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Abstract

This thesis investigates ways to optimize the hidden layer (reservoir) of a specific type

of recurrent neural network, called Echo State Network (ESN), in order to improve

performance reliably on a variety of tasks. First, an initialization strategy based on

permutation matrices for the hidden layer connectivity is tested. This approach is

shown to vastly improve network performance on tasks which require long memory

and is also able to perform highly nonlinear mappings. Second, an unsupervised,

local learning rule is derived that aims at a high entropy of reservoir codes while

keeping neuron activity sparse. This learning rule extends previous approaches which

change the intrinsic plasticity (IP) of reservoir neurons using a gain and a bias factor

in the neurons’ transfer function. A moderate improvement over random networks

is shown, and a limitation of the IP approach with standard sigmoidal activation

functions is identified. Furthermore, a specific dynamics regime located between

stable and chaotic dynamics is studied. Networks whose dynamics operate in this

region have been shown to exhibit greatly increased computational capabilities. The

reasons for this phenomenon are, however, not fully understood. In this thesis, an

information-theoretic framework is adopted to measure the components of universal

computation of ESN reservoirs as the networks undergo the phase transition from

stable to chaotic dynamics. By measuring these components directly and on a local

level, we gain novel insights over existing work. We show that both information trans-

fer and information storage are maximized at the phase transition point. Moreover,

we discuss implications of these results with respect to different task requirements,

and possibilities for reservoir optimization.
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Chapter 1

Introduction

Recurrent neural networks (RNNs, see Fig. 1 (b,c)) are powerful tools for nonlinear

systems modeling and temporal sequence learning. They are computationally more

powerful than simple feedforward architectures (see Fig. 1 (a)) since they can exploit

long-term dependencies in the input when calculating the output. This means they

are able to implement dynamical systems which have a state, as opposed to the

functional mappings which are implemented by feedforward neural networks (FFNN).

In addition, they are more biologically plausible, making use of feedback connections

which are abundant in neural circuits (e.g. in the human neocortex [8, 9]).

RNNs have been used for many important applications in engineering, such as in-

creasing the fuel efficiency of the widely popular Toyota Prius [10] or optimizing con-

trol of industrial and technical systems [11, 12]. They have also been used successfully

for learning and controlling robot behaviors in various studies. In [1], for instance,

the authors used a recurrent neural network with parametric bias (RNNPB) [13] to

enable the robot to learn movement patterns from a human demonstrator. The net-

work acted as a mirror system which, after training, was able to regenerate movement

patterns for the robot in synchrony with the human demonstrator, as well as inter-

esting responses to novel patterns (see Fig. 2). Rolf et al. [2] presented a recurrent

neural network of the reservoir computing type (see below) which is able to learn

whole-body kinematics of a humanoid robot (see Fig. 3). The network was trained

by the backpropagation-decorrelation (BPDC) algorithm [14], while the hidden layer

1



(a) (b) (c)

Figure 1: (a) Feedforward neural network: information flows only forward (b) Ex-
ample of a recurrent neural network architecture: due to the loops in the network
connectivity, the information can ”cycle” around the network and is available for
computation over some period of time. This provides the network with a temporal
context. (c) Reservoir network: a specific type of recurrent neural network which has
recurrent connections in the hidden layer, implementing a fading memory of past in-
puts. Only output connections are adapted through training in this model (see main
text for more information).

Ito & Tani On-line Interaction with a Humanoid Robot 99

Figure 3 The system flow of RNNPB in learning phase (a) and interaction phase (b).

 at DENSHISEIGYO-6 ( OUE) on November 20, 2009 http://adb.sagepub.comDownloaded from 

Figure 2: (left) A user engaging in imitative interaction with a humanoid robot [1]
(right) The recurrent neural network with parametric bias (RNNPB) which was used
in the same study as a mirror system to imitate demonstrated movements.
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Fig. 2: Target positions of both hands are fed into the recurrent neural network. The network is trained towards an inverse
kinematics solution by BPDC adaption of output weights and an Intrinsic Plasticity rule within the reservoir. The estimated
joint angles are applied on ASIMO in order to follow a target movement.

puting is to generate a complex nonlinear transformation of the
input signal into a high dimensional vector of the recurrent
network neuron states. Functionally the state vectors can
be regarded as nonlinear temporal feature vectors encoding
information about the the inputs, which enable linear learning
methods at the output neurons. We will show in this paper
that a reservoir network can learn the complex inverse kine-
matics needed to control hand movements, i.e. we apply the
network to an intrinsically static inverse kinematics task, which
however becomes temporal by the requirement of correlated
presentation of data and online learning.

In related work, learning of the inverse kinematics model
as a combination of locally linear low dimensional models
has been very successfully demonstrated in [3], [9]. Learning
redundancy resolution and disambiguation for following a
figure-eight is performed for the humanoid robot at ATR,
which shows that locally the inverse model is sufficiently
smooth to be approximated by a simple function estimator.
The same weighted regression scheme has also been used in
[10] to learn goal directed movements based on parameterizing
a predefined dynamical system or nonlinear oscillators for
rhythmic movements [11]. By definition, these schemes are
local and can not extrapolate to untrained regions of the
mapping. The approach to learn or design restricted behavior
primitives has been criticized in [12], [13], because gen-
eralization to new patterns is practically impossible. More
recent work applies this approach for imitation learning of
simple manipulations with a small torso robot [14]. While our
approach also predicts tasks and motor outputs and assumes
that sensori-motor patterns are stored in a combined model, it
differs in several important aspects from previously introduced
schemes. Like in [13], we learn a distributed representation,
but rather in a fully recurrent neural network and not using
explicit motor inputs. Most important, our learning scheme is
completely online and efficient enough to learn while running
in a behaving robot. We demonstrate that our network can
learn the inverse kinematics with a high degree of accuracy
and, if training data are suitable, can generalize to structurally
similar motions and even to completely untrained inputs.

II. TASK AND NEURAL NETWORK APPROACH

A. Inverse Kinematics and Body Couplings

Given some target coordinates of end-effectors u∈Rn, an
inverse kinematics gives the joint angels q∈Rm for the robot
that apply the end-effector targets. On ASIMO, we control
the 3D cartesian positions of both hands by a six-dimensional
input variable u(t) = ul,r(t) ∈ R6, l = left, r = right.
The outputs are the control variables for a total number of
15 degrees of freedom (m = 15). Each arm is moved by
controlling three rotational degrees of freedom in the shoulder,
one in the ellbow and one in the wrist. Therefore each arm is
– regarding the task to position the hand – redundant on its
own. Additionally, we control four degrees of freedom in the
hip: its height over ground and the rotation around all three
spatial axes. The last degree of freedom is the head’s pan-
orientation that is without effect on the task, but also controlled
and learned. The hip-control not only introduces additional
redundancy in the control problem, but kinematically couples
both arms: a change in the hip configuration moves both end-
effectors. If for instance the right hand shall be moved utilizing
the hip motion, but the left hand shall be fixed, also the left
arm’s joints have to be moved. This whole-body motion is
neither trivially to control nor to learn. However, including
the body movements enlarges the total operational range of the
hands since the upper body can e.g. be leant in the direction of
targets. Second, it allows more play for subsequent movements
since joint limits can be effectively avoided.

B. Neural Architecture

The whole body inverse kinematics is learned by a recurrent
neural network which receives subsequent target coordinates
for both hands as input u(t) = ul,r(t) ∈ R6. As output, the
network shall produce the set of joint angles/control variables
q(t) such that the target position is reached (F l,r(q(t)) =
ul,r(t)), where F l,r : R15 → R6 denotes the forward
kinematics of the system. We also learn a next-step prediction
of the target positions ul,r(t + 1), which can be used for
autonomous behavior generation, but this application is beyond
the scope of the current paper. The overall target output is

Figure 3: Echo State Network used to learn whole-body kinematics of the humanoid
robot ASIMO (from [2]).

was adapted by the intrinsic plasticity (IP) learning rule [15, 16] which will be pre-

sented in detail in later chapters of this thesis. The training procedure proved very

efficient and generalization of the network to new movement patterns was shown to

be very good. Reinhart and Steil [3] introduced a control framework using a recur-

rent neural network for goal-directed movement generation. The network is able to

learn forward and inverse kinematics of a robot arm simultaneously (see Fig. 4), and

the network dynamics are exploited to implement a nonlinear task space controller.

The approach allows for efficient online learning and execution, as well excellent gen-

eralization of the learned kinematic model. Several other studies in robotics exist

(including [17, 18, 19, 20, 21, 22, 23, 24], proving the usefulness of recurrent neu-

ral networks for learning (and generating) the nonlinear mappings and temporally

extended ordered sequences typical for this domain.

Analysis and training of RNNs is rather involved when compared with methods

for the simpler FFNNs. Early training algorithms like Backpropagation Through

Time [25] (BPTT) or Real-Time Recurrent Learning [26] (RTRL) suffered from high

computational complexity and slow convergence [27, 28, 29]. In the last few years,

however, RNNs have been increasingly popular—mainly due to new, efficient archi-

tectures and training methods published in recent years (surveyed in [30]). These
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Fig. 1. The reservoir network architecture.

back in their approach and achieve highly accurate reaching
performance. However, their approach requires the calculation
of the inverse Jacobian matrix and the reaching accuracy
depends on a step size parameter. The approach presented in
this contribution learns a kinematic model that maps absolute
target positions to absolute joint angles and vice versa. The
reaching accuracy of our approach depends only on the learned
kinematic model and is not affected by a step size parameter.

II. RESERVOIR COMPUTING

We focus on a reservoir network as depicted in Fig. 1.
The reservoir architecture comprises a recurrent network of
nonlinear Fermi-neurons interconnecting input and output.
Direct connections between input and output Wout

inp and Winp
out

constitute a linear submodel, where we denote by W�
� all con-

nections from � to � using inp for input, out for output, and
res for inner reservoir neurons. Wnet captures all connection
submatrices of the network and is defined by

Wnet =





0 Winp
res Winp

out

Wres
inp Wres

res Wres
out

Wout
inp Wout

res 0




.

It is important that only connections Wout
� and Winp

� projecting
to the input and output neurons are trained by error correction
(illustrated by dashed arrows in Fig. 1). All other weights are
initialized randomly with small weights and stay fixed.

We consider recurrent network dynamics

x(k+1) = (1−∆t) x(k) +∆tWnetz(k) (1)
z(k) = f(x(k)), (2)

where for small ∆t continuous time dynamics are ap-
proximated1. We denote the network state by z(k) =
(u(k)T , y(k)T , v(k)T )T , where u,y and v are the input,

1With a small abuse of notation we also interpret time arguments and
indices (k + 1) as (k + 1)∆t.

Fig. 2. PA-10 multipurpose robot arm. Redundant positions lie on a
redundancy circle for the elbow (left). PA-10 robot arm in simulation (right).

reservoir and output neurons. z is obtained by applying
activation functions component-wise to the neural activations
xi, i = 1 . . . N . We use parametrized Fermi-functions yi =
fi(xi, ai, bi) = (1 + exp (−aixi − bi))−1 for the reservoir
neurons, whereas the input and output neurons have a identity
as activation function, i.e. are linear neurons.

A. Unsupervised reservoir optimization

The potential of reservoir computing obviously depends on
the properties and the quality of the input encoding in the
reservoir. To address this issue, we use a biologically inspired
learning rule based on the principle of neural intrinsic plas-
ticity first introduced in [24]. Intrinsic plasticity (IP) changes
the neurons’ gains ai and biases bi of the Fermi activation
functions in order to optimize information transmission of the
inner reservoir neurons [20]. That is, neurons should be active
only sparsely. We obtain the following online gradient rule
with learning rate ηIP and desired mean activity µ:

∆bi(k) = ηIP

�
1−

�
2 +

1

µ

�
yi(k) +

1

µ
yi(k)

2

�
, (3)

∆ai(k) = ηIP
1

ai(k)
+ xi(k)∆bi(k). (4)

This unsupervised self-adaptation rule is local in time and
space and therefore efficient to compute. We apply the IP rules
(3), (4) at each time step k in the training phase after iterating
the network dynamics (1), (2). For a detailed description and
derivation of the IP learning rule see [24].

B. Supervised read-out learning

Only the read-out weights Wout
� and Winp

� are trained su-
pervised by backpropagation-decorrelation (BPDC) learning,
an efficient online training scheme introduced in [18]. In the
proposed network configuration without recurrent connections
between input and output neurons, the BPDC learning rule
simplifies to

∆wij(k) =
η

�z(k−1)�2 + ε
zj(k−1) (d∗i (k)− di(k)), (5)

Figure 4: The left image shows the setup of an Echo State Network which was used
to learn forward and inverse kinematics of the Mitsubishi PA10 robot arm (right
image) simultaneously. The network transients were used to implement a task space
controller which achieved excellent generalization to untrained locations (from [3])

include, for instance, self-organizing maps for time series [31], long short-term mem-

ory (LSTM) networks [32], Evolino [33, 34], and also the Reservoir Computing (RC)

approach [35, 36, 37].

Reservoir Computing is a new paradigm in recurrent neural network training based

on two main insights:

1. Instead of training every connection of a recurrent neural network, it suffices

to initialize the network with random weights and only train the linear output

connections. The fixed, randomly initialized parts of the network will then act

as a nonlinear filter of the inputs to the network.

2. The hidden layer (also called reservoir or liquid) should have fading memory

properties in order to guarantee stability of the network.

These insights were developed independently by the groups of Herbert Jaeger who

used it for his Echo State Networks (ESNs) [35], and Wolfgang Maass who presented

the Liquid State Machine (LSM) [37]. More details on the RC approach are given

in Appendix A.

While Reservoir Computing networks successfully overcome the problems that

complicated training and application of more traditional RNNs, several new open

4



research questions became apparent. Two particular questions of these are addressed

in this thesis. Below, we describe the motivation behind these questions, and give a

precise statement of which problems are investigated.

