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Preface

Preface

This dissertation is composed of ten author’s studies that were carried out under the

guidance of Professor Kazunari Ohgaki at Division of Chemical Engineering, Department of

Materials Engineering Science, Graduate school of Engineering Science, Osaka University

from 2002 to 2008.

The objective is to investigate the thermodynamic stability, cage occupancy, and

structural property of mixed gas hydrates. In addition, I propose that the properties of mixed

gas hydrate containing hydrogen should be maximized for the application to gas storage. The

purification, storage, and transportation of hydrogen are the significant techniques for

realizing a new society sustained by hydrogen energies. Much attention has been directed

toward gas hydrates because of its huge potential applicability as a promising medium for

hydrogen storage and transportation. These technologies can contribute to both the energy

resource and global environmental problems. The authors believe that the present studies

would establish the sustainable society for creating “Integrated EcoChemistry” in order to live

in coexistence with nature.

Shunsuke HASHIMOTO

Division of Chemical Engineering, Department of Materials Engineering Science,

Graduate School of Engineering Science, Osaka University,

1-3, Machikaneyama, Toyonaka, Osaka 560-8531, Japan.
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General Abstract

Gas hydrate is one kind of inclusion compounds. It consists of cages constructed by 

hydrogen-bonded water molecules and guest species enclathrated in these cages. Recently, gas 

hydrates have attracts much attention as a medium for the gas separation, storage, and 

transportation. In this thesis, the author proposes the applied techniques using gas hydrates, 

such as gas storage and transportation. The objectives are (1) to reveal the thermodynamic 

properties of various mixed systems containing gas hydrate, (2) to investigate the 

thermodynamic stability of hydrogen-containing hydrate systems and cage occupancy of 

hydrogen by use of thermodynamic and Raman spectroscopic methods.

The gas hydrate systems generated from various mixtures containing from the smallest 

(hydrogen molecule) to the largest guest (dimethylcyclohexane stereo isomers) were studied. In 

the systems of dimethylcyclohexane stereo isomers, the cis-1,4-dimethylcyclohexane does not 

generate the structure-H hydrate in the presence of xenon, while the mixture of 

cis-1,4-dimethylcyclohexane and methane generates the structure-H hydrate. That is, the U-cage 

occupancy limit of large guest species depends on the function of help gas. In the ternary or 

quaternary systems containing hydrogen, hydrogen molecule cannot be encaged in the carbon 

dioxide, ethane, and cyclopropane hydrates, while it can occupy the vacant hydrate cages which 

exist in the propane, tetrahydrofuran, and tetra-n-butyl ammonium bromide hydrates under the 

present experimental conditions.

For the application to hydrogen storage, mixed gas hydrates containing hydrogen were 

investigated in detail. Especially in the case of hydrogen + water-soluble guest species such as 

tetrahydrofuran and tetra-n-butyl ammonium bromide mixed gas hydrates, mixed gas hydrates 

are much more stable than the pure hydrogen hydrate. The equilibrium temperature of hydrogen 

+ tetra-n-butyl ammonium bromide mixed gas hydrate is about 8 K higher than that of 

hydrogen + tetrahydrofuran mixed gas hydrate at same pressure condition (~10 MPa). The 

Raman spectra reveal that the large cages are occupied by the additive guest molecules while one 

hydrogen molecule occupies the small cages selectively. The cage occupancy of hydrogen is 

independent of the concentration in the aqueous solution. Interestingly, the results also reveal the 

characteristic property that hydrogen occupation may depend on the structure of unit-cell.

The structure of the hydrogen + tetrahydrofuran mixed gas hydrate and the cage selectivity 

of hydrogen do not change with the pressure increases up to 200 MPa. The storage capacity of 

hydrogen in the tetrahydrofuran hydrate was also investigated by the data obtained from Raman 

spectroscopic measurements. The storage amount would reach about 1.0 mass% at about 80 

MPa, which is almost equal to the maximum amount of hydrogen storage in the structure-II 

tetrahydrofuran hydrate on the assumption that the only one hydrogen molecule can occupy the 

small cage of tetrahydrofuran hydrate.

General Abstract
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Chapter I

General Introduction

Needless to say, energy supports our convenient life today. Almost of us consume huge 

amount of energy every day without being conscious of quantities of energy resource and 

supply. Now, there is little doubt but that the stable supply of energy is due to oil, power, gas 

companies and so on. If this stable supply of energy came to stop, our daily lives would go 

under quickly. Energy resource problems are very important, serious, and universal in the world, 

especially for nation poor in natural energy resources, Japan.

I-1 Background

I-1.1 Energy Resource and Geoenvironmental Problems

Since the Industrial Revolution, scientific technologies have developed at a rapid rate, and 

consequently our lifestyle has become affluent. Our lifestyle depends on fossil fuels of coal, oil, 

and natural gas for the most part of industrial productive energy. In particular, Our lifestyle rely 

heavily on oil today. In populous developing countries, mechanization of agriculture and 

increase in the use of chemical fertilizer are essential for the solution of population and food 

issues. In these countries, the consumption of fossil fuels is also getting larger and larger. For 

using fossil fuels, it is important to find a fresh energy resource equal to the current energy 

consumption. On the other hand, it is likely that conventional subterranean energy resources 

such as crude oil run dry decades later, and consequently soaring crude oil prices are now 

beginning to affect the global as well as Japanese economy. That is, humankind has a 
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global-scale energy resource problem. In future, novel energy resources instead of oil will be 

required.

As mentioned above, in about 200 years after the Industrial Revolution, the consumption of 

fossil fuels has dramatically increased. Now the increase of carbon dioxide (CO2) concentration 

in atmosphere becomes serious environmental problem. Eventually since the 1980’s, the "global 

warming" has attracted much attention, which is caused by the extreme increasing of 

atmospheric CO2 concentration. The heat ray radiating from the earth is absorbed by greenhouse 

effect gas such as CO2 and the heat is stored. The global warming is worldwide problem and 

would cause some more crises.

Figure I-1 shows the trend of atmospheric CO2 and methane (CH4) concentration and 

temperature in Vostok station, Antarctica in the past 220 thousand years [1]. Raynaud et al. [2] 

have obtained this trend by the direct measurement of the atmosphere entrapped with the past ice 
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sheet core. Global environment has alternated between glacial and interglacial stages every 100 

thousand years. This cycle is linked to the eccentricity of the earth’s orbit or precession cycle of 

the earth, and well known as "Milankovich Cycle". As shown in Fig. I-1, the concentration of 

CO2 fluctuates between 200 ppm in the glacial stage and 280 ppm in the interglacial one. This 

can be regarded as "Natural Cycle". In addition, the concentration of CO2 or CH4 correlates 

closely with the past temperature trend. Recently, the concentration of CO2 indicates much 

higher value than that of the past. To make matters worse, the concentration of CO2 increases by 

an average of 1.5 ppm per year. This speed is about 1500 times as rapid as Natural Cycle. That 

is, it is obvious that the increase of greenhouse effect gas such as CO2 promotes the global 

warming.

A few methods to solve the global warming have been proposed before now. Figure I-2 

shows the relation between the density and the depth, and favorable storage method at each 

depth. In the region upper than 3000 m, the density of CO2 is smaller than that of sea water and 

the dissolution of CO2 is usually used. In this method, the absorption amount of CO2 is small 

and this method would cause marine pollution and insoluble CO2 is re-emitted into the 

atmosphere. In addition, it is likely that the dissolved CO2 returns to the atmosphere as a result 

of seawater circulation after 100 years. Therefore, the storage of CO2 as the liquid state is 

required. It is possible to store CO2 utilizing CO2 hydrate at the bottom of the ocean under a 

depth of 3000 m [3, 4]. Under the conditions of the low-temperature and high-pressure in the 
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deep ocean, the sea water and the condensed CO2 fluid generate CO2 hydrates [5]. In the region 

from 3000 to 6000 m, the liquefied CO2 reacts with the seawater and consequently generated 

CO2 hydrates are stored at a crater place. On the other hand, Ohgaki and Inoue [6] have 

proposed the innovative CO2 storage method on deep ocean floor above 6000 m in depth using 

gas hydrates. In this method, the retrieved CO2 is transported to the sensibly deep depression 

though the pipelines. As shown in Fig. I-2, it is at 6000 m in depth that the density becomes 

larger in the order of sea water, CO2 hydrate, and liquefied CO2 [5]. Therefore, above 6000 m in 

depth, the hydrate generated from poured CO2 and sea water exists as the cap and plays an 

important role in preventing the stored liquefied CO2 from diffusing into the sea water. That is, 

this method enables CO2 to be stored more stably and in larger amounts (because of liquefied 

state) than any other method applying the ocean.

