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A FLUCTUA[VION

           FOR

THEOREM ASSOC!A[rED WrTH CAUCHY

 STATIONARY RANDOM OPERATORS

     Takehiko MORI[rA

PROBLEMS

     1. rntroduction

     Let {HP ; pER} be a family of separable real Hilbert

spaces which are modeled on the Sobolev spaces on a eornpact

manifold without boundary. Consider a stationary process

L(tott) on a probability space (st,tCyrrc,'P) with values in a

certain'elass of iinear operators on H'co = V HP, which are

modeled on pseudo-d'ifferential operators. Denote by L the

mean operator of L(co,t). We assume that the foilowing abstract

Cauchy problems are 'well-posed':

                  dllltt) - L(co,e)u(t)

<1.1)

                  u(O) = uo G HP,

and

                  du(t)                       = Lu(t)                  dt
(1.2)

                  u(O) '= uo e' HP•

                                              '                                                   '                                                      '

.e

,.:?e.:.i:.:g t2ti,?aP::.ig t:.i:y:?tig.age Xe7,fiu:.;ga:ggn of



solutions of (1.1) and (1.2) respectively. Precisely, let
C([O,T]+Hq) be the space of all continuous functions on [O,T]

with values in Hqt for qeR. Under the assumption (A.r>, (A.rl)

and (A.!Zr) in section 2, we show that for any T > O, the
                                           '                                      'stochastic process xe(co,t} = UE(")' t) - UO(t) converges weakiy

                                     re•
                                          'to a Gaussian process XO(al,t) in the sense of distributien en

                                                   'c(tO,T]ÅÄHq) for any q s p-ct, where ct is determined by the

assumptions.

     A raathematical rnotivation of this paper was taken from

Khas'rttinskii's work [8]. We summari'ze his work here. Let

F(cott,x) be a strongly mixing process which is a twice
differentiable vecter field on Rd for each to and t. Let

F(x) be the vector field defined as a rnean of the process

F(co,t,x) in sorne sense. He considered the following Cauchy

problems

              g d2;tt' - F(tu,•l},x(t))

(1'3) l. x(o) = xoERd,

and

                 dx(t)                       = F(x(t))              g                  dt
(i'4)  .. X .(o) . xoG Rd

and proved the fiuctuation of xe(t) around xO(t> where xe(t)

t
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and xO(t) are the solutions of (1.3) and (1.4) respectively.

rn ether words, our result might be regarded as an infinite

dirnensional but linear version of Khas'minskii's work. Xn his

case, the Cauchy problems (1.3) and (1.4) are aiways well-pesed

although the random functions F(ol,t,') are non-lipear in general.

Zn particular the energy estimate (2.4), which plays an important

role in our case, is rather trivial in virtue of the fundamental

theory of erdinary differential equations. On the contrary, in

the infinite dimensignal case, the Cauchy problerns are weil-

studied only for the linear operators. Therefore we shall

restrict ourselves to the linear case and consider the well-posed

class .Z which will be defined in S:ection 2. 0ur strongly

rnixing condition (A.I) is weaker than the assumption (3.3) in [8]
in virtue of the boundedness condition of the well-posed class .8

(see Rernark 1 in [8, p. 222]). Khas'minskii assumed the existence
                              'of infinitesimal characteristics instead of the stationarity of

the process F(cDtt,x) but the author do not know how to express

those conditions reasonably in the infinite dimensional case.

This is the reason why we assume that the process L<cott) is

stationary in the sense of the assumption (A.rl).

     Now we mentien the example of the random process L(cott)

which satisfies our assumptions (A.I), .(A.IZ), and (A.rlr). Let
Td be a d-dimensional torus and {n(al,t): tG R} be a Td-valued

                      'stationary process'which satisfies the strongly rnixing condition

(A.r). Consider the following random operator ofi elliptic type
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L( al,t) = j , il2.i aj k( x+ n( tutt) ) alk + j Sii bj (x+ n( cott) ) al + c( x+ n( ut,t) ) •

Under sorne'  regularity conditions on ajk(Å~), bj(x), and c(x), we

can prove that for each utt L(tut.) belongs to some well-posed

class as a function on R with vaZues in operators on the
sobolev spaces HP(Td) (peR) and we can prove that the randorn

function L(tu,t) .satisfies the assumptions (A.X), (A.rr), and

.(A.UZ). A similar result is valid for random partial

differential operators of first order. The proof of the above

facts are given in S'ection 3. These exarRples are essential in

the sense thgt they suggest the formulation of our problem and

illustrate the image of the well-posed class.

     rt is natural to ask whether the sarne fluctuation theorern

holds or not in the case when the process L(co,t> takes values

in partial differential operators on a non-compact manifold or

a rnanifold with boundary. rn the forrner caset we have obtained

a similar result by use of the weighted Sobolev spaces in [11]
                                                             dwhen the manifold is just the d-dimensional Euclidean space R .

                                                             ' '

     We notice that the same problern for the second order parabolic

equations is studied in [14] and related topics can be found in

[lt p. 516-p. 533] and [7].

    .The main theorem is stated after the precise description of

our problem in Section 2. Two typical examples stated above are

discussed in Section 3. The other sections are devoted to the

proof of the rnain theorem in Section 2. '
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     2. Statement of Theorem

     First of all we define a family of abstract Sobolev spaces
HP (peR) which are modeled on the Sobolev spaees on an

orientable compact manifold without boundary. Let HO be a

real separable Hilbert space endowed with an inner product (',")                                                                o
arid let A be a positive definite seif-adjoint operator with the

inverse A-1 which is assumed to be a.Hilbert-schmidt operator.

Let p> O, put HP =G[){AP) : the domain of AP and define a

Hilbertian norm on HP by liultp= llAPulio for ueHP. For
u <fHO, we define a Hilbertian norrn by "u"-p = "A'Pu il o• H-P

is defined as the cog.}pletion of HO by the norm llstt-p. Then

it is easy to see that HP is continuously embedded into Hq for

p > q and the inclusion is a compact operator. Moreovert if

p '= q+1, the inclusion is a Hilbert-Schmidt operator. Writing
Hoo =A HP and H'co =VHP, the operator A can be uniquely
     pER peR                             -coextended to the operator on H which is aiso denoted by the
same letter A. [Vhen the Hilbert space HP is characterized as
HP = {u e H-co; APu eHO} and "u lj p = l( APu" o. Sueh a farnily

of abstract Sobolev spaces is called a scale of Hilbert spaces

in Daletskii [3].

     Nextr we introduce a class of time dependent operators on
  coH- which satisfy some conditions for the 'well-posedness' of the

equations (1.1) and (1.2). rn what follows, for topological

SPaCes El and E2, C(El"E2) denotes the space of all continuous

rnappings frorn El into E2.