1.1 Motivation

A problem of the RC approach is that there is considerable variation in performance

when different random reservoir initializations are used with all other network pa-

rameters remaining fixed [38]. The approach essentially trades off reduced training

complexity (only training the output connections) with optimal coding within the

reservoir for a given problem. It is obvious that random initialization will lead to

sub-optimal performance when compared with matrices which have been optimized

for the problem at hand.

One possibility is to find reservoir initialization strategies that will, on average,

reliably lead to better results than random initialization for a large class of prob-

lems. Another promising approach that avoids the shortcomings of earlier training

algorithms is to train the reservoir and the output connections separately, i.e., with

different learning algorithms. Both forms of optimization change or shape the dynam-

ics of the reservoir with the goal of improving overall performance at one, or possibly

several tasks.

Apart from the question which initialization or training procedure is most suit-

able in order to achieve good performance on a given task, a further important open

research question is to explain the phenomenon that performance of reservoir com-

puting networks seems to be maximized at the border between stable and unstable

dynamics regimes. This kind of phenomenon has been observed in other dynam-

ical systems [39, 40, 41] and there have been previous studies in the context of

RNNs [4, 42, 5], but no universally accepted explanation has been found so far.

A detailed account of which elements of computation enable this performance maxi-

mization is important not only for Reservoir Computing itself, but also in the wider

context of understanding general distributed computation in complex systems.
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1.2 Problem Statement and Thesis Objectives

From this motivation, we summarize the main problem addressed in this thesis in the

following question:

How can Echo State Network reservoirs be reliably improved over stan-

dard initialization, and how can we assess their quality?

More specifically, we break this down into two sub-questions which will be ad-

dressed in the main part of the thesis:

• How can reservoirs be shaped (using alternative initialization and unsupervised

pre-training) to improve task performance reliably over standard reservoirs?

• How to quantify the elements of intrinsic computation in ESN reservoirs, and

how do these change at the phase transition between ordered and chaotic dy-

namics (the so-called edge of chaos)?

The first of these questions is addressed in Chapter 3 and 5, and aims to make a

contribution to the blue region in Fig. 5. The second question is dealt with in Chap-

ter 4. It also aims to contribute to the wider problem of designing high-performing

reservoirs, but is meant to additionally contribute to the green colored region in Fig. 5

which includes the question how computation in reservoirs changes at the order-chaos

phase transition.

1.3 Structure Of The Thesis

The paragraphs below briefly describe the contents of each chapter in this thesis.

Chapter 2

In Chapter 2, an overview of related work is given. This includes relevant work in

reservoir assessment, reservoir optimization, dynamical systems at the edge of chaos,

and investigation of computational capabilities of reservoirs at the edge of chaos.
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Figure 5: The research landscape related to topics in the thesis.

Chapter 3

Chapter 3 presents our work on initialization and self-organized optimization of recur-

rent neural network connectivity. We derive a new local learning rule which changes

internal parameters of each reservoir neuron in order to achieve an output distribu-

tion which strikes a balance between high entropy and sparse activity in the reservoir.

This approach of changing a neuron’s internal parameters is called intrinsic plasticity

(IP). We compare this new learning rule with a similar IP rule found in the literature,

with standard reservoirs using uniform random connectivity (as a baseline), and with

reservoirs based on permutation matrices. Permutation matrices had been found to

be very useful in a specific benchmark test for chaotic time series prediction, but had

not been tested widely otherwise. They were included in our comparison in order to

investigate their performance in benchmarks with different requirements. Our results

showed that permutation matrices can vastly outperform the other methods if long

memory is required for the task. Additionally, they performed very well in a non-

linear system modeling task which also required a window of past inputs in order to

compute the output. The other methods did better in a chaotic time series prediction

task, however. Analysis of the output distributions of both IP methods revealed a
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limitation of this approach in the reservoir context with standard sigmoidal units.

Chapter 4

Information processing of Echo State Networks at the edge of chaos is the topic of

Chapter 4. We use the framework of information dynamics [7] to quantify the elements

of intrinsic computation, namely memory, communication, and processing1. We use

the short-term memory capacity and the nonlinear system modeling benchmark from

Chapter 3 and test networks whose weights are gradually increased. To assess whether

the networks are in the ordered or the chaotic dynamical regime, or just in between

the two at the phase-transition region (edge of chaos, also called critical point), we

measure the Lyapunov characteristic exponent. We show, in line with a conjecture

from previous work in dynamical systems, that the intrinsic computational capabil-

ities of the tested networks are indeed maximized at the phase-transition between

ordered and chaotic dynamics. To our knowledge, this is the first study to present

direct quantitative evidence for this conjecture at the level of individual neurons.

Chapter 5

An approach to improve recurrent neural network connectivity based on transfer

entropy (as discussed in Chapter 4) is presented in Chapter 5. We show how the

information transfer between input and desired output of a system can be interpreted

as the learning goal of the task, which is then used to adapt local parameters governing

memory length in each reservoir node. The approach is tested on synthetic data in

two different benchmarks and is able to improve the network performance reliably for

online and offline output training methods.

Chapter 6

In Chapter 6, we discuss the results presented in Chapters 3, 4, and 5. In particular,

we explore the limitation of IP in the reservoir context. We also discuss the rela-

tionship between task performance and reservoir dynamics at the edge of chaos, and

1
We concentrate on memory and communication of reservoir nodes in this study; processing will

be addressed in future work.
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the correspondence between observed maximization of computational capabilities (in

terms of memory and information transfer) and task performance.

Chapter 7

In Chapter 7 we summarize our contributions to the field of Reservoir Computing and

related areas (see Fig. 5). Directions for future work are pointed out, and concluding

remarks are given.

Appendix A

This Appendix gives a very short introduction to Reservoir Computing, emphasizing

the Echo State Network model in particular. It presents a formal description of Echo

State Networks and the Echo State Property.

Appendix B

The final Appendix presents a brief review of basic quantities from information theory.

We only give an overview of concepts that are relevant to the description of active

information storage and transfer entropy as used in Chapters 4 and 5.

Before the main results of this thesis are presented, we will survey related work

that forms the basis for our own studies in the next chapter.
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Chapter 2

Related work

In this chapter, we will review work that is closely related to the contents of the

following chapters. We start out with an overview of different measures for assessing

reservoir quality. After that, reservoir optimization techniques are surveyed, concen-

trating on generic and unsupervised methods. These are most related to the results

presented in Chapters 3 and 5. Our review of these topics will closely follow the

presentation in [43].

We continue with a look at existing literature on the theme of dynamical systems

at the edge of chaos. We will first present some of the classical research on cellular

automata (CA) and random boolean networks (RBN) which has led to the conjecture

that support for intrinsic computation might be maximized in dynamical systems at

the border between stable and chaotic dynamics—the edge of chaos. We then take a

more focused look at reservoir networks poised at this region, and the consequences

for task performance, which are also the topics studied in Chapter 4.

2.1 Reservoir Assessment

Many different measures for the quality of a reservoir, i.e., its expected usefulness for

computation in different tasks, have been proposed in the literature. An often used

criterion for reservoir quality assessment is its short term memory capacity (MC). It

was introduced in [44] and measures the degree to which a reservoir can reconstruct

an input from time step n at step n + k for different delays k (see Section 3.1 for a
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formal definition). We use it as an evaluation criterion in the studies in Chapters 3

and 4.

A desirable property of reservoirs is for the cross-correlation matrix of their unit

activations to have a small eigenvalue spread (EVS). A small value for the EVS is

necessary in order to use efficient online learning algorithms like stochastic gradient

descent. In standard ESNs, it was reported that the EVS can reach values as high as

1012 which prohibits use of these learning techniques [45]. Attempts to achieve low

correlation of reservoir activations themselves have been reported in [45].

Several researchers have measured, and tried to increase, the entropy in the reser-

voir, either for the reservoir overall [45, 38] or for outputs of individual units in the

reservoir [16, 46, 47]. In [48], the entropy of individual units was increased in con-

nection with other plasticity mechanism, and the entropy of the reservoir as a whole

was measured in the analysis (see also below).

The Lyapunov (characteristic) exponent (LE) is a measure which allows to assess

the criticality of a dynamical system, i.e., whether its dynamics are in the stable

regime, in the chaotic regime, or in between, in the phase transition (or critical) re-

gion. It has been used in the RC context for instance in [42] and in [49]. The measure

is interesting because of evidence that dynamical systems show increased computa-

tional performance right at the order-chaos phase transition (more on this below in

Section 2.3). We used the LE in our investigation of the information dynamics in

ESN at the critical point in Chapter 4, and it will be defined formally there. Several

other measures for the quality of reservoirs using binary units are described below in

Section 2.4.

2.2 Reservoir Optimization

For our overview on reservoir optimization techniques, we adopt the classification

used in [43]:

• Generic guidelines in order to arrive at good reservoirs which don’t take the

task into account (they make no use of either the input statistics or an output

error)
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• Unsupervised reservoir pre-training based on the input statistics. The output

is not considered.

• Supervised reservoir pre-training using both input and output data.

As mentioned above, however, we will only consider the generic and unsupervised

methods here since they are the most relevant for the work in subsequent chapters.

For a more complete overview, please refer to [43]. In that overview, the authors also

stress a point we would like to reiterate here: the fact that no reservoir will be optimal

for all conceivable problems. This is due to the well-known ”no free lunch” theorem

of supervised learning due to Wolpert [50], stating that no bias can exist which will

improve accuracy of a model with respect to all types of problems. Nevertheless,

reservoirs can be improved for one or possibly several similar tasks at hand. In the

following, we consider generic methods for reservoir improvement.

2.2.1 Generic Methods

Generic methods for producing reservoirs do not take into account the input or output

data. They are general recommendations on how to set up reservoirs that can be

expected to perform well in practice. Also included are tuning certain global reservoir

parameters by hand for a given task, and initialization of the reservoir topology with

weights that are not drawn from a uniform random probability distribution.

Early recommendations on how to create good reservoirs were given in Jaeger’s

initial publications [35, 51] on the echo state approach. He recommended to use a

large number of neurons for the reservoir, and to use a sparse random connectivity

between reservoir neurons. This should produce reservoirs with a rich dynamics where

neurons are only loosely coupled, and produce a large and varied set of responses to

stimulation which could then be used by the readout neurons. Any reservoir would

naturally have to be designed to have the Echo State Property which, in simple

terms, means that it implements a fading memory (refer to Appendix A for a formal

definition).

Different kinds of topologies have been tested for the reservoir connectivity. In [52]

small-world networks [53], scale-free networks [54], and topologies created by growing
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networks according to biologically inspired principles were tested. The networks were

evaluated according to the overall normalized root mean squared error (NRMSE) and

the eigenvalue spread of the reservoir unit activation cross-correlation matrix. No

significant difference, however, was found for any of the tested reservoirs compared

to the standard random networks.

Hajnal and Lőrincz [55] suggested permutation matrices for the connectivity of

the reservoir. In order to create a permutation matrix, one takes an identity matrix

and randomly shuffles its columns. This results in a very sparse connectivity with

one neuron connecting to only one other neuron. In addition, the reservoir matrix

will have full rank which, the authors noticed, correlates with higher performance.

They tested this topology on a Mackey-Glass time series prediction task and reported

improved performance over random reservoirs. We took up this idea and tested it on

two additional tasks with differing requirements in the experiments in Chapter 3.

In [56], an ESN with spatial organization in the reservoir was proposed under the

name SODESN (spatially organized distributed echo state network). Connectivity in

this topology was restricted to connections with immediate neighbors. An interesting

point in this work was that the ESN nodes themselves were distributed over a grid

of sensor network nodes, and the SODESN was used to learn a model of each node’s

response to input data and data from its neighbors. This model could then be used

for fault detection and predicted data could substituted for a node with faulty mea-

surements. The particular topology was well suited for a sensor network with limited

communication ability between nodes. It would be interesting to compare it to other

existing ESN topologies.

Another generic method is to divide the reservoir into different modules. Such an

approach was implemented in [57] which used lateral inhibition between the reservoir

modules to achieve a decoupling of their signals. This enabled learning of a task

which is known to be notoriously difficult for standard ESNs, namely the prediction

of a signal constructed by superimposing different oscillators (see also [58]).

The Evolino approach [33, 59, 34] uses a reservoir which consists of modules

specially designed to hold signals in memory for a very long time (cf. LSTM net-

works [60]). The output weights are trained by evolutionary algorithms.

Next, we turn to unsupervised methods for reservoir adaptation.
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2.2.2 Unsupervised Methods

The unsupervised methods presented in this section try to optimize a reservoir by

using the statistics of the input, but do not consider any desired output.

There has been early work on unsupervised optimization of recurrent neural net-

works using LSTM units by Klapper-Rybicka et al. [60]. There, networks were trained

using two different kinds of information-theoretic optimization methods. One method

was the binary information gain optimization (BINGO). It de-correlates the outputs

of a network whose logistic units are interpreted as stochastic binary variables, find-

ing independent dichotomies in the data. The other method was a technique called

nonparametric entropy optimization (NEO). It uses kernel density estimation to ap-

proximate signal probabilities, and optimizes their entropy. Results showed that the

networks trained with these algorithms could successfully perform unsupervised dis-

crimination and classification of temporal sequences.

