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Preface 
 

This dissertation is mainly focused on technical issues associated with load-frequency control 
(LFC) in restructured power systems. Operating the power system in a deregulated environment is 

more complex than in the past, due to the considerable degree of interconnection and the presence of 
technical constraints to be considered, together with the traditional requirements of system reliability. 
However, at present, the power system utilities participate in LFC task with simple, heuristically tuned 
controllers. In response to the new technical control demands, the main goal of this dissertation is to 

develop the robust decentralized LFC synthesis methodologies for multi-area power systems based on 
the fundamental LFC concepts and generalized well-tested traditional LFC scheme to meet the 
specified LFC objectives. The dissertation is organized as follows: 

Chapter 1 gives a general introduction on load-frequency control problem and its conventional 

control scheme. The past achievements in the LFC literature are briefly reviewed, and the main 
objectives of the present dissertation are summarized.  

Chapter 2 introduces modified models to adapt well-tested classical LFC scheme to the changing 
environment of power system operation under deregulation. The main advantage of the given 

strategies is the use of basic concepts in the traditional framework, and avoiding the use of impractical 
or untested LFC models. The introduced structures provide the base models for robust LFC synthesis 
in the subsequent chapters. 

Chapter 3 presents two robust decentralized control design methodologies for LFC synthesis 

using structured singular value theory (µ). The first one describes a new systematic approach to design 
sequential decentralized load-frequency controllers in multi-area power systems. System uncertainties, 
practical constraint on control action, and desired performance are included in the synthesis procedure. 
The robust performance in terms of the structured singular value is used as a measure of control 

performance. The second control methodology addresses a control approach to the design of robust 
load frequency controller in a deregulated environment. In this approach, the power system is 
considered under the pluralistic-based LFC scheme, as a collection of separate control areas. Each 
control area can buy electric power from some generation companies to supply the area-load. 

Multi-area power system examples are presented, demonstrating the controllers’ synthesis procedures 
and advantages of proposed strategies.  

In Chapter 4, the decentralized LFC synthesis is formulated as an H∞-based static output 
feedback (SOF) control problem, and is solved using an iterative linear matrix inequalities (ILMI) 



 
 
 
Preface ii

algorithm to the design of robust PI controllers in multi-area power systems. Two multi-area power 

system examples using both traditional and bilateral based LFC schemes with a wide range of load 
changes are given to illustrate the proposed approach.  

Chapter 5 is organized in two main sections. Firstly, the LFC problem is formulated as a 
multi-objective control problem and the mixed H2/H∞ control technique is used to synthesize the 

desired robust controllers for LFC system in a multi-area power system. In the second section, with 
regard to model uncertainties, the multi-objective LFC problem is reformulated via a mixed H2/H∞ 
control technique. Then, in order to design a robust PI controller, the control problem is reduced to a 
static output feedback control synthesis. Finally, the problem is easily solved using a developed ILMI 

algorithm. The proposed methods are applied to multi-area area power system examples under 
different LFC schemes. The results are compared with pure ∞H  control design. 

Chapter 6 summarizes the research outcomes of this dissertation. 
 

Hassan Bevrani 
Osaka University, Osaka, Japan 
July 2004 
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Chapter 1 

 

Introduction 
 

In This chapter, a general introduction on load-frequency control (LFC) problem is given. The past 

achievements in the LFC literature are briefly reviewed, and finally, the main objectives of this dissertation are 

mentioned.  

 

1.1  Load-frequency control (LFC) 
 

1.1.1  Power system control 

The objective of the control strategy in a power system is to generate and deliver power in an 

interconnected system as economically and reliably as possible while maintaining the frequency and voltage 

within permissible limits. The power system control has a hierarchical structure. The control system consists of a 

number of nested control loops that control different quantities in the system.  

In general, the control loops on lower system levels, e.g. locally in a generator, are characterized by 

smaller time constants than the control loops active on a higher system level. For example, the automatic voltage 

regulator (AVR), which regulates the voltage of the generator terminals, responds typically in a time scale of a 

second or less. While, the secondary voltage control (SVC), which determines the reference values of the voltage 

controlling devices among which the generators, operates in a time scale of tens of seconds or minutes. That 

means these two control loops are virtually de-coupled.  

As another example, we can consider AVR (which controls the reactive power and voltage magnitude) and 

LFC (which controls the real power and frequency) loops. The excitation system time constant is much smaller 

than the prime mover time constant and its transient decay much faster, which does not affect the LFC dynamic. 
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Thus, the cross-coupling between the LFC loop and the AVR loop is negligible. This is also generally true for the 

other control loops. As a result, a number of de-coupled control loops operating in power system in different 

time scales for protection, voltage control, turbine control, tie-line power and frequency control. Although the 

overall control system is complex, in most cases it is possible to study the different control loops individually 

due to the de-coupling. Depending on the loop nature, the required model, important variables, uncertainties, 

objectives, and possibly control strategy will be different.  

A schematic diagram showing the current different time scales of the power system controllers and devices 

is shown in Fig. 1.1. The protection devices are in the first level. To protect the systems and other important 

devices they must as fast as possible. The second level is mainly related to power system stabilizers (PSS) and 

reactive power controllers such as AVRs, flexible ac transmission systems (FACTS), energy storages, and HVdc 

systems. At the highest level, the tie-line power and frequency controllers are in place.  

 

1.1.2  LFC problem 

The LFC problem in power systems has a long history. In a power system, LFC as an ancillary service 

acquires an important and fundamental role to maintain the electrical system reliability at an adequate level. It 

has gained the importance with the change of power system structure and the growth of size and complexity of 

interconnected systems. The well-known conventional LFC structure for a given control area (i) in a multi area 

power system (includes N area) is shown in Fig. 1.2, where,  

if∆ : frequency deviation,  

giP∆ : governor valve position,  

ciP∆ : governor load setpoint,  

tiP∆ : turbine power,  

diP∆ : local load disturbance,  

itieP −∆ : net tie-line power flow,  

iM : equivalent inertia constant,  

iD : equivalent damping coefficient,  

 

 

 

Figure 1.1: Schematic diagram of different time scales of power system controls 
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giT : governor time constant,  

tiT : turbine time constant,  

ijT : tie-line synchronizing coefficient between area i & j,  

iB : frequency bias, 

iR : drooping characteristic, 

iACE : area control error (ACE). 

 

The LFC model given in Fig. 1.2 uses three simple (first order) transfer functions for modeling the turbine, 

generator and power system (load and rotating mass). The effects of local load changes and interface with other 

areas are properly considered as two input signals. Each control area monitors its own tie-line power flow and 

frequency at the area control center. The area control error (ACE) which is a linear combination of tie-line and 

frequency errors is computed and allocated to the controller K(s). Finally, the resulted control action signal or a 

percentage of it is applied to the turbine-governor unit. The operation objectives of the LFC are summarized to 

maintain system frequency close to nominal value, to control the tie-line interchange schedules, and to divide the 

load between generator units.  

The LFC mechanism is well discussed in [1, 2]. Commonly, a simple integral or proportional-integral 

control law is used as controller K(s) to perform LFC task. A multi-area power system is comprised of areas that 

are interconnected by high-voltage transmission lines or tie-lines. The trend of frequency measured in each 

control area is an indicator of the trend of mismatch power in the interconnection and not in the control area 

alone [3]. Therefore, following a load disturbance within a control area or an occurred mismatch power on 

tie-lines, the frequency of that control area experiences a transient change. The feedback mechanism comes into 

play and generates the appropriate signal to the turbine for tracking the load variation and compensate the 

mismatch power. 

 

 

Figure 1.2: A control area equipped with LFC 
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Depending on the type of generating units, and constraints on their range and rate of response to the LFC 

signals, the actual response time (for example for a steam unit) takes a few to several tens of seconds [3]. In LFC 

practice, rapidly varying components of system signals are almost unobservable due to filters involved in the 

process. That is why further reduction in the response time of LFC is neither possible nor desired. Practically, the 

design and performance of an LFC system highly dependent on how generation units respond to control signal. 

Such control strategies are useful as they are able to maintain a sufficient level of reserved control range and a 

sufficient level of control rate.  

In light of this fact, although the present dissertation uses some academic examples (and data) in which the 

assumed parameters (and in result, dynamics of the simplified models) are not completely matched to real ones, 

and gives the impression that the output of the models can be changed quickly, however the proposed control 

strategies are flexible enough to set a desired level of performance to cover the practical constraint on the control 

action signals.  

Since the 1970s, the described LFC scheme in Fig. 1.2 is widely used by researchers for the LFC analysis 

and synthesis. The far reaching deregulation of the power system industry and concomitant new concepts of 

operation requires an evaluation and re-examination of this scheme, which is already designed to operate with 

large and central generating facilities to find ways to maintain, and possibly improve, their efficiency and 

reliability. 

  

1.2  A brief survey on the LFC literature  
The LFC scheme shown in Fig. 1.2 has evolved over the past few decades and is in use on interconnected 

power systems. There has been continuing interest in designing LFC with better performance to maintain the 

frequency and keep tie-line power flows within prespecified values using various control methodologies. The 

literature on LFC is voluminous. Following, a brief survey on some reported works is referred. 

Since the publication of Fosha and Elgerd’s paper [2], extensive research has been done on the application 

of modern control theory to the LFC design. References [4-24] have suggested several LFC synthesis approaches 

using optimal and adaptive control techniques. The efforts were usually directed towards the application of 

suitable linear state feedback controllers to the LFC problem. They have mainly optimized a constructed cost 

function to meet the LFC objectives by well-known optimization techniques or self-tuning algorithms. Several 

authors [5, 10, 11, 20] applied the concept of variable-structure systems to the LFC design. The discrete-type 

frequency regulator is also reported in some papers [7, 9, 21].  

Since an important issue in the LFC design is robustness, the application of robust control theory to the 

LFC problem in multi-area power systems has been extensively studied during the last two decades [25-39]. The 

main goals have been determined as holding the robust stability, and robust performance against the system 

uncertainties and disturbances for a reasonable range of operating conditions. For this purpose, various robust 

control techniques such as H∞ [31, 36], Linear matrix inequalities (LMI) and Riccati-equation approaches [26, 

37], Kharitonov’s theorem [28], Structured singular value (µ) theory [27, 38], Quantitative feedback theory [30], 

Lyapunove stability theory [32, 33], Pole placement technique [35], and Q-parameterization [39] have been used. 
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In the light of advances of intelligent control techniques during the last two decades, various 

intelligent-based control methodologies have been proposed to solve the LFC problem [40-53]. Artificial neural 

networks have been applied to the LFC problem [40, 45, 50]. The application of fuzzy logic and genetic 

algorithm has been reported for the same problem [42, 43, 46-48, 52, 53]. The application of fuzzy logic is 

mainly reported based on fuzzy scheduling of PI-based load-frequency controller parameters. A combination of 

the intelligent methods has also been applied to the LFC problem [41, 44, 51]. 

Several reports have addressed the application of special devices such as Battery energy storage, 

Photovoltaic power generation, Superconductivity magnetic energy storage (SMES), Solid-state phase shifter, 

and Capacitive energy to improve the performance of LFC system [54-60]. Furthermore, with regards to LFC 

analysis, modeling and modification, special applications, constraints formulation, frequency bias estimation, 

model identification, and performance standards, numerous reports have been published [61-77].  

The above mentioned works have been done for the power systems under vertically integrated organization. 

Vertically integrated utilities participate in LFC with simple, classically tuned controllers. In a deregulated 

environment which includes separate generation, distribution, and transmission companies, generation 

companies may or may not participate in LFC problem. Technically, this problem will be more important as 

independent power producers (IPPs) penetrate the electric power markets. Therefore, the control strategies for 

new structure with a few number of LFC participators may not be as straight as those for vertically integrated 

utility structure, and, in a control area including numerous distributed generators with an open access policy and 

a few LFC participators, the need arises for novel control strategies based on modified dynamical models to 

maintain the reliability and eliminate the frequency error. Under new organization, several notable scenarios 

have been proposed on LFC modeling, control, and structure description [78-92]. 

There are various schemes and organizations for the provision of ancillary services in countries with a 

restructured electric industry. The type of LFC scheme in a restructured power system is differentiated by how 

free the market is, who controls generator units, and who has the obligation to execute LFC [78]. Several 

modeling and control strategies have reported to adapt well-tested classical LFC schemes to the changing 

environment of power system operation under deregulation [79, 80, 83, 86, 88, 89]. References [83], [84], and 

[89] have proposed µ and flexible neural network based load frequency controllers for a simple area with two 

generation companies. The effects of deregulation of the power industry on LFC and several general LFC 

scenarios for power system after deregulation have been addressed in [78, 81, 82, 87, 90-92].  

 

1.3  Objectives of the present dissertation  
The electric power industry is in transition from large, vertically integrated utilities providing power at 

regulated rates to an industry that will incorporate competitive companies selling unbundled power at lower rates. 

Currently, in many countries, electric systems are restructured; new market concepts were adopted to achieve the 

goal of better efficiency. Operating the power system in a new environment will certainly be more complex than 

in the past, due to the considerable degree of interconnection, and to the presence of technical constraints to be 

considered together with the traditional requirements of system reliability. 
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It is known that market power exercise affects market dynamics. In addition to various market policies, 

numerous generator units in distribution areas and a growing number of independent players are likely to impact 

on the operation and control of the power system (which is already designed to operate with large, central 

generating facilities). In response to the new challenges, novel modeling and control approaches are required to 

get a new trade off between efficiency and robustness. 

At present, the power system utilities participate in LFC task with simple, heuristically tuned controllers. In 

response to the new technical control demands for large scale power systems in a restructured environment, the 

main goal of the present dissertation is to develop new LFC synthesis methodologies for multi-area power 

systems based on fundamental LFC concepts and generalized well-tested traditional LFC scheme, to meet all or 

a combination of following specifications: 

 

� Robustness: Guarantee robust stability and robust performance for a wide range of operating conditions. 

For this purpose, robust control techniques are to be used in synthesis and analysis procedures. 

 

� Decentralized property: Because of practical advantages, decentralized control design is the most common 

design procedure in real-world applications, while centralized design is difficult numerically/practically for 

large scale power system. In addition, the possibility of sequential decentralized LFC design is to be 

studied.  

 

� Simplicity of structure: To meet the practical advantages, the robust decentralized LFC design problem is to 

be reduced to a synthesis of low-order or proportional-integral (PI) control problem, which is usually used 

in a real-world power systems. 

 

� Formulation of uncertainties, constraints, and contracts information: The LFC synthesis procedure must be 

flexible enough to include generation rate constraints and uncertainties in power system models. The 

proposed approaches advocate the use of the physical understanding of the system for robust controller 

synthesis. Furthermore, the coupling between LFC dynamics and contract transactions is studied in order to 

get suitable alternatives for the future realization of decentralized LFC systems. 

 

� Cover all the specified LFC objectives: The LFC objectives, i.e., frequency regulation and tracking the load 

changes, maintaining the tie-line power interchanges to specified values in the presence of generation 

constraints and model uncertainties, identify the LFC synthesis as a multi-objective control problem. 

Therefore, the LFC design is to be considered as a decentralized robust multi-objective control problem. 
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Chapter 2 

 

LFC structure in a new environment 
 

In a vertically integrated power system, it is assumed that each bulk generator unit is equipped with 

secondary control and frequency regulation requirements, but in an open energy market, generation companies 

(Gencos) may or may not participate in the LFC task. On the other hand, a distribution company (Disco) may 

contract individually with Gencos or independent power producers (IPPs) for power in different areas. Therefore, 

in a control area, including numerous distributed generators with an open access policy and a few LFC 

participators, the need arises for novel modeling strategies for LFC synthesis and analysis.  

This chapter introduces modified models to adapt the well-tested classical LFC scheme to the changing 

environment of power system operation under deregulation. The main advantage of these strategies is the use of 

basic concepts in the traditional framework and avoiding the use of impractical or untested LFC models. The 

mentioned structures provide the base models for robust LFC synthesis in the subsequent chapters. 

 

2.1  Traditional-based LFC model 
Although a linearized model is usually used for LFC synthesis and analysis, power systems have a highly 

nonlinear and time-varying nature. A large scale power system consists of a number of interconnected control 

areas. Fig. 2.1 shows the block diagram of control area-i with n Gencos, in an N-control area power system. As 

usual in LFC literature, three first order transfer functions are used to model generator, turbine, and power 

system (rotating mass and load) units. The traditional LFC structure is discussed in [1] and [2]. 

In Fig. 2.1, the practical constraints on generation rate and the impacts of areas interface have been properly 

considered. 1iw  and 2iw  show local load disturbance and area interface, respectively. The other parameters are: 
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Figure 2.1: Traditional-based LFC model for a general control area 

 

if∆ : frequency deviation,  

giP∆ : governor valve position,  

ciP∆ : governor load setpoint,  

tiP∆ : turbine power,  

itieP −∆ : net tie-line power flow,  

iM : equivalent inertia constant,  

iD : equivalent damping coefficient,  

giT : governor time constant,  

tiT : turbine time constant,  

ijT : tie-line synchronizing coefficient between area i & j,  

iB : frequency bias, 

kR : drooping characteristic, 

iACE : area control error (ACE), 

kiα : ACE participation factors. 

