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1. Introduction

Let {HP ; peR} be a family of separable real Hilbert
spaces which are modeled on the Sobolev spaces on a compact
manifold without boundary. Consider a stationary process
L(w,t) on a probability space (f,%%, P) with values in a

certain class of linear operators on H® = \J Hp, which are
) P
modeled on pseudo-differential operators. Denote by L the

mean operator of L{w,t). We assume that the following abstract

Cauchy problems are 'well-posed':

du(t)
dt

t
= L((u,-E)u(t)
(1.1)
u(0) = uoeHP,

and

(1.2)

u(0) = quHp.

"The aim of this paper is to investigate the fluctuation of

ue(w,t) .around uo(t),'where .ue(w,t) and uo(t) are the



solutions of (1.1) and (1.2) respectively. Precisely, let

C([O,T]+Hq) be the space of all continuocus functions on [0,T]

with values in Hq, for g €R. Under the assumption (A.I), (A.II),

and (A.III) in section 2, we show that for any T > 0, the

wlw, t) - uo(t)
Ve

stochastic process Xs(w,t) =

converges weakly

to a Gaussian process Xo(w,t) in the sense of distribution on .

C([O,T]+Hq) for ény g s p-a, where @ is determined by the
assumptions.

A mathematical motivation of this paper was taken from
Khas'minskii's work [8]. We summarize his Qork'here. Let
F(w,t,x) be a strongly mixing process which is a twice

d

differentiable vecter field on R for each w and t. Let

F(x) Dbe the vector field defined as a mean of the process

F(w,t,x) in some sense. He considered the following Cauchy
problems

dx(t) _ t

ac = F(w,E,X(t))

(1.3)

e gy
»

(]

1

=
(o]

m

o)

[o 7]

and
dx(t) _
(1.4)
’ 1. x(0) = xoe Rd

and proved the fluctuation of x%(t) around xo(t) where xe(t)



and xo(t) are the solutions of (1.3) and (1.4) respectively.

In other words, our result might be regarded as an infinite
dimensional but linear version of Khas'minskii's work. In his
case, the Cauchy problems (1.3) and (1.4) are always well-posed
although the randoﬁ functions F(w,t,*) are non—linear in general.
In particular the energy estimate (2.4), which plays an important
role in our case, is rather trivial in virtue of the fundamental
theory of ordinary differential equations. On the contrary, in
the infinite dimensional case, the Cauéhy problems are well-
studied only for the linear operators. Therefore we shall
restrict ourselves to the linear case and consider the well-posed
class J which will be defined in Gection 2. Our strongly
mixing condition (A.I) is weaker than the assumption (3.3) in [8]
in virtue of the boundedness condition of the well-posed class 23
(see Remark 1 in [8, p. 222]). Khas'minskii assumed the existence
of infinitesimal characteristicé instead of the stationarity of
the process F(w,t,x) but the author do not know how to express
those conditions reasonably in the infinite dimensional case.

This is the reason why we assume that the process L{(w,t) is
stationary in the sense of the assumption (A.II).

Now we mention the example of the random process L(w,t)
which satisfies our assumptions (A.I), (A.II), and (A.IIT). Let
Td be a d-dimensional torus and {n(w,t): t&€R} be a Td—valued
stationary process‘whiéh satisfies the strongly mixing condition .

(A.I). Consider the following random operator of elliptic type



d . d .
- jk 3
L{w,t) = j,]§=1 ajk(X+n(w,t))ax + j21 bj(X+n(@,t))aX + C(an(w,t)).

Under some regularity conditions on ajk(x), bj(x), and c(x), we
can prove that for each , L(w,+) belongs to some well-posed
class as a function on R with values in operators on the
Sobolev spaces Hp(Td) (p&R) and we can prove that the random

function L(w,t) satisfies the assumptions (A.I), (A.II), and

(A.III). A similar result is valid for random partial
differential operators of first order. The proof of the above
facts are given in Section 3. These examples are essential in

the sense that they suggest the formulation of our problem and
illustrate the image of the well-posed class.

It is natural to ask whether the same fluctuation theorem
holds or not in the case when the process L(w,t) takes values
in partial differential operators on a non-compact manifold or
a manifold with boundary. In the former case, we have obtained
a similar result by use of the weighted Sobolev spaces in [11]

when the manifold is just the d-dimensional Euclidean space Rd.

We notice that the same problem for the second order parabolic
equations is studied in [14] and related topics can be found in
[1, p. 516-p. 533] and [7].

The main theorem is stated after the precise description of
our problem in Section 2. Two typical examples stated above are
discussed in Section 3. The other sections are devoted to the

proof of the main theorem in Section 2.
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2. Statement of Theorem

First of all we define a family of abstract Sobolev spaces
uP (p&€ R) which are modeled on the Sobolev spaces on an
orientable compact manifold without boundary. Let HO be a
real separable Hilbert space endowed with an inner product (-,°)O
and let A be a positive definite self-adjoint operator with the
inverse l\"1 which is assumed to be a. Hilbert-Schmidt operator.

Let p > 0, put gP =i)(Ap) : the domain of AP and define a

Hilbertian norm on HP by ﬁu”p = "Apuﬁo for 116?#{ For
u.éHO, we define a Hilbertian norm by {|u{[_p = | A-puflo. g P
is defined as the completion of HO by the norm nfﬁ_p. Then

it is easy to see that P is continuously embedded into 5  for
p > g and the inclusion is a compact operator. Moreover, if
p 2 g+1, the inclusion is a Hilbert-Schmidt operator. Writing

H = (M #HP and ®® = \,/Hp, the operator A can be uniquely
PER PER

extended to the operator on H™ which is also denoted by the
same letter A. Then the Hilbert space HP is characterized as
P = {uer™™; APuen®) ang lu b = [[ APul] 0 Such a family
of abstract Sobolev spaces is called a scale of Hilbert spaces
in Daletskii [3].