6
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                                 '     Definition. Let HP (pER) be a farnily of abstract Sobolev

spaces which are defined above. Given a positive number rn and
                                                   'families of positive numbers {Cp}p6R and {CT,' p}T>o,peRr We SaY

that a function L(.) defined on R with values in operators on
H-OO belongs to the well-poFed claSS e(l=Jlt(Mr{Cp}peR,{CT,p}T>o,p.eR

if it satisfies the following conditions:
                                                          -co     (1) For each tErR, L(t) Å}s a linear operator on H
and L(t.)HP"MC HP for any pER. Moreover, L(')eC(RÅÄB(HP"rn+HP))

and

(2'1)  2?il g:HPp.. Il L(t)U"pS Cp,
                     ll U" p+m=1

where B(HP"rnÅÄHP) denotes the Banach space of all beunded linear

operators frorn HP+M into HP.

     (2) For any T> O, and for any uoEHP+M, the Cauchy

problern

                     du(t)                           = L(t)u(t)                       dt
<2.2)

                     u(O) =u                            o

has a solution in c([o,T]+HP"M)Acl([o,T]ÅÄHP).

     (3) <energy estirnate). If v(.)e c([o,T]+HP"rn)A cl([o,T]ÅÄHP)

satisfies

(2.3) • dv g:) . L(t).(t) . i(t) in HP

for f(e)6 C([O,T]--HP), then we have

)
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(2.4) "v(t)n B s c, ,, "i v'(o) i{ $ + Ig li f(s)" B ds)

for all te[OtT]•
     (4) For any s> O, LS(') also satisfies the conditions

(1), (2), and (3). Here LS<') is the operator valued function

defined by LS(t) = L(st).

     Remark. Let L(') 'beiong to .Zf. Then for any uo6HP'rn

and fot"any f(')6C([O,T]ÅÄHP"rn), the Cauchy problem

                  du(t)                        = L(t)u(t) + f<t)                    dt
                            '(2.5)

has ' a unique solution in c([o,T]+HP"M>Acl([o,T]•HP) in virtue

of the conditions (2) and (3).

     We believe that if one looks 'at the formulation of Cauchy problems

in [9 ]r [12]r and [13] he can see that our assumptions on .X: are

reasonable.

     Now we add the probabiiistic assumptions. Let (9,jl , P)
                              tg:,e.ego,g.aS.2,igy, sg}ac3,:gd..vtgfi,'giOO S,g.5.i .i :l 2.e,a la,rnlil,?f

     Our first assumption is the following:

(A•I) ct(s) = sup sup IE[Cn] - E[C]E[n]l decreases to O as
                    t e,n
s goes to co and. Jli sct(s) ds < co. Here gsunp z's taken over au

                                          )
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3E.-measurable g with kl -`'1 and ail t];11.s-measurable n

with lnl 5 1. As usuai E['] denotes the expectation with

respect to the probability measure P.

     A stochastic process {O(tu,t) ; -co < t < co} is called a

strongly mixing process with rnixing coefficient or(t) if it is
.:'iy"'  t-measurable for ea.ch t fixed• Let o2 "o2S(M,{Cp}peRt{CT,p}T>o,peR

be a well-posed ciass. Consider a randoia function L(to,.) on
(9rE}r p) with values in .2Z. our second assumption is:

          '                                       '
(A.ZI) For any u, vGHco , the reai vaiued stochastic process

{(L(tu,t)u,v)o ; -eo < t < co} is a stationary and strongly mixing

process with rnixing coefficient ct(t).

                                    '                                  '     Then we can define the mean operator L of L(co,t) as follows:

First we have

(2.6) El (L< ' ,t)u,v)pl s EilL(' ,t)ulipVv Up 5 Cp "u ll p.. U v lt p

for any u, vc- Hco , from the condition (1) on .lf. Thus, for any

u(-H"O we can define Lu as an element of HO such that

E(L('tt)u,v)o = (Lutv)o for any veHCe in virtue of Riesz'

representation theorem. Obvieuslyr Lu is independent of t since

L:Cal>t) is stationary. Using the estimate (2.6), L can be

                                    -coextended uniquely to an operator on H which is also denoted by

L. Clearly, L satisfies the condition (1) on .2t' as a constant

operator valued function on R. But we do not know whether L
beiongs to ..2 or not. Frora this point of view, our last

)
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assumption is:

(A.r!r) The operator L belongs to .Z.

     Now we can state our result.

     Theorem. Let .Zt=oZ7(rn,{Cp}peR,{CT,p}T>o,peR) be a Weil-

posed class on the abstract Soboiev spaces HP (peR) and let

L(to,t) be a random function satisfying the assumptions (A.Z),
                                                              -                               p+3m+1(A.I!), and (A.IIX). For uoEH                                       and e> O, we denote by
ue (al,t) and uO(t) the solutions of the abstract Cauchy problerns:

                d"3:) - L(uJ,8-)u(t)

(2.7)

                u(O) =u                        o
and

                du(t)                      = Lu(t)                  dt
(2.8)

                u(O) = u                        o

respectively. Then for any T> O, we have

 .(2•9) oE.:e.T E il ue(t) - uO(t)" g s ce

where C is a constant which is independent of e. Moreovert
the distribution of xe(al,t) = Ue(co't) - UO(t) converges weakly

                                    re '
on C([O,T]"HP) as e goes to O. The limit distribution coincides

with the distribution of an HP+M-valued continuous stochastic



process -{XO(.co,t) ; O S- t 5 T} which satisfies the equation

(2.lo) xo((D,t) . wo(.,t) . Ig Lxo(co,s) ds i. Hp

where the integration in the right hand sÅ}de rneans the Bochner
integral of an HP-valued function on [O,T]. {WO(co,t); O 5 t 5 T}

is an HP+2in-valued continuous stochastic process with independent

increments characterized by

           E(WO(t),V)p.2m = O(2.11)

and
          '(2-i2) E[(pvO(t},v>p.2.(wO(s),w)p.2.)] = JgAS<v,w>(uO(r)) dr

            cofor v, weH, where <v,w>(u) is given by

(2.13) <v,w>(u) = fli dt E[((L(t}-L)UrV)p.2m((.L(O)-L)UtW)p.2m

                          + ((L(O)-L)u,v}                                            (L(t)-L}u,w)                                                            ]                                        p+2rn                                                        p+2m

for ue HP+3 rn and v, w e Hco .