Following a load disturbance within the control area, the frequency of the area experiences a transient 

change and the feedback mechanism comes into play and generates the appropriate rise/lower signal to the 

participating Gencos according to their participation factors ( kiα ) to make generation follow the load. In the 

steady state, the generation is matched with the load, driving the tie-line power and frequency deviations to zero. 

As there are many Gencos in each area, the control signal has to be distributed among them in proportion to their 

participation in the LFC. Hence, the ACE participation factor shows the sharing rate of each participant Genco 

unit in the LFC task.  

 

10       1 ki

n

1k
ki ≤α≤=α∑

=
  ;        (2.1) 
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The balance between connected control areas is achieved by detecting the frequency and tie line power 

deviations to generate the ACE signal, which is in turn utilized in the control strategy as shown in Fig. 2.1. The 

ACE for each control area can be expressed as a linear combination of tie-line power change and frequency 

deviation. 

 

i-tieiii PfBACE ∆+∆=         (2.2) 

 

It can be shown that considering 1iw  and 2iw  as two input disturbance channels is useful to the design of 

decentralized LFC [3-4]. These signals can be defined as follows:  

 

di1i Pw ∆=  ,  j

N

ij
1j

ij2i fTw ∆=∑
≠
=

       (2.3) 

where diP∆  is area load disturbance. According to Fig. 2.1, in each control area the ACE performs the input 

signal of controller. Therefore, we have the following control input for the LFC system, 

 

)( ii ACEfPciu =∆=         (2.4) 

 

where )(⋅f  is a function which identifies the structure of controller. The state-space model for control area i is 

given in (2.5). 

 

iyii

ii2i1iii

xCy
uBwBxAx

i

=
++=&

        (2.5) 

 

where 

 

[ ]gitiitiei
T
i xxPfx −∆∆=         

 

[ ]tnit2it1iti PPPx ∆∆∆= L , [ ]gnig2ig1igi PPPx ∆∆∆= L  

 

ii Pu C∆= , i-tieiii Pfβy ∆+∆= , [ ]2i1ii www =T  

 

and, 














=

i33i32i31

i23i22i21

i13i12i11

i

AAA
AAA
AAA

A , 













=

1i3

1i2

1i1

1i

B
B
B

B , 













=

2i3

2i2

2i1

2i

B
B
B

B  



 
 
 
Chapter 2. LFC structure in a new environment 

 
 
 

18 

















= ∑
≠
=

0T2π

1/M-/MD-

A
N

ij
1j

ij

iii

i11
, 

n2

ii
i12 00

1/M1/M
A

×





=
L

L  

 

[ ]tnit2it1ii23i22 1/T1/T1/TdiagAA −−−=−= L  

 

[ ]gnig2ig1ii33 1/T1/T-1/T-diagA −= L  

 














=

0R1/(T-

0R1/(T-
A

nigni

1ig1i

i31
)

)
MM , n2i21i13 0AA ×== T ,  nni32 0A ×=  

 






=
2π-0
01/M-

B i
1i1 ,  2n1i31i2 0BB ×==  

 

1n2i2122i1 0B 0B ×× == , ,  [ ]gninig2i2ig1i1i
T

2i3 /Tα/Tα/TαB L=  

 

Currently, most existing LFC systems in developed countries with a restructured electric industry are 

working with the designed controllers based on the traditional-based LFC model. Recently, several proposed 

LFC scenarios attempted to adapt well-tested traditional LFC scheme to the changing environment of power 

system operation under deregulation [5-8].  

 

2.2  Pluralistic-based LFC model 
There are several control scenarios and LFC schemes depending on the electrical system structure. However, 

the common goal in each control area is restoring the frequency and the net interchanges to their desired values. 

For example, in Europe, three different types of control are defined by the Union for the Co-ordination of 

Transmission of Electricity (UCTE): centralized network control, decentralized pluralistic network control, and 

decentralized hierarchical network control [7]. The countries with a central electricity supply system use the 

central network control, where LFC is operated through a single secondary controller. The other two 

decentralized methods consider some separate control areas and each control area has an individual controller. 

One or more control areas operating together for what concerns LFC can establish a “control block”, and in this 

case a block co-ordinator is defined as the overall control center for the LFC and for the accounting of the whole 

control block. This section is focused on LFC synthesis in each control area under decentralized pluralistic 

network control scheme. A general diagram for the pluralistic LFC is shown in Fig. 2.2.  

In this scheme, each control area regulates the frequency by its own controller. If some control areas perform 

a control block, a separate controller (block coordinator) coordinates the whole block towards its neighbor 

blocks/control area by means of its own controller and regulating capacity. Consider a general control area with 
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N Gencos and assume that the kth Genco ( kG ) can generate enough power to track the load and to perform the 

LFC task, and other Gencos are the main suppliers for area-load. In this structure, the connection of each control 

area to the rest of the power system is considered as disturbance channel(s). 

Although power systems are inherently non-linear, simplified and linearized models are usually used for 

LFC. In robust control strategies, the error caused by the simplification and linearization can be considered as 

parameter uncertainties and unmodeled dynamics. In this section, the modeling idea given in [9] is generalized 

for pluralistic-based LFC scheme. In order to build an area system model, it is assumed that each Genco has one 

generator unit. The linearized dynamics of the individual generators are given by: 

 

  if2π
dt

id

ifiDidiPtiP
dt

ifd

f
i2H

0

∆=
δ∆

∆−−∆−∆=
∆

  ;      i=1, 2, …, N    (2.6) 

where 

iH : constant of inertia, 

iδ : rotor angle,  

of : nominal frequency, 

iP∆ : electrical power, 

id : disturbance (power quantity). 

 

 

 

Figure 2.2: Three control area in the pluralistic-based LFC scheme 
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The generators are equipped with a speed governor. The simplest models of speed governors and turbines 

associated with generators are given by: 

 

giP
tiT
tiK

tiP
tiT

1

dt
tiPd

if
iR

1
ciP

giT

giK

giP
giT

1

dt

giPd

∆+∆−=
∆

∆−∆+∆−=
∆

 )(
;    i=1,…,N     (2.7) 

 

where tiK  and giK  are the gains of turbine and governor. The individual generator models are coupled to 

each other via the control area system. Mathematically, the local state space of each individual generator must be 

extended to include the system coupling variable (δ), which allows the dynamics at one point on the system 

transmitted to all other points.  

Let bus m be the load bus, iδiViV ∠=   be the voltage at bus i, and assume jδiδijδ ∆−∆=∆ . The power 

that flows from the Gencos to the area-load is expressed in terms of the voltages and line reactances.  

 

kmδiTkiδi-T=mδiiTiP ∆+∆∆−δ∆=∆ )(  ;   i=1, 2, …,k-1, k+1, …, N   (2.8) 

 

and 

 

 kmδkTmδkkT kP ∆=∆−δ∆=∆ )(        (2.9) 

 

where 

 

  

i
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iT  is synchronizing power coefficient of line i connected to the load bus (bus m) via a line whose reactance 

is ix . The change in load is expressed by 
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kmδ∆  is eliminated from Eqs. (2.8) and (2.9) using Eq. (2.11), 
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Rewrite the Eqs. (2.8) and (2.9) using Eq. (2.12) as follows. 
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Rewriting Eqs. (2.6) and (2.7) with Eqs. (2.13) and (2.14), the state space model of the control area is obtained as  

 

FwBuAxx ++=&         (2.15) 

 

where 

 

[ ]1NXNX2X1XTx += L , [ ] ckP=u  ; d  LPTw ∆∆=  

 

d is the disturbance vector, and 
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 ∆∆+∆−∆∆∆=+ LL  

 

Since one of the LFC objectives is known to guarantee that the frequency to returns to its nominal value 

following a step disturbance, Eq. (2.15) is augmented to include the rotor angle (
k
δ∆ ) of kG  in the state vector.  

 

2.3  Bilateral-based LFC model   
This section addresses a modified dynamical model for the analysis and synthesis of bilateral-based LFC 

scheme in a new environment versus a traditional one, following the ideas presented in [8]. The proposed LFC 

model uses all information required in a vertically operated utility industry plus the contract data information. 

Based on the bilateral transactions, a distribution company (Disco) has the freedom to contract with any 

available generation company (Genco) in its own or another control area. Therefore, the concept of physical 

control area is replaced by virtual control area (VCA). The boundary of a VCA is flexible and encloses the 

Gencos and the Disco associated with the contract. In a full bilateral LFC framework, it is assumed that each 

Disco is responsible for tracking its own load and honoring tie-line power exchange contracts with its neighbors 

by securing as much transmission and generation capacity as needed. 
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Analogously to the traditional LFC, the physical control area boundaries are assumed for each Disco, its 

distribution area and local Gencos as before. But, a Disco may have a contract with a Genco in another control 

area out of its distribution area boundaries. Similar to [10], the general theme in this work is that the loads (the 

Discos) are responsible for purchasing the services they require. Each control area has its own LFC and is 

responsible for tracking its own load and honoring tie-line power exchange contracts with its neighbors. 

Currently, these transactions are done under the supervision of the independent system operator (ISO), 

independent contract administrator (ICA), or other responsible organizations. There can be various combinations 

of contracts between each Disco and available Gencos. On the other hand, each Genco can contract with various 

Discos. Similar to the Disco participation matrix in [8], let us define the “generation participation matrix (GPM)” 

concept to visualize these bilateral contracts in the generalized model conveniently. 

The GPM shows the participation factor of each Genco in the considered control areas and each control area 

is determined by a Disco. The rows of a GPM correspond to Gencos and the columns correspond to control areas 

that contract power. For example, for a large scale power system with m control area (Discos) and n Gencos, the 

GPM has the following structure: 
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     (2.16) 

 

Here, kigpf refers to “generation participation factor” and shows the participation factor of Genco k in the 

load following of area i (based on a specified bilateral contract). The sum of all the entries in a column in this 

matrix is unity, i.e. 

 

∑
=

=
n

1k
ki 1gpf          (2.17) 

 

Based on the above explanations, the modified LFC block diagram for control area-i in a contract-based 

environment is obtained, as shown in Fig. 2.3. New information signals due to various possible contracts 

between Disco i and other Discos and Gencos are shown as dashed-line inputs. 1iv  includes the sum of local 

contracted demand and area load disturbances. 2iv  includes the interface effects between each control area and 

other areas. This signal is defined the same as2iw  in the traditional-based LFC structure which is expressed in 

Eq. (2.3). 

 

dii-Loc1i PPv ∆+∆=         (2.18) 
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Figure 2.3: Bilateral-based LFC scheme 
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Using the given idea in [8], the scheduled tie-line power 3iv  can be generalized for N control areas as follows,  
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and,  

 

3iactual i,-tieerror i,-tie wPP −∆=∆        (2.21) 

 

The input signal 4iv  shows a vector includes contracted demands of various Discos from Gencos of area i , 

 

[ ]n-4i2-4i1-4i4i vvvv L=         (2.22) 

 

where, 
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and, 

N: number of control areas,  

LiP∆ : contracted demand of area i,  

i-LocP∆ : total local demand (contracted and uncontracted) in area i,  

actual i,-tieP∆ : actual i-tieP∆ . 

The generation of each Genco must track the contracted demands of Discos in steady state. The desired 

total power generation of a Genco i in terms of GPM entries can be calculated as  

 

∑
=

∆=∆
N

1j

Ljijmi PgpfP         (2.24) 

 

In order to take the contract violation cases into account, as given in [6] and [8], the excess demand by a 

distribution area (Disco) is not contracted out by any Genco and the load change in the area appears only in 

terms of its ACE and is shared by all Gencos of the area (in which the contract violation occurs). The simulation 

results (chapters 4 and 5) for various cases demonstrate the effectiveness of the proposed model as a suitable 

dynamical model for LFC analysis and synthesis in a bilateral-based large scale power system. 

 

2.4  A comparison of LFC models   
The introduced LFC models in previous sections give suitable schemes to adapt a well-tested classical LFC 

model to the changing environment of power system operation under deregulation. The common and main 

advantage of these models is the use of fundamental concepts in the traditional framework and avoiding the use 

of impractical or untested LFC models. The mentioned models are successfully used in the design of robust 

decentralized LFC in the following chapters. 

The traditional-based LFC model introduces the well-known conventional LFC scheme using some new 

concepts; e. g. “Genco” and “ACE participation factor”. In a restructured power system, the principle objectives 

for LFC system remain, i.e., restoring the frequency and the net interchanges to their desired values for each 

control area. Therefore, the traditional-based LFC model holds its suitability for LFC synthesis in a new 

environment as well. Currently, most existing LFC systems in developed countries with restructured electric 

industry are working with the designed controllers based on the traditionally-based LFC model.  

Pluralistic-based LFC model gives a new idea for the reformulation of traditional-based LFC schemes, 

which is useful to LFC synthesis for control areas with pluralistic policy or autonomous condition. In this model, 

the individual generation units are coupled to each other via the control area system, and mathematically, the 

local state space of each individual generation unit is extended to include the system coupling variable (δ). This 
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allows the dynamics at one point on the system transmit to all other points of related area, such that the 

frequency deviation value at all generation units terminals, for both open-loop and closed-loop systems, 

converges to a fixed value at steady state. 

In the pluralistic-based LFC scheme, each control area regulates the frequency by its own controller. In a 

control area, one (or more) Genco with enough capacity is responsible for tracking the load and to perform the 

LFC task, and other Gencos are the main suppliers for area-load. In this modeling strategy, the connection of 

each control area to the rest of the power system is considered as a disturbance channel. 

In a traditional power system, generation, transmission, and distribution are owned by a single entity called 

vertically integrated utility (VIU), which supplies power to the customers at regulated rates. Usually, the 

definition of a control area is determined by the physical boundaries of a VIU. All such control areas are 

interconnected by tie lines. In a new environment, Gencos submit their ramp rates (Megawatts per minute) and 

bids to the market operator. After a bidding evaluation, those Gencos selected to provide regulation service must 

perform their functions according to the ramp rates approved by the responsible organization. 

Bilateral-based LFC model provides an appropriate model to adapt well-tested traditional LFC schemes to 

the changing environment of power system operation under deregulation and open access policy. The difference 

between bilateral-based LFC structure and other models (traditional and pluralistic-based LFC schemes) is in the 

existence of contract data information. Any entry in a GPM that corresponds to a contracted load by a Disco, 

demanded from the corresponding Genco, is reflected to the control area system. This introduces new 

information signals that were absent in the traditionally-based LFC structure (Fig. 2.1). These signals identify 

which Genco has to follow a load demanded by a specified Disco. The scheduled flow over the tie lines must be 

adjusted by demand signals of those distribution control areas having a contract with Gencos outside its 

boundaries. The difference between scheduled and current (actual) tie-line power flows gives a tie-line power 

error which is used to compose an ACE signal. 

The associated expressions and the place of new input signals in the bilateral-based LFC model were 

selected in such a way that: 1) the model covers all possible contract combinations given by GPM; 2) the 

calculation results from Eqs. (2.20) and (2.24) are completely matched to the corresponding simulation results 

for a given set of bilateral contracts.  

We can review the pluralistic and bilateral based LFC schemes from a more general point of view. In both 

mentioned schemes, it is assumed that Discos are responsible for tracking the load variation and perform the 

LFC task. Each Disco must purchase LFC from one or more Gencos. Control is highly decentralized. Each load 

matching contract requires a separate control process, yet this control processes must cooperatively interact to 

maintain system frequency and minimize time error. In these structures, a separate control process exists for each 

control area. The boundary of control area encloses the Gencos and the Disco associated with the contracts. The 

Disco is responsible for buying power from Gencos and getting it directly or through transmission companies 

(Transcos) to its load. Such a configuration is shown conceptually in Fig. 2.4. Control area will be 

interconnected to each other either through Transco or Gencos.  
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Figure 2.4: A (virtual) control area in a deregulated environment 

 

Since, ultimately, the Genco must adjust the governor setpoint(s) of its generator(s) for the LFC, the control 

algorithm for each control area is executed at the Genco end (which is equipped with a proper controller). In this 

scheme, the Gencos are responsible for inadvertent interchange due to insufficient generator response, because in 

a load matching contract, they assume the responsibility of matching the Disco’s load. 

Several numerical examples on using the above introduced LFC models in the robust decentralized 

load-frequency control synthesis are given in Chapters 3, 4, and 5. In the proposed simulations, wide ranges of 

load variation with various contract scenarios are considered. 

 

2.5  Summary   
Technically, the basic concepts of conventional LFC structure are not changed, and therefore it is possible to 

adapt a well tested conventional LFC scheme to the changing environment of power system operation under 

deregulation. In light of this fact, three LFC modeling strategies including traditional, pluralistic, and bilateral 

based models are introduced. Based on these models, overall power system can be considered as a collection of 

distributed Discos or separate control areas interconnected through high voltage transmission lines or tie-lines.  