Next, we introduce a class of time dependent operators on
H which satisfy some conditions for the 'well-posedness' of the
equations (1.1) and (1.2). In what follows, for topological

spaces E, and E,, C(E1*E2) denotes the space of all continuous

mappings from E into E

1 2°



Definition. Let HP (P€R) be a family of abstract Sobolev
spaces which are defined above. Given a positive number m and
families of positive numbers {cp}peR and {CT[p}T>O,peR'
that a function L(+) defined on R with values in operators on

we say

H belongs to the well-po;ed class Jﬁ:‘Iim'{cp}peR’{CT,p}T>0,peR)
if it satisfies the following conditions:

(1) For each t &R, L(t) is a linear operator on H

and L(t)HP'™  HP for any p€R. Moreover, L(*) & C(R>B(HP ™uP))

and
(2.1) sup sup ] L(t)u“p P Cp,
t€R wegP*™
i, =1

where B(Hp+m+Hp) denotes the Banach space of all bounded linear

operators from #P*™  into HP.

(2) For any T > 0, and for any u,é& Hp+m, the Cauchy
0
problem
du(t) _
3 = L(t)u(t)
(2.2)
u(0) = u,
has a solution in C([O,T]+Hp+m)f\c1([O,T]+Hp).
(3) (energy estimate). If v(+)e&c([0,T1-EP*™)Nnc'(to,T)-HP)
satisfies
(2.3) d"c‘lg) = L(t)v(t) + E(t) in HP

for f(-)e¢ C([O,T]+Hp), then we have



t
. 2 . i 2 - 2
(2.4) iveerit 5 s cp (vt 2+ JO [ £(s)]l 5 as)

for all té¢(0,T].

(4) For any s > 0, Ls(°) also satisfies the conditions
(1), (2), and (3). Here Ls(‘) is the operator valued function

defined by L°(t) = L(st).

Remark. Let L(*) belong to Z. Then for any uoé-Hp+m

and foriany f(')E:C([O,T]+Hp+m), the Cauchy problem

duéz’ = L(t)ult) + £(t)
(2.5)
) u(0) = uO

has a unique solution in C([O,T]+Hp+m)[\c1([0,T]+Hp) in virtue

of the conditions (2) and (3).

We believe that if one looks at the formulation of Cauchy problems
in [ 91, [12], and [ 13] he can see that our assumptions on L are
reasonable.

Now we add the probabilistic assumptions. ‘Let (2, 7%, p)
be a probability space and {9?2 ; ~® S s St s »} bea family of

t t
sub-0O-algebrasof % with }'51 CF 52 for s,
1 2

KA

<
s1 and t1 = t2.

Our first assumption is the following:

(A.T) a(s) = sup sup |E(En] - E[E]E[Nn]]| decreases to 0 as -
t &,n
s goes to <« and J sa(s) ds < =, Here sup 1is taken over all

0 £ n



:FEm—measurable € with [|&] 51 and all C?'z+s—measurable n
with Inl s 1. As usual E[°*] denotes the expectation with

respect to the probability measure P.

A stochastic process {¢(w,t) ; - < t < »} 1is called a
strongly mixing process with mixing coefficient a(t) if it is
~t . _
IF (-measurable for each t fixed. Let X _Jﬁ(m’{cp}péR’{cT,p}T>0,p€R)
be a well-posed class. Consider a random function L(w,*) on

(Q,j% P) with values in jf. Our second assumption is:

(A.II) For any u, ve?Hm, the real valued stochastic process
{(L(w,t)u,v)0 ; -® < t < »} is a stationary and strongly mixing

process with mixing coefficient a(t).

Then we can define the mean operator L of L(w,t) as follows:

First we have

(2.6) El(LC e u,v) | s ELe,e)af v, s o llall g v

for any u, ve-ﬁm, from the condition (1) on Z. Thus, for any
ué&H” we can define Lu as an element of HO such that
E(L(',t)u,v)0 = (Lu,v)0 for any v€H® in virtue of Riesz'
representation theorem. Obviously, Lu 1is independent of t since
L{w,t) is stationary. Using the estimate (2.6), L can be
extended uniquely to an operator on H™ " which is also denoted by
L. Clearly, L satisfies the condition (1) on gﬁ' as a constant
operator valued function on R. But we do not know whether L

belongs to £ or not. From this point of view, our last
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assumption is:
(A.III) The operator L belongs to L.

Now we can state our result.

peR’{CT,p}T>O,peR) be a well-

posed class on the abstract Sobolev spaces HP (p €R) and let

Theorem. Let 2§=‘f(m,{cp}

L{w,t) be a random function satisfying the assumptions (A.I),

(A.II), and (A.III). For u,é¢ Hp+3m+1 and € > 0, we denote by

0
ue(m,t) and uo(t) the solutions of the abstract Cauchy problems:

du(t) _ t
(2.7)

u(0) = U,
and

du(t) _

3 = Lu(t)

(2.8)

u(0) = U,
respectively. Then for any T > 0, we have
(2.9) sup Efluf(t) - w(t)lf 2 5 ce

OStsT P

where C 1is a constant which is independent of €. Moreover,

uf(w,t) - ul(t)
Ve
on C([{0,T1*HP) as € goes to 0. The limit distribution coincides

the distribution of X%(w,t) =

converges weakly

with the distribution of an Hp+m-valped continuous stochastic



process -{Xo(w,t) ; 0 st 2T} which satisfies the equation

0 0 t 0
(2.10) X“(w,t) = W (w,t) + j LX (w,s) ds in ®HP
0
where the integration in the right hand side means the Bochner
integral of an HP-valued function on (o,T]. {Wo(m,t); 0 st s T}

is an Hp+2m~valued continuous stochastic process with independent

increments characterized by

0
(2.11) E(W (t),v)p+2m =0
and
. 0 0 ths 0
(2.12) EC(RT(8),v)  on (W (s) ) ) o)) = JO <v,w>(u’(r)) dr

for v, w«sHm, where <v,w>(u) 1is given by

(2.13) <v,w>(u) = JO dt E[((L(t)-L)u,V)p+2m((L(O)—L)u,w)p+2m
+ ((L(O)—L)u,v)p+2m(L(t)-L)u,w)p+2m]
for uc¢ Hp+3m and v, W'GHw.

In the statement of Theorem, we did not refer to the

measurability of ug(w,t) but it is guaranteed by the following:

Proposition 2.1. Assume that a random function L{w,t)

with values in £ satisfies that (L(w,t)u,v)0 is 9% -measurable

for any u, vEH . Then for any uoer, the solution of the

evolution equation

11



du(t)

a3t = L(w,t)u(t)

(2.14)

u(0) = U,

is %| B(c(10,T1+HP))-measurable, where ({J(E) denotes the

topological Borel O-algebra of a topological space E.