In order to stop the global warming, the emission limitation of CO2 is also essential. That 

is, the usage of low-carbon fuel is the desirable method in the near term. Natural gas is relatively 

clean and promising energy resource because the main component of natural gas is CH4 and 

consequently the amount of CO2 emission is fewer than any other fossil fuel. The usage of 

natural gas is increasing in the decade ahead. In addition, we can use alternate energies such as 

hydraulic power, force of wind, atomic energy, solar energy, and so on. However, the energy 

density of non-fossil energy such as solar power is so small that much time and cost are 

required. Atomic energy has the problems of safety and waste disposal. Therefore, we have to 

find novel energies instead of normal fossil fuels pretty soon.

I-1.2 Utility of Hydrogen Energy & Fuel Cell [7]

As mentioned above, not only the emission limitation of CO2 but also novel energies 

instead of normal fossil fuels are essential to stop the global warming. Hydrogen (H2) energy 

has attracted much attention as a clean and potential energy resource because its combustion 

product is only water. The elemental substances of H2 do not exist naturally for the primary 

energy resource. However, there are a lot of the elemental hydrogen in hydrocarbons or water on 

the earth. In addition, the chemical energy of H2 per unit mass is 142 MJ / kg, which is at least 

three times as much as that of other chemical fuels. Therefore, H2 energy has bright prospects of 

large advantage for the future energy resource. In the early 19th century, it was revealed that the 

reverse reaction of water electrolysis is capable of electric generation. This is the first discovery 

of fuel cell. Fuel cells combine H2 with O2 in an efficient electrochemical process that is clean 

and flameless. Available fuels include not only H2 but also methanol, natural gas, and so on. In 

the case of H2 fuel, nothing is produced but electric power and pure distilled water, along with 

heat that can be recovered and used. Unlike batteries, fuel cells need no recharging and they will 

operate as long as fuels are supplied. Decades of research have resulted in the evolution of 
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different fuel cell technologies, which fall into a handful of categories based on their type of 

electrolyte.

The types of electrolyte for the fuel cell are summarized as follows: molten carbonate, solid 

oxide, phosphoric acid, and solid polymer membrane (this type is called as PEM). Each fuel cell 

type is used for the different purpose in particular application. For example, PEM fuel cell 

(hereafter, PEM-FC) is often used at relatively low-temperatures. Figure I-3 shows summary of 

PEM-FC. PEM-FC delivers high power density and offers the advantages of low weight and 

volume, compared to other types. It operates at around 350-370 K. Low-temperature operation 

allows it to start quickly (less warm-up time) and results in less wear on system components, 

which makes the PEM-FC durable. PEM-FC also responds rapidly to changes in demand for 

the power, and it does not require corrosive fluids as some types do. All of these factors make 

PEM-FC good candidates for the vehicles and micropower applications. On the other hand, 

PEM technology uses a solid polymer membrane (thin plastic film) and porous carbon 

electrodes containing a platinum catalyst or other noble metal. The catalyst is very expensive and 

also makes the cell extremely sensitive to poisoning by carbon monoxide (CO), which must be 

eliminated in the fuel gas along with sulfur and other impurities. There are many problems on 

the PEM-FC and developers are searching catalysts instead of platinum that are more resistant to 

CO.

All along, Japanese industry has been a global leader in developing fuel cell technology. In 

addition, some of the major automakers in Japan such as Toyota and Honda have also led 

implementation of H2 fuel cells in vehicles and development of fueling infrastructure. Today, the 
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amount of H2 production in the world is ~500 billion Nm3 per year, and 150 Nm3 of those is 

produced in Japan. Ministry of Economy, Trade, and Industry (METI) sets the cumulative target 

value of introduction of H2 fuel cell vehicle and stationary H2 fuel cell as shown in Table I-1. 

The H2 requirement is estimated at 38.7 billion Nm3 per year in 2020, which exceeds greatly the 

current amount of H2 production. There is little doubt but that H2 will become the "key energy" 

for the co-existence of nature and humankind, and the H2 market will get larger. In the future, H2 

fuel cell may raise the "Second Industrial Revolution".

I-1.3 Actuality of Hydrogen Utilization [7]

H2 utilization is classified into three processes as follows: H2 production and supply, H2 

separation and purification, and H2 storage and transportation. In particular, the storage and 

transportation of H2 at moderate conditions are key factor in establishing a new and 

earth-conscious society sustained by H2 energies. In this section, the summary of these 

processes is simply mentioned.

Production and supply of H2

One of H2 advantages is that it is found in a great variety of compounds including water, 

hydrocarbon fuels, and inorganic substances. Hence, H2 can be produced from a multitude of 

sources and in many different ways. The two conventional methods of producing H2 are the 

reforming of hydrocarbon fossil fuels and electrolysis of water. The least expensive, most 

common process in the United States is catalytic steam reforming of natural gas (mostly 

methane), while some European nations use nuclear power for electrolysis.

Gas reforming:

Natural-gas reforming has the advantages of high efficiency and low cost as well as the option 
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years 2010 2020 2030

H2 fuel cell vehicle 50 thousand pounds 5 million pounds 15 million pounds

Stationary H2 fuel 

battery (containing 

household and 

institutional use)

2.1 million kW 10 million kW 12.5 million kW

Table I-1 The cumulative target value of introduction of H2 fuel cell vehicle and stationary H2 

fuel battery by METI.



of recovering and using waste heat in a cogeneration system. Natural gas is easy to handle and it 

has the highest hydrogen-to-carbon ratio (H / C) of any fossil fuels, so it produces relatively 

moderate CO2 emissions. In the first step of reforming natural gas, CH4 reacts with steam at 

temperatures of about 1100-1200 K, accelerated by a nickel catalyst. This reforming step 

produces a synthesis gas composed of H2 (typically 75 %), CO (15 %), and CO2 (10 %). Then 

a reaction with additional steam (called the water-gas shift reaction) converts the CO to CO2 and 

produces more H2. H2 can be separated from these syngas and purified (mention later). Overall, 

the methane steam reforming process can be represented by:

CH4 + 2H2O → 4H2 + CO2

Two variations of catalytic steam reforming are used: partial oxidation and autothermal 

reforming. In partial oxidation, some of the feedstocks are burned as fuel to generate the heat 

required for the subsequent reactions. However, combustion reaction is quenched before it is 

complete. Generally, oxygen for the fuel is introduced into the gas reactor by cryogenic 

separation from air, which is an expensive part of this system. Partial oxidation is better suitable 

for the reforming coal or heavier hydrocarbon fuels such as diesel and gasoline because the 

initial high-temperature combustion step breaks these large molecules into structures that are 

simpler to process.

Steam reforming is endothermic reaction, while partial oxidation is exothermic. The 

autothermal process becomes possible by combining the two methods, which is the autothermal 

reforming method. In this method, the autothermal process becomes only slightly hot overall, 

which results in a small, quickly starting, and quickly responding system. Many of the newest 

onsite reformers apply the autothermal technology.

Electrolysis of water:

In water electrolysis, an electrical current passes through water and decomposes it into hydrogen 

and oxygen. Traditionally, two types of electrolyzers have been operated in industry (both using 

liquid electrolytes). One is the tank type (unipolar) with electrodes suspended in a tank of 

electrolytes. The other is the filter type (bipolar), which uses two separate cells and is better 

suitable for high pressures and temperatures. The efficiency of these systems has improved 

from the 70 %-75 % range in the 1970s to 80 %- 90 % today, but essentially the concept hasn't 

changed for more than 50 years. Recently, however, electrolysis using PEMs has attracted 

attention. The technology is the reverse of that used in PEM-FC. A solid polymer electrolyte 

(thin plastic sheet) becomes conductive when soaked in water. PEM electrolyzers reach 

efficiencies similar to conventional types. In addition, they generate H2 at very high purities and 

high pressures, and consequently compression costs are reduced. Moreover, there are some 

other potential methods for the decomposition of water: water pyrolysis, using Solar or nuclear 
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power.