The modeling idea presented in [8] is generalized to obtain the dynamical model for LFC analysis and 

synthesis in a bilateral-based restructured power system. In each control area, the effect of bilateral contracts is 

taken into account as a set of new input signals. It is assumed that each distribution company is responsible for 

tracking its own load and honoring tie-line power exchange contracts with its neighbors by securing as much 

transmission and generation capacity as needed. 
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Chapter 3 

 

Structured singular value based robust decentralized 

LFC design 
 

This chapter presents two robust decentralized control methodologies for LFC synthesis using structured 

singular value theory (µ) and is organized in two sections. The first section describes a new systematic approach 

to the design of sequential decentralized load-frequency controllers in a multi-area power system. System 

uncertainties, practical constraint on the control action and the desired performance are included in the synthesis 

procedure. Robust performance is used as a measure of control performance in terms of structured singular value. 

A 4-control area power system example is presented demonstrating the procedure of synthesis and the 

advantages of the proposed strategy.  

The second section addresses a robust control approach to design decentralized load frequency control for 

large scale power systems in a deregulated environment. In this approach, the power system is considered as a 

collection of separate control areas under the pluralistic-based LFC scheme. Each control area can buy electric 

power from available generation companies to supply its load. The control area is responsible for performing its 

own LFC by buying enough power from prespecified generation companies that are equipped with robust load 

frequency controllers. A 3-control area power system example is given to illustrate the proposed control 

approach. The resulting controllers are shown to minimize the effect of disturbances and achieve acceptable 

frequency regulation in the presence of uncertainties and load variation. 
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3.1  Sequential decentralized LFC design 
Simultaneous design for a fixed controller structure is used in all reported decentralized LFC scenarios. This 

approach is numerically difficult for a large scale power system and does not provide some of the advantages of 

using decentralized control, e.g., the ability to bring the system into service by closing one loop at a time, and the 

guarantee of stability and performance in the case of failures. In addition, some proposed methods might not 

work properly and do not guarantee performance when the operating points vary.  

In this section, based on structured singular value theory (µ), a new systematic approach to sequential 

decentralized LFC design in a multi-area power system is described. Because of the advantages it provides, the 

sequential control design is the most common design procedure in real applications of decentralized synthesis 

methods. Sequential design involves closing and tuning one loop at a time. This method is less conservative than 

independent decentralized design because at each design step one utilizes the information about the controller 

specified in the previous step [1]. It is more practical in comparison with common decentralized methods.  

After introducing the µ based sequential control framework and pairing inputs and outputs, a single-input 

single-output (SISO) controller is designed for each loop (control area). In the LFC design for each control area, 

the structured singular value [2], is used as a synthesis tool and a measure of performance robustness. This work 

shows that µ-synthesis can be successfully used for the sequential design of multi-area power system load 

frequency controllers that guarantee robustness in stability and performance for a wide range of operating 

conditions.  

 

3.1.1  Model description 

The traditional-based LFC model is used for each control area of a multi-area power system. Referring to 

the simplified traditional-based LFC model which is shown in Fig. 3.1 for control area 1, the state space 

realization of area i (from m-control area power system) is given as follows. 

 

 

Figure 3.1: Block diagram of control area-1 
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The state vectorix , control input iu , disturbance input iw  and measured output iy  are defined by 
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The total real power imported to area-i equals the sum of all inflowing line powers ijtieP −  from adjoining 

areas, i.e., 
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The real power in per unit transmitted across a lossless line of reactance ijX  is 
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Here riP  is the rated power of area-i, and 

 

 eVV ijδ
ii =             (3.5) 

 

where iV  and iδ  are the amplitude and the angle of the terminal voltage in area-i.  

 

3.1.2  Synthesis procedure  

3.1.2.1 Methodology  The main goal in each control area is to maintain the area frequency and tie-line power 

interchanges close to specified values in the presence of model uncertainties and disturbances. To achieve our 

objectives and to meet the µ-synthesis requirements, the control area model can be modified as shown in Fig. 3.2. 

In comparison with Fig. 3.1, the inter-area connections are removed, and it is considered by itieP −∆  that it is 

properly weighted by inter-area connecting coefficients, and is obtained from an integrator block. This figure 

shows the synthesis strategy for area-i.  

It is notable that for each control area, there are several uncertainties because of parameter variations, 

linearization and unmodeled dynamics which are due to the approximation of the rest of the power system. 

Usually, the uncertainties in the power system can be modeled as multiplicative and/or additive uncertainties [3]. 

However, to keep the complexity of the controllers reasonably low, it is better to focus on the most important 

uncertainty. Sensitivity analysis of frequency stability due to parameter variation is a well known method for this 

purpose. In Fig. 3.2, the Ui∆  models the structured uncertainty set in the form of a multiplicative type and UiW  
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includes the associated weighting function.  

According to performance requirements and practical constraints on control action, two fictitious   

uncertainties i1PW  and i2PW  are added to the area model. The i1PW  on the control input sets a limit on the 

allowed control signal to penalize fast change and large overshoot in the control action. The weight i2PW  at the 

output sets the performance goal, for example, tracking/regulation error on the output deviation frequency. 

Furthermore, it is worth noting that in order to reject disturbances and to assure a good tracking property, i1PW  

and i2PW must be selected in such a way that the singular value of sensitivity transfer function from  ui to iy  

in the related area can be reduced at low frequencies [4]. Ui∆ , i1p∆  and i2p∆  are the uncertainty blocks 

associated with UiW , i1PW  and i2PW , respectively. 

The synthesis starts with setting the desired level of stability and performance for the first loop (control area) 

with a set of ( ii y   ,u ) and chosen uncertainties to achieve robust performance. In order to maintain adequate 

performance in the face of tie-line power variation and load disturbances, the appropriate weighting functions 

must be used. The inclusion of uncertainties adequately allows for maximum flexibility in designing the closed 

loop characteristics, and the demands placed on the controller will increase. We can redraw Fig. 3.2 as shown in 

Fig. 3.3. i1g  and i2g  are transfer functions from the control input (iu ) and input disturbance ( diP∆ ) to the 

control output, respectively.  

Fig. 3.4 shows M-△ configuration for area-i. 1iG −  includes a nominal model for area-i, associated 

weighting functions and scaling factors. As previously mentioned, the blocks i1p∆  and i2p∆   are the 

fictitious uncertainties added to assure robust performance, while the block Ui∆  models the important 

multiplicative uncertainty associated with the area model.  

Now, in step i, the synthesis problem is reduced to design a robust controller iK . Based on the µ-synthesis, 

the robust performance holds for a given M-△ configuration if and only if, 
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Figure 3.2: Proposed strategy for LFC synthesis in area-i 

 



 
 
 
Chapter 3. Structured singular value based robust decentralized LFC design 

 
 
 

33 

 

 
 

Figure 3.3: Synthesis framework for area-i 

 

Here, according to Fig. 3.3, 
i

M  for loop i (control area-i), is given by (3.7). 
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0i
T  and 

0iS  are complementary sensitivity and sensitivity functions of the nominal model of control area-i and 

are given by 
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Figure 3.4: M-△ configuration for area-i 
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Using the performance robustness condition and the well known upper bound for µ, the robust synthesis 

problem (3.6) is reduced to determine 
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or equivalently 
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by iteratively solving for D and iK  (D-K iteration algorithm). Here, D is any positive definite symmetric 

matrix with appropriate dimension and (.)σ  denotes the maximum singular value of a matrix. 

When the controller synthesis has been completed, another robust controller is designed for the second 

control area with its set of variables and this procedure continues until all the areas are taken into account. 

During the design of each controller, the effects of previously designed controllers are taken into consideration. 

The overall framework of the proposed strategy is given in Fig. 3.5. It is noteworthy that the block 0G  is 

assumed to contain a nominal open-loop model, the appropriate weighting functions and scaling factors 

according to 1∆ . The block 1mG −  includes 0G and all decentralized controllers1K , 2K , …, 1mK −  

designed in previous iterations 1, 2, …, (m-1) and related uncertainty blocks. The nominal open loop state-space 

representation of the power system is as follows: 
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Figure 3.5: Framework for µ-synthesis 
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where B corresponds to the control input, F to the disturbance inputs and C to the output measurement which is 

the input to load frequency controller, and 
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It should be noted that the above equations for the open loop system, in each synthesis, must be augmented 

by including controllers synthesized in the previous steps. In each step, a µ-controller is designed for one set of 

input and output variables. When this synthesis has been successfully completed, the next µ-controller is 

designed for another set of input-output variables and so on. In every step, the effects of previously designed 

controllers are taken into account. Therefore, by adding one new loop at a time, the closed loop system remains 

stable at each step. 

 

3.1.2.2 Synthesis steps  In summary, the proposed method consists of the following steps: 

Step 1. Identify the order of loop synthesis.  

The important problem with sequential design is that the final control performance achieved may depend 

on the order in which the controllers in the individual loops are synthesized. In order to overcome this problem, 

the fast loops must be closed first, because the loop gain and phase in the bandwidth region of the fast loops is 

relatively insensitive to the tuning of the lower loops. In other words, for cases where the bandwidths of the 

loops are quite different, the outer loops should be tuned so that the fast loops are contained in the inner loops. 

This causes a lower number of iterations during the re-tuning procedure to obtain the best possible performance 

[5]. 

Obtaining an estimation of interactions on each control area behavior to determine the effects of undesigned 

loops is the other important issue in the sequential synthesis procedure. Methods for determining performance 

relative gain array (PRGA) and closed-loop disturbance gain (CLDG) which are given in [6] are useful for this 

purpose. 

Step 2. Identify the uncertainty blocks and associated weighting functions according to the first control area 

input-output set, depending on the dynamic model, practical limits and performance requirements. It is should be 

noted that there is no obligation to consider the uncertainty within only a few parameters. In order to consider a 

more complete model, the inclusion of additional uncertainties is possible and causes less conservatism in the 

synthesis. However, the complexity of computations and the order of obtained controllers will increase.  

Step 3. Isolate the uncertainties from nominal area model, generate the i1p∆ , i2p∆ , Ui∆ blocks and perform the 

M-△ feedback configuration (formulate the desired stability and performance). 

Step 4. Start the D-K iteration using the µ-synthesis toolbox ([7]) to obtain the optimal controller, which provides 

desirable robust performance such that 

1)]( [ <
∈ω

jωμ Mmax
R

         (3.14) 
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ω denotes the frequency range for which the structured singular value is computed. This procedure determines 

the first robust controller. 

Step 5. Reduce the order of the resulting controllers by utilizing the standard model reduction techniques and 

then apply µ-analysis to closed loop system with reduced controller to check whether or not the upper bound of 

µ remains less than one. 

It is notable that the controller found by this procedure is usually of a high order. To decrease the complexity 

of computation, appropriate model reduction techniques might be applied both to the open-loop system model 

and to the H∞ controller model within each D-K iteration. 

Step 6. Continue this procedure by applying the above steps to other loops (control area input-output sets) 

according to the specified loop closing order in Step 1. 

Step 7. Retune the controllers which have been obtained to achieve the best performance and check if the overall 

power system satisfies the robust performance condition using µ analysis. If the objective is the achievement of 

the best possible performance, the controller that was designed first, must be removed and then re-designed. 

However, this must now be done with controllers that have been synthesized in successive steps, because the 

first synthesis was according to the more conservative state. 

The proposed strategy guarantees robust performance for multi-area power systems when the design of load 

frequency controllers is followed according to the above sequential steps. The advantage of the procedure is it 

ensures that by closing one loop for a special control area at a time, this control area achieves robust 

performance, while at the same time the multi-area power system holds its stability at each step. Similarly, 

during startup, the system will at least be stable if the loops are brought into service in the same order as they 

have been designed [6, 8]. 

 

3.1.3  Application to a 4-control area power system 

The proposed control approach is applied to a 4-control area power system example shown in Fig. 3.6. The 

nominal parameter values are given in Table 3.1, [9-11]. The nominal state-space model for this system as a 

multi-input multi-output (MIMO) system can be constructed as given in Eq. (3.12), where   ,RA 1616×∈  

     416416 RF,RB ×× ∈∈ and 

 

 

Figure 3.6: 4-control area power system 
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Table 3.1: Power system parameters 

Parameter   Area-1  Area-2  Area-3  Area-4 

iD  (p.u.MW/Hz) 0.0083  0.0088  0.0080  0.0088 

iM  (p.u.MW)  0.166  0.222  0.16  0.13 

tiT  (s)   0.3  0.33  0.35  0.375 

giT  (s)   0.08  0.072  0.07  0.085 

iR  (Hz/p.u.MW) 2.4  2.7  2.5  2.0 

ijT  (p.u.MW/Hz) T12= T13= T14= T21= T23= T31= T32= T41= 0.545   

 

The nominal open loop MIMO system is stable and includes one oscillation mode. Simulation results show 

that the open-loop system performance is affected due to changes in equivalent inertia constants iM  and 

synchronizing coefficient ijT , and these are more significant than changes of other parameters within a 

reasonable range. Eigenvalue analysis shows that the considerable change in these parameters leads to an 

unstable condition for the power system. 

Therefore, to demonstrate the capability of the proposed strategy for the problem at hand, from the 

viewpoint of uncertainty, our focus is concentrated on the variations of the iM  and ijT  parameters of all 

control areas, that are the most important from a control viewpoint. Hence, for the given power system, LFC 

objectives have been set to assure robust stability and performance in the presence of specified uncertainties and 

load disturbances, that is,  

1- Hold stability and robust performance for the overall power system and each control area in the presence of 

40% uncertainty for iM and ijT , which are assumed the sources of uncertainty associated with the given power 

system model. 

2- Minimize the effectiveness of step load disturbances ( diP∆ ) on the output signals. 

3- Maintain acceptable overshoot and settling time on frequency deviation signal in each control area. 

4- Set a reasonable limit on the control action signal in the viewpoint of change speed and amplitude. 

In the following section, the proposed strategy is separately applied to each control area of the given power 

system to meet the objectives. Because of similarities and for brevity, the first controller synthesis is described in 

detail, whereas only the final result for the other control areas is shown. As the bandwidths of the four loops are 

similar, the order of closing the loops is not important in regard to the problem at hand. Therefore, the synthesis 

procedure is started with control area 1. 

 

3.1.3.1 Uncertainty weight selection  As mentioned, the specified uncertainty in each control area can be 

considered as a multiplicative uncertainty (UiW ) associated with nominal model. Corresponding to an uncertain 

parameter, let the )s(Ĝ  denotes the transfer function from the control input iu  to the control output iy  at 

operating points other than the nominal point. Following a practice common in robust control, this transfer 

function will be represented as 
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))s(W)s(1)(s(G)s(Ĝ uu0 ∆+=        (3.19) 

 

)s(u∆  shows the uncertainty block corresponding to uncertain parameter, )s(Wu is the associated weighting 

function and )s(G0  is the nominal transfer function model. Then, the multiplicative uncertainty block can be 

expressed as 

 

0)s(G   ;  )s(G)]s(G)s(Ĝ[)s(W)s( 0
1

00uu ≠−=∆ −      (3.20) 

 

)s(Wu  is a fixed weighting function containing all the information available on the frequency distribution of 

the uncertainty, where )s(u∆  is stable transfer function representing the model uncertainty. Furthermore, 

without loss of generality (by absorbing any scaling factor into )s(Wu  where necessary), it can be assumed 

that 

 

1)s(sup)s( uu ≤∆=∆ ω∞
       (3.21) 

 

Thus, )s(Wu  is such that its respective magnitude Bode plot covers the Bode plot of all possible plants. 

Using Eq. (3.20), some sample uncertainties corresponding to the different values of iM  and ijT  are obtained 

and shown in Fig. 3.7. It can be seen that the frequency responses of parametric uncertainties are close to each 

other. Hence, to keep the complexity of the obtained controller at a low level, the uncertainties due to both sets of 

parameters variations can be modeled by using a single norm bonded multiplicative uncertainty to cover all 

possible plants and this is obtained as follows 

 

18s1.0s

0.004).15(s0
(s)W

2

2

U1 ++
+=         (3.22) 

 

  (a)      (b) 

Figure 3.7: Uncertainty plot due to change of a)iM ; b) dotted ( ijT ) and solid ( )s(W 1U ) 
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The frequency response of )s(W 1U
 is also shown in Fig. 3.7b. This figure clearly shows that attempting to 

cover the uncertainties at all frequencies and finding a tighter fit using higher order transfer function will result 

in an high-order controller. The weight (3.22) used in our design provides a conservative design at low and high 

frequencies, but it gives a good trade-off between robustness and controller complexity. 

 

3.1.3.2 Performance weight selection  As discussed in section 3.1.2, in order to guarantee robust performance, 

adding a fictitious uncertainty block associated with the control area error minimization and control effort is 

required along with the corresponding performance weights 11PW  and 21PW . In fact, an important issue 

regarding to the selection of these weights is the degree to which they can guarantee the satisfaction of the design 

performance objectives. Based on the following discussion, a suitable set of performance weighting functions 

that offer a good compromise among all the conflicting time-domain specifications for control area 1 is  

 

 
1150s

0.75s
(s)W     ,

10.01s

0.5s
(s)W P21P11 +

+=
+

=       (3.23) 

 

The selection of 11PW  and 21PW  entails a trade off among the different performance requirements. The 

weight on the control input 11PW  was chosen close to a differentiator to penalize fast change and large 

overshoot in the control input. The weights on output error ( 21PW ) were chosen close to an integrator at low 

frequencies in order to get disturbance rejection, good tracking and zero steady-state error. Additionally, as 

pointed out in the previous section, the order of the selected weights should be kept low in order to keep the 

controller complexity low. Finally, it is well known that to reject disturbances and to track command signal 

properties, it is necessary for the singular value of sensitivity function to be reduced at low frequencies, and 

11PW  and 21PW  must be selected to satisfy this condition [12]. Our next task is to isolate the uncertainties from 

the nominal plant model and redraw the system in the standard M-∆ configuration (Fig. 3.8).  

