68] considered the mean-absolute 
deviation model for portfolio selection problems. This model considers an absolute deviation instead 
of the variance as the risk factor. Now, let the absolute deviation (AD) 

( )
1 1 1

1 1S n S

sj j j s P
s j s

AD r r x r
S S= = =

≡ − ≡∑∑ ∑ r−  (4.9)

 
By introducing this definition of absolute deviation, he proposed the following portfolio selection 
problem: 
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( )
1 1

1

1 1

1Minimize

1subject to
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S n

sj j j
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m

j sj
i

n n

j j G j j
j j

r r x
S

r r
S

r x r a x b

= =

=

= =

−

=

≥ ≤

∑∑

∑

∑ ∑ 0x ≥

 (4.10)

 

Then, introducing parameters ( )
1

,
n

s sj j j
j

z r r
=

= −∑ x  problem (10) is transformed into the 

following problem based on the result of the previous study of Konno [68]: 

( )

1

1 1

1

1 1

2Minimize

subject to ,  1, 2,...,

1                   ,

                  ,  ,  

S

s
s

n n

s sj j j j
j j

S

j sj
s

n n

j j G j j
j j

z
S

z r x r x s

r r
S

r x r a x b

=

= =

=

= =

+ ≥ =

=

≥ ≤ ≥

∑

∑ ∑

∑

∑ ∑ 0x

S
 (4.11)

 
This problem is a linear programming problem, and so it is efficiently solved by using the standard 
linear programming approaches such as the Simplex method and the Interior point method. 
Furthermore, it is essentially equivalent to the model based on the mean-variance theory if the rate of 
the return of assets is multivariate normally distributed. Consequently, by using the mean-absolute 
deviation model, investors can solve large scale portfolio selection problems easily. 
 
4.1.3 Portfolio selection problem based on mean-variance theory 
 

With respect to portfolio selection problems based on mean-variance and mean-absolute deviation 
theories, the main concept is that the risk-management is equal to minimizing the total variance and 
absolute deviation, respectively. However, the nonfulfillment probability, which means that the total 
return is less than the target value, is also considered as the factor of risk-management. In this regard, 
many researchers have proposed safety first models with respect to portfolio selection problems, Roy 
model [104], Kataoka model [64], Telser model [114], etc..  

First, we introduce the Roy model. This model has been formulated as the following mathematical 
programming problem. 
(Roy model) 
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r x
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(4.12)

where  is the total profit and  is the goal of ( )xR fr ( )xR . Furthermore, we introduce other 

safety first models, Kataoka model and Telser model, as follows: 
(Kataoka model) 

( ){ }

1

Maximize

subject to Pr ,

                  ,  ,  

f

f

n
t

G j j
j

r

R r

r a x b

α

=

≤ ≤

≥ ≤∑ 0

x

r x x ≥

 
(4.13)

where α  is a goal of nonfulfillment probability. 
(Telser model) 

( ){ }

1

Maximize

subject to Pr ,

                  ,  

t

f

n

j j
j

R r

a x b

α

=

≤ ≤

≤ ≥∑ 0

r x

x

x

 
(4.14)

 
The safety first models such as Roy, Kataoka and Telser models also have long served as the basis of 
financial theory as well as mean-variance and mean-absolute deviation models. In mathematical 
programming, these problems are stochastic programming problems, and so we obtain the optimal 
portfolio as stochastic programming approaches.  

In some previous researches, each future return is assumed to be a random variable including the 
fixed expected return and variance. However, it is hard to observe variances of each asset in real 
market accurately and determine them as fixed values. Furthermore, in the case that decision makers 
expect the future return of each product, they don’t consider the only one scenario of the future 
return, but often several scenarios. Therefore, in a way similar to mean-variance and mean-absolute 
deviation models, we introduce the scenario of return vector (4.2) and the occurrence probability 

(4.3). Then, we assume each probability to be 
S

ps
1

= . Using these parameters and the compact 

factorization approach, we transform these safety first models into the following problems 

introducing the parameters { } ( )Sszs ,...,2,1 ,1,0 =∈ , respectively: 

(Roy model) 
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(Kataoka model) 
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(Telser model) 
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where M  is a sufficiently large number satisfying 
1

min
n

G
j

sj jM r
=

⎧ ⎫⎪ ⎪⎪≥ − ⎨⎪ ⎪⎪ ⎪⎩ ⎭
∑ r x ⎪⎬ . These models are 

0-1 mixed linear programming problems. Therefore, we obtain these optimal portfolios using integer 
programming approaches such as Branch-bound method. 
 
 

4.2 Fuzzy Extension to the Large-Scale Portfolio Selection Problems Based on 
Historical Data 
 
4.2.1 Portfolio selection problem based on the fuzzy extension of mean-variance theory 
 

With respect to previous portfolio models in Subsection 4.1, each return of scenarios is considered 
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as a fixed value derived from a random variable. However, considering the psychological aspects 
investors, it is difficult to predict the future return as the fixed value. Therefore, we need to consider 
that the future return includes ambiguous factors. Therefore, we propose the risk-management 
models based on the portfolio theory using scenarios where the return is ambiguous. In this chapter, 
the return including the ambiguity is assumed to the following triangular fuzzy number: 

, , ,sj sj j j sj jr r rα α α= =�  (4.18)

1.0 
( )

sjrμ ω�

ωsj jr α+sjrsj jr α−

 

Figure 4.1. Shape of the membership function  ( )
sjrμ ω�

 

In this chapter, for simplify of the following discussion, we assume ( ) jsj hr α−− 1  to be a positive 

value. Since  is a fuzzy variable, the objective function and the parameters including  in the 

basic mean-variance model are also assumed to be fuzzy variables. Therefore, we can not optimize 
this problem without transforming the objective function into another form.  

sjr~ sjr~

In previous researches, some criteria with respect to fuzzy portfolio problems have been proposed. 
For example, Liu [83, 84], and Huang [49] have proposed a portfolio selection problems using fuzzy 
or hybrid (fuzzy and random) expected value and its variance. Katagiri [61] has proposed a portfolio 
selection problem using possibility measure and probability measure. Carlsson [17] has proposed a 
portfolio selection problem using the possibility mean value. In, this chapter, we assume the 
following cases: 
(a) Since main object is minimizing the total variance and the decision maker considers that she or 

he manages to minimize it as small as possible even if the aspiration level becomes smaller. 
(b) On the other hand, it is clear that the decision maker also considers that she or he never fails to 

earn the total return more than the goal in the variance constraint. 
 

Therefore, we consider fuzzy portfolio selection problems for probabilistic expected value and 
variance. Then, we introduce a possibility measure for total variance based on assumption (a) and a 
necessity measure for the expected total return based on assumption (b). Then, we convert basic 
mean-variance model (4.7) into the following problem including the chance-constraint: 
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where  is a possibility measure and this means , 

then  is a necessity measure and this means 

( ){Pos GV σ≤� x } σ

}
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≤

≤ = �
�

xx
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≥

≥ = − �
�

xx . 

In this problem, membership functions ( ) ( )E rμ � x  and ( ) ( )Vμ σ� x  are assumed to be the following 

forms using fuzzy extension principle. First, fuzzy number  is given as the following 

triangular fuzzy numbers: 

( )E� x
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1 1 1

1 ,
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E r x x
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= = =
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Therefore, we obtain membership function ( ) ( )E rμ � x  as follows: 
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Next, we consider membership function ( )σμ )(~ xV . In a way similar to ( )( )rE x~μ , we obtain the 
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fuzzy number for  as the following triangular fuzzy 

number: 
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Therefore, we obtain membership function ( )
szμ ω�  as follows: 
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Furthermore, we consider the membership function for ( )
2

1

n

s sj j j
j

S r r
=

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑� x .  In general cases 

using fuzzy numbers, membership functions often become much complicate functions. Therefore, 

with respect to ( )
szμ ω� , we introduce the -cut of this membership function in order to represent 

membership functions briefly: 
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From this h -cut of this membership function, that of membership function  is the 

following form: 
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Therefore, the membership function ( )σμ )(~ xV  is given as follows. 
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By using these membership functions, we transform the problem (4.19) into the following problem: 
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where the left part of membership function ( ) ( )
s

L
S hμ  is as follows: 
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Then, introducing parameters ( )h
sz , problem (4.27) is equivalently transformed into the following 

problem: 
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In problem (4.29), the objective function is a convex quadratic function, and so problem (4.29) is 
equivalent to a convex quadratic programming problem. Therefore, we obtain a global optimal 
solution by using standard convex programming approaches. Furthermore, in the case that each 

return does not include fuzziness, i.e., each ( )njj ,...,2,1 ,0 ==α , problem (4.29) is degenerated 

to the following problem: 
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 (4.30)

 
This problem is equivalent to basic mean-variance portfolio selection problem (4.8). Consequently, 
we find that problem (4.30) is a fuzzy extended model for basic mean-variance model. 
 
4.2.2 Portfolio selection problem based on the fuzzy extension of mean-absolute deviation 
theory 
 

In a way similar to the mean-variance model, we consider the fuzzy extension of the 
mean-absolute deviation model. First, we rewrite the mean-absolute deviation model: 
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In this problem, the objective function and parameters including fuzzy variables  are also 

assumed to be fuzzy variables. Therefore, we convert problem (4.31) into the following problem by 
using chance constraints: 
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 (4.32)

 
The same kind of membership functions is given in Section 3, so we consider membership function 

( ) ( )Dμ ω� x . The -cut of membership function becomes the following form in a way similar to the 

mean-variance model: 
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and  
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Using this membership function, problem (4.32) is transformed into the following problem: 
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In order to solve problem (4.34) analytically, we introduce the following parameters: 
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By using these parameters, problem (4.34) is equivalently transformed into the following problem 
based on the previous study of King [66]: 
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(4.35)
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Since this problem is a linear programming problem, we obtain the global optimal solution by using 
linear programming approaches such as Simplex method and the Interior point method. Furthermore, 
in a way similar to the proposed fuzzy mean-variance model in Section 3, in the case that each return 

does not include fuzziness, i.e., each ( )njj ,...,2,1 ,0 ==α , problem (4.35) is degenerated to the 

following problem: 
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This problem is equivalent to basic mean-absolute deviation model (4.11). Consequently, we find 
that problem (36) is a fuzzy extended model for basic mean-absolute deviation model. 
 
4.2.3 Portfolio selection problem based on the fuzzy extension of safety-first theory 
 

In previous researches using scenario models with respect to future returns, the each return is 
considered as the fixed value derived from a random variable. However, considering the 
psychological aspect of decision makers and the uncertainty of given information, we need to 
consider that the future return has the ambiguity since it is difficult to predict the future return as the 
fixed value. Therefore, we propose the portfolio selection problem using the scenarios involving the 
ambiguous to the returns. In this chapter, each return is assumed to the triangle fuzzy number (4.18). 
These problems (4.15), (4.16) and (4.17) include fuzzy numbers in objective functions and 

constraints; for example, each membership function of the objective function 
1

,
n

s sj j s
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f r x M z
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 is given as follows: ( 1,2,...,s= )S

1 1

,
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s sj j s j j
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f r x M z xα
= =
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In the case that we introduce these membership functions in problems (4.15), (4.16) and (4.17), 
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directly, these problems are not well-defined problems due to fuzzy numbers, and we need to 
transform these problems into deterministic equivalent problems to solve using mathematical 
programming approaches. In the case that a decision maker deals with each safety first model, it is 
obvious that she or he focuses on its objective function more greatly than the other constraint. With 
respect to its objective function, she or he considers that the object is realized as well as possible 

even if the possibility decreases a little. Then, with respect to constraint t
Gr≥r x , we introduce the 

possibility mean function based on the result of previous research [18]. 
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(4.38)

 

Furthermore, if target value  is sufficiently small, the maximum value of aspiration level for 

each object is sufficiently large. However, a decision maker often has a goal to each object such as 

“Total future return 

Gr

sf~  is approximately larger than the goal .” and “The goal of nonfulfillment 

probability is less than about .”. Furthermore, in a similar way to each return involving the 

decision maker’s subjectivity and ambiguity, taking account of the vagueness of human judgment 
and flexibility for the execution of a plan, the decision maker has some subjectivity and ambiguity 

with respect to each goal. In this chapter, we introduce such subjective goals for the total return , 

nonfulfillment probability 
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s
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p
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= ∑ z and expected total return  as fuzzy goals. First, the 

fuzzy goal of  is assumed to be the following membership function: 
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In a similar way to , fuzzy goals of  and Gr p r  are assumed to be the following forms: 
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Then, we introduce the following possibility measure  and necessity measure . ( )
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We assumed the following cases: 
(a) In the case that the object is maximizing the total return, we deal with possibility measure 

 since a decision maker strongly considers that she or he manages to earn the total return 

as much as possible. 

( )
sf

GΠ �
�

(b) In the case that the object is not maximizing the total return but other objects such as minimizing 

the nonfilfullment probability, we deal with necessity measure  since a decision maker 

consider that the total return is sure to be hold more than the goal satisfying the other object. 

( )
sf

N G�
�

 
From these assumptions, in this chapter, we possibility maximization models with respect to each 
objective function of basic safety first model satisfying this aspiration level becomes more than the 
other aspiration level. Therefore, safety first models (4.15), (4.16) and (4.17) are transformed into 
the following problems introducing parameter : h
(Fuzzy Roy model) 
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(Fuzzy Kataoka model) 
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(Fuzzy Telser model) 
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In these problems, each constraint is transformed into the following inequality: 
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Furthermore, introducing a parameter h  into problems (4.43), (4.44) and (4.45), we also obtain the 
similar inequalities with respect to h  using the same manner to (4.46). From these inequalities, we 
transform these safety first models into the following problems: 
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(Fuzzy Roy model) 
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(Fuzzy Kataoka model) 
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(Fuzzy Telser model) 
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These problems are 0-1 mixed nonlinear programming problems, and so it is almost impossible to 

solve them directly. However, in the case that parameters  and h h  is fixed such as  and fhh =
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fhh = , by considering the following problems; 

 
(Fuzzy Roy model) 
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(Fuzzy Kataoka model) 
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(Fuzzy Telser model) 
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and evaluating whether each objective function is equal to ( ) ( )1
0 11p f f fg h h p h p− = − + , 
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( )1
sf fg h−  and ( )1

r fg h−  using the bisection algorithm for parameter , respectively, we obtain 

each optimal solution each global optimal solution. Consequently, the following solution method is 
constructed with respect to the risk-management model based on Roy model.  

h

 
Solution method 
STEP 1: Elicit the membership function of a fuzzy goal with respect to total profit, nonfulfillment 

probability and expected total return. 

STEP 2: Set  and solve problem (4.50). If the optimal objective value  of the problem 

satisfies  and its feasible solution including constraints exists, then 

terminate. In this case, the obtained current solution is an optimal solution of main problem. 
Otherwise, go to STEP 3. 

1←h ( )hZ

( ) ( )hghZ p
1−≤

STEP 3: Set  and solve problem (4.50). If the optimal objective value  of the 

problem satisfies 

0←h ( )hZ

( ) ( )hghZ p
1−>  or the feasible solution including constrains does not 

exist, then terminate. In this case, there is no feasible solution and it is necessary to reset a 
fuzzy goal for each objective function. Otherwise, go to STEP 4. 

STEP 4: Set  and . 1←hU 0←hL

STEP 5: Set 
2

hh LU
h

+
←  

STEP 6: Solve problem (4.50) and calculate the optimal objective value ( )hZ  of the problem. If 

, then set ( ) ( )hghZ p
1−≤ hU h ←  and return to STEP 5. If ( ) (hghZ p

1−< ) , then set 

 and return to STEP 5. If hLh ← ( ) ( )hghZ p
1−= , then terminate the algorithm. In this 

case, ( )h∗x  is equal to a global optimal solution of main problem. 

 
In a similar way to this solution method for the Roy model, the solution methods for the Kataoka 
model and the Telser model are constructed. Furthermore, in problems (4.50), (4.51) and (4.52), the 
decision maker considers that all the fuzzy numbers and fuzzy goals is not included in each problem, 
each problem is degenerated to basic safety first model (4.15), (4.16) or (4.17), respectively. 
Therefore, we find that our proposed models (4.50), (4.51) and (4.52) include many previous safety 
first models. 
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4.3 Numerical Example 
 

In order to compare our proposal models with one of the most important portfolio model, 
mean-variance model, let us consider an example shown in Table 4.1. We assume that there are nine 
decision variables whose returns are assumed to be symmetric triangle fuzzy numbers involving 
spread α . Then, we assumed that the number of scenarios with respect to each return is 10 and 
spread α  for each return is equal among all scenarios. 
 

Table 4.1. Numerical example in the case of nine decision variables and ten return scenarios 
 R1 R2 R3 R4 R5 R6 R7 R8 R9 

Scenario1 0.082 0.061 0.162 0.179 0.191 0.053 0.129 0.136 0.122 

Scenario2 0.072 0.062 0.141 0.163 0.210 0.062 0.142 0.121 0.119 

Scenario3 0.075 0.055 0.153 0.177 0.204 0.060 0.119 0.111 0.125 

Scenario4 0.070 0.051 0.149 0.182 0.205 0.054 0.128 0.127 0.113 

Scenario5 0.084 0.070 0.143 0.162 0.189 0.067 0.135 0.120 0.115 

Scenario6 0.066 0.064 0.152 0.159 0.195 0.049 0.144 0.118 0.107 

Scenario7 0.076 0.071 0.146 0.163 0.191 0.053 0.135 0.125 0.126 

Scenario8 0.072 0.058 0.140 0.167 0.202 0.046 0.118 0.107 0.119 

Scenario9 0.065 0.053 0.155 0.181 0.190 0.069 0.138 0.123 0.115 

Scenario10 0.078 0.072 0.164 0.169 0.188 0.064 0.133 0.111 0.124 

Spread  α 0.01 0.02 0.02 0.05 0.1 0.02 0.04 0.06 0.08 

 
In this numerical example Table 4.1, we assume that the upper rate of purchasing volume to each 

asset is 0.2. In this case, we solve the following three problems; (P1) Basic mean-variance model, 
(P2) Fuzzy mean-variance model, (P3) Fuzz mean-absolute deviation model, (P4) Fuzzy Roy model, 
(P5) Fuzzy Kataoka model and (P6) Fuzzy Telser model. 

Then, membership functions of fuzzy goals ( )GG rμ , ( )pGμ  and ( )rGμ  are assumed to be 

the following linear functions. 
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Consequently, we solve these problems using standard approaches or the proposed solution method, 
and obtain each optimal portfolio shown in Table 4.2: 
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Table 4.2. Optimal solutions with respect to each problem 
Problem R1 R2 R3 R4 R5 R6 R7 R8 R9 

P1 0.075 0.120 0.002 0.197 0.200 0.001 0.200 0.195 0.010 

P2 0 0 0.200 0.200 0.200 0 0.200 0 0.200 

P3 0 0 0.200 0.200 0.200 0 0.166 0.034 0.200 

P4 0.135 0 0 0.200 0.179 0 0.086 0.200 0.200 
P5 0.178 0.200 0 0.200 0.200 0 0.200 0.022 0 

P6 0.085 0 0 0.200 0.200 0 0.115 0.200 0.200 

 
From these optimal portfolios in this numerical example, we find that assets involving the higher 

future returns tend to be selected in the case that we also consider the possibility of that total future 
return. Then, with respect to assets R7 and R8, the expected return of R7 is lager than that of R8, but 

spread  derived from the ambiguity is larger than spread . Possibility maximization model 

considers the case that decision makers try to earn the total profit as much as possible and it is 
possible that the return of asset R8 is larger than that of asset R7. Therefore, we find that asset R8 is 
selected in possibility maximization model P3.  

8α 7α

Furthermore, we find that the optimal portfolio of fuzzy Roy model is similar to that of fuzzy 
Telser model in this case. On the other hand, we also find that the optimal portfolio of fuzzy Kataoka 
model is similar to that of basic Mean-variance model. In this chapter, we deal with necessity 
measure with respect to Roy model and Telser model, and possibility measure with respect to 
Kataoka model. Therefore, we consider that this tendency appears. Thus, by introducing fuzziness in 
general safety first models of portfolio selection problems, portfolios considering some trends such 
as positive 
or negative are constructed. Then, our proposed model can be appropriately applied in response to 
the tendency of each investor. 
 
 

4.4 Conclusion 
 
In this chapter, we have proposed the fuzzy extension to several standard approaches for the 
large-scale portfolio selection problems based on multi-scenario model, and considered the 
multi-scenario fuzzy portfolio selection problem maximizing the total future profit. First, we have 
considered mean-variance and mean-absolute deviation models based on the compact factorization. 
In order to solve them more efficiently, we have transformed the original problems into deterministic 
equivalent problems and constructed their efficient solution method. From these final deterministic 
problems, we found that these problems were equivalent to the original large-scale models in the 
sense of the mathematical programming. Next, we have proposed fuzzy extension models with 
respect to safety first models for portfolio selection problems based on the multi-scenario, and 
considered models maximizing the aspiration level for nonfulfillment probability, total profit and 
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expected total return, respectively. Furthermore, in order to solve them more efficiently, we have 
transformed main problems into the deterministic equivalent 0-1 mixed linear programming 
problems, which are equal to the original problems in the sense of the mathematical programming 
and analytically solved using standard integer programming approaches. We may be able to apply 
the proposed solution method to the cases including not only fuzziness but also both randomness and 
fuzziness which are called to fuzzy random variable or random fuzzy variable. 

As future studies, we will consider general asset allocation problems in the sense of risk 
management problems under these uncertainty conditions. In general, portfolio selection problems 
consider only budget constraint. However, the asset allocation problems consider various types of 
constraints such as human, resource, facility, delivery time, etc.. Then, it is clear that such constraints 
of asset allocation problems include much uncertainty than portfolio selection problems. Therefore, 
we will extend the proposed approaches in this chapter to the general asset allocation problems, and 
construct versatile risk management models. 
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Chapter 5 

Multi-Scenario and Robust Models for Portfolio 

Selection Problems 
 
 

In traditional portfolio selection problems, the authors focused on only an expected return or its 
variance, and maximizing the total profit or minimizing the total variance are considered separately, 
i.e. if one is considered as a main object, the other is a constraint. However, since the future return is 
treated as an original random variable, and both expected returns and variances are important factors 
in portfolio selection problems, we need to consider the model including both expected return and 
variance to the objective function, simultaneously. Furthermore, in case that investors predict future 
returns envisaging various future situations such as a substantial fall or rise in stock prices, they 
usually assume not just one but several scenarios and expect a portfolio decision satisfying goals 
with respect to all the scenarios. Hence, we need to consider not only randomness but also 
multi-scenarios for future returns. 

The proposed problem is initially formulated as a multiobjective programming problem. The 
multiobjective programming problem is one of the important mathematical programming problems, 
and many researchers have proposed the solution method such as the weight-scalarization method, 
the norm minimization method and the interactive method (for example, Miettinen [91], Sakawa 
[105], Sawaragi et al. [106]). Furthermore, the proposed models are also formulated as 
multiobjective stochastic or goal programming problems due to including random variables. In the 
mathematical programming approach to portfolio selection problems, there are some basic studies 
using a stochastic programming approach (a recent one. Aouni et al. [5]), a goal programming 
approach (Kumar et al. [71], Lee and Chesser [75], Levary and Avery [79]), a multi-criteria linear 
goal approach (Abdelaziz et al. [2, 3, 4], Ziemba and Mulvey [125]) and a multiobjective mixed 
fuzzy-stochastic programming approach (Mohan and Nguyen [92]). Furthermore, considering 
ambiguous situations such as receiving effective or ineffective information from the real world, there 
are some portfolio selection problems to treat ambiguous factors as fuzzy sets (Vajda [115], Watada 
[119], Tanaka et al. [1111, 112], Inuiguchi and Ramik [52], Leon et al. [77]), or to have both 
randomness and fuzziness as fuzzy random variables (Katagiri et al. [60, 61]). More recently, 
Abdelaziz et al. [1] proposed multi-objective stochastic programming for portfolio selection. Pflug 
and Wozabal [100] discussed an approach that explicitly considered the ambiguity such as 
uncertainty with respect to the possible probability model. However, there are few researches who 
consider multi-scenario portfolio selection models with possible probability scenarios including their 
aspiration levels of satisfaction functions to all scenarios and also solve them analytically. 
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On the other hand, from the standpoint of reducing the uncertainty and keeping the robustness of 
the selected portfolio, it is important that we consider the probability maximization model that the 
total future return is more than or equal to a goal set by the decision maker. Therefore, we propose 
several types of probability maximization models for multi-scenario portfolio selection problems and 
consider the robustness of the appropriate portfolio and their aspiration levels. Since the proposed 
problems including randomness are usually transformed into nonlinear programming problems, it is 
difficult to find a global optimal solution efficiently. Furthermore, since our proposed models are 
multi-criteria stochastic programming problems, it is almost impossible to solve them directly. 
Therefore, in addition to new types of portfolio selection problems, we manage to construct efficient 
solution methods for them using the equivalent transformations to the main problem based on the 
properties of random variable and satisfaction function. 
 
 

5.1 Probability Fractile Maximization Model 
 

First, we formulate the basic mathematical programming problem for an asset allocation 
maximizing the total future profit as follows. 

( )
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j j
j
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j j j j
j

r x

a x b x b j n

=

=

≤ ≤ ≤ =

∑

∑
 (5.1)

where the notations of parameters and variables are as follows: 

jr : Future return of the j th financial asset 

ja : Cost of investing the j th financial asset 

b : Limited upper value with respect to fund budgeting  

jb : Limited upper value of each budgeting to the j th financial asset 

n : Total number of assets 

jx : Budgeting allocation to the j th financial asset 

 
This problem is a linear programming problem in the case that all parameters are constant. Therefore, 
we find an optimal portfolio efficiently by using linear programming approaches. However, since it 
is difficult for decision makers to predict future returns as a constant value due to uncertainties in the 
real world, they need to consider them as random variables. Furthermore, in the case that they 
predict future returns, they often need to consider the following situations: 

(a) In economic conditions, there are various trends such as buoyant, depressed, moderate, wilds 
ups and downs, etc.. Then, we obtain some scenarios of future returns based on historical data 
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derived from each condition. These future returns occur according to different random 
distributions every economic condition. Therefore, we need to consider setting some scenarios 
to future returns with random variables. 

(b) In the real world, there are many veteran investors and economists. Recently, by developing the 
information technology rapidly, it is easy to receive a lot of information from them. Then, in the 
case that we classify them by the investment stance, we obtain some classifications such as 
optimistic, pessimistic, neutral, etc.. Furthermore, in each group, every investor has her or his 
own prediction to future returns. By performing statistical analysis of data derived from all 
investors, we obtain random variables to future returns in each group. Therefore, in the case that 
we consider there groups as scenarios to future returns with random variables. 