Proof. Let J be the Hilbert space of all Hilbert-Schmidt

operators from HP into HP ™1 cndowed with Hilbert-Schmidt

norm., We regard £ as a topological subspace of C([0,T]+%).

For a sequence {Ln}:—o C L we denote by un('), the solution

of the equation égé%) = Ln(t)u(t), u(0) = ug- Assume taht
L, converges to Lo in c([0,T]*#) as n -+, n2z2 1. Then
we have |

a2 @) -ue)) = (o) o))+ @ (oL e)ul(e)
in HP™ and so in ®PT™ T, From the energy estimate (2.4),
we have

‘n 0,2 t 0,2
fu™(t)-u (t)“p_m_1 s cT'p_m_1Joll(Ln(s)—Lo(s))u (s)Hp_m_1 ds
= C T supliL_(s)-L (s)H2 . sup Huo(s)”
T,p-m-1 n'- 0 HS

0sssT 0<ssT

Thus the function ¢ : &L 3 L(+) > u(+) & C([O,T]+Hp—m-1) is

continuous where u(t) is the solution of duég) = L(t)u(t),

u(0) = u,- Next we show that the function L(-,*) : w € Q ~»
L(w,*) ¢ Z is | B(Z£)-measurable. 1In virtue of the second

countability of the topological space L, it suffices to show

12
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that {wéR; sup [ Llw,t)-L(t)il g < &} ¢“F for any L(-)¢J and
Osts<T

any & > 0. On the other hand, we have

{weQ; sup HL(w,t)-L(t)NHS < &8}
OstsT

-V /N {w; § Llw, £)-L(t)l 4o s 6—27}
n=1 teQN{0,T]

and
(o 5 ILw,©)-L(ell oo s 6-1)
(=)
. ) 2 1,2
where {ek};;1 is a complete orthonormal system of uP. Since
for any ec¢ Hp,
]{(L(w,t)-L(t))e“p_m_.l = sup |((L(w,t)—L(t))e,V)p_m_1l

veHP

; =1

Hva
and since Hp—m—1 is separable, we conclude that
“(L(w,t)—L(t))er_m_1 is ¥ -measurable. This implies that
{w; sup [iL(w,t)—L(t)UHS < 6}63:. Thus the function L(+*,*)

0st=sT
w+ L({w,.) 1is jfﬂ(z )-measurable. Since u(w,*) = ®(L(w,*)),

w(w,*) is F| B (C([0,T]->Hp_m“1))-measurable. On the other hand
u(w,*)ec([0,T]+HP) by the condition (2) on.Z. and cC([0,T]+HP)

p-m-1

is a Borel subset of C([0,T]>H ), we can see that u(w,t) is

:Z|&3(C([O,T]+Hp))—measurable. //
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3. Examples

In this section we shall give two typical examples of random
functions L(w,t) which satisfy the assumptions (A.I), (A.II),
and (A.III) in the previous section (see Proposition 3.2 below).

Let M be a d-dimensional torus Rd/Zd. As usual we
identify a point in M with a point in [0,1)d and a function on
M with a function on Rd which is invariant under the action of
Zd. Let HP(M) be the Sobolev space of order p on M. If we

put HP = HpB(M) for some B >—%7 gP (p€ R) form a family of

abstract Sobolev spaces. In this case, HO = HO(M) = LZ(M) (= L2—
space with respect to the Haar measure on M) and A = A%f where
R L d 32 .
Ay = (1-8)%2 and A = ] -2, . Let K be a positive constant
j=1 axj :

and let {Aa}a be a family of positive numbers where a's are

multi-indices, Put

6}4 =-{a(t,x);a(t,-) is a continuous function from R into
c”(M>R) and sup laia(t,x)] < Aa for any multi-
’

index a} ,

a Gqreccreg oy %3
where 9, =2 /ax1 ceedXg - Consider the following

classes of time dependent differential operators:

d
L, = (L(t) = ]

b. (t,x)33 + c(t,x); b.(t,x) e,
1 R x 3

clt,x)¢ d 3 =1, 2, ..., 4}

and
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d ik a .
L= {L(e) = ) a.. (t,x)3 + Y b.(t,x)d + c(t,x) ;
2 5, k=1 Ik S P R X

ajk(t,x)écﬁl, bj(t,x)féﬂ ' c(t,x)e&ﬂ 1 23, k =4

4 a
and inf ) a,(t,x)E & 2K ] £2  for any
t,x j, k=1 3 J j=1 A

d
(€ ceoy Ed)e R }.

17

First we show the following:

Lemma 3.1. There is a family of positive constants
{Kp}péR such that for any u&H (M)
_ . ,
(3.1) sup (L(t)u,u)_ s K_jull
£ER P P p

holds for ‘any‘j L(°)évf1 UI’Z’

Proof. For L(-)e,f1, we have 2(ApL(t)u,Apu)0 =
2000P, L) Ju, APu) o+ ((L(E)+L(£)*)APu, APu);  for each té R,
where L(t)* is the formal adjoint of L(t) and [AP,L(t)] =
ApL(t)—L(t)Ap. In the same way as Corollary 1% and Corollary 2°
of Theorem 1.7 in [ 9, p. 59-p. 60}, we can show that L(t)+L(t)*
and [Ap,L(t)] are pseudo-differential operatorsof order 0 and
p+1-1=p respectively.” 1In particular we can show that
I(L(e)+L()*)ully = Dywull o and |[TAP,L(E)Juliy s Dyflull,  for
u €-H°°(M) where D1 and D2 are positive constants depending
only on p and Aa's. Thus we have !(L(t)u,u)p[ s (D1+2D2)Huﬂg.
This implies (3.1) for L(*)¢ L.