First attempts by Jaeger to use unsupervised Hebbian and Anti-Hebbian learning

for reservoir adaptation for a smaller EVS were reported to be unsuccessful [45]. Sev-

eral works using intrinsic plasticity (IP) in the reservoir optimization context have

been published in the literature. This mechanism models changes in a neurons’ in-

trinsic excitability in response to stimulation. Specifically, it models the phenomenon

that biological neurons lower their firing threshold over time when they receive a lot

of stimulation, and raise it when stimulation is lacking (see e.g. Zhang and Linden

[61] and Daoudal and Debanne [62] for more details). A learning rule based on this

phenomenon was introduced by Triesch [15], and further studied in [63]. It aims to

maximize the information in the output of a neuron, an approach related to the one

in [64]. Steil [16] showed a marked increase in performance using IP for Fermi neurons

in an ESN trained by backpropagation-decorrelation (BPDC) [14]. For tanh units, an

IP approach was investigated in [46], shaping the reservoir outputs to follow a Gaus-

sian distribution. Our work on IP in Chapter 3 is closely related to this, extending

this work using Laplace distributions.

A combination of IP with STDP (spike timing dependent plasticity) was stud-

ied in [47] for reservoirs with simple spiking units. The results indicated that this
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combination leads to reservoirs more robust to perturbations, and an increased per-

formance in terms of short-term memory capacity and time series prediction. The

combination was also reported to drive networks close to the edge of chaos region

we study in Chapter 4. Synergistic effects of IP with STDP for single neurons had

previously been reported by Triesch [63]. In later work [48], the authors of the study

above introduced the Self-Organizing Recurrent Neural Network (called SORN). In

addition to the approach in [47], they combed IP and STDP with a third plasticity

rule called synaptic scaling. IP, in this study, controls the firing probability of a neu-

ron and keeps it in a specified range, STDP detects correlations (or anti-correlations)

in the data, and synaptic scaling normalizes the sum of all incoming weights to a neu-

ron, keeping their relative proportional strength. The interaction of these plasticity

mechanism enabled adaptation of the reservoir to the input data while keeping the

dynamics in a ”healthy” range. SORN was shown to outperform standard reservoir

networks on different benchmarks by a large margin.

To conclude this section, we look at two unsupervised learning techniques which

adapt the reservoir globally as opposed to the more local approaches above. Mayer

and Browne [65] proposed a biologically inspired approach using a reservoir that learns

to predict itself. The original reservoir activations are mixed with self-predictions in

a ration (1 − α) : α. The coefficient α can be changed to get different reservoir

properties. For α = 0, the network behaves like standard ESN. For α = 1, the

reservoir becomes ”autistic”, relying solely on its own predictions and ignoring new

input. Values of α in between these extremes were shown to lead to highly nonlinear

reservoir signals that cannot always be observed in standard reservoirs.

In [38], an algebraic way to generate reservoirs with a uniform eigenvalue distri-

bution (around the unit circle in the complex plane) in an unsupervised manner is

presented. The generated reservoirs were reported to have a high entropy of unit

activations. They were tested on the memory capacity task (cf. Section 3.1.1) and

other synthetic problems and showed consistent performance improvement over fixed

random reservoirs.

After our overview of work on reservoir optimization, we now turn to the literature

closely related to our study on information processing in ESN at the edge of chaos.
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2.3 Dynamical Systems at the Edge of Chaos

In a recent overview book chapter, Legenstein and Maass [66] ask the question:

”[w]hat makes a dynamical system computationally powerful”? We follow their re-

view in parts of this section, tracing some of the early work that sparked the interest

in dynamical systems at the edge of chaos.

As early as 1969, Kauffman [67, 68] studied model systems for regulatory gene

networks. His model networks are known as random Boolean networks (RBNs) and

consist of a number of units supported by Boolean functions, and directed random

connections between them. At each time step in a simulation, the dynamics of the

network is iterated using the Boolean functions of each unit and inputs from their

connections. A parameter K determines the average number of connections for each

unit. Kauffman studied the behavior of RBNs as a function of this parameter and

empirically found that his networks exhibited a phase transition from ordered to

chaotic dynamics at K = 2. This phase transition was later analytically verified by

Derrida and Pomeau [69] in their Annealed Approximation.

The conjecture that computational capabilities of dynamical systems might be

maximized at this phase transition between ordered and chaotic dynamics was put

forth by Wolfram [39]. He studied cellular automata (CAs) which are similar to

RBNs with the difference that only local connections exist between neighboring units.

Further, each unit can have one out of several possible states, as opposed to only two

in RBNs. Computation in the context of CAs has the meaning of transforming an

input to an output pattern where the input is the system’s initial state, the program

is implemented by the rules and interactions of the units, and the final pattern after

evolution of the state is the output [41]. Wolfram identified four different classes for

the CA dynamics and found that one class CAs showed neither stable nor chaotic

behavior, but had long transients and evolved ”to complex localized structures” [39].

Langton [40] later studied Wolfram’s CA classes in a systematic way and confirmed

his conjecture using information theoretic analysis. He asked under which conditions

a dynamical system will ”support the basic operations of information transmission,

storage, and modification constituting the capacity to support computation?” [40].

His analysis pointed to the edge of chaos as the region generating the most powerful
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systems in terms of computation.

Mitchell et al. [41] however, repeated some of the experiments in [40] and found

differing results. Consquently, Mitchell and colleagues challenged the idea that the

dynamics at the edge of chaos would universally beneficial for computations in dy-

namical systems. We note here that this is also in line with results we present in

Chapter 4. In [41], another meaning for computations in CAs is mentioned. The

authors emphasize that ”computation is not interpreted as the performance of a ’use-

ful’ transformation of the input to produce the output. Rather, it is measured in

terms of generic, structural computational elements such as memory, information

production, information transfer, logical operations, and so on”. Furthermore, they

pointed out that these ”intrinsic computational elements [do] not rely on a semantics

of utility” [41]. Legenstein and Maass [66] note in their review that these intrinsic

computations can be used by a readout, mapping system states to outputs. This is

a central idea in reservoir computing. It is also one of the motivations for our study

in Chapter 4 which aims to quantify these computations, and identify the system

dynamics that maximize them.

Lizier et al. [7] used the information dynamics framework [70] to quantify the fun-

damental nature of computation in RBNs at the order-chaos phase transition. They

found that the ordered regime is dominated by information storage, while informa-

tion transfer between network units is dominant in the chaotic phase. It was shown

that both of these computational operations seem to be in balance around the critical

point. In Chapter 4, we use the same framework to analyze the information dynamics

of Echo State Networks and we will see that these results do not necessarily general-

ize to systems with analog units (see also the notes below on [5] which finds marked

differences information processing in binary and analog systems).

In the following, we will examine studies which have looked at the behavior of

Reservoir Computing networks at the edge of chaos.

2.4 Reservoir Computing at the Edge of Chaos

The phenomenon of increased computational performance in recurrent neural net-

works at the edge of chaos has been addressed in the literature before.
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Figure 6: (A) Memory curve for the three-bit parity task. Shown is the mutual
information MI(v, y) between the classifier output v(·) and the target function
y(t) = PARITY(u(t − τ ), u(t − τ − 1), u(t − τ − 2)) on a test set (see the text for
details) for various delays τ . Parameters: N = 250, K = 4, σ 2 = 0.2, ū = 0, and
r = 0.5. (B) The gray coded image (an interpolation between the data points
marked with open diamonds) shows the performance of trained networks in
dependence of the parameters σ 2 and ū for the same task as in A. Performance
is measured as the memory capacity MC =

∑

τ MI(τ ), that is, the “area” under
the memory curve. Remaining parameters as in A.

These considerations suggest the following hypotheses regarding the
computational function of generic recurrent neural circuits: to serve as a
general-purpose temporal integrator and simultaneously as kernel (i.e.,
nonlinear projection into a higher dimensional space) to facilitate the sub-
sequent linear readout of information whenever it is needed.

The network size N determines the dimension of the space into which
the input signal is nonlinearly transformed by the network and in which
the linear classifier is operating. It is expected that MC increases with N
due to the enhanced discrimination power of the readout function. Hence,
it is worthwhile to investigate how the computational power (in terms of
MC) scales up with the network size N (see Figure 7). Interestingly, the
steepest increase of MC with increasing N is observed for critical parameters
(almost perfect logarithmic scaling). In contrast, at noncritical parameters,
the performance on the delayed 3-bit parity task grows only slightly with
increasing network size.

To further explore the idea of computation at the edge of chaos, the
above simulations were repeated for different values of K and different tasks.
The networks were trained on a delayed 1-bit (actually just a delay line),
a delayed 3-bit, and a delayed 5-bit parity task as well as on 50 randomly
drawn boolean functions of the last five inputs, that is, y(t) = f (u(t), u(t −
1), u(t − 2), u(t − 3), u(t − 4)) for a randomly drawn boolean function f :

Figure 6: Memory capacity of recurrent neural networks of threshold units versus
mean input level ū and variance of recurrent weight strength σ

2. The network was
trained on a 3-bit parity task with each node having an in-degree (number of incoming
connections) of K = 4. The best performance (indicated by the dark areas in the
plot) can be found around the critical line (from [4]).

Bertschinger and Natschläger [4] examined networks of threshold units operat-

ing on input streams and found computational performance maximized at the phase

transition (see Fig. 6). They proposed the “network mediated separation” (NM -

separation) criterion as a measure to quantify computational capability. This NM -

separation is formed by the state distance of successive inputs, minus the state differ-

ence due to different initial states. In the stable regime, initial differences fade away

quickly, and separation between inputs is low, hence the NM -separation has a low

value. In the chaotic regime, small initial differences are amplified so there is a high

separation, but no fading memory, resulting in a small value for the NM -separation.

At the phase transition point it was found to be maximized.

In [71], the authors proposed two new measures in the context of Liquid State

Machines (LSM) [37], another reservoir computing approach using spiking neuron

models closer to the detailed biology. They suggested to consider the kernel quality

and the generalization ability of a reservoir. Informally, the kernel quality measures
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how well a reservoir can map different inputs to different reservoir states. The gener-

alization ability, on the other hand, will be high if the reservoir will only map a part

of all possible inputs to different reservoir states. The computational capabilities of

a reservoir, the authors argued, will then be characterized as a trade-off between the

two. They showed that it is most efficient at the edge of chaos. These results were

later refined in [42].

The phase transition from ordered to chaotic dynamics was also examined in [72]

and in more detail in [5]. The analysis was done in order to shed light on the em-

pirical observation that binary (including spiking) reservoirs are much more sensitive

to changes in topology than analog reservoirs. The authors studied the behavior of

a family of reservoir networks which interpolate between binary and analog networks

by using different state quantizations. A novel calculation for the Lyapunov exponent

based on branching process theory was used to assess the criticality of the networks

as the in-degree (number of incoming connections to each neuron) and the reservoir

weight connection strengths were varied (see Fig. 7). Their analysis revealed a qualita-

tive difference in the computational performance around the phase transition region.

In binary reservoirs, the phase transition was much more abrupt for high in-degree

reservoir nodes, and the region of best performance was much narrower than in the

analog case. A new mean-field predictor (which is a generalization and simplification

of the one in [4]) was used to show a fundamental difference in how binary and analog

circuits integrate information on shorter and longer time scales.

After this survey of related work (refer to Fig. 8 for an illustration of how previous

work relates to the main chapters of the thesis), we will now describe our own ex-

periments and results in the following chapters, which build on – and extend – work

presented above.
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Figure 7: Average performance of quantized ESNs for different quantization levels m
depending on the in-degree K and standard deviation σ of the reservoir weights in
three different task settings. The phase transition is indicated by the black dashed
line. Again, highest performance (dark red colors) are observed at around the phase
transition line (from [5]).
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Chapter 3

Initialization and self-organized

optimization of recurrent neural

network connectivity

Here, we study the effect of approaches aiming to reduce the dependency of ESN

performance on a given random initialization. In order to do this, we investigate two

different approaches: the first one is based on a very specific initialization (cf. [73, 55])

of ESN reservoirs; the second one implements a pre-training phase for the reservoirs

using the local IP adaptation approach as mentioned earlier in Section 2.2.2.

The reservoir initialization method is based on the idea of optimally exploiting

the high dimensionality of the reservoir. The methods based on IP, while also using

high-dimensional reservoirs, aim to adapt the reservoir for a high entropy of codes.

Moreover, we investigate an IP based learning rule for high sparsity of codes as these

have been shown to improve information processing [74].

We evaluate the different reservoir shaping and initialization methods using three

different standard benchmarks. We find that reservoirs initialized with orthogonal

column vectors in their connectivity matrix exhibit superior short-term memory ca-

pacity, and are also able to perform well in tasks requiring highly non-linear mappings.

Furthermore, we identify a problem with an existing IP based rule and point out

limitations of the approach if traditional neuron models are used.

23



u

x1

x2

x3

...
x5x4

...

o1

o2

o3

.

.

.

.

.

.
.
.
.

trained on 
input at t-1

trained on 
input at t-2

trained on 
input at t-3

.

.

.
1 

input

100 hidden, 
state vector X

200 
outputs

wout,3

. . .
.

.
.

Figure 9: Setup of the ESN used in the MC task experiments. The difference in the
other experiments was that only one output node was used.

3.1 Network Setup and Benchmark Description

The first set of experiments evaluated the short-term memory capacity (MC, men-

tioned in Section 2.1) of the different networks. In addition, we evaluated the net-

works on the task of modeling a 30th order NARMA (nonlinear autoregressive moving

average) system, and with respect to their one-step prediction performance on the

Mackey-Glass time-series. These tasks cover a reasonably wide spectrum of tests

for different useful properties of reservoirs and are widely used in the literature, e.g.

in [44, 46, 75, 35, 16].

For all of the experiments, we used ESNs with 1 input and 100 reservoir nodes (see

Fig. 9). The number of output nodes was 1 for the NARMA and Mackey-Glass tasks,

and 200 for the MC evaluation. In the latter, the 200 output nodes were trained on

the input signal delayed by k steps (k = 1 . . . 200). The input weights were always

initialized with values from a uniform random distribution in the range [−0.1, 0.1].

To compute the output weights, the reservoir node activations (state vector X)
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Table 1: Settings of IP parameters σ (for IPGAUSS) and c (for IPLAP) for the differ-
ent benchmark tasks. These settings were determined empirically through systematic
search of the parameter space for the optimal values.