2H2O → 2H2 + O2

2H2 + O2 → 2H2O

Biomass and waste feedstocks:

Most recently, biomass has attracted much attention as a technology for the prevention of global 

warming because it's organic resource from botanical origin, which can absorb the CO2 by 

photosynthesis. Biomass and waste include a great variety of materials as follows: inedible 

plants, undesirable species that create a nuisance, plants grown specifically as biomass crops, 

leftovers from agricultural crops, organic industrial waste, animal waste, and so on. In the case of 

production of electricity and heat by gasification of biomass, CO2 is generated in the gasification 

process. However, these CO2 are equivalent to the CO2 absorbed from atmosphere by the 

original plant. That is, the usage of biomass does not increase CO2 in atmosphere overall. This 

property is called as "carbon neutral". Biomass can be considered a renewable energy source in 

the sense that it was created with solar energy and can be replaced by growing more plants.

Separation and purification of H2

  As stated above, H2 is produced by various methods. However, some of impurities with H2 are 

included in the reaction products with either method. For example, syngas generated from 

reforming of fossil fuels includes carbon monoxide (CO), CO2, water, CH4, etc. with H2. The 

CO is toxic, and in many cases, these impurities are impeditive for the storage and 

transportation. Therefore, purification of H2 up to desired level is essential. Separation and 

purification processes of H2 are categorized as absorption, cryogenic separation, adsorption, and 

diffusion. Details are as follows:

H2 absorption:

Gas mixture is contacted directly with absorbing liquid, and then more soluble components can 

be absorbed and eliminated. Two methods are well-known, physical and chemical absorption. In 

the former, soluble gases are dissolved physically in absorbing liquid. On the other hand, in the 

latter, soluble gases are reacted chemically with reactant in absorbing liquid, and then their 

products are dissolved. In the case of H2 purification, absorption using amine is usually adopted 

in order to eliminate CO2 that is main impurity in syngas.

Cryogenic separation:

Gases containing H2 are cooled down by repeating compression and expansion processes, and 

consequently transformed into liquids. Then, H2 can be separated from obtained liquid mixture 

Thesis for Doctorate by S. Hashimoto

-10-



by distilling in the distillation column. The boiling point of H2 is ~20.3 K, which is lower than 

other gases except for Helium. This difference in boiling point is available in the cryogenic 

separation method.

H2 adsorption (PSA method):

Pressure swing adsorption (PSA) method is a separation and purification technology that is 

used to separate some species from gas mixture under pressure using the difference of these 

species' molecular characteristics and affinity for an adsorbent material. It operates at 

near-ambient temperatures and so differs from cryogenic distillation techniques of gas 

separation. Special adsorptive materials (e. g., zeolites) are used as a molecular sieve, 

preferentially adsorbing the undesired gases at high pressure. The process then swings to low 

pressure in order to desorb the adsorbent material. As shown in Fig. I-4, the simplest equipment 

requires two fixed-bed adsorption towers. Using two adsorbent vessels allows near-continuous 

production of the target gas. It also permits so-called pressure equalization, where the gas 

leaving the vessel being depressurized is used to partially pressurize the second vessel. The 

results in significant energy savings, and is common industrial practice. One application of PSA 

is the separation of CO2 from biogas to increase the CH4 content. Through PSA the biogas can 

be upgraded to a quality similar to natural gas. Absorbed amount of H2 is almost independent of 

pressure and very small. Gases except for H2 are adsorbed at high pressure by use of the 

difference of affinity for an adsorbent material and H2 can be purified. In PSA method, mole 

fraction purity 0.999999 of H2 is achievable.
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H2 diffusion (membrane separation method):

Membrane separation is carried out by use of the velocity difference in gas permeability through 

membrane. This method generally requires less energy than other methods and can be operated 

at mild conditions. In addition, the maintenance of equipment is very easy because the equipment 

is composed of very simple and small system. Gas mixture containing H2 is introduced into the 

upper side of membrane. Then H2 diffuses and transmits through the membrane by the driving 

force obtained from the pressure difference of H2 between upper and lower sides, and 

consequently highly-pure H2 can be recovered. As a membrane, polymer membrane or metallic 

membrane is often used.

In general, these methods are combined efficiently for the H2 purification.

Storage and transportation of H2

Futural H2 energy societies of our future will depend on the developments of safe, reliable 

ways in order to store and transport H2 after H2 production. Although H2 is more advantageous 

in bulk storage than electricity, technical innovation for efficient storage technology of H2 has 

been still essential. The biggest challenge will be storing enough H2 on fuel cell vehicles to allow 

the same travel range as their gasoline of hybrid counterparts (at least 300 miles (500 km)). 

Therefore, the compact and lightweight storage method is required as soon as possible. Recently, 

H2 is stored and transported by carry containers of compressed H2 gas. However, H2 accounts 

for very large volume (~11.2 m3 / kg) at room temperature and various alternatives have been 

proposed.

Compressed H2 tanks:

Most compressed H2 tanks operate at ambient temperatures and store the gas at pressures from 

35 to 70 MPa. Compression of H2 to this range requires roughly 10 % of the gas's energy 

content. Compressed H2 tanks (usually cylinders with rounded ends) have been certified by 

standards agencies worldwide. They are used for the onboard fuel cell vehicles, the portable and 

onsite power generators, and the uninterruptible power supply systems, where fuel cells replace 

batteries. The atomic diameter of H2 is smaller than that of most metallic materials, and H2 is 

easy to break into metallic materials. Therefore, conventional steel tanks are made of the 

premium steel in order to prevent metal fatigue and leakage, and consequently too heavy for the 

H2 storage in fuel cell vehicles. Researchers and manufacturers have explored lightweight 

cylinders that use various other materials such as polymer liners, multiple shells, and composite 

fiber wraps to minimize the amount of metal required.

Liquefied H2 tanks:

H2 liquefies at super-cooled (cryogenic) temperatures, ~20.3 K. In its liquefied state, H2 takes 
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up just 1 / 700th as much volume as the gaseous form. An important advantage is that the storage 

tank can be compact. Liquefied H2 has a higher energy density than the compressed form, so a 

tank containing the same amount of fuel is very smaller. Therefore, liquefied H2 would boost the 

driving range of a vehicle. It allows about 2-3 times the distance of compressed H2 tank. 

However, liquefaction of H2 requires much more energy than compression. Liquefaction process 

consumes at least 30-35 % of H2's energy content or 11 to 12 kWh of electricity per kilogram 

H2. In addition, the other weak point of liquefied H2 is evaporation. Whenever the H2 isn't used 

(for example, when a fuel cell car is parked), the liquid naturally tends to return to its gaseous 

state due to the heat exchange between the cold tank and the warmer atmosphere. The boiled-off 

gas must be vented. Therefore, cryogenic tanks for storage require insulation and other special 

materials.

Chemical hydrides (containing organic and inorganic compounds):

A chemical slurry or solution can store H2 as a hydride. In this method, the stored H2 is released 

through a reaction with water, which gives off heat. These systems require heat management and 

they are irreversible because the storage medium must be regenerated before it can be recharged 

with more H2. The most advanced chemical storage material is sodium borohydride, the familiar 

laundry detergent Borax (sodium borate) combined with H2. This chemical creates a nontoxic 

and nonflammable solution with water and produces H2 when exposed to a catalyst.

NaBH4 + 2H2O → NaBO2 + 4H2

When the catalyst and solution are separated, the system stops generating H2. The spent solution 

is recyclable. However, it becomes one of problems that this regeneration of solution requires 

large energy.

  In another type of chemical hydride, the H2 storage using a liquid organic compound (organic 

chemical hydride) at room temperature has become the object of much attention. For example, 

cyclohexane or methylcyclohexane is popular as follows:

C6H12 → C6H6 + 3H2

C6H11CH3 → C6H5CH3 + 3H2

These organic chemical hydrides enable efficient H2 storage at normal pressures and 

temperatures. However, they require large energy to release H2 and toxic liquid such as benzene 

is generated after reaction. The regeneration system of these toxic media should be build for the 

application.
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Carbon materials:

Carbon materials have attracted attention in the promise that they can hold H2 in minuscule 

structures called nanotubes or nanofibers. Theoretically, these forms of carbon could store and 

release relatively huge quantities of H2, if practical structures and systems can be developed. In 

nanotubes, carbon atoms are linked together in hexagons like chicken wire and rolled into 

single-layer tubes. Carbon nanotubes are known to attract H2 molecules. The huge surface area 

afforded by the carbon atoms would offer potential for the H2 storage, and the carbon atom is 

lightweight. The ideas is that carbon nanotubes might draw in H2 just as water is sucked into a 

straw. Tube bundles might serve as light H2 sponges ideal for fuel cell vehicles. In addition, 

nanotubes are extremely stiff and strong, and plenty of carbon is available to manufacture them. 