For L(°)¢ £ ,, we consider the operator AP(_L(£)A-P,



Then it isa second order elliptic pseudo-differential operator on
M. In the same way as the proof of Ggrding's inequality for an

elliptic operator on Rd, we can show that
(3.2) - (APL(8)APu, w), 2 D fuli’ - D, lluli?
) ! 0 = 73 1 4 0

for any u<§Hm(M) where D3 and D4 are positive constants
depending only on p, K, and Aa's. For the detailed proof see
Kumano-go [9 , p.54-p.60, p.79-p.81 and p.134] or Taylor [13
Chapter II p.55]. In the inequality (3.2), substituting APu
for u we obﬁain (ApL(t)u,Apu)O < D4llApu|I§. This implies (3.1

for L(-)ejfz.
Now we can show:

Proposition 3.1. There exist families of positive numbers

{Colper 2nd {Cp Slosg, oer

the well-posed class ji(k,{Cp}

such that 2Z Kk is a subclass oz
peR’{CT,p}T>O,p6R) for k =1, 2.
Proof. fo prove the proposition, we have to verify that
every L(°*)¢€¢ Jf}( satisfies the conditions (1), (2), (3) and (4)
in the definition of the well-posed class. It is an
immeadiate consequence of the Calderdn-vaillancourt theorem (see
11, p.224]) that there is a family of positive numbers {Cp}peR
such that the inequality (2.1) holds for any ©L(-) € Jf]<, k =1,
So (1) is valid for any L(*)e X ,, k =1, 2. (4) is clear
from the definition of ;Zk' Ngxt we prove the energy estimate

(2.4). Suppose that for L(:)€ 2 ot

)

2.

16



17

1
v(e)e (1o, 18P ) nciro,11.8P) ana T - nie)vie) + g0t

for f(-.)e C([0,T]-HP). Then we have

A

d 2 ; 2
dtllv(t); 5 = 2(L(t);(t),v(t))p + 2(f(t;,v(t))p s zzp{:v(t)n ot
I ECE) i o * Il V(t)Hp = (2Kp+1)" v(t) |l o ¥ IECE) |l o in virtue
of Lemma 3.1. Applying Gronwall's inequality.([13, p.73}) to

I v(t) | ; we have

5 (2Kp+1)T i 5 t | 2
. Tl veo E: a
I v( )Hpge (Il v(o) o * . (s)llp §)
(2K_+1)T
for any t€1{0,T]. So we can take e p for CT o
14
Thus the condition (3) is verified. From the energy estimate

we can show the solvability condition (2) by the standard manner

in Taylor [13, Chapter IV]. !/

Next we construct the examples of random functions L{g,t)
which satisfy the assumptions (A.I), (A.II) and (A.III). Let

{n(w,t) ; =» < t < »} be an Rd—valued stationary 'and strongly

mixing process with nixing coefficient a(t). Furthermore we assume
that all of its sample paths are continuous. For fixed elements
d .
Ly = 1 b.(x)d2 + c(x) e L
. 3 X 1
J=1
and
d . d .
= jk ] :
Ly = 1 a0y + I bi(x)d; + clx) ¢ Z,
Jlk=1 :]=1

with coefficients which do not depend on t, we define random
functions L1(w,t) and Lz(w,t) taking values in Ji1 and sz

by



d .
L,(wt) = T ob.(x+n(wt))d + c(x+nlwt))
j=1 *
and
d k d .
Lo(wt) = ) a-k(X+n(w,t))<’9j + 3 blx+nlwt))al + clx+nlwt))
i, k=1 J X =1 X

respectively. Then we can prove:

Proposition 3.2. The random function Lk(w,t) satisfies
the assumptions (A.I), (A.II) and (A.III) for k =1, 2.
® . od
Proof. For any u, veH (M) and y& R the map @k t y >

(Lk(y)u,v)0 is continuous where

d .
L1(y) = ) b,(x+y)8J + c{x+y)
j=1 *
and
d 3k d 5
Lyy) =} g (x+y) 8" + I b (x+y)ay + clxey).

By the assumption on n(w,t), (Lk(w,t)u,v)O = @k(n(w,t)) is also
a stationary and strongly mixing process with mixing coefficient
A(t) for k =1, 2. Thus (A.I) and (A.II) are satisfied. It
remains to show (A.III). Denote by '_k the mean operator of
Lk(w,t). For each xé&€M fixed, put Egk(x) = E[ajk(x+n(-,t))],
“ES(x) = E(by(x+n(+,t))] and Cc(x) = Elc(x+n(+,t))] for 1sj,ksd
We can easily see that

—_— d _ j _

L, = j£1 bj(x)ax/+ c(x)

and

18
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— da _ 5k d _ 5 =
L, = j,£=1 ajp(x)3 " jz1 by(x)3; + clx),
and .fk belongs to Jf]< for k =1, 2. Hence (A.III) 1is
satisfied. //
r
Remarks. (1) put HP = HpB(M)+°°°+HpB(M) and
£ _xr B8

2

A = (AO+---+A§). Consider the following class of time dependent

operators on H .

.Zr

1

[}

d
{L(r) = }

Bj(t,x) is an rXr-symmetric matrix with entries in 54

and C(t,x) is an rXr-matrix with entries in . }.

u

For uy = [501} € Hp, we can consider the Cauchy problem for the
Yor

first order symmetric hyperbolic system. x?1 is the special

case (r = 1) of oi f.

(2) For a positive integer m consider the class
jfzm = {L(t) = ) aa(t,x)ai ; aa(t,x) 6(}4 and
|a]s2m .
m+1 d 2.m
inf ((-1) yoa (t,x)e%) 2 K(§ £5)
t,x la|=2m © j=1

for any £ = (5.1, «sey Ed)& Rd}l

a, o a
where ga = 51152 ---gdd for multi-index ¢- The operator in

<

om 'is called the 2m-th order elliptic differential operator.



In these cases of 2° f and Ame’ we can construct the same

examples as in the cases of 2?1 and & 5 respectively.

20



21

4, Auxiliary Lemmas

First of all, we give two lemmas, Lemma 4.1 and Lemma 4.2
which are concerned with strongly mixing processes. Lemma 4.1
is the basic tool in our argument and it can be proved in the
same way as the proof of Lemma 2.1 in [ 8 ]. Lemma 4.2 is used
in Step 1 of the proof of Theorem in the next section, and it is
an immeadiate consequence of Theorem 18.2.1 and Theorem 18.3.1 in

(61.