 
Therefore, decision makers usually assume not only one scenario but also several possible scenarios 
for future returns. In order to represent these situations, we assume the scenarios for future returns to 

be the following multivariate random vector  with the variance-covariance matrix : ir iV

{ }
{ }

{ }

1 11 11 1

2 21 22 2

1 2

, ,...,

, ,...,

, ,...,

n

n

m m m mn

r r r

r r r

r r r

⎧ =⎪⎪⎪⎪ =⎪⎪⎪=⎨⎪⎪⎪⎪⎪ =⎪⎪⎩

r

r
r

r

 (5.2)

where the notations of parameters and variables are as follows: 

ijr : A future return of the jth asset under the ith scenario 

m : Total number of scenarios 
 
This multiple scenarios for the future return may correspond to the ambiguity in probability 
distribution concerning the future return (for example, Bewley [12]). Subsequently, we assume that 

each  occurs according to a normal distribution ijr ( )2,ij ijN r σ , where 
ijr  is the mean value and 

2
ijσ  is the variance. In many previous studies concerning portfolio selection problems, each future 

return is generally considered as a random variable distributed according to the normal distribution. 
Recently, there are some researches of portfolio selection problems with non-normal distributions. 
However, from the standpoint of the study of portfolio models based on the modern portfolio theory, 

we deal with the normal distribution ( )2,ij ijN r σ . Under these assumptions, we formulate a portfolio 

selection problem under this multi-scenario as follows. 
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( )

1
1

2
1

1

1

Maximize

Maximize

       

Maximize

subject to ,  0 ,  1,2, ,

n

j j
j

n

j j
j

n

mj j
j

n

j j j j
j

r x

r x

r x

a x b x b j n

=

=

=

=

≤ ≤ ≤ =

∑

∑

∑

∑

 
(5.3)

 
This problem is a multi-objective programming problem with random variables. Therefore, it is not a 
well-defined problem due to random variables, and so in the sense of the deterministic mathematical 
programming, it is almost impossible to solve problem (5.3) directly without setting a criterion for 
each object with random variables. In this chapter, since we consider the case where a decision 
maker earns the maximum total profit even if each future return changes randomly, we deal with the 
probability of the total profit more than or equal to its target value f, i.e. the safety first model as a 
risk measure. Then, we consider two cases; (a) the case that a decision maker decides each weight to 
scenarios considering each occurrence probability and possibility of scenarios, (b) the case 
maximizing the minimum aspiration level among all the scenarios. 
 
 

5.2 Portfolio Selection Problem Using the Weighted-Scalarization Approach 
 

In practical investments, many investors need to consider randomness of future returns and the 
occurrence probabilities and possibilities of scenarios to future returns, simultaneously. In this 
section, we consider the case in which a decision maker sets a weight to each scenario based on 
statistical analysis of historical data and her or his subjectivity, and aggregate all objective function 

into one weighted function. Then, we assume each weight  to be a positive weight value to 

scenario ith scenario, and formulate this model as the following form. 

iw

( )

1 1

1

Maximize

subject to ,  0 ,  1, 2, ,

m n

i ij j
i j

n

j j j j
j

w r x

a x b x b j n

= =

=

≤ ≤ ≤ =

∑ ∑

∑
 (5.4)

 
Case 1. 

In the case that a weight value  and the other weight  , this 

problem is transformed into the probability maximization model considering particular scenario . 
Therefore, problem (5.4) includes the model considering one particular scenario. 

1iw ′ = 0,iw = ( )1,2,..., ,  i m i ′= ≠ i

i′
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Case 2. 

With respect to , in the case that a decision maker considers the weight value based on the 

occurrence probability of each scenario which is assumed to be 

iw

ip ,  is assumed to be iw ip . 

 

Problem (5.4) is a single-criterion programming problem. Then, if each future return  is assumed 

to be a fixed value, this problem is a linear programming problem. However, since  is usually not 

fixed and considered to be a random variable, problem (5.4) is not a well-defined problem. Therefore, 
we need to transform it into the other form in order to solve problem (5.4) analytically. In this 
chapter, for introducing a chance constraint to objective function, we consider its probability fractile 
optimization model. This model is formulated as follows. 

ijr

ijr

( )

1 1

1

Maximize

subject to Pr ,

                  , 0 1,2,...,

m n

i ij j
i j

n

j j j j
j

f

w r x f

a x b x b j n

β
= =

=

⎧ ⎫⎪ ⎪⎪ ⎪≥ ≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

≤ ≤ ≤ =

∑ ∑

∑

 
(5.5)

where f  is the target value of objective function and  is the probability fractile level. In this 

problem, since each  occurs according to the normal distribution 

β

ijr ( )2,ij ijN r σ , the chance 

constraint  is transformed into the following deterministic equivalent 

inequality using the property of the normal distribution: 

1 1

Pr
m n

i ij j
i j

w r x f β
= =

⎧⎪⎪ ≥ ≥⎨⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑

⎫⎪⎪⎬

( ) ( ) ( ) ( )

1 1 1 1 1 1

1 1

1 1

Pr Pr

                                             

m n m n m n

i ij j i ij j i ij jm n
i j i j i j

i ij j m m
i j t t

i i i i i i
i i

w r x w r x f w r x
w r x f

w w w w
β β= = = = = =

= =

= =

⎧ ⎫⎪ ⎪⎪ ⎪− −⎪ ⎪⎪ ⎪⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪≥ ≥ ⇔ ≥ ≥⎨ ⎬ ⎨⎪ ⎪ ⎪⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

∑ ∑ ∑ ∑ ∑ ∑
∑ ∑

∑ ∑V Vx x x x

⎪⎬⎪⎪

( ) ( )

( ) ( )

1 1

1

1 1 1

 

                                              

m n

i ij j
i j

m
t

i i i
i

m n m
t

i ij j i i i
i j i

w r x f
K

w w

w r x K w w f

β

β

= =

=

= = =

−
⇔ ≥

⇔ − ≥

∑ ∑

∑

∑ ∑ ∑

V

V

x x

x x

 (5.6)

where  is the variance covariance matrix for future returns in the th scenario, and   is iV i ( )F y
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the distribution function of the standard normal distribution and ( )1K Fβ β−= . From this 

transformation, we equivalently transform problem (5.5) into the following form. 

( ) ( )

( )

1 1 1

1

Maximize

subject to ,

                  , 0 1,2,...,

m n m
t

i ij j i i i
i j i

n

j j j j
j

f

w r x K w w f

a x b x b j n

β
= = =

=

− ≥

≤ ≤ ≤ =

∑ ∑ ∑

∑

Vx x  
(5.7)

 
Furthermore, we find that the decision variable f  is involved only in first constraint, and 

maximizing f  is equivalent to maximizing ( ) ( )
1 1 1

m n m
t

i ij j i i i
i j i

w r x K w wβ
= = =

−∑ ∑ ∑ Vx x  . Therefore, 

problem (5.7) is equivalently transformed as follows. 

( ) ( )

( )

( ) ( )

( )

1 1 1

1

1 1 1

1

Maximize

subject to , 0 1,2,...,

Minimize

subject to , 0 1,2,...,

m n m
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i ij j i i i
i j i

n

j j j j
j

m n m
t

i ij j i i i
i j i

n

j j j j
j

w r x K w w

a x b x b j n

w r x K w w

a x b x b j n

β

β

= = =

=

= = =

=
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≤ ≤ ≤ =

− +
⇔

≤ ≤ ≤ =

∑ ∑ ∑

∑

∑ ∑ ∑

∑

V

V

x x

x x

 

(5.8)

 

In this chapter, we consider  
1
2

β ≥  due to the following assumptions: 

(a) In the practical decision making, almost all decision makers do not select a portfolio whose 
achievement probability for the goal of total return is less than half. 

(b) In mathematical programming, ( ) ( )
1 1 1

m n m
t

i ij j i i i
i j i

w r x K w wβ
= = =

− +∑ ∑ ∑ Vx x  is a convex 

function in the case that 1
2

β> . 

Since all the constraints in problem (5.8) are linear constraints, problem (5.8) is a convex 
programming problem, and we find a global optimal solution using convex programming approaches 
such as the gradient method. However, since this problem includes square root terms, it is difficult to 
solve problem (5.8) efficiently using general solvers.  

Subsequently, we consider the following auxiliary problem introducing a parameter R : 
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( ) ( )

( )

1 1 1

1

Minimize
2

subject to , 0 1, 2,...,

m n m
t

i ij j i i i
i j i

n

j j j j
j

K
R w r x w w

a x b x b j n

β

= = =

=

⎛ ⎞⎟⎜− + ⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

≤ ≤ ≤ =

∑ ∑ ∑

∑

Vx x
 (5.9)

 
Previous researches (For example, Ishii and Nishida [54] and Katagiri et al. [60, 61]) to analytically 
solve problem (5.9) have considered that each random variable was assumed to be independent each 

other in order to solve it analytically, i.e., the element  of covariance matrix  is assumed to 

be 

ijσ iV

( )0,  ij i jσ = ≠ . However, in practical decision making, there exist many cases that a decision 

maker considers the relation among all decision variables. Therefore, in this chapter, we extend these 
previous analytical approaches to the more standard analytical approach.  

First, with respect to a relation between this auxiliary problem and main problem (5.8), the 
following theorem holds. 
 
Theorem 5.1 

Let  be an optimal solution of problem (5.9). If ∗x ( ) ( )
1

m t

i i i
i

R w w∗

=

= ∑ Vx ∗x  is satisfied,  

is also an optimal solution of main problem (5.8). 

∗x

 
Proof. 
We comparing Karush-Kuhn-Tucker (KKT) condition of problem (5.9) with that of problem (5.8): 
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( ) ( )

( ) ( )

1
2 1

1

0,

0,  0,  0,  1, 2,...,

m m

i ij i i j j jj
i i

n

j j j j j j j
j

R w r K w a u v

a x b u x b v x j n

β λ

λ

∗

= =

=

′ ′ ′− + + + − =

⎛ ⎞⎟⎜ ⎟′ ′ ′− = − = = =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∑ ∑

∑

V x
 (5.11)

 
With respect to these KKT conditions, we set 
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( ) ( ) ( ) ( ) ( ) ( )
1 1 1

,  ,  j j
j jm m mt t

i i i i i i i i i
i i i
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u v

w w w w w w

λλ
∗ ∗ ∗ ∗ ∗ ∗

= = =

′ ′′
= = =

∑ ∑ ∑V Vx x x x x x
t
V

)

. 

Then, satisfying ( ) (
1

m t

i i i
i

R w w∗

=

= ∑ Vx ∗x

)

, KKT condition of problem (5.9) is same as that of 

problem (5.10). Therefore, this theorem holds.   
 

Furthermore, let ( ) ( ) (
1

m t

i i i
i

g R R w w∗

=

= − ∑ Vx ∗x , and then the following theorem holds. 

 
Theorem 5.2 

Let the optimal solution to auxiliary problem be  and the optimal value of parameter ∗x R  be 
R∗ . With respect to R∗ , the following relationship holds. 

( )
( )
( )

0

0

0

R R g R

R R g R

R R g R

∗

∗

∗

> ⇔ >

= ⇔ =

< ⇔ <

 

 
Proof. 
First, we show the following two lemmas.  
 
Lemma 5.2.1 

With respect to R , 
1 1

m n

i ij
i j

w r x
= =

−∑ ∑ j  is a decreasing function of R . 

 
Proof. 

We assume R R′< . If  is assumed to be an optimal solution of the problem (5.9), it is 
unique from the convexity and so the following inequality is derived. 

Rx
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x x x x
1

0
m

=

⎛ ⎞⎟⎜ <⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑ ′

⎞
⎠  

Similarly, we assume  is an optimal solution in the case that  of the problem (5.9). 

Then we derived the following inequality.  

R′x R R′=
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Therefore, from the deference of these two inequalities, the following inequality holds: 
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1 1 1 1 1 1 1 1

0
m n m n m n m n

R R R
i ij j i ij j i ij j i ij j

i j i j i j i j

w r x w r x w r x w r x′ ′

= = = = = = = =

− > ⇔ − <−∑ ∑ ∑ ∑ ∑ ∑ ∑ ∑ R

)

 

 
Therefore, the monotonous decreasing is derived.  
 
Lemma 5.2.2 

( ) (
1

m
t
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i
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=
∑ Vx x  is an increasing function of R . 

 
Proof. 

We assume R R′< .  is assumed to be the optimal solution in the case that  of 

the problem (5.9), and so we find the following inequality. 
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Subsequently, from Lemma 5.2.1, 
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Then, for , we also derive the following inequality. 0Kβ >
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Therefore, Lemma 5.2.2 holds.  
 
Furthermore, since the feasible region of problem (5.9) is same as that of problem (5.8) and it is a 

bounded region, it holds that 
1 1

m n

i ij j
i j

w r x
= =

− >−∞∑ ∑  and  with respect to 

the optimal solution  of problem (5.9) for a fixed parameter 
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1

m tR
i i i
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w w
=
∑ V )Rx x  is also a continuous function to R .  

Consequently, form Lemmas 5.2.1 and 5.2.2, mean value theorem and uniqueness of , Theorem 

5.2 is derived.  

x

 

With respect to problem (5.9), we set . Since each  is a covariance matrix and 

each  is a positive value, it is obvious that  is a symmetric positive definite matrix. Then, 

problem (5.9) is transformed into the following quadratic programming problem: 
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 (5.12)

 
Furthermore, for simplicity, we perform the following transformations of variables: 
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(5.13)
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Then, we reset ,  ,  ,  j j jr r a a b b b b′ ′ ′ ′→ → → → j . From these variable transformations, problem 

(5.12) is equivalently transformed into the following form: 
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Therefore, from Lagrange function and Karush-Kuhn-Tucker (KKT) condition of problem (5.14), 
(Lagrange function) 
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(KKT condition) 
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From KKT condition (5.16), we find an optimal solution of problem (5.14) as follows: 
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In this optimal solution, if we properly determine the parameter  , we obtain a strict optimal 

solution. Therefore, we consider the range including λ  with respect to 

λ

1

m

i ij
i

j

R w r

a
=
∑

 and 

1 ,

m

i ij j
i

j

R w r b

a
=

−∑
 ( 1,2,..., )j n= .  In this case, since 1

j

m

i ij
i

R w r

a
=
∑

 and 1

m

i ij j
i

j

R w r b

a
=

−∑
 are fixed if 

R  is fixed, we settle the ordering of them. Then, we arrange them in a nondecreasing order and let 
the result be as follows: 
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( )1 2 m Rω ω ω< < <  

where each  corresponding to either lω 1

m

i ij
i

j

w r

a
=
∑

 or 1

m

i ij j
i

j

w r b

a
=

−∑
, and ( )m R  is the number of 

 taking  different values. Therefore, we obtain . Furthermore, let ω ( ) 2m R n≤ kjR  denote R  

such that (1 1 ,  

m m

i ik i ij j
i i

k j

R wr R w r b
k j

a a
= =

−
= ≠

∑ ∑
)  or (1 1 ,  

m m

i ik k i ij j
i i

k j

R wr b R wr b
k j

a a
= =

− −
= ≠

∑ ∑
) , and we 

arrange them in the following nondecreasing order: 

0 1 2 10 N NR R R R R M+< < < < <  

where M is a sufficient large number. Since  is the number of their different values of N kjR , we 

obtain (1 3 1
2

N n n≤ + ) . Furthermore, for considering optimal solution (5.17) in the case of 

lRλ′=  and the value of  in the sequence, we determine the optimal range of  , 

and since 

1

n

j j
j

a y b
=

−∑ λ′

K Qβ= Λy x , we obtain the optimal solution ( ) 11 Q
Kβ

−
= Λx y . 

Consequently, we develop the following solution algorithm. 
 
Solution Algorithm 5.1 
STEP1: Set the variables and introduce problem (5.14). 
STEP2: Set . 0k ←

STEP3: Set ( 1,k kS R R +
⎤← ⎦ . 

STEP4: Set . 1l ←

STEP5: For  and , find the optimal solution R S∈ 1,l lλ ω ω +⎡∈ ⎣ ⎤⎦ jy∗  of problem (5.14), solve 

 with respect to λ . Let this solution . 
1

n

j j
j

a y b∗

=

=∑ ( )k
lλ

STEP6: Solve  with respect to ( )
1

k
l l lω λ ω +≤ ≤ R  and find its solution set . ( )k

lS

STEP7: If  and , set  and return to STEP5. If  and ( )k
lS φ= ( )Rl m≠ 1l l← + ( )k

lS φ=
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( )Rl m= , set  and return to STEP3. If , go to STEP8. 1k k← + lS φ≠

STEP8: Find ˆR R=  such that ( )2
1

ˆ
n

j
j

R y∗

=

= ∑ . If R̂ S∉ , set  and return to STEP5. 

If , 

1l l← +

R̂ S∈ jy∗  is the optimal solution and terminate this algorithm. 

 
Consequently, we have extended the previous models and solution method to obtain the optimal 

portfolio to the model considering not only each variance but also the covariance. Thereby, the 
proposed model is more versatile and practical than some previous models. 
 
 

5.3 Maximization of the Minimum Aspiration Level of Objective Values among All 
Scenarios 
 

In Section 5.2, all scenarios have been weighted using occurrence probabilities and the decision 
maker’s subjectivity. However, there often exists the case that all scenarios are treated equally due to 
the lack of enough and reliable information and uncertain economic conditions, i.e. all the 
occurrence probabilities are assumed to have the same values and the decision maker makes the 
same assessments with respect to all the scenarios. In this case, she or he often sets the goal of the 
total future profit to each scenario and consider its aspiration level to achievement of the goal. 
Furthermore, considering the vagueness of human judgment and flexibility for the execution of a 
plan, each aspiration level is assumed to be a satisfaction function. Then, investors need to consider 
the condition that they satisfy the aspiration level more than a goal even if any scenarios occur.  

Therefore, in this section, we consider the portfolio selection decision that maximizes the 
minimum aspiration level of objective value among all objectives in portfolio selection problems. 

First, we introduce the satisfaction function ( )i iZμ  to each 
1

n

i ij
j

jZ r x
=

=∑  as follows: 

( ) ( ) ( )
1

0 1

0

1
,  1,2, ,

0

i i

i i i i i i i

i i

f Z
Z g Z f Z f i m

Z f
μ

⎧ ≤⎪⎪⎪⎪= ≤ ≤ =⎨⎪⎪ ≤⎪⎪⎩

 (5.18)

where each ( )i ig Z  is a monotonous increasing function. This satisfaction function means that a 

decision maker is entirely agreeable with respect to the portfolio satisfying objective function iZ  is 

more than the target value 1if , but is never agreeable to the portfolio satisfying iZ  is less than 
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0if . Then, it also means that she or he is partially agreeable depending on her or his psychological 

aspect and subjectivity if iZ  is between 0if  and 1if . For example, in the case that the decision 

maker is risk-averse, ( )i ig Z  may be a concave function. Particularly, in this chapter, we consider 

the case that ( )i ig Z  is assumed to be a linear function, i.e. ( ) 0

1 0

i i
i i

i i

Z fg Z
f f
−=
−

. Using these 

satisfaction functions, we formulate this model as the following max-min programming problem: 

( ) ( )

( )
1

Maximize min ,  1,2, ,

subject to ,  0 ,  1,2, ,

i ii
n

j j j j
j

Z i m

a x b x b j n

μ

=

⎡ ⎤=⎣ ⎦

≤ ≤ ≤ =∑
 (5.19)

 
This type of problem is generally called the robust control in economic and finance literature (for 
example, Gilboa and Scemedler [36]). Then, it is possible that this problem is transformed into the 
following form introducing a parameter : h

( ) ( )

( )
1

Maximize
subject to ,  1,2, ,

                   ,  0 ,  1,2, ,

i i

n

j j j j
j

h
Z h i m

a x b x b j n

μ

=

≥ =

≤ ≤ ≤ =∑

 
(5.20)

 

In this problem, the constraint ( )i iZ hμ ≥  is transformed into the following inequality: 

( )

( ) (

0
1

1 0

1 0 0
1

                       ,  1, 2,...,

n

ij j i
j

i i
i i

n

ij j i i i
j

r x f
Z h h

f f

r x f f h f i m

μ =

=

−
≥ ⇔ ≥

−

⇔ ≥ − + =

∑

∑ )

)

 

 
Therefore, problem (5.20) is equivalently transformed into the following problem: 

( ) (

( )

1 0 0
1

1

Maximize

subject to ,  1,2, ,

                   ,  0 ,  1, 2, ,

n

ij j i i i
j

n

j j j j
j

h

r x f f h f i m

a x b x b j n

=

=

≥ − + =

≤ ≤ ≤ =

∑

∑

 
(5.21)

 

However, since each  includes random variables , problem (5.21) is not a well-defined. 
1

n

ij j
j

r x
=
∑ ijr
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Therefore, in a way similar to Section 3, we introduce chance constraints as follows: 

( ) (

( )

1 0 0
1

1

Maximize

subject to Pr ,  1, 2, ,

                   ,  0 ,  1,2, ,

n

ij j i i i
j

n

j j j j
j

h

r x f f h f i m

a x b x b j n

β
=

=

⎧ ⎫⎪ ⎪⎪ ⎪≥ − + ≥ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

≤ ≤ ≤ =

∑

∑

) 
(5.22)

 
Then, since each stochastic constraint is transformed into the following inequality using the 
transformation (5.6); 

( ) ( )1 0 0 1 0
1 1

Pr
n n

t
ij j i i i ij j i i i i

j j

r x f f h f r x K f f h fββ
= =

⎧ ⎫⎪ ⎪⎪ ⎪≥ − + ≥ ⇔ − ≥ − +⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑ Vx x 0

 

 problem (5.22) is transformed into the following deterministic equivalent problem: 

( ) (

( )

1 0 0
1

1

Maximize

subject to ,  1, 2, ,

                   ,  0 ,  1, 2, ,

n
t

ij j i i i i
j

n

j j j j
j

h

r x K f f h f i m

a x b x b j n

β
=

=

− ≥ − + =

≤ ≤ ≤ =

∑

∑

Vx x ) 
(5.23)

( ) ( )

( )

1 0 0
1

1

Maximize

. . subject to 0,  1,2, ,

                   ,  0 ,  1, 2, ,

n
t

i i i ij j i
j

n

j j j j
j

h

i e f f h f r x K i m

a x b x b j n

β
=

=

− + − + ≤ =

≤ ≤ ≤ =

∑

∑

Vx x  
(5.24)

 

Since each ( ) ( )1 0 0
1

,
n

t
i i i i ij j

j

f h f f h f r x Kβ
=

= − + − +∑ Vx x i x  is a convex function, this 

problem is a convex programming problem. However, each constraint includes a square root term, 
and so it is hard to solve this problem using KKT conditions analytically due to the multiple square 
root terms. Therefore, we construct an efficient solution method using the following mean-absolute 
deviation. 

( )
1 1

n n

i ij j
j j

W R E r x r x
= =

ij j

⎡ ⎤
⎢ ⎥⎡ ⎤= −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∑ ∑x  (5.25)

 

With respect to the relation between this mean-absolute deviation ( )iW R⎡ ⎤⎣ ⎦x  and the variance 

, the following theorem holds based on the result obtained by Konno [71]. ( )2 t
iσ = Vx x i x
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Theorem 5.3 
In the case that each return occurs according to the normal distribution, 

( ) ( )( )22

2i iW Rπσ ⎡ ⎤= ⎣ ⎦x x  

holds. 
 
From this theorem, problem (5.24) is transformed into the following problem: 

( ) ( )( ) ( )

( )

2

1 0 0
1

1

Maximize

subject to 0,  1,2, ,
2

                   ,  0 ,  1, 2, ,

n

i i i ij j i
j

n

j j j j
j

h

f f h f r x K W R i m

a x b x b j n

β
π

=

=

⎡ ⎤− + − + ≤ =⎣ ⎦

≤ ≤ ≤ =

∑

∑

x
 

(5.26)

( ) ( )( ) ( )

( )

1 0 0
1

1

Maximize

. . subject to 0,  1,2, ,
2

                   ,  0 ,  1,2, ,

n

i i i ij j i
j

n

j j j j
j

h

i e f f h f r x K W R i m

a x b x b j n

β
π

=

=

⎡ ⎤− + − + ≤ =⎣ ⎦

≤ ≤ ≤ =

∑

∑

x  
(5.27)

 
Furthermore, in order to solve problem (5.27) more efficiently, we introduce the following return set 

derived from each normal distribution : ijr

( ) ( ){ } ( )( ) ( ) ( ) ( )
1 2, ,..., ,  1,2,..., ,  1,2,...,t t t t

i i i inr r r t T i m= = =r  (5.28)

where  is the total number of return sets and the occurrence probability  is defined as the 

following form: 

T ( )t
ip

( ){ } ( )( ) ( ) ( ) ( ) ( )
1 2Pr , ,..., ,  1,2,...,t t t t t

i i i i inp r r r t T= = =r  (5.29)

 

From this return set, in the case that   is sufficiently large, we equivalently transform T ( )iW R⎡ ⎤⎣ ⎦x  

into 

( )

( ) ( ) ( )

1 1

( ) ( )

1 1 1

               ,  1, 2,...,

n n

i ij j ij j
j j

n T n
t t

ij ij j i ij ij j
j t j

W R E r x r x

E r r x p r r x i m

= =

= = =

⎡ ⎤
⎢ ⎥⎡ ⎤= −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= − = − =⎢ ⎥
⎢ ⎥⎣ ⎦

∑ ∑

∑ ∑ ∑

x
 (5.30)
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Therefore, problem (5.27) is transformed into the following problem: 

( ) ( ) ( )

( )

( ) ( )
1 0 0

1 1 1

1

Maximize

subject to 0,  1, 2, ,
2

                   ,  0 ,  1, 2, ,

n T n
t t

i i i ij j i ij ij j
j t j

n

j j j j
j

h

f f h f r x K p r r x i m

a x b x b j n

β
π

= = =

=

⎛ ⎞⎟⎜ ⎟⎜− + − + − ≤ =⎟⎜ ⎟⎟⎜⎜⎝ ⎠

≤ ≤ ≤ =

∑ ∑ ∑

∑

 

(5.31)

 
In this problem, since it includes the absolute-deviation, it is not easy to solve it analytically due to 
the inclusion of indifferentiable points in the feasible region. On the other hand, we introduce the 
following subproblem; 

( ) ( )

( )

( )

( ) ( )
1 0 0

1 1

( ) ( )

1

( ) ( )

1

Maximize

subject to 0,  1, 2, ,
2

                   0,

                   0,

                   

n T
t t

i i i ij j i i
j t

n
t t

i ij ij j
j

n
t t

i ij ij j
j

j j

h

f f h f r x K p y i m

y r r x

y r r x

a x

β
π

= =

=

=

⎛ ⎞⎟⎜− + − + ≤ =⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

− − ≥

+ − ≥

∑ ∑

∑

∑

( )
1

,  0 ,  1, 2, ,
n

j j
j

b x b j n
=

≤ ≤ ≤ =∑

 

(5.32)

and the following theorem is derived wit respect to the relationship between problems (5.31) and 
(5.32). 
 
Theorem 5.4 
The optimal solution of problem (5.32) is equal to that of problem (5.31). 
 