However, researchers haven’t figure out how to control its uptake and release. They also have no 

clue yet how to mass-produce the tubes. From now on, further investigations are required about 

the interaction between hydrogen and carbon atoms.

Metal hydride (containing H2 absorbing alloys):

Originally, metal hydrides were designed to control reactions and output in nuclear power plants. 

Their development for the H2 storage was promoted by their safety advantage. In this method, a 

pure metal or an alloy forms a stable hydride when it absorbs the hydrogen atoms by 

pressurizing the metal and then gives off heat. On the contrary to this absorption process, the 

hydride releases the hydrogen atoms when heat is applied or the system is depressurized as 

follows:

M + xH2 = MH2x + Q (pure metal)

ABz + xH2 = ABz(H2)x + Q (alloy)

H2 absorbing alloys are composed of the metal A that is easy to generate hydrides and the metal 

B that is difficult to do so. They are categorized AB5 and AB3 type depending on the ratio of A 

to B. Ti and Ni is well known as the metal of A and B site, respectively. In this method, it would 

be advantageous that heat given off by a fuel cell can be used to release the H2. When 

incorporated in a metal hydride, the H2 takes up no additional space, which results in a compact 

and high-density storage medium. Compared with compressed H2 tanks holding the same 

amount of H2, metal hydride are only 1 / 3 - 1 / 4 as large. In addition, they operate at relatively 

low pressures. However, metal hydrides are heavy, and a tradeoff is involved in selecting 

materials. The metals with the highest storage capacity require high temperatures to release the 

H2. This is not suitable for using the low-temperature exhaust heat from PEM fuel cells in 

vehicles. But lower temperature hydrides hold less energy, and consequently they have to be 

larger and heavier to carry as much H2 fuel. Therefore, scientists are working on new alloys that 

optimize the hydride's temperature and energy density characteristics. In addition, aluminum 
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compounds called alanates are considered to be the most promising of the complex metal 

hydrides. Several research projects are under way to investigate their storage mechanisms.

The relation between mass density (mass%) and volume one (kg / m3) for the various 

storage technologies of H2 is shown in Fig. I-5. According to Zuttel, there are no methods that 

fulfill all of storage efficiency, compactness, lightweight, low cost, and safety at the same time. 

Further studies about innovative technology for the H2 storage are required.
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I-2 Gas Hydrate

I-2.1 Structure of Gas Hydrate [8]

Gas hydrates are one of clathrate hydrates, which are crystalline inclusion compounds. 

They are ice-like solid crystals and are composed of the frameworks that are constructed by the 

hydrogen-bonded water molecules. In these frameworks, the relatively small "guest" molecules 

are enclosed. As shown on Fig. I-6, the guest molecules in the cavities have a van der Waals 

interaction with water molecules, and consequently the presence of the guest molecule stabilizes 

the structure of gas hydrates. The cavity constructed by hydrogen-bonded water molecules is 

generally called as "hydrate cage". So far, several cages are well known as shown in Fig. I-7. 

Circles represent the oxygen atoms of the water 

molecules. The hydrogen atoms of the water 

molecules lie among the oxygen atoms, though they 

haven't been drawn. The smallest cage consists of 

pentagonal dodecahedron (51 2), which is called as 

S-cage. Middle and large cages consist of 

tetrakaidecahedron, 51 262 and hexakaidecahedron, 

51 264, which is called as M-cage and L-cage, 

respectively. The other cages are called as S'- 

(dodecahedron, 435663) and U-cage (icosahedron, 
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Figure I-6 Summary of gas hydrate.

Figure I-7 Schematic illustration of five hydrate cages constructing unit-cell structures.



51 268). The S'-cage is slightly larger than the S-cage, and the U-cage is much larger than the one. 

The cage size becomes larger in the order of S-, S'-, M-, L-, U-cage. Several cages configure the 

unit-cell structures of gas hydrates. There are three structures of hydrate unit-cell, structure-I 

(s-I), structure-II (s-II), and structure-H (s-H). As shown in Fig. I-8, all the structures have 

S-cage in common. The s-I and s-II hydrates are composed of two types of hydrate cage, the 

former consists of two S-cages and six M-cages and the latter sixteen S-cages and eight 

L-cages. On the other hand, the s-H hydrate is composed of three types of hydrate cage, three 

S-cages, two S'-cages, and one U-cage. The characteristics of these unit-cell structures are 

summarized in Table I-2 [9, 10].

I-2.2 Stability of Gas Hydrate

Generally, it is well-known that the stability, structure, and hydration number of gas hydrate 

mainly depend on shapes, sizes, and physical properties of enclathrated guest species, 

temperature, pressure, and composition of guest species. Figure I-9 shows the relation between 
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molecular diameter and hydrate structures or cage occupancy. Normally, the better the guest 

species fit the cages, the more stable the hydrate structure is. For example, in the case of noble 

gases, the hydrate becomes more stable in the order of Argon (Ar), Krypton (Kr), and Xenon 

(Xe) hydrates, which agree with the order of guest molecular size (Ar: 0.38 nm, Kr: 0.40 nm, Xe: 

0.43 nm). In the case of guest species whose size is larger than the free volume of S-cage, they 

generate the stable hydrate lattice in the presence of perfectly vacant S-cages. However, in the 

high-pressure region, the larger guests than S-cage can be entrapped with S-cages, which is 

reported as "Compressed Occupation" phenomenon [11]. In the case of guest species whose 

size is larger than the free volume of L-cage, double hydrate is generated. Double hydrate, which 

is also called "compartmentally-occupied type", can be generated from small molecule such as 

methane as well as large guest molecule. Details are mentioned later.

In general, gas hydrates form at low-temperature and high-pressure conditions. The 

thermodynamic stability of gas hydrates is an important knowledge in order to investigate its 

physical property.
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I-2.3 Mixed Gas Hydrate

Mixed-gas hydrates are defined as the gas hydrates containing two or more guest species 

(for example, CH4 + CO2 mixed-gas hydrate) [12]. Since the first discovery of gas hydrate in 

1810 [13], a lot of researches about pure (single-gas) hydrates have been reported. However, 

there is less information about mixed-gas hydrate systems and researches about them have been 
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Figure I-9 Molecular diameter dependency of hydrate structures and cage occupancies.
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performed little by little in the world.

Mixed-gas hydrates can construct three types of hydrate unit-cell structures, the s-I, -II, or 

-H, depending on temperature, pressure, composition and kind of guest species. Mixed-gas 

hydrate systems are classified into two types of group by their cage occupancy. One is 

"competitive occupation system", and the other is "compartmental occupation system". In the 

former system, cages of the same kind are occupied by two of more types of guest species, 

where only one molecule can be occupied in a cage. The s-I and -II hydrates are formed in this 

system. On the other hand, in the latter system, every cages are preferentially occupied by the 

guest molecules that optimally fit the free volume of cages. In this system, the s-II and -H 

hydrates are usually constructed. Details are mentioned as follows:

Competitive Occupation System

In this system, the equilibrium composition and pressure can be controlled by the initial 

composition of guest molecules. Initial composition also affects the cage occupancy of guest 

species. Some interesting behaviors for the competitive occupation mixed-gas hydrate system 

have been  reported. The one of characteristic behaviors for this system is the "hydrate-structural 

phase transition" depending on the composition of guest mixture. According to the recent 

reports, the CH4 + ethane (C2H6) [14], CH4 +  cyclopropane (c-C3H6) [15], and CH4 +  

perfluoromethane (CF4) [16] mixed-gas hydrates generate the s-II hydrate for a certain 

composition region, nevertheless each guest molecule generates the s-I hydrates. The structural 

phase transition greatly affects thermodynamic properties of mixed-gas hydrates. However, the 

mechanism of structural phase transition is still unclear and many scientists have investigated it.