Lemma 4.1. Let n be a positive integer. Let Qi(w,t),
i=1, 2,..., 2n be real valued strongly mixing processes with
mixing coefficient «a(t) where expectations are zero for each t
and M, = sup I@i(w,t)l < ., . Then there is a positive constant

t,w

C(n) which depends only on n and af(t) such that

t+T  £+T t+T
(4.1) Jt Jt ---Jt ds1d52--°d52n |E[®1(s1)@2(52)---®2n(52n)]|

< C(n) T® M. M_ "M

M5 on for any t. //

Lemma 4.2. Let {¢(w,t) ; ~=» < t < »} be a real valued
stationary and strongly mixing process with mixing coefficient

a(t) whose expectation is zero and M = sup |¢(w,t)]| < =.
t,w

Then there is a positive constant C such that

CM2

d(t) dt|2 - 2[‘ Ele(t)e(0)] dt| = — . //
0

1 {7
(4.2) I_EIJ
/T

T
0



In what follows we drop the letter  1if there occurs no
confusion and we always assume the hypotheses of Theorem in
section 2. Recall that

uf(t) - uf(e)
Ve

(4.3) xE(t) =

where u;(t) and uo(t) are the solutions of evolution equations
(2.7) and (2.8) respectively. Since the initial data u, is in

1
gP*t3m+1 e have xF(-)e c(ro,T1-uP3™y Ac(ro,T1+EP 2™y ang

Xs(') satisfies the equation
(4.4) xE(t) = wE(t) +Jt L(S)XE(S) ds
0
as an Hp+2m+1-valued function on {0,T]. Here We(t) is
defined by
: € Tt s 1.0 1 p+2m+1
(4.5) W-(t) =<-J (L{(=)-L)u ' (s) ds € C([0,T]-H ) -
vE 'o &

Let Ys(t) be the solution of the equation

t
WE(t) + J LYE (s) ds
0

YE (t)

(4.6)

Y& (0) 0.

1 )
Since -—(L(%J—L)uo(t)é’C([O,T]+Hp+2m+1), the equation (4.6) has

vE
a unique solution in C([O,T]+Hp+2m+1)f\C1([O,T]+Hp+m+1) in

virtue of the assumptions on the class éf . Put
(4.7) z€(t) = x5(t) - ¥°(t) € c([0,TI-HPH2M+T),
Then Zs(t) satisfies the equation

22
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t t

(4.8) 7E(t) = j L(2)z25(s) as + j (L()-1)¥S(s) as

0 0

Hp+m+1-valued function.

as an
In the rest of this.paper, unless otherwise stated, the
letter C 1is commonly used to denote those constants which are
independent of €, w, and t€ [0,T].
In the following lemma we give the basic estimates for the
above defined processes which guarantee that the distributions

of the associated processes are tight on C([O,T]+Hq) for

properly chosen g.

Lemma 4.3. Let {eg};=1 be a complete orthonormal system
of Ho which consists of the eigenvectors of A. Then
{ei = A_peg }§=1 becomes a complete orthonormal system of 5P,
Let NE . 2P » [e?,eg,...,_e?l]'L be the orthogonal projection onto
the orthogonal complement [e?,eg,...,eg]J' of the finite
dimensional linear subspace of HP generated by e?, eg, ooy eg.

Under the same hypotheses of Theorem in section 2, we have, for
any t, t+h € [0,T]

«©

p+2m. . p+2m._.£ 4 < 2 p+2m+1, 2 2
(4.9)  Ellwy "= (eeh)-m " (0 0 o0 s ch (k=121+1 (i e I oeom)
4 2, % 1,2 2
(4.10) E!{Ng+mY€(t+h)—n§+mY€(t)Hp+m sch( ] feft™ [y
. k=n+1
(4.11) E”XE(t+h)—X€(t)Hg < ch®, and
(ot s £ il 2
(4.12) sup Eujo (L(3)-0)¥¥(s) asfZ, 5 s ce .
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Proof. Proof of (4.9). Write e and 7w for e5+2m+1
and n§+2m respectively. Put ®k(s) = ((L(s)—L)uo(es),ek)p+2m+1

k=1, 2, ... . Then it is easy to see that wE(t) can be

written as
w £
£ €
(4.13) W (t) = Ve (J ¢ (s) ds)e,.
k=1 0

Using the fact that {ek}z=1 is also a orthogonal system in

Hp+2m we have from (4.13)
€ € 4
(4.14)  Ellnw® (erh)-mw® (0] 0 o0
t+h t+h t+h t+h
23 T oyle, 12 e, i 2 jejajeje
= € e e
k=01 ky=n+1 kppramikoipeam) )y Je e
€ € € €
ds1dszds3ds4 E[®k1(s1)®k2(52)®k1(s3)®k2(s4)] .

From the assumptions on L(w,t) we have

¢, (s)] = C sup luo(r) Thus from Lemma 4.1 we obtain
k

0=reT p+3m+1°
e c 4 2 PO 2 2
Bfnw® (ten)-nws ()] S, on 8 ChTC T ells o) -

k=n+1

Proof of (4.10). Let {T(t)} be the semi-group of

OstsT
linear operators on H™” such that for each uEin+m,
T(t)u € C([0,T]~EP"™)Nnc'([0,T1+HP) denotes the unique solution

of the evolution equation

I5 - Lu(t)
(4:15)
u(0) = u.
Write e and 7§ for e£+m+1 and E+m respectively. Put



25

8 (s) = (T(t-es+h) (L(s)-L)u’(es), e and

1}

k)p+m+1

0
((T(t-es+h)-T(t-es))(L(s)-L)u (es),ek)p+m+1.

¥ (s)
Then we can easily see that

(4.16) | |¢ (s)| =C sup ]]uo(r)”

0 <r <T p+2m+1

and

m|9

(4.17) |¥ (s)| =ch for 0 = s =

14

+Hp+2m+1)

since (L(%)—L)uo(r)é C([0,T] and

t-s+h
((T(t-s+h)-T(t-5)) (L(D)-L)ul(s) = J Lr(e) (L(2)-1)a’(s) ar
t-s

Hp+m+1 for 0 £ s =t g T. On the other hand we can write

in

¥ (t+h) - ¥E(t)

] t+h S 0
=j§rjt T(t—s+h)(L(E)-L)u (s) ds
, ¢ (T(t-s+h)-T(t-5)) (L(2)-1)u’(s) as
vE Jo €
=I1 +I2.