Proof 
First, we introduce the following two auxiliary problems to each scenario : i

( )

( )

( ) ( )

1 1

1

1

Minimize

subject to ,

                   ,  0 ,  1, 2, ,

T n
t t

i ij ij j
t j

n

ij j
j

n

j j j j
j

p r r x

r x

a x b x b j n

ρ

= =

=

=

−

=

≤ ≤ ≤ =

∑ ∑

∑

∑

 
(5.33)

 

 89



 
5. Multi-Scenario and Robust Models for Portfolio Selection Problems 
                                                                                                                                                                                                                                                                                                                                                                                                                                         

( )

( )

( )

( ) ( )

1

( ) ( )

1

( ) ( )

1

1 1

Minimize

subject to 0,

                   0,

                  ,  ,  0 ,  1, 2, ,

T
t t

i i
t

n
t t

i ij ij j
j

n
t t

i ij ij j
j

n n

ij j j j j j
j j

p y

y r r x

y r r x

r x a x b x b j nρ

=

=

=

= =

− − ≥

+ − ≥

= ≤ ≤ ≤ =

∑

∑

∑

∑ ∑

 
(5.34)

 
Then, it is well known that the optimal solution of problem (5.34) is equal to that of problem (5.33) 
based on the result obtained by Konno [71]. Furthermore, with respect to the parameter  of 

problem (5.31), from the constraint ( )

h

( ) ( )
1 0 0

1 1

0
2

n T
t t

i i i ij j i i
j t

f f h f r x K p yβ
π

= =

⎛ ⎞⎟⎜− + − + ≤⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠∑ ∑ , we 

easily obtain that maximizing  is equivalent to minimizing the . Consequently, 

theorem 4 holds.  

h ( ) ( )

1

T
t t

i i
t

p y
=
∑

 
Problem (5.32) is a linear programming problem, and so we solve it easily and efficiently using 
Simplex method or Interior point method. Therefore, we also find the optimal solution of main 
problem (5.24) efficiently and obtain the following solution algorithm. 
 
Solution Algorithm 5.2 

STEP1: Set the satisfaction function to each ( )
1

,  1, 2,...,
n

i ij j
j

Z r x i m
=

= =∑ . 

STEP2: Set the return sets ( ) ( ){ } ( )( ) ( ) ( ) ( )
1 2, ,..., ,  1,2,..., ,  1,2,...,t t t t

i i i inr r r t T i m= = =r  and each 

occurrence probability . ( )t
ip

STEP3: Solve the problem (5.32) and find its optimal solution . This optimal solution is 

equal to that of main problem (24). 

( )h t∗x

 
In the case that we solve the main problem (5.24) using this solution method, if the number of 
scenarios  is sufficiently large, this solution method is a strict solution method. Furthermore, 
even if the number of scenarios is not sufficiently large, we may obtain the sufficiently appropriate 
optimal portfolio using this solution method, since the large scale of return sets is easily generated 
using the random simulations such as Monte Carlo simulation. Therefore, we apply this virtually 
strict solution method to various real investment cases. 

S
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5.4 Probability Maximization Model for the Multi-Criteria Stochastic 
Programming Problem 
 
5.4.1 Portfolio selection problem setting constant weights 
 

In this subsection, we propose the probability maximization model to the original problem (5.3) as 
follows: 

( )

1 1
1

2 2
1

1

1

Maximize Pr

Maximize Pr

       

Maximize Pr

subject to ,  0 ,  1, 2, ,

n

j j
j

n

j j
j

n

mj j m
j

n

j j j j
j

r x f

r x f

r x f

a x b x b j n

=

=

=

=

⎧ ⎫⎪ ⎪⎪ ⎪≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

⎧ ⎫⎪ ⎪⎪ ⎪≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

≤ ≤ ≤ =

∑

∑

∑

∑

 
(5.35)

 
Then, in a similar way to subsection 5.3, we first consider the case a decision maker sets a weight to 
each scenario based on statistical analysis of historical data and her or his subjectivity, and aggregate 

all objective function into one weighted function. Then, we assume weight  to be a positive 

weight value to ith scenario and . Using these weights, we introduce the following 

single-criteria probability maximization model of portfolio selection problem introducing a 
probability chance constraint to the objective function and its target value 

iw

1

1
m

i
i

w
=

=∑

f : 

( )

1 1

1

Maximize Pr

subject to , 0 1,2,...,

m n

i ij j
i j

n

j j j j
j

w r x f

a x b x b j n

= =

=

⎧ ⎫⎪ ⎪⎪ ⎪≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

≤ ≤ ≤ =

∑ ∑

∑
 (5.36)

 

In the case that a weight value  and the other weight  , this 

problem is transformed into the probability maximization model considering particular scenario . 
Therefore, problem (5.36) includes the model considering one particular scenario. Furthermore, in 
the case that a decision maker considers the weight value based on the occurrence probability of 

each scenario which is assumed to be 

1iw ′ = 0,iw = ( )1,2,..., ,  i m i ′= ≠ i

i′

ip ,  is assumed to be iw ip . 
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In problem (5.36), since the whole vector ( )1 2, ,...,i i inr r r  occurs according to a normal 

distribution ( )2,ij ijN r σ , the objective function  is transformed into the 

following deterministic equivalent objective function. 

1 1

Pr
m n

i ij j
i j

w r x f
= =

⎧ ⎫⎪⎪ ≥⎨⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑ ⎪⎪⎬

( ) ( ) ( ) ( )

( ) ( )

1 1

1 1 1 1 1 1

1 1

1 1

1

Pr

Pr

m n

i ij j
i j

m n m n m n

i ij j i ij j i ij j
i j i j i j

m m
t

i i i i i i
i i

m n

i ij j
i j

m
t

i i i
i

w r x f

w r x w r x f w r x

w w w w

w r x f

w w

= =

= = = = = =

= =

= =

=

⎧ ⎫⎪ ⎪⎪ ⎪≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪− −⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⇔ ≥⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
⎛⎜⎜ −⎜⎜⎜⇔ Φ⎜⎜⎜⎜⎜⎜⎝⎜

∑ ∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑

∑ ∑

∑

V

V

x x x x

x x

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎜ ⎟⎠

t V

 

(5.37)

where  is a variance-covariance matrix to future returns in i th scenario, and  iV ( )Φ ⋅  is a 

distribution function of the standard normal distribution. From this transformation, we equivalently 
transform problem (5.36) into the following form. 

( ) ( )

( )

1 1

1

1

Maximize

subject to , 0 1,2,...,

m n

i ij j
i j

m
t

i i i
i

n

j j j j
j

w r x f

w w

a x b x b j n

= =

=

=

⎛ ⎞⎟⎜ ⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟Φ⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

≤ ≤ ≤ =

∑ ∑

∑

∑

Vx x  (5.38)

 

Furthermore, since ( )Φ ⋅  is a increasing function, this problem is equivalently transformed as 

follows. 

( ) ( )

( )

1 1

1

1

Maximize

subject to , 0 1, 2,...,

m n

i ij j
i j

m
t

i i i
i

n

j j j j
j

w r x f

w w

a x b x b j n

= =

=

=

−

≤ ≤ ≤ =

∑ ∑

∑

∑

Vx x  (5.39)

 
Previous researches (For example, Ishii and Nishida [57] and Katagiri [63, 64]) to analytically solve 
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problem (5.39) have considered that each random variable was assumed to be independent each 

other in order to solve it analytically, i.e., the element  of covariance matrix  is assumed to 

be 

ijσ iV

( )0,  ij i jσ = ≠ . However, in practical decision making, there exist many cases that a decision 

maker considers the relation among all decision variables. Therefore, in this chapter, we extend these 
previous analytical approaches to the more standard analytical approach.  

Subsequently, we set . Since each  is a covariance matrix and each  is a 

positive value, it is obvious that  is a symmetric positive definite matrix. In a way similar to 
performing the transformation (5.13), problem (5.39) is equivalently transformed into the following 
form: 

2

1

m

i i
i

w
=

=∑V V iV iw

V

( )

1 1

2

1

1

Maximize

subject to , 0 1, 2,...,

m n

i ij j
i j

n

j
j

n

j j j j
j

w r y f

y

a y b y b j n

= =

=

=

−

≤ ≤ ≤ =

∑ ∑

∑

∑

 
(5.40)

 

In this chapter, it is assumed that there exists a feasible solution satisfying 
1 1

m n

i ij j
i j

w r y
= =

>∑ ∑ f . 

This assumption implies the probability that total future profit exceed prescribed value f , is greater 

than 1 2 .  Problem (5.40) is equivalent to the model derived from the previous study (Ishii and 

Nishida [57]). Therefore, we apply the solution method in Ishii’s study to this problem and obtain the 
optimal solution analytically. 

Consequently, we have extended the previous models and solution method to obtain the optimal 
portfolio to the model considering not only each variance but also the covariance. Thereby, the 
proposed model is more versatile and practical than some previous models. 
 
5.4.2 Portfolio selection problem considering the flexibility of all weights 
 

In Subsection 5.4.1, all weights  for scenarios are assumed to be constant. However, a 

decision maker often does not assume each weight to be a fixed value due to uncertainty derived 
from a lack of reliable information and the subjectivity of the decision maker considering the 
robustness of the portfolio, but assumes them to include an interval to each weight. In this chapter, 

iw
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this interval of weight is given as L U
i iw w w≤ ≤ i , where the lower value L

iw  and upper value iw  

are assumed to be constant. Thereby, it is possible that the decision maker constructs the versatile 
portfolio selection model involving various practical conditions by considering the interval of weight. 
Then, in this subsection, we particularly focus on a minimax portfolio selection problem in which 
the decision maker considers the case that the total profit is more than a target value under all the 
situations including the interval of weights. This means that the proposed model is a robust portfolio 
model applied to various future cases such as more substantial changes of future profits.  Therefore, 
we propose the following robust portfolio selection problem extending main problem (5.39): 

( ) ( )

( )

( )

1 1

1

1

1

Maximize min

subject to , 0 1,2,...,

                   ,  1, 2,..., ,  1

m n

i ij j
i j

mW
t

i i i
i

n

j j j j
j

m
L U
i i i i

i

w r x f

w w

a x b x b j n

W w w w i m w

= =

∈

=

=

=

−

≤ ≤ ≤ =

⎧ ⎫⎪ ⎪⎪ ⎪= ≤ ≤ = =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

∑ ∑

∑

∑

∑

V
w

x x

w

 
(5.41)

 
Subsequently, we introduce a parameter h in order to perform following equivalent transformation to 
the objective function: 

( ) ( ) ( ) ( )
( )1 1 1 1

1 1

min ,  

m n m n

i ij j i ij j
i j i j

m mW
t t

i i i i i i
i i

w r x f w r x f
h W

w w w w

= = = =

∈

= =

− −
⇔ ≥

∑ ∑ ∑ ∑

∑ ∑V V
w

w
x x x x

∀ ∈  (5.42)

 

Parameter h indicates the minimum value of all functions 

( ) ( )

1 1

1

m n

i ij j
i j

m
t

i i i
i

w r x f

w w

= =

=

−∑ ∑

∑ Vx x

. Therefore, problem 

(5.41) is equivalently transformed into the following problem: 

( ) ( )
( )

( )

1 1

1

1

Maximize

subject to ,  

                  , 0 1, 2,...,
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i ij j
i j

m
t

i i i
i

n

j j j j
j
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= =

=

=

−
≥ ∀ ∈

≤ ≤ ≤ =

∑ ∑

∑

∑

V
w

x x

 

(5.43)

 
However, this problem includes a square root term; therefore, it is difficult to solve this problem 
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efficiently even if we use nonlinear programming approaches such as the gradient method. Therefore, 
we need to construct the more efficient and analytical solution method rather than previous nonlinear 
programming approaches.  Subsequently, we introduce the following mean-absolute deviation for 

random variable ( )
1 1

m n

i ij
i j

jR w r x
= =

=∑ ∑x  

( )
1 1 1

m n n

i j j j j
i j j

W R E w r x r x
= = =

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎡ ⎤ ⎟= −⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
∑ ∑ ∑x  (5.44)

 
By using a property of normal distribution with respect to the relationship between this 

mean-absolute deviation ( )W R⎡⎣ x ⎤⎦ x and the variance , ( )2 tσ = Vx x ( ) ( )( 22

2
W Rπσ ⎡ ⎤= ⎣ ⎦x x )  holds 

based on the result in Section 5.3. From this theorem, problem (5.43) is transformed into the 
following problem: 

( )( )
( )
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1 1

2

1

Maximize

subject to ,  

2

                  , 0 1,2,...,

m n

i ij j
i j

n

j j j j
j

h

w r x f
h W

W R

a x b x b j n

π
= =

=

−
≥ ∀ ∈

⎡ ⎤⎣ ⎦

≤ ≤ ≤ =

∑ ∑

∑

w
x

 
(5.45)

( )
( )

( )

1 1

1
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. . subject to ,  

2

                 , 0 1, 2,...,

m n

i ij j
i j

n

j j j j
j

h

w r x f
i e h W

W R

a x b x b j n

π
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=

−
≥ ∀ ∈

⎡ ⎤⎣ ⎦

≤ ≤ ≤ =

∑ ∑

∑

w
x

 
(5.46)

 
In general, decision makers obtain historical data of future returns from practical investment markets. 
Then, if each return occurs according to a random distribution, the return sets are clearly sample 
values of the multivariate random variable. Therefore, it is natural that return sets based on historical 
data as well as subjectivity of the decision maker are introduced into problem (5.46). In this chapter, 

we introduce the following return set derived from each  according to the multivariate normal 

distribution: 

ijr

( ) ( ){ } ( )( ) ( ) ( ) ( )
1 2, ,..., ,  1,2,..., ,  1,2,...,k k k k

i i i inr r r k S i m= = =r  (5.47)
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where S is the total number of scenarios and the occurrence probability  is defined as the 

following form: 

( )k
ip

( ) ( ) ( ){ } ( ) ( )( ) ( ) ( )
1 2

1

Pr , ,..., ,  1, 2,..., ,  1
S

k k kk k k
m

k

p k
=

= = = ∑r r r r S p =  (5.48)

 
In this chapter, we use the following expression introducing the return sets (5.47) and occurrence 
probabilities (5.48) in place of the absolute deviation. 

( )

( )

( ) ( )

1 1 1

1 1

( )

1 1 1

               

               

m n n

i ij j ij j
i j j
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i ij ij
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= =

= = =

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎡ ⎤ ⎟= −⎜ ⎟⎢ ⎥⎣ ⎦ ⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= −⎢ ⎥
⎢ ⎥⎣ ⎦

= −

∑ ∑ ∑

∑ ∑

∑ ∑ ∑

x

 (5.49)

where ijr  in  (5.49) is redefined as the arithmetic mean derived from return sets (5.47) and the 

probability (5.48). Subsequently, it is obvious that ( )W R⎡ ⎤⎣ ⎦x  is strictly equal to 

( ) ( )( )

1 1 1

S m n
k k

i ij ij
k i j

jp w r r x
= = =

−∑ ∑ ∑  in the case of . Then,  is sufficiently large, expression 

(5.49) is sufficiently similar to the absolute deviation. Therefore, problem (5.46) is transformed into 
the following problem: 

S →∞ S

( ) ( )
( )

( )

1 1

( )

1 1 1
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m n
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i ij ij j
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j j j j
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−
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−
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∑ ∑
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∑

w
 

(5.50)

 
Since this problem includes some absolute values, it is not easy to solve it analytically due to the 
inclusion of indifferentiable points in the feasible region. On the other hand, we introduce the 
following subproblem: 
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 (5.51)

 
Then, the following theorem is derived with respect to the relationship between problems (5.50) and 
(5.51). 
 
Theorem 5.5 
The solution sets of problems (5.50) and (5.51) coincide.  
 
Proof 

First, we introduce the following two auxiliary problems to each scenario : i
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(5.53)

 
Then, it is well known that the optimal solution of problem (5.52) is also optimal for problem (5.53) 
based on the result obtained by Konno [68]. Furthermore, by the optimality condition with respect to 
optimal solution , an optimal solution of the following problem (5.54) is equivalent to that of the 
following problem (5.55): 

x
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(5.55)

 
Then, since it is easy to extend these problems to minimax programming problems holding the 
optimality conditions, it is clear that Theorem 5.5 holds.  
 
Problem (5.51) is a linear fractional programming problem. Therefore, by introducing the following 
parameter ; η
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1 ,  ,  k k
j jS

k k

k

x x
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(5.56)

problem (5.51) is equivalently transformed into the following problem: 
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(5.57)

 
Since we perform the deterministic equivalent and sufficiently approximate transformations from 
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problems (5.41) to (5.57), we efficiently obtain an optimal portfolio by solving the simple linear 
programming problem (5.57). In general, probability maximization model using the finite return sets 
is formulated as a mixed integer programming problem, and it is difficult to solve it rapidly due to 
NP-hard. However, in the case that future returns occur according to normal distributions, in order to 
perform the transformations from (5.41) to (5.57), we can use the sufficient approximate model as 
the linear programming problem (5.57) in place of the probability maximization model. 
Consequently, we can obtain a sufficiently practical portfolio much rapidly by solving problem 
(5.57) than general mixed integer programming problems even if S is very large. 
  Subsequently, all constraints in problem (5.57) are linear constraints, but problem (5.57) is a 
semi-infinite programming problem (SIP) due to the inclusion of infinite inequalities 

1 1

,
m n

i ij j
i j

w r x f hη
= =

′ − ≥∑ ∑  ( ) ( ) (( )

1 1

0,  
m n

k k
i ij ij j

i j

w r r x Wξ
= =

′ ′± − ≥ ∀ ∈∑ ∑ w ) . Therefore, we need to 

construct the more efficient solution method as it cannot be solved directly using basic linear 
programming approaches. However, in the case that we fix the parameter , problem (5.57) is 
equivalent to a finite linear programming problem. In order to construct the solution method, we 
introduce the following subproblem SP(

w

E ) where E  is the index set defined by 

( ) ( ) ( ){ }1 2: , ,..., TE = w w w : 
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(5.58)

 
Since the number of constraints in SP( E ) is finite, this problem is equivalent to a standard linear 
programming problem. Therefore, we construct the following solution method for the main robust 
programming problem (5.41). 
 
Solution algorithm 5.3 

STEP1: Set all intervals of weights , return sets 

, and the occurrence probabilities 

(,  1,2,...,L U
i i iw w w i m≤ ≤ = )

)S(( ) ,  1, 2,...,k
i k =r ( ) ( ),  1, 2,...,kp k S= . 
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STEP2: Set a finite number  and initial weight sets t ( ) ( ) ( ){ } ( )( )1 20 , ,..., ,  t tE W= ∈w w w w   and 

solve problem (5.58). Then, set the optimal solution to be ,  and . 0 0 0, ,t hx 0d ←

STEP3: If 
1 1

min 0
m n

d d d
i ij jW

i j

w r x f hη
∈

= =

⎧⎪⎪ − − ≥⎨⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑w

⎫⎪⎪⎬ ,  is an optimal solution of problem (5.41) and 

terminate this algorithm. If not, reset the values as follows: 

dx

( )1

1 1

: min
m n

t d d d d
i ij jW

i j

W w r x f hη+ +

∈
= =

⎧ ⎫⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪= ∈ −⎨ ⎨⎪ ⎪⎪ ⎪⎩ ⎭⎪ ⎪⎩ ⎭
∑ ∑w

w w ⎪⎪− ⎬⎬⎪⎪⎪⎪
 and ( ){ }11 : t dd dE E + ++ = ∪ w  

STEP4: Solve the primal problem SP( 1dE + ) and obtain optimal solutions  and .  

Then set  and return to STEP 3. 

1,d dη+x 1+ 1dh +

1d d← +
 
However, in this solution method, constraints of problem (5.58) are increase each iteration from Step 
3 to Step 4, and so this algorithm is not always efficient. Therefore, we improve this solution 
algorithm using the dual problem to problem (5.58). First, using coefficient matrix A  of problem 
(5.58) defined by 
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(5.59)

where Then,  is the  unit matrix,  is the L-dimensional vector whose all elements are nI n n× L1
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1, and each ( )k1  is the  matrix whose elements of the kth column are 1 and the other 

elements are 0. 

L S×

( )( ) ( )2 1 2 2n S L n S+ + + × + +∈A R . Then, the dual problem DSP( E ) to SP( E ) is given as 

follows: 

( ) ( )
Minimize

subject to , ,1
                    

tt

ζ

ζ ≥
≥

A 0
0
y

y

 (5.60)

where  is the -dimensional decision variable vector of DSP(y ( )( 2 1 1n S L+ + + ) E ), and so 

 is the ( ,ζy ) ( )( )2 1 2n S L+ + + -dimensional decision variable vector. This dual problem DSP 

( E ) is also a linear programming problem. Therefore, it is easy to obtain an optimal solution of 
DSP( E ). Thereby, using these problems SP( E ) and DSP( E ), we develop the following efficient 
solution algorithm for problem (5.41) extending the solution method of Lai and Wu [73]. 
 
Solution Algorithm 5.4 

STEP1: Set all intervals of weights , return sets 

, and the occurrence probabilities 

(,  1,2,...,L U
i i iw w w i m≤ ≤ = )

)S(( ) ,  1, 2,...,k
i k =r ( ) ( ),  1, 2,...,kp k S= . 

STEP2: Set initial weight sets { } ( )(0 01, 2,..., ,  ,  lE l Eγ= ∀ ∈ ∈w )W   and solve problem (5.58). 

Then, set the optimal solution to be ,  and . 0 0 0, ,t hx 0d ←

STEP3: If 
1 1

min 0
m n

d d d
i ij jW

i j

w r x f hη
∈

= =

⎧ ⎫⎪⎪⎬
⎪⎪ − − ≥⎨⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑w

, ( )dx  is an optimal solution of problem (5.41) and 

terminate this algorithm. If not, reset the values as follows: 

1 1

: arg min
m n

d d d dhnew i ij j
W i j

l w r x f η
∈ = =

⎧ ⎫⎪ ⎪⎪ ⎪= − −⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑

w
 and { }1 :d d d

newE l+ = ∪E  

STEP4: Solve the primal problem SP( 1dE + ) and dual problem DSP ( 1dE + ), and obtain optimal 

solutions  and 1d+x ( )1dv l+  

STEP5: Reset ( ){ }01 1
1:d d

dE l E v l+ +
+= ∈ > 1d d← + and . Then, return to STEP 3. 

 
Since this solution algorithm is based on the study of Lai and Wu [73], it is obvious that the 
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convergence of this algorithm is obtained in a way similar to the study of Lai and Wu [73].  
 
 

5.5 Maximization of the Minimum Aspiration Level of Objective Values among All 
Scenarios for the Probability Maximization Model 
 

In Subsection 5.4, all scenarios have been weighted using occurrence probabilities and the 
decision maker’s subjectivity. However, there often exists the case that all scenarios are treated 
equally due to the lack of enough information and uncertain economic conditions, i.e., all the 
occurrence probabilities are estimated to have the same values and the decision maker makes the 
same assessments with respect to all the scenarios. In this case, she or he often sets the goal of the 
total future profit for each scenario and consider its aspiration level for the achievement of the 
probability more than the goal. Furthermore, considering the vagueness and subjectivity of human 
judgment and flexibility for the execution of a plan, each aspiration level is assumed to be a 
satisfaction function. Then, investors need to consider the condition that they satisfy the aspiration 
level more than a goal even if any scenario occurs.  

Therefore, in this section, we consider the portfolio selection decision that maximizes the 
minimum aspiration level of probabilities in portfolio selection problems with respect to each 

scenario of future return. First, we introduce the following satisfaction function ( )i iZμ  to each 

1

n

ij j i
j

i t
i

r x f
Z =

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜=Φ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

∑
Vx x

 as follows: 

( ) ( ) ( )
1

0 1

0

1
,  1, 2, ,

0

i i

i i i i i i i

i i

p Z
Z g Z p Z p i m

Z p
μ

⎧ ≤⎪⎪⎪⎪= ≤ ≤ =⎨⎪⎪ ≤⎪⎪⎩

 (5.61)

where each ( )i ig Z  is a monotonous increasing function. This satisfaction function means that a 

decision maker is entirely agreeable with respect to the portfolio satisfying objective function iZ  is 

more than the target value 1ip , but is never agreeable to the portfolio satisfying iZ  is less than 

0ip . Then, it also means that she or he is partially agreeable depending on her or his psychological 

aspect and subjectivity if iZ  is between 0ip  and 1ip . Using these satisfaction functions, we 

formulate this model as the following minimax programming problem: 
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( ) ( )

( )
1

Maximize min ,  1, 2, ,

subject to ,  0 ,  1, 2, ,

ip ii
n

j j j j
j

Z i m

a x b x b j n

μ

=

⎡ ⎤=⎢ ⎥⎣ ⎦

≤ ≤ ≤ =∑
 (5.62)

 
Then, this problem is transformed into the following form: 

( ) ( )

( )
1

Maximize
subject to ,  1,2, ,

                   ,  0 ,  1,2, ,

ip i

n

j j j j
j

h
Z h i m

a x b x b j n

μ

=

≥ =

≤ ≤ ≤ =∑

 
(5.63)

 

In this problem, the constraint ( )
ip iZ hμ ≥  is transformed into the following inequality: 

( ) ( )

( )

( )

( ) ( )

1

1

1 1

1

1

                   

                      ,

                      ,  1, 2,...,

i

i

i i i i

n

ij j i
j

it
i

n

ij j i
j

g ht
i

n
t

ij j i ig h
j

Z h g Z h

r x f
g h

r x f
K

r x f K i m

μ

−

−

= −

=

=

≥ ⇔ ≥
⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⇔ Φ ≥⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

−
⇔ ≥

⇔ − ≥ =

∑

∑

∑

V

V

V

x x

x x

x x

 
(5.64)

where Kβ  is the -quantile to the normal distribution. Therefore, problem (5.63) is equivalently 

transformed into the following problem: 

β

( ) ( )

( )

1

1

Maximize

subject to 0,  1,2, ,

                   ,  0 ,  1, 2, ,

pi

n
t

i ij j ih
j

n

j j j j
j

h

f r x K i m

a x b x b j n

μ∗

=

=

− + ≤ =

≤ ≤ ≤ =

∑

∑

Vx x  
(5.65)

 

Since each ( ) ( )
1

,
pi

n
t

i ij j h
j

f h f r x K
μ∗

=

= − +∑ Vx ix x  is a convex function, this problem is a 

convex programming problem and we obtain a global optimal solution using convex programming 
approaches. However, its constraint includes a square root term; therefore, it is difficult to solve this 
problem analytically. Therefore, in a way similar as described in Subsection 5.5, we construct an 
efficient solution method using the following mean-absolute deviation. 
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( )
1 1

n n

i ij j
j j

W R E r x r x
= =

ij j

⎡ ⎤
⎢ ⎥⎡ ⎤= −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∑ ∑x  (5.66)

 
Using this mean-absolute deviation, problem (5.65) is transformed into the following problem: 

( ) ( )( ) ( )

( )

2

1

1

Maximize

subject to 0,  1,2, ,
2

                   ,  0 ,  1, 2, ,

pi

n

i ij j ih
j

n

j j j j
j

h

f r x K W R i m

a x b x b j n

μ

π
∗

=

=

⎡ ⎤− + ≤ =⎣ ⎦

≤ ≤ ≤ =

∑

∑

x  
(5.67)

( ) ( )( ) ( )

( )

1

1

Maximize

. . subject to 0,  1, 2, ,
2

                   ,  0 ,  1, 2, ,

pi

n

i ij j ih
j

n

j j j j
j

h

i e f r x K W R i m

a x b x b j n

μ

π
∗

=

=

⎡ ⎤− + ≤ =⎣ ⎦

≤ ≤ ≤ =

∑

∑

x  
(5.68)

 
Furthermore, in a way similar to Subsection 5.5, we introduce return sets that are identical to 
formulas (5.47), (5.48), and (5.49), and problem (5.68) is transformed into the following problem: 

( ) ( )

( )

( ) ( )

1 1 1

1

Maximize

subject to 0,
2

                  ,  0 ,  1,..., ;  1, 2, ,

pi

n S n
k k

i ij j i ij ij jh
j k j

n

j j j j
j

h

f r x K p r r x

a x b x b i m j n

μ

π
∗

= = =

=

⎛ ⎞⎟⎜ ⎟⎜− + − ≤⎟⎜ ⎟⎟⎜⎜⎝

≤ ≤ ≤ = =

∑ ∑ ∑

∑
⎠

 
(5.69)

 

Then, we introduce the following subproblem including parameters  in a way similar to 

problem (5.58) in Section 3: 

( )k
iθ

( ) ( )

( ) ( )

( ) ( )

1 1

( ) ( ) ( ) ( )

1 1

1

Maximize

subject to 0,  1, 2, ,
2

                   0,  0,

                 ,  0 ,  1, 2, ,

pi

n S
k k

i ij j i ih
j k

n n
k k k k

i ij ij j i ij ij j
j j

n

j j j j
j

h

f r x K p i m

r r x r r x

a x b x b j

μ

π θ

θ θ

∗

= =

= =

=

⎛ ⎞⎟⎜− + ≤ =⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

− − ≥ + − ≥

≤ ≤ ≤ =

∑ ∑

∑ ∑

∑ ( )n

 
(5.70)

 
Then, the following theorem holds with respect to the relation between problems (5.69) and (5.70). 
 