     !n the statement of Theorem, we did not refer to the ,
rneasurabiii' ty of ue(tu,t) but it is guaranteed by the following:

                    '

     Proposition 2.1. Assume that a randotn function L(tu,t)

with values in e( satisfies that (L<a),t)u,v)o is fJC-measurable

for any u, vGHeO. Then for any uoC--HP, the solution of the

evolution equation

•1 1
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                 du(t)                       = L(al,t)u(t)                   dt
(2.14)

                 u(O) = u                         o

is 3rl Z8(c([O,T]ÅÄHP))-measurable, where a3(E) denotes the

topological Borel U-algebra of a topological space E.

   . Proof. Let Sle be the Hilbert space ef all HiZbert-Schmidt
operators frorn HP into HP-M-1 endowed with Hilbert-schmidt

norrn. we regard o2C- as a topo!ogical subspace of c([OtT]ÅÄ2Z).

For a sequence {Ln}:.o C o2t we denote by un(.), the solution

                 du(t}                   dt = Ln(t)U(t)t u(O) = uo. Assurne tahtof•the equation

Ln converges to Lo in C([O,T]+GFe) as nÅÄ co, n ). 1. Then

we have

 8t(un(t)-uO(t))= L.(t)(u"(t)-uO(t)) + (L.(t)-Lo(t))uO(t)

in HP'M and so in HP-rn-1. Frorn the energy estimate (2.4),

we have

 " Lt"(t)-uO(t)ll p2-..-i s c[r,p-.-ilg ll (L.(s)-Lo(s))uO(s)ll B-..i ds

                    S CT,p-m--i' oE.ge..IlLn(s>-Lo(s)liGs 'o2ge.,,iiuO(s)ilill•

Thus the function o : o2S s L(.) • u<.) C c([o,T]+HP'M-1) is

                                          du(t)                                               = L(t)u(t)tcontinuous where u(t) is the solution of                                           dt
u(O) = uo. Next we show that the function L(.,e) : tu C st ÅÄ

L(al,.) e .ZS is ,:"ftl e3(.2e)-measurable. !n virtue of the second

countability of the topological space X, it suffices to show



that {co eS?; oE ll9[e " L( CD ,t) -L(t) (t Hs < 6} e "J`J" for any L(.) e.C and

             = :=
any 6>O. On the other hand, we have

             {cD e S?; os=.:e.T llL<tu,t)-L(t)ilHs < 6}

          = N[:/ A {ce; ll L(al,t)-L(t)" Hss6-.-1'}
            n=1                teQA[O,T]

and

            {(D ; llL((D,t)-L(t)U Hs 5 6-{II}

          = {tu ; kl.li (({L(tu,t>'L(t))ekll$-.-i s (6-k)2 }

where {ek}cok.1 is a cornplete erthonormal system oi HP. Since

for any ee' HPt

    ll(L(cD,t)-L(t))eijp-.-1 = sup 1((L(`Dtt)-L(t))etv)p-..1I
                          veHP
                          ilvll =1
                            p                                         '
and since HP'M-1 is separabLe, we conclude that

U(L(altt)-L(t))ellp-m-1 is )F --rneasurable. This irnplies that .

{CD; o2:l.IT li L(co,t)-L(t>"Hs < 6} C'E} • [rhus the function L(.,.) :

co " L(cot•) is j;7lil{S (.2e )-rneasurable. sincd u(tu,.) = tp(L(w,.)),

u(u),.) is xl 8 (c([o,T]ÅÄHP-M"'5)-rneasurable. on the other hand

u(co,')ec([O,T]ÅÄHP) by the condition (2) on .2tl and c([o,T]•HP)

is a Borel subset of c([o,T]-)-HP-M-1), we can see that u(co,t) is

 SX l ZI8 (C([O,T ]+ HP))-measurable. //

13



     3. Exarnples

     Zn this section we shall give two typical examples of random

functions L(cD,Y) which satisfy the assumptions (A.I), (A.II),

and (A.r!1> in the previous section (see Proposition 3.2 below).
id..tl;i .M,.?':tai:'dkrne:ilfl":i,g2'X:Si.Rd(:91)d gXd":"2i.g2i.. ..

M with a function on Rd which is invariant under the action of

zd. Let HP(M) be the sobolev space of order p on M. If we

put HP = HPB (m for some B> -Sr, HP (p( R) fo rm a family of

abstract Sobolev spaces. xn this case, HO = HO(M) = L2(M) (. L2.

space with respect to the Haar measure on M) and A = AB o- where

                                                      .tAo = (liA)i; and A=jSl s-itl7i • Let K be a positive constant

and let {Act}ct be a family of positive numbers where ct's are

multi-indices. Put

 cs)4 ={a(t,x);a(tt.) is a continuous function frorn R into

            Cco(MÅÄR) and Ey: laaxa(t,x)I s Aa for any multi-

            index a} t

where actx = acti+''''ctdlaxgi.e.axadd. consider the fouowing

classes of time dependent differential operators:

   eZeti = {L(t) = jSi bj(t,x)el + c(t,x); bj(t,x)edi ,

                            c(t,x)eM j = 1, 2, ••., d}

and

14



                    d jkd .    r2e 2 = {L(t) = j;i.1 aj k(t,x) a. + j.21 bj (t,x) al + c(t,Å~} ;

             ajk(trx)6cs( t bj(t,x)Ct5i , c(t,x)c-•csKl 1 s j, k,s d

                       dd            and t?Åí j,i.i aj k(trx) S Ck i K ji Ci for any

            (glr •••, Cd)G Rd}.

First we show the foilowing:

     Lernma 3.1. There is a family of positive constants
                              co{K }         such that for any ueH (M)  P peR
                    '                                      2(3'i) 2v.il {L(t)u,u)p s Kp il ulip

      . J.lholds for anyN  L(')eÅí1 V t2•

     Proof. For L(.)eXl, we have 2{APL(t)uiAPu)o =

2([AP,L(t)]u,APu)o + ((L(t)+L(t)*)APu,APu)o for each tG R,

where L(t)Å} is the forrnal adjoint of L(t) and [AP,IJ(t)] =

APL(t)-L(t)AP. In the sarne way as Corollary 10 and Corollary 20

of Theorem 1.7 in [9, p. 59-p. 60], we can show that L(t)+L(t)*
and [AP,L{t)] are pseudo-differential operatorsof order O and

p+1-1=p respectively.' In particular we can show that
ll(L(t)+L(t)"r)uUo s D"ulj o and "[AP,L(t)]ullo s D2)luJlp for

    coueH (M) where Dl and D2 are positive constants depending
only on p and Act's. Thus we have l(L(t)u,u>pl -` (Dl+2D2)liull$.

This implies (3.1) for L(')C EI•

     For L(')6,ZZ.2, we consider the operator AP(-L(t))A'P.