 

 

 

Figure 3.8: Standard M-∆ block 
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By using the uncertainty description and already developed performance weights, an uncertainty structure ∆, 

with a scalar block (corresponding to the uncertainty) and a 2×2 block (corresponding to the performance) is 

resulted. Having setup our robust synthesis problem in terms of the structured singular value theory, the 

µ-analysis and synthesis toolbox [7] is used to achieve a solution. 

The controller )s(K1  is found at the end of the three D-K iterations, yielding the value of about 0.893 on 

the upper bound on µ, thus guaranteeing robust performance. Since, the resulted controller has a high order 

(21th), it is reduced to a fourth-order with no performance degradation (µ<0.998), using the standard Hankel 

Norm approximation. The Bode plots of the full-order controller and the reduced-order controller are shown in 

Fig. 3.9. The transfer function of the reduced order controller is given as 
)s(D

)s(N
)s(K

1

1
1 =  with 

 

0.7393739.3578s182.1594s   s18.9617   s(s)D

37.99444.3998s0.10604s   s6.3905 (s)N

234
1

23
1

++++=

+++=
     (3.24) 

 

Using the same procedure and setting the similar objectives, as already discussed, achieves us a set of 

suitable weighting functions for the remaining loop synthesis as shown in Table 3.2. The order of the other 

obtained controllers without model reduction was 29 ( 2K ), 37 ( 3K ) and 45 ( 4K ). These controllers can be 

approximated by lower order controllers as follows. 
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Figure 3.9: Bode plots comparison of full-order (original) and reduced-order controller )s(K1   
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Table 3.2: Weighting functions for control area loops 2, 3 and 4 

Area-2 Area-3 Area-4 
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where, 
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3.1.4  Simulation results 

In order to demonstrate the effectiveness of the proposed control method, some simulations were performed. 

In these simulations, the proposed control scenario described in section 3.1.2 was applied to the 4-control area 

power system as shown in Fig. 3.6. To test the system performance, a step load disturbance of pu01.0Pdi =∆  

is applied to each control area, using the nominal plant parameters and those with uncertain parameters by 

different percentage uncertainties.  

Since the system parameters for the given four control areas are identical and the tieP∆  between the two 

neighboring areas k and j is caused by jk ff ∆−∆ , the system performance can be mainly tested by applying the 

disturbance diP∆  in the presence of the parameters uncertainties and observing the time response of if∆  in 

each control area. Some selected time response simulation results are given in Figs. 3.10 and 3.11.  

Fig. 3.10 shows the frequency deviation and control action signal in control areas 1 and 2, following the 

simultaneous step load disturbances of 0.01puPd1 =∆  and 0.01puPd2 =∆ . Fig. 3.11 shows the frequency 

deviation following a step load disturbance of 0.01puPP d2d1 =∆=∆ , and a 40% increase iM and ijT  in all 

areas, simultaneously.  
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   (a)       (b) 

 

Figure 3.10: a) Frequency deviation; b) Control signals, in area 1 (solid) and area 2 (dotted), following a 0.01 pu 

step load disturbance in both areas 

 

Fig. 3.12 shows the similar simulation result for control areas 3 and 4 ( pu01.0P 3d =∆  , 

pu01.0P 4d =∆ and a 40% increase in iM and ijT  in all areas). Finally, Fig. 3.13 shows the power system 

response for the assigned possible worst case, i.e., a step load disturbance in each area and 40% decrease in 

uncertain parameters, simultaneously.  

 

 

 

Figure 3.11: Frequency deviation in the presence of 0.01puPP d2d1 =∆=∆  and 40% increase iM  and ijT  
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Figure 3.12: Frequency deviation in the presence of 0.01puPP d4d3 =∆=∆  and +40% change in uncertain 

parameters 

 

These simulation results demonstrate the effectiveness of the proposed strategy to provide robust frequency 

regulation in multi-area power systems. Because of our tight design objectives which take into consideration 

several simultaneous uncertainties and input disturbances, the order of the resulting robust load frequency 

controllers are relatively high. However, the proposed method gives a good performance from the view point of 

disturbance rejection and frequency error minimization in the presence of model uncertainties. 

  

 

Figure 3.13: Frequency deviation following a step load disturbance 0.01puPdi =∆ in each area and -40% 

changes in uncertain parameters 
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3.2  Pluralistic based decentralized LFC design 
This section addresses a new design of robust load frequency controller based on the structured singular 

value theory for interconnected electric power systems in a competitive environment from the UCTE perspective 

for the pluralistic LFC scheme (Fig. 2.2). The power system structure is considered as a collection of control 

areas interconnected through high voltage transmission lines or tie-lines. Each control area has its own load 

frequency controller and is responsible for tracking its own load and honoring tie-line power exchange contracts 

with its neighbors. The proposed strategy is applied to a 3-control area example. The results obtained show that 

the controllers guarantee robust stability and robust performance for a wide range of operating conditions. 

 

3.2.1  Synthesis methodology 

The objective is to formulate the LFC problem in each control area based on the structured singular value 

method, independently. The general scheme of the proposed control system for a given area is shown in Fig. 3.14. 

iβ  and iλP  are properly setup coefficients of the secondary regulator. The robust controller acts to maintain 

area frequency and total exchange power close to the scheduled value by sending a corrective signal to the 

assigned Gencos. This signal, which is weighted by the ACE participation factorijα , is used to modify the set 

points of generators. Consider the state space model (2.15) and analogously to the traditional area control error, 

let the output system variable be defined as follows: 

 

EwCxy +=          (3.26) 

 

where,  
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Figure 3.14: General scheme for the proposed control system 
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θ is a zero vector with the same size as disturbance vector (d). To achieve the LFC objectives in accordance with 

to the structured singular value theory requirements, a control strategy applicable for each control area is 

proposed as shown in Fig. 3.15. U∆  models the structured uncertainty set in the form of multiplicative type and 

UW  includes the associated weighting function(s). 

According to performance requirements and practical constraints on control action, three fictitious 

uncertainties 1PW , 2PW  and 3PW  are added to the power system model. The 1PW  on the control input sets a 

limit on the allowed control signal to penalize fast changes and large overshoot in the control action. This is 

necessary to guarantee the feasibility of the proposed controller. At the output, the weights 2PW  and 3PW  set 

the performance goal e.g., tracking/regulation of the output area control signal. P∆  is a diagonal matrix that 

includes the uncertainty blocks 1p∆ , 2p∆  and 3p∆  associated with 1PW , 2PW  and 3PW , respectively. 

Fig. 3.15 can be redrawn as a standard M-△ configuration, which is shown in Fig. 3.16. G includes the 

nominal model of the control area power system, associated weighting functions and scaling factors. The block 

labeled M, consists of G and controller K. Based on the µ-synthesis, robust stability and performance will be 

satisfied for a given M-△ configuration, if and only if   

 

1Msup
Rω

inf
K

<ω
∈

)](j [μ         (3.27) 

 

The well-known upper bound for µ can be determined by using Eq. 3.10 or 3.11. In summary, the proposed 

method for each control area consists of the following steps: 

 

 

 

 

Figure 3.15: The synthesis framework 
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Figure 3.16: M-△ configuration 

 

Step 1. Identify the uncertainty blocks and associated weighting functions for the given control area, according to 

the dynamic model, the practical limits and performance requirements as shown in Fig. 3.15. 

 

Step 2. Isolate the uncertainties from the nominal control area model, generate 1p∆ , 2p∆ , 3p∆  and U∆  

blocks and perform M-△ feedback configuration (formulate the robust stability and performance). 

 

Step 3. Start the D-K iteration by using µ-synthesis toolbox [7], in order to obtain the optimal controller. 

 

Step 4. Reduce the order of the resulting controller by utilizing the standard model reduction techniques and 

apply µ-analysis to the closed loop system with the reduced controller to check whether or not the upper bound 

of µ remains less than one. 

The proposed strategy guarantees robust performance and robust stability for the closed-loop system. 

 

3.2.2  Application to a 3-Control area power system   

A sample power system with three control areas under the pluralistic LFC scheme is shown in Fig. 3.17.  

Each control area has some Gencos and each Genco is considered as a generator unit (Gunit). It is assumed that 

one generator unit with enough capacity is responsible to regulate the area-load frequency. 

A control area may have a contract with a Genco in the other control area. For example, control area 3 buys 

power from 11G  in control area 1 to supply its load. The power system data is given in Table 3.3. Next, the 

synthesis procedure in control area 1 is described in detail, and the final results are presented for other two areas. 
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Figure 3.17: 3-control area power system 

 

 

Table 3.3: Applied data for simulation 

 

 

Quantity G11 G12 G13 G14 G21 G22 G23 G24 G31 G32 G33 

Rating (MW) 1600 600 800 800 600 1200 800 1000 1400 600 600 

iH  (sec) 5 4 4 5 4 5 4 5 5 4 4 

iD  (pu MW/Hz) 0.02 0.01 0.01 0.015 0.01 0.02 0.01 0.015 0.02 0.01 0.01 

iR  (%) 4 5.2 5.2 5 5.2 4 5.2 5 4 5.2 5.2 

0ii /f2HM =  0.167 0.134 0.134 0.167 0.134 0.167 0.134 0.167 0.167 0.134 0.134 

tiT  0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

giT  0.2 0.1 0.15 0.1 0.1 0.2 0.15 0.1 0.2 0.1 0.1 

giti K,K  1 1 1 1 1 1 1 1 1 1 1 

iT  0.2 0.1 0.1 0.2 0.1 0.2 0.1 0.2 0.2 0.1 0.1 

ijT  (MW/rad) 12T = 60 13T = 60 23T = 100      
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According to Eq. (2.15), the state space model of control area 1 is obtained as  

 

FwBuAxx ++=&         (3.28) 

 

where 
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3.2.2.1 Design objectives  Control area 1 delivers enough power from 11G  and firm power from other Gencos 

to supply its load and support the LFC task. In the case of a load disturbance, 11G  must adjust its output to track 

the load changes and maintain the energy balance.   

Simulation results show that the open-loop system performance is affected by individual changes of 1H  

and 3H  (constants of inertia), which are more significant than changes to the other parameters of the control 

areas within a reasonable range. Eigenvalue analysis shows that a considerable change in these parameters leads 

the power system to an unstable condition. Therefore, from the aspect of uncertainty, our focus is concentrated 

on the variations of 1H  and 3H  parameters, these are the sources of uncertainty associated with the control 

area model and important parameters from the aspect of control. 

Next, these uncertainties are modeled as an unstructured multiplicative uncertainty block that contains all the 

information available about 1H  and 3H  variations. It is notable that we are not under obligation to consider 

the uncertainty in only a few parameters.  

The objectives are considered as follows for the control area 1:  

 

1- Hold robust stability and robust performance in the presence of 75% uncertainty for 1H  and 3H  (This 

variation range leads the control area system to an unstable condition). 

2- Hold robust stability and desired reference tracking for a 10% demand load change in control area 

( 10(%)P0 L ≤∆≤ ). 

3- Minimize the impacts of step disturbance from outside areas (d) through the L12 and L13. 

4- Maintain acceptable overshoot and settling time on the area frequency deviation and power changing signals.  

5- Set a reasonable limit on the control action signal with regard to changes in speed and amplitude. 

 

3.2.2.2 Uncertainty weight selection  The related uncertainty weighting function in each control area is easily 

determined using the method described in the section 3.1.3.1. Some sample uncertainties corresponding to 

different values of 1H  and 3H  are shown in Fig. 3.18. This figure shows that the frequency responses of 

parametric uncertainties are close to each other. Hence to keep the complexity of the obtained controller at a low 
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level, according to the above result, the uncertainties due to 1H  and 3H  variation can be modeled by using a 

single norm bonded multiplicative uncertainty to cover all possible plants as follows (The frequency response of 

)s(WU is also shown in Fig. 3.18).  

 

15s

0.04)10(s
(s)WU +

+−=         (3.29) 

 

3.2.2.3 Performance weight selection  The performance weight selection in a µ-based LFC synthesis is 

explained in the section 3.1.3.2 in detail. Here, the weight on the control input 1PW  is chosen to penalize fast 

change and large overshoot in the control input. The weights on the input disturbance from other areas ( 3PW ) and 

output error ( 2PW ) are chosen to get disturbance rejection, good tracking and zero steady-state error. In order to 

reject disturbances and track command signal property, it is required that the singular value of sensitivity 

function be reduced at low frequencies, 2PW  and 3PW  must be selected so that this condition is satisfied. For 

the problem at hand, a suitable set of performance weighting functions that offers a good compromise among all 

the conflicting time-domain specifications is 
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The next task is to isolate the uncertainties from the nominal plant model and redraw the system in the 

standard M-∆  configuration. Using the uncertainty description and performance weights that have been 

developed, an uncertainty structure ∆ with a scalar block (corresponding to the uncertainty) and a 3×3 block 

(corresponding to the performance) is obtained. 

 

 
Figure 3.18: Uncertainty plot due to change of 1H (dotted) and 3H (solid) 
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The controller )s(K1 is found at the end of  the 3rd D-K iteration, yielding the value of 0.994 on the upper 

bound on µ, thus guaranteeing robust performance. The resulting controller has a high order (29th). It is reduced 

to a 7th  order with no performance degradation using the standard Hankel Norm approximation. The Bode plots 

of the full-order controller and the reduced-order controller are shown in Fig. 3.19. The transfer function of the 

reduced order controller is given as )s(1D/)s(1N)s(1K =  with 

 

 3853000s   s362130  s710490  s70777  s3240    s(s)D

245730s   s153700  s0719 s23024.16   s226.28 (s)N

234567
1
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1

21s24901

844s1629302

+++++++=

++++++=
  (3.31) 

 

Using the same procedure and setting similar objectives, as already discussed, gives us the desired robust 

load frequency controllers for control areas 2 and 3. The associated polynomials with (s)K 2  and (s)K 3  are: 
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Figure 3.19: Bode plots comparison of the original and reduced-order controllers 
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3.2.3  Simulation results 

The proposed load frequency controllers are applied to a 3-control area power system described in Fig. 3.17. 

Fig. 3.20 shows the frequency deviation in control area 1, following a 10% increase in the area-load. 

14f , ,11f ∆∆ L  display the frequency deviation at Gencos 11G , …, 14G , respectively. At steady-state, the 

frequency in each control area reaches its nominal value. Fig. 3.21 shows the changes in power which comes to 

control area 1 from its Gencos. It is seen that the power is initially coming from all Gencos to respond to the load 

increase and will result in a frequency drop that is sensed by the speed governors of all machines. After a few 

seconds and at steady-state, the additional power comes only from 11G  and the other Gencos do not contribute 

to the LFC task. 

 

Figure 3.20: Frequency deviation in control area 1, following a 10% load increase 

 
Figure 3.21: Change in supplied power in control area 1, following a 10% load increase 
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Fig. 3.22 demonstrates the disturbance rejection property of the closed loop system. This figure shows the 

frequency deviation at generation units in control area 1, following a step disturbance of 0.1 pu on area 

interconnection lines L12 and L13 at t=17s. The power system is already started with a 10% load increase in each 

area. Fig. 3.23 shows the frequency deviation in control area 2 and 3, following a 10% load increase in each 

control area. Fig. 3.24 presents the frequency deviation and corresponding control action signals, following a 

large step disturbance 0.1 pu on each interconnection line (L12, L13 and L23) in the presence the worst case of 

1H  and 3H  uncertainties in three area, simultaneously. For the last simulation case, a random demand load 

signal shown in Fig. 3.25a, which represents the expected area demand load fluctuations, is applied to control 

area 1. The frequency deviations are shown in Figs. 3.25b to 3.25c. Power changes and control signals are given 

in Figs. 3.25d to 3.25e. These figures show that the controller tracks the load fluctuations effectively. 

 
Figure 3.22: Frequency deviation in control area 1, following a 0.01 pu step disturbance on interconnection lines 

at t=17s and 10% load increase at t=0 s 

 

(a)      (b) 

Figure 3.23: Frequency deviation at Gencos in (a) control area 2, (b) control area 3, following a 10% load 

increase in each area 



 
 
 
Chapter 3. Structured singular value based robust decentralized LFC design 

 
 
 

54 

 
Figure 3.24: Frequency deviation in (a) area 1, (b) area 2, (c) area 3 and (d) control signals, following a step 

disturbance in interconnection lines and the worst case of uncertainties in each area 

 
Figure 3.25: System response to random demand; a) Demand load, b) 1211 f f ∆∆ , , c) 1413 f f ∆∆ , , d) Power change 

at 11G  and e) Control effort 
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Although in the proposed simulation, it seems that the frequency deviation and other signals have a fast 

behavior at startup time following a large step disturbance and/or parameter changes, they have started from zero. 

