The relative biological effectiveness (RBE) of 15 MeV betatron X-rays and 200 KV X-rays for lethality in mice

Author(s)藤野, 守次; 中塚, 春夫; 福井, 慶典; 宮内, 徳太郎

Citation日本医学放射線学会雑誌. 25(11) P.1304-P.1307

Issue Date1966-02-25

Text Version publisher

URL http://hdl.handle.net/11094/17884

DOI

rights

Note

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/repo/ouka/all/

Osaka University
The Relative Biological Effectiveness (RBE) of 15 MeV Betatron X-rays and 200 KV X-rays for lethality in Mice

Moriji Fujino, Haruo Nakatsuka, Yosinori Fukui and Tokutaro Miyauchi
Department of Radiology, Osaka City University Medical School
(Director: Prof. M. Fujino)

15 MeV ベータトロン X 線と 200 KV X 線のマウス致死作用に
及ぼす生物学的効果比

大阪市立大学医学部放射線医学教室（主任 麓野守次教授）
齋野 守次、中曽 舃夫、福井 慶典、宮内徳太郎
（昭和40年7月31日受付）

東芝製 15 MeV ベータトロン装置を用い、15 MeV X 線と200 KV X 線の生物学的効果を全身照射によるマウスの半数致死線量につき比較検討した。仮にレントゲン単位及びベータトロンレントゲン単位で表わした半数致死線量の比をとると、生物学的効果比として0.66なる値が得られた。将来このエネルギーの X 線の致死線量への換算法が確立されればこの数値はそれに従って換算し直されるべきである。

Introduction

The relative biological effectiveness of 15 MeV Betatron X-rays as compared with the 200 KV X-rays were studied. In spite of limited interest in radiation biology it is important to study the RBE in this energy region for clinical radiation therapy in determining irradiation dose for cancer patient.1) A median lethal dose is widely used and accepted as a quantitative measurement index for radiation effects. Hence, it was adopted in pursuing the present series of experiments.

Materials and Methods

Male mice of Na 2 strain weighing approximately 20 gm were randomly grouped for irradiation. Each dose group consisted of 10—20 animals. Each group was exposed to graded doses of 15 MeV Betatron X-rays and 200 KV X-rays respectively. It was followed as to survival and weight for 30 days. Ten animals or so were housed per cage. Laboratory chow and drinking water were supplied at livitum.

X-irradiation: The mice were placed in an Acrylic phantom, which is specially made for irradiation of mice. Only two mice were fixed in the center of the irradiation field, where the dose rate is approximately homogenous. An acrylicite cover three cm in thickness was placed over the mice in order to ensure proper electron equilibrium. The mice were surrounded by rice as bolus during X-ray irradiation. The air supply to the mice was maintained adequately.

Exposure Conditions: The 15 MeV X-rays was produced by the Toshiba 15 MeV Betatron machine with a compensation copper filter at the Osaka City University Hospital. The target animal distance was 60 cm, and the dose rate at the position of the animals was approximately 11—20 "Reentgen" per minute.
The uniformity of the field over the region of interest was checked at the start of the experiment. The irradiation dose was measured in the following manner. A Radcon chamber (probe model No. 601) was inserted through a hole on the side of the rice filled exposure box, so that it was entered between the two irradiated animals. The integral dose was measured during exposure. The Toshiba KXC 200 machine was operated at 200 KV, TSD 90 cm., 20 mA, with 1.0 mm Cu 0.5 mm Al filtration (HVL Cu 1.72 mm). The dose rate at the position of the animals was approximately 15 R per minute.

Results

The animals survived and weight were followed 30 days. An analysis of weight response following

<table>
<thead>
<tr>
<th>200 KV X-rays</th>
<th>15 MeV X-rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>dose "R"</td>
<td>number of mice</td>
</tr>
<tr>
<td>700</td>
<td>20</td>
</tr>
<tr>
<td>600</td>
<td>20</td>
</tr>
<tr>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>400</td>
<td>20</td>
</tr>
<tr>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td>1200</td>
<td>10</td>
</tr>
<tr>
<td>1000</td>
<td>10</td>
</tr>
<tr>
<td>900</td>
<td>10</td>
</tr>
<tr>
<td>800</td>
<td>10</td>
</tr>
<tr>
<td>700</td>
<td>10</td>
</tr>
<tr>
<td>600</td>
<td>10</td>
</tr>
<tr>
<td>500</td>
<td>10</td>
</tr>
</tbody>
</table>

Fig. 1 Survival Curves for mice exposed to 200 KV X-rays and 15 MeV Betatron X-rays
irradiation showed no qualitative difference between the two radiations. The lethality data for mice treated with 200 KV X-rays and 15 MeV X-rays are shown in Table 1 and plotted in Fig. 1. To facilitate interpretation of the results, probit transformation of the dose-lethality data was performed.

There have been some reports concerning conversion factors for high energy Betatron radiation. However, much more experimental work is needed before a relationship between exposure dose and absorbed dose at such a high energy radiation is established. Consequently in the present report as a tentative values of relative effectiveness a ratio of the measured dose in R and "Roentgen" was adopted. Since the LD50/30 of 15 MeV X-rays was 770 "R" and the LD50/30 of 200KV X-rays was 510R, a tentative RBE value of 15 MeV X-radiation being 510/770 or 0.66 for lethal effect.

Discussion

The RBE of 0.66 for 15 MeV Betatron X-rays as compared with 200 KV X-rays is consistent with other authors' observations of the relative biological effectiveness of high energy radiation for acute lethality in mice.

Lindop & Rotblat (1959) reported 0.72 for 15 MeV X-rays versus 250 KV X-rays and Sinclair & Blackwell (1959) reported 0.82 for 22 MeV X-rays versus 200 KV X-rays as determined by LD 50 in mice following whole body irradiation, respectively. Moos & Fullee (1955) reported 0.75 for 22 MeV X-rays versus 400 KV X-rays and Sinclair & Blackwell (1959) reported 0.85 for 22 MeV X-rays versus 200 KV X-rays as determined by LD 50 in rats, respectively. Quastler & Clark (1954) reported 0.78 for 20 MeV X-rays versus 130 KV X-rays, Tyree et al (1955) reported 0.8 for 25.5 MeV X-rays versus 180 KV X-rays, Friz-Nigli (1954) reported 0.75 for 21 MeV X-rays versus 180 KV X-rays, and Jovey et al (1959) reported 0.85 for 21 MeV X-rays versus 400 KV X-rays as determined by survival time of mice following whole body irradiation, respectively.

Summary

The relative biological effectiveness of 15 MeV X-rays from Betatron with reference to 200 KV X-rays: (primary HVL Cu 1.72 mm) has been determined by using the slope of lethal effect of the mice as the biological endpoint. The RBE was estimated to be 0.66 for 15 MeV Betatron X-radiation for LD 50 of mice. When a definite method of dosimetry for high energy Betatron X-ray is established, the RBE value tentatively derived in the present study may be subjected to some changes.

References