15



Then it i$CL second order elliptic pseudo-differential operator on

M. In the saine way as the proof of G8rding's inequality for an

eniptic operator on Rd, we can show that

(3.2) ' - (APIs(t) A-Pu, u)o l D3 li u li? -- D4 1i u lj g

            coÅíor any u6H (M) where D3 and D4 are positive constants

depending only on p, K, and Act's. For the detailed proof see

Kumano-go [9 , .p.54-p.60, p.79-p.81 and p.134] or Taylor [13

Chapter I! p.55]. In the inequality (3.2), substituting APu
for u we obtain (APL(t)u,APu)o s D4 ll APu ll g. This implies (3.1)

for L(') C' •2!l 2•

     Now we can show:

     Proposition 3.1. There exist famUies of positive numbers
{Cp}peR and {CT,p}T>o,pe-R such that eZl k is a subclass oi

the well-posed class S(:(kt{Cp}peRt{CT,p}T>o,p6R) fOr k = 1, 2"

     Proof. To prove the propositiont we have to verify that

every L(')e `Xk satisfies the conditions (1), (2), (3) and (4)

in the definition of the well-posed class. rt is an
                                  'Å}mmeadiate consequence of the Calder6n-vaillancourt theorem (see

11, p.224]) that there is a family of positive numberS {Cp}peR

such that the inequality (2.1) holds for any L(')e .8 k, k = 1t 2.

So (1) is valid for any L(.)e.Ze k, k=1, 2. (4) is clear
                              'frorn .the definitien of .Zk. Next we prove the energy estirnate

(2.4). suppose that for L(')6 .2e k, ' ..

16
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v(.)e c([o,T].HP'k)Aci([o,T].HP) and d" a:) = L(t)v(t) + f(t)

for f(.)e C([O,CP].HP). Then we have
Ellt7 "v(t)"B = 2(L(t)v(t),v(t))p + 2(f(t),v(t))p --< 2Kp ct v(t) it g +

 lt f(t> tl $ + " v( t> lt 3 = (2Kp+i) {l v(t) u $ + t{ f(t)" 3 in virtue

of Lemma 3.1. Applying Gronwall's inequality' ([13r p.73]) to
        2ll v< t) Il p we have

     it .(t)" $ s'.( 2Kp"i )T( n .(o)u $ + fg ij f(s) ii $ dg)

                ' (2K +1 )Tfor any te[O,T]. So we can take e P for C                                                   T,p'
Thus the condition (3) is veritied. Frorn the energy estimate

we can show the solvability condition (2) by the standard manner

in Taylor [13, chapter lv]. 11
                                                           '     Next we construct the examples of randorn functions L(ul,t)

which satisfy the assumptions (A.X), (A.II) and (A.I!I). Let
{n(tu,t) ; -co < t < co} be an Rd-valued stationary'and strongly

mixing process with nixing coefficieht or(t). Furthermore we assume

that ali of its sample paths are continuous. For fixed elernents

          d,     Li = jii bj(x)Ol + c(x)e ali

and

     L2 = j,i/l.i ajk(x)Dlk ' jl/1 bj(x)Dl " c(x) e' eZ32

with coefficients which do not depend on t, we detine random
functions Ll(co,t) and L2(co,t) taking-vaiues in .2fl1 and aZe2

by



           d.Ll ( tut t) = j il bj (x+ n( co, t) ) e]. + c(x+ n( tu, t) )

and

L2(altt) = j,ilZ.i ajk(x+n( turt)) allk + jSZi b(x+n( turt>) al + c(x+n( co,t>)

respectively. Then we can prove:

     Proposition 3.2. The randont fuRction Lk(aJtt) satisfies

the assumptions (A.I), (A.rD and (A.III) for k=1, 2.

     proof. For any u, vGHeO(M) and yeRd the map Åëk : y ÅÄ

  (Lk(y)u,v)o Å}s Åëontinuous where

             d.     Li (y) = ji bj (x+y) al + c(x+y)

and

     L2(y) = j,l/l.i ajk(x+y)31k + jS/i bj(x+y)al + c(x+y).

By the assumption on n(tu,t), {Lk(co,t)u,v)o = Åëk(n(co,t)) is also

a stationary and strongly mixing process with mixing coefficient

D((t) for k= 1, 2. Thus (A.I> and (A.rX) a.re satisfied. It

remains to show (A.rl!>. Denote by Lk the mean operator of

Lk(co,t). For each xeM fixed, put 'ali.k(x) = E[ajk(x+n(.,t))],

bj(x) = E[bj<x+n(.,t))] and c(x) = Z.'[c(x+n(.,t))] for 1sj,ksd .

We can easily see that
                          '          d.    rl = ). ll 5j <x)el .+ T( x)

     'and

18



     T2 = j,:/ .i Ej k(x) alk + jl/i 6j (Å~) al + E( x),

and 17k belongs to .2ek for k=1, 2. Hence (A.ru) is

                                       r                ") put HP=HPB(M"")-'--'"--+...+HPB(M) and
     Rernarks .
                              '     E.-.E--...dS-
A = (A3+.e.+Ag). consider the following cZass of time dependent

               -cooperators on H .

    .2e\ = {L(t) . ]S/1 B]<t,.)[aoX] [i)]. c(t,.) ,

                                   X

            Bj(t,Å~) is an rxr-symmetric matrix with entries in oz4

            and c(t,x) is an r?<r-matrix with entries inoKl}.

For
 uo = (uUioOrl]G HPt we can consider the cauchy problem for the

first order symmetric hyperbolic system. .Z?1 is the special

case (r = 1) of eZZ f•

     (2) For a positive integer rn consider the class

    ue 2m,= {L(t) = 1ctl2=.2rn act(ttX)e.ctx ; act{t,x) e cs2<( and

                                               d             t"Åí ((-i)rn'il.1;2. act(t,x)gct) i K(j;i gi>M

              for any g = (gl, ..., cd)E Rd},

             ctl a2 adwhere ect -9 g2                          for multi-index ct. The operator in          - •••gd
X2rn is called the 2m-th order eliiptic differential operator.

19
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     4. Auxiliary Lemmas

     First of allt we give two letttruas, Lernma 4.1 and Lemrna 4.2

which are concerned with strongly mÅ}xing processes. Lemma 4.1

is the basic tool in our argument and it can be proved Å}n the

sarne way as the proof of Lemrna 2.1 in [8]. Lemma 4.2 is used

in Step 1 of the proof of Theorem in the next section, and it is

an immeadiate consequence of Theorem 18.2.1 and Theorem 18.3.1 in

[6].