σ c

MC 0.09 0.08
NARMA 0.05 0.06
Mackey-Glass 0.07 0.05

over the last 1000 of a total of 2000 steps were collected in a 100× 1000 matrix S:

S =
�
X(1001) X(1002) X(1003) . . . X(2000)

�

=





x1(1001) x1(1002) x1(1003) . . . x1(2000)

x2(1001) x2(1002) x2(1003) . . . x2(2000)

x3(1001) x3(1002) x3(1003) . . . x3(2000)
...

...
... . . .

...

x100(1001) x100(1002) x100(1003) . . . x100(2000)





.

For all tasks, the output weights were then computed by offline pseudoinverse

regression using matrix S and a matrix of desired values for the output node(s). In

the case of the MC task, the delayed input was used for training as follows: let the

1000× 1 matrix of desired outputs for delay k be:

Dk = [u(1001− k) . . .u(2000− k)]T ,

e.g. for the example of wout,3 (k = 3) illustrated in Fig. 9:

D3 = [u(998)u(999)u(1000) . . . u(1997)]T

The output weights wout for output node ok can then be computed as

wout,k = S†Dk,

with (·)† denoting the pseudoinverse, and k = 1 . . . 200.

In all three benchmark tasks, the parameter µ of the IP learning rule (both for

IPGAUSS and IPLAP) was set to 0. The other IP related parameters were set ac-

cording to table 1. For both IP methods the reservoir was pre-trained for 100000 steps

25



! "!! #!! $!! %!! &!!!
!!'%

!!'$

!!'#

!!'"

!

!'"

!'#

!'$

!'%

(a)

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

(b)

! "!! #!! $!! %!! &!!!
!!'$

!!'#

!!'"

!

!'"

!'#

(c)

Figure 10: The time-series for the three benchmarks used to evaluate different aspects
of networks performance: (a) Uniform random input, (b) Output of the NARMA 30th
order system, (c) Mackey-Glass attractor with τ = 17.

in order to ensure convergence to the desired probability distribution, with a learn-

ing rate of 0.0005. In all conditions, the spectral radius of the reservoir connectivity

matrix was scaled to 0.95 (prior to pre-training in case of IP).

Different input time-series were used for training the output weights and for testing

in all cases. The input length for testing was always 2000 steps. The first 1000 steps

of the reservoir node activations were discarded to get rid of transient states due to

initialization with zeros before calculating the output weights and the test error.

3.1.1 Short Term Memory Capacity

To evaluate the short-term memory capacity of the different networks, we computed

the k-delay memory capacity (MCk) defined in [44] as

MCk =
cov

2(ut−k ,ot)

σ2(ut−k)σ2(ot)

This is essentially a squared correlation coefficient between the desired signal delayed

by k steps and the reconstruction by the kth output node of the network. The actual

short-term memory capacity of the network is defined asMC =
�∞

k=1 MCk, but since

we can only use a finite number of output nodes, we limited their number to 200,

which is sufficient to see a significant drop-off in performance for the networks in all

of the tested conditions. The input for the MC task was random values sampled from

a uniform random distribution in the range [−0.8, 0.8].
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3.1.2 NARMA 30th Order System

For the NARMA 30th-order modeling task, the input time series x(t) was sampled

from a uniform random distribution between [0, 0.5]. The desired output at time t+1

was calculated as:

y(t+ 1) = 0.2y(t) + 0.004y(t)
29�

i=0

y(t− i) + 1.5x(t− 29)x(t) + 0.001

3.1.3 Mackey-Glass Time-Series

Finally, the Mackey-Glass time-series is computed by integrating the system

ẏ =
0.2y(t− τ)

1 + y(t− τ)10
− 0.1y(t),

from time step t to t + 1. The τ parameter was set to 17 in order to yield a mildly

chaotic behavior.

The evaluation for the NARMA modeling and the Mackey-Glass prediction tasks

was done using the normalized root mean squared error measure, defined as:

NRMSE =

�
�(ỹ(t)− y(t))2�t

�(y(t)− �y(t)�t)2�t
,

where ỹ(t) is the sampled output and y(t) is the desired output.

3.2 IP Learning and a Rule for a Laplace Output

Distribution

IP learning was introduced in [15] as a way to improve information transmission in

neurons while adhering to homeostatic constraints like limited energy usage. For a

fixed energy expenditure (represented by a fixed mean of the neurons output distri-

bution), the distribution that maximizes the entropy (and therefore the information

transmission) is the exponential distribution. This was used for single neurons in [15]

and for neurons in a reservoir in [16] where it lead to a performance improvement over

standard random reservoirs. In [46], IP learning for a Gaussian output distribution
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Figure 11: Homeostatic regulation based on intrinsic plasticity: the incoming signal
drives the network while a gain and a bias parameter in the transfer function (a and b

in the logistic function above) are adapted to achieve the desired output distribution
of neuron activity values.

of reservoir neurons was investigated, which is the maximum entropy distribution if,

in addition to the mean, the variance of the output distribution is fixed. Again, an

overall increase in performance was noted for several benchmark problems.

A Laplace distribution would lead to sparser codes than the Gaussian, and our

hypothesis was that enough entropy would be preserved for a good input signal ap-

proximation. Researching Laplace output distributions was also suggested in [46]

for similar reasons. Here, analogous to the calculations in [15, 46], we derive an IP

learning rule for this distribution to test our hypothesis.

In order to model the changes in intrinsic excitability of the neurons, the transfer

function of our neurons is generalized with a gain parameter a and a bias parameter

b:

y = f(x) = tanh(ax+ b).

The Laplace distribution, which we desire as the reservoir neurons’ output distribu-

tion, is defined as

f(x | µ, c) = 1

2c
exp(− |x− µ|

c
), c �= 0.

Let p̃y(y) denote the sampled output distribution of a reservoir neuron and let the

desired output distribution be p(y), thus p(y) = f(y | µ, c). In the learning process,
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we try to minimize the difference between p̃y(y) and p(y), which can be measured

with the Kullback-Leibler divergence DKL. Thus, we try to minimize:

DKL =

�
p̃y(y) log

�
p̃y(y)

1
2c exp(−

|y−µ|
c )

�
dy

=

�
p̃y(y) log p̃y(y)dy −

�
p̃y(y) log(

1

2c
)dy

−
�

p̃y(y) log

�
exp(− |y − µ|

c
)

�
dy

=

�
p̃y(y) log p̃y(y)dy +

�
p̃y(y)

|y − µ|
c

dy + C

=

�
p̃y(y) log

�
p̃x(x)

dy
dx

�
dy +

�
p̃y(y)

|y − µ|
c

dy + C

=

�
p̃y(y) log p̃x(x)dy −

�
p̃y(y) log(

dy

dx
)dy

+

�
p̃y(y)

|y − µ|
c

dy + C

= log p̃x(x) + E

�
− log(

dy

dx
) +

|y − µ|
c

�
+ C

where – as in relevant previous work – we have made use of the relation p̃y(y)dy =

p̃x(x)dx where p̃x(x) is the sampled distribution of the input. Writing this as p̃y(y) =
p̃x(x)

dy
dx

and substituting it for p̃y(y) in the first term of the above equation. In order to

minimize the function DKL, we first derive it with respect to the bias parameter b:

∂DKL

∂b
=

∂

∂b
E

�
− log(

dy

dx
) +

|y − µ|
c

�

= E

�
−

∂2y
∂b∂x
dy
dx

+
(y − µ)(1− y

2)

c|y − µ|

�

The first term in the above equation is

∂
2
y

∂b∂x

�
dy

dx

�−1

=
−2ay(1− y

2)

a(1− y2)
= −2y

so we have:
∂DKL

∂b
= E

�
2y +

y(1− y
2 + µy)− µ

c|y − µ|

�
y �= µ.
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The derivation with respect to the gain parameter a is analogous and yields:

∂DKL

∂a
= E

�
2xy +

yx(1− y
2 + µy)− µx

c|y − µ| − 1

a

�
y �= µ.

From these derivatives, we identify the following learning rules for stochastic gradient

descent with learning rate η:

∆b = −η

�
2y +

y(1− y
2 + µy)− µ

c|y − µ|

�
.

∆a = −η(−1

a
)− η

�
2xy +

yx(1− y
2 + µy)− µx

c|y − µ|

�

=
η

a
+∆bx.

3.3 Reservoirs Based on Permutation Matrices

Orthogonal networks [73] have an orthogonal reservoir matrix W (i.e. WWT = 1)

and linear activation functions. These networks are inspired by a distributed version

of a delay line, where input values are embedded in distinct orthogonal directions,

leading to high memory capacity [73]. Permutation matrices, as used by [55], consist

of randomly permuted diagonal matrices and are a special case of orthogonal networks.

Here, and in [55], the hyperbolic tangent (tanh) activation function was used, in order

to facilitate non-linear tasks beyond memorization.

3.4 Results

We tested ESN with four different conditions for the connectivity matrix of the reser-

voir. In condition RND, the reservoir matrix was initialized with uniform random

values between [−1, 1]. Condition PMT tested a permutation matrix for the reservoir

connectivity. Finally, we used IP optimization with a Gaussian distribution (cf. [46])

in IPGAUSS and a Laplace distribution (as derived above) in IPLAP. In all con-

ditions, the reservoirs were scaled to have a spectral radius of 0.95. In the case of the

IP methods, this scaling was done once before the IP training was started.

The results of the experiments are given in Table 2, averaged over 50 simulation

runs for each of the four conditions. The networks in the PMT condition essentially
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Figure 12: (left) Visualization of a 50 × 50 permutation matrix with black squares
indicating a zero, and white squares indicating a value of one; (right) rings of (ran-
domly) different sizes are the result of the connectivity defined by a permutation
matrix. The rings here correspond to the the matrix on the right.

Table 2: Results of the experiments (averaged over 50 simulation runs) for the three
benchmarks in four conditions in tabular form (cf. Fig. 13). Errors for Mackey-Glass
are scaled by a factor of 10−4.

PMT RND IPGAUSS IPLAP
Memory Capacity 62.501 (5.086) 31.884 (2.147) 33.019 (2.464) 32.175 (3.127)
NRMSENARMA 0.385 (0.022) 0.473 (0.035) 0.465 (0.053) 0.482 (0.041)
NRMSEMackey−Glass 3.373 (0.292) 2.411 (0.242) 2.802 (0.416) 2.375 (0.416)

show double the memory capacity of networks in the other conditions, while networks

pre-trained with IPGAUSS and IPLAP have very similar values and show a slight

increase compared to condition RND. Fig. 14 shows plots of the individual MCk

curves for all conditions in the MC task, with the curve forPMT showing much longer

correlations than all the others. The results for the NARMA modeling task are less

pronounced, but look similar in that thePMT networks perform better than the other

tested conditions. The normalized root mean squared error (NRMSE) for IPLAP and

IPGAUSS is very similar again, however, only IPGAUSS has a slight advantage

overRND. For the Mackey-Glass one-step prediction, the performance of the IPLAP

networks is better than the other ones, slightly ahead of RND (difference well within
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.

the standard deviation of the error, however). The PMT networks perform worst on

this task.

The superior performance of networks in PMT on the short-term memory task

could be expected: networks with a connectivity based on permutation matrices form

are a particular instance of orthogonal networks, which, in turn, can be seen as a

multidimensional version of a delay line. From a system theory perspective, the

eigenvalues (poles) of the linearized system implemented by the network correspond

to bandpass filters with center frequencies according to their angle in the complex

plane [38]. Larger eigenvalues will lead to longer time constants for the filters, pre-

serving information for longer time in the network. Figure 15 (b) shows that the

eigenvalues of the connectivity matrix of a 100 node ESN in the PMT condition are
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all of the same magnitude, and are spaced relatively uniformly just below the unit

circle (the reservoir matrix was scaled to have a maxiumum absolute eigenvalue of

0.95 in this case, i.e., the matrix elements were either 0 or 0.95). The filters imple-

mented by this network will thus have long time constants and provide support for

many different frequencies in order to reconstruct the input signal. Compare this to

the distribution of the eigenvalues of a connectivity matrix of an equally sized RND

network in Figures 15 (a) and (c): they are much less uniformly distributed and have

very different magnitudes, resulting in a mixture of both longer and shorter time

constants for the network.

The PMT networks also outperform the other methods on the highly non-linear

NARMA task, which is less obvious. The NARMA task needs long memory, which the

orthogonal reservoirs in PMT are able to provide; but one might suspect (also based

on the poor performance of ring-shaped reservoirs in [46]) that the specific, rather

sparse connectivity would not be able to perform the kind of non-linear mappings

that the task requires (since there is less interaction between neurons in the reservoir

than in networks which are more densely connected). The results show that this is

not the case.

The Mackey-Glass prediction task requires shorter time constants and less mem-

ory than the other two tasks. In this case, the IPLAP networks perform best,

slightly ahead of the RND condition. The PMT networks have the same spectral

radius as the ones in RND, however, all eigenvalues in PMT have the same (large)

magnitude. Therefore, the network is missing elements implementing shorter time

constants, which would let it react to fast changes in the input. The best results we

got on this task were actually achieved using ESN with fermi neurons and IP learning

with an exponential output distribution (results not shown). In this case, the results

were significantly better than the ones in RND (cf. also [16]).

3.5 IP Revisited

A closer investigation of the almost identical performance of both IP methods revealed

that IPLAP also generated normally distributed output, very similar to IPGAUSS.

To better understand the effect of the different IP rules, we used IP to approximate
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produces the desired output distribution.

the Laplace, the Gaussian (both with a tanh activation function), and the exponential

distribution (logistic activation function), respectively, with a single feedforward unit

and uniformly distributed input on the interval [−1, 1]. As expected, the IP learning

rule can successfully generate exponentially distributed output values (Fig. 16), with

and without self-recurrence.