Compartmental Occupation System

In this system, the equilibrium composition and cage occupancies of guest species are suggested 

to be almost invariant. However, the size and substitutional group of guest species have much 

effect on the equilibrium pressure. The s-H hydrate, which is typical case of compartmental 

occupies hydrates, was discovered in 1987 [17] and it is relatively new subject of research. Two 

kinds of guest species are essential to form s-H hydrate: one is small guest-species such as CH4, 

nitrogen (N2) and Xenon (Xe) etc., the other is large guest-species (LGS) like 

methylcyclohexane. The small guest-species are called "help gas"  and it assist the formation of 

s-H hydrate for the LGS. The LGS cannot be enclosed in hydrates without coexistence of the 

help gas molecule. It is commonly believed that the help gas molecule occupies the S- and 

S'-cages, while the LGS occupies only the U-cage [8]. In this system, four-phase (gas, aqueous 

solution, oily LGS, and hydrate) equilibrium curve (pressure-temperature relation) is usually 

measured.
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I-3 Natural-Gas Hydrate

I-3.1 Distribution of Natural-Gas Hydrate

Natural-Gas Hydrate (NGH) is one of mixed-gas hydrates that occupies natural gas 

containing CH4, C2H6, C3H8, and so on. In the 1930s, NGH was firstly discovered as a nuisance 

material that blocked the natural-gas transport in pipe lines [18]. The natural gas containing 

water generated hydrates by pressurized and cooled in pipe lines. This problem was solved by 

drying the gas prior to transport or mixing inhibitors.

In general, it has been confirmed that the velocity of elastic wave through NGH layers is 

twice as fast as that of normal stratums. In case the elastic wave goes through the stratum 

containing NGH, acoustic discontinuous surfaces are generated between NGH layer and normal 

stratum. These interfacial boundaries are detected as strong reflection surface, and the existence 

of NGH can be recognized. This reflection surface is called "Bottom Simulating Reflector 

(BSR)" and has become the important clue for the search of oceanic NGH fields. In the 1960s, a 

lot of NGH fields were discovered in the subterranean permafrost regions and in the sediments 

under deep ocean floor at various locations world wide [19] as shown in Fig. I-10. In these 

regions, enormous quantities of natural-gas generated by methanogenic or thermogenic 

processes exist in the form of the gas hydrate. The composition and kind of natural gas depend 

on the production area and condition, but the major component of natural gas is CH4 and there 

are some impurities such as C2H6, C3H8, C2H4, CO2, H2, and so on. The structure of NGH is 

generally considered to be s-II. In the special case that the guests consist of only methane or 
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Figure I-10 NGH distribution in the world.



some large guest species such as hexane, the structure of NGH can be s-I or s-H. The NGH 

receives much attention as a promising unconventional energy resource instead of fossil fuels. In 

addition, NGH can become the source of H2 energy, which is obtained from reforming of 

natural gas. However, it is not well-known that NGH has spontaneously dissociated and large 

quantities of gaseous methane is emitted into the atmosphere under the influence of the global 

warming. The global Warming Potential (GWP) of CH4 is about twenty times as much as that 

of CO2, so we have to exploit these NGH urgently in order not to make environment on the earth 

worse. 

In order to obtain the natural gas from NGH fields, it is necessary to decompose NGH 

efficiently. Several methods for the recovery of natural gas from NGH fields are proposed as 

follows: depressurization, thermal stimulation, and inhibitor injection [20, 21]. In the 

depressurization, the NGH fields are depressurized below equilibrium conditions and 

consequently the NGH decomposes. This depressurization process is usually performed by 

sucking natural gas from free gas layers under the NGH fields. In the thermal stimulation, the 

NGH fields are heated beyond hydrate formation temperatures. Heated vapor is injected into the 

NGH fields and consequently the NGH decomposes. In the case of inhibitor injection, an 

inhibitor such as methanol (CH3OH) is injected into the NGH fields in order to shift the hydrate 

equilibrium conditions to its unstable side. CH3OH can hydrogen-bond with water molecules 

and consequently inhibit the hydrate formation. The most economically promising method is 

considered to be the depressurization technique. Recently, the innovative and potential method 

for the NGH exploitation is proposed, which is substituting CH4 in the NGH fields for another 

guest species such as CO2 by the difference of thermodynamic stabilities [22, 23]. The further 

researches have been still required and continued for developing the NGH fields as a future 

energy resource.

I-3.2 Medium for Natural-Gas Storage and Transportation

The NGH has also attracted much attention as a medium for the natural-gas storage and 

transportation technology. In Japan, liquefied natural gas (LNG) is mainly used for the long 

distance natural-gas transportation. However, medium- or small-scale natural-gas wells remain 

undeveloped because the LNG is not economical transportation method to develop these wells. 

The amount of natural gas reserved in these wells is considered to be more than 40 % of the total 

amount of natural gas. As the economical transportation method of this huge amount of natural 

gas, the new technique using the natural-gas hydrate pellet (NGHP, shown in Fig. I-11) as a 

medium for the natural-gas storage and transportation is proposed [24]. The NGHP is very 

useful for the development of medium- or small-scale wells because its initial costs are much 

lower than that of LNG. In addition, the NGHP can store and transport natural gas more 

Thesis for Doctorate by S. Hashimoto

-22-



economically by virtue of the 

"self-preservation effect". This effect enables 

gas hydrate to reserve guest molecules for a 

very long period of time, nevertheless it is left 

under dissociation conditions [25]. As shown 

in Table I-3, the conditions of production and 

transportation for the NGHP are much milder 

than those of LNG, although the amount of 

transportation for the NGHP decreases 

because of containing water. There is little 

doubt but that NGHP is the potential 

technique in point of safety and low cost.

As mentioned in this section, NGH is naturally occurring mixed-gas hydrate which 

consists of guest species of variable size and shape. For the applied techniques using gas 

hydrates, it is important to obtain the fundamental information about the thermodynamic 

properties, cage occupancies, and structures of mixed-gas hydrates containing various guest 

species. 

I-4 Outline and Objective of This Thesis

I-4.1 Hydrogen Hydrate

H2 hydrate is one of relatively new research themes among various studies about gas 

hydrates. It has long been thought that H2 is too small to support hydrate cages by itself. In the 

late 1990s, Dyadin et al. [26]  have revealed that H2 hydrate is stable at 100-360 MPa in the 
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NGHP LNG

Transport (storage) form Solid Liquid

Condition of production ~MPa, > 273 K Atmospheric pressure, 111 K

Condition of transportation Atmospheric pressure, ~263 K Atmospheric pressure, 111 K

Component / m3
water: 0.8 m3

Natural gas: 165 Nm3
Natural gas: 600 Nm3

Table I-3 Properties of natural-gas hydrate pellet (NGHP) and liquefied natural gas (LNG).

Figure I-11 Photo of natural-gas hydrate 

pellets (offered by Mitsui Engineering & 

ShipBuilding, Co., Ltd.).

photo:
Mitsui Engineering & 
Shipbuilding Co., Ltd.



vicinity of freezing point. Figure I-12 

shows the phase equilibrium (pressure - 

temperature) relations for the H2 + water 

mixed system. The diameter of H2 

molecule is so small (0.27 nm, as shown in 

Fig. I-9) that H2 can form interstitial 

solid-solution. As shown in Fig. I-12, the 

solid solution originated in the ice Ih is 

generated in the pressure region up to 100 

MPa, while that originated in the ice II is 

generated in the pressure region above 360 

MPa. The pure H2 hydrate is generated 

only in the pressure region between two 

solid solution. In addition, Mao et al. [27] 

have revealed from the structural analyses using X-ray that H2 hydrate is structure-II hydrate. In 

the H2 hydrate, as shown in Fig. I-13, the hydrate cages are multiply occupied with a cluster of 

two H2 molecules in the S-cage and four H2 molecules in the L-cage. However, it has been 

recently reported from neutron diffraction that only one H2 molecule can be encaged in the 

S-cage of s-II hydrate [28]. The cage occupancy of H2 is still unclear.
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Figure I-13 Cage occupancy of H2 in the s-II 

hydrate.

Figure I-12 Phase equilibrium relation for the H2 + water mixed system.
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I-4.2 Main Objective of the Present Study

In the present study, I aim to use gas hydrates as a medium for the gas storage and 

transportation. As shown in Fig. I-9, there are a wide variety of small and large guest species 

which can generate clathrate hydrate by themselves or with help molecule. H2 molecule is the 

smallest among various guest species. H2 forms clathrate hydrate at high-pressure condition and 

diffuses freely through polygonal surfaces of hydrate cages at relatively low pressures. On the 

other hand, dimethylcyclohexane is one of the largest guest molecules, which requires a help gas 

for the hydrate formation. The thermodynamic properties on mixed gas hydrate systems which 

consist of these guest species are very interesting not only industrially but also scientifically.