     Lemma 4.1. Let n be a positive integer. Let Åëi(cort),

i = 1, 2,...t 2n be real valued strongly mixing processes with

mixing coefficient a(t) where expectations are zero for each t

and Mi = sup lÅëi<uttt)l < co. Then there is a positive constant
          t' al

C(n} which depends only on n and a(t) such that

{4.i) II"TJI'[i?•..J['T dsids2'''ds2. IE[Oi(si>Åë2(s2)'''Åë2n(S2n)]l

                      s c(n) Tn MIM2"" M2n for any t• 1/

     Lernma 4.2. Let {Åë(tu,t) ; -co <t < co} be a reai valued

stationary and strongly mixing process with mixing coefficient

ct(t) whose expectation is zero and M = 2Ypco lÅë(alrt)i < co'

Then there is'a positive constant C such that

                                                  2<4.2) l,li- ElIli ep(t) dtl2 - 2I•CoOE[Åë(t>Åë(o)] dtl;I-l---lt . /1
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     In what follows we drop the letter al if there occurs no

coniusion and we always assume the hypotheses of Theorem in

section 2. Recali that
                            .e(t) - .O(t)

(4.3) xe(t).                                re
                               'where u9(t) and .uO(t) are the solutions of evolution equations

(2.7) and (2.8) respectively. Since the initial data uo is in
HP+3M"i, we have xe(.)ec([o,T]•HP+3M'i)Aci ([o,T]+HP"2M'i) and

 eX (') satisfies the equation

<4.4) xe(t> . we (.t) +jioi L(g)xe(s) ds

as an HP'2M"1-valued function on [o,[r]. Here wE<t) is

defined by

(4.s) wE (t> =tl Ig (L(g> -L }.o (.) d. e cl( [o, [[t ].Hp+ 2m+1 ).

Let ye<t) be the solution of the equation

                                  t                  ye(t) . we(t) + fo Lye(s) ds

(4.6)

                  ye(o) = o.

since 2(L({ll)-L)uO<t)Ef c'([o,T]+HP"2M+i), the equation (4.6) has

      fe
a unique solution in c([o,T]•HP+2rn"1)Acl([o,T]ÅÄHP"M+1) in

virtue of the assumptions on the class eZ. Put

(4.7) ze(t} = xe(t) - ye(t)e c([o,T]•HP+2M+i).

Then ze(t) satisfies the equation

22



<4.s) z e( t) = Ig L( :>z e( .> d. . Ig (L (E.) .- L)y s( .) d.

as an HP+M+i-valued function.

     In the rest of this paper, unless otherwise stated, the

letter C is cornmonly used to denote those constants which are

independ.ent of e, w, and t([OrT].

     Xn the iollowing lemraa we give the basic estimates for the

above defined processes which guarantee that the distributions

of the associated processes are tight on C([O,T]•Hq) for

 properly chosen q.

                                                               '
     Lemma 4.3. Let {e2}kco.1 be a complete orthonormal system

of HO which consists of the eigenvectors of A. [Vhen

{ei2 = A-Pel2 }keO.1 becomes a complete orthonormal system of HP.

Let nX : HP + [e?te2t...,e2]"L be the orthogonai projection onto

                                      oLthe orthogonai compiement [e9te2,•.•,en]                                           of the finÅ}te
dimensiona! iinear subspace of HP generated by e?r e2, ..•t eRe

Under the same hypotheses of Theorem in section 2, we have, for

any t, t+h C [o,rr]

(4.g) EttTfi'2Mwe(t+h>-TX'2iT'we(t)li S.2,, s ch2(k.2/l.i ite:"2M"iliB.2.)2.r

(4.1o) Eu"R+rnye(t+hl-TX+Mye<t>ltS.m =< ch2(k.2/l.1 liekP"M+lli$..)2,

(4.11) Ellxe(t+h)-xe(t)ilg s ch2, ..d

(4•12) oE.ue.!p Eljfg (L(g)-L)ye(s) dsil;..,-2 s ce •
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     Proof. Proof of (4.9). write ek and T for e]2+2M+1
and TnP'2rn respectively. Put Åëk(s) = ((L(s>-L)uO(eS),ek)p.2m.1

k=1, 2, ... . Then it is easy to see that we(t) can be

written as
                                .s                  . we(t) = /5 kil (Jeo Åëk(s) ds)ek•
 (4.13)

Using the fact that {ek}co k.1 is also a orthogonal system in
HP+2rn we have from (4.13)

         Ell rrwÅí (t+h>-rr WS (t)ii S.2.(4.14)

                                          t+h t+h t+h t+h
       = e2 ki .co./ .i k2 .coi .i ii ekiii $+ 2mii ek 2" $.2.IS fge Jea fee

               dsldS2dS3dS4 E[Åëkl(Sl)Åëk2(S2)Åëkl(S3)Åëk2(S4)] '

Fropmthe assumptions on L(co,t) we have
1Åëk(S>l 5 CosSUretT llUO(r)llp.3m.1• Thus frorn Lemma 4.1 vve obtain

                                     co       EllTwe(t+h)-TwE(t)ll $.2. s ch2(k.il."i ekU$.2.>2•

     Proof of (4.10). Let {T(t)}ostsT be the semi-group of
linear operators on H-co such that for each uCHP+M,
[r(t)uEc([o,T]ÅÄHP'M>A. cl([o,T]ÅÄHP) denotes the unique solution

of the evolution equation

                   du(t)                         = Lu(t)
   j-    F(4;15)

                   u(O} = u.

        'Write ek and T for ekP+M+1 and TnP+M respectively. Put
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Åëk(s) = (T(t-es+h)(L(s)-L)uO(es)tek)p.m.1 and

Yk(s) = <([P<t-es+h)-T(t-Es))(L(s)-L)uO(Es),ek)p.rn.1•

Then we can easily see that

( 4.i 6 ) . . I Åëk ( s) l s C o s=.; p..,,T II u O( r )ll p . 2 . .i

and-

(4.17). IYk{s}lsCh for OssE-ll,
since (!J(ll)-L)uO(r)E c([o,11]ÅÄHP"2M'1) and

                                     t-s+h   ((T(t-s+h)-[v(t-s})(L(g)-L)uO(s) = ft-. LT(r)(L(2)-L)uO

in HP+M+1 for o s s s t =< T. on the other ha nd we can

          Ye(t+h> - Ye(t)
                                  '
             t+h        =tl ft [r(t-s+h)(L(g)-L).o(.) d. .

            . +,-,gl ig (T(t-s+h)-rLn(t".))(L(g).-L).O(.) d.