IP fails, however, to generate output distributions that resemble the Gaussian or

the Laplace (Fig. 17, a and b) if no self-recurrence is present. This seems surprising

in particular for the Gaussian, as IP has successfully been used to shape the output

distribution of a reservoir [46] towards that distribution. A possible explanation for

this phenomenon is discussed later in Section 6.

In the next chapter, we leave the topic of reservoir optimization and turn instead

to reservoir assessment, and to the question how elements of intrinsic computation in

reservoirs change as ESNs go through the phase transition from ordered to chaotic

dynamics. We will return to reservoir optimization with an approach based on adap-

tation of information transfer in the reservoir in Chapter 5.
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Figure 17: (a) Effect of IP learning on a single tanh neuron without self-recurrence,
trained with a learning rule for a Gaussian output distribution. IP learning fails to
achieve the desired result: the best it can do is to drive the neuron to a uniform
output distribution, which has the smallest distance (for the given transfer function)
to the desired distributions; (b) same as (a), but with self-recurrence added to the
neuron. The achieved output distribution is significantly more Gaussian-shaped than
without the self-recurrence. The effect is amplified in a network where the neurons
receive additional inputs with similar distributions. All units were trained using
100000 training steps and uniformly distributed input data on the interval [−1, 1].
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Chapter 4

Information processing in Echo

State networks at the edge of chaos

A fundamental question in Reservoir Computing is how the recurrent hidden layer

or reservoir should be prepared, designed or guided, to best facilitate the training

of connections to output units and consequently maximize task performance. It has

been previously shown that the ability of reservoir computing networks to achieve

the desired computational outcome is maximized when the network is prepared in a

state near the edge of chaos [42, 72, 5]. This refers to a critical state between ordered

dynamics (where disturbances quickly die out) and chaotic dynamics (where distur-

bances are amplified). This property is particularly interesting because of evidence

in the literature that cortical circuits are tuned to criticality [see e.g. 76, 77, 78]. The

reasons why network performance is increased near the edge of chaos are, however,

not yet fully understood.

We mentioned several related works back in Section 2.4 and these quantitative

studies have surely helped to gain insight into the increased computational perfor-

mance at the critical point. However, we argue that they measured the elements of

ongoing computation only indirectly and on a global scale (network perspective).

In this chapter, we seek to directly measure the computational capabilities of the

reservoir as it undergoes the phase transition to chaotic dynamics. In particular,

we will measure the information storage at each neuron, and information transfer

between each neuron in the reservoir. This contrasts with examining the entropy
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1278 L. Büsing, B. Schrauwen, and R. Legenstein

A m = 1 B m = 3 C m = 6

D ordered E critical F chaotic

Figure 2: Phase transitions in randomly connected networks with dynamics
defined by equation 2.1. (A–C) Shown is the fixed point H∗/N of the normalized
distance H(t)/N between two states evolving from different initial conditions in
networks with N = 500 units for three state resolutions m = 1, 3, 6 and varying
in-degree K and weight standard deviation σ . The abrupt change in the values of
H∗ for different parameters is characteristic for a phase transition. Shown results
are averages over 500 circuits (with a single random input sequence each). The
initial perturbation H(0) was chosen as the smallest admissible perturbation (for
the specific m) in a single unit, and H∗ was measured after 100 update steps.
(D–F) Evolution of the state xi (t) of 75 out of N = 500 units from a network
with m = 3 and K = 3 for log(σ ) = −0.5 (D), log(σ ) = 0 (E), and log(σ ) = 0.5
(F) showing ordered, critical, and chaotic dynamics respectively.

N → ∞ under the annealed approximation (AA) using results from the
theory of multitype branching processes (see Athreya & Ney, 1972). In the
AA that was introduced in Derrida and Pomeau (1986), one assumes that
the circuit connectivity and the corresponding weights are drawn i.i.d. at
every time step. Although being a drastic simplification, the AA has been
shown in various studies (see Derrida & Pomeau, 1986; Bertschinger &
Natschläger, 2004; White et al., 2004) to be a powerful tool for investigating
network dynamics yielding accurate results for large system sizes N;
hence, its application is well justified in the limit N → ∞ considered
here. Branching process theory has already been applied in theoretical
neuroscience to describe the temporal and spatial dynamics of neural

Figure 18: Change in the hidden neuron activations as the network dynamics go from
the ordered (left panel) to the chaotic regime (right panel). The dynamics in the
phase-transition region are shown in the middle (from [5]).

of each unit alone, since these measures relate directly to the computational tasks

being performed. Furthermore, it means that we can directly quantify whether the

computational properties provided by the reservoir are maximized at the edge of

chaos, and we can do so on a more local scale (node perspective). Finally, the general

applicability of these measures allow us to compare the computations in different

kinds of dynamical systems.

4.1 Information-Theoretical Measures

A natural framework in order to describe distributed computation in dynamical sys-

tems is found in information theory [79, 80]. It has proven useful in the analysis and

design of a variety of complex systems [81, 82, 83, 84, 85, 86, 7], as well as in the-

oretical neuroscience [87, 88, 89, 90]. A short review of basic information-theoretic

quantities that are the basis for the measures we use for information storage and

transfer in multivariate systems is given in Appendix B.

We are interested in the process by which each variable or node X in a system

updates or computes its next state. Such computations utilize information storage

from the node itself, and information transfer from other nodes.

The information storage of a node is the amount of information in its past that
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Figure 19: Information storage of a node is the amount of information in its past xk
n

that is relevant to predicting its future xn+1.

is relevant to predicting its future. We quantify this concept using the active infor-

mation storage (AIS) to measure is the stored information that is currently in use in

computing the next state of the node [91, 70]. The active information storage for a

node X is defined as the average mutual information between its semi-infinite past

x
(k)
n and its next state xn+1:

AX = lim
k→∞

�

xn+1,x(k)

p(xn+1, x
(k)) log2

p(x(k)
n , xn+1)

p(x(k)
n )p(xn+1)

. (1)

AX(k) represents an approximation with finite history length k.

From our computational perspective, a node can store information regardless of

whether it is causally connected with itself; i.e. for ESNs, this means whether or not

the node has a self-link. This is because information storage can be facilitated in a

distributed fashion via one’s neighbors, which amounts to the use of stigmergy (e.g.

see [92]) to communicate with oneself [70].

The information transfer (see Fig. 20) between a source and a destination node

is defined as the information provided by the source about the destination’s next

state that was not contained in the past of the destination. The information transfer

is formulated in the transfer entropy (TE), introduced by Schreiber [93] to address

concerns that the mutual information (as a de facto measure of information transfer)

was a symmetric measure of statically shared information. The transfer entropy
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Figure 20: Information transfer between a source node Y and a destination node X

is defined as the information yn provided by the source about the destination’s next
state xn+1 that was not contained in the past xk

n of the destination.

from a source node Y to a destination node X is the mutual information between the

previous state of the source1 yn and the next state of the destination xn+1, conditioned

on the semi-infinite past of the destination x
(k)
n (as k → ∞ [94]):

TY→X = lim
k→∞

�

un

p(un) log2
p(xn+1|x(k)

n , yn)

p(xn+1|x(k)
n )

, (2)

where un is the state transition tuple (xn+1, x
(k)
, yn). Again, TY→X(k) represents

finite-k approximation.

4.2 Estimating the Criticality of an Input-Driven

ESN

In order to determine whether a dynamical system has ordered or chaotic dynamics,

it is common to look at the average sensitivity to perturbations of its initial con-

ditions [69, 4, 5]. The rationale behind this is that small differences in the initial

conditions of two otherwise equal systems should eventually die out if the system is

1
The transfer entropy can be formulated using the l previous states of the source. However,

where only the previous state is a causal information contributor (as for ESNs), it is sensible to set

l = 1 to measure direct transfer only at step n.
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in the ordered phase, or persist (and amplify) if it is in the chaotic phase. A measure

for the exponential divergence of two trajectories of a dynamical system in state space

with very small initial separation is the Lyapunov (characteristic) exponent (LE). Al-

though a whole spectrum of Lyapunov exponents is defined, the rate of divergence is

dominated by the largest exponent. It is defined as:

λ = lim
k→∞

1

k
ln

�
γk

γ0

�

with γ0 being the initial distance between the perturbed and the unperturbed tra-

jectory, and γk being the distance at time k. For sub-critical systems, λ < 0 and for

chaotic systems λ > 0. A phase transition thus occurs at λ ≈ 0 (called the critical

point, or edge of chaos).

Since this is an asymptotic quantity, it has to be estimated for most dynamical

systems. We adopt here the method described in [95, Chap. 5.6]. Two identical

networks are simulated for a period of 1000 steps (longer durations were tried but

found not to make a significant difference). After this initial period serving to run

out transient random initialization effects, proceed as follows.

1. Introduce a small perturbation into a unit n of one network, but not the other.

This separates the state of the perturbed network x2 from the state of the

unperturbed network x1 by an amount γ02.

2. Advance the simulation one step and record the resulting state difference for

this k-th step γk = �x1(k)−x2(k)�. The norm �·� denotes the Euclidean norm

in our case, but can be chosen differently.

3. Reset the state of the perturbed network x2 to x1(k) + (γ0/γk)(x2(k)− x1(k)).

This renormalization step keeps the two trajectories close in order to avoid

numerical overflows (see Fig. 21 for an illustration of these steps).

In [95], γk is added to a running average and steps 2 and 3 are performed repeatedly

until the average converges. Here, we repeat these simulation and renormalization

2
This initial separation has to be chosen carefully. It should be as small as possible, but still large

enough so that its influence will be measurable with limited numerical precision on a computer. We

found 10
−12

to be a robust value in our simulations, which is also recommended by Sprott [96] for

the precision used in this study.
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Figure 21: Numerical estimation of the largest Lyapunov exponent λ. Trajectories
are kept close by resetting the distance to γ0 after each update step in order to avoid
numerical overflows (illustration after [6]). See text for more details.

steps for a total of 1000 times (again, longer durations were tested, but found not to

change results significantly), and then average the logarithm of the distances along

the trajectory as λn = �ln(γk/γ0)�k.
For each reservoir with N units that is tested, we calculate N different λn values,

choosing a different reservoir unit n to be perturbed each time. These values are then

averaged to yield a final estimate of the Lyapunov exponent λ = �λn�n.

4.3 Results

In order to investigate the relation between information transfer, active information

storage, and criticality in ESNs, we used networks whose reservoir weights were drawn

from a normal distribution with mean zero and variance σ2. We changed this param-

eter between simulations so that log σ varied between[−1.5,−0.5], increasing in steps

of 0.1. A more fine grained resolution was used close to the edge of chaos, between

[−1.2,−0.9]. Here, we increased log σ in steps of 0.02. We recorded the estimated

Lyapunov exponent λ as described in Section 4.2, the information measures described
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in the previous section, and a parameter for task performance described below.

The active information storage was measured for each reservoir unit, and the

transfer entropy between each reservoir unit pair. A history size of k = 2 was used

in the TE and AIS calculations, and kernel estimation with a fixed radius of 0.2 was

used to estimate the required probabilities. We recorded 15000 data points for each

time series after discarding 1000 steps to get rid of transients. The output weights

were trained with 1000 simulation samples using a one-shot pseudoinverse regression.

Input weights were drawn uniformly between [−0.1, 0.1].

We used two common benchmark tasks to evaluate network performance. The

first task was used to assess the memory capacity of the networks as defined in Jaeger

[44]. For this task, ESNs with a single input, 150 reservoir nodes, and 300 output

nodes were used. The input to the network was a uniformly random time series drawn

from the interval [−1; 1]. Each of the outputs was trained on a delayed version of the

input signal, i.e. output k was trained on input(t - k), k = 1 . . . 300. To evaluate the

short-term memory capacity, we computed the k-delay memory capacity (MCk) as

defined in Section 3.1.1.

The second benchmark task we used was again to model a 30th-order NARMA

system as described in Section 3.1.2. We trained networks with a single input, 150

reservoir neurons, and one output neuron. As before, the performance for this task

was evaluated using the normalized root mean squared error measure described in

Section 3.1.3.

4.3.1 Effect of the Initial Separation Size on Numerical Es-

timation of the Largest Lyapunov Exponent

Figure 22 shows curves for different initial separation sizes using the networks in the

MC task. The log σ parameter is given along the x-axis, LE is on the y-axis. For

initial separation values > 10−13, the LE was overestimated due to the nonlinearity

of the tanh function and the numerical limit of Matlab for the values between [−1, 1].

This limit can be tested using the command ”eps” in Matlab; its value is about

2.2 ∗ 10−16 for values around 1.0.
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Figure 22: Testing different initial separations in the LE calculations.

We finally used 10−12 as initial separation in the experiments, a value also recom-

mended by Sprott (2004) [96] for the precision we used.

4.3.2 Different Transient Times for the Lyapunov Exponent

Calculation

We conducted tests discarding 100, 1000, and 10000 steps to get rid of transient effects

due to random initializations. The results, shown in Fig. 23, indicated that there was

no significant difference between a period of 1000 and 10000 steps. In order to cut

down computational load, we then chose to wait for 1000 steps.
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Figure 23: Testing different lengths for the period to wash out transient effects.