Theorem 5.6 
The optimal solution of problem (5.70) is also optimal for problem (5.69). 

 104



 
5. Multi-Scenario and Robust Models for Portfolio Selection Problems 

                                                                                                                                                                                                                                                                                                                                                                                                                                         

  
Proof 
In a similar manner to Proof of Theorem 5.5, this theorem obviously holds.  
 

Since this problem is a nonlinear and nonconvex programming problem due to , it is difficult 

to solve it directly and analytically. However, if we fix the parameter , we consider the existence 

of the feasible solution 

( )pi h
K

μ∗

h

hx  involving the following set: 

( ) ( )

( )

( )

( ) ( )

1

( ) ( )

1

1

0,  1, 2, ,
2

0,

,  0 ,  1, 2, ,

pi

S
t k k

i i ih
k

n
k k

i ij ij jh h
j

n

j j j j
j

f K p i

S r r x

a x b x b j n

μ

π θ

θ

∗

=

=

=

⎧ ⎫⎪ ⎪⎛ ⎞⎪ ⎪⎟⎜⎪ ⎪− + ≤ =⎟⎜ ⎟⎪ ⎪⎜ ⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪∈ = ± − ≥⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪≤ ≤ ≤ =⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

∑

∑

∑

r x

x x

m

 (5.71)

where h  is a fixed value satisfying 0 h≤ ≤1. It is easy to obtain a feasible solution using linear 

programming approaches such as the Simplex method or Interior point method and so we solve it 
efficiently. Therefore, we also find the optimal solution of main problem (5.63) efficiently and 
analytically. Thus, we obtain the following solution algorithm. 
 
Solution Algorithm 5.5 

STEP1: Set the initial value . 0,  1,  1l uh h k← ← ←

STEP2: Set the satisfaction function to each ( )
1

,  1, 2,...,
n

i ij j
j

Z r x i m
=

= =∑ . 

STEP3: Set the return set ( ) ( ){ } ( )( ) ( ) ( ) ( )
1 2, ,..., ,  1,2,..., ,  1,2,...,k k k k

i i i inr r r k S i m= = =r  and each 

occurrence probability . ( )k
ip

STEP4: Set 
2

l u
k

h hh +← . 

STEP5: Solve the problem (5.70) and find its feasible solution ( )h k∗x .  

STEP6: If the feasible solution exists in STEP5,  and return to STEP4. Else, if the feasible 

solution does not exist,  and return to STEP4. Then, if a feasible solution exists in 

uh h← k

klh h←
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STEP5 and 1k kh h ε−− <  with respect to the sufficient small value , ε ( )h k∗x  is an 

optimal solution and terminate this algorithm. 
 
 

5.6 Numerical Example 
 

In order to compare our proposed models with basic models, i.e. the Markowitz model and basic 
probability maximization model, let us consider an example shown in Table 1 based on data 
provided by Markowitz [90]. We assume that there are nine financial assets whose returns are 
distributed according to normal distributions, and to simplify the discussion, we assume each return 
to be an independent normal distribution. Furthermore, we assume three scenarios with respect to 
expected returns of all the securities shown in Table 5.1. 
 

Table 5.1. Sample data of returns and SD from Markowitz’s historical data 
Returns Scenario 1 Scenario 2 Scenario 3 SD 

R1 0.066 0.077 0.058 0.238 
R2 0.062 0.070 0.055 0.125 
R3 0.146 0.164 0.126 0.301 
R4 0.173 0.191 0.148 0.318 
R5 0.198 0.211 0.177 0.368 
R6 0.055 0.067 0.051 0.209 
R7 0.128 0.130 0.120 0.175 
R8 0.118 0.130 0.109 0.286 
R9 0.116 0.127 0.109 0.290 

 

0.056644 0.022908 0.030804 0.052222 0.017517 0.034322 0.025823 0.030631 0.038651
0.022908 0.015625 0.019941 0.025838 0.00874 0.010711 0.015531 0.019663 0.022113
0.030804 0.019941 0.090601 0.066045 0.04763 0.01384 0.011062 0

=V

.052512 0.044518
0.052222 0.025838 0.066045 0.101124 0.005501 0.030573 0.02226 0.06912 0.038732
0.017517 0.00874 0.04763 0.055001 0.135424 0.013844 0.02254 0.077884 0.048024
0.034322 0.010711 0.01384 0.030573 0.013844 0.043681 0.01207 0.022714 0.023032
0.025823 0.015531 0.011062 0.02226 0.02254 0.01207 0.030625 0.022523 0.018778
0.030631 0.019663 0.052512 0.06912 0.077884 0.022714 0.022523 0.081796 0.040641
0.038651 0.022113 0.044518 0.038732 0.048024 0.023032 0.018778 0.040641 0.0841

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎜ ⎟⎝ ⎠⎜ ⎟⎟⎜

 

 
5.6.1 Probability fractile optimization model 
 
First of all, we consider the following portfolio selection problem to maximize total expected returns 
of scenario 1: 
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(Problem P) 

( )

1 2 3 4 5 6 7 8 9

9

1

Maximize 0.066 0.062 0.146 0.173 0.198 0.055 0.128 0.118 0.116

subject to 1,  0 0.2,  1, ,9j k
j

x x x x x x x x

x x k
=

+ + + + + + + +

= ≤ ≤ =∑
x

 

 
We solve this problem and obtain optimal portfolios shown in Table 5.2. 
 

Table 5.2. Optimal portfolios of problem P 

1x  2x  3x  4x  5x  6x  7x  8x  9x  Objective value

0 0 0.2 0.2 0.2 0 0.2 0.2 0 0.1526 
 
Problem P is a basic linear knapsack problem, and so Table 2 obviously shows that the decision 
maker should purchase assets with the high expected returns. This result corresponds to the property 
for optimal solution of the basic linear knapsack problem. Second, we consider the probability 
fractile optimization model considering both expected values and variances for Scenario 1. In the 
case that we assume the probability level  to 0.7, this model is given as follows: β
(Problem P1) 

( )

1 2 3 4 5 6 7 8

0.7
9

1

Maximize 0.066 0.062 0.146 0.173 0.198 0.055 0.128 0.118 0.116

                   

subject to 1,  0 0.2,  1, ,9

t

j j
j

9x x x x x x x x

K

x x j
=

+ + + + + + + +

−

= ≤ ≤ =∑
Vx x

x
 

 
We solve this problem and obtain the optimal portfolio shown in Table 3. 
 

Table 5.3. Optimal portfolios of problem P1 

1x  2x  3x  4x  5x  6x  7x  8x  9x  Objective value

0 0.136 0.2 0.2 0.2 0 0.2 0 0.064 0.0388 
 
By considering the variance of each asset, the rate of optimal portfolios changes from problem P, 
particularly with respect to assets R2, R8 and R9. Table 5.3 shows that assets with not only high 
expected returns but also low variances tend to be selected in problem P1. Similarly done to problem 
P1, we consider the probability fractile optimization models for Scenario 2 and Scenario 3, 
respectively. 
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(Problem P2 based on Scenario 2) 

( )

1 2 3 4 5 6 7 8

0.7
9

1

Maximize 0.077 0.055 0.164 0.148 0.211 0.051 0.130 0.109 0.127

                   

subject to 1,  0 0.2,  1, ,9

t

j j
j

9x x x x x x x x

K

x x j
=

+ + + + + + + +

−

= ≤ ≤ =∑
Vx x

x
 

 
(Problem P3 based on Scenario 3) 

( )

1 2 3 4 5 6 7 8

0.7

9

1

Maximize 0.058 0.070 0.126 0.191 0.177 0.067 0.120 0.130 0.109

                   

subject to 1,  0 0.2,  1, ,9

t

j j
j

9x x x x x x x x

K

x x j
=

+ + + + + + + +

−

= ≤ ≤ =∑
Vx x

x
 

 
We solve these problems and obtain optimal portfolios shown in Tables 5.4 and 5.5. 
 

Table 5.4. Optimal portfolios of problem P2 

1x  2x  3x  4x  5x  6x  7x  8x  9x  Objective value

0 0 0.2 0.2 0.2 0 0.2 0 0.2 0.0416 
 

Table 5.5. Optimal portfolios of problem P3 

1x  2x  3x  4x  5x  6x  7x  8x  9x  Objective value

0 0.2 0.093 0.2 0.2 0.083 0.2 0 0.024 0.0352 
 

Furthermore, we consider the portfolio model weighted to each scenario in Section 3. This model 
is formulated as follows: 

(Problem ) ( )P w

( )
( )

1 1 2 3 4 5 6 7 8 9

2 1 2 3 4 5 6 7 8

3 1

Maximize 0.066 0.062 0.146 0.173 0.198 0.055 0.128 0.118 0.116

                 + 0.077 0.055 0.164 0.148 0.211 0.051 0.130 0.109 0.127

                 + 0.058

W x x x x x x x x

W x x x x x x x x

W x

+ + + + + + + +

+ + + + + + + +

+( )

( ) ( )

9

x

x

( )

2 3 4 5 6 7 8

3

0.7
1

9

1

0.070 0.126 0.191 0.177 0.067 0.120 0.130 0.109

                 

subject to 1,  0 0.2,  1, ,9

t
i i

i

j j
j

9x x x x x x x

K W W

x x j

=

=

+ + + + + + +

−

= ≤ ≤ =

∑

∑

Vx x

x

 

 
In the case that we solve this problem with respect to five types of weights, we obtain optimal 
portfolios and optimal objective values shown in Tables 5.6 and 5.7. 
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Table 5.6. Optimal portfolios with respect to each weight of problem  ( )P w

1W  2W  3W  1x  2x  3x  4x  5x  6x  7x  8x  9x  

0.6 0.2 0.2 0 0.131 0.2 0.2 0.2 0 0.2 0 0.069
0.2 0.6 0.2 0 0.065 0.2 0.2 0.2 0 0.2 0 0.135
0.2 0.2 0.6 0 0.2 0.153 0.2 0.2 0.003 0.2 0 0.044
0.6 0.3 0.1 0 0.101 0.2 0.2 0.2 0 0.2 0 0.099
0.6 0.1 0.3 0 0.177 0.181 0.2 0.2 0 0.2 0 0.042
 

Table 5.7. Optimal objective values with respect to each weight of problem  ( )P w

1W  2W 3W Objective value 
0.6 0.2 0.2 0.0380 
0.2 0.6 0.2 0.0388 
0.2 0.2 0.6 0.0361 
0.6 0.3 0.1 0.0387 
0.6 0.1 0.3 0.0373 

 
From Table 5.6, we find that the rates of optimal portfolios to assets R2, R3 and R9 are largely 
different by each weight set ,  and  to three scenarios. On the other hand, we also find 

that the rates of optimal portfolios to assets R4, R5 and R8 do not change with respect to all weight 
sets. Therefore, we find that the purchase rate of assets R4, R5 and R8 tends to be unaffected by the 
several random changes of future returns. 

1W 2W 3W

Finally, the model introducing the satisfaction function to all scenarios in Subsection 5.4 is 
considered. In this chapter, we assume each satisfaction function to be the following linear function: 

( ) ( )

( )

1 2

1 2
1 1 1 2 2 2

1 2

3

3
3 3 3

3

1 0.039 1 0.041
0.035 0.0370.035 0.039,   0.037 0.041,

0.039 0.035 0.041 0.037
0 0.035 0 0.037

1 0.035
0.035 0.03 0.035

0.035 0.03
0 0.03

Z Z
Z ZZ Z Z

Z Z

Z
ZZ Z

Z

μ μ

μ

⎧ ⎧≤ ≤⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪− −⎪ ⎪⎪ ⎪= ≤ ≤ = ≤ ≤⎨ ⎨⎪ ⎪− −⎪ ⎪⎪ ⎪⎪ ⎪≤ ≤⎪ ⎪⎪ ⎪⎩ ⎩
⎧ ≤

−= ≤ ≤
−

≤

⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Z
 

 
Using these satisfaction functions, we introduce the following problem maximizing the minimum 
aspiration level among all satisfaction functions: 
 
 
(Problem P4) 
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( )1 2 3 4 5 6 7 8 9 0.7

1 2 3 4 5 6

Maximize

subject to 0.004 0.035 0.066 0.062 0.146 0.173 0.198 0.055 0.128 0.118 0.116 + 0

                   0.004 0.037 0.077 0.055 0.164 0.148 0.211 0.051 0.130

t

h

h x x x x x x x x x K

h x x x x x x x

+ − + + + + + + + + ≤

+ − + + + + + +

Vx x
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7 8 9 0.7

1 2 3 4 5 6 7 8 9 0.7

9

1

0.109 0.127 0

                   0.005 0.03 0.058 0.070 0.126 0.191 0.177 0.067 0.120 0.130 0.109 0

                   1,  0 0.2,  1, ,9

t

t

j j
j

x x K

h x x x x x x x x x K

x x j
=

+ + + ≤

+ − + + + + + + + + + ≤

= ≤ ≤ =∑

V

V

x x

x x

 

Table 5.8. Optimal portfolios of problem P4 

1x  2x  3x  4x  5x  6x  7x  8x  9x  Aspiration level

0 0.149 0.190 0.2 0.2 0 0.2 0 0.061 0.709 

 
The solution shown in Table 5.8 is an optimal solution of problem P4. We find that this optimal 
portfolio is similar to that of Scenario 1 shown in Table 3. Then, the rate of optimal portfolio for 
asset R3 is not 0.2 such as portfolios of problems P1 and P2, but is similar to problem 

( )0.6,0.1,0.3P  in Table 5.6. Therefore, Table 5.8 shows that problem P4 in this numerical example 

plays a role of the intermediate model with both properties of problems P1 and P3. 
 
5.6.2 Probability maximization model 
 
  In a way similar to the probability fractile maximization model, in this numerical example, the 
mean-variance model (P5) and probability maximization model (P6) are given as follows: 
(P5: Mean-variance model) 
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(P6: Probability maximization model) 
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Then, we introduce our proposal models in Sections 7 and 8 as the following problems P3, P4 and 
P9: 
 
(P7: Probability maximization model setting constant weights) 
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(P8: Probability maximization model considering flexibility of weights) 
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(P9: Maximization model of aspiration levels) 
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where each target value is  and each satisfaction function with 

respect to the probability is as follows: 
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We solve these problems and obtain the following optimal solutions shown in Table 5.9. 
 

Table 5.9. Optimal portfolio with respect to each problem 

 1x  2x  3x  4x  5x  6x  7x  8x  9x  

P5 0.098 0.300 0.062 0.055 0.041 0.128 0.182 0.068 0.066 
P6 0.032 0.088 0.122 0.140 0.126 0.013 0.293 0.096 0.090 
P7 0.034 0.090 0.121 0.138 0.124 0.018 0.287 0.096 0.092 
P8 0.028 0.106 0.113 0.144 0.118 0.025 0.279 0.100 0.087 
P9 0.018 0.138 0.096 0.154 0.106 0.042 0.258 0.108 0.080 

 
From Table 5.9, in mean-variance model P1, the assets having lower variances are lower tend to 

be selected. On the other hand, in basic probability maximization models and our proposed models, 

 111



 
5. Multi-Scenario and Robust Models for Portfolio Selection Problems 
                                                                                                                                                                                                                                                                                                                                                                                                                                         

assets with not only low variances but also high expected return tend to be selected, considering the 
balance between both factors. For example, the variance of Asset 2 is the lowest of all assets, but its 
expected return is lower than the others; therefore, the rate of budgeting allocation in our proposed 
models is less than that of the mean-variance model. On the other hand, the variance of Asset 4 is 
higher than the others, but its expected return is also higher. Therefore, the rate of budgeting 
allocation in our proposed models is higher than that of the mean-variance model. Consequently, 
Table 5.9 shows that our proposed models tend to select optimal portfolios considering the balance 
between minimizing the total variance and maximizing the total profit. 

Furthermore, with respect to Assets 1 and 2 whose expected returns are very similar but variances 
are very different, the optimal portfolio of problem P4 including the intervals of weights shows that 
the budgeting allocation of Asset 2 with the lower variance tend to increase more than that of 
problems P2 and P3 including fixed weights. Then, with respect to Assets 8 and 9 whose not only the 
expected returns but also the variances are very similar, we find the same trend as that in case of 
Assets 1 and 2. Therefore, problem P4 considering robustness tends to select assets with the lower 
variances in the case of portfolio selection in assets with similar characteristics. Then, we notably 
find this fact in the budgeting allocation of problem P5. Particularly, the budgeting rates of Assets 3, 
7 and 9 are intermediate values between the mean-variance model and probability maximization 
model. On the other hand, we also find the aspect in which the rate of the asset with certain low 
variances but lower expected return such as Assets 1 and 6 is lower than that of the other models. 
Therefore, the maximization model of aspiration levels P5 may be a robust model involving the 
properties of both the mean-variance model and probability maximization model. 
 
 

5.7 Conclusion 
 

In this chapter, we have proposed two solution approaches for probability fractile optimization 
models in portfolio selection problems considering possible scenarios with respect to multivariate 
random future returns. First, we have aggregated multi-objective functions into one weighted 
function, i.e. the single objective problem, and proposed its analytical solution method. Since 
weights are flexibly decided for the conditions in real market, we may apply this model to several 
types of portfolio selection problems under uncertain situations.  Second, we have proposed the 
robust portfolio model maximizing the minimum objective value among all the scenarios and 
constructed its efficient solution method using the compact factorization. Since this model considers 
versatile and robust cases in terms of setting aspiration levels according to the decision maker's 
subjectivity and maximizing the minimum aspiration level, we apply this model to the several risk 
management problems including multi probabilistic and ambiguous situations. 

Next, we have proposed some probability maximization models of portfolio selection problems. 
First, we have aggregated multi-objective functions into one weighted function, i.e. the 
single-objective problem, and proposed its efficient solution method using the deterministic 
equivalent transformations of the main problem. Furthermore, we have proposed a robust portfolio 
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model that considers the interval of each weight and obtains the appropriate portfolio that can apply 
to all weights including the interval. Since this model considers various conditions in the practical 
investment by using weights including flexibility, we may apply this model to several types of 
portfolio selection problems under uncertain situations. Second, we have proposed the model 
maximizing the minimum aspiration level of probability among all the scenarios and constructed its 
solution method. Since it is also the model considering the robust case, we apply this model to 
several problems including multi-probabilistic and ambiguous situations. This problem includes 
more wide ranging conditions of portfolio selection problems. 

As future remarks, we need to consider the case that optimal solutions are restricted to integers 
and multi-period portfolio selection problems. Then, we also need to consider the more versatile 
portfolio model to reflect various economic factors considering the tendencies of the real market. 
Nonetheless, in this chapter, we have developed multiple approaches to portfolio selection problems. 
Therefore, our approach in this chapter may be helpful in the development of efficient solution 
methods with respect to these future problems. 
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Chapter 6 

Product Mix Problems under Randomness and 

Fuzziness 
 
 

In this chapter, we suggest that to maximize the total profit, the product-mix problem should be 
addressed from multiple perspectives. This thesis proposes using stochastic and fuzzy modeling to 
address probabilistic and ambiguous factors, flexibility to deal with demand volatility and readiness 
to make various changes from the original product-mix decision, and the theory of constraints to 
identify bottlenecks and portfolio selection approaches to deal with risk management. 

The most important point at which it is necessary to improve the production process and supply 
chain is a bottleneck constraint. Unless machinery or human capacity at the bottleneck is improved, 
it is almost impossible for the production company to increase its profit, and for decision makers to 
apply an optimal production plan. Therefore, it is very important to consider product-mix decision 
problems by focusing on bottleneck constraints. At present, some researches have focused on 
bottleneck constraints in production processes, and this is known as the theory of constraints (TOC), 
as proposed by Goldratt [37, 38]. Focusing on several previous studies, Balakrishnan and Cheng [7], 
Finch and Luebbe [33], and Luebbe and Finch [86] have considered comparing TOC and linear 
programming problems (LP), and have shown that LP is a useful tool in TOC analysis. Lee and 
Plenert [76] examined the case of the introduction of a new product. Coman and Ronen [23] 
formulated a production-outsourcing problem as an LP problem, and identified an analytical solution. 
Aryanezhad and Komijan [6] and Köksal [67] proposed improvements to a TOC-based algorithm. 
Souren et al. [110] discussed some premises on which to generate optimal product-mix decisions 
using a TOC-based approach. 

Most previous researchers using a TOC-based approach have applied TOC to some such type of 
product-mix decision problems, but they have not focused on random, ambiguous, and flexible 
conditions existing at the time when TOC-based product-mix decision problems arise. Given recent 
uncertainty in the practical markets of products and production processes, an approach to 
product-mix decision problems through TOC should take into account considerations such as 
uncertain conditions and decision makers’ level of satisfaction, in order to make the product-mix 
decision robust, and to provide flexibility in responding to many future scenarios and intervals of 
goals. In approaching product-mix decision problems through TOC, we consider several types, 
particularly the following: (a) the type that includes problems associated with adding new product 
alternatives to an existing production line; (b) the type that includes problems concerning more than 
one bottleneck in which the algorithm cannot converge to the feasible optimum solution. 
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Bhattacharya and Vasant [13] compiled these product-mix decision problems using TOC, and 
proposed a fuzzy product-mix decision problem to extend these previous models. 

However, in most approaches to product-mix decision problems through TOC, randomness and 
fuzziness are considered separately; but to represent real product-mix decision cases under the 
changes of future customers’ demands and a large amount of efficient and inefficient information in 
the real market, it may not be valid to consider future profits as fixed values, random variables, or 
fuzzy variables. Rather, they should be considered as product-mix decision problems that integrate 
randomness and fuzziness. Furthermore, in most previous studies, the main focus is not on the 
concept of flexibility in responding to many different future scenarios. For example, we assume that 
decision makers consider product-mix decision problems by including various elements of 
randomness and fuzziness to represent uncertain situations in the real world. As a result, they decide 
on an unduly strict original product-mix decision. If an unpredictable situation occurs in the future, 
they will then not earn the profit predicted, due to the limitation of the constraint, even when 
randomness and fuzziness are included in the model. Therefore, it is important to introduce 
flexibilities such as considering several future scenarios and their levels of satisfaction, in terms of 
the target total profit and the upper values of constraints. At present, no model considers random and 
ambiguous situations, and flexibility and level of satisfaction for objective function and constraints 
simultaneously, particularly in the case of models that include probabilistic future returns. Therefore, 
in this chapter, we focus on product-mix decision problems, in order to take into account several 
constraints, including randomness, ambiguity, and flexibility. Under such uncertain conditions and 
flexibilities, if the original plan is to function appropriately and smoothly, then it is most important to 
undertake appropriate risk management, such as the reduction of uncertainty and the improvement of 
satisfaction of customers, workers, and decision makers. 

Therefore, by extending the risk management methods used in the portfolio theory to product-mix 
decision problems, we propose new and versatile product-mix decision problems. In particular, we 
propose the following flexible models under randomness, fuzziness, and flexibility: (a) a probability 
fractile optimization model of total future profits, and (b) a probability maximization model of total 
future profits. These mathematical programming problems with randomness and fuzziness are called 
stochastic and fuzzy programming problems (for example, Liu [83, 84]), and are usually transformed 
into nonlinear programming problems by setting the target values and using chance constraints. 
Since it is almost impossible to obtain their global optimal solution directly, we construct the 
efficient solution method to obtain the global optimal solution by performing the equivalent 
transformation for several nonlinear programming problems. 
 
 

6.1 The Formulation of Proposed Models Considering Uncertainty and Flexibility 
 
  The following notations are used in the chapter: 

jx : Volume of production units of j th product 
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jr : Future return of j th product  

kja : Coefficient of j th product of th constraint; i.e., resource constraint, time constraint, and 

personnel constraint. 

k

kb : Maximum value with respect to constraint k  

jc : Fund cost of each product j  

jp : Maximum volume of j th production units 

w : Maximum value of total available fund 
,i j : Index of products 

k : Index of constraints 
m : Total number of constraints 
n : Total number of products 
 
In this chapter, we mainly focus on maximizing the total profit under several constraints in 
production processes. Generally, a basic product-mix decision model maximizing the total future 
profit is formulated as follows. 
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(6.1)

 
This problem is a linear programming problem. Therefore, we efficiently find an optimal solution by 
using linear programming approaches such as the simplex method or interior point method. However, 
in practical production processes, there are some probabilistic conditions such as breakdown of 
machines and change of customer’s demand surrounding the real market, as well as ambiguous 
conditions derived from lack of reliable information and intuition of veteran workers. Hence, 
considering these situations, coefficients of objective functions and constraints are not fixed values 
but values including randomness and fuzziness.  