        = rl " !2'

Therefore in the same way as the proof of (4.9) we have

Eil"Il"S+m S Ch2(k.co ./.1 llekllB+rn)2 a"d EiiTZ2ilS+m S-• Ch4(k.co
Z.1

Hence we have

                                       co          E"T ye <t+h) -T ye (t )" S.. s ch2(k.R.1 " ekli $..)2•

                                 '

     Proof of <4.11). First we show that

(s) dr

write

ll ekli 2 )2.
p+m



26

<4.1s) ll xe(t)li p2.. , c(fg Ii we(s)" g.di. + (lwe(t)" 3.2.]

in fact, since wE ( .) E ci ([o,i? ]+HP"2M) and

xe (.>c c([o,T]•HP"3rn)A ci([o,T]ÅÄHP'2rn), we have

   xe(t) . we(t) . Iot L(xe(s) . wE(s)) ds + Jg I,vve(s) ds ,

where the integration in the right hand side is the Bochner

integral of an HP+M-valued function on [O,CVI. Thus from the

energy estimate (2;4), we have ` . ' ,
l1xe(t)-we(t)li$.rn E cT,p.mfgllLwe(s)llg.rnds s c.l,p.rncp.mfgilwE(s}lig.2mds•

T.his iinplies <4.18). Thus we have

(4•19 1, . oE.:e.T EIIXe(t)Ng.. -< C

by using the estirnate (4.9) with t= O, h= t, and n = O. On the
other hand                                    t+hxe(t.h) - xe(t) . we(t.h) . we(t) . Jt L(2)xe(s) ds in Hp+2m.

Therefore we have

                                            t+hE"xs (t.h)-xe (t )h i3 g 2Enwe (t+h) -we {t)l{ i3 + 2E illt L(g) xe (s) ds" ig.

rn virtue of (4.9) it sufEices to estimate the second term in the

right hand side. But we have
        E II I'h L( .S )xe {s) ds S

     s fI+hf tt+hf I+hl I"h d.1 d.2d. 3d. 4j /-41 E ttL (gj )xe (sj )K p

.



     s cl:+hfl+hll+hltt+h d,ld.2d.3ds4 j/el Ei(xe(sj)llp..

     : ch4.

from (4.19) and Holder's inequality.

     Proof of (4.12). Put pl = P+2M+lt P2 = P+ra-lr P3
      Pl                     P2
ek = ek and fk = ek for convenience. rn.addition
Åëk(s,r) '= (T(s-er)(L(r)-L)uO(ete),ek)pl and

Yk2(S) = (<L(S)-L)ek,f2)p2. Since we can write

                              s             ye(s) = kl.ll vtg (I'i-Åëk(s,r) dr)ek in HPI

                                  'a"d <L( .) -L)ek ..t 2--i wk2 (s) fÅí in HP2,

                                               /
we can easily see that

           Ell,iTeJg ds (L(ESI>-L)Ye(S)" i;3 •

                             tt                                        Sl S2 -         - e2 i t{fvl $3 Rl l2 I'Elf'X dslds2Io Io dridr2

                 E[Åëkl(Sl,rl>Ok2(S2,r2)Yk12(Sl)Yk2Åí(S2)]'

Therefore we have

(4.2o) E",7Te Ig (L(,-S)-L)yE(s) dsilB3

             s e2 ilif,gg, k R, IifiJiJg ds,ds,ds,ds4

                lE[Åëkl(Sl,S3)Åëk2(S2,S4)Yk12(S3)Yk22(S4)]l

 . p+rn-2t

r Put
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On the other hand it is easy te see that

               1 Åëk(srr) l 5 C oE. :9. ,r Il "O (t)ll pi +tn

           . IYk2 (s)1 5 ll ekll p2+m'

Thus applying Lemma 4.1 to (4.20) and recalling pl = p+2rd+1,
                                           P2                            Pl
P2 = P+M-lt P3 = p+m--2, ek = ek and fk = ek we conclude

that

E"/7efg (L(g}-L>ye(s) dsll$..-2 =< c i il e2P+M-1"S..-2( R tiekP+2M+ll(p.2.-1)2

                               .

since the inclusion HP+2rn'i(C HP+2rn'i is a nuciear operator

and the inclusion HP"M-1<: HP'M'2 is a Hilbert-schmidt operator. //



     5. Proof ef Theorem

     The purpose of this section is to prove Theorem in section 2.
As before, x e( t) .• U e( t)'UO(t) ,

                        fs
we< t) = SE Jg (L(2) -L)uO (s) ds, and ze( t) = xe( t) - yS< t) where

ye(t) is the solution of the equation (4-6)e

                                             '
     Now we prove Theorern. The averaging principle (2.9)

follows immeadiately frorn the estimate (4.11). The proof of

the fluctuation property is divided into following four steps:

rn Step 1, we show that the distribution of We(.) converges
weakly to the distribution of wO(.) on c([o,T].HP"2rn).

In Step' 2, we prove that tihe distribution oi Ye(.) converges

weakly to the distribution of XO(.) on C([O,T]•HP'M>. !n

Step 3, we prove the tightness of the distributions of Xe(.) on

C([O,T]ÅÄHP). And in the last step we show that the lintt

distribution of Xe (') coincides with the distribution of XO(e).

     Step 1. The estimate (4.9) of Lemma 4.3 implies the
tightness of the distributions of wS(.) on c([o,T]ÅÄHP'2M) in

virtue of Proposition 4.1 in [10]. We have to show that the
distribution of We (') coincides with the distribution of WO(e).

For any finite seguence sl 5 tl < S2 5 t2 < ''' < Sk S tk

                                           coand any finite sequence hl, h2t ..., hn G H , define
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n-dimensional randorn variabies ztstiS. j = 1, 2, ...t k by

zxjS . ((w e( tj )-w S( sj ), hl )o,..., (W S( tj )-W e( sj ),hn)o}• Then for any

geRn, we have '

                kk(5•1). IE exp( jil i(g, A]S) 3. .nlE exp(i(g, zNje))l s ct(g) • o, as e-+o,

where (.,t) denotes the Eucliddan inner product on Rn and

6 = i e. /r e. k.-i (tj +i "Sj )• (5•i ) - gua rantees that any li mit process

of wE(.) has independent increments. [Dhereforet as in the

case of the finite dimensional continuous process with independent

increments, it suffices to show the following lemma to see that
the lirnit distribution coincides with the distribution of WO(e}.

                                 co     Lemma 5.1. For any v, wCH and any O S s, t E Tt we

                        '
                       e'(s.2) E(gv (t),v)                                  = o,                             p+2m

and
                                            tAs(5•3) lt2} E[(We(t),v)p..2m(We(s),w)p+2m] = fo <v,w>(uO(r)) dr

where <v,w>(u) is the saine quantity as t.he staternent of Theorem

in section 2.

     Proof. The proof is similar to that of Lemma

(5.2> is obvious. We prove the equation (5.3).

of simplicity, we assurne that v= w, T ->. 1 and t
Åë(r) = ((L(r>-L)uO(er),v)                              and                        p+2m
Åëk(r} = ((L(r)-L>uO(.k--},v}p.2. for k = o, 1, ...,

3.1 in [ 8].