4.3.3 Tradeoff of Kernel Size versus History Length in the

Transfer Entropy Calculations

Let N denote the length of the time series, r the kernel radius, k the history length,

and n the average number of data samples in each bin. We take l as the difference

between the smallest and the largest value of the range of possible values our network

units can assume. Since this range is the interval [−1, 1], l = 2. We require n = 3

which was recommended in [82] in order to get statistically meaningful results. The

number of bins in each considered dimension of the data d is given by d = l/r. For

the TE calculations, we have to consider the current step of the source variable, the

previous step of destination variable, and the k last steps of the source. This means

we have to search a space of dk+2 dimensions. With n = N/d
k+2, we establish the

relation of r and k as

�
l

r

�k+2

=
N

2n
(3)

The factor 2 in the denominator of the right hand side is due to the fact that r

denotes a kernel radius, not a diameter. Fixing a history size, Eq. 3 can be used to
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compute the corresponding kernel radius. We tested different combinations of these

two parameters for a time series length of N = 1500 with n = 3 as described above,

and compared the results for the NARMA 30th order task (log σ was varied from

−1.2 to −0.9 in steps of 0.1, 15 repetitions). The combinations we tested were k = 1

and r = 0.252, k = 2 and r = 0.423, k = 3 and r = 0.577. The results of this test

are shown in Fig. 24. All of the plots show the same major qualitative trends in the

data.

We finally opted for a history size k = 2, and a kernel size of r = 0.2 in our

experiments with the time series of length 15000. Our reasoning was that this would

make it possible to distinguish a maximum of 10 different levels of quantization in

the [−1, 1] range. This is a somewhat arbitrary criterion, but the plots in Fig. 24 tell

us that the results should be robust concerning relative values nonetheless.

4.3.4 Transfer and Memory are Maximized at the Edge of

Chaos

The results of the experiments described above are shown in Fig. 25 (top) for the

MC task, and in Fig. 25 (bottom) for the NARMA modeling task. For each value of

log σ, the simulations were repeated 50 times (the clusters that can be observed in

the figures are the result of slightly different LE values for each of these repetitions).

The MC performance in Fig. 25 (top) shows a lot of variance, but a general increase

can be seen as the LE approaches the critical value zero. After peak performance is

reached very close to this point, the performance drops rapidly. The performance in

the NARMA task does not show as much variation. The NRMSE stays around 0.8 for

LE values from −0.9 to −0.4. As the LE approaches zero, the NRMSE decreases from

around 0.5 to its lowest value of 0.4125 at LE −0.081. Shortly after that, however, as

the LE approaches zero even more closely, the NRMSE increases sharply and reaches

values as high as 142 (LE −0.011). After this peak, the NRMSE values stay at an

increased level of about 2.

In order to arrive at a single value for the TE and AIS per reservoir, we took

averages over all the nodes in the reservoir. The TE plots in Fig. 26 and AIS plots

in Fig. 27 show very similar behavior for both tasks. Both TE and AIS can hardly

48



−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

λ

T
ra

n
sf

e
r 

E
n
tr

o
p
y 

[b
its

]

TE res −> res, k1

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
TE res −> res, k2

λ

T
ra

n
sf

e
r 

E
n

tr
o

p
y 

[b
its

]

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
TE res −> res, k3

λ

T
ra

n
sf

e
r 

E
n

tr
o

p
y 

[b
its

]

Figure 24: Testing different combinations of history length and kernel radii. (top)
k = 1 and r = 0.252 (middle) k = 2 and r = 0.423 (bottom) k = 3 and r = 0.577

49



be measured for LE values below −0.2. Around the critical point, however, there is

a sharp increase in TE/AIS, followed by a sharp decline between LE values 0 and

about 0.05. Both quantities stay at a slightly elevated level compared to the values

in the stable regime after that, decreasing only slowly.

In the chapter that follows, we will present another reservoir optimization ap-

proach. It uses the information-theoretic measure of transfer entropy, presented

above, as a criterion for adaptation of a local memory parameter of each reservoir

neuron.
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Figure 25: (top) Memory capacity vs estimated Lyapunov exponent (bottom) Nor-
malized root mean squared error (NRMSE) vs estimated Lyapunov exponent
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Figure 26: (top) Average transfer entropy in the reservoir for the memory capac-
ity task vs estimated Lyapunov exponent (bottom) Average transfer entropy in the
reservoir for the NARMA task vs estimated Lyapunov exponent
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Figure 27: (top) Average active information storage in the reservoir for the memory
capacity task vs estimated Lyapunov exponent (bottom) Average active information
storage in the reservoir for the NARMA task vs estimated Lyapunov exponent
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Chapter 5

Improving Recurrent Neural

Network Performance Using

Transfer Entropy

IP learning [15, 16], as discussed in Chapter 3, has been used as an approach to

optimize reservoir encoding specific to the input of the network. It is, however, only

dependent on the input data, and does not take the desired output of the system into

account, i.e., it is not guaranteed to lead to optimized performance with respect to

the learning task of the network. Ideally, we would like to retain the principle of a

self-organized approach to optimize reservoirs, but to guide self-organization based

on the overall learning goal.

The approach presented in this chapter, for the first time, leads to a method that

optimizes the information transfer at each individual unit, dependent on properties

of the information transfer between input and output of the system. The optimiza-

tion is achieved by tuning self-recurrent connections, i.e., the means to achieve this

optimization can be viewed as a compromise between Hebbian [97] and IP learning.

Using synthetic data, we show that this reservoir adaptation improves the perfor-

mance of offline echo state learning, and is also suitable for online learning approaches

like backpropagation-decorrelation learning [14] or recursive least squares (RLS, see

e.g. [36]).

We first define the network dynamics and output weight training in the following
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section, then explain the adaptation procedure based on the information transfer, and

finally present experimental results in two different benchmarks.

5.1 Network Dynamics and Output-Weight Train-

ing Procedure

We consider the case where we have a one-dimensional input vector u. The learning

goal for our system is a one step-ahead prediction of a one-dimensional output vector

v. Departing from the usual reservoir dynamics described in Appendix A, we use

x(k + 1) = diag(a)Wy(k) + (I− diag(a))y(k) +winu(k) (4)

y(k + 1) = f(x(k + 1)), (5)

where xi, i = 1, . . . , N are the neural activations, W is the N × N reservoir weight

matrix, win the input weight, a = [a1, . . . , aN ]T a vector of local decay factors, I is the

identity matrix, and k the discrete time step. In this work, we use f(x) = tanh(x).

The ai represent a decay factor, or coupling of a unit’s previous state with the current

state; they are computed as:

ai =
2

1 +mi
,

where mi represents the memory length of unit i (mi ∈ {1, 2, 3, . . .}). All memory

lengths are initialized to mi = 1, so that ai = 1, i.e. the reservoir has the usual update

rule. Increasing individual mi during an adaptation will increase the influence of a

units past states on its current state.

The output weights of the network are trained using the Recursive Least Squares

(RLS) algorithm. The RLS update rule can be described with the following set of

equations:

αt = dt −wout
t−1 · xt, (6)

gt = pt−1 · xt/(λ+ xT
t · pt−1 · xt), (7)

pt = (pt−1 − gt · xT
t · pt−1)/λ, (8)

wout
t = wout

t−1 + (αt · gT ), (9)
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where αt represents the a priori error vector between desired output dt and current

input, pt the inverse of the autocorrelation, and λ is close to 1 and is an exponential

forgetting factor. RLS has been applied to ESN learning in [36].

5.2 Adaptation of Information Transfer

Adaption of the reservoir to the learning goal introduces two extra steps to the learn-

ing procedure. In a first step, we determine the required history size l to maximize

the information transfer from input u to output v, i.e. a first idea may be to look for

a value

lmax = argmax
l

Tu→v(1, l).

Using increasingly larger history sizes may, however, always increase the transfer en-

tropy (by possibly smaller and smaller values). To optimize the information transfer,

we will instead be looking for the smallest value l̂ that does not increase the transfer

entropy Tu→v(1, l̂ − 1) by more than a threshold �, i.e.

Tu→v(1, l̂ + 1) ≤ Tu→v(1, l̂) + � and (10)

Tu→v(1, l) > Tu→v(1, l − 1) + � for all l < l̂. (11)

From this first step, we learn the contribution of the size of the input history to the

desired output (the learning goal of the system): some input-output pairs may require

a larger memory of the input history to be informative about the next output state,

other outputs may be more dynamic, and be dependent on the current input state

only.

We take this information into the second step, which consists of a pre-training of

the reservoir. Here, the local couplings of the reservoir units are adapted so that the

transfer entropy from the input of each unit to its respective output is optimized for

the particular input history length l̂. The idea behind this step is to locally adjust

the memory at each unit to approximate the required memory for the global task of

the system. Pre-training is done in epochs of length � over the training data. Over

each epoch θ, we compute, for each unit i, the transfer entropy from activations x(�)
i

to output y(�)i :

te
θ
i = T

x(�)
i →y(�)i

(1, l̂).
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If the information transfer during the current epoch θ exceeds the information transfer

during the past epoch by a threshold (i.e., teθi > te
θ−1
i + �), the local memory length

mi is increased by one. Likewise, if te
θ
i < te

θ−1
i − �, the local memory length is

decreased by one, down to a minimum of 1. After each epoch, all mi and ai are

adapted according to this rule, and used to compute activations over the next epoch.

Once the training data is exhausted, pre-training of the reservoir is finished and the

ai are fixed. For the subsequent training we compute the output weights by linear

regression with data as used in the pre-training. In additional experiments, we use

RLS online learning, where adaptation and training of output weights were run in

the same loop.

5.3 Experimental Results

We tested our method using a one-step ahead prediction of unidirectionally coupled

maps, and a one-step ahead prediction of the Mackey-Glass time series as described

in Section 3.1.3.

5.3.1 Prediction of Autoregressive Coupled Processes

As first experiments we studied our approach using a one-step ahead prediction of

two unidirectionally coupled autoregressive processes:

ut+1 = 0.7ut + 0.7 cos(0.3t) + n
x
t (0, σ

2) and (12)

vt+1 = 0.7vt + eut−ω+1 + n
y
t (0, σ

2) , (13)

where the parameter e ∈ [0, 1] regulates the coupling strength, ω ∈ {0, 1, 2, . . .}
an order parameter, and n

x
t (0, σ

2) and n
y
t (0, σ

2) are independent Gaussian random

processes with zero mean and standard deviation σ = 0.4. For each trial, we generated

time series u and v (random initial conditions; time series divided into 10000 values

for training and 1200 values for testing; the first 200 values of both training and

testing were used to prime the reservoir), where the task of our system was a one-

step ahead prediction of v using u. The reservoir was initialized using a random,

sparse recurrent weight matrix (|λ| = 0.95), with 40 internal units. Figure 28 (left)
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Fig. 2. (a) Left: mean square errors of the prediction over the test data for different
coupling strengths and fixed ω = 0. (b) Right: mean square error for different ω using
a fixed coupling of e = 0.75. Reported results are averages over 50 runs.

around 2 for Mackey-Glass one-step ahead prediction), i.e., the information used

from the previous state to predict the next state is already quite high. The

reservoir adaptation lead to an average improvement of the MSE (averaged over

50 runs) from 0.4530 · 10−6 to 0.0751 · 10−6. Individually, in 48 of the 50 runs,

the same reservoir performed better with adaptation than without adaptation.

Instead of offline learning, we also used RLS in the same loop with our reser-

voir adaptation. To less consider data from earlier stages of the adaptation, we

used a forgetting factor λ = 0.995. Again, the adaptation improved performance,

from 9.1 · 10−6 to 7.2 · 10−6; a fine-tuning of λ may further improve the results.

7 Conclusions

We presented an information-theoretic approach to reservoir optimisation. Our

approach uses a local adaptation of a units internal state, based on properties of

the information transfer between input and desired output of the system. The

approach has shown to improve performance in conjunction with offline echo-

state regression, as well as with RLS online learning. In our experiments we have

used only a small number of internal units – our goal was to show the capability

of our approach compared to standard echo state learning. In first additional

experiments (not reported here), we have shown that for a larger number of

units our adaptation leads to an even larger improvement compared to echo state

learning without adaptation. A further investigation of statistical properties of

coding in the reservoir obtained by our adaptation may provide useful insights.

Moreover, other information-theoretic measures such as the active information

storage [15] may be useful to further improve the local adaptation rule.

Acknowledgments. The Authors thank the Australian Commonwealth Sci-

entific and Research Organization’s (CSIRO) Advanced Scientific Computing

group for access to high performance computing resources used for simulation

and analysis.

Figure 28: (left) mean squared errors of the prediction over the test data for different
coupling strengths and fixed ω = 0. (right) mean squared error for different ω using
a fixed coupling of e = 0.75. Reported results are averages over 50 runs.

displays the mean square errors of the prediction over the test data for different

coupling strengths and fixed ω = 0 for both echo state learning with and without

adaptation of information transfer in the reservoir. All values are averaged over 50

trials; for each individual trial the same reservoir and time series have been used once

with and without adaptation. The prediction using the reservoir adaptation is better

over almost the entire range of e, with the improvement becoming more significant

as the influence of the input time series becomes larger. Figure 28 (right) is a plot of

the mean square error for different ω using a fixed coupling of e = 0.75. In all but

one cases the reservoir adaptation improves results.

5.3.2 Prediction of Mackey-Glass Time Series

A further experiment was prediction of the widely used Mackey-Glass time series (see

e.g. [35, 55, 16]) with parameter τ set to 17. The first task using this time series

was again a one-step ahead prediction using a reservoir size of 40 units. For this

task, the transfer entropy between input and output time series is maximized already

for smaller values of l compared to our first experiment (l was typically around 2 for

Mackey-Glass one-step ahead prediction), i.e., the information used from the previous

state to predict the next state is already quite high. The reservoir adaptation lead

59



to an average improvement of the MSE (averaged over 50 runs) from 0.4530 · 10−6 to

0.0751 · 10−6. Individually, in 48 of the 50 runs, the same reservoir performed better

with adaptation than without adaptation.

Instead of offline learning, we also used RLS in the same loop with our reservoir

adaptation. To consider data from earlier stages of the adaptation less, we used

a forgetting factor λ = 0.995. Again, the adaptation improved performance, from

9.1 · 10−6 to 7.2 · 10−6; a fine-tuning of λ may further improve the results.