Here, academic examples (and data) have been used and the assumed parameters (in result dynamics of the 

simplified models) are not completely matched to the real ones and give the impression that the output of the 

models can be changed in a fast way (especially at startup time). In the LFC practice, rapidly varying 

components of system signals are almost unobservable due to filters involved in the process. 

The proposed control strategies in the present chapter are flexible enough to set a desired level of 

performance to cover the practical constraint on a control action signal. It is easily carried out by tuning the 

considered fictitious weighting functions ( i1PW  in Fig. 3.2 and 1PW  in Fig. 3.15).  

 

3.3  Summary 
A new systematic method for robust sequential decentralized load frequency controllers using µ-synthesis in 

an interconnected multi-area power system has been proposed in the first section. In each design step, the 

information about the controllers designed in the previous steps is taken into account. Therefore, the method is 

less conservative than an independent decentralized design and more practical than the proposed simultaneous 

decentralized load frequency controller designs. The simulation results demonstrate the effectiveness of the 

proposed method for a solution to the LFC problem in the presence of uncertainties and load disturbances in 

multi-area power systems. 

In the second section, a new method for robust LFC synthesis using structured singular value theory in a 

restructured power system has been proposed. The proposed method was applied to a 3-control area power 

system under the pluralistic LFC scheme. It was shown that the controllers that have been designed will 

guarantee the robust stability and robust performance under a wide range of parameter variation and area-load 

conditions. 
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Chapter 4 

 

H∞∞∞∞ based robust decentralized LFC design 
 

There has been continuing interest in designing load-frequency controllers with better performance to 

maintain the frequency and to keep tie-line power flows within pre-specified values, using various robust and 

optimal control methods during the last two decades [1-8]. But most of them suggest complex state-feedback or 

high-order dynamic controllers, which are impractical for industry practices. Furthermore, some authors have 

used the new and untested LFC frameworks, which may have some difficulties in being implemented in 

real-world power systems. In practice, load-frequency control (LFC) systems use simple proportional-integral 

(PI) controllers. However, since the PI controller parameters are usually tuned based on experiences, classical, 

or trial-and-error approaches, they are incapable of obtaining good dynamical performance for a wide range of 

operating conditions and various load changes scenarios in a multi-area power system.  

Recently, some control methods have been applied to the design of decentralized robust PI or low order 

controllers to solve the LFC problem [9-12]. A PI control design method has been reported in [9], which used a 

combination of H∞ control and genetic algorithm techniques for tuning the PI parameters. The sequential 

decentralized method based on µ-synthesis and analysis has been used to obtain a set of low order robust 

controllers [10]. The decentralized LFC method has been used with the structured singular values [11]. The 

Kharitonov’s theorem and its results have been used to solve the same problem [12]. 

In this chapter, the decentralized LFC synthesis is formulated as an H∞-based static output feedback (SOF) 

control problem, and is solved using an iterative linear matrix inequalities (ILMI) algorithm to design robust PI 

controllers in the multi-area power systems. Two multi-area power system examples using both traditional and 

bilateral based LFC schemes with a wide range of load changes are given to illustrate the proposed approach. 

The obtained controllers are shown to minimize the effect of disturbances and maintain the robust performance. 
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This chapter is organized as follows. Technical background on H∞-based SOF controller design using an 

ILMI approach is given in section 4.1. Section 4.2 presents the transformation from PI to SOF control design. 

The proposed methodology is applied to multi-area power system examples with traditional and bilateral 

configuration in sections 4.3 and 4.4.  

4.1  H∞∞∞∞-based SOF control design using an ILMI algorithm 

This section gives a brief overview of H∞-based SOF control design based on an ILMI approach. Consider a 

linear time invariant system G(s) with the following state-space realization. 

 

xCy
uDxCz

uBwBAxx

2

121

21

=
+=

++=&
         (4.1) 

 

where x is the state variable vector, w is the disturbance and other external input vector, z is the controlled output 

vector and y is the measured output vector. 

The H∞-based SOF control problem is to find a static output feedback law Kyu = , as shown in Fig. 4.1, 

such that the resulted closed-loop system is internally stable, and the H∞ norm from w to z is smaller thanγ , a 

specified positive number, i.e. 

 

γ(s)Tzw <
∞

         (4.2) 

 

Lemma 4.1: It is assumed that )C,B(A, 22 is stabilizable and detectable. The matrix K is an H∞ controller, if and 

only if there exists a symmetric matrix 0X >  such that 
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Figure 4.1: Closed-loop system via H∞ control 
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where 

22cl KCBAA += , 1cl BB =  

2121cl KCDCC += , 0Dcl =  

 

The proof is given in [13] and [14]. We can rewrite (4.3) as the following matrix inequality [15], 

 

0AXXA)CKBXCKBX TT <+++ (       (4.4) 
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Hence, the H∞-based SOF control problem is reduced to find 0X >  and K such that matrix inequality (4.4) 

holds. It is a generalized static output feedback stabilization problem of the system )C,B,A(  which can be 

solved via lemma 4.2. 

 

Lemma 4.2: The system (A, B, C) that may also be identified by the following representation: 

 

Cxy
BuAxx

=
+=&

         (4.6) 

 

is stabilizable via static output feedback if and only if there exist P>0, X>0 and K satisfying the following 

quadratic matrix inequality 
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Proof. According to the Schur complement, the quadratic matrix inequality (4.7) is equivalent to the following 

matrix inequality 

 

0KC)X(BKC)X(BPPBBPXBBXPBB-XAXA TTTTTTT <++++−+    (4.8) 

 

For this new inequality notation (4.8), the sufficiency and necessity of theorem are already proven [16]. 

A solution of the consequent non-convex optimization problem, introduced in lemma 4.2, cannot be directly 

achieved using the general LMI technique. On the other hand, the matrix inequality (4.7) points to an iterative 

approach to solve the matrix K and X, namely, if P is fixed, then it reduces to an LMI problem in the unknowns 



 
 
 

Chapter 4. H∞ based robust decentralized LFC design  

 
 
 

60 

K and X. For this purpose, we introduce an iterative LMI algorithm that is mainly based on the approach given in 

[16]. The key point is to formulate the H∞ problem via a generalized static output stabilization feedback, such 

that all eigenvalues of (A-BKC) shift towards the left half-plane through the reduction of a, a real number, to 

close to feasibility of (4.7).  

In summary, the H∞-based SOF controller design based on ILMI approach for a given system consists of the 

following steps:  

Step 1.  Compute the new system )C,B,A( , according to (4.5). Set i =1 and 0γ∆=γ∆ . Let 0i γ=γ  a positive 

real number. 

Step 2.  Select 0Q > , and solve X  from the following algebraic Riccati equation: 

 

0QXBBXAXXA TT =+−+        (4.9) 

 

Set XP1 = . 

Step 3.  Solve the following optimization problem foriX , iK  and ia . Minimize ia  subject to the LMI 

constraints: 
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0XX T
ii >=           (4.11) 

 

Denote *
ia  as the minimized value ofia . 

Step 4.  If 0a*
i ≤ , go to step 8.  

Step 5.  For 1i >  if 0a*
1-i ≤ , 1-iK is desired H∞ controller and γ∆+γ=γ i

*  indicates a lower bound such 

that the above system is H∞ stabilizable via static output feedback. 

Step 6.  Solve the following optimization problem for iX  and iK :  

Minimize trace( iX ) subject to the above LMI constraints (4.10) and (4.11) with *
ii aa = . Denote *

iX  as 

the iX  that minimized trace( iX ). 

Step 7.  Set i =i+1  and *
1-ii XP = , then go to step 3. 

Step 8.  Set γ∆−γ=γ ii , i =i+1.  Then do steps 2 to 4. 

The matrix inequalities (4.10) and (4.11) give a sufficient condition for the existence of the static output 

feedback controller. 

 

4.2  Transformation from PI to SOF control problem   

According to Fig. 2.1 and Fig. 2.3, in each control area the ACE acts as the input signal of the PI controller 

which is used by the LFC system. Therefore we have 
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∫+=∆= iIiiPii ACEkACEkPciu        (4.12) 

 

Where Pik  and Iik  are constant real numbers. By augmenting the system description (4.1) to include the ACE 

signal and its integral as a measured output vector, the PI control problem becomes one of finding a static output 

feedback that satisfies prescribed performance requirements. Using this strategy, the PI-based LFC design can be 

reduced to an H∞-based SOF control problem as shown in Fig. 4.2. To change (4.12) to a simple SOF control as 

 

iii yKu =          (4.13) 

 

We can rewrite (4.12) as follows, 
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Therefore, iy  in (4.13) can be augmented as given in (4.15).  
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T
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In the next step, according to synthesis methodology described in the previous section and summarized in 

Fig. 4.3, a robust PI controller to be designed for the given area. 

 

 
 

Figure 4.2: Problem formulation 
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Figure 4.3: Proposed ILMI algorithm 

 

4.3  Application to a traditional-based LFC scheme   
 

4.3.1  Control framework 

The main control framework to formulate the PI-based LFC via an H∞-based SOF control design problem, 

for a given control area, is shown in Fig. 4.4. (s)Gi  denotes the dynamical model corresponds to the control 

area i shown in Fig. 2.1. According to Eq. (4.1), the state space model for each control area i can be obtained as 
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Figure 4.4: Proposed control framework 
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Similar to [9], three constant weighting coefficients are considered for controlled output signals. 1iη , 2iη , 

and 3iη  must be chosen by the designer to obtain the desired performance. In the next section, two types of 

robust controllers are developed for a power system example including three control areas. The first one is a 

dynamic controller based on general robust LMI-based H∞ control design and the second controller is based on 

H∞-based SOF control approach using developed ILMI algorithm (described in section 4.1) with the same 

assumed objectives to achieve robust performance. 

 

4.3.2  Case study 

To illustrate the effectiveness of the proposed control strategy, a 3-control area power system, shown in Fig. 

4.5, is considered as a test system. It is assumed that each control area includes three Gencos. The power system 

parameters are considered to be the same as in [9]. 

For the sake of comparison, in addition to the proposed control strategy to obtain the robust PI controller, a 

robust H∞ dynamic output feedback controller using the LMI control toolbox is designed for each control area. 

Specifically, based on general LMI, the control design is first reduced to an LMI formulation [9], and then the 

H∞ control problem is solved using the function hinflmi, provided by the MATLAB LMI control toolbox [17]. 

This function gives an optimal H∞ controller through minimizing the guaranteed robust performance index (γ ) 

subject to the constraint given by the matrix inequality (4.3) and returns the controller K(s) with the optimal 

robust performance index. The resulted controllers using the hinflmi function are of dynamic type and have the 

following state-space form, whose orders are the same size as the plant model (9th order in the present example). 

 

 

Figure 4.5: 3-control area power system 
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In the next step, according to the described synthesis methodology summarized in Fig. 4.2, a set of three 

decentralized robust PI controllers are designed. As already mentioned, this control strategy is entirely suitable 

for LFC applications which usually employ the PI control, while most other robust and optimal control designs 

(such as the LMI approach) yield complex controllers whose size can be larger than real-world LFC systems. 

Using the ILMI approach, the controllers are obtained following several iterations. The control parameters are 

shown in Table 4.1. 

A set of suitable values for constant weights [1iη , 2iη , 3iη ] can be chosen as [0.5, 1, 500], respectively. 

An important issue with regards to the selection of these weights is the degree to which they can guarantee the 

satisfaction of design performance objectives. The selection of these weights entails a trade-off among several 

performance requirements. The coefficients 1iη  and 2iη  at controlled outputs set the performance goals; e.g. 

tracking the load variation and disturbance attenuation. 3iη  sets a limit on the allowed control signal to penalize 

fast change and large overshoot in the governor load set-point signal. The recent objective is very important to 

realize the designed controller in the real-world power systems. The large coefficient “500’ for 3iη  results in a 

smooth control action signal with reasonable changes in amplitude.  

It is notable that the robust performance index given by the standard H∞ control design can be used as a 

valid measure tool to analyze the robustness of the closed-loop system for the proposed control design. The 

resulting robust performance indices (*
γ ) of both synthesis methods are close to each other and shown in Table 

4.2. It shows that although the proposed ILMI approach gives a set of much simpler controllers (PI) than the 

LMI based dynamic H∞ design, they also give a robust performance like the dynamic H∞ controllers. 
 
 

Table 4.1: Control parameters (ILMI design) 

 Parameter  Area 1 Area 2 Area 3 

 

 *a   -0.3285 -0.2472 -0.3864 

 Pik   -0.0371 -0.0465 -0.0380 

 Iik   -0.2339 -0.2672 -0.3092 

 jiη   1iη =0.5 2iη =1 3iη =500 

 
 
 

Table 4.2: Robust performance index 

Control design Control structure Performance index Area1 Area 2 Area 3 

 

 H∞ 9th order  γ  500.0103 500.0045 500.0065 

 ILMI PI *
γ  500.0183 500.0140 500.0105 
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4.3.3  Simulation results 

The proposed controllers were applied to the 3-control area power system described in Fig. 4.5. In this 

section, the performance of the closed-loop system using the robust PI controllers compared to the designed 

dynamic H∞ controllers will be tested for the various load disturbances. 

 

Case 1: 

As the first test case, the following load disturbances (step increase in demand) are applied to three areas: 

  

 MW50P   MW,80P   MW,100P d3d2d1 =∆=∆=∆  

 

The frequency deviation (∆f), area control error (ACE), and control action (∆Pc) signals of the closed-loop 

system are shown in Fig. 4.6. Using the proposed method (ILMI), the area control error and frequency deviation 

of all areas are quickly driven back to zero as well as dynamic H∞ control (LMI). 

  

Case 2: 

Consider larger demands by area 2 and area 3, i.e.  

 

 MW100P   MW,100P   MW,100P d3d2d1 =∆=∆=∆  

 

The closed-loop response for each control area is shown in Fig. 4.7.  

 

Case 3: 

As another severe condition, assume a bounded random load change shown in Fig. 4.8a is applied to all 

control areas simultaneously, where 

 

 MWP  MW d 5050 +≤∆≤−  

 

The purpose of this scenario is to test the robustness of the proposed controllers against random large load 

disturbances. The control area responses are shown in Fig. 4.8b to Fig. 4.8d. This figure demonstrates that the 

designed controllers track the load fluctuations effectively. The simulation results show the proposed PI 

controllers perform as robustly as robust dynamic H∞ controllers (with complex structures) for a wide range of 

load disturbances.  
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(a) 

 
(b) 

 

(c) 

Figure 4.6: System response in case 1; (a) Area 1, (b) Area 2 and (c) Area 3. Solid (ILMI-based PI controller), 

dotted (dynamic H∞ controller) 
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(a) 

 
(b) 

 

(c) 

Figure 4.7: System response in case 2; (a) Area 1, (b) Area 2 and (c) Area 3. Solid (ILMI-based PI controller), 

dotted (dynamic H∞ controller) 
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(a)      (b) 

 

(c)      (d) 

 

Figure 4.8: System response in case 3; (a) Random load demand signal, (b) Area 1, (c) Area 2 and (d) Area 3. 

Solid (ILMI-based PI controller), dotted (dynamic H∞ controller) 

 

4.3.4  Using a modified controlled output vector 

In the proposed control framework (Fig. 4.4), it is expected the robust controller iK  to be able to minimize 

the fictitious output ( iz ) in the presence of disturbance and external input ( iw ). Therefore, the vector iz  must 

properly cover all signals which must be minimized to meet the LFC goals, e.g., frequency regulation, tracking 

the load changes, maintaining the tie-line power interchanges to specified values in the presence of generation 

constraints and minimizing the ACE signal. By considering the tie-line power flow changes in the proposed 

fictitious output vector, we can rewrite (4.19) as follows: 

 

[ ]i4ii-tie3ii2i1i
T uηPηACEηfηzi ∆∆= ∫       (4.22) 
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The new fictitious output i-tie3i Pη ∆  is used to minimize the effects of input disturbances on tie-line power 

flow signal. Referring to Eq. (4.16), the related coefficients to the fictitious output vector (iz ) in the proposed 

state-space model can be obtained as, 

 

[ ]n4n41i1i 00cC ××=  , 





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D
4i

12i  

 

A set of suitable values for constant weights according to the new control framework for the present power 

system example (Fig. 4.5) is considered as follows: 

 

1iη =0.4, 2iη =1.075, 3iη =0.39, 4iη =333 

 

Using the ILMI approach, the controllers are obtained following several iterations. For example, for control area 

3, the final result is obtained after 29 iterations (Table 4.3). The control parameters for three control areas are 

shown in Table 4.4. The resulting robust performance indices of both synthesis methods are shown in Table 4.5. 