An additive as the promoter that makes the high equilibrium pressure of pure H2 hydrate 

milder is essential for the H2 storage using gas hydrates. For the establishment of these 

technologies, basic thermodynamic properties (thermodynamic stability, cage occupancy and 

selectivity etc.) on H2-containing hydrates were investigated by use of static and spectroscopic 

methods.

In this thesis, six chapters (Chapters II-VII) are divided into two parts according to the 

basic concept, Part A is "Thermodynamic Properties of Mixed Gas Hydrates", and Part B is 

"Thermodynamic Stability of Hydrogen-containing Mixed Gas Hydrates for Hydrogen 

Storage". The Part A consists of four chapters (Chapters II-V), and The Part B is composed of 

two chapters (Chapters VI and VII).

Part A: "Thermodynamic Properties of Mixed Gas Hydrates"

In the Chapters II-V, I aim to obtain the basic information for mixed gas hydrate systems 

containing various guest species which vary in from smallest (H2) to largest 

(Dimethylcyclohexane (DMCH)). In the Chapter II, the isothermal phase equilibria containing 

gas hydrates for the H2, CO2, and water ternary system were measured by use of gas 

chromatography. In addition, the single crystal generated from this gas mixture was analyzed 

under three-phase (gas, aqueous, and hydrate phases) coexisting condition by Raman 

spectroscopy.

In the Chapter III, various hydrocarbons were adopted as mixed components with H2: 

C2H6, c-C3H6, and propane (C3H8). The isothermal phase equilibrium relations containing gas 

hydrates for the three ternary system of H2, each hydrocarbon, and water were measured by use 

of gas chromatography. In addition, the cage occupancies of these molecules in the hydrates 

were investigated under three-phase equilibrium condition by Raman spectroscopy.

In the Chapter IV, the s-H hydrate systems which are composed of DMCH stereo-isomers 

helped by Xe or CH4 were studied. The stability boundaries for Xe + 1,1-, cis-1,2-, trans-1,2-, 

and cis-1,4-DMCH and CH4 + 1,1-DMCH mixed s-H hydrate systems were measured under 

the four-phase (gas, aqueous, LGS, and hydrate phases) equilibrium condition. The limit of 
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U-cage occupancy was estimated by comparison of thermodynamic stabilities.

In the Chapter V, the measurements were carried out for the quaternary systems of H2, 

CO2, Tetrahydrofuran (hereafter, THF) or Tetra-n-butyl ammonium bromide (hereafter, TBAB), 

and water. For example, THF is well known as a additive that reduces the formation pressure of 

other gas hydrate systems. The effect of adding THF or TBAB to the H2 + CO2 + water ternary 

system on the equilibrium condition of the ternary system of H2, CO2, and water was 

investigated.

The important topics of these chapters are (1) the phase equilibria and stability boundaries 

of mixed-gas hydrates, (2) the cage occupancies of guest species, and (3) the effect of additives 

or LGS on the equilibrium condition. These findings have been reported in six publications, {1, 

2, 3, 4, 7, 10} (see "List of Publications").

Part B: "Thermodynamic Stability of Hydrogen-containing Mixed Gas Hydrates for Hydrogen 

Storage"

In the Chapters VI and VII, I aimed to obtain the fundamental information for H2 storage 

and transportation using gas hydrates. In the Chapter VI, THF was adopted as an additive. THF 

is familiar as the additive which reduces the equilibrium pressure of other gas hydrate systems. 

The thermodynamic stability of gas hydrate system for the ternary mixture of H2, THF, and 

water were measured. The single crystals of H2 + THF mixed gas hydrate were measured under 

three-phase equilibrium condition by use of Raman spectroscopy. Both measurements were 

carried out at the various concentrations of aqueous solutions. In addition, the effect of pressure 

on the cage occupancy of H2 in mixed gas hydrate was investigated in the high-pressure regions 

more than 20 MPa. THF was adopted as a mixed component which is familiar as the assistant 

additive. Phase equilibrium measurements and Raman spectroscopic analyses were carried out 

for these mixed gas hydrate systems in the pressure range of 20-200 MPa. Finally, the storage 

capacity of H2 in the THF hydrate was estimated by the data obtained from Raman 

spectroscopy.

In the Chapter VII, TBAB was adopted as an novel additive. The thermodynamic stability 

of H2 + TBAB mixed gas hydrate system was measured. The cage occupancies of H2 and 

TBAB were analyzed by use of Raman spectroscopic measurements. Both measurements were 

carried out at the various concentrations of aqueous solutions.

The important topics of this chapter are (1) dependence of thermodynamic stability and 

cage occupancies of each guest species on the concentrations of aqueous solutions, (2) cage 

selectivity of H2, (3) pressure dependence of thermodynamic stability, cage occupancies of each 

guest species, and structure of H2 + THF mixed gas hydrate. This chapter consists of four 

publications, {5, 6, 8, 9} (see "List of Publications").

Finally, in the final chapter (Chapter VIII), the general conclusion of the present study is 

summarized.
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Part A

Thermodynamic Properties of Mixed Gas Hydrates

 (Chapters II-V)
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Preliminaries

Thermodynamic properties of mixed gas hydrates depend on the composition of guest 

molecules as well as temperature, pressure, and the size and shape of guest species. The 

dependency on temperature and pressure are relatively well known, because single-gas hydrates 

have been studied for ~200 years by a lot of researchers. However, in mixed gas hydrate 

systems, some unique phenomena could happen. For example, mixed gas hydrate can form the 

different structure, which each guest molecule cannot generate by itself, depending on the mixed 

composition. Therefore, we cannot predict composition dependency from investigation of only 

single-gas hydrates. It is very important to study mixed-gas hydrate systems which are 

composed of small and large guest species.

In Part A, the objective is to obtain the fundamental information about thermodynamic 

properties for mixed gas hydrate systems containing various guest species. These mixed 

systems are composed of H2 + CO2 + water (Chapter II), H2 + various hydrocarbons + water 

(Chapter III), DMCH stereo isomers + CH4 or Xe + water (Chapter IV). In Chapter V, two 

hydrosoluble molecules (THF and TBAB) are added to the ternary system of H2 + CO2 + 

water. The Chapter V plays an important role as the bridgebuilder between Part A and B.
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Chapter II

Isothermal Phase Equilibria for Hydrogen + Carbon Dioxide + 

Water Mixtures Containing Gas Hydrate

Abstract

Isothermal phase equilibrium (pressure - composition in the gas phase) relations for the 

ternary system of hydrogen + carbon dioxide + water were investigated in the presence of gas 

hydrate phase by use of gas chromatography, which were performed at 274.3, 276.5, 280.1, and 

281.9 K in a pressure range up to 10 MPa. Three-phase (gas, aqueous,  and hydrate phases) 

equilibrium pressure increases monotonically with the hydrogen composition of gas phase at all 

temperature conditions. A hydrate single-crystal generated from the hydrogen + carbon dioxide 

+ water mixture was analyzed by use of Raman spectrometer. The Raman spectra suggest that 

hydrogen is not enclathrated in the hydrate cages and behaves only like the diluent gas toward 

the formation of structure-I carbon dioxide hydrate. This fact is also supported by the 

thermodynamic analysis using Soave - Redlich - Kwong equation of state.

Keywords: gas hydrate; phase equilibria; gas purification; Raman spectroscopy; hydrogen; 

carbon dioxide
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II-1 Introduction

H2 has attracted much attention as a clean and coming energy resource. The steam 

reforming of hydrocarbons is well known as the H2 production processes. The gas generated by 

the steam reforming is a mixture composed of CO and CO2 as well as H2. The Pressure Swing 

Adsorption (PSA) has been often used as one of the H2 separation methods for such mixtures. 