For the sake

=s= 1. Put

n-1,



where

Then

where

G2 =

ior

from

  n is a positive integer which will be deterntned later.

we have

   E[ (vg ea ) ,v)2             p+2rn ]
     11
 . ef5eJi'7 dr,dr, E[Åë(ri)Åë(r2)i

 = elJGidridr2'E[Åë(r"Åë(r2)j + elJG2dridr2 E[Åë(ri)Åë(r2)]

 =I +r    1
       n-1  Gi = l?;.{o {(ri ,r2) ;ks rit r2 s ki ei} , and

[Or2e]Å~[Ot{r] x-Gl• Since 1Åë(r)l -` C os.u.p-.T""O{S>ilp.3milVlip.2m

                                     at -       T         , we have•O s< r s---
        e
                   k k+1             n-1     1i21 s 2 kio eJl]T'driJIItEe dr2IE[Åë<ri)Åë(r2)]l

                         ne
         s2 :;/8 elg-k-Edriltil/Ii dr2a(r2-ri)(2yg iÅë(r)p2

         -<. c nE ilviiS.2rn,

the strong rnixing property of Åë(r). Next we have

                 k+1 k+1            n-1     ii = e kE.o f ILg f ".t-e dridr2 E[Åëk(ri)Åëk(r2)]

                 ne ne
                   k+1 k+1              n-1          + e kZ.o JIIt:e fILt dridr2 E[Åë(ri)o(r2)-Åëk<ri)Åëk(ri)]

                   ne ne

        = r3 + I4•
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PUt 6(") = l.1Eg:t-..;r" UO(Sl)`'"O(S2)ilp.3.• Then we have

            OsSl,S2ST

                                            {]e 1Åë(r) - Åëk (r> l s C 6(n>ii vil p.2. for O s r s -El•                                                 Thus using

Lernma 4.1, we can show that

       . Ii41 s C ne.-1--, 6(n)" vliS.2. = C6(n)iivjl$.2.•

On the other hand, from Lernma 4.2 we obtain

    k+1 k+1
 lneJ I'iike I "-te drl dr2E[ g, (rl )ok( ]>>] -2 I: E[ Åëk(o) Åëk (t) ]dtI s cfriTe ll vN B. 2.

     ne ne

Therefore we have
                                 '
            1i3 . "ft :-:/8 l: E[Åëk(6'>Åëk(t)]dtl s- c}/ffrellvl(:.2.e

Hence we have

                       '
 li- -k' :l.8 flll E[tpk(o)Åëk(t)]dtI s c(ne+viE{T+6(n))" vU$.2.•

TakÅ}ng n = n(e) so that n(e )e + O and n(e) ÅÄ co as e ÅÄ Ot

and recalling the equation (2.13} we conclude that .
 '
            .l.i {; E [ ( We (1 ) t v ) $ . 2,, ] =f ] < v , v> ( u O < r )) d r . 1 1

     Step 2. rn virtue of Proposition 4.1 in [10], the estimate
(4•10) implies the tightness of the distributions of Ye{e) on

C([O,T]ÅÄHP+M). Let {en}con.1 be any sequence with en " O (n"co)
'
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                                 esuch that the distribution of Y n<') converges weakly on

c([O,T].HP+rn). rn virtue of Skerohod's theorem (see Theorem 2.7

in [6, Chapter 1]), we may assume that C([O,T]+HP+rn)-valued
                   erandom variables Yn converge in C([O,T]-+HP+M) P-a.e..
Thus the lirnit process YO(') satisfies the equation

 . ' yo(t) . wo(t) .fg Lyo(.) ds i. Hp.

On the other hand for w(.)( c([o,T]ÅÄHP'2rn)                                            consider the equation

                                  t                   y(t) = w(t) + Io Ly(s) ds

(5.4)

                   y(o) = o.

Let u(•)ec([O,T].bHP"M)A. cl([O,T]ÅÄHP) be the unique solution of

the equation

                   du(t)                         = Lu(t) + Lw<t)                     dt
(5.5)

                   u(o) = o.

It is easy to see that y(t) = u(t)-w(t> is the unique soiution
of the equation (5.4) in c([o,T]ÅÄHP"M>A cl([o,T]ÅÄHP) and

lly(t)ilp s cliw(t)llp for any o s t s T, in virtue of the energy

estirnate (2.4). Therefore the correspondence c([o,T]ÅÄHP'2M)) w (.)

ÅÄ y(.)e C([O,T]ÅÄHP) is a continuous mapping. Hence 'the equation

(2.10) deterraines a unique probability distribution on C([O,T]ÅÄHP).

The proof of The second step is now complete. 11



     Step 3. DÅ}fferent from the finite dimensional case, the
tightness of the distributions of Xe( .) on C([O,T]ÅÄHP) can

not be shown directly frora the estimate {4.11), but in the

present case, it can be shown by the following argument. For

any 6 > O, there is a positive constant C such that

(s.6) . • . p{tu e' s2 ; xe( tu, e) (e rl } > 1-6 ,
               '
where' rl = {x(') <FC([O,T]ÅÄHP) ; x(.) are equi-continuous

                     a"d oS=.2P.. IiX(t)Ilp 5C}•

On the other hand we can show that

( 5' 7) o S=.: P-sr ll X E( t )ll p+m S C o S=.: P.si. r ll W e( t )ll p+ 2rn

frorn the estirnate (4.18) in the proof.of (4.11). From (5.7)
and the tightness of the distributions of'  we(.) on c([o,Tl+HP'2M)

we can see that for any 6> O, there is a positive constant c

such that

(5.8) P{ co e9 ; Xe( tu,.) .C r2} > 1-6 ,

where r2 = {x(')ec([O,T]+HP"M)t os--.:e.T "x(t)(lp.m S C} •

Since any bounded .set Å}n HP+rn is relatively compact in HP,

rlAr2 isarelativelycbinpact set in C([O,T]ÅÄHP) in virtue of

Asco"-arzelNa theorem. Hence frorn (5.6) and <5.8} the

distributions of xe ('> are tight on c([O,T]ÅÄHP). 11
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     Step 4. This step is quite different from the finite

dimensional case (see Khas'minskii [8]). For q s min(p,p+m-2)

let 21B be the Hrlbert space of all Hilbert-Schmidt operators
from Hq into Hq'M-1 endowed with an inner product