Therefore in the same way as the proof of (4.9) we have

(=] «©

4 2 ; 2 2 ii 4 4 2 2
EllrI < Ch e |l and EljnI £ Cch e .
'“" ”lp+m (k=g+1 “ klp+m) ” 2“p+m = (k=£+1 I ﬁ'p+m)

Hence we have

Ellny® (t+h)-m¥S ()| ¢ = cn
p+m k=n+1

Proof of (4.11). First we show that



e 2 ¢
(4.18) NxS(e)iZ s CUO

<
In fact, since W (-) €C'([0,T]-HP*2™)

t
[| W& (s)ll
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2 4 . |
p+2§-+ﬂw€(t>ﬂp+2m

]

and

xE(ye c(ro,T1-8P3 N ¢l (10,71-8P%20), we have

t

xE(t) - wh(t) = J L(x%(s)

0

t
Lw€(s) as ,

- w&(s)) ds + J
0

where the integration in the right hand side is the Bochner

integral of an HP*™_yalued function on (0,T]. Thus from the
energy estimate (2.4), we have
€ £ 2 t £ 2 ﬁ[ € 2
HxX=(t)-w (t)“p+m s CT,p+mJ0,,Lw (s)Np+mds < cT,p+me+mJO W (s)“p+2mos.
This implies (4.18). Thus we have
4
(4.19) sup E[x®(e)] <
; OstsT p+m
by using the estimate (4.9) with £t = 0, h = t, and n = 0. On the
other hand t+h . o
XE(t+h) - xB(t) = wE(t+h) - wE(t) + J L(que(s) ds in HPTT,
t

Therefore we have

2E[|WE (t+h)

<

EHXE(t+h)—X€(t)“§

In virtue of (4.9) it suffices

right hand side. But we have

E“J
t
t+h,t+h t+h,.t+h

[ asyes,
t t t t

h
© L(2)x=(s) as||?

IA

wee)lld o+ 2z . L(2)xE (s) as|?
p ft € p’

to estimate the second term in the

4 S,
JyyE {
ds;as, 1 Efn))x (sj)llp

j=1



t+het+h t+h t+h 4 I T
2 CJ J J f ds.ds.ds.ds I EfX (s.)]

t t £ t 1772773774 5=1 j VU p+m
s Ch4.

from (4.19) and Holder's inequality.

Proof of (4.12). Put p, = p+2m+1, p, = p+m-1, p; = p+m-2,
Pq P . L
ek = ek and fk = e for convenience. In~add1tlon, put
0
@k(s,r) = (T(s-er)(L(r)-L)u (aJ:‘),ek)p1 and
Tkz(s) = ((L(S)-L)ek'fz)pz' Since we can write
S
£ ot € . P1
Y*(s) = Z /e ( o, (s,r) dr)e in H
k k
k=1 0
and
@ . )
(L(s)—L)ek,= 2£1 wkl(s)fl in H7,
we can easily see that
t S 2
EH/EJ ds (L(Z)-1)YE (s)]|
0 € P3
t
2y el 2 7 g %Tdd 51525
= g £, f J s.ds j f r.dr
gt Pk kyldo T EHoto T2
E[cbk1(s1,r1)@kz(sz,rz)wk12(s1)\szl(sz)].

Therefore we have

(4.20) E|/z J (L(2)-L)¥® (s) dng

t

0
o2 2
SRLE

172

[Etoy (51,5308,

2

3

ettt
elele]|e
J J J j ds1ds ds.ds

000 0 277374

(32,54)Wk12(53)wk22(s4)]|
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On the other hand it is easy to see that

0
o, (s,r)}} £ C su u” ()il
|y I osth]l Sl

and

| ¥, ()] = ueknpzm.

Thus applying Lemma 4.1 to (4.20) and recalling p1 = p+2m+1,

P p
Py = p+m-1, p3 = p+m-2, e = ek1 and fk = ek2 we conclude
that
E“/Ejt (L(§)_L)Y€(s) dsﬂz sc 7’ ‘ep+m 112 (T ep+2m+1( )2
0 € p+m-2 ~ l' 2 ‘p+m—2 % lp+2m-—1

Hp+2m+1<: Hp+2m-~1

since the inclusion is a nuclear operator

Hp+m—1c: Hp+m-—2

and the inclusion is a Hilbert-Schmidt operator. /7
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5. Proof of Theorem

The purpose of this section is to prove Theorem in section 2.

ugt)-ud(t)
As before, X&t) = '
Ve
t

WE(t) =/léJ (L(—S&—:)—L)uo(s) ds, and 2z%(t) = X5(t) - Y&(t) where
0

v&(t) is the solution of the equation (4.6).

Now we prove Theorem. The averaging principle (2.9)
follows immeadiately from the estimate (4.11). The proof of
the fluctuation property is divided into following four steps:
In Step 1, we show that the distribution of W%(.) converges
weakly to the distribution of WO(-) on C([O,T]»Hp+2m).
In Step 2, we prove that the distribution of () converges
weakly to the distribution of XO(°) on C([O,T]»Hp+m). In
Step 3, we prove the tightness of the distributions of x€(+) on
C([O,T]+Hp). And in the last step we show that the limit

distribution of XE(') coincides with the distribution of Xo(o).

Step 1. The estimate (4.9) of Lemma 4.3 implies the

€(+) on cC([0,T]+HP*?™) in

tightness of the distributions of W
virtue of Proposition 4.1 in [101]. We have to show that the
distribution of WE(') coincides with the‘distribution of Wo(o).

For any finite sequence sS4 s t1 < S, = t2 < ees <5y tk

and any finite sequence h1, h2, ey hn € Hm, define



n-dimensional random variables A§/ =1, 2, ..., k by

A§ = ((We(tj)—ws(sj),h1)O,..., (Ws(tj)—ws(sj),hn)o). Then for any

géRn, we have

k k
(5.1) |E exp( § i(g ASN-TE exp(i(g,A§))| s ol »0, as -0,
j___1 ] j=1 6
where (+*,+) denotes the Euclidean inner product on R™  and
§ = min (t. .-s.). (5.1) . guarantees that any limit process
1sjsk-1 J+1 73
of WE(-) has independent increments. Therefore, as in the

case of the finite dimensional continuous process with independent
increments, it suffices to show the following lemma to see that

the limit distribution coincides with the distribution of WO(-).

Lemma 5.1. For any V,wé.Hco and any 0 s s, t £ T, we

have
(5.2) E(WE(t),v) =0

) v p+2m ~ '
and

c tAs 0
; € y _
(5.3)  lim EL(WE(E),v) o0 (WE(s),w) 500 = J <v,w>(u’(r)) dr
e=+0 0

where <v,w>(u) 1is the same gquantity as the statement of Theorem

in section 2.

Proof. The proof is similar to that of Lemma 3.1 in [ 8].

(5.2) 1is obvious. We prove the equation (5.3). For the sake
of simplicity, we assume that v =w, T2 1 and t =s =1, Put
0
o(r) = ((L(r)-L)u (er),V)p+2m and
0.,k
¢ (r) = ((L(r)-L)u (Hﬁ’v)p+2m for k=0,1, ..., n-1,
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where n 1is a positive integer which will be determined later.