 

 

Table 4.3: ILMI algorithm result for design of 3K  

Iteration γ  P3k  I3k  

1 449.3934 -0.0043 -0.0036 

5 419.1064 -0.0009 -0.0042 

11 352.6694 0.1022 -0.2812 

14 340.2224 -0.0006 -0.0154 

19 333.0816 -0.0071 -0.1459 

22 333.0332 0.0847 -0.2285 

24 333.0306 0.0879 -0.2382 

26 333.0270 0.0956 -0.2537 

28 333.0265 0.0958 -0.2560 

29 333.0238 -0.0038 -0.2700 

 
 
 

Table 4.4: Control parameters (ILMI design) 

Parameter Area 1 Area 2 Area 3 
*a  -0.0246 -0.3909 -0.2615 

Pik  -9.8e-03 -2.6e-03 -3.8e-03 

Iik  -0.5945 -0.3432 -0.2700 
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Table 4.5: Robust performance index 

Control design Control structure Performance index Area1 Area 2 Area 3 

 

 H∞ 9th order  γ  333.0084 333.0083 333.0080 

 ILMI PI *
γ  333.0261 333.0147 333.0238 

 

 

The proposed controllers are applied to the 3-control area power system described in Fig. 4.5. The 

performance of the closed-loop system using the robust PI controllers compared to the designed dynamic H∞ 

controllers and proposed control design in [9] is tested for some serious load disturbances. 

 

Case 1:  

As the first test scenario, the following large load disturbances (step increase in demand) are applied to the 

three areas. The system response is shown in Fig. 4.9 and Fig. 4.10. 

 

 MW105P   MW,105P   MW,105P d3d2d1 =∆=∆=∆  

 

Figure 4.9: Frequency deviation and ACE signals following a large step load demand (105 MW) in each area. 

Solid (ILMI-based PI controller), dotted (dynamic H∞ controller) 
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Figure 4.10: Control signals following a large step load demand (105 MW) in each area 

 

Case 2:  

As another severe condition, assume a bounded random load change (  MWP  MW d 5050 +≤∆≤− ) is applied to 

all control areas simultaneously. The system response is shown in Fig. 4.11 and Fig. 4.12. These figures 

demonstrate that the designed controllers track the load fluctuations effectively. The simulation results show the 

proposed PI controllers perform robustness as well as robust dynamic H∞ controllers (with complex structures) 

for a wide range of load disturbances.  

 

 

(a)      (b) 

 

Figure 4.11: a) Random load pattern and frequency deviation, b) ACE signals in each area. Solid (ILMI-based PI 

controller), dotted (dynamic H∞ controller) 
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Figure 4.12: Control action signals in each area, following a random load demand. Solid (ILMI-based PI 

controller), dotted (dynamic H∞ controller) 

 

Case 3: 

Fig. 4.13 compares the frequency deviation (∆f) and governor load set-point (∆Pc) signals for the proposed 

method and the recent published design technique [9], following 100 MW step load increase in each control area. 

A combination of genetic algorithm (GA) and LMI-based H∞ control (GALMI) has been used in [9]. As seen 

from Fig. 4.13, the proposed controllers track the load changes and meet the robust performance as well as 

reported results for the same simulation case in [9]. Consider the tie-line power change as the fictitious 

controlled output in the H∞ control framework adds enough flexibility to set the desired level of performance. 

Moreover, the proposed control design uses a simpler algorithm that takes a short time (few seconds) for tuning 

the controller parameters in comparison of [9]. 

 

 
(a)        (b) 

 
Figure 4.13: a) Frequency deviation and b) Control action signals, following a +100 MW step load in each area. 
Solid (ILMI), Dotted ([9]) 
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4. 4  Application to a bilateral-based LFC scheme   
 

4.4.1  Control framework 

The proposed control framework to the design of PI controller, via the H∞-based SOF control problem for a 

given control area in a deregulated environment, is shown in Fig. 4.14. (s)Gi  denotes the dynamic model 

corresponds to the shown control area in Fig. 2.3. Assume the same variables as given in (4.17), (4.18), and 

(4.19). According to (4.16), we can write  

 

[ ]4i3i2i1ii vvvvw =T , [ ]n-4i2-4i1-4i4i vvvv L=T      (4.23) 

 

and, 
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nn1i22n31i123n1i311i21 0B  0B  0BB ××× ==== ,,  

 

[ ]gnig2ig1i1i32 1/T1/T1/TdiagB L=  

 

The other coefficient matrices and vectors can be defined the same as those given in section 4.3.1. 

 

 

 

 

Figure 4.14: Proposed control framework for the bilateral based LFC scheme 
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4.4.2  Case study 

A 3-control area power system shown in Fig. 4.15 is considered as a test system. It is assumed that each 

control area includes two Gencos and one Disco. The power system parameters are tabulated in Table 4.6 and 

Table 4.7. For the sake of comparison, for each area, in addition to the proposed control strategy to obtain the 

robust PI controller, a robust H∞ dynamic output feedback controller is designed using LMI control toolbox [17].  

The selection of constant weights 1iη , 2iη  and 3iη  is dependent on the specified performance objectives 

and must be chosen by the designer. For the present example, a set of suitable values for constant weights are 

chosen as 5, 0.5 and 300, respectively. The resulted controllers using the hinflmi function are dynamic type and 

have the state-space form, whose orders are the same as the size of plant model (7th order in the present 

example).  

 

 

Figure 4.15: 3-control area power system 

 

Table 4.6: Applied data for Gencos 

 

Table 4.7: Applied control area parameters 

 

 

 

 

 

Quantity Genco 1 Genco 2 Genco 3 Genco 4 Genco 5 Genco 6 

Rating (MW) 800 1000 1100 1200 1000 1000 

 R  (Hz/pu) 2.4 3.3 2.5 2.4 3 2.4 

tT  (sec) 0.36 0.42 0.44 0.4 0. 36 0.4 

gT  (sec) 0.06 0.07 0.06 0.08 0.07 0.08 

α 0.5 0.5 0.5 0.5 0.5 0.5 

Quantity Area 1 Area 2 Area 3 

D  (pu/Hz) 0.0084 0.014 0.011 

M  (pu.sec) 0.1667 0.2 0.1667 

B  (pu/Hz) 0.8675 0.795 0.870 

ijT  (pu/Hz)  0.545  
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Using ILMI approach, a set of three decentralized robust PI controllers is obtained following several 

iterations. For example, for control area 3 the final result is obtained after 32 iterations. Some iterations are listed 

in Table 4.8. The proposed control parameters for three control areas are shown in Table 4.9. The resulted robust 

performance indices of both synthesis methods (*
γ and γ ) are very close to each other and given in Table 4.10. 

It shows that although the proposed ILMI approach gives a set of much simpler controllers (PI) than the dynamic 

H∞ design, however they hold robust performance as well as dynamic H∞ controllers. 

 

 

Table 4.8: ILMI algorithm result for design of 3K  
 

Iteration γ  
P3k  I3k  

1 863.3337 -0.4471 -0.5365 

2 863.2084 -0.4456 -0.5363 

15 826.0470 -0.2915 -0.0053 

22 804.7513 -0.0079 -0.0127 

25 800.9137 -0.0672 -0.1236 

26 800.8829 -0.1205 -0.2400 

27 800.8783 -0.1823 -0.3146 

29 800.8770 -0.2095 -0.3525 

31 800.8763 -0.2275 -0.3787 

32 800.8762 -0.2319 -0.3796 

 

 

Table 4.9: Control parameters from ILMI design 

 

 

 

 

 

 

 

Table 4.10: Robust performance index 

 

 

 

 

 

Parameters Area 1 Area 2 Area 3 

*a  -0.3901 -0.2610 -0.0407 

Pik  -0.2695 -0.0418 -0.2319 

Iik  -0.3788 -0.1806 -0.3796 

Control design Control structure Perf. index Area 1 Area 2 Area 3 

H∞ 7th order γ  803.0393 801.0699 800.2284 

ILMI PI *
γ  803.0396 801.0306 800.8762 
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4.4.3  Simulation results 

In order to demonstrate the effectiveness of the proposed control strategy, some simulations were carried 

out. The performance of the closed-loop system using the robust PI controllers in comparison of designed 

dynamic H∞ controllers is tested for the various possible scenarios of bilateral contracts and load disturbances. 

 

Scenario 1: 

It is assumed that a step increase in demand as  MW100PL1 =∆ ,  MW70PL2 =∆  and  MW60PL3 =∆  are 

applied to the control areas and each Disco demand is sent to its local Gencos only, based on the following GPM. 
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The frequency deviation (f∆ ), tie-line power flow ( tieP∆ ), power changes ( mP∆ ), area control error (ACE) 

and its integral are shown in Fig. 4.16 and Fig. 4.17 for the closed-loop system. Using the proposed method 

(ILMI), the area control error and frequency deviation of all areas are quickly driven back to zero, the generated 

power and tie-line power are properly convergence to specified values, like the dynamic H∞ control (LMI). 

Since there are no contracts between areas, the scheduled steady state power flows over the tie lines are 

zero. The actual tie-line powers are shown in Fig. 4.16. As is seen from Fig. 4.17a, the actual generated powers 

of Gencos, according to (2.24), reach the desired values in the steady state. 

 

Figure 4.16: Frequency deviation and tie-line power changes; Solid (ILMI-based PI controller), dotted (dynamic 

H∞ controller) 
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(a)      (b) 

Figure 4.17: a) Mechanical power changes, b) ACE and its integral; Solid (ILMI-based PI controller), dotted 

(dynamic H∞ controller) 

 

pu 0.05000.5(0.1)PgpfPgpfPgpfP L313L212L111m1 =++=∆+∆+∆=∆  

and,  

pu, 0.035PP pu, 0.05P m4m3m2 =∆=∆=∆  pu. 0.03PP m6m5 =∆=∆  

 

Scenario 2: 

Consider larger demands by Disco 2 and Disco 3, i.e.  MW100P   MW,100P L2L1 =∆=∆  and  MW100P L3 =∆ , 

and assume Discos contract with the available Gencos in other areas, according to the following GPM, 
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The closed-loop response is shown in Fig. 4.18 and Fig. 4.19. According to Eq. (2.24), the actual generated 

powers of Gencos for this scenario can be obtained as  

 

pu 0.0500.25(0.1)0.25(0.1) Pm1 =++=∆   

and, pu, 0.1P pu, 0.05P m3m2 =∆=∆  pu. 0.025PP pu, 0.05P m6m5m4 =∆=∆=∆  

 

The simulation results show the same values in steady state. The scheduled tie-line powers in the directions 

from area 1 to area 2, and area 2 to area 3 are obtained as follows using Eq. (2.20). Fig. 4.19a shows actual 

tie-line powers and they reach to above values at steady state. 
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Figure 4.18: Frequency deviation and tie-line power changes; Solid (ILMI-based PI controller), dotted (dynamic 

H∞ controller) 

 

 

(a)      (b) 

Figure 4.19: a) Mechanical power changes , b) ACE and its integral; Solid (ILMI-based PI controller), dotted 

(dynamic H∞ controller) 

 

pu 00.25)0.100)0.10.25PgpfgpfPgpfgpfP L14131L2221221- tie, =+−+=∆+−∆+=∆ (()()(  

and, 

pu 0.050)0.10.250)0.10.75P 3-2 tie, =+−+=∆ ((  

 

Scenario 3: 

In this scenario, the effect of the contract violation problem is simulated. Consider the scenario 2 again, but 

assume the Disco 1 demands 50 MW more power than that specified in the contract. As has been mentioned in 
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section 2.3, this excess power must be reflected as an uncontracted local demand of area 1 and must be supplied 

by local Gencos, only. Simulation result is shown in Fig. 4.20. 

Fig. 4.20 shows that the excess load is only taken up by Genco 1 and Genco 2, according to their LFC 

participation factors, and Gencos in other distribution areas do not participate to compensate it. Since GPM is the 

same as in scenario 2, the generated power of Gencos in area 2 and area 3 is the same as in scenario 2 in steady 

state. 

 

Scenario 4: 

Consider the conditions of scenario 2 again. In addition to specified contracted demand (100 MW), assume 

a bounded random load changes (Fig. 4.21a) as an uncontracted local demand,  

 

 MWP  MW di 5050 +≤∆≤−  

 

is applied to each control area. The contract step demands as in previous simulation tests are started from 2 sec. 

The purpose of this scenario is to test the performance of proposed controllers against large contracted demands 

and random load disturbances. The corresponded power changes, frequency deviations and tie-line power flows 

are shown in Fig. 4.21b and 4.21c. Finally, Fig. 4.21d shows ACE and control effort signals for the proposed 

controllers. These figures demonstrate that the designed controllers track the load fluctuations, effectively.  

 

Figure 4.20: Generated power in responses to contract violation; Solid (ILMI-based PI controller), dotted 

(dynamic H∞ controller) 
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(a)     (b) 

 

(c)      (d) 

Figure 4.21: a) Random load changes, b) Generated power, c) Frequency deviation and tie-line power flow, d) 

ACE and control action signals for scenario 4; Solid (ILMI-based PI controller), dotted (dynamic H∞ controller) 

 

The simulation results demonstrate that the proposed PI controllers perform robust performance as well as 

full order dynamic H∞ controllers in a deregulated environment for a wide range of load disturbances and 

possible bilateral contract scenarios. 

 

4.5  Summary   
In this chapter, a new decentralized method to design robust LFC using a developed ILMI algorithm has 

been provided for a large scale power system. The proposed design control strategy gives a set of simple PI 

controllers via the H∞-based SOF control design, which are commonly useful in real-world power systems. The 

proposed method was applied to multi-area power system examples with different LFC schemes and the 

closed-loop system was tested under serious load change scenarios. The results were compared with the results 
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of applied full dynamic H∞ controllers. It was shown that the designed controllers can guarantee the robust 

performance under a wide range of area-load disturbances. 
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Chapter 5 

 

Multi-objective control based robust decentralized 

LFC design 
 

LFC goals, i.e., frequency regulation and tracking the load changes, maintaining the tie-line power 

interchanges to specified values in the presence of generation constraints and model uncertainties, identifies the 

LFC synthesis as a multi-objective control problem. On the other hand, the proportional-integral (PI) based 

load-frequency controllers which are usually used in the real-world power systems and tuned based on 

experiences, classical, or trial-and-error approaches, are incapable of obtaining good dynamical performance to 

meet all of the specified objectives. 

In section 5.1, the LFC problem is formulated as a multi-objective control problem and the mixed H2/H∞ 

control technique is used to synthesis the desired robust controllers for LFC system in a multi-area power system. 

A 3-control area power system example with possible contract scenarios and a wide range of load changes is 

given to illustrate the proposed approach. The results of the proposed control strategy are compared with the 

pure H∞ method.  

In section 5.2, first with regard to model uncertainties, the multi-objective LFC problem is reformulated via 

a mixed H2/H∞ control technique and then in order to design a robust PI controller, the control problem is 

reduced to a static output feedback control synthesis. Finally, it is easily carried out using a developed iterative 

linear matrix inequalities (ILMI) algorithm. The proposed method is applied to multi-area power system 

examples with traditional and bilateral-based LFC schemes. The results are compared with the designed mixed 

H2/H∞ dynamic controllers. 
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5.1  Robust LFC synthesis using a mixed H2/H∞∞∞∞ control technique 

In most reported robust LFC approaches, only one single norm is used to capture design specifications. It is 

clear that meeting all LFC design objectives by a single norm-based control approach with regard to increasing 

the complexity and changing of power system structure is difficult. Furthermore, each robust method is mainly 

useful for capturing a set of special specifications. For instance, the regulation against random disturbances more 

naturally can be addressed by Linear Quadratic Gaussian (LQG) or H2 synthesis, while H∞ approach is more 

useful for holding closed-loop stability and formulation of physical control constraints. It is shown that using the 

combination of H2 and H∞ (mixed H2/H∞) allows better performance for a control design problem including both 

sets of the above objectives [1-3].  

In this section, the LFC problem is formulated as a multi-objective control problem and is solved by a 

mixed H2/H∞ control approach to obtain the desired robust decentralized controllers. The proposed strategy is 

applied to a 3-control area example in a deregulated environment. The results show that the controllers guarantee 

the robust performance for a wide range of operating conditions. The results of the proposed multi-objective 

control approach are compared with pure H∞ controllers using general LMI technique. 

 

5.1.1  Mixed H2/H∞: technical background 

In many real-world control problems, we follow several objectives such as stability, disturbance attenuation, 

reference tracking, and considering the practical constraints, simultaneously. Pure H∞ synthesis cannot 

adequately capture all design specifications. For example, H∞ synthesis mainly enforces closed-loop stability and 

meets some constraints and limitations, while noise attenuation or regulation against random disturbances is 

more naturally expressed in LQG terms (H2 synthesis). The mixed H2/H∞ control synthesis gives a powerful 

multi-objective control design addressed by the LMI techniques. This section gives a brief overview of the 

mixed H2/H∞ output feedback control design.  

The general synthesis control scheme is shown in Fig. 5.1. G(s) is a linear time invariant system with the 

following state-space realization: 
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        (5.1) 

 

Where x is the state variable vector, w is the disturbance and other external input vector, and y is the measured 

output vector. The output channel 2z  is associated with the LQG aspects (H2 performance) while the output 

channel ∞z  is associated with the H∞ performance. Assume (s)T∞  and (s)T2  are transfer functions from w to 

∞z  and 2z  respectively, and consider the following state-space realization for the closed-loop system. 
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Figure 5.1: Closed-loop system via the mixed H2/H∞ control 
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The following lemmas express the design objectives in term of LMIs [4]. The details are available in [1-3]. 