                            co(s•g) (A,B)Hs = kil <AeiltBeil)q-rn-1,

where {eff}:.1 is a complete orthnormal system of Hq. Let

L2([o,T]eiie) be the Hubert space of all C7f:f -valued L2-functions

defined on [O,T] endowed with an inner product

(s.lo) ((A(')tB('))) = I: (A(t)tB(t))Hsdt•

From the definition, the well-posed class .2Z: is contained in a

closed bau so ( L2([o,T]+ "StLe) centered at o. since so '

is'a weakly compact set in L2([o,T].- 7Ze ), it is a compact

metric space with respect to the weak topology in virtue of

Theorem 3 in [4, p.434]. For example, the metric is given by

                           co 1
(5•11) d(A( ') tB( ')) = 2 -nl ((A(' )-B(') tBn(') )) l
                              2                          n=1
                                   cofor A(.), B(.) e So, where {Bn(.)}n.1 is a sequence of elernents
in L2<[o,[r].• iZ? ) such that their linear hull is dense in

L2([o,T]+ ,7ir') and ((Bn(.),Bn(e))) s1 for n= 1, 2, ••• •

                                  co!n particular the sequence {Bn(e)}n.1 can be chosen so that
                  '
( 5 'i 2 ) kl.ii ( o 2 : e. T l( B n< t ) e ll llq -m -i ) 2 s i •

In fact, let 9< denote the linear subspace of all e!ements

B(•) of c([ O, T] -> 2Pe } such that B(t)e ff = O for all t e [O,T]
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if k is sufficiently large. Then it is easy to see that 7ki
is dense in L2([o,T]"2]Ze ). Thus we can take a sequence

{gn(.)}lli.1c 7e which is dense in L2<[o,T]ÅÄ7e ). Therefore

we can choose B (.) as               n
      Bn('} = ( kl/]i ( os..:e.T iifil.(t)eq.ifq-.-i)2 )-gEr.(.).

Consider the product space

{s.13) ' . - s = c([o,[r].,Hq)xc([o,[v].Hq-m-1).s
                                                  o'

put Fe(t) . Jg (Le(s).L)ye(s} ds where Le(t) = L(iL).

Then the distribution oi FS(.) converges weakly to the

distribution of the process e which is identically zero. In

fact, since q E p, and since we have already shown that the
distributions of Ye (') on C([O,T]ÅÄHP+M) are tight, it is easy

to see that the distributins of Fe (') on C([O,T]ÅÄHq) are
ti ght. on the 'L other hand, ' oE. ;l: l?T EIi Fe (t) llq ÅÄ O as e ÅÄ Or from

the estimate (4.12). Hence we have the above fact. Next we

have

         E[d(Le(.),L)]

        = E[ .l.ii -l;n1I: kl.li ((Le(t)-L)ekq,B.(t)eil)q-.-idtl]

        5 .l.li 'IF.7 k!.li ElI: ((Le<t)"L)ekq,B.(t)ekq)q-.-idtl

        5 .lli -l;Tn klli (E1J[l ((LE(t)-L)eiitB.(t)ekq)q-,,-i{2)lr.

0n the other hand, we have from Lernma 4.1
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     ElI!l ((Le(t>-L)eil,B.(t)e:}q.-.-idti2

        TT
   = e2JoeIg dsids2E[((L(si)-L)effrBn( Esi)eil>qpm-i

                             ((L(s2}-L)eff,Bn(es2)ell)q-m.-1]

   -`t Ce ( 'os,..:]2.[v 11 B.(t>eillllq-.-i)2ilekql{q2-."i•

Therefore it follows that E[d<Le(.),L)] E Ce in virtue of

Schwartz' inequality. Hence we have shown that for any sequence
                                  en    oo{en}n.1 With en ÅÄO as nÅÄ cor L (.) converges to L

(non-randorn) in So in probability. rn virtue of Theorem 12.3
                                     eein [2r p.195], the distribution of (F n, L n) converges weakly

to the distribution of (e,eL) on c([o,T]•Hq-rn-1)xso. suppose

that the distribution of Z .n(.) on C([O,T]+Hq) converges
weakly to the distribution of ZO('). Using :heor2m 1213 in [2]

again, we can see that the distribution of (z n, F n, L n) on s

converges weakly to the distribution of (ZO, O, L). In virtue
                                            e e eof Skorohod's theorem, we may assume that {z n, F n, L n)

convergeS to (ZO, e, L) in S. P-a.e. . Fora while we

proceedourdiscussÅ}on with fixing an coEst such that
<z n(co), F n(o), L n(cD)> converges to (zO(cD) , e, L) in Se

For any fixed tG[o,T] and he'Hq'M-1 we have

        (zO(t),h)q-.-1 - fg (LZO(s),h)q...1 ds

      = (ZO(t)rh)q-Tr,.1 - (ZEn(t),h)q-,n.1

            tee e         + fo <L n(s)z n(s),h)q-m-1 ds + <F n(t),h)'q.m-1
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         .- Ig (Len(s)zO<.),h)q.m.1 ds ,

         . fg (Len(s)zO(s),h)q-.-1 ds - Ig (zO(s),h)q-.-1 ds•

clearly, 1(zen(t>,h)q-m-1-(zO(t),h)q-m-1lÅÄO, l(Fen(t),h)q-m.1lÅÄOt

and
lIg(Len(s)zen(.), h}q-.-1d. -..Ig (Len<s)zO(s),h)q-.-1dsIÅÄo as

n)oo. Let Zei be the space of au mlbert-schmidt operators

frorn-Hq-M'i into Hq. we note that L2([o,T]+jZe) and
L2([o,T]ÅÄEZÅé /) are isometric and isornorphic by the correspondence

L2([o, [r ]+ 1]ZZ ) A(. ) >> Ai (. ) (F L2([o,T ]• EJZk2 / ) where for each t,

A/(t) = A<t)1: the dual operator of A(t). we define an
eleraent Bi (.) of L2<[o,T]ÅÄ2iZk2!) as fonows:

                               ./    ,-,--'{gzO(s" ;g; g,,={[:,gCki'
                                               if 'O S- s5t

     B (s)g =

                O if t< s5 T.
Since L n(.) converges to L in the weak topology of
L2([o,T] -> sze ) we have

       te     fo (L "(s)ZO<s),h)q-.-1ds

    . I: (B i(s)h,Le n /( s)h)qds ÅÄ J: (B !( s)h,L! h)qds

                   '                            = Ig (LzO(s),h)q-.-ids
                                                    (n • co).
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Thus we have seen that

                (ZO(t),h}q-..1 = Iot (LZO(S)ih)q-rn-1 dS

for any Osts 77 and for any he Hq'M-1. Therefore
                                                      '     . zO(t) = Ig LzO(s) ds ' for any oEts

Hence we have seen that ZO(.) = e. It follows that' the
      'distribution of ZS(') on c([O,T]+Hq) converges weakly

Therefore the limit distribdt;ons of xe(.) and ye<.)

on C<[O,[V]-,-Hq). He,nce they coincide on C([O,T]•HP).

c.ompletes the proof of Theorem.

we have

T P-a.e..

 to O.

coincide

 This

    11
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