In PSA method, mole fraction purity 0.999999 of H2 is achievable. However, in the case that the 

on-site manufacture of H2 is taken into consideration, a smaller-scale method is also required for 

H2 separation. A new H2 separation process using the function of gas hydrates, instead of PSA 

having large-scale plants, is one of the potentialities because it is possible to sieve and separate 

the target gas efficiently by the difference of size at relatively large pressure ranges. It is well 

known that H2 is too small to generate any hydrates by itself except for a high pressure region 

of the GPa order [1], that is, H2 almost never contribute to the stability of hydrate cage. On the 

other hand, CO2 generates structure-I hydrate easily in the moderate condition [2, 3]. A new H2 

separation using gas hydrates [4, 5] owes to this distinction of hydrate-cage stability. This new 

H2 separation technique requires the investigation of thermodynamic stability and cage 

occupancy on gas hydrates generated from the H2 + CO2 + water mixture.

In the Chapter II, the isothermal phase equilibria (pressure-composition (p - y) relation) for 

the ternary (H2 + CO2 + water) system in the presence of gas hydrate phase were measured in a 

temperature range of 274.3 - 281.9 K and a pressure range up to 10 MPa. The obtained p - y 

relations have been correlated by Soave - Redlich - Kwong equation of state under the 

assumption of pure CO2 hydrate formation. In order to make sure the propriety of the above 

assumption, the single crystal of gas hydrates prepared from gas mixtures of H2 + CO2 were 

analyzed by use of Raman micro-spectroscopy.

II-2 Experimental Section

II-2.1 Apparatus

A schematic illustration of the experimental apparatus used in the phase equilibrium 

measurement is shown in Fig. II-1. It consists of the following parts; a high-pressure cell with 

glass windows (manufactured by Nezu Industries Co., Ltd.), a high-pressure pump (Shimadzu 

LC-6A) to supply and pressurize contents, a pressure gage, a temperature control unit, a 

thermometer, and composition analyzing system containing TCD-gas chromatography 

(TCD-GC, Shimadzu GC-14B). The inner volume and maximum working pressure of the 

high-pressure cell were 150 cm3 and 10 MPa, respectively. The windows of the cell were useful 

for visually observing the phase behavior in the high-pressure cell. All of them are immersed in a 
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temperature-controlled (by use of TAITEC coolnit CL-80R) water bath. The contents were 

agitated using an up-and-down mixing bar driven by an exterior permanent magnetic ring. 

A schematic illustration of the experimental apparatus for Raman spectroscopic analysis is 

shown in Fig. II-2. The apparatus consists of the following parts; a high-pressure optical cell 

with a pair of sapphire or quartz window (manufactured by Nezu Industries Co., Ltd.), a mixing 

ruby-ball, a high-pressure pump to supply and pressurize contents, a pressure gage, a 

temperature control unit, a thermometer, a charge-coupled device (CCD) camera, and a laser 

Raman microprobe spectrophotometer. A schematic illustration (cross-sectional view) of the 

high-pressure optical cell is shown in Fig. II-3. The inner volume and maximum working 

pressure of the high-pressure optical cell were 0.2 cm3 and 100 MPa, respectively. A pair of 

sapphire or quartz (highly pure) was set on both upper and lower sides (6 mm). At first, the 

ordinary sapphire windows were used, which the fluorescence peak derived from the impurities 

of sapphire window was overlapped with the H2 vibration peaks. Therefore, the windows made 

of quartz (highly pure) were also adopted. Each window was sealed with a packing of Teflon 

type material. The thermostated water from a thermocontroller (EYELA NCB-3100) was 

circulated constantly in the exterior jacket of the high-pressure optical cell. A ruby ball was 

enclosed into the high-pressure optical cell. The contents were agitated by the ruby ball, which is 

rolled around by the vibration of vibrator from outside.

The system temperature was measured within an uncertainty of 0.02 K using a thermistor
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Figure II-2 Schematic illustration of experimental apparatus for Raman spectroscopic 

measurement.

P

water

high-pressure

pump

pressure gage

vacuum pump

CO2H2

high-pressure optical cell

pressure gage (±40 kPa ) thermometer (±0.02 K)

( )

P T

T

thermostated

water

high-pressure 

optical cell

inner volume: 0.2 cm3

maximum working 

pressure: 100 MPa

thermocontroller

thermistor

Figure II-3 Cross sectional view of high-pressure optical cell.

laser

scattered ray

single crystal

ruby ball

window

window
piston for adjusting 
inner volume

thermostated water

jacket



 probe (Takara D-632), which was inserted into a hole in the cell wall. The probe was calibrated 

with a Pt resistance thermometer (25 ) defined by ITS-90. The system pressure was measured 

by a pressure gage (Valcom VPRT) calibrated by RUSKA quartz Bourdon tube gage (Direct 

Reading Pressure Gage, series 6000) with an estimated maximum uncertainty of 0.01 MPa.

II-2.2 Procedures

Phase equilibrium measurement

The H2 and CO2 mixture prepared at a desired composition was introduced into an 

evacuated high-pressure cell. The contents were pressurized up to a desired pressure by 

supplying water successively and then continuously agitated using the mixing bar driven by a 

permanent magnetic ring. After the formation of gas hydrates, the system temperature was kept 

constant to establish the three-phase coexisting state of hydrate + aqueous solution + gas. The 

phase behavior was observed straightforwardly through the window. After reaching the 

equilibrium state of three-phase coexistence, a small amount of gas phase was taken separately 

out for composition analysis. The equilibrium composition of gas phase was analyzed for H2 

and CO2 by the TCD-Gas Chromatography (TCD-GC, Shimadzu GC-14B) as the water 

composition of gas phase is negligibly small under the present experimental conditions.

Thermodynamic Analysis

In the CO2 + water binary system without H2, the fugacity of CO2 in the gas phase in 

equilibrium with the hydrate phase can be evaluated at a given temperature as:

fCO2 = CO2 (Pe
CO2) Pe

CO2    (1)

where fCO2 and CO2 are the fugacity and fugacity coefficient of CO2 at three-phase (gas + 

aqueous solution + hydrate) equilibrium pressure Pe
CO2, respectively. The equilibrium fugacity 

of pure CO2 hydrate is correlated from experimental data by use of Eq. (2)

fCO2 = a exp(b T)    (2)

where a = 0.975 MPa, b = 0.108 K-1, and T stands for the deviation of temperature from the 

quadruple point [6] of hydrate + ice + aqueous solution + gas. It is assumed that the molar 

volume of CO2 hydrate is unchangeable.

In the H2 + CO2 + water ternary system, the equilibrium fugacity of CO2 in the gas phase 

can be evaluated as: 
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fCO2 = yCO2 CO2 (yCO2, Pe
H2+CO2) Pe

H2+CO2     (3)

where yCO2 is equilibrium composition of CO2 in the mixed gas phase and Pe
H2+CO2 stands for the 

three-phase (gas + aqueous solution + hydrate) equilibrium pressure.

Supposing that the generated gas hydrate is each pure CO2 hydrate, that is, H2 is not 

enclathrated in hydrate cages, the fugacity of CO2 calculated from Eqs. (1) and (3) should 

coincide with each other. That is, the CO2 hydrate cannot be generated until the fugacity of CO2 

in the gas mixture exceeds the equilibrium fugacity (Eq. (2)) of pure CO2 hydrate system. The 

equation (4) is derived from Eqs. (1) and (3). 

Pe
H2+CO2 = [ CO2 (Pe

CO2) / CO2 (yCO2, Pe
H2+CO2)] (Pe

CO2 / yCO2)    (4)

At a given gas-phase composition, the equilibrium pressure is obtained by the trial and error 

method from Eq. (4) on the assumption that the equilibrium fugacity of CO2 in gas mixture is 

equal to that of pure CO2 hydrate system in the whole composition range. In the present study, 

the fugacity coefficient of CO2 in the gas mixtures was calculated by use of Soave - Redlich - 

Kwong (SRK) equation of state [7] with the ordinary mixing rule (binary parameter: k1 2 = 

-0.3426) [8]. The critical constants of CO2 and H2 and other parameters were obtained from the 

reference [9]. 

Raman spectroscopic analysis

The H2 and CO2 mixture prepared at a desired composition was introduced into the 

evacuated high-pressure optical cell. The contents were pressurized up to a desired pressure by 

supplying distilled water continuously. The contents were cooled and agitated with an enclosed 

ruby ball to generate the gas hydrate. After the formation of hydrates, the system temperature 

was gradually risen to leave a few seed crystal and since then the system temperature was 

dropped little by little to grow the single crystal of gas hydrate under the three-phase (hydrate + 

aqueous solution + gas) coexisting state. A three-phase equilibrium condition with the existence 

of single crystal was established by keeping the temperature for more than one day. The single 

crystal was observed by the CCD camera through the sapphire or quartz window. The photo of 

single crystal is shown in Fig. II-4. In our laboratory, the "single crystal" was defined as the 

gas-hydrate crystal for which the Raman peak of intermolecular O-O vibration mode can be 

detected. Almost all Raman spectra were obtained from these single crystals prepared under 

three-phase equilibrium condition. 