After the presentation of new results concerning reservoir optimization and as-

sessment in this and the two preceding chapters, we will discuss these results, their

implications, and their relation to other work in the literature in the following chap-

ter.
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Chapter 6

Discussion

Compared to “traditional” recurrent neural network learning methods such as BPTT

or RTRL, the reservoir computing paradigm represents an important simplification,

and therefore, a significant step forward for recurrent neural network technologies.

On the other hand, it is clear that the approach gives up many of the degrees of

freedom the networks would normally have by fixing the recurrent layer connectivity.

Advanced methods such as LSTM networks [32] share the advantage of fast learning

with ESN, but without restricting the networks to a fixed connectivity, using a more

involved architecture and training method. For ESN, it has been shown that fixing

the connectivity has the effect that different random initializations of a reservoir

will lead to rather large variations in performance if all other parameters of the

network setup remain the same [38]. There have been proposals on how to manually

design ESN in order to give performance that will consistently be better than random

initializations [38], but there are no universally accepted standard training algorithms

to adapt the connectivity in a problem specific and automatic way, before the output

connections are trained.

Below, we discuss the results of our investigations of permutation matrices for

reservoir connectivity, IP adaptation aiming at Laplace output distributions for the

reservoir neurons, the limitation of IP with standard sigmoid units that we found,

the results on the intrinsic computational capabilities of ESNs at the edge of chaos,

and our reservoir optimization based on transfer entropy.
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6.1 Permutation Matrices as a Computationally

Inexpensive Initialization Method

The benefit of permutation matrices for the reservoir connectivity lies in the simple

and inexpensive way in which they can be constructed. We showed that they imple-

ment a very effective connectivity for problems involving a long input history as well

as non-linear mappings (if their spectral radius is set high enough). For problems re-

quiring a mixture of slow and fast responses, their usefulness is limited. Furthermore,

the method is general and not problem-specific.

6.2 Limitations of IP Learning for Standard Sig-

moid Neurons

The IP based approaches we present and reference throughout Chapter 3 represent a

problem-specific training method. These approaches make use of the input signal in

order to shape the output of the reservoir neurons according to a desired probability

distribution. We extended existing work, and derived a new learning rule to shape

the reservoir node outputs according to a Laplace distribution. Moreover, we pointed

out limitations of this method when standard sigmoidal neuron types are used in the

network.

Concerning this last point, the illustration in Fig. 29 sheds light on the reason why

an approximation of some distributions with IP is more difficult than others: given a

uniform input distribution and a sigmoid transfer function, IP learning selects a slice

from an output distribution that peaks towards either end of the input range, but

never in the center. The output of an IP trained self-recurrent unit gives an insight

why it is possible to achieve a Gaussian output distribution in a reservoir (Fig. 17,

b). The central limit theorem from the field of statistics states that the sum of several

i.i.d. random variables approximates a Gaussian. Even though in case of a recurrent

reservoir not all inputs to a unit will be i.i.d., IP has to make input distributions only

similar to each other to approximate a normal distribution in the output. This also

explains why the output of an IP Laplace trained reservoir is normally distributed
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(several inputs with equal or at least very similar distributions are summed up).

For uniform input and a single unit without recurrence, the best IP can do is to

choose the linear part of the activation function, so that the output is also uniformly

distributed (a slice more in the middle of Fig. 29). With self-recurrent connections,

this leads to initially uniform distributions, which sum up. The resulting output, and

eventually the whole reservoir output distribution become more and more Gaussian.

A consequence of this effect is that IP with sigmoid transfer functions cannot be

generalized to arbitrary distributions.

These results are in agreement with two important points that have been suggested

for versatile networks, i.e., networks which should perform well even when faced

with several different input signals or which might be used for tasks with different

requirements. Ozturk et al. [38] proposed that the eigenvalue distribution of reservoir

matrices should be as uniform as possible, and that it would be needed to scale the

effective spectral radius of the network up or down. For this scaling, they suggested

an adaptable bias to the inputs of each reservoir node. With regard to this proposed

requirement, we observed another limitation of purely IP-based reservoir pre-training:

in our experiments (also reported in [16]), the IP learning rule always increased the

spectral radius of the reservoir matrix (dependent on the setting of the IP parameters,

cf. [46]), and never decreased it (this is only true for reservoirs which are initialized

with spectral radius < 1). This leads to longer memory, making it harder for the

network to react quickly to new input, and causing interference of slowly fading older

inputs with more recent ones. To alleviate this problem, a combination of different

plasticity mechanism as studied in [48] seems promising. Interestingly, the authors

of that study note that the combination of the different plasticity mechanisms can

drive network dynamics away from the order-chaos phase transition region (which

was hypothesized to be the region of best computational capabilities), yet showing

improved performance for tasks with structure in the input data.

This brings us to the discussion of the part of the thesis which examined precisely

this region (Chapter 4). The conjecture that computational performance of dynami-

cal systems is maximized at the edge of chaos can be traced back at least to [40], and

a significant number of works have addressed this issue (cf. our presentation in Sec-

tion 2.3). A number of quantitative studies, including those mentioned in Chapter 2,
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Figure 29: Uniform input on the interval [−1; 1] and a tanh(·) transfer function lead
to the output distribution in the histogram. IP selects a slice of this distribution, as
illustrated by the vertical lines. Adapting gain and bias changes width and position
of the slice.

have been presented and have helped to elucidate the mechanisms underlying this

maximization of computational performance. We adopted a more general framework

in Chapter 4 and at the same time are able to measure the elements contributing to

ongoing computation more directly and in a more localized fashion.

6.3 Reservoirs and Intrinsic Computational Capa-

bilities

By investigating the information dynamics of ESN reservoirs, this thesis provides

new insights into the problem of relating computation in recurrent neural networks

to elements of Turing universal computation – information transfer and information

storage. Our motivation for this study was to explore why tuning the ESN reservoir

to the edge of chaos here produces optimal network performance for many tasks.

Certainly, we confirmed previous results [42, 5] which have shown that performance

peaks at the edge of chaos (for the MC task in our case). We then quantitatively
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showed, using an information-theoretic approach, that this is due to maximized com-

putational properties (information storage and transfer) near this state. This also

indicates that information transfer and information storage are potential candidates

to guide self-organized optimization for the studied (and maybe other) systems (see,

however, the points below).

6.4 Relation to Information Dynamics in Random

Boolean Networks

Our results for these information dynamics through the phase transition in ESNs

are similar to previous observations of these dynamics through the order-chaos phase

transition in Random Boolean Networks (RBNs) [7]. A distinction however is that

in the RBNs study, the information storage was observed to be maximized slightly

on the ordered side of the critical point and the information transfer was maximized

slightly on the chaotic side of the critical point (see Fig. 30). This is in contrast to

our results here, where both maximizations appear to coincide with criticality.

Both results, however, imply maximization of computational properties near the

critical state of the given networks. The similarity of the results seems natural on

one hand (given similar descriptions of the phase transitions in both systems), but

on the other hand these two types of networks are quite different. Here, we used

analog activations and connections, whereas RBNs have discrete connections and

binary states (supported by Boolean logic). Also, our networks are input driven,

and RBNs (in Lizier et al. [7]) are not. Since we know that the transition from

binary to analog networks can change system dynamics to a very large degree [5],

the similarity in results across these network types is intriguing. The implications

are quite interesting also, since relevant natural systems in each case are suggested to

operate close to the edge of chaos (gene regulatory networks for RBNs, and cortical

networks here).

We must place a number of caveats on these results however. Certainly, the

computational capability of the network will be dependent on the input, and we will

not find universal behavior through the order-chaos phase transition.
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Figure 2: Average information dynamics versus average

connectivity K for networks of size N = 250. Plotted here

are the average entropy HX(K), entropy rate HµX(k =
14,K), active information AX(k = 14,K), apparent trans-

fer entropy TY→X(k = 14,K) and complete transfer en-

tropy T
c
Y→X(k = 13,K). The information required to pre-

dict the next state of each node is dominated by information

storage at low K and by information transfer at higher K

(first by coherent then interaction effects). Error bars (omit-

ted) are on the scale of the data points for all plots.

TY→X(k = 14,K) is relatively high). In this regime, there

is greater potential for coherent information transfer struc-

tures to propagate. However, as the activity level in the

RBNs continues to rise with the average connectivity K, the

apparent effect of each source is swamped by the activity of

the other causal sources, leading TY→X(k = 14,K) to fall

away. Considering also the increase in T
c
Y→X(k = 13,K)

(which does account for the other sources), we see that the

level of interaction is increasing with the connectivity of the

network. In the chaotic regime, the influence of any one in-

formation source can only be properly identified by taking

all of the other sources into account also. These compli-

mentary measures of information transfer provide different

but useful insights, and give impetus to our hypothesis in

(Lizier et al., 2008a) regarding the relative values of the ap-

parent and complete components of information transfer in

order-chaos phase transitions.

Next, we compare these maximizations to the phase tran-

sition as measured using the standard deviation of the con-

vergence/divergence parameter δ (from Eq. (2)).
3

In Fig. 3

3δ was confirmed to change sign close to K = 2 here (as per

(Gershenson, 2004b)), with a subsequent slow increase after K =
2 (known to be a finite-N effect). The standard deviation of δ is

maximized during this increase in the chaotic regime (Gershenson,

2004b). Certain other measures suggested to indicate the critical

phase are known to be shifted into the chaotic regime for finite-

N , e.g. (Ribeiro et al., 2008). Given impetus as an indicator of

the critical phase by the related measure of Rämö et al. (2007), we

Figure 3: Maximizations in active information AX(k =
14,K) and apparent transfer entropy TY→X(k = 14,K)
as a function of average connectivity K for N = 250,

shown with respect to the standard deviation of the conver-

gence/divergence parameter δ. This indicates that informa-

tion storage peaks just on the ordered side of the phase tran-

sition, while (coherent) information transfer peaks just on

the chaotic side of the phase transition.

we see that the information storage peaks slightly within the

ordered phase from the critical region, while the informa-

tion transfer peaks slightly within the chaotic phase. Im-

portantly, it is the apparent transfer entropy that peaks here

(indicating the capability for coherent information transfer),

as distinct from the complete transfer entropy which contin-

ues to increase into the chaotic phase. As per footnote 3,

we expect the relative positions of these maximizations to

be maintained around the critical phase as N → ∞, with

both likely to become closer to the critical point in this limit

(as for the measure of correlation by Ribeiro et al. (2008)).

The relative positions of the maximizations are quite inter-

esting, because they align with existing conjecture on the

nature of computation around phase transitions which typi-

cally associates information storage with the ordered phase

and information transfer with the chaotic phase (e.g. (Lang-

ton, 1990)). Both the information storage and transfer ap-

pear to be driving the dynamics toward the critical phase,

but from different sides of the phase transition.

We can also add quantitative evidence to the conflicting

conjecture around whether information transfer is found at

an intermediate (Langton, 1990) or maximum level (Solé

and Valverde, 2001) at criticality. For RBNs, it is maxi-

mized close to criticality where one measures the apparent

influence of a source in isolation, but equally it is at an in-

termediate level where the measurement considers the other

use the standard deviation of δ as guide to the relative regions of

dynamics in finite-N networks.

Figure 30: Average information dynamics in RBNs in relation to average connectivity
K̄ (from [7].)

6.5 Edge of Chaos Is Not Universally Beneficial

for Computation

We also note that the network is always performing some computation, and does not

need to be at the critical state to do so. While the critical state may maximize com-

putational capabilities, the given task may require very little in terms of computation.

For these reasons, it is known that systems do not necessarily evolve the edge of chaos

to solve computational tasks [41]. Moreover, neural networks are applied to a large

variety of different tasks, and certainly not all of them will benefit from networks

close to criticality. For instance, training a network for fast input-induced switching

between different attractors (“multiflop” task) is known to work best with reservoirs

whose spectral radius is small, i.e. those on the very stable side of the phase transi-

tion [cf. 35, Sect. 4.2]. Instead of a long memory, this tasks requires the networks to

react quickly to new input. We also see that the networks in the NARMA task show

best performance slightly before the phase transition, while performance is actually

worst right at the measured edge of chaos. A possible explanation for this might be
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that the memory in the network actually gets too long. The networks in this task

need access to the last 30 inputs in order to compute a correct output, but if infor-

mation stays in the reservoir from inputs older than 30 steps, it might interfere with

the ongoing computation. Fig. 25(left) for the memory capacity task supports this

to some extent, showing that memory capacity reaches values in excess of 30 around

the critical point. As mentioned above, Lazar et al. [48] present evidence that RNNs

with reservoirs shaped through a combination of different plasticity mechanism (IP,

synaptic scaling, and a simple version of spike timing dependent plasticity) actually

drive the network further away from the critical region while outperforming networks

with fixed random reservoirs close to that region, at least for the task they tested

(predicting the next character in a sequence).

6.6 No one-to-one Relation Between Intrinsic Com-

putation and Task Performance

Performance on the two tasks we studied shown in Fig. 25 is still quite good while

the network remains in the ordered regime, even though storage and transfer are not

measured to be very high here. This suggests that much of the storage and transfer

we measure in the reservoir is not related to the task – an interesting point for further

investigation. The effect of different reservoir sizes on the computational capabilities

may be interesting to investigate: while the memory capacity increases with the

number of reservoir units, the prediction of some time series will only require a finite

amount of memory. Adjusting the reservoir size to the point so that the reservoir is

exactly large enough for the given task and data may produce networks where the

computational capabilities are only dedicated to the task at hand.

We emphasize that our main finding is that information storage and transfer are

maximized near the critical state, regardless of the resulting performance. Indeed,

there is certainly not a one-to-one correspondence between either of the information

dynamics measures and task performance. We also note the results of Lizier et al.

[98], showing that maximizing these functions in other systems does not necessarily

lead to complex behavior. Therefore, we see our results as a promising starting point
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for an understanding of the individual computational properties of ESN nodes.