In this chapter, we assume that each future return jr  occurs according to a normal distribution 

( )2,j jN r σ  where jr  are the mean values of jr  and 2
jσ  are its variances. Then, we represent the 

ijth element of a variance-covariance matrix for the returns jr  as . Furthermore, we assume ijσ
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each  and kja jc  to be the following L fuzzy numbers: 
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where  is a nonincreasing and nonnegative function on ( )L x [ )0,∞  satisfying ( )0L =1  and 

( )1L = 0 . Then,  and represent a spread of the fuzzy numbers, and these are positive values. 

Furthermore, in the case that decision makers consider the production plan, they generally set goals 
for the total return and the total cost, respectively. Then, if the expected total profit is more than the 
setting goal, it is obvious that they are sufficiently satisfied with the production plan. On the other 
hand, even if the expected total profit is a little less than the setting goal, they may be accordingly 
satisfied with the production plan. In the real world, the setting goal often has a flexibility to execute 
the production planning smoothly and is represented as an interval value. This aspect is equivalently 
applied to the total cost. In this chapter, we introduce a level of satisfaction considering the 
flexibility of the production plan and the subjectivity of the decision maker. Therefore, we introduce 
the following satisfaction functions based on fuzzy programming approaches: 
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(6.2)

where ( )f x  is a strictly monotonous increasing function and ( ) ( ), 1, , ,kg x k m w=  are strictly 

monotonous decreasing functions. Using these membership functions, in this section, we consider 
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the following mini-max mathematical programming problem to maximize the minimum level of 
satisfaction among all objectives and constraints as much as possible: 
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In the case that a minimum level of satisfaction is set as parameter , whereby a decision maker 
has the degree of satisfaction such as she or he approximately earns the total profit rather than a 

target profit, the objective function in problem (6.3) 
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means that all membership functions are larger than . Therefore, problem (6.3) is equivalently 
transformed into the following problem: 
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Subsequently, in order to solve problem (6.4) analytically using mathematical programming 
approaches, the constraints of problem (6.4) are transformed into the following forms based on fuzzy 
programming approaches. 
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where ( )1f h−  and ( )1
kg h− are inverse functions of f and g, respectively. Using these inequalities, 

we equivalently transform problem (6.4) into the following problem: 
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Consequently, problem (6.6) is a product-mix decision problem with interval values to the target 
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profit and the upper values of constraints. Subsequently, in the case that the decision maker does not 
consider the membership functions, i.e., , problem (6.6) is degenerated to a basic product-mix 
decision problem (6.1). Therefore, problem (6.6) is a versatile model including previous product-mix 
decision problems.  

1h=

However, problem (6.6) is not a well-defined problem due to the inclusion of random variables 

jr  and fuzzy numbers  and kja jc . Thus, in order to control uncertain factors as much as possible 

and solve this problem analytically, we need to set a criterion with respect to probability and 
possibility for objective function and constraints, and transform the original problem into the 
deterministic optimization model. Therefore, as main flexible product-mix decision problems, we 
consider the following stochastic programming problems in Section 6.2. 
 
 

6.2 Stochastic Programming Problems of Flexible Product Mix Decision Problem 
 

Mathematical programming problems considering randomness are generally called stochastic 
programming problems, and there are two standard models using chance constraints in stochastic 
programming problems: (a) probability fractile optimization model to total future profits, and (b) 
probability maximization model to total future profits. We discuss each of these problems below. 
 
6.2.1 Probability fractile optimization model 
 

In this problem, a decision maker considers maximizing the goal for total future profit. 
Subsequently, we assume that parameter  means the probability that the total profit is more than 

or equal to target value 

β

( )1f h− , and parameter  means the possibility that each total cost is less 

than or equal to target value 

α

( )1
kg h−  as far as possible based on the fuzzy theory and the fuzzy 

programming approach. From these assumptions, we introduce chance constraints as follows. 
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∑ ∑

∑ ∑

∑ ∑

 (6.7)

 
By introducing these chance constraints into problem (6.6), previous product-mix decision problems 
are extended to the following probability fractile maximization model, whereby the decision maker 
make an optimal product-mix decision to maximize the total profit as much as possible, by 
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controlling randomness derived from a statistical analysis of received data and considering the 
possibility of reducing cost coefficients in the constraints: 

( )

( )

( )

( ) ( )

1

1

1

1

1

1

1

Maximize

subject to Pr ,

                   Pos ,

                   Pos ,  1,2, ,

                   0
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j j
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n

j j w
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a x g h k m
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⎧ ⎫⎪ ⎪⎪ ⎪≥ ≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪≤ ≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪≤ ≥ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

≤ ≤

∑

∑

∑
,   1,2, ,j n=

 
(6.8)

 
In order to solve this problem using an analytical solution method and general solvers, we need to 
equivalently transform stochastic and possibilistic constraints into deterministic inequalities. First, 
the stochastic chance constraint is transformed into the following inequality based on the property of 
normal distribution: 

( )
( )

( )

1

1 1 11

1

1 1 1 1

1

1

Pr Pr

                                          

n n n
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⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪− −⎪ ⎪⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪≥ ≥ ⇔ ≥ ≥⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
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∑ ∑ ∑
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∑∑ ∑∑
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β β σ −
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≥ ⇔ − ≥∑ ∑∑
∑∑

h

 
(6.9)

where ( )F y  is the distribution function of the standard normal distribution and . 

Furthermore, each chance constraint for possibility is also transformed into the following 
inequalities based on the studies of possibility theory (for example, Inuiguchi and Ramik [52], 
Katagiri et al. [63]): 

( )1K Fβ β−=

( ) ( ) ( )

( ) ( ) ( )

1 1

1 1 1

1 1

1 1 1
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α α
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⎧ ⎫⎪ ⎪⎪ ⎪≤ ≥ ⇔ − ≤ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

∑ ∑ ∑

∑ ∑ ∑
 (6.10)

where ( )L α∗  is the pseudo inverse function of L . From these chance constraints, we transform 

problem (6.9) into the following problem: 
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( )

( )

( ) ( )

( ) ( ) ( )
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1 1 1
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1 1

1

1 1
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                   ,  1,2, ,
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n n

kj j kj k
j j

j j

f h

r x K x x f h

c x L d g h
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 (6.11)

 
This problem includes some basic previous models. For example, in the case that decision makers do 

not consider randomness, i.e., each , problem (6.11) degenerates to a fuzzy linear 

programming problem such as some previous models (Mula et al. [95, 96], Vasant [116]). Then, if 

they also do not consider fuzziness, i.e., , problem (6.11) is equivalent to a basic product-mix 
decision problem (6.6). Therefore, problem (6.11) is a versatile model including many previous 
product-mix decision problems. 

0ijσ =

1α=

Furthermore, in the case that ( )hf 1−  and all ( )1
kg h−  are linear functions, problem (6.11) is 

equivalent to a convex programming problem. Therefore, we solve this problem using convex 
programming approaches. Particularly, in the case that only one constraint in problem (6.11) is an 
active constraint, i.e., 

( ) ( )

( ) ( ) ( )

1

1 1

1

1 1

,

,  1, 2,..., ;  

n n

jk j k j k
j j

n n

kj j kj k
j j

a x L d g h

a x L d g h k m k k

α

α

∗ −
′ ′ ′

= =

∗ −

= =

− =

′− < = ≠

∑ ∑

∑ ∑
, 

problem (6.11) is equivalent to a mathematical programming problem for portfolio selection models. 
Therefore, we obtain the strict optimal solution by applying the efficient solution method based on 
the previous studies (Hasuike [42]) of this problem. 

However, in practical decision making of each production volume, it would take more 
computational time to solve convex programming problems even if the ability of calculation 
machines were to be improved greatly. In the case that decision makers use problem (6.11), it is 
important that they consider not only including some uncertain situations but also constructing a new 
rapid and efficient solution method to deal with the real decision cases practically. 

  In Section 2, we have assumed that each future return jr  occurred according to a normal 

distribution. Using the property of normal distribution, we introduce the following mean-absolute 
deviation. 
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( )
1 1

n n

j j j
j j

W R E r x r x
= =

j

⎡ ⎤
⎢ ⎥⎡ ⎤ = −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∑ ∑x  (6.12)

 
With respect to the relation between this mean-absolute deviation ( )[ ]xRW  and the variance 

( )2

1 1

n n

ij i j
i j

x xσ σ
= =

=∑∑x , ( ) ( )( )22

2
W Rπσ ⎡ ⎤= ⎣ ⎦x x  holds based on the result obtained by 

Konno (Konno [68]). This means that problem (6.11) is equivalently transformed into the following 

problem not including the square root term 
1 1

n n

ij i j
i j

x xσ
= =
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∑

∑ ∑

∑ ∑

x

 
(6.13)

 

Furthermore, in order to consider the case that decision makers generally receive historical data in 

the real world and solve problem (6.13) more efficiently, we introduce the following return set sr  

derived from each normal distribution jr : 

( ) ( )1 2, ,..., ,  1, 2,...,s s s snr r r s S= =r  (6.14)

where  is a total number of scenarios and each occurrence probability S ( ){ }1 2Pr , ,...,s s s snr r r=r  

is assumed to be 
1
S

, respectively. From this return set, we obtain  

( ) ( ) ( )
1 1 1

1n S n

j j j sj j j
j s j

W R E r r x r r x
S= = =

⎡ ⎤
⎢ ⎥⎡ ⎤= − = −⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦
∑ ∑∑x  (6.15)

 
Therefore, problem (6.13) is transformed into the following problem: 
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(6.16)

 

In this problem, since it includes absolute deviations ( ) ( )
1

,  1,2,...,
n

sj j j
j

r r x s S
=

− =∑ , it is not 

easy to solve it directly. Subsequently, we consider the following subproblem introducing parameters 

sy to remove the absolute deviations: 
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− ≤ =
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(6.17)

and the following theorem is derived with respect to the relation between problems (6.16) and (6.17) 
by extending the study of Konno (Konno [68]). 
 
Theorem 6.1 
The optimal solution of problem (6.16) is also optimal for problem (6.17). 
 
This theorem means that we obtain the optimal product-mix decision of the main problem (6.8) by 
solving problem (6.17) due to equivalent transformations from (6.9) to (6.17). In problem (6.17), in 

the case that  and all ( )hf 1− ( )1
kg h−  are linear functions, problem (6.17) is equivalent to a linear 

programming problem. Therefore, by using various types of efficient solution methods for linear 
programming, we find that it is easier to obtain an optimal solution efficiently than the main convex 
programming problem (6.11). 

 124



 
6. Product Mix Problems under Randomness and Fuzziness 

                                                                                                                                                                                                                                                                                                                                                                                                                                          

Furthermore, membership functions (6.2) decided by decision makers are often nonlinear 
functions. This case means that problem (6.17) is not a linear programming problem of that form. 
However, even if  and all ( )hf 1− ( )hgk

1−  are nonlinear functions, by fixing parameter h and 

introducing the following problem: 
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j j
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∑ ∑

∑ ∑

∑ ∑
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k m

x p j n

=

≤ ≤ =

 (6.18)

we construct the following analytical solution method. Since problem (6.18) is a linear programming 
problem, it is also easy to obtain the optimal solution of problem (6.18). Then, using a bisection 
algorithm with respect to parameter h, in the case that the value of objective function in problem 

(6.18) is equal to ( )1f h−  in problem (6.17), the optimal solution of problem (6.18) is equal to that 

of problem (17). Consequently, we construct the following solution method. 
 
Solution method 6.1 
STEP 1: Elicit the membership functions of fuzzy goals for the objective function and cost 

constraints. 
STEP 2: If all membership functions are linear functions, solve problem (6.17) and obtain the 

optimal solution. Otherwise, go to STEP 3. 
STEP 3: Set  and . 0hL ← 0hU ←

STEP 4: Set 
2

h hL Uh +← . 

STEP 5: Calculate  and ( )hf 1− ( )1 ,kg h−  . ( )1, 2,...,k m=

STEP 6: Solve problem (6.18) on each ( )hgk
1− , and calculate the optimal objective value of problem 

(6.18) .  ( )hZ ∗

STEP 7: If ( ) ( )1Z h f h∗ −< ,  and go to STEP 4. If hLh ← ( ) ( )1Z h f h∗ −> , hUh ←  and go to STEP 

4. If ( ) ( )1Z h f h∗ −= , its optimal solution is a global optimal solution of the main problem 

and terminates this algorithm. 
 

In the case that we solve the main problem (6.8) using this solution method, if the number of 
scenarios  is sufficiently large, this solution method is a strict solution method. Furthermore, S
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even if  is not sufficiently large, by satisfying the following conditions and using equivalent 
transformations, this solution method becomes a strict solution method. This approach may use the 
case that decision makers manage to obtain the more detailed product-mix decision in order to draw 
up an accurate and important future plan. 

S

As steps for obtaining the detailed product-mix decision, we introduce the following problem 
using a similar way to the transformation from problem (6.17) to (6.18) with respect to problem 
(6.11): 
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0 ,   1,2, ,j jx p j n≤ ≤ =

 (6.19)

where K is an index set of bottleneck constraints obtained by solving problem (6.17). However, due 
to including a square root term in the objective function, it is also difficult to solve problem (6.19) 
efficiently using general solvers. Therefore, in order to perform equivalent transformations into 
problems solving more easily than problem (6.19), we introduce the following auxiliary problem by 
introducing a parameter R : 
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( ) ( ) ( )
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1 1 1
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1 1

1
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Maximize
2
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∑ ∑
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               0 ,   1,2, ,j jx p j n≤ ≤ =

 (6.20)

 
Since the objective function of this problem is a quadratic function, this problem is a quadratic 
convex programming problem. Consequently, we easily find a global optimal solution. Subsequently, 
with respect to the relation between problem (6.19) and problem (6.20), the following theorem holds. 
 
Theorem 6.2 
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Let x∗  be an optimal solution of problem (6.20). If 
1 1

n n

ij i j
i j

R x xσ∗

= =

= ∑∑ ∗ ∗  is satisfied, x∗  is also an 

optimal solution of problem (6.19). 

 
Proof 
By comparing the Karush-Kuhn-Tucker (KKT) condition of problem (6.19) with that of problem 
(6.20) and simply adjusting each Lagrange multiple, it is clear that both KKT conditions are same in 

the case 
1 1

n n

ij i j
i j

R x xσ∗ ∗

= =

= ∑∑ ∗ . 

 
This theorem means that the strict optimal solution of the main problem (6.8) is equal to the solution 
of the following KKT condition for problem (6.20) considering that the form of optimal solutions is 

determined using Solution method 1, i.e., j jx p= , ( ),  0j j j jx p p′ ′= < < p  or : 0jx =

(KKT condition) 

( ) ( ) ( )
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n m

j ij i k kj j
i k

n n

k kj j kj k k
j j

n n

j j wj w
j j

n n

ij i j
i j

w w w w

Rr K x a c

a x L d g h k K

c x L d g h

R x x
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λ α λ

ξ α

σ
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− + + =

⎛ ⎞⎟⎜ ⎟− − = > ∈⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
⎛ ⎞⎟⎜ ⎟− − =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
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′ ′∈ = < < ∈

∑ ∑

∑ ∑

∑ ∑

∑∑

 (6.21)

where parameters  are Lagrange multiples of problem (6.20). All of these equations 

except for 

,  ,  , k ju vλ ξ j

2

1 1

n n

ij i j
i j

R x xσ
= =

=∑∑  in KKT conditions are linear, and 2

1 1

n n

ij i j
i j

R x xσ
= =

=∑∑  is also a 

quadratic equation. Therefore, it is easy to solve these equations, and we analytically obtain the strict 
solution method of the main problem (6.13). 
 
6.2.2 Probability maximization model 
 

In this subsection, we consider the main problem (6.8) as a probability maximization model for 
total future profits, maximizing the level of satisfaction. This model is mainly focused on the 
objective that decision makers control reducing randomness as much as possible under the case that 
future returns randomly change and earn a total profit that is more than the target value. Therefore, 
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this model will be used in the case that decision makers consider controlling the total risk. In a 
similar way to Subsection 3.1, we formulate this model as the following form: 

( )

( ) ( )

( ) ( ) ( )
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1 1

1

1 1
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 (6.22)

 
This problem is a bi-criteria programming problem, and so this solution generally becomes a Pareto 
solution. Subsequently, we consider the relation between the level of decision maker’s satisfaction 
and the risk management through maximizing the accomplishment probability under uncertain 
conditions. Then, in this chapter, we consider the probability maximization model that a decision 

maker sets the desired level of satisfaction. The level of satisfaction  is assumed to be h h  and 
problem (6.22) is transformed into the following problem: 
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(6.23)

 
With respect to this problem, if fuzziness is also not considered, i.e., , problem (6.23) 
degenerates into a standard probability maximization model. Therefore, problem (6.23) is a versatile 
model including some previous product mix problems. In mathematical programming, problem 
(6.23) is a nonlinear fractional programming problem. Particularly, in the case that the only 
constraint in problem (6.23) is an active constraint, i.e., 

1α =
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problem (6.23) is equivalent to a fractional continuous knapsack problem. Therefore, we obtain the 
strict optimal solution by applying the efficient solution method based on the previous studies (for 
example, Ishii and Nishida [54]) of this problem. 

However, this case is rare in production processes and there often exist several bottleneck 
constraints. Then, generally speaking, it is difficult to solve the present form of problem (6.23) 
directly and efficiently using general solvers. Subsequently, in a way similar to Subsection 6.2.1, we 
introduce a mean-absolute deviation in order to solve problem (6.23) more efficiently. Then, 
problem (6.23) is equivalently transformed into the following problem: 
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(6.24)

 
This problem is also a linear fractional programming problem. Subsequently, we introduce the 
following parameter to remove the fractional function: 
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Using these parameters, problem (6.24) is equivalently transformed into the following problem: 

( )

( ) ( ) ( )

( ) ( )

1

1

1 1

1

1

1 1

Maximize 

subject to  0,  0,   1, 2,...,

1                1,
2

                 ,

                 

n

j j
j

n n

s sj j j s sj j j
j j

S

s
s

n n

j j wj w
j j

 r x f h

y r r x y r r x s S

y
S

c x L d g h

a

ξ

π

α

−

=

= =

=

∗ −

= =

′ −

′ ′ ′ ′− − ≥ + − ≥ =

⎛ ⎞⎟⎜ ′ =⎟⎜ ⎟⎜ ⎟⎜⎝ ⎠

− ≤

∑

∑ ∑

∑

∑ ∑

( ) ( ) ( )1

1 1

,  1, 2,...,

                 0 ,  1, 2,...,

n n

kj j kj k
j j

j j

x L d g h k m

x p j n

α ξ ξ

ξ

∗ −

= =

⎛ ⎞⎟⎜ ⎟′ − ≤ =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
′≤ ≤ =

∑ ∑

 
(6.25)

 

 129



 
6. Product Mix Problems under Randomness and Fuzziness 
                                                                                                                                                                                                                                                                                                                                                                                                                                         

Using these equivalent transformations from (6.23) to (6.25), it is shown that the decision maker 
obtains the optimal product-mix decision of the main problem (6.22) by solving problem (6.25). This 
problem is a linear programming problem, and so we easily and efficiently obtain the optimal 

solution in the case that the value of the level of satisfaction is h . Consequently, we construct the 
following solution method for the probability maximization model. 
 
Solution method 6.2 
STEP 1: Elicit the membership functions of fuzzy goals for the objective function and cost 

constraints. 
STEP 2: Ask the decision maker to set the level of satisfaction  h

STEP 3: Calculate  and ( )hf 1− ( )1 ,kg h−  ( )1, 2,...,k m=  

STEP 4: Solve problem (6.25) and calculate the current optimal value of probability in problem 
(6.24) 

STEP 5: If the decision maker is satisfied with the current probability in STEP 4 and its level of 
satisfaction , then terminate this algorithm. The current optimal solution is a satisfying 
solution for the decision maker. Otherwise, go to STEP 6. 

h

STEP 6: If the decision maker considers that the current probability is less than her or his expected 
value or the level of satisfaction can be set higher due to sufficiently high current probability, 
update the level of satisfaction  and return to STEP 3. h

 
Furthermore, in a way similar to Subsection 3.1, if the number of scenarios  is sufficiently large, 
this solution method is a strict solution method. Furthermore, even if  is not sufficiently large, by 
considering the following problem, this solution method becomes a strict solution method. 

S
S

With respect to problem (6.23), we introduce the following subproblem using a parameter  
based on the previous study of Dinkelbach [26]. 
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 (6.26)

 
Dinkelbach [26] showed that the optimal solution of problem (6.26) was equal to that of problem 
(23). Then, this problem is similar to problem (6.19) and the main model in the previous study of 
Ishii and Nishida [54]. Therefore, by combining the solution method 1 in Subsection 3.1 and the 
extended method of Ishii and Nishida [54], we can analytically obtain the more detailed optimal 
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product-mix decision of the main problem (6.22). 
 
 

6.3 The Case Considering Improvement of Bottleneck Constraints for the Fund 
Injection 
 

In Subsections 6.2.1 and 6.2.2, we constructed the solution method to find the present optimal 
product-mix decision and bottleneck constraints. In the case that there are some surplus funds in the 
original product-mix decision and decision makers consider the fund injection to the bottleneck 
constraints, these constraints may be improved and the decision maker may earn more profits. In 
contrast, as a result of the failure of improvement, it may be possible that profits decrease due to 
more cost and time. In this chapter, we consider that this situation occurs randomly and the model 
under this condition is formulated as the following two forms. 
 
6.3.1 Improvement of maximum limited value of bottleneck constraint 
 

First, we consider the case that a decision maker manages to improve the maximum value of 
each bottleneck constraint by performing fund injections. Subsequently, we set the fund injection for 

kth bottleneck constraint as ,  ky k K∈ , and assume the improved value 
kyb by the fund injection 

ky  occurs according to a normal distribution ( 2,
k ky yN b σ )  where 

kyb  is the expected value and 

 is its variance. 2
kyσ

Furthermore, we assume that its expected value 
kyb  and variance  depend on the fund 

injection 

2
kyσ

ky . In this chapter, functions of the expected value and variance are given as ( )
ky kb B y=  

and , respectively. Subsequently, ( )2
ky yσ σ= k )( kB y  and ( )kyσ  are monotonously increasing. 

For the sake of simplifying our discussion, we assume ( )kB y  and ( )kyσ  are following 

functions; , , respectively; and parameters  and  are constant. ( )k k kB y b y= ( ) 2 2
k k ky yσ σ= kb 2

kσ

Then, we formulate this model as follows. 
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In this problem, each constraint ( ) ( )1
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− ≤ +∑ ∑  includes the normal 

distribution variable 
kyb . Therefore, in a similar way to transformation (6.9), we introduce a goal of 

probability 
kyβ  set by the decision maker and transform this constraint into the following form 

introducing a chance constraint: 
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Then, problem (6.27) is equivalently transformed into the following problem. 
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This problem is similar to the problem (6.19). Consequently, using the solution method similar to 
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problem (6.19) in Subsection 6.2.1, we find an optimal solution. 
 
6.3.2 Improvement of each coefficient of bottleneck constraint 
 

Next, in a similar way to Subsection 6.3.1, we consider the improvement of each coefficient in 
bottleneck constraints by performing the fund injection; i.e., the production time of each product is 
shorter and the cost in production processes is smaller with the fund injection than the initial values. 

Subsequently, we assume each improved value of coefficient  for the fund injection occurs 

according to a normal distribution 

kjyb

( 2,
kj kjy yN b σ ) . Furthermore, expected value 

kjyb  and variance 

 occur according to the following functions: 2
kjyσ kjy kjb b y= k

2
k

 and , respectively. Then, 

this model is formulated as follows. 

2 2
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Furthermore, we focus on the following constraint including random variables: 
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This constraint includes random variables . Therefore, in order to solve problem (6.29) 

analytically, we introduce a chance constraint and transform this inequality into the following form 

introducing goals for stochastic constraints in a way similar to transformation (6.9): 
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Therefore, introducing assumptions 
kjy kj kb b y=  and 2 2 2

kjy kj kyσ σ= , we transform the problem (6.29) 

into the following problem: 
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In this problem, each constraint ( ) ( )1 (
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convex region, and so problem (6.30) is a convex programming problem. Therefore, we obtain a 
global optimal solution to solve the problem using convex programming approaches. Furthermore, in 
order to solve this problem (6.30) more efficiently using general solvers, we consider the following 

equivalent problem for the problem by introducing return scenarios ( )k
sr  and parameters ( )k

sy  in a 

way similar to setting future scenarios (6.14): 
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(6.31)

 
This problem is equivalent to a quadratic programming problem in the case parameter  is fixed or 

each function 

h

( )1
kg h−  is a linear function. Therefore, it is easier to solve problem (6.31) than 
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problem (6.30). 
Particularly, in the case that all fund injections for bottleneck constraints are equal; i.e., 

, problem (6.31) is similar to problem (6.18) by fixing parameter ,  ky y k K= ∈ y . Therefore, by 

combining the solution method in Subsection 6.2.1 and bisection algorithm with respect to parameter 
y , we construct the analytical solution method to obtain the optimal product-mix. 

 
 

6.4 The Case Including the Changes of Expected Proportion of Product Mix 
 

In this section, we particularly propose a model in which a decision maker considers changing 
the proportion of initial expected product-mix for excessive effort to the high-value added product or 
some serious accident in production processes in the future. If the coefficients of time, resources and 
cost constraints are changed, the expected profits may decrease due to the change of proportion of 
the initial expected product-mix and bottleneck constraints. Therefore, we need to consider the 
product mix problem including all such cases. Coping with this situation, first we consider the case 
that the coefficient of the constraints about one product changes. Then, we formulate this model as 
follows. 
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Subsequently, we assume each  is a random variable according to a random distribution  

in universal sets of random variables. Then, by setting a goal of probability to each constraint, we 
introduce a chance constraint and transform each constraint as follows: 
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where  is a pseudo inverse function of the distribution function ( )k kT β∗ ( )kT ω . Consequently, we 

transform problem (6.32) into the following problem. 
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If the optimal product-mix decision of problem (6.33) is equivalent to that of problem (6.8), a 

decision maker does not need to consider the change of product-mix. However, this case is rare and 
so they usually become different product-mix decisions. The more significantly the change from 
initial expected product-mix is, the more significant an adverse effect on the production there may be. 
On the contrary, it is possible that a small change from expected initial product-mix affects profits. 
Therefore, we consider the case whereby (i) minimizing the change between both initial product-mix 
decision and that after coefficients of constraints have been changed, and (ii) maximizing the total 
future profits occur simultaneously. In this chapter, we formulate this model as the following 
two-stage problem. 
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where ˆ jp  is a penalty value of each product due to change of product-mix decision. Since this 

problem is a bi-criteria programming problem, the solution of problem (6.34) generally becomes a 
Pareto solution. In this chapter, for finding one deterministic solution analytically, we consider the 
following single objective programming problem. 
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where  is a constant weight to q
1

ˆ
n

j j j
j

p x y∗

=

−∑ , which should be decided by a decision maker. In 

this problem, its objective function is similar to the previous problems (6.19) and (6.26). Therefore, 
this problem is equivalently transformed into a problem similar to that in Section 6.2. Consequently, 
we obtain its global optimal solution using Solution method 1 in Subsection 6.2.1. 
 