This single crystal of gas hydrate was analyzed by in situ Raman spectroscopy by use of a 

laser Raman microprobe spectrometer with a multichannel CCD detector. The CCD detector was 

maintained at ~200 K for heat-noise reduction. The argon ion laser beam (wavelength: 514.5 nm 

and generation power: 100 mW) and He-Ne laser beam (632.8 nm and 35 mW) condensed to 2 
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μm in spot diameter were irradiated to the single crystals from the object lens through the upper 

sapphire or quartz window. The backscatter of the opposite direction was taken in with the same 

lens. The spectral resolution was about 1 cm-1. The exposed time was varied within the range 60 

to 120 sec., depending on the intensity of Raman scattering. The integration number was 3 

times.

II-2.3 Materials

Research grade H2 of mole fraction purity 0.999999 was obtained from the Neriki Gas Co., 

Ltd. The maximum impurity was 0.2 ppm of nitrogen. Research grade CO2 of mole fraction 

purity 0.9999 was obtained from the Takachiho Tradings Co., Ltd. The distilled water was 

obtained from the Wako Pure Chemical Industries, Ltd. All of them were used without further 

purifications.

II-3 Results & Discussion

II-3.1 Isothermal Phase Equilibria

The isothermal phase equilibrium (p - y) relations for the H2 + CO2 + water mixed system 

containing gas hydrate at 274.3, 276.5, 280.1, and 281.9 K are summarized in Table II-1, and 

shown in Fig. II-5. The three-phase equilibrium pressure increases monotonically with the 

composition of H2. The variation of equilibrium pressure with the H2 composition exhibits 

similar behavior in the whole temperature range of the present study. The experimental data for 

the pure CO2 hydrate (left axis in Fig. II-5) agree well with the previous ones [2, 3]. If a gas 

hydrate generated from the H2 + CO2 mixture is the pure CO2 hydrate, the H2 behaves as if it is 
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Figure II-4 A photo of hydrate single-crystal generated from H2 + CO2 + water mixture.



only like a diluent gas. That is, the CO2 hydrate is generated at considerably high total pressures 

where the CO2 fugacity in the gas mixture exceeds the equilibrium fugacity of pure CO2 hydrate 

system. At a given temperature and gas-phase composition, the total pressure is obtained by 

numerical calculation in order to give the equilibrium fugacity of pure CO2 hydrate. The 

estimated results agree well with the experimental equilibrium pressures as shown in Fig. II-5.
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T / K yH2 p / MPa T / K yH2 p / MPa

274.3 0.000 1.42 0.693 7.15

0.140 1.75 0.704 7.46

0.282 2.23 0.715 7.90

0.352 2.42 280.1 0.000 2.86

0.568 3.58 0.061 3.06

0.697 5.49 0.084 3.21

0.734 6.16 0.173 3.71

0.805 8.89 0.345 4.98

276.5 0.000 1.81 0.405 5.35

0.086 1.99 0.407 5.46

0.190 2.49 0.435 5.67

0.329 2.96 0.456 5.97

0.455 3.46 0.508 6.51

0.481 3.73 0.549 7.70

0.497 3.93 0.577 8.69

0.502 4.01 0.609 9.13

0.530 4.10 281.9 0.000 3.70

0.551 4.48 0.134 4.50

0.566 4.58 0.205 5.30

0.594 5.23 0.340 6.73

0.651 6.21 0.484 8.71

0.664 6.54

Table II-1 Isothermal phase equilibrium data for H2 + CO2 + water mixed system in the

presence of gas hydrate phase.



Thesis for Doctorate by S. Hashimoto

-42-

Figure II-6 Raman spectra of the intramolecular vibration for H2 (a) and CO2 (b) molecules in 

the gas and hydrate phases. Raman peaks from 4120 to 4150 cm-1 are due to the sapphire

window of the high-pressure optical cell.
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II-3.2 Raman Spectroscopic Analysis

Raman spectra of the intramolecular vibration of H2 and CO2 at 274.6 K and 15.2 MPa are 

shown in Fig. II-6(a) and (b). In order to avoid the optical effect of sapphire window, the spectra 

of CO2 are given by the irradiation of the Ar ion laser, on the other hand, the spectra of H2 are by 

the He-Ne laser. The Raman peaks of the intramolecular symmetric C=O stretching vibration 
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Figure II-7 Raman spectra of the intramolecular vibration for H2 (a) and CO2 (b) molecules in 

the gas and hydrate phases, which are obtained by use of quartz windows and Ar ion laser.
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mode of CO2 are detected in both gas and hydrate phases and the spectra exhibit the double 

peaks because of the Fermi resonance effect. There is no significant difference from the Raman 

shifts of pure CO2 hydrate [10] at the same pressure. On the other hand, the Raman peak of the 

H-H stretching vibration mode of H2 is detected in the gas phase, while it is not detected in the 

hydrate phase. In order to re-confirm it clearly, Raman spectra were measured using quartz 

windows instead of ordinary sapphire ones. Fig. II-7(a) and (b) show Raman spectra using 

quartz windows (Ar ion laser) in the gas phase and hydrate generated from H2 + CO2 + water 

mixture at 276.5 K and 11.2 MPa under the three-phase equilibrium condition, respectively. As 

shown in Fig. II-7(a), the fluorescence peak derived from the impurities of window materials can 

be eliminated by use of quartz window. The quadruplet peak derived from fluid H2 is clearly 

detected, while no peak is detected in the hydrate phase. The Raman peaks of CO2 (Fig. II-7(b)) 

agree well with those using sapphire windows. According to Mao et al. [11] and Mao and Mao 
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[12], H2 and water mixtures generate the s-II hydrate at the high-pressure of 200 MPa or the low 

temperature of about 80 K, where the hydrate cages are multiply occupied with a cluster of two 

H2 molecules in the S-cage and four H2 molecules in the L-cages. The peak corresponding to 

such H2 cluster is not detected in the single crystal of gas hydrate prepared from the H2 + CO2 

mixture in the present study.

II-3.3 Development for Applied Process

The above results reveal that H2 is not enclathrated in hydrate-cages and behaves only like 

the diluent gas toward the formation of CO2 hydrate. At a given temperature, the CO2 fugacity of 

gas phase in equilibrium with liquid phase and CO2 hydrate is calculated from the three-phase 

coexisting curve of pure CO2 hydrate. The equilibrium pressure of gas mixture is uniquely 

obtained at given temperature and mole fraction of gas phase from the above assumption. 

Therefore, it is possible to estimate the equilibrium pressure - temperature - composition 

relations by extrapolating the experimental data under the CO2 - fugacity - constant conditions. 

The estimated equilibrium pressure - temperature projections in this system are shown in Fig. 

II-8. Four curves in Fig. II-8 stand for the constant composition of gas phase. The operation 

temperature of separation process can be estimated under a desired pressure and composition. 

For example, in order to purify the H2 + CO2 mixture into yH2 = 0.90 or 0.95 at 40 MPa, the 

operation temperature of separation process is about 275 K or 281 K, respectively.

II-4 Summary

Isothermal phase equilibria (pressure - composition relations) and Raman spectra for the 

ternary system of H2 + CO2 + water in the presence of hydrate phase were investigated. The 

results of thermodynamic and Raman spectroscopic analysis reveal that H2 is not entrapped with 

the hydrate cages. That is, the hydrate generated from the H2 + CO2 + water mixture is pure 

CO2 s-I hydrate and H2 behaves only like a diluent gas toward the formation of CO2 hydrate. It 

is possible to estimate the three-phase equilibrium relations (pressure - temperature - 

composition) of gas hydrate prepared from the H2 mixtures.

Notation

f: fugacity [Pa]

k: binary parameter for Soave - Redlich - Kwong equation of state [-]
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p: pressure [Pa]

T: temperature [K]

y: composition of gas phase [-]

: fugacity coefficient [-]
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Chapter III

Thermodynamic and Raman Spectroscopic Studies on 

Hydrocarbon Hydrates Coexisting with Hydrogen and Aqueous 