Then we have

2

€
ECO (1), V)5, o0

11
ejeje dr,dr, E[®(r,)8(r,)]

]

0’0 1772
= 4JG dr1dr2'E[®(r1)¢(r2)] + ejj dr.ldr2 E[@(rT)@(rz)]
. G
1 2
= I1 + 12,
n-1 k k+1
where G, = i:é {(r1,r2) P He S Tqr Ty S 7 } , and
G, = [0,21x(0, 1 —g¢ since |o(r)| s c sup {ul(s)l__. lIv]
2 "e e B = 0 p+3m p+2m
sssT
for 0 s r g-E, we have -
k k+1
nl (me. (me
1,1 s 2 1 effar, [N ar,|Eletzy ety
k=0 0 _—
ne
k k+1
nl (Ae Te 2
=2 3 EJ dr1f K dr2a(r2—r1)(sup [@(r)l)
k=0 0 _— t,w
ne !
s cC nsllvﬂ§+2m,
from the strong mixing property of &(r). Next we have
k+1 k+1
n-1 -H'E- —1'1_8-
I = ¢ kgo~[li [ arjar, Bloy (xey(r)))
- ne ne
k+1 +1
2l (he (e
+ e ¥ J K J x drydr, Ele(r)e(r,)-¢, (r,)e, (x,)]
k=0 HE n—e-
= I, + I
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Put g(n) = sup 1Huo(s1)—uo(sz)“ Then we have
|s1-82 1=

0551,52§T

p+3m°

. T .
|o(x) - @k(r)l < C 6(n)hv“p+2m for 0 =r s <- Thus using
Lemma 4.1, we can show that
1 : 2 o2
ATyl s Conegz s VIS 50 = comfivils o

On the other hand, from Lemma 4.2 we obtain

k+1 k+1 -

ne | ne Fod 2
Ine| ¢ | _k_dr1drzE[‘%<‘r1”’k‘rz”‘2J0 Eley (0)o (£)1at] = cymellviZ, o

ne ne

Therefore we have

2 oot e Y 2
|15 - < % J E[9, (0)¢, (t)1dt| < C/EE“V“p+2m°
k=0 ‘0
Hence we have
2 n-1 ;« .2
|I--E-kzo Jo E[@k(O)Qk(t)]dtl < C(ne+/ﬁ§+6(n))flvﬂp+2m-

Taking n = n(€) so that n(e)e - 0 and n(g) » » as € » 0,

and recalling the equation (2.13) we conclude that

1
lim E[(W€(1),v)2+2m] =J <v,v>(u0(rn dr. //
€>0 P 0

Step 2. In virtue of Proposition 4.1 in [10], the estimate

(4.10) implies the tightness of the distributions of ¥¢ () on

[=-]

c([0,T]+HP*M) Let {eg_}

o’ n=1 DPe any sequence with e, >0 (n>)



€
such that the distribution of Y B converges weakly on

C([O,T]+Hp+m). In virtue of Skorohod's theorem (see Theorem 2.7

in [6, Chapter 1]), we may assume that C([O,T]+Hp+m)-valued
€

random variables Y n converge in C([O,T]+Hp+m

) Pa.e. .
Thus the limit process YO(') satisfies the equation

£
v9e) = wle) « f v%(s) ds in ®P.
0

p+2m

On the other hand for w(-+)€ Cc([0,T]+H } consider the equation

t
v(t) = w(t) + J Ly(s) ds
0
(5.4)

y(0) 0.

Let u(-)E¢€ C([O,T]+Hp+m)[\c1([O,T]+Hp) be the unique solution of

the egquation

é&é%l - Lu(t) + Lw(t)
(5.5)
u{0) = 0.

It is easy to see that vy(t) = u(t)-w(t) is the unique solution
of the equation (5.4) in c([0,T1-EP*™) A c'(10,T]+EP) and

[(y(t)”p s C“w(t)”p for any 0 = t £ T, in virtue of the energy

estimate (2.4). Therefore the correspondence C([O,T]+Hp+2m)9 w ()

> y(+) & C([O,T]+Hp) is a continuous mapping. Hence 'the equation
(2.10) determines & unique probability distribution on C([O,T]-,*Hp)°

The proof of The second step is now complete. //
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Step 3. Different from the finite dimensional case, the
tightness of the distributions of Xe(-) on C([O,T]+Hp) can
not be shown directly from the estimate (4.11), but in the
present case, it can be shown by the following argument. For

any 6 > 0, there is a positive constant C such that
(5.6) - Plwe@; XHw ) € I} >1-6,

where - I‘1 = {x(-)GCKIO,T}+Hp) ; x(+) are equi-continuous

. and sup x(t) s C}.
I [l

On the other hand we can show that

(5.7) sup || XF(t)]f sC sup [[WE(D)

0 st <T p+m 0 st <T p+2m

from the estimate (4.18) in the proof.of (4.11). From (5.7)

and the tightness of the distributions of WS(+) on C([0,T]-8P*%™)

we can see that for any 6 > 0, there is a positive constant C

such that
(5.8) ploe ; x“(w,") € T,} >1-6,
where [, = {x(*)ec(ro,T]-u"""), i el = C -

Since any bounded set in HP™M s relatively compact in uP,
IHﬂIé is arelatively compact set in C([O,T]+Hp) in virtue of
Ascoli-arzela theorem. Hence from (5.6) and (5.8) the

distributions of XE(‘) are tight on C([0,T]+HP). //
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Step 4. This step is quite different from the finite
dimensional case (see Khas'minskii [ 81]). For gq £ min(p,p+m-2)
let be the HIlbert space of all Hilbert-Schmidt operators
from HY into HI ™' endowed with an inner product

(5.9) (A,B)HS =

q q
. (Aek,Bek)

g-m-1"'

0~ 8

1

where {eg} is a complete orthnormal system of g9, Let

k=1
L2([O,T]?ﬂﬂ be the Hilbert space of all ?Y -valued L2-functions
defined on [0,T] endowed with an inner product
T

(5.10) ((AG),B()) = jo (A(t),B(t))qat.