 

Lemma 5.1 (H∞ performance): The closed-loop RMS gain for (s)T∞  does not exceed ∞γ  if and only if there 

exists a symmetric matrix 0X >∞ , such that 
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Lemma 5.2 (H2 performance): The H2 norm of (s)T2  does not exceed 2γ  if and only if 0Dcl2 =  and there 

exist two symmetric matrices 2X  and Q such that 
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The mixed H2/H∞ control design method uses both lemmas and gives us an output feedback controller K(s) 

that minimizes the following trade-off criterion: 

 

2

2
22

2
1 (s)Tk(s)Tk +

∞∞ ,  ( 0k    ,0k 21 ≥≥ )     (5.5) 

An efficient algorithm to solve this problem is available in function hinfmix of the LMI control toolbox for 
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Matlab [4]. 

 

5.1.2  Control framework 

Consider a large scale power system which consists of a number of interconnected distribution control areas 

and each control area may have several Gencos. For example, assume the power system is under a bilateral 

policy scheme (Fig. 2.3). In this case, a useful control framework to formulate the LFC problem via a mixed 

H2/H∞ control design can be introduced as shown in Fig. 5.2. Here, (s)Gi  denotes the dynamical model which 

corresponds to the modified control area (Fig. 2.3). According to (5.1), the state space model for control area i 

can be obtained as; 
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where 

 

[ ]gitiitiei
T
i xxPfx −∆∆=        (5.7) 

 

[ ]tnit2it1iti PPPx ∆∆∆= L , [ ]gnig2ig1igi PPPx ∆∆∆= L  

 

ii Pu C∆= ,  3ii-tieiii vPfβy −∆+∆=       (5.8) 

 

 

 

 

Figure 5.2: The proposed control framework 
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i1iCi1ii uηPηz =∆=∞ ,  [ ]i-tie3ii2i
T
2i Pηfηz ∆∆=      (5.9) 
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The H∞ performance is used to set a limit on the control set-point to penalize the fast change and large 

overshoot in the control action signal. The H2 performance is used to minimize the effects of disturbances on 

control area frequency and tie-line flow signals. Therefore, it is expected that the proposed strategy satisfy the 

main objectives of LFC system under load change and bilateral contracts variation. The coefficients 1iη , 2iη  

and 3iη  in Fig. 5.2 and Eq. (5.9) are constant weights that must be chosen by the designer to get the desired 

performance. In the next section, two sets of robust controllers are designed for a power system example 



 
 
 
Chapter 5. Multi-objective control based robust decentralized LFC design 

 
 
 

88 

including three control areas. The first one includes pure H∞ controllers based on the general LMI technique and 

the second one contains designed low-order controllers based on the proposed mixed H2/H∞ approach with the 

same assumed objectives to achieve desired robust performance. 

 

5.1.3  Application to a 3-control area power system 

The 3-control area power system example given in section 4.4.2 (Fig. 4.15) is considered as a test system. 

The power system parameters are assumed to be the same as in Table 4.6 and Table 4.7. 

 

5.1.3.1 Pure H∞∞∞∞ control design  For the sake of comparison, for each area, in addition to the proposed control 

strategy, a pure H∞ dynamic output feedback controller is developed using lemma 5.1. Specifically, the control 

design is reduced to an LMI formulation, and then the H∞ control problem is solved using the function hinflmi, 

provided by the MATLAB LMI control toolbox [4]. This function gives an optimal H∞ controller through the 

minimizing guaranteed robust performance index subject to the specified constraints, and returns the controller 

K(s) with the optimal robust performance index. 

The control framework, which is shown in Fig. 5.2, is used for the pure H∞ control design also, but using 

only one fictitious output channel (∞z ) as: 

 

[ ]i-tie3ii2iCi1i
T PηfηPηz ∆∆∆=∞        (5.11) 

  

A set of suitable constant weights (1iη , 2iη  and 3iη ) for the present example is chosen as (2.5, 1, and 1) 

respectively. The resulting controllers are dynamic types as follow, whose orders are the same as the size of area 

model (6th order).  
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7342.4697 +  s14038.0905  s9898.8032 +  s3313.9408 +  s545.6694 +  s39.4468 + s

1214.4936 +  s668.8242 -  s2067.3481 -  s858.9605 -  s90.4397 -  s2.7694-
(s)K
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3887.5418 +  s13506.6111  s10743.1064 +  s3547.385 +  s552.8201 +  s38.9744 + s

366.7874 +   s2851.0296 -  s3781.6026 -  s1343.0582 -  s141.8668 -  s4.5755-
K

23456

2345

3 +
=∞  

 

5.1.3.2 Mixed H2/H∞∞∞∞ control design  In the next step, according to the described synthesis methodology 

(mixed H2/H∞), a set of three decentralized robust controllers are designed. The constant weights are chosen the 

same as pure H∞ design. The coefficients 1k  and 2k  in (5.5) are fixed in unity.  

The order of the resulting controllers is 6. Using the standard Hankel norm approximation, the order is 

reduced to 3 for each controller, with no performance degradation. The Bode plot of the full-order and reduced 

order controllers for area 1 and area 2 are shown in Fig. 5.3. 



 
 
 
Chapter 5. Multi-objective control based robust decentralized LFC design 

 
 
 

89 

 

(a)      (b) 

Figure 5.3: Bode plots comparison of full-order (original) and reduced controllers: a) (s)K1mix , b) (s)K 2mix  

 

This figure presents the same frequency response for both original and reduced-order controllers. The 

transfer functions of the resulting reduced controllers with simple structures are 
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23
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3mix =  

 

5.1.3.3 Simulation results  The proposed low-order controllers (5.13) were applied to the 3-control area power 

system described in Fig. 4.15. The performance of the closed-loop system using the proposed controllers 

compared to the designed full-order pure H∞ controllers (5.12) will be tested for the various scenarios of bilateral 

contracts and load disturbances. Following, the system responses are shown for scenarios 1 and 2 which are 

explained in section 4.4.3. These scenarios present different bilateral contracts (GPM) with large load 

disturbances. 

The frequency deviation (∆f), power changes (∆Pm), area control error (ACE), and tie-line power flows 

(∆Ptie) of the closed-loop system for scenario 1 are shown in Fig. 5.4. Using the proposed method, the area 

control error and frequency deviation of all areas are quickly driven back to zero, and the generated powers and 

tie-line powers are properly converged to specified values. As shown in these figures, the actual generated 

powers of Gencos, according to Eq. (2.24), reach the desired values in the steady state. Since there are no 

contracts between areas, the scheduled steady state power flows (2.20) over the tie lines are zero. 
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The difference between the mixed H2/H∞ and pure H∞ controllers will be more clear in case of the 

application of a set of larger step disturbances under a complex bilateral contract such as scenario 2 (section 

4.4.3). The closed-loop response for this scenario is shown in Fig. 5.5. It is seen that the proposed low-order 

controllers perform robustness better than the full-order H∞ controllers for a wide range of load disturbances and 

possible bilateral contract scenarios. 

 

 

 

(a) (b) 

 

 

(c)      (d) 

 

Figure 5.4: Power system response for scenario 1. Solid (Mixed H2/H∞), dotted (H∞); 

a) Area-1, b) Area-2, c) Area-3 and d) Tie-line powers 
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(a)      (b) 

 

(c)      (d) 

Figure 5.5: Power system response for scenario 2. Solid (Mixed H2/H∞), dotted (H∞); 

a) Area-1, b) Area-2, c) Area-3 and d) Tie-line powers 

 

5.2  PI based multi-objective robust LFC design 

In this section, the LFC synthesis is formulated as a mixed H2/H∞-static output feedback (SOF) control 

problem to obtain a desired PI controller. An iterative linear matrix inequalities (ILMI) algorithm is developed to 

compute the PI parameters. It is assumed that in each control area the power system model has uncertain 

parameters and the uncertainties are covered by an unstructured multiplicative uncertainty block. The proposed 

strategy is applied to multi-area power system examples with traditional and bilateral based LFC schemes. The 

designed robust PI controllers, which are practical for industry, are compared with the mixed H2/H∞ dynamic 

output feedback controllers (using general LMI technique [4]). The results show that the PI controllers guarantee 

the robust performance for a wide range of operating conditions as well as H2/H∞ dynamic controllers. The 

proposed control strategy and developed ILMI algorithm are given in sections 5.2.1 and 5.2.2. Problem 

formulation and control framework is presented in section 5.2.3. The proposed methodology is applied to 

multi-area power systems with traditional and bilateral LFC schemes in sections 5.2.4 and 5.2.5.  
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5.2.1  H2/H∞-based SOF design 

The general control scheme using the mixed H2/H∞ control technique (Fig. 5.1) is redrawn in Fig. 5.6. 

(s)Gi  is a linear time invariant system with the given state-space realization in Eq. 5.6. Where ix  is the state 

variable vector, iw  is the disturbance and the other external input vector, iy  is the measured output vector 

and iK  is the controller. The output channel 2iz  is associated with the LQG aspects (H2 performance) while 

the output channel iz∞  is associated with the H∞ performance. With 1i wizT ∞  and 2i w2izT  defined as transfer 

functions from T
2i1ii   www ][= to iz∞  and 2iz  respectively, consider the following state-space realization for 

closed-loop system. 
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A mixed H2/H∞-SOF control design can be expressed as the following optimization problem. 

Optimization problem: Determine an admissible SOF law iK  which belongs to a family of internally 

stabilizing SOF gains sofK , 

 

iii yKu =  , sofi KK ∈         (5.15) 

 

such that 

 

22i w2iz
sofKiK

T  inf
∈

 subject to 1T 1i wiz <
∞∞       (5.16) 

 

 

 

Figure 5.6: The closed-loop system via the mixed H2/H∞ control 
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This problem defines a robust performance synthesis problem where the H2 norm is chosen as a 

performance measure. Recently, several methods are proposed to obtain a suboptimal solution for the H2, H∞, 

and H2/H∞-SOF control problems [5-9].  

Here, a new ILMI algorithm is introduced to get a suboptimal solution for the mentioned optimization 

problem. Specifically, the proposed algorithm formulates the H2/H∞-SOF control through a general SOF 

stabilization problem using lemma 4.2 (general stabilizing SOF, [7]) and the following lemma. 

 

Lemma 5.3 (H2 Suboptimal SOF), [9]: 

For fixed )( iyi2i1ii K,C,B,B,A , there exists a positive definite matrix X  which solves inequality 

 

C
T

1i1i
T

yii2iiyii2ii LX  , 0BB)CKBX(A)XCKB(A ><++++     (5.17) 

 

to satisfy γT
22i w2iz < , if and only if the following inequality has a positive definite matrix solution, 
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yi

T
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where CL  in (5.17) denotes the controllability Gramian of the pair )( 1icic B,A and can be presented as follows. 

 

)( T
2icC2ic

2

22i w2iz CLCtraceT =        (5.19) 

 

The proposed algorithm searches the desired suboptimal H2/H∞-SOF controller iK within a family of H2 

stabilizing controllers sofK , such that 

 

ε<− 2
*
2 γγ ,  1Tγ 1i wiz <=

∞∞∞        (5.20) 

 

where ε  is a small real positive number, *2γ  is H2  performance corresponded to H2/H∞-SOF controller iK  

and 2γ  is optimal H2 performance index, which can result from the application of standard H2/H∞ dynamic 

output feedback control. 

 

5.2.2  Developed ILMI algorithm 

Developed ILMI algorithm, which uses the ideas given in lemma 4.2 and lemma 5.3, provides a suboptimal 

solution to obtain an H2/H∞-SOF controller for a given power system control area and includes the following 

steps: 
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Step 1.  Compute the state-space model for the given control area, according to Eq. 5.6. 

Step 2.  Compute the optimal H2 performance index 2γ  using function hinfmix in MATLAB based LMI 

control toolbox [4] to design standard H2/H∞ dynamic output controller for the performed system in Step 1. 

Step 3.  Set i =1, 02 γ∆=γ∆  and let 202i γ>γ=γ . 0γ∆  is a small positive real number. 

Step 4.  Select 0QQ 0 >= , and solve X  from the following algebraic Riccati equation: 
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T

ii >=+−+       (5.21) 

 

Set XP1 = . 

Step 5.  Solve the following optimization problem foriX , iK  and ia .  

Minimize ia  subject to the LMI constraints: 
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2icC2ic γCLCtrace <)(         (5.23) 

 

0XX T
ii >=          (5.24) 

where,  

iiiyi
T

yiiiyi
T

yiiiyi
T

yiii XaPCCPPCCXXCCP −+−=∑ .  

Denote *
ia  as a minimized value of ia . 

Step 6.  If 0a*
i ≤ , go to Step 10.  

Step 7.  For 1i >  if 0a*
1-i ≤ , sof1-i KK ∈  and go to step 11. Otherwise go to Step 8. 

Step 8.  Solve the following optimization problem for iX  and iK : 

Minimize )( iX trace  subject to LMI constraints (5.22), (5.23) and (5.24) with *
ii aa = . Denote *

iX  as 

iX  that minimized )( iX trace . 

Step 9.  Set i =i+1  and *
1-ii XP = , then go to Step 5. 

Step 10.  Set 22i2i γ∆−γ=γ , i =i+1.  Then do Steps 4 to 6. 

Step 11.  If 

 

1T 
1ii  wz1-i ≤=γ

∞∞ ∞,         (5.25) 

 

1-iK  is a suboptimal H2/H∞-SOF controller and 22i2 γ∆−γ=γ *  indicates a lower H2 bound such that the 

obtained controller satisfies (5.20). Otherwise set 22i2i γ∆+γ=γ , i =i+1, then do Steps 4 to 6.  

The developed ILMI algorithm is summarized in Fig. 5.7. 



 
 
 
Chapter 5. Multi-objective control based robust decentralized LFC design 

 
 
 

95 

 

 

 

Figure 5.7: Developed ILMI algorithm 

 

 

5.2.3  Problem formulation and control framework 

By augmenting the system description (5.6) to include the ACE signal and its integral as a measured output 

vector, the PI control problem becomes finding a static output feedback that satisfies the prescribed performance 

requirements. Using this strategy, the PI-based LFC design can be reduced to an H2/H∞-SOF control problem as 

shown in Fig. 5.8. 

The main control framework in order to formulate the LFC problem via a mixed H2/H∞ control design for a 
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given control area is shown in Fig. 5.9. The model uncertainties in a power system can be considered as 

multiplicative and/or additive uncertainties [10-11]. Here, i∆ block models the structured uncertainty set in the 

form of multiplicative type and iW  includes the associated weighting function, as presented in Fig. 5.10. The 

output channel iz∞  is associated with the H∞ performance while the fictitious output vectoriz2  is associated 

with LQG aspects or H2 performance.  

 

 

 

 

Figure 5.8: Problem formulation 

 

 

 

 

Figure 5.9: H2/H∞-SOF control framework 
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Figure 5.10: Modeling of uncertainties 

 

Constant weights must be chosen by the designer to get a desired closed-loop performance. Experience 

suggests that one can fix the weights 1iη , 2iη  and 3iη  to unity and use the method with the regional pole 

placement technique for performance tuning [12]. (s)Gi  and iK  correspond to the nominal dynamic model of 

the given control area and controller, respectively. Also, iy  is the augmented measured output vector 

(performed by ACE and its integral), iu  is the control input, and iw  includes the perturbed and disturbance 

signals in the given control area. 

The proposed control framework covers all mentioned LFC objectives. The H2 performance is used to 

minimize the effects of disturbances on the area frequency and area control error by introducing fictitious 

controlled outputs i1i fη ∆  and ∫ i2i ACEη . As a result, the tie-line power flow which can be described as a linear 

combination of frequency deviation and ACE signals, 

 

iii i-tie fBACEP ∆−=∆         (5.26) 

 

is controlled. Furthermore, fictitious output Ci3i Pη ∆  sets a limit on the allowed control signal to penalize fast 

changes and large overshoot in the governor load set-point with regard to practical constraint on power 

generation by generator units. Also, in LFC design, it is important to keep up the frequency regulation and 

desired performance in the face of uncertainties affecting the control area. The H∞ performance is used to meet 

the robustness against specified uncertainties and reduction of its impact on closed-loop system performance. 

Therefore, it is expected that the proposed strategy satisfy the main objectives of LFC system in the presence of 

load disturbance and model uncertainties. 

For the following multi-area power system examples, two types of designed robust controllers are tested. 

The first one is the H2/H∞ dynamic controller using the general robust LMI design and the second controller is 

based on the proposed H2/H∞-SOF using the ILMI algorithm with the same assumed objectives and 

initializations to achieve desired robust performance. 

 

5.2.4  Application to a traditional-based LFC scheme 

A 3-control area power system, shown in Fig. 5.11, is considered as a test system. It is assumed that each 

control area includes three Gencos. The power system parameters are considered to be the same as in [13].  



 
 
 
Chapter 5. Multi-objective control based robust decentralized LFC design 

 
 
 

98 

 

Figure 5.11: 3-control area power system 

 

5.2.4.1 Uncertainty and performance weights selection  In this example, it is assumed that the power system 

(rotating mass and load) model parameters have uncertain values. The variation range for iD  and iM  

parameters in each control area is assumed 20% ±  of nominal values. It is notable that there is no obligation to 

consider uncertainty in two parameters, only. As already mentioned, considering a more complete model by 

including additional uncertainties in the model of other units is possible and causes less conservatism in the 

synthesis. However, the complexity of computations and the order of the resulting dynamic controller will 

increase. As a result, finding a tighter control solution by a simple PI structure will be difficult. In the next step, 

these uncertainties are modeled as an unstructured multiplicative uncertainty block iW  that contains all the 

information available about iD  and iM variations.  