 

6.5 Product Mix Problem with the Preference Ranking to Each Fuzzy Goal 
 

In Sections 6.3 and 6.4, we have considered the maximization of minimum aspiration level in all 
the fuzzy goals. On the other hand, a decision maker often has a preference ranking among all the 
fuzzy goals. For example, in the case that she or he particularly focuses on minimizing total costs, 
the aspiration level of cost constraint is the highest of all the aspiration levels. Consequently, she or 
he often ranks each aspiration level. In this section, we consider such a model considering the 
preference ranking with respect to each fuzzy goal. Particularly, in the case that the aspiration level 
of future returns is higher than the minimum aspiration levels of all the constraints, this model is 
formulated as the following problem: 
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Furthermore, we introduce parameters . Each  means a target aspiration (,  2,3,...,kh k m= kh
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level for cost function . Then, problem (6.34) is transformed into the following problem: 
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In this problem, constraints including the membership function ( )
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Consequently, we transform problem (6.35) into the following deterministic equivalent problem: 
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In the case that each  is a linear function, problem (6.37) is transformed into ( )kg w
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i.e., 
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In this problem, 0 1,01

0 1 1,0 1,1

n n
k kj j k kj j

k k k k

b a x b a

b b b b
+=

+ +

− −
≤

− −
∑ ∑ 1,1 j jx+=  are linear constraints. Therefore, in the 

case that we consider randomness to coefficients jr  and fuzziness to coefficients , problem 

(6.42) is similar to problem (6.8) in Section 6.2 by introducing stochastic, possibility and necessity 
constraints. Consequently, the proposal preference ranking model is equivalently transformed into a 
linear programming problem in a way similar to Section 6.3, and we obtain its global optimal 
solution efficiently by using the solution method in Section 63. 

kja

 
 

6.6 Numerical Example 
 

In this section, in order to illustrate the applicability of our proposal models, we consider a 
numerical example modified from the data in Hsu and Chung [46] as Table 1.  
 

Table 6.1. Return and load per unit of each product 
 Load per unit of product 

Resource A B C D  
return (dollar) 80 60 50 30 

R1 (unit) 20 10 10 5 
R2 (unit) 5 10 5 15 
R3 (unit) 10 5 10 10 
R4 (unit) 0 30 15 5 
R5 (unit) 5 5 20 5 
R6 (unit) 5 5 5 15 
R7 (unit) 20 5 10 0 

fund (dollar) 10 10 5 5 
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The example of Table 1 shows how results are brought for solving various proposed approaches in 
product-mix decision problems in a multiple-constraint case. In this numerical example, we assume 
that four product types , , ,A B C  and  are produced using seven different resources, R1-R7, 

each with an available upper capacity of 2400 units and a fund cost constraint with an upper value of 
2000 dollars. The future return and load of each resource for producing one unit of product 

D

, , ,A B C  and  can be collected as shown in Table 6.1.  D
From Table 6.1, the basic product-mix decision problem maximizing the total profit is formulated 

as follows. 
(Problem P) 

Maximize 80 60 50 30
subject to    20 10 10 5 2400,
                   5 10 5 15 2400,
                   10 5 10 10 2400,
                   0 30 15 5 2400,
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We solve this linear programming problem and obtain this optimal solution as Table 6.2. 
 

Table 6.2. Optimal solution of basic model 
 Optimal product unit value 

Z A B C D 
11873.3 50.67 38.17 50 101 

 
In this optimal case, each value of constraints is as follows. 
 

Table 6.3. Values of constraints 
 Load for a unit product  
 A B C D Value

R1 20 10 10 5 2400 
R2 5 10 5 15 2400 
R3 10 5 10 10 2207.5
R4 0 30 15 5 2400 
R5 5 5 20 5 1949.2
R6 5 5 5 15 2209.2
R7 20 5 10 0 1704.2

fund 10 10 5 5 1643.3

 140



 
6. Product Mix Problems under Randomness and Fuzziness 

                                                                                                                                                                                                                                                                                                                                                                                                                                          

 
Consequently, we find that the bottleneck constraints are R1, R2, and R4. Furthermore, we consider 
the case that each return is a random variable and target values for the total profit and cost 
constraints are assumed to be fuzzy goals such as identified in Section 6.2. For the sake of 
simplifying our discussion, we assume each return of products to occur according to the following 
normal distribution: 

( ) ( )
( ) ( )
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Then, fuzzy goals for the total profit and cost constraints are as the following linear functions: 
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(6.43)

 
In this problem, the target value for probability constraint  is assumed to be 0.9. Using these 

parameters and fuzzy goals, we formulate the model based on the probability fractile optimization 
model described in Subsection 6.2.1 as follows: 

β
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(Problem P1) 

2 2 2 2
0.9
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We solve this problem and find the following optimal solution. 
 

Table 6.4. Optimal solution of P1 
 Optimal product unit value 

h A B C D 
0.780 61.91 58.62 12.06 97.67

 
In a way similar to Problem P1, we consider the probability maximization model in Subsection 6.2.2. 
In this numerical example, we fix the level of satisfaction  to 0.78 in order to compare with the 
result of problem P1 in Table 6.4. Thereby, the probability maximization model is as follows: 

h
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We solve this problem and find the following optimal solution. 
 

Table 6.5. Optimal solution of P2 
Optimal product unit value 

A B C D 
59.50 54.20 21.23 99.88
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Subsequently, we compare these two product-mix decision problems P1 and P2 with basic 
product-mix decision problem P. If future returns are assumed to be expected returns, each total 
earning profit is as given in Table 6.6. 
 

Table 6.6. The case of expected future returns 
  Optimal product unit value 
 Z A B C D 

P 11873.3 50.67 38.17 50 101 
P1 12003.1 61.91 58.62 12.06 97.67
P2 12069.9 59.50 54.20 21.23 99.88

 
From Table 6.6, it may be noticed that the total profits of problems P1 and P2 considering flexibility 
for the target values are larger than the basic product-mix problem P. Then, we find that the optimal 
product-mix, particularly for products B and C, is different and production volumes of products with 
high returns tend to increase in the models considering randomness and fuzzy goals. 

Furthermore, we consider three cases for future returns: (C1) the case that all future returns are 
smaller than expected returns, (C2) the case that all future returns are larger than expected returns, 
and (C3) the case that returns of two products A and B are larger than expected returns and those of 
C and D are smaller than expected returns. In this numerical example, we assume these data to be as 
given in Table 6.7. 
 

Table 7. The case of future returns change 
 Values of actual future returns 

Case A B C D 
C1 70 54 45 27 
C2 90 66 55 33 
C3 90 66 45 27 

 
Then, the total profit earnings for each case are as shown in Table 6.8. 
 

Table 6.8. Total profits of three models 
 Total profit 

Case P P1 P2 
C1 10585.1 10679.0 10743.9 
C2 13162.5 13327.2 13395.9 
C3 12056.5 12620.6 12584.3 

 
From Table 6.8 it may be observed that total profits of problems P1 and P2 are larger than that of 
problem P in all cases. Therefore, we find that the model considering randomness and fuzzy goals is 
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more flexible. Furthermore, we also find that the total profit of problem P1 is larger than that of 
problem P2 in case C3. This means that decision makers can use these models as future business 
scenarios. 

On the other hand, the available fund for the basic product-mix decision problem P is 356.7 
derived from the result in Table 6.3. Therefore, we consider the case of fund injections for bottleneck 
constraints such as described in Section 6.3. First, we focus on the case described in Subsection 4.1. 
We assume that the available fund uses bottleneck constraints R1, R2, and R4 and each fund 

injection is assumed to be 1 2, ,y y  and 4y , respectively. Then, the improved value 
kyb  in kth 

constraint occurs according to a normal distribution . Considering these assumptions, 

we formulate this model as follows. 

(10 ,3kN y )

(Problem P3) 

( )
( )

2 2 2
0.9

1

2

Maximize 80 60 50 30 10 6 5 3
subject to    20 10 10 5 2400 10 1.645 3

                   5 10 5 15 2400 10 1.645 3
                   10 5 10 10 2400
                   0

2A B C D K A B C D
A B C D y

A B C D y
A B C D

A

+ + + − + + +
+ + + ≤ + − ×

+ + + ≤ + − ×
+ + + ≤
+ ( ) 430 15 5 2400 10 1.645 3

                   5 5 20 5 2400
                   5 5 5 15 2400
                   20 5 10 0 2400
                   10 10 5 5 2000
                   70,  

B C D y
A B C D
A B C D

A B C D
A B C D

A B

+ + ≤ + − ×
+ + + ≤
+ + + ≤
+ + + ≤
+ + + ≤

≤ 60,  50,  150C D≤ ≤ ≤

 

 
We solve this problem and find the following optimal solution and its fund injections. 
 

Table 6.9. Optimal solution of P2 
 Optimal product unit value 

Z A B C D 
13108.5 70 48.13 50 87.91

 
Table 6.10. Fund injections to bottleneck constraints 

R1(y1) R2(y2) R4(y4) 
83.09 0 46.07 

 
From Tables 6.9 and 10, by performing fund injection to bottleneck constraints, particularly R1 and 
R4, the production volume of product A becomes large compared to that of the basic problem P. 
Therefore, we find that total future profits are increasing significantly. 

Next, we consider the case that the coefficients of constraints, particularly bottleneck constraints, 
change, such as in the model described in Subsection 6.3.2. In this numerical example, we assume 
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that the values of coefficients change as follows: 
 

Table 6.11. Changing values of coefficients 
Bottleneck Changing values 

R1 ( )20.3,0.01N  

R2 ( )20.2,0.01N  

R4 ( )20.5,0.01N  

 
Using these values, we formulate this model as follows. 
 
(Problem P4) 
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In a way similar to the previous discussion, we solve this problem and find the following optimal 
solution. 
 

Table 6.12. Optimal solution of P3 
 Optimal product unit value 

Z A B C D 
13740.2 70 60 50 85.79

 
Table 6.12 means that production volumes of products with high returns, particularly products A and 
B, increase.  

Finally, we consider the case that the coefficients of constraints, particularly bottleneck constraints, 
change as described in Section 6.4. We assume that the changes of coefficients occur as follows. 
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( ) ( ) ( )1 1 2 2 4 410,  10,  5T T Tβ β β∗ ∗ ∗= = =  

 
Using these values, we formulate this model as follows. 
(Problem P5) 

2 2 2
0.9Maximize 80 60 50 30 10 6 5 3

subject to    30 10 10 5 2400
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In a way similar to the previous discussion, we solve this problem and find the following optimal 
solution. 
 

Table 6.13. Optimal solution of P3 
Optimal product unit value 

A B C D 
38 35 50 82 

 
In the case that this product-mix is used, if coefficients of bottleneck constraints do not change, each 
value of the constraints of problem P is as follows. 
 

Table 6.14. Values of constraints 
 Load for a unit product  
 A B C D Value

R1 20 10 10 5 2020
R2 5 10 5 15 2020
R3 10 5 10 10 1875
R4 0 30 15 5 2210
R5 5 5 20 5 1775
R6 5 5 5 15 1845
R7 20 5 10 0 1435

fund 10 10 5 5 1390
 
From Table 6.4, all the constraints have available capacities. Therefore, a decision maker decides a 
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further flexible product-mix based on the optimal product-mix of P5 considering information from 
specialists and employees. 

Consequently, by involving flexibility for goals and upper values of constraints, decision makers 
can earn a larger profit than that of the product-mix problem with constant values even if future 
returns are measurably changed from the expected value. Furthermore, by budgeting surplus funds to 
bottleneck constraints and predicting future troubles in advance, decision makers obtain optimal 
decisions including flexibility such as buffers to be able to apply the additional product-mix 
decisions and earn a larger profit. 

Finally, we consider the preference ranking model in Section 6.6. Particularly, we focus on the 
aspiration level of budget constraint and it is the highest of all the aspiration levels. In this model, we 
assume the following fuzzy numbers of coefficients in all the constraints: 
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j j j j

j j j fj

a j a j a j a j

a j a j a j a fj

a a a a

a a a a j

μ ω μ ω μ ω μ ω

μ ω μ ω μ ω μ ω

= = = =

= = = = =
 

 
From this assumption, this model is given as the following problem based on problem (6.42): 
Problem P6: 

( ) ( )

( )

2 2 2 2
0.8

Maximize  

subject to 80 60 50 30 50 20 30 10 10000 2000 ,
2600 19.9 9.9 9.9 4.9 2400 9.6 9.6 4.6 4.6

                 ,
200 200

2600 4.8 9.8 4.8 14.8 2400
                 

200

h

 A B C D K A B C D
A B C D A B C D

A B C D

+ + + − + + + ≥ +
− + + + − + + +

≤

− + + + −
≤

( )

h

( ) ( )

( ) ( )

9.6 9.6 4.6 4.6
,

200
2600 9.6 4.6 9.6 9.6 2400 9.6 9.6 4.6 4.6

                 ,
200 200

2600 0 29.6 14.6 4.6 2400 9.6 9.6 4.6 4.6
                 ,

200 200
2600 4.9 4.9

                 

A B C D

A B C D A B C D

A B C D A B C D

A B

+ + +

− + + + − + + +
≤

− + + + − + + +
≤

− +( ) ( )

( ) ( )

( ) ( )

19.9 4.9 2400 9.6 9.6 4.6 4.6
,

200 200
2600 4.8 4.8 4.8 14.8 2400 9.6 9.6 4.6 4.6

                 ,
200 200

2600 19.9 4.9 9.9 0 2400 9.6 9.6 4.6 4.6
                 ,

200 200
           

C D A B C D

A B C D A B C D

A B C D A B C D

+ + − + + +
≤

− + + + − + + +
≤

− + + + − + + +
≤

      9.6 9.6 4.6 4.6 2400 200 ,
                 0 70,   0 60,   0 50,   0 150

A B C D h
A B C D
+ + + ≤ −

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

 

 
We solve this problem and obtain its optimal solution in Table 7. 
 

Table 6.15. Optimal solution of problem  4P

Optimal product unit value and aspiration level 
A B C D h 

54.274 44.273 50 90.422 0.7179 
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In Table 6.15, optimal volumes of products A and B are same as that of problem . On the other 

hand, the optimal volume of product C is equal to that of basic problem . Therefore, preference 
ranking model P6 is an intermediate model considering various types of conditions. 

1P

P

 
 

6.7 Conclusion 
 

In this chapter, we have proposed several types of product-mix decision models, many of which 
include several randomness and fuzziness. First, we have considered a probability fractile 
optimization model as the main problem and a probability maximization model to total future profits, 
and developed an analytical and efficient solution method to find a global optimal solution. Second, 
we have considered several cases of product-mix problems that occur in practical market of products 
and production processes scenarios, particularly the models including changes of constraints. All 
these proposed models under randomness, fuzziness, and flexibility are equivalent to linear 
programming problems or quadratic convex programming problems. Therefore, we can efficiently 
solve these problems. Furthermore, we have proposed a preference ranking model to each fuzzy goal. 
Since this model represents many situations for changing the preference ranking, it may be 
applicable to more flexible and complicated problems in the real world. 

Thus, since a decision maker decides the parameters arbitrarily, these models are capable of 
applying to models under many situations of uncertainty and flexibility. For example, in the case that 
price and demand ranges are intense and managers consider maximizing the total profit as much as 
possible by controlling such uncertainty, they will choose models in Section 6.3 and perform a 
flexible plan so that they can correspond to some moves. Furthermore, in the case that there are 
surplus funds in the original flexible plan and managers allow them to bottleneck constraints, they 
will choose models in Section 6.4 and draw up better product-mix decisions to earn larger profits. 
Then, if a manager is pessimistic and predicts future dangers such as machine breakdowns as far as 
possible, she or he will choose models in Section 6.5 and decide for an optimal flexible product-mix 
involving the capability of adding a new product-mix plan to earn larger profit. Then, we may be 
able to apply these solution methods not only to maximize the level of satisfaction of the total future 
profit, but also to minimize total costs and optimization under more complicated situations in the real 
world. Thus, our proposal models can be applied to various managerial situations by including 
flexibility. 
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Chapter 7 

0-1 Programming Problems under Randomness 

and Fuzziness 
 
 
 0-1 programming problems are one of the most important problems in practical management fields 
such as project selection problems, scheduling and facility location problems, and there are many 
previous researches (recent studies, Balev [8], Jahanshahloo [56]). Their solution method mainly 
divides two types; (a) strict solution methods such as dynamic programming and branch-bound 
method, (b) approximate solution methods such as genetic algorithm, heuristic methods, etc..  

In previous standard mathematical programming problems involving 0-1 programming problems, 
the coefficients of objective functions or constraints are assumed to be completely known. However, 
in practical systems, they are rather uncertain than constant. In order to deal with such uncertainty, 
stochastic programming problem (for example, Beale [10], Dantzig [24], Vajda [115]) and fuzzy 
programming problem (for example, Inuiguchi [51], Sakawa [105], Zimmermann [126]) have been 
considered. Furthermore, Katagiri [62] has considered 0-1 programming problem considering both 
random and fuzzy conditions, i.e. fuzzy random 0-1 programming problem. However, in this 
research, fuzzy numbers have been assumed to be triangle fuzzy numbers and random variables have 
been assumed to be discrete random distributions. 

This chapter particularly considers the more general stochastic and fuzzy 0-1 programming 
problem maximizing the objective function involving fuzzy random or random fuzzy variables 
considering both the objectivity derived from statistical analysis of data and decision maker’s 
subjectivity such as the institution which comes from wide-ranging experiences, simultaneously. In 
this chapter, we deal fuzzy numbers with L-R fuzzy numbers and random variables with continuous 
random distribution, particularly normal distributions. 

In the mathematical programming, 0-1 programming problems considering randomness and 
fuzziness are more complicate than the previous problems due to including both random variables 
and fuzzy numbers. Then, since this problem is not a well-defined knapsack problem, it is hard to 
solve it directly. Therefore, we need to set the target values for stochastic and fuzzy constraints and 
construct its efficient solution method. In this chapter, we transform main problems into 
deterministic equivalent integer programming problems using chance constraints, possibility 
measure and fuzzy goals based on both stochastic and fuzzy programming approaches. Furthermore, 
through the development of information technology and improvement of computers, we solve 0-1 
programming problems more quickly using not only approximate solution methods but also strict 
solution methods even if they are little bit large scale problems. Therefore, in this chapter, we 
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propose the efficient strict solution method based on a mixed method with 0-1 relaxation problem 
and branch-bound method, and show the analytical efficiency comparing with previous solution 
methods. 
 

7.1 The Formulation of 0-1 Knapsack Problem under Several Random and 
Ambiguous Situations 
 

In this section, with respect to knapsack problems or project selection problems which are 
formulated as the 0-1 programming problem, in order to consider problems in real world more 
widely and flexibly, we proposed a model considering random future returns, fuzzy coefficients of 
the constraint and flexibility of objective value and maximum value of constraint. 

First of all, each notation in this chapter means as follows: 
 
n : Total number of projects 

jr : Future return of project j ,  

jc : Capital budgeting of project j  

f : Goal of total future returns 

b : Upper limited value of total capital budgeting  

jx : Decision variable satisfying 
1 select project 
0 not select project j

j
x

j
⎧⎪⎪=⎨⎪⎪⎩

 

 
A basic 0-1 knapsack problem maximizing the total profit is generally formulated as follows: 

{ }

1

1

Maximize

subject to ,

                   0,1 ,  1, 2, ,

n

j j
j

n

j j
j

j

r x

c x b

x j n

=

=

≤

∈ =

∑

∑
"

 (7.1)

 
With respect to this problem, we obtain a strict optimal solution using dynamic programming 

method or branch-bound method. However, in the case that we assume each return jr  as a random 

variable, problem (7.1) is not well-defined problem since the objective function also becomes a 
random variable. Therefore, in this chapter, introducing a chance constraint with respect to the 
objective function, we consider a probability fractile optimization model with respect to the total 
profit. 
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7.1.1 The formulation of probability fractile optimization model 
 

We apply probability fractile optimization model to problem (7.1). This problem is formulated as 
the following form using the chance constraint and its probability level : β

{ }

1

1

Maximize

subject to Pr ,

, 0,1 , 1,2,

n

j j
j

n

j j j
j

f

r x f

c x b x j n

β
=

=

⎧ ⎫⎪ ⎪⎪ ⎪≥ ≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭

≤ ∈ =

∑

∑ ",

 (7.2)

 

In this problem, we assume each future return jr  occurs according to a normal distribution 

( 2, )j jN r σ  where jr  is the mean value of jr  and 2
jσ  is its variance. In this chapter, since each 

coefficient of the objective function is assumed to be independent of other variables, i.e. 

2 ,
, , 1, 2, ,   

0,
j

ij
i j

i j n
i j

σσ
⎧⎪ =⎪= =⎨⎪ ≠⎪⎩

"  

 
Under these assumptions, its stochastic constraint is transformed into the following inequality: 

1 1 1

1

1 1 1 1

1

1 1

Pr Pr

                                  

n n n

j j j j j jn
j j j

j j n n n n
j

ij i j ij i j
i j i j

n

j j
j

n n

ij i j
i j

r x r x f r x
r x f

x x x x

r x f
K

x x
β

β β
σ σ

σ

= = =

=

= = = =

=

= =

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪− −⎪ ⎪⎧ ⎫⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪≥ ≥ ⇔ ≥ ≥⎨ ⎬ ⎨ ⎬⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪⎩ ⎭ ⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭

−
⇔ ≥ ⇔

∑ ∑ ∑
∑

∑∑ ∑∑

∑

∑∑ 1 1 1

n n n

j j ij i j
j i j

r x K x x fβ σ
= = =

− ≥∑ ∑∑

 
(7.3)

where  is the distribution function of the standard normal distribution and . 

Therefore, problem (7.2) is transformed into the following problem: 

( )F y ( )1K Fβ β−=

{ }

2 2

1 1

1

Maximize

subject to ,

, 0,1 , 1,2,

n n

j j j j
j j

n

j j j
j

f

r x K x f

c x b x j n

β σ
= =

=

− ≥

≤ ∈ =

∑ ∑

∑ ",

 
(7.4)
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Since each decision variable jx  satisfies , we obtain { }0,1jx ∈ 2
j jx x= , and so problem (7.4) is 

equivalently transformed into the following problem: 

{ }

2

1 1

1

Maximize

subject to

, 0,1 , 1,2,

n n

j j j j
j j

n

j j j
j

f

r x K x f

c x b x j n

β σ
= =

=

− ≥

≤ ∈ =

∑ ∑

∑ ",

 
(7.5)

 
7.1.2 Introducing of fuzzy numbers and fuzzy goals 
 

Furthermore, we consider the upper limited value of capital budgeting constraint. Since there is a 

lack of information, we assume each coefficient jc of the constraint to be the following L-fuzzy 

number: 

( ) ,  1, 2, ,
j

j
c

j

c
 L j n

d
ω

μ ω
⎛ ⎞− ⎟⎜ ⎟⎜= =⎟⎜ ⎟⎟⎜⎜⎝ ⎠

� …  

where  is a continuous nonincreasing nonnegative function satisfying ( )L x ( ) ( )0 1,  1L L= = 0 . 

Therefore  is also a fuzzy variable, and so the constraint of problem (7.5) is not a 

well-defined constraint. Hence, for the transformation into the deterministic equivalent constraint, 

we introduce possibility measure. The membership function with respect to  is as follows: 

1

n

j j
j

c x
=
∑ �

1

n

j j
j

c x
=
∑ �

( ) 1

1

n

j j
j

Y n

j j
j

y c x
y L

d x
μ =

=

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

∑

∑
 (7.6)

Furthermore, we assume that the upper limited value b  of total capital budgeting includes 
flexibility. Generally speaking, it is possible to increase maximum capital budget  a little in order 
to increase the goal of total future profits. On the other hand, If  is increased too much, we 
consider that an aspiration of decision maker is decreasing greatly. Considering these situations, we 

introduce the following fuzzy goal with respect to : 

b
b

b
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( ) ( )
1

1 0

0

1,
,

0,
G

b
g b

b

ω
μ ω ω ω

ω

⎧ ≤⎪⎪⎪⎪= ≤ ≤⎨⎪⎪⎪ ≤⎪⎩

b  (7.7)

where ( )Gμ ω  is assumed to be the following membership function using the monotonically 

decreasing function . Then, we consider the following possibility measure: ( )bg ω

( ) ( ) ( ){ }sup min ,Y Y
y

G yμ μΠ = G y  (7.8)

 
In a way similar to , we also introduce the fuzzy goal of the total profit as follows: b

( ) ( )
1

2
0 1

1 1
0

1,
, ,  

0,

n n

F j j j j
j j

f z
z f z f z f z r x K x

z f
βμ σ

= =

⎧ ≤⎪⎪ ⎛ ⎞⎪ ⎟⎜⎪ ⎟⎜= ≤ ≤ = −⎨ ⎟⎜ ⎟⎪ ⎜ ⎟⎜⎝ ⎠⎪⎪ ≤⎪⎩

∑ ∑  (7.9)

where ( )F zμ  is assumed to be the following membership function using the monotonically 

increasing function ( )f z .  Using these possibility measure and fuzzy goal, we propose the 

following maximization model of minimum aspiration levels as the reformulation of problem (7.5): 

( ) ( ){ }
{ }

Maximize min ,  

subject to 0,1 , 1,2, ,
F Y

j

z G

x j n

μ Π

∈ = "
 (7.10)

 

( ) ( )
{ }

Maximize
subject to , ,

0,1 , 1,2, ,
F Y

j

h
z h G h

x j n

μ ≥ Π ≥

∈ = "

 (7.11)

 

In this problem, constraint of possibility measure ( )y GΠ ≥ h  is equivalently transformed into the 

following form: 
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( )
( ) ( ){ }

( ) ( )

( ) ( )

( ) ( )

1

1 1

1

1 1

sup min ,

,  

,  

Y

Y G
y

Y G

n n

j j j j b
j j

n n

j j j j b
j j

G h

y y h

y h y h

c x L h d x y y g h

c x L h d x g h

μ μ

μ μ

∗ −

= =

∗ −

= =

Π ≥

⇔ ≥

⇔ ≥ ≥

⇔ − ≤ ≤

⇔ − ≤

∑ ∑

∑ ∑

 
(7.12)

 

Then, in a way similar to transformation (7.10), constraint ( )F z hμ ≥  is transformed into the 

following form: 

( ) ( )2 1

1 1

n n

F j j j j
j j

z h r x K x f hβμ −

= =

≥ ⇔ − ≥∑ ∑σ  (7.13)

 
Therefore, we equivalently transform problem into the following problem: 

( )

( ) ( )

{ }

2 1

1 1

1

1 1

Maximize

subject to ,

,

0,1 , 1,2, ,

n n

j j j j
j j

n n

j j j j
j j

j

h

r x K x f h

c x L h d x g h

x j n

β σ −

= =

∗ −

= =

− ≥

− ≤

∈ =

∑ ∑

∑ ∑
"

 
(7.14)

 
 
7.1.3 The efficient solution method of proposed 0-1 knapsack problem 
 

Main problem (7.14) in Subsection 7.1.2 is a nonlinear 0-1 knapsack problem, and so it is hard to 
solve it directly using the standard solution method to solve discrete mathematical programming 
problems. However, in the case that parameter  is fixed, constraint h

( ) ( )1

1 1

n n

j j j j
j j

c x L h d x g h∗

= =

− ≤∑ ∑ −  is equivalent to a linear constraint with respect to . 