6.7 Information Transfer Between Input and De-

sired Output Can Be Used To Successfully Guide

Reservoir Adaptation

The information-theoretic approach to reservoir optimization presented in Chapter 5

uses a local adaptation of a units internal state, based on properties of the information

transfer between input and desired output of the system. The approach could improve

performance in conjunction with offline echo state regression, as well as with RLS

online learning. In our experiments we have used only a small number of internal

units – our goal was to show the capability of our approach compared to standard

echo state learning. In first additional experiments (not reported here), we found

that for a larger number of units our adaptation leads to an even larger improvement

compared to echo state learning without adaptation. In conclusion, we think that

this approach to quantify the computational properties of the task (as opposed to

just the computational capabilities of the reservoir) may be a promising approach

to shed light on the reasons for the gap between task performance and intrinsic

computational capabilities mentioned above.

In the following last chapter of this thesis, we will now summarize achieved re-

sults and contributions, and we will point to some directions for improvements and

extensions in further research.
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Chapter 7

Conclusion and future work

7.1 Summary and Contributions

In this thesis, we presented new results which contribute to the fundamental research

question of how Echo State Network reservoirs can be reliably improved over standard

methods, and how to assess reservoir quality in terms of intrinsic computation. We

presented and compared different approaches for reservoir improvement on a variety

of benchmarks. In the process, we found a fundamental limitation of one of the

approaches, which is widely used in the research community. We also investigated

the phenomenon of increased task performance at the order-chaos phase transition in

Echo State Networks. Using the information dynamics framework, we quantified the

elements of intrinsic computation in the reservoir, and measured how they change at

the critical point.

In summary, the following contributions have been made in this thesis:

1. More systematic investigation of permutation matrices as reservoir

matrices using several benchmarks: Permutation matrices had been pro-

posed for the connectivity of ESN reservoirs before. They were found to be very

suitable for predicting chaotic time-series, but a thorough study of their perfor-

mance in several standard benchmarks had been missing. We included permu-

tation matrices in our experimental comparison of reservoir shaping methods

and found them to be very useful for tasks requiring long memory and highly
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nonlinear mappings. On tasks with periodicity and dominant time scales in the

input signal, permutation matrices were found to be of limited use.

2. Derivation and testing of a new local learning rule for self-organized

reservoir optimization: Inspired by the intrinsic plasticity of biological neu-

rons, this learning rule changes only internal parameters of each reservoir neuron

(as opposed to connection weights between neurons). We built on previous work

with the aim to achieve a balance between sparse activity (which is known to

increase short-term memory capacity) in the reservoir, and maximization of the

information for each reservoir neuron output (which helps to separate different

inputs coming into the reservoir).

3. Identification of a fundamental limitation of this widely used family of

IP-based learning rules in the context of Echo State Networks: While

comparing the different reservoir optimization schemes, we noticed that the IP

rules for Gaussian and Laplace output distributions both produced only Gaus-

sian output distributions for the reservoir neuron activity. We could attribute

this finding to the central limit theorem of statistics. This made clear that the

previously published IP rule for Gaussian distributions only works in a network

of neurons connected together, and because the central limit theorem works in

its favor. It also prevents the IP rule for Laplace distributions from converging

on the right distribution, revealing that more degrees of freedom in the adapta-

tion of the transfer function, or different transfer functions altogether, will have

to be used to achieve any desired output distribution.

4. Quantification of the components of intrinsic computation in Echo

State Networks reservoirs: By measuring the active information storage

and transfer entropy on the level of individual units of the reservoir, we were

able to quantify the components of intrinsic computation locally and directly.

We found that the intrinsic computational capability of ESNs in terms of these

components is maximized as the networks approach the phase transition from

ordered to chaotic dynamics, and it falls off sharply after that.

5. More evidence that edge of chaos is not universally beneficial for task
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performance: Evidence has been presented in the literature both in favor and

against the conjecture that dynamical systems show best computational per-

formance at the edge of chaos. Here, we showed that this is true for intrinsic

computation, i.e., the general support of universal computation through ele-

ments such as memory and information transfer in ESNs. However, our results

also indicated that there is not a direct mapping between intrinsic elements of

computation and task performance (at least to the extend that we measured

these elements). Therefore, we can not conclude that the edge of chaos should

be the region where an ESN will always show the best performance for any

given task.

6. An Information-theoretic method to adapt Echo State Network reser-

voirs dependent on the task goal: Our approach optimizes the information

transfer at each individual unit, dependent on properties of the information

transfer between input and output of the system. This leads to reliable per-

formance improvement in the benchmarks we tested, both in connection with

online and offline training of output connections.

7.2 Directions for future work

Below, we point out a number of directions how the results presented in this thesis

could be used and extended in future work.

7.2.1 Reservoir Optimization

First steps towards using the information transfer to improve performance of reser-

voirs have been presented in Chapter 5. We tuned information transfer of individual

units locally by adapting self-recurrence, dependent on the learning goal of the sys-

tem. This could be extended, e.g. by using several plasticity mechanisms together

with the goal of achieving a synergistic effect for the improvement of information

transfer appropriate for a given task.

In our study in Chapter 3, permutation matrices proved to be very useful as

reservoir connectivity for different tasks. We also saw, however, that all the poles
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in these matrices have the same radius in the complex plane. This means that the

network implements a filter with only one time constant, depending on this radius, as

opposed to uniform random matrices whose poles have radii of different magnitude

resulting in filters with different time constants. An idea would be to use adaptive

biases at each reservoir neuron as proposed in [38]. These biases are adapted based

on an output error signal and allow the time constants to be adjusted for each pole

individually, while leaving the desirable uniform distribution of the poles around the

unit circle unaltered.

An interesting topic to study might be the effect of different ring sizes in permu-

tation matrices on task performance. The different rings implement distributed delay

lines of different lengths, and a mechanism to determine the best mixture of rings for

a given task seems useful.

As mentioned briefly before, in order for the IP methods to generate arbitrary de-

sired output distributions, transfer functions with more adjustable parameters than

just bias and gain would be useful to study. For certain distributions, transfer func-

tions of different shapes than the standard sigmoid ones might be needed. Fur-

thermore, the simultaneous use of different plasticity rules for reservoir shaping (as

demonstrated e.g. in [48]) is a very promising approach, and should be investigated

further. It is important to understand their inter-play and mutual benefits.

In the field of robotics, there have been interesting applications of ESNs, e.g. for

inverse kinematics and whole body motion learning of humanoid robots as mentioned

in the introduction of this thesis. In studies such as [2] and [3], the IP rule has been

used for reservoir optimization, and it was emphasized that it was necessary in order

to achieve motions with long trajectories. It would be interesting to see how reservoirs

at the edge of chaos (either hand-tuned or automatically guided to the critical point)

would compare in this application.

7.2.2 Reservoir Assessment

A worthwhile extension of our work on quantifying the elements of intrinsic computa-

tion in ESN reservoirs would be to also measure information modification in addition

to active information storage and transfer entropy. This measure was proposed in [70]

72



and it might complete the picture of universal computation capabilities in ESNs. Fur-

thermore, it might help to clarify the reasons for the gap between maximization of

intrinsic computation performance, and observed task performance pointed out ear-

lier. In addition, the information dynamics framework might be useful to gain insight

into how the different plasticity mechanisms drive networks away from the edge of

chaos in [48], but still achieve superior performance.

7.2.3 Reservoir Computing at the Edge of Chaos

Related to the point raised above on reasons for measuring information modification,

we certainly need to investigate how to quantify and predict how much a network

faced with a certain task will actually benefit from dynamics close to the edge of

chaos. Again, the work presented in Chapter 5 could be a starting point for that, but

certainly much work remains to be done.

73





Appendix A

Reservoir Computing

Recurrent loops are abundant in the neural circuits of the mammalian cortex. Massive

reciprocal connections exist on different scales, linking different brain areas as well

as connecting individual neurons in cortical columns. In these columns as many as

80% of the synapses of neocortical interneurons form a dense local network [9] using

very specific connectivity patterns for different neuron types [8]. These recurrent

microcircuits are very stereotypical and repeated over the entire neocortex [99].

Two challenges for computational models of the neocortex are (a) explaining how

these stereotypical microcircuits enable an animal to process a continuous stream of

rapidly changing information from its environment [37], and (b) how these circuits

contribute to the prediction of future events, one of the critical requirements for higher

cognitive function [9].

To address these challenges, a mathematical model for generic neural microcir-

cuits, namely the liquid state machine (LSM), was proposed by Maass et al. [37]. The

framework for this model is based on real-time computation without stable attractors.

The neural microcircuits are considered as dynamical systems, and the time-varying

input is seen as a perturbation to the state of the high-dimensional excitable medium

implemented by the microcircuit. The neurons act as a series of non-linear filters,

which transform the input stream into a high-dimensional space. These transient

internal states are then transformed into stable target outputs by readout neurons,

which are easy to train (e.g. in order to do prediction or classification of input

signals) and avoid many of the problems of more traditional methods of recurrent
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neural network training like slow convergence and vanishing gradients (first described

in Hochreiter [29], see also Bengio et al. [100] and Hochreiter et al. [27]). This ap-

proach to neural modeling has become known as reservoir computing, and the LSM

is one particular kind of model following this paradigm.

Echo state networks (ESN) [35, 36] are another reservoir computing model sim-

ilar to LSM. They implement the same concept of keeping a fixed high-dimensional

reservoir of neurons, usually with random connection weights between reservoir neu-

rons small enough to guarantee stability. Learning procedures train only the output

weights of the network to generate target outputs, but while LSM use spiking neuron

models, ESN are usually implemented with sigmoidal nodes, which are updated in

discrete time steps.

In the following, we describe Echo State Networks more formally and in more

detail. For information on other reservoir computing approaches, including LSMs,

please refer to the reviews in [49] and [43]).

Echo State Networks

ESN provide a specific architecture and a training procedure that aims to solve the

problem of slow convergence [35, 36] of earlier recurrent neural network training algo-

rithms. ESN are normally used with a discrete-time model, i.e. the network dynamics

are defined for discrete time-steps t, and they consist of inputs, a recurrently con-

nected hidden layer (also called reservoir) and an output layer (see Fig. 31).

We denote the activations of units in the individual layers at time t by ut , xt , and

ot for the inputs, the hidden layer and the output layer, respectively. We use win, W,

wout as matrices of the respective synaptic connection weights. Using f(x) = tanh x

as output nonlinearity for all hidden layer units, the network dynamics is defined as:

xt = tanh(Wxt−1 +winut)

ot = woutxt

The main differences of ESN to traditional recurrent network approaches are the

setup of the connection weights and the training procedure. To construct an ESN,

units in the input layer and the hidden layer are connected randomly. Connections
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Figure 31: Architecture of an echo state network. In echo state networks, usually
only the connections represented by the dashed lines are trained, all other connections
are setup randomly and remain fixed. The recurrent layer is also called a reservoir,
analogously to a liquid, which has fading memory properties. As an example, consider
throwing a rock into a pond; the ripples caused by the rock will persist for a certain
amount of time and thus information about the event can be extracted from the liquid
as long as it has not returned to its single attractor state — the flat surface.
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between the hidden layer and the output units are the only connections that are

trained, usually with a supervised, offline learning approach using linear regression:

Training data are used to drive the network, and at each time step t, activations

of all hidden units x(t) are saved as a new column to a state matrix. At the same

time, the desired activations of output units oteach(t) are collected in a second matrix.

Training in this approach then means to determine the weights wout so that the error

�train(t) = (oteach(t)− o(t))2 is minimized. This can be achieved using a simple linear

regression (see Jaeger [35] for details on the learning procedure).

For the approach to work successfully, however, connections in the reservoir cannot

be completely random; ESN reservoirs are typically designed to have the echo state

property. The definition of the echo state property has been outlined in Jaeger [35]

and is summarized below.

The Echo State Property

Consider a time-discrete recursive function:

xt+1 = F (xt ,ut+1 ) (14)

that is defined at least on a compact sub-area of the vector-space x ∈ R
n, with n the

number of internal units. The xt are to be interpreted as internal states and ut is

some external input sequence, i.e. the stimulus.

Definition Assume an infinite stimulus sequence

ū∞ = u0,u1, . . . , and two random initial internal states of the system x0 and y0. From

both initial states x0 and y0 the sequences x̄∞ = x0,x1, . . . and ȳ∞ = y0,y1, . . . can

be derived from the update equation Eq. (14) for xt+1 and yt+1 . If, for all right-

infinite input sequences ū+∞ = ut ,ut+1 , · · · taken from some compact set U , for any

(x0,y0) and all real values � > 0, there exists a δ(�) for which �xt − yt� ≤ � for all

t ≥ δ(�) (where �·� is the Euclidean norm), the system F (·) will have the echo state

property relative to the set U .

In simple terms, the system has echo state property if different initial states converge

(for all inputs taken from U).
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Appendix B

Review of Relevant

Information-theoretic Quantities

The (Shannon) entropy is a fundamental measure that estimates the average uncer-

tainty in a sample x of stochastic variable X. It is defined as

HX = −
�

x

p(x) log2 p(x)

If a base two logarithm is used in this quantity as above, entropy is measured in units

of bits.

The joint entropy of two random variables X and Y is a generalization to quantify

the uncertainty of their joint distribution:

HX,Y = −
�

x,y

p(x, y) log2 p(x, y).

The conditional entropy of X given Y is the average uncertainty that remains about

x when y is known:

HX|Y = −
�

x,y

p(x, y) log2 p(x|y).

The mutual information between X and Y measures the average reduction in uncer-

tainty about x that results from learning the value of y, or vice versa:

IX;Y = HX −HX|Y .
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The conditional mutual information between X and Y given Z is the mutual infor-

mation between X and Y when Z is known:

IX;Y |Z = HX|Z −HX|Y,Z .
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