Using the described method in section 3.1.3.1, some sample uncertainties due to iD  and iM  variations 

for area 1 are obtained, as shown in Fig. 5.12. To keep the complexity of the obtained controller low, 

uncertainties from both parameter variations can be modeled by using a norm bonded multiplicative uncertainty 

( 1W ) to cover all possible plants. Using the mentioned method, the uncertainties weighting functions are 

determined for the 3-control area example as follows. 
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Fig. 5.12 clearly shows that attempting to cover the uncertainties at all frequencies by finding a tighter fit 

(around 4 rad/sec) using higher order transfer function will result in high-order controller. The weight 1W  in 

our design provides a conservative design at some frequencies but it gives a good trade-off between robustness 

and controller complexity.  

The selection of performance constant weights 1iη , 2iη , and 3iη  is dependent on the specified 

performance objectives. An important issue with regard to selection of the weights is the degree to which they 

can guarantee the satisfaction of design performance objectives. For the present example, a set of suitable values 

for constant weights is chosen as follows. 
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Figure 5.12: Uncertainty plots due to parameters changes in area 1; iD  (dotted), iM  (dash-dotted) and  

1W (solid) 

 

1iη = 0.12, 2iη = 0.35, 3iη =0.42       (5.28) 

 

5.2.4.2 Mixed H2/H∞∞∞∞ dynamic and SOF control design  For the sake of comparison, in addition to the 

proposed control strategy to synthesize the robust PI controller, a mixed H2/H∞ dynamic controller is designed 

for each control area, using hinfmix function in the LMI control toolbox. This function results in an optimal 

H2/H∞ controller K(s) with optimal H2 performance index 2γ  through the solution of the optimization problem 

given in Eq. (5.16). The resulting controller is dynamic type and has the following state-space form, whose order 

is the same as the size of a generalized plant model (10th order in the present example).  
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In the next step, according to the synthesis methodology described in sections 5.2.2 and 5.2.3, a set of three 

decentralized robust PI controllers are designed. This control strategy is fully suitable for LFC applications 

which usually employ the PI control, while most other robust and optimal control designs (such as LMI 

approach) yield complex controllers whose size is larger than real-world LFC systems. Using the developed 

ILMI algorithm, the controllers are obtained following several iterations. The proposed control parameters for 

three control areas are shown in Table 5.1. The guaranteed optimal H2 and H∞ indices for dynamic and PI 

controllers are listed in Table 5.2. 
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Table 5.1: PI control parameters from ILMI design 

Parameters Area 1 Area 2 Area 3 

Pik  -2.00E-04 -4.80E-03 -2.50E-03 

Iik  -0.3908 -0.4406 -0.4207 

 

Table 5.2: Guaranteed H2 and H∞ indices 

Indices Area 1 Area 2 Area 3 

2iγ (Dynamic) 1.0700 1.0300 1.0310 

iγ∞ (Dynamic) 0.3919 0.2950 0.3497 
*
2iγ (PI) 1.0976 1.0345 1.0336 

*
iγ∞  (PI) 0.3920 0.2950 0.3498 

 

The resulting robust H∞ indices ( iγ∞  and *
iγ∞ ) and guaranteed H2 performance indices (2iγ  and *

2iγ ) in 

both synthesis methods are very close to each other. This shows that although the proposed ILMI approach gives 

a set of much simpler controllers (PI) than the dynamic H2/H∞ design, they hold robustness as well as dynamic 

H2/H∞ controllers. 

 

5.2.4.3 Simulation results  The proposed PI controllers were applied to a 3-control area power system 

described in Fig. 5.11. The performance of the closed-loop system using the designed PI controllers in 

comparison of the full-order H2/H∞ dynamic controllers will be tested in the presence of load disturbances and 

uncertainties.  

 

Case 1: 

In this case, the closed-loop performance is tested in the face of both step load demand and uncertainties. It 

is assumed that a large step load disturbance 100 MW (0.1 pu) is applied to each control area, following a 20% 

decrease in uncertain parameters iD  and iM . The power system response is shown in Fig. 5.13. 

Using the proposed ILMI-based PI controllers, the area control error and frequency deviation of all areas 

reach zero quickly, and the generated powers convergence to the specified values according to assumed ACE 

participation factor iα  in each Genco, as well as H2/H∞ dynamic controllers. The results show that the power 

initially comes from all Gencos to respond to the load increase which will result in a frequency drop that is 

sensed by the governors of all machines, but at steady state the necessary powers come from participating 

Gencos in the LFC task.  

 

Case 2: 

Assume in addition to a 20% decrease in iD  and iM , a bounded random step load changes shown in Fig. 

5.14a appear in control areas, where pu  0.05Ppu  0.05 di +≤∆≤− . 
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(a) 

(b) 

(c) 

Figure 5.13: Power system response for case 1; a) Area 1, b) Area 2 and c) Area 3. Solid (ILMI-based PI 

controller), dotted (dynamic H2/H∞ controller) 
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The purpose of this scenario is to test the closed-loop performance against uncertainties and random large 

load disturbances. The power system closed-loop response is shown in Fig. 5.14b to Fig. 5.14d.  

Although the applied load disturbance patterns include fast changes in amplitude, it is seen that the 

proposed controllers penalize the fast changes and large overshoot in the governor set-point (control action) 

signals ciP∆ , effectively. The simulation results demonstrate that the proposed ILMI-based PI controllers track 

the load fluctuations and meet robustness for a wide range of load disturbances like the mixed H2/H∞ dynamic 

controllers. 

 

 

 

(a) (b) 

 

 

(c)      (d) 

 

Figure 5.14: Power system response for case 2; a) Random load patterns, b) Area 1, c) Area 2 and d) Area 3. 

Solid (ILMI-based PI controller), dotted (dynamic H2/H∞ controller) 
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5.2.5  Application to a bilateral-based LFC scheme 

As a second test case, the proposed control strategy is applied to a 3-control area power system with 

bilateral transaction given in section 4.4.2 (Fig. 4.15).  

 

5.2.5.1 Uncertainty and performance weights selection  Similar to section 5.4.2, it is assumed that the 

rotating mass and load pattern parameters have uncertain values in each control area. The variation range for iD  

and iM  parameters in each control area is assumed20% ± . Using the described method to determine 

uncertainties and performance weighting functions in previous sections, a set of suitable weights is properly 

chosen as follows. 
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1iη = 1.25, 2iη = 0.001, 3iη =1.5       (5.31) 

 

 

5.2.5.2 Mixed H2/H∞∞∞∞ dynamic and SOF control design  In addition to the proposed control strategy to 

synthesize the robust PI controller, a mixed H2/H∞ dynamic output feedback controller is designed for each 

control area, using the hinfmix function [4]. The resulting controllers are a dynamic type and have the same 

state-space form as Eq. (5.29), whose orders are the same as the size of the generalized plant model (8th order in 

the present example).  

Using the proposed ILMI approach, the control parameters for three control areas are obtained as shown in 

Table 5.3. The optimal performance indices for dynamic and PI controllers are listed in Table 5.4. The resulting 

robust performance indices of both synthesis methods ( 2iγ  and *
2iγ ) are close to each other. This shows that 

although the proposed ILMI approach gives a set of much simpler controllers (PI) than the dynamic H2/H∞ 

design, they also give a robust performance like the dynamic H2/H∞ controllers. 

 

 

Table 5.3: PI control parameters from ILMI design 

 

  Parameters Area1 Area 2  Area 3 

 

  Pik  -0.1250 -0.0015 -0.4278 

  Iik  -5.00E-04 -5.14E-04 -5.30E-04 
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Table 5.4: Robust performance indices 

 

Perf. index Area1 Area 2 Area 3 

2iγ (Dynamic) 2.1835 1.7319 2.1402 
*

2iγ (PI) 2.2900 1.8321 2.2370 

iγ∞ (Dynamic) 0.4177 0.3339  0.3536 
*

iγ∞ (PI) 0.3986 0.3088 0.3483 

 

 

5.2.5.3 Simulation results  The performance of the closed-loop system using the designed PI controllers in 

comparison of full-order H2/H∞ dynamic controllers is tested in the presence of load demands, disturbances, and 

uncertainties for the given 3-control area power system example.  

 

Scenario 1: 

In this scenario, the closed-loop performance is tested in the face of both step contracted load demand and 

uncertainties. It is assumed that a large load demand 100 MW (0.1 pu) is requested by each Disco, following a 

20% decrease in uncertain parameters iD  and iM . Furthermore, assume Discos contract with the available 

Gencos according to the following GPM, 

 


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








=

0.25000.7500
00.250.250.2500.25
000.2500.50.25

GPMT       (5.32) 

 

All Gencos participate in the LFC task. Gencos 2 and 6 only participate to perform the LFC in their areas, 

while other Gencos track the load demand in their areas and/or others. The frequency deviation, area control 

error (ACE 1 and ACE 2), and tie-line power changes are shown in Fig. 5.15. It is seen that the area control error 

and frequency deviation of all areas are driven back to zero. The tie-line power flows are properly converged to 

the specified values. The generated powers are shown in Fig. 5.16. The actual generated powers of Gencos reach 

to the desired values in the steady state as given in Table 5.5. 

 

Table 5.5: Generated power in response to case 1 

 

 Genco  1 2 3 4 5 6 

 

 miP∆  (pu) 0.05 0.05 0.1 0.05 0.025 0.025 
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 (a)      (b) 

 

Figure 5.15: a) Frequency deviation; b) area control error and tie-line powers. Solid (ILMI-based PI controller), 

dotted (dynamic H2/H∞ controller) 

 

 

 

 

Figure 5.16: Mechanical power changes. Solid (ILMI-based PI controller), dotted (dynamic H2/H∞ controller) 
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Scenario 2: 

Consider scenario 1 again. Assume, in addition to the specified contracted load demands (0.1 pu) and 20% 

decrease in iD  and iM , a bounded random step load change as a large uncontracted demand (shown in Fig. 

5.17a) appears in each control area, where  pu) 0.05(  MWP pu) 0.05(  MW di ++≤∆≤−− 5050 . The purpose of 

this scenario is to test the robustness of the proposed controllers against uncertainties and random large load 

disturbances. The closed-loop response for areas 1 and 3 are shown in Fig. 5.17b and Fig. 5.17c. Fig. 5.17d 

shows the tie-line power flows.  

 

 

(a) (b) 

 

 

 (c) (d) 

 

Figure 5.17: Power system response for case 2; (a) random load patterns b) Area-1,c) Area-3, d) tie-line powers. 

Solid (ILMI-based PI controller), dotted (dynamic H2/H∞ controller) 
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The simulation results demonstrate that the proposed ILMI-based PI controllers track the load fluctuations 

and meet robustness for a wide range of load disturbances and possible bilateral contract scenarios as well as 

H2/H∞ dynamic controllers. 

 

5.3  Summary   
In this chapter, the LFC is considered as a multi-objective control problem and a new method has been 

proposed for robust decentralized LFC design using the mixed H2/H∞ approach. In section 5.1, the proposed 

method was applied to a 3-control area power system and it is tested under various contract scenarios. The 

results are compared with the results of applied pure H∞ controllers.  

In section 5.2, an ILMI algorithm is developed to design a mixed H2/H∞-SOF based PI controllers. The 

proposed method was applied to multi-area power system examples with traditional and bilateral-based LFC 

schemes under serious operating conditions. The results are compared with the results of the H2/H∞ dynamic 

controllers. It was shown that the proposed simple PI controllers are capable of setting the desired level of 

performance under a wide range of area-load disturbances and specified uncertainties like the H2/H∞ dynamic 

controllers. 
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Chapter 6 

 

Conclusions 
 

The present dissertation is mainly focused on technical issues associated with the load-frequency control 

(LFC) in restructured power systems and addresses new generalized dynamic models and decentralized robust 

control methodologies for the interconnected electric power systems with possible structures in a competitive 

environment.  

In a deregulated environment, LFC as an ancillary service acquires a fundamental role to maintain the 

electrical system reliability at an adequate level. That is why there has been increasing interest for designing load 

frequency controllers with better performance according to the changing environment of power system operation 

under deregulation. In an open energy market, generation companies may or may not participate in the LFC 

problem. Technically, this problem will be more important as the independent power producers (IPPs) penetrate 

the electric power markets. Therefore, the control strategies for new structure with a number of LFC participators 

are not as straight as those for vertically integrated utility structure. In a control area including numerous 

distributed generators with an open access policy, the need arises for novel control strategies based on modified 

dynamical models to maintain the reliability and eliminate the frequency error. 

The proposed research can be summarized in two main topics: (1) proposing generalized dynamic LFC 

model for LFC analysis and synthesis purposes in a deregulated environment, and (2) developing new 

decentralized robust load-frequency control approaches for a multi-area power system in a deregulated 

environment. The following points are the important outcomes of the present dissertation under the above 

mentioned topics: 
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���� Generalized LFC models for restructured power system 

Generalized dynamical models are introduced to adapt the well-tested classical LFC scheme to the 

changing environment of power system operation under deregulation. The main advantage of the proposed 

models is the use of basic concepts in the traditional framework and avoiding the use of the impractical or 

untested LFC schemes. It is shown that the introduced models are useful for both LFC synthesis and analysis. 

The details are given in Chapter 2. 

 

���� Robust sequential decentralized LFC design 

Simultaneous design for a fixed controller structure is used in all reported decentralized LFC scenarios. 

This is numerically difficult for a large scale power system, and it does not provide some of the advantages that 

are usually the reason for using decentralized control in the first place, such as the ability to bring the system into 

service by closing one loop at a time, and the guarantee of stability and performance in the case of failures. In 

addition, some proposed methods might not work properly and do not guarantee performance, when the 

operating points vary.  

In this work, a new systematic approach to the sequential decentralized LFC design in a multi-area power 

system based on the structured singular value theory (µ) is described. The sequential control design, because of 

its advantages, is the most common design procedure in real applications of decentralized synthesis methods. 

Sequential design involves closing and tuning one loop at a time. This method is less conservative than 

independent decentralized design, because, in each design step, one utilizes the information about the controller 

specified in the previous step, and it is more practical in comparison with common decentralized methods. The 

details are reported in Chapter 3. 

 

���� Robust decentralized LFC design using µ-synthesis  

The µ theory is successfully used for the design of decentralized robust load frequency controller in 

response to new technical control demand for large scale power systems in a deregulated environment. In this 

approach, the power system, as a collection of different control areas, is considered under a pluralistic LFC 

scheme.  

Each control area can buy electric power from some generation companies to supply the area-load. The 

control area is responsible for performing its own LFC by buying enough power from pre-specified generation 

companies equipped with a robust load frequency controller. The design methodology is explained in Chapter 3. 

 

���� Robust decentralized PI-based LFC design 

In practice, LFC systems use the simple proportional-integral (PI) controllers. However, since the PI 

parameters are usually tuned based on classical or trial-and-error approaches, they are incapable of obtaining 

good dynamical performance for a wide range of operating conditions and various scenarios in a deregulated 

environment. Regarding this problem, LFC synthesis is formulated as a robust static output feedback (SOF) 



 
 
 
Chapter 6. Conclusions 

 
 
 

111 

control problem and is solved using a developed iterative linear matrix inequalities (ILMI) algorithm to the 

design of robust PI controllers in restructured control areas. The details are reported in Chapters 4 and 5. 

 

���� Multi-objective control based robust decentralized LFC synthesis 

The LFC goals, i.e., frequency regulation and tracking the load changes, maintaining the tie-line power 

interchanges to specified values in the presence of generation constraints and model uncertainties, identifies the 

LFC synthesis as a multi-objective control problem. On the other hand, the low-order and proportional-integral 

based load-frequency controllers which are usually used in real-world power systems and tuned based on 

classical or trial-and-error approaches, are incapable of obtaining good dynamical performance to meet all 

specified objectives. In this work, to cover the above aspects, the LFC is formulated to a multi-objective control 

problem via a mixed H2/H∞ control technique. The model uncertainty in each control area is covered by an 

unstructured multiplicative uncertainty block. A standard model reduction method is used to provide the 

low-order robust load-frequency controllers. In order to design a robust PI controller, the control problem is 

reduced to a SOF control synthesis. Finally, it is easily carried out using a developed ILMI algorithm. The results 

are compared with the pure H∞ and mixed H2/H∞ dynamic control designs. The methodology is explained in 

Chapter 5. 

 

In response to new technical demands in load-frequency control area, the present dissertation addresses 

several useful modeling and control methodologies. The following points can be suggested to continue this 

research: 

1. Implement the proposed load-frequency controllers for the real-world power systems. 

2. Develop a more complete LFC model to couple system dynamics, deregulation policies, economical issues, 

and the other variables of interest for both analysis and synthesis purposes. 

3. Generalize the study to other aspects of power system control with regard to new uncertainties in the 

liberalized electricity markets, and coupling between performance objectives and market dynamics to 

obtain a good trade off between efficiency and robustness. 
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