Furthermore, to solve problem (7.14) efficiently, we introduce the following subproblem: 

x
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( ) ( )
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1 1
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1 1
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r x K x

c x L h d x g h
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β σ
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∗ −
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∈ =
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∑ ∑
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 (7.15)

 

h  is a fixed value of parameter  satisfying h 0 h≤ ≤1. With respect to the relation between 

subproblem (7.15) and problem (7.14), the following theorem holds. 
 
Theorem 7.1 

Let an optimal solution of subproblem (7.15) be hx  and its optimal value ( )hZ x . Furthermore, let 

the optimal value of problem (7.14) be . Then the following relation holds: h∗

( ) ( )
( ) ( )
( ) ( )

1

1

1

h

h

h

Z f h h h

Z f h h h

Z f h h

− ∗

− ∗

− ∗

⎧⎪ > ⇔ <⎪⎪⎪⎪⎪ = ⇔ =⎨⎪⎪⎪ < ⇔ >⎪⎪⎪⎩

x

x

x h

 

 

From this theorem, we obtain that the optimal solution hx  of subproblem (7.15) is equivalent to 

that of problem (7.14) in the case that ( ) ( )1
hZ f h−=x . Furthermore, we consider the following 

auxiliary problem to subproblem (7.15) introducing a parameter R : 

( ) ( )
{ }

2

1 1

1

1 1

Maximize

subject to ,

0,1 , 1,2, ,

n n

j j j j
j j

n n

j j j j
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j

R r x K x

c x L h d x g h

x j n

β σ
= =

∗ −

= =

⎛ ⎞⎟⎜ ⎟− ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

− ≤

∈ =

∑ ∑

∑ ∑
"

 (7.16)

 
With respect to the relation between problems (7.15) and (7.16), the following theorem holds based 
on previous research (Ishii et al. [55]). 
 
Theorem 7.2 

Let an optimal solution of problem (7.16) be . If ∗x 2

1

2
n

j j
j

R σ ∗

=

= ∑ x  is satisfied, is also an ∗x
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optimal solution of problem (7.15). 
 
Problem (7.16) is a parametric 0-1 knapsack problem. In previous researches, a solution method 
based on the parametric dynamic programming approach has been proposed. However, in this 
solution method, a dynamic programming is repeatedly used. Therefore, this solution method is not 
efficient. We introduce the following 0-1 relaxation problems with respect to problem (7.16); 

( ) ( )

2

1 1

1

1 1

Maximize

subject to ,

0 1, 1,2, ,

n n

j j j j
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∑ ∑

∑ ∑
"

 (7.17)

and its auxiliary problem: 
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1 1
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1 1
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n n
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β σ
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= =
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∑ ∑

∑ ∑
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 (7.18)

 
Then, the following theorem holds with respect to the relation between problems (7.17) and (7.18) 
based on previous research [55]. 
 
Theorem 7.3  

For ( ) 2 2

1

n

j j
j

g R R xσ ∗

=

= − ∑ , the following relation holds: 

( )
( )
( )

0

0

0

R R g R

R R g R

R R g R

∗

∗

∗

> ⇔ >

= ⇔ =

< ⇔ <

 

 
From this theorem, the optimal solution of problem (7.17) becomes equal to that of problem (7.18). 

In previous studies [55], parameter R  is repeatedly modified using bisection algorithm in order to 
solve problem (7.16) using dynamic programming. However, this solution method is not efficiently. 
Therefore, we propose a new solution method introducing the 0-1 relaxation problem and its optimal 
solution. 

First, in order to construct the efficient solution method, the following lemmas are derived. 
 
Lemma 7.4.1 
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With problem (7.16), there exists the ranges 1,k kR R +
⎡ ⎤⎣ ⎦ , ( )1,2,...,k = K  that the optimal solution 

of problem (7.16) is unique in the case of R  including in 1,k kR R +
⎡ ⎤⎣ ⎦ . 

 
Proof 
From the discreteness of decision variable, it is obvious that this theorem holds.  ,
 
Lemma 7.4.2 

We set a range [ ],L UR R  satisfying . Let the optimal solution of problem (7.16) be [ ,L UR R R∗ ∈ ]
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∑ ∑

⎞

⎠
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2 2

1 1

n n

L j j U j j L U
j j

L U )

R x R x R R R R

R R R R

σ σ
= =

∗ ∗

⎛ ⎞⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜− − = − −⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝ ⎠

≤ − −

∑ ∑  

holds. Then, since we obtain (  and ( ) ,  

and 

) 0LR R∗− < 0UR R∗− > ( )( ) 0L UR R R R∗ ∗− − <

2 2

1 1

0
n n

L j j U j j
j j

R x R xσ σ
= =

⎛ ⎞⎛⎟⎜ ⎜⎟⎜ ⎜− −⎟⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⎝ ⎠⎝
∑ ∑

⎞⎟⎟≤⎟
⎠

 hold. Consequently, this theorem holds.  ,
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Lemma 7.4.3 

In the case that ( ) 2

1

2
n

j j
j

T R R xσ
=

= − =∑ 0 , jx  is an optimal solution of main problem (14). 

 
Proof 
From Theorem , it is obvious that this theorem holds.  ,
 
Using these lemmas, the following theorem holds. 
 
Theorem 7.4 

Let the optimal solution of problem (7.18) be  and ∗x 2

1

n

j j
j

R σ∗

=

= ∑ x∗ . Then, the optimal solution 

of the following problem; 

( ) ( )

2

1 1

1

1 1

Maximize

subject to ,

0 1, 1,2, ,

n n

j j j j
j j

n n

j j j j
j j

j

R r x K x

c x L h d x g h

x j n

β σ∗

= =

∗ −

= =

⎛ ⎞⎟⎜ ⎟− ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

− ≤

≤ ≤ =

∑ ∑

∑ ∑
"

 (7.19)

is equivalent to that of problem (7.16). 
 
Consequently, in the case that we fix the parameter  of main problem (7.14), introducing 0-1 
relaxation problem and finding its optimal solution, we obtain an optimal solution without using 
dynamic programming repeatedly. Therefore, this solution method is more efficient than previous 
parametric dynamic programming approach in that the number of using dynamic programming is 
significantly decreasing. Then, we construct the following efficient solution method to solve main 
0-1 nonlinear knapsack problem (7.14). 

h

 
Solution Method 7.1 
STEP 1: Elicit the membership function of a fuzzy goal for with respect to the total profit and 

maximum budget. 

STEP 2: Set  and solve problem (7.18). If the optimal objective value 1h← ( )Z h  of problem 

(7.18) satisfies ( ) ( )1Z h f h−≥  and its feasible solution including constraints exists, then 

terminate. In this case, the obtained current solution is an optimal solution of main problem. 
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STEP 3: Set  and solve problem (7.18). If the optimal objective value 0h← ( )Z h  of problem 

(7.18) satisfies ( ) ( )1Z h f h−<  or the feasible solution including constrains does not exist, 

then terminate. In this case, there is no feasible solution and it is necessary to reset a fuzzy 
goal for the probability or the aspiration level f . 

Step 4: Set  and . 1hU ← 0hL ←

Step 5: Set 
2

h hU Lh +←  

Step 6: Solve problem (7.18) and calculate the optimal objective value ( )Z h  of problem (7.18). If 

( ) ( )1Z h f h−> , then set  and return to Step 5. If hL ← h ( ) ( )1Z h f h−≤ , then set 

 and return to Step 5. If hU ← h ( ) ( )1Z h f h−= , then terminate the algorithm. In this case, 

 is equal to a global optimal solution of main problem. ( )h∗x

 
 

7.2 Fuzzy Random 0-1 Programming Problem and the Efficient Solution Method 
 
7.2.1 Formulation of fuzzy random 0-1 programming problem 
 
A fuzzy random variable (Kwakernaak [72], Liu [83], Puri and Ralescu [102]) is one of the 
mathematical concepts dealing with randomness and fuzziness simultaneously. In this chapter, we 
deal with the fuzzy random variable based on Liu [83] and consider the following 0-1 programming 
problem: 

{ }
Maximize

subject to , 0,1 n≤ ∈

C

A b

�x

x x
 

(7.20)

where each notation is as follows:  
A :  coefficient matrix m n×
b : m-dimensional column vector 
x : n-dimensional decision variable column vector 

The coefficient vector of objective function is ( )1 2, ,..., nc c c=C� � � � and each jc�  is a fuzzy random 

variable characterized by the following membership function: 
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( )

( )

( )

( )
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,

0, ,  
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j j j

j
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j j j
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j j j j

c
L c c

c
R c c

c c

ω
α ω
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μ ω ω
ω β

β

ω α β
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�

ω

1

0

 

(7.21)

where  and  are nonincreasing reference functions to satisfy , 

 and the parameters 

( )L x ( )R x ( ) ( )0 0L R= =

( ) ( )1 1L R= = jα  and jβ  represent the spreads corresponding to the left and 

the right sides, respectively, and jc  is a random variable according to a normal distribution 

( 2~ , )j j jc N m σ . Problem (7.20) is a fuzzy random 0-1 programming problem due to including 

fuzzy random variables. Then, its objective function Y =C�� x  is the following fuzzy random 

variable using fuzzy extension principle: 

( )

1

1

1

1

,

,

0,

j

n

j j
j

n

j j
j

n
c

j j
j

n

j j
j

c x
L

x

c x
R

x

ω
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μ ω
ω

β

=

=

=

=

⎧ ⎛ ⎞⎪ ⎟⎪ ⎜ − ⎟⎪ ⎜ ⎟⎜⎪ ⎟⎜⎪ ⎟⎜⎪ ⎟⎜ ⎟⎪ ⎜ ⎟⎪ ⎟⎜⎪ ⎟⎜⎪ ⎟⎜ ⎟⎜⎪ ⎟⎝ ⎠⎜⎪⎪⎪⎪= ⎛ ⎞⎪⎨ ⎟⎜⎪ − ⎟⎜⎪ ⎟⎜⎪ ⎟⎜ ⎟⎪ ⎜ ⎟⎪ ⎜ ⎟⎪ ⎜ ⎟⎪ ⎟⎜⎪ ⎟⎜⎪ ⎟⎜ ⎟⎜ ⎟⎪ ⎝ ⎠⎜⎪⎪⎪⎪⎪⎩⎪

∑

∑

∑

∑

�  (7.22)

 
Therefore, problem (7.20) is not a well-defined problem due to fuzzy random variables, and so it is 
necessary to interpret the problem from some point of view and to transform the problem into the 
deterministic equivalent problem. In this chapter, we consider the case where a decision maker 
prefers to maximize the degree of possibility that the objective function value satisfies the fuzzy 
goal, based on previous research Katagiri [62]. A fuzzy goal for the objective function is 
characterized by the following membership function: 

( )
( )

( ) ( )
( )

1

0 1

0

1,
,

0,
G

y h
y g y h y h

y h
μ

⎧ >⎪⎪⎪⎪= ≤ ≤⎨⎪⎪ <⎪⎪⎩

�

 

(7.23)
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where ( )g y  is a monotonous increasing function. Then, the degree of possibility that the objective 

function value satisfying a fuzzy goal  is as follows: G�

( ) ( ) ( ){ }sup min , GY Yy
G yμ μΠ =� �
� y�

 
(7.24)

 
Consequently, problem (7.20) is transformed into the following problem: 

( )
{ }

Maximize

subject to , 0,1
Y

n

GΠ

≤ ∈A b

�
�

x x
 

(7.25)

 

Since ( )Y
GΠ �
�  varies randomly due to the randomness of jc� , this problem is a stochastic 

programming problem. Therefore, problem (7.25) is also not a well defined problem. In stochastic 
programming, there are typical models such as the expectation optimization model, probability 
maximization model, and so on. In this chapter, we focus on the possibility fractile optimization 
model maximizing the degree of possibility. This problem is formulated as the following form: 

{ }

( ){ }

Maximize

subject to , 0,1 ,

                   Pr ,

n

Y

h

G h t

≤ ∈

Π ≥ ≥

A b

�
�

x x

 

(7.26)

 
7.2.2 Deterministic equivalent transformation of the proposed model 

In problem (7.26), constraint ( )Y
GΠ ≥�
� h  is transformed into the following form: 

( ) ( ) ( ){ }
( ) ( )

( )

( )

1 1

1

1

sup min ,

                     :  ,  

                     :  ,  

                      :  

GY Yy

GY

n
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n

j j
j
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j j j j
j j

G h y y h

y y h y h

y c x
y R h y g h

x

y y c x R h x

μ μ

μ μ

β

β

= −

=

∗

= =

Π ≥ ⇔ ≥

⇔ ∃ ≥ ≥

⎛ ⎞⎟⎜ − ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜⇔ ∃ ≥ ≥⎟⎜ ⎟⎜ ⎟⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜

⇔ ∃ ≤ +

∑

∑

∑

� � �

� �
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1

1

1

1 1

,  

                      

n

n n

j j j j
j j

y g h

c x R h x g hβ

−

∗ −

= =

≥

⇔ + ≥

∑

∑ ∑

 

(7.27)

where ( )R h∗  is a pseudo inverse function of . From this inequality, problem (7.26) is 

equivalently transformed into the following problem: 

( )R x
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{ }

( ) ( )1

1 1

Maximize

subject to , 0,1 ,
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n

n n

j j j j
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c x R h x g h tβ∗ −

= =
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⎧ ⎫⎪ ⎪⎪ ⎪+ ≥ ≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑

A bx x  
(7.28)

 

Furthermore, with respect to stochastic constraint ( ) ( )1

1 1

Pr
n n

j j j j
j j

c x R h x g h tβ∗ −

= =

⎧ ⎫⎪ ⎪⎪ ⎪+ ≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ ∑ ≥ , by using 

the feature of normal distribution ( 2, )j j jc N m σ∼ , this constraint is equivalently transformed into 

the following form: 
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(7.29)

where ( )F z  is the distribution function of the standard normal distribution and ( )1
tK F t−= . 

Therefore, we equivalently transform problem (7.28) into the following problem: 

{ }

( ) ( )2 2 1

1 1 1

Maximize

subject to , 0,1 ,

                   

n

n n n

j j j j t j j
j j j

h

m x R h x K x g hβ σ∗ −

= = =

≤ ∈

+ − ≥∑ ∑ ∑

A bx x  
(7.30)

 

Furthermore, each decision variable jx  satisfies , we obtain { }0,1jx ∈ 2
j jx x= , and so problem 

(7.30) is equivalently transformed into the following problem: 
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{ }

( ) ( )2 1

1 1 1

Maximize

subject to , 0,1 ,

                   

n

n n n

j j j j t j j
j j j

h

m x R h x K x g hβ σ∗ −

= = =

≤ ∈

+ − ≥∑ ∑ ∑

A bx x  
(7.31)

 
It should be noted here that problem (7.31) is a nonconvex programming problem and it is not solved 
by the linear programming techniques or convex programming techniques. However, since a 

decision variable  is involved only in constraint h ( ) ( )2 1

1 1 1

n n n

j j j j t j j
j j j

m x R h x K x g hβ σ∗ −

= = =

+ − ≥∑ ∑ ∑ , 

we introduce the following subproblem involving a parameter : q

( )

{ }

2

1 1

Maximize

subject to , 0,1 ,

n n

1

n

j j j j t
j j j

n

m x R q x K xβ σ∗

= =

+ −

≤ ∈

∑ ∑ ∑
A bx x

j j
=  (7.32)

 
In the case that we fix the parameter , problem (7.32) is equivalent to a convex programming 

problem. Furthermore, let 

q

( )x q  and ( )Z q  be an optimal solution of problem (7.32) and its 

optimal value, respectively. Then, the following theorem is derived from the study (Hasuike [45]). 
 
Theorem 7.5 

For  satisfying 0 1, q q< < ( )Z q  is a strictly increasing function of . q

 

Furthermore, Let  denote  satisfying q̂ q ( ) ( )1ˆ ˆZ q g q−= . Then the relation between problems 

(7.31) and (7.32) is derived as follows. 
 
Theorem 7.6 

Suppose that  holds. Then ˆ0 q< <1 )( )( ˆ ˆ,x q q  is equal to ( ),x h∗ ∗ . 

 
From these theorems, by using bisection algorithm for parameter  and comparing objective 

function 

q

( )Z q  with ( )1g q− , we repeatedly solve problem (7.32) for each  using 

branch-bound method, and finally obtain the optimal solution. This solution method is assured that 
its calculation times are infinite. However, it is not efficient due to increasing calculation times 

q

voluminously with the increase of parameters and decision variables. Therefore, we need to 
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construct the more efficient solution method. 
 
7.2.3 Construction of the efficient strict solution method 
 

In order to construct the efficient solution method for problem (7.32), first of all, we introduce the 
following 0-1 relaxation problem of problem (7.32): 

( )

( )

2

1 1

Maximize

subject to , 0 1, 1,2,...,

n n

1

n

j j j j t
j j

j

m x R h x K x

x j n

β σ∗

= =

+ −

≤ ≤ ≤ =

∑ ∑ ∑
A bx

j j
j=  (7.33)

 
Since this problem is a nonlinear programming problem due to including a square root term 

2

1

n

j j
j

xσ
=
∑  and it is difficult to solve it, we also consider the following auxiliary problem for 

problem (7.33) introducing a parameter : γ

( )

( )

2

1 1
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n n n

1
j j j j t

j j j

j

m x R h x K x

x j n

γ β∗

= = =

⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟+ −⎜ ⎜⎟ ⎟⎜ ⎟ ⎟⎟ ⎟⎜⎝ ⎠
≤ ≤ ≤ =

∑ ∑ ∑
A bx

j jσ
⎛ ⎞
⎜⎜⎝ ⎠  (7.34)

 
With respect to the relation between problems (7.33) and (7.34), the following theorem holds based 
on previous research (Ishii [55]). 
 
Theorem 7.7 

Let an optimal solution of problem (7.34) be . If ∗x 2

1

2
n

j j
j

xγ σ ∗

=

= ∑  is satisfied,  is also an 

optimal solution of problem (7.33). 

∗x

 
Auxiliary problem (7.34) is a linear programming problem in the case that  is fixed, and so we 

efficiently obtain the optimal solution using linear programming approaches and bisection algorithm 

for parameter 

γ

h . Furthermore, let the optimal value of parameter h  in problem (7.34) be h ∗ . 
Then, the following lemmas hold: 
 
Lemma 7.8.1 

With problem (7.32), there exists the ranges (1, ,  1,2,...k kh h k+ )⎡ ⎤ =⎣ ⎦  that the optimal solution of 

problem (7.32) is unique in the case of h ∗  including in 1,k kh h +⎡ ⎤⎣ ⎦ . 
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Lemma 7.8.2 

We set a range  satisfying [ ,L Uh h ] [ ],L Uh h h∗ ∈ . Let the optimal solution of problem (7.32) be 

. Then, with respect to any parameter ∗x [ ],L Uh h h∈ ,  is unique. ∗x

 
From these lemmas, the following theorem holds: 
 
Theorem 7.8 

Let the optimal solution of problem (7.34) be  and the optimal value of parameter ∗x h  be h ∗ . 
Then, the optimal solution of the following problem; 

( )

{ }

2

1 1

Maximize

subject to , 0,1 ,

n n

1

n

j j j j t
j j

n

m x R h x K xβ σ∗ ∗

= =

+ −

≤ ∈

∑ ∑
A bx x

j j
j=
∑  (7.35)

is equivalent to that of problem (7.32). Consequently, in the case that we solve 0-1 relaxation 

problem (7.34) and obtain its optimal solution h ∗ , we obtain an optimal solution without using 
branch-bound method repeatedly. Furthermore, from the optimal solution of problem (7.34), upper 

and temporary lower values of objective function ( ) 2

1 1

n n

j j j j t j j
j j

m x R h x K xβ σ∗ ∗

= =

+ −∑ ∑ ∑
1

n

j=

 are 

given. Therefore, by using these values effectively, this solution method is more efficient than 
previous parametric 0-1 programming approach in that the number of using branch-bound method is 
significantly decreasing. Consequently, we construct the following efficient solution method to solve 
main 0-1 programming problem (7.26). 
 
Solution method 7.2 
STEP 1: Elicit the membership function of a fuzzy goal for with respect to the total profit and 

maximum budget. 

STEP 2: Set  and solve problem (7.32). If the optimal objective value 1h← ( )Z h  of problem 

(13) satisfies ( ) ( )1Z h g h−≥  and its feasible solution including constraints exists, then 

terminate. In this case, the obtained current solution is an optimal solution of main problem. 
Otherwise, go to STEP 2. 

STEP 3: Set  and solve problem (7.32). If the optimal objective value 0h← ( )Z h  of problem 

(13) satisfies ( ) ( )1Z h g h−<  or the feasible solution including constrains does not exist, 
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then terminate. In this case, there is no feasible solution and it is necessary to reset a fuzzy 
goal for the probability or the aspiration level f . Otherwise, go to STEP4. 

STEP 4: Solve problem (7.34) and obtain the optimal solution ( )h∗x  and optimal value . Then, 

solve problem (7.32) using branch-bound method. 

h

 
7.2.4 Numerical example 
 

In order to illustrate the efficiency of our proposed model, we provide the numerical example. In 
this numerical example, we consider 10 decision variables and 3 constraints as Table 7.1, and we 
assume the all fuzzy numbers are triangle fuzzy numbers whose values of spreads are as Table 7.1. 
 

Table 7.1. Sample data of coefficients in objective function and constraints 
 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 Upper

Mean 4 5 2 3 8 6 3 5 10 7  

Spread 1 2 0.5 1 3 0.5 2 1.5 1 2  
Variance 0.7 1.5 0.2 0.4 2.2 1.8 0.3 1.2 3 1.3  

Const.1 2 3 1 1 5 4 2 3 5 3 15 
Const.2 3 2 2 3 5 4 3 1 6 3 20 

Const.3 2 2 3 1 4 3 2 1 4 5 15 

 
In this numerical example, we solve general 0-1 programming problems using the previous solution 
method and our proposed method, and obtain the same optimal solution to each solution method as 
Table 7.2. Subsequently, in order to solve them, we use Mathematica 5.0 under the computer 
environment; Pentium 4 CPU 3.20GHz and 2.00GB RAM. 
 

Table 7.2. Optimal solution of fuzzy random 0-1 programming problem 
 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 

Optimal 0 1 0 1 0 0 0 1 1 1 

 
Then, each calculation time to find the optimal solution is as Table 7.3. 
 

Table 7.3. Calculation time 
 Proposed method Parametric approach 

Calculation time (sec.) 2.984 3.078 

 
From the result of Table 7.3, we find that the sample problem is solved in a shorted calculation time 
by our proposed approach.  

Furthermore, with respect to previous parametric integer programming approach for fuzzy random 
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0-1 programming problems, integer programming approaches, such as the Dynamic programming 
and the Branch-bound method, have been used to every parameter value set by using bisection 

method. Therefore, the computational time complexity has been ( ) ( )2logIPMK n⋅ , where is 

the computational time complexity of integer programming approach. However, with respect to our 
proposed approach, we do not use integer programming approach repeatedly. Therefore, the 

computational time complexity is . Consequently, our proposed solution approach 

may be more useful in the case that the number of decision variables and constraints are larger than 
this numerical example. 

IPMK

4 log IPMn n K+

 
 

7.3 Random Fuzzy 0-1 Programming Problem 
 
7.3.1 Formulation of the random fuzzy 0-1 programming problem 
   

Then, we formally introduce the following 0-1 programming problem: 

{ }
Maximum  

subject to  , 0 1 n,≤ ∈A

�rx

x b  x
 (7.36)

where each notation is as follows: 
A: m×n coefficient matrix 
b: m-dimensional column vector 
x: n-dimensional decision column vector (Decision variable) 
 

The coefficient vector of objective function is ( )nrrr ~,...,~,~~
21=r  and each jr~  is a random fuzzy 

variable according to a normal distribution ( )2,~
jjmN σ where  is a mean value and  is a 

variance. Then, we represent the ijth element of variance-covariance matrix as 

jm~ 2
jσ

ijσ . Furthermore, we 

assume that  is a fuzzy variable characterized by the following membership function: jm~

( )

( )

( )

( )0 ,

j

j
j j j

j

m j
j j j

j

j j j j

m
L m

m
R m m

m m

ω
α ω

α

μ ω ω
ω β

β

ω α β

⎧ ⎛ ⎞⎪ − ⎟⎪ ⎜ ⎟⎪ ⎜ − ≤ ≤⎟⎜⎪ ⎟⎟⎜⎜⎪ ⎝ ⎠⎪⎪⎪⎪ ⎛ ⎞⎪= −⎨ ⎟⎜ ⎟⎪ ⎜ < ≤ +⎟⎪ ⎜ ⎟⎪ ⎟⎜⎜⎝ ⎠⎪⎪⎪⎪ < − + <⎪⎪⎩⎪

�

m

ω

 (7.37)
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where L(x) and R(x) are nonincreasing reference function to satisfy L(0)=R(0)=1, L(1)=R(1)=0 and 

the parameters jα  and jβ  represent the spreads corresponding to the left and the right sides, 

respectively. Problem (7.36) is a random fuzzy 0-1 programming problem due to including random 

fuzzy variables. Then, its objective function xr~~ =Z  is defined as a random fuzzy variable by the 

following membership function introducing a marameter jγ  and an universal set of normal random 

variable : Γ

( ) ( )
1

1

sup min ,
j

n

j j jrZ j n
j

u u x
γ

μ μ γ γ
≤ ≤

=

⎧ ⎫⎪ ⎪⎪ ⎪= = ∀ ∈⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑� � u Y  (7.38)

where ( )2, ,..., nγ γ γ= 1γ , ( )jrj
μ γ  is defined by ~

( ) ( ) ( ){ }2sup ~ , ,
j j

j

j j j j jr M
s

s N sμ γ μ γ σ γ= ∀ ∈Γ�� j  (7.39)

and Y is defined by 

1

, 1,2,...,
n

j j j
j

Y x jγ γ
=

⎧ ⎫⎪ ⎪⎪ ⎪= ∈Γ =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ n  (7.40)

 
From these settings, we obtain 

( ) ( )

( ) ( )

( ) ( )

1
1

2

1
1

1
1

sup min

          sup min ~ , ,

          sup min ~ ,

j

j

j

n

j j jrZ j n
j

n

j j j j j jMj n
j

n

j j jMj n
j

u u x

s N s u

s u N s x V

γ
μ μ γ γ

μ γ σ γ

μ

≤ ≤
=

≤ ≤
=

≤ ≤
=

⎧ ⎫⎪ ⎪⎪ ⎪= =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎪ ⎪⎪ ⎪= =⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
⎧ ⎫⎛ ⎞⎪ ⎪⎪ ⎪⎟⎜⎪ ⎪⎟= ⎜⎨ ⎬⎟⎜ ⎟⎪ ⎪⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭

∑

∑

∑

� �

�

�

s

s
x

x

x x

 (7.41)

where  Furthermore, we discuss the probability that the objective function 

value is greater than or equal to an aspiration level f. Then, we represent the probability as 

( )
1 1

n n

ij i j
i j

V σ
= =

=∑∑x

1

Pr
n

j j
j

r x fω
=

⎧ ⎫⎪ ⎪⎪ ⎪≥⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
∑ � . Since 

1

n

j j
j

r x
=
∑ �  is represented with a random fuzzy variable, we express the 

probability 
1

Pr
n

j j
j

r x fω
=

⎧ ⎫⎪⎪ ≥⎨⎪ ⎪⎪ ⎪⎩ ⎭
∑ �

⎪⎪⎬  as a fuzzy set  and defined the membership function of  as 

follows: 

P� P�
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( ) ( ) ( ){ }{ }

( )
( ){ }

( )1

1

sup Pr

Pr ,

           sup min
~ ,j

P Zu

njMj n
j j

j

p u p u f

p u f

s
u N s x V

μ μ ω ω

ω ω
μ

≤ ≤

=

= = ≥

⎧ ⎫⎪ ⎪= ≥⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪= ⎛ ⎞⎨ ⎬⎟⎜⎪ ⎪⎟⎜⎪ ⎪⎟⎜⎪ ⎪⎟⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∑

� �

�
s x

 (7.42)

where . Due to these randomness and fuzziness, problem (7.36) is not a 

well-defined problem, and so it is necessary to interpret the problem from some point of view and to 
transform the problem into the deterministic equivalent problem. In this chapter, we consider the 
case where a decision maker prefers maximizing the degree of possibility for the probability that the 
value of objective function satisfies the fuzzy goal, based on previous research Katagiri [62] and 
Hasuike [45]. A fuzzy goal for the probability is characterized by the following membership 
function: 

( 1 2, ,..., ns s s=s )

( ) ( )
1

0 1

0

1

0
PG

p p
p g p p p p

p p
μ

⎧ <⎪⎪⎪⎪= ≤ ≤⎨⎪⎪ <⎪⎪⎩

�  (7.43)

where g(y) is a monotonous increasing function. Then, using a concept of possibility measure, the 
degree of possibility to the objective function value satisfying a fuzzy goal G is as follows: 

( ) ( ) ( ){ }sup min ,
PP GP p

G pμ μ=∏ � � p  (7.44)

 
Consequently, problem (7.36) is transformed into the following problem: 

( )
{ }

Maximum  

subject to  , 0 1
P

n

G

,≤ ∈

∏
Ax b  x

 (7.45)

 
This problem is equivalently transformed into the following problem introducing a parameter h. 

( )
{ }

Maximum  
subject to  ,

                 0 1
P

n

h
G h

,

≥

≤ ∈

∏
Ax b, x

 (7.46)

 
7.3.2 Deterministic equivalent transformations to the proposed model 

In problem (7.46), constraint ( )G h≥∏P
 is transformed into the following inequality based on the 

result obtained by Katagiri [58] and Hasuike [45]: 
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( )

( ) ( ){ }
( ) ( )

( )
( ){ }

( )
( )

( ) ( ){ }

1

1

1

sup min ,

: ,

Pr ,

: sup min ,  
~ ,

, , : sup min ,  Pr ,

                  

P

P

j P

j

P

P G
p

P G

njM Gj n
j j

j

jMj n

G h

p p h

p p h p h

p u f

p s h p h
u N s x V

p u s h p u f

μ μ

μ μ

ω ω
μ μ

μ ω ω

≤ ≤

=

≤ ≤

≥

⇔ ≥

⇔ ∃ ≥ ≥

⎧ ⎫⎪ ⎪= ≥⎪ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⇔ ∃ ≥ ≥⎛ ⎞⎨ ⎬⎟⎜⎪ ⎪⎟⎜⎪ ⎪⎟⎜⎪ ⎪⎟⎟⎜⎝ ⎠⎪ ⎪⎪ ⎪⎩ ⎭
∃ ∃ ∃ ≥ = ≥

⇔

∏

∑

� �

� �

� �

�

s

s

x

s

( ) ( )

( ) ( ){ }

( ) ( )

( ) ( )

( )

1

1

1

1

1

~ , ,

, , : min ,  Pr ,

                  ~ , ,

, , : ,  1, 2,...,

                  ~ ,

P

j

j

n

j j G
j

jMj n

n

j j
j

jM

n

j j
j

u N s x V p h

p u s h p u f

u N s x V p g h

p u s h j n

u N s x V

μ

μ ω ω

μ

=

≤ ≤

−

=

=

⎛ ⎞⎟⎜ ⎟ ≥⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∃ ∃ ∃ ≥ = ≥

⇔ ⎛ ⎞⎟⎜ ⎟ ≥⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

∃ ∃ ∃ ≥ =

⇔ ⎛ ⎞⎟⎜⎜⎜⎜⎝ ⎠

∑

∑

∑

�

�

�

x

s

x

s

x ( ){ } ( )

( ){ } ( ) ( )( ) ( )

1

1

1

,  Pr

: Pr ,  ~ ,
n

j j j
j

u f g h

u u f g h u N m R h x V

ω ω

ω ω α

−

− ∗

=

⎟ ≥ ≥⎟⎟⎟

⎛ ⎞⎟⎜ ⎟⇔ ∃ ≥ ≥ +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ x

 

(7.47)

where  is a pseudo inverse function of . From this inequality, problem (7.46) is 

equivalently transformed into the following problem: 

( )R x∗ ( )R x

( ){ } ( )

( )( ) ( )

{ }

1

1

Maximum  

subject to  Pr ,

                ~ , ,

                 0 1

n

j j j
j

n

h

u f g h

u N m R h x V

,

ω ω

α

−

∗

=

≥ ≥

⎛ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

≤ ∈

∑
A

x

x b, x

⎞  (7.48)

 

Furthermore, with respect to stochastic constraint ( ){ } ( )1Pr u f gω ω −≥ ≥ h , by using the property 

of normal distribution, this constraint is equivalently transformed into the following form: 

( ){ } ( )

( )( )
( ) ( )1

1

1

Pr
n

j j j
j

g h

u f g h

m R h x f
K

V

ω ω

α
−

−

∗

=

≥ ≥

+ −
⇔ ≥

∑
x

 (7.49)
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where ( )F z  is the distribution function of the standard normal distribution and . 

Furthermore, each decision variable 

( )1
tK F t−=

jx  satisfies , we obtain { }0,1jx ∈ 2
j jx x=  and assume 

that each vairiance is independent, i.e., 

( )
( )⎩

⎨
⎧

≠
=

=
ji
jij

ij 0

2σ
σ  

Consequently, problem (7.48) is equivalently transformed into the following problem: 

( )( )
( )

{ }

1
1

2

1

Maximum  

subject to  ,

                 0 1

n

j j j
j

g hn

j j
j

n

h

m R h x f
K

x

,

α

σ
−

∗

=

=

+ −
≥

≤ ∈

∑

∑
Ax b, x

 
(7.50)

 
It should be noted here that problem (7.50) is a nonconvex integer programming problem and it is 
not solved by the linear programming techniques or convex programming techniques. However, 
since a decision variable h is involved only in first constraint, we introduce the following 
subproblem involving a parameter q: 

( )( )

{ }

1

2

1

Maximum  

subject to  0 1

n

j j j
j

n

j j
j

n

m R q x f

x

,

α

σ

∗

=

=

+ −

≤ ∈

∑

∑
Ax b, x

 (7.51)

 
In the case that we fix the parameter q, problem (7.51) is equivalent to a convex integer 

programming problem. Furthermore, let and ( )qx ( )Z q  be an optimal solution of problem (7.51) 

and its optimal value, respectively. Then, the following theorem is derived from previous study [7, 
13]. 
 
Theorem 7.9 

For  satisfying 0 1, q q< < ( )Z q  is a strictly increasing function of . q
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Furthermore, let  denote  satisfying q̂ q ( ) ( )1ˆ ˆZ q g q−=  and the optimal solutions of main 

problem (7.50) be ( .Then the relation between problems (7.50) and (7.51) is derived as 

follows derived from previous study [60]. 

)

1

,h∗ ∗x

 
Theorem 7.10 

Suppose that  holds. Then ˆ0 q< < ( )( )ˆ ˆ,x q q  is equal to ( ) . ,h∗ ∗x

 
From these theorems, by using bisection algorithm for parameter q and comparing objective function 

( )Z q  with ( )1g q− , we repeatedly solve problem (7.51) for each q using branch-bound method, 

and finally obtain the optimal solution. This solution method is assured that its calculation times are 
infinite. However, it is not efficient due to increasing computational times voluminously with the 
increase of parameters and decision variables. Therefore, we need to construct the more efficient 
solution method. 
 
7.3.3 Construction of the efficient strict solution method 
 

In order to construct the efficient strict solution method for problem (7.50), first of all, we 
introduce the following 0-1 relaxation problem of problem (7.50): 

( )( )
( )1

1

2

1

Maximum  

subject to  ,

                 0 1,  1, 2,...,

n

j j j
j

g hn

j j
j

j

h

m R h x f
K

x

x j n

α

σ
−

∗

=

=

+ −
≥

≤ ≤ ≤ =

∑

∑
Ax b, 

 
(7.52)

 
In a way similar to problem (7.50), this problem is also a nonconvex programming problem and it is 
not solved by the linear programming techniques or convex programming techniques. Subsequently, 
we introduce the following subproblem: 

( )( )
1

2

1

Maximum  

subject to  0 1,  1, 2,...,

n

j j j
j

n

j j
j

j

m R q x f

x

x j n

α

σ

∗

=

=

+ −

≤ ≤ ≤ =

∑

∑
Ax b, 

 (7.53)
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In this subsection, it is assumed that there exists a feasible solution satisfying 

. This means that the probability that total future profit is more than 

target value  is greater than 1/2. Furthermore, problem (7.53) is equivalent to the following 

problem: 

( )( )
1

n

j j j
j

m R q x fα∗

=

+∑ >

f

( )( )

2

1

1

Minimum  

subject to  0 1,  1, 2,...,

n

j j
j

n

j j j
j

j

x

m R q x f

x j n

σ

α

=

∗

=

+ −

≤ ≤ ≤ =

∑

∑
Ax b, 

 (7.54)

 
In the case we fix the parameter  since problem (7.54) is a nonlinear fractional programming 

problem due to including a square root term 

q

∑
=

n

j
jj x

1

2σ  in the objective function, it is difficult to 

solve this original problem directly. Therefore, we introduce the following parameters; 

( )( )
1

1 ,
n

j j j
j

t m R q x fα∗

=

⎛ ⎞⎟⎜ ⎟= + − =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ y xt  

and we do the transformation into the following deterministic equivalent problem: 

( )( )

2

1

1

Minimum  

subject to  1,

                 0 ,  1, 2,...,

n

j j
j

n

j j j
j

j

y

m R q y ft

t y t j

σ

α

=

∗

=

+ − =

≤ ≤ ≤ =

∑

∑
Ay b , n

 (7.55)

 

Since objective function 2

1

n

j j
j

yσ
=
∑  is a monotonous increasing function, this problem is 

equivalently transformed into the following problem: 

( )( )

2

1

1

Minimum  

subject to  1,

                 0 ,  1, 2,...,

n

j j
j

n

j j j
j

j

y

m R q y ft

t y t j

σ

α

=

∗

=

+ − =

≤ ≤ ≤ =

∑

∑
Ay b , n

 (7.56)

 
Problem (7.56) is a linear programming problem in the case that q is fixed, and so we efficiently 
obtain the optimal solution using linear programming approaches and bisection algorithm for 
parameter q. 
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Furthermore, let the optimal value of parameter  in problem (7.50) be . Then, the following 
lemmas hold: 

h h∗

 
Lemma 7.11.1 

With respect to problem (7.50), there exists ranges (1, ,  1,2,...,k kh h k+ )⎡ ⎤ =⎣ ⎦  that the optimal 

solution of problem (7.50) is unique for any h including in 1,k kh h +⎡ ⎤⎣ ⎦ . 

 
Proof 

From the continuity of parameter h and discreteness of decision variable , this lemma clearly 
holds. 

∗x

 
Lemma 7.11.2 

Let the optimal value of problem (7.52) be h , the optimal solution of problem (4) be x* and the 

optimal value be . Then in the case that we set a range [ satisfying h∗ ],L Uh h [ ],L Uh h h∈ , 

 holds. [ ,L Uh h h∗ ∈ ]

]

 
Proof 

We consider the case that  and [ ,L Uh h h∗ ∉ ,L Uh h h∗ ⎡ ⎤′ ′∈ ⎣ ⎦ . If , there exists the optimal 

solution  and the optimal solution 

Uh h′ < L

x′ h′  satisfying [ ],L Uh h h′ ∈ . This contradicts the optimality 

of parameter h*. In a way similar to , if , we obviously find that . This 

means that the optimal value of discrete problem is larger than that of continuous problem, and 

contradicts the optimality of parameter 

U Lh h′ < Lh h′ > U Lh h∗′ >

h h∗> . Consequently, this lemma holds. 
 
From these lemmas, the following theorem to the relation between problems (7.50) and (7.52) holds: 
 
Theorem 7.11 

Let the optimal solution of problem (7.52) be ( )h∗x  and the optimal value of parameter h be h . 

Then, the optimal solution of the following problem; 
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( )( )

{ }

1

2

1

Maximum  

subject to  0 1

n

j j j
j

n

j j
j

n

m R h x f

x

,

α

σ

∗

=

=

+ −

≤ ∈

∑

∑
Ax b, x

 (7.57)

is equivalent to that of problem (7.50). 
 
Consequently, in the case that we solve 0-1 relaxation problem (7.52) and obtain its optimal solution 

, we obtain an optimal solution more efficiently than previous parametric approaches due to not 
using branch-bound method every value of parameter h repeatedly. However, since the objective 
function of problem (7.57) is a nonlinear function, it is not easy to deal with several efficient 
solution methods for integer programming approaches. Therefore, in order to have the more general 
versatility for our proposed model, we consider the other deterministic equivalent transformations 
for main problem. 

h∗

First, we equivalently transform main problem (7.50) into the following problem; 

( )( ) ( )

{ }

1
2

1 1

Maximum  

subject to  ,

                 0 1

n n

j j j j jg h
j j

n

h

m R h x K x f

,

α σ−
∗

= =

+ − ≥

≤ ∈

∑ ∑
Ax b, x

 
(7.58)

and introduce this 0-1 relaxation problem as follows: 

( )( ) ( )1
2

1 1

Maximum  

subject to  ,

                 , 0 1,  1, 2,...,

n n

j j j j jg h
j j

j

h

m R h x K x f

x j n

α σ−
∗

= =

+ − ≥

≤ ≤ ≤ =

∑ ∑
Ax b  

 (7.59)

 
This problem is a nonlinear programming problem. However, this problem is much similar to 
problem (7.52). Therefore, in order to solve problem (7.59) analytically, we introduce the following 
subproblem in a way similar to the transformation from problem (7.52) into problem (7.53): 

( )( ) ( )1
2

1

Maximum  

subject to  , 0 1,  1,2,...,

n n

1
j j j j jg h

j

j

m R h x K x

x j n

α σ−
∗

=

+ −

≤ ≤ ≤ =

∑ ∑
Ax b  

j=
 (7.60)

 
Then, we consider the following auxiliary problem: 
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( )( ) ( )1
2

1

Maximum  

subject to  , 0 1,  1, 2,...,

n n

j j j g h
j

j

m R h x K x

x j n

γ α −
∗

=

⎛ ⎞⎟⎜ ⎟+ − ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
≤ ≤ ≤ =

∑ ∑
Ax b  

1
j j

j

σ
=

 (7.61)

 
In the case that we fix parameter h, with respect to the relation between problems (7.60) and (7.61), 
the following theorem holds based on the previous research of Ishii [55]. 
 
Theorem 7.12 

Let the optimal solution of problem (7.60) be . Then, in the case ( )hx 2

1

2
n

j j
j

xγ σ ∗

=

= ∑ , the optimal 

solution of problem (7.61) is equal to . ( )hx

 

From Theorem 4, in the case that parameter h is fixed, we obtain the optimal solution . 

Furthermore, we consider the following problem to deal with optimal value 

( )hx

h  of problem (7.52): 

( )( ) ( )1
2

1

Maximum  

subject to  , 0 1,  1, 2,...,

n n

j j j g h
j

j

m R h x K x

x j n

γ α −
∗

=

⎛ ⎞⎟⎜ ⎟+ − ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
≤ ≤ ≤ =

∑ ∑
Ax b  

1
j j

j

σ
=

 (7.62)

 

Let this optimal solution be ( )h∗x . Subsequently, the following lemma with respect to each 

optimal solution for problems (7.50) and (7.57) holds. 
 
Lemma 7.13.1 
The optimal solution of problem (7.57) is equal to that of problem (7.50). 
 
Proof 
Since each problem is the deterministic equivalent problem for main problem (7.49), this lemma 
obviously holds. 
 

Therefore, we obtain ( )h ∗=x x . Then, the following theorem holds extending previous research 

of Hasuike. 
 
Theorem 7.13 
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With respect to 2

1

2
n

j j
j

xγ σ∗

=

= ∑ ∗ , the optimal solution of the following problem; 

( )( ) ( )

{ }

1
2

1

Maximum  

subject to  , 0 1

n n

1
j j j j jg h

j

n

m R h x K x

,

γ α −
∗ ∗

=

⎛ ⎞⎟⎜ ⎟+ − ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

≤ ∈

∑ ∑
Ax b  x

j

σ
=  (7.63)

is equal to that of problem (7.49). 
 
From Theorem 7.13, we finally solve this linear 0-1 programming problem. It is more efficient to 
obtain its optimal solution of problem (7.57) using some efficient solution methods for integer 
programming approaches than that of problem (7.50). Furthermore, in the case using branch-bound 
method, we find that upper limited value for main problem becomes 

( )( ) ( ) ( ) ( )1
2

1 1

n n

j j j jg h
j j

m R h x h K x hα σ−
∗

= =

+ −∑ ∑ j
 

substituting optimal solution ( )hx  and optimal value h  of problem (7.52) and lower limited 

value becomes f. Therefore, by using these values in branch-bound method efficiently, we obtain the 
optimal solution of main problem more easily and rapidly. Consequently, we construct the following 
solution method. 
 
Solution method 7.4 
STEP 1: Elicit the membership function of a fuzzy goal for with respect to the probability and set 

each parameter. 
STEP 2: Solve 0-1 relaxation problem (7.52), and find the optimal solution x* and optimal value 

h . 
STEP 3: Solve 0-1 programming problem (7.63) by using integer programming approaches such as 

branch-bound method.  
 
 

7.4 Conclusion 
 

In this Chapter, we have proposed new models of general 0-1 programming problems with fuzzy 
random and random fuzzy variables. First, we have considered the 0-1 knapsack problem including 
randomness of future returns and flexible goals for available budget and total return. Since our 
proposed model has been a nonlinear 0-1 knapsack problem by introducing the chance constraint and 
doing the transformation into the deterministic equivalent problems, we have constructed the 
efficient solution method. We have dealt with the 0-1 relaxation problem and its optimal value and 
found that the number of using dynamic programming in our proposed method is much less than that 
of previous parametric dynamic programming. This solution method is applicable to the general 
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integer programming problems, particularly portfolio selection problem. Next, we have proposed 
general fuzzy random and random fuzzy 0-1 programming problems considering both random and 
fuzzy conditions. Since our proposed model has been a nonlinear 0-1 programming problem by 
introducing the chance constraint and doing the transformation into the deterministic equivalent 
problems, we have constructed the efficient strict solution method by dealing with some 0-1 
relaxation problems. Consequently, we have found that the number of using branch-bound method in 
our proposed method is much less than that in previous parametric solution methods.  

This solution method may be applicable to the general integer programming problems because our 
proposal model includes some previous models not considering randomness or fuzziness. However, 
in the case there are many decision variables and parameters, it takes much computational time to 
solve this 0-1 random fuzzy programming problem even if we use this solution method due to the 
nonpolynomial time algorithm to branch-bound method. Therefore, as future studies, we need to 
construct its efficient solution method using not only strict solution method such as branch-bound 
method but also approximation methods such as genetic algorithm and heuristic approaches. 
Furthermore, we will consider the multidimensional 0-1 and integer random fuzzy programming 
problems. 
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Chapter 8 

Conclusion 
 
 

In this thesis, we have proposed various types of asset allocation problems under randomness and 
fuzziness, particularly based on portfolio selection problems and product mix problems. Furthermore, 
we have developed the efficient analytical solution method to obtain the global optimal solution 
under uncertainty.  

In Chapter 3, we have proposed portfolio selection problems involving ambiguous expected 
returns distributed according to normal distribution, and proposed several models of random fuzzy 
portfolio selection problems; (a) Single criteria optimization model, (b) Bi-criteria optimization 
model introducing a fuzzy goal to the probability and the target future returns. Since each problem is 
equivalent to a parametric nonlinear programming problem, we have constructed each analytical 
solution method involving the procedure of solving a parametric quadratic programming problem to 
find a global optimal solution. Then, by comparing the proposed model with other standard fuzzy 
portfolio models using two numerical examples, we have found that the proposed model has been 
applied to more flexible and changeable cases than two previous models. Furthermore, we have 
proposed the random fuzzy CAPM model which is one of the standard approaches in the investment 
fields. Then, the random fuzzy CAPM model has been equivalently transformed into the 
deterministic linear programming problem, and we have constructed the efficient solution method 
using the standard linear programming approach and bi-section algorithm. These random fuzzy 
portfolio models include various situations in the investment fields such as not only statistical 
approaches based on historical data but also the investor’s subjectivity. Therefore, these models may 
be versatile investment models in the future. 

In Chapter 4, we have considered the large-scale portfolio selection problems using the compact 
factorization approach and extended these previous models to fuzzy models. Furthermore, all 
proposed fuzzy extension models are transformed into the deterministic equivalent problems which 
are equivalent to the original problems in the sense of the mathematical programming. We may be 
able to apply the proposed solution method to the cases including not only fuzziness but also both 
randomness and fuzziness which are called to fuzzy random variable or random fuzzy variable. Then, 
we will also apply our proposed models to the other portfolio selection problems and be able to 
extend all portfolio selection problems to the models considering various uncertainty situations. 

In Chapter 5, we have discussed some probability maximization models of portfolio selection 
problems considering possibility scenarios with respect to multivariate random future returns. First, 
we have aggregated multi-objective functions into one weighted function, i.e. the single-objective 
problem, and proposed its efficient solution method using the deterministic equivalent 
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transformations of the main problem. Furthermore, we have proposed a robust portfolio model that 
considers the interval of each weight and obtains the appropriate portfolio that can apply to all 
weights including the interval. Since this model considers various conditions in the practical 
investment by using weights including flexibility, we may apply this model to several types of 
portfolio selection problems under uncertainty. Second, we have proposed the model maximizing the 
minimum aspiration level of probability among all the scenarios and constructed its solution method. 
Since these models consider the robust case that each investor can set the weight to each possible 
scenario of future returns and aspiration levels according to the decision maker's subjectivity, we 
apply this model to several problems including multi-probabilistic and ambiguous conditions. These 
proposed models include more wide ranging conditions of portfolio selection problems. 

In Chapter 6, we have proposed several types of product-mix decision models, many of which 
include several randomness and fuzziness. First, we have considered a probability fractile 
optimization model as the main problem and a probability maximization model to total future profits, 
and developed an analytical and efficient solution method to find a global optimal solution. Second, 
we have considered several cases of product-mix problems that occur in practical market of products 
and production processes scenarios, particularly the models including changes of constraints. All 
these proposed models under randomness, fuzziness, and flexibility are equivalent to linear 
programming problems or quadratic convex programming problems. Therefore, we can efficiently 
solve these problems. Thus, since a decision maker decides the parameters arbitrarily, these models 
are capable of applying to models under many situations of uncertainty and flexibility, such as the 
cases considering the intensity of price and demand ranges, surplus funds to bottleneck constraints in 
the original flexible plan and the prediction of future dangers such as machine breakdowns. 
Therefore, we may be able to apply these proposed models and the efficient solution methods not 
only to maximize the level of satisfaction of the total future profit, but also to minimize total costs 
and optimization under more complicated situations in the real world. Thus, our proposal models can 
be applied to various managerial situations by including flexibility. 

Finally, In Chapter 7, we have considered the general 0-1 programming problem, and proposed 
fuzzy random and random fuzzy 0-1 programming problems under uncertainty. Since each proposed 
model has been a nonlinear 0-1 programming problem by introducing the chance constraint and 
doing the transformation into the deterministic equivalent problems, we have developed the efficient 
strict solution method by dealing with some 0-1 relaxation problems. Consequently, we have found 
that the number of using branch-bound method in our proposed method is much less than that in 
previous parametric solution methods. This solution method may be applicable to the general integer 
programming problems because our proposal model includes some previous models not considering 
randomness or fuzziness.  

In the real world, many real life problems are faced with randomness and fuzziness, and such 
randomness and fuzziness exists not separately, but simultaneously. Therefore, it is important to 
investigate stochastic and fuzzy programming approaches for the several asset allocation problems. 
For example, with respect to random fuzzy portfolio selection problems in Chapter 3, our proposed 
model is represented various subjectivities of investors by setting and changing the membership 
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functions and fuzzy goals to each investor. Then, comparing optimal portfolios and received total 
profit under these subjectivities of investors with present market trends and factors to represent 
favorable or poor market conditions, it may be possible that investors find the more appropriate 
market trend and obtain the knowledge of more suitable investment stance under the present market. 
However, it is difficult to obtain an analytical knowledge which stance investors should keep in 
order to not only suit their investment style but also receive the maximum future profit. Therefore, 
we need to analysis the theoretical relation between our proposed model and these subjectivities of 
investors under several market trends as well as the empirical and numerical analyses in the future 
works. 

Furthermore, considering application of these problems with uncertainty to the practical social 
decision problems, it is important to have the versatility as well as consider uncertainty. For example, 
in Chapter 6, we have represented that our proposed models are applicable to models under many 
situations of uncertainty and flexibility since a decision maker decides the parameters arbitrarily. 
Then, we have considered the possibility to apply our proposed models and solution methods to 
various social problems under more complicated situations in the real world. However, in production 
processes, there are various problems such as not only the product mix problem but also scheduling, 
logistics and inventory problems, and these problems are not separated, but closely connected each 
other. Therefore, in the future works, we need to deal with these problems as the integrated 
important problem, i.e. supply chain problems. Furthermore, from the general versatility of our 
proposed models, they will be applied to more global and world-wide practical social problems. 

Thus, these proposed models and solution method includes versatility and possibility to their 
further extensions, and so the author hopes that the works contained in this thesis will contribute to 
the further development of general asset allocation problems dealing with stochastic and fuzzy 
programming. 
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