From the definition, the well-posed class .2 is contained in a
closed ball s, C L2([0,T]+ X ) centered at 0. Since S,
is a weakly compact set in Lz([O,T]+ Z¢ ), it is a compact

metric space with respect to the weak topology in virtue of

Theorem 3 in (4, p.434]. For example, the metric is given by
o 1

(5.11) d(A(-),B(+)) = } —TJ((AO)—B(-),BH(-)DI
n=1 2

for A(+¢), B(+) € S where {Bn(-)}°°

o’ n=1
in L2([0,T]+ & ) such that their linear hull is dense in
L2((0,71>» %) and (B_(),B (-))s1 for m=1,2, ... .
In particular the sequence [Bn(-)}z=1 can be chosen so that
o 2
(5.12) Y ( sup |[B (t)eqfl_ ) s .
k=1  ostsT B K g-m-T
In fact, let €k: denote the linear subspace of all elements

B(-) of C([0,T1»>%{) such that B(t)e]l = 0 for all t¢€[0,T]

is a sequence of elements
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if k 1is sufficiently large. Then it is easy to see that ;{
is dense in L2([O,T]+;¥ ). Thus we can take a sequence
{E;(-)}:_1C:73 which is dense in LZ([O,T]+7% ). Therefore

we can choose Bn(-) as

[e o] oo 1
o 2 .34
Bn(-) = k§1 ( OZEZT HBn(t)eKHq_m_1) ) B,(-).

Consider the product space
(5.13) S = C([0,T]+Hq)XC([O,T]+Hq_m_1)xSO.

t t
Put F%(t) =J (L (s)-L)¥%(s) ds where LE(t) = L(Z).

0

Then the distribution of F&(.) converges weakly to the
distribution of the process © which is identically zero. In
fact, since g = p, and since we have already shown that the
distributions of YE(') on C([O,T]+Hp+m) are tight, it is easy
to see that the distributins of FE(') on C([O,T]+Hq) are
tight. On the other hand, sup E[F (t)]|.+ 0 as € - 0, from
0StsT q
the estimate (4.12). Hence we have the above fact. Next we

have

E{A(LE(+),L)]

- . £ _ q g
= E{ n£1 2n|JO kZ‘] ((L™(t) L)ek'Bn(t)ek)q_m_']dtl]
. nz1';; k£1 EIJO (L) -Lyed,B (tred) . at

-] 1 o) T
= R— = _ g q 241
= n£1 n k£1 (E|J0 ((L7(t) L)ek'Bn(t)ek)q_m_1l )=,

On the other hand, we have from Lemma 4.1
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T
€ q q 2
E[JO (LE(e)-L)ed,B (e . dt|

T T
- 2[e(e el q
- e JoJo as,ds,EL((Lis;)-L)ed,B (s )ef) |

q q
((L(sy)-L)ed,B (esy)ef) . 1]

< - q 2 q 2
s Ce ( sup I\Bn(t)ekuq_m_1) ”ek“q-m-1°

0stsT

Therefore it follows that E[d(L®(-.),L)] s Ce in virtue of

Schwartz' inequality. Hence we have shown that for any sequence
€
- . n
{En}n=1 with €, > 0 as n+»», L "(«) converges to L
(non-random) in SO in probability. In virtue of Theorem 12.3
€ €

n n)

in [2, p.195]), the distribution of (F ~, L converges weakly

to the distribution of (0, L) on C([O,T]+Hq-m—1)xso. Suppose
that the.distribution of Zén(-) on C((O,T]+Hq)v converges
weakly tQ»the distribution of ZO(°). Using Theorem 12.3 in [2]
again, wé can see that the distribution of (Zen, Fen, Len) on S
converges weakly to the distribution of (ZO, ©, L). In virtue
of Skorohod's theorem, we may assume that (an, FEn, Len)
converges to (ZO, ©, L) in S. P-a.e. . For a while we

proceed our discussion with fixing an ®wéQ such that
€ € £
(2 n(m), F n(w), L n(w)) converges to (Zo(w) , ©, L) in 8.

For any fixed t €[0,T] and hé—'Hq-m_1 we have

t

0 0
(2 (t)’h)q—m—1 - J (LZ (S)'h)q=m_ ds

0 1

€
0 n
= (27(t), ) g - (2 R

t En En En .
+ f (L "(s)2Z (S)lh)q_m_ ds + (F (t)'h)q-m~1

0 1
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t

€n 0
- Jo (L (s)Z (s),h)q_m_1 ds

t £ t
n 0
+ j (L "(s)Z (s),h)q_m_1 ds —.J

0
0 (2 (S)’h)q—m—1 ds.

0

€n 0 €n
Clearly, |(Z (t),h)q_m_1—(z (t),h)q_m_,‘]-»O, ](F (t),h)q_m_1|+0,

and

t n €n t €n 0
IJO(L (s)z (s), h)q_m;1ds _‘Jb (L "(s)z (s),h)q_m_1ds[+0 as

7

n oo, Let ¢ Dbe the space of all Hilbert-Schmidt operators
from - HI™™ 1 into  mY. We note that L2([O,T]+§€) and
L2([O,T]+9%'/) are isometric and isomorphic by the correspondence
L2(10,T1> Z) A(-)~> A’ (-)€1%((0,T1> %7 ) where for each t,
A/(t) = A(t)/ : the dual operator of A(t). We define an

/
element B (+) of L2([0,T]+}% ) as follows:

=
Hh
(]
A
n

A
+

{ cZO(s) for g = ch (c € R)

0 for gé&ich ; ¢ Rji

0 if t < s

nA
!

e .
Since L B(-) converges to L in the weak topology of

L2([O,T]-9§Q ) we have

t en 0
JO (L (s)Z (s),h)q_m_1ds

T / En/ T / /
= J (B"(s)h,L (s)h)qu > J (B (s)h,L h)qu

0 0

- Jo (LZo(s),h)q_m_1ds (n+ ).



Thus we have seen that

z%t),h) - Jt (£z%(s),h) ds
"l gem-1 0 " g-m-1

T and for any h & ga-m-1 Therefore

0 t o
2°(t) = J LZ (s) ds for any 0 s t =
0

Hence we have seen that ZO(-) = 0. It follows that the

distribution of

Zs(') on C([O,T]+Hq) converges weakly

Therefore the limit distributions of x%(.)y anda Y%(+)

on

c(ro,T1+5%).

Hence they coincide on C([O,T]+Hp).

completes the proof of Theorem.

we have

T P-a.eu-

to O.
coincide
This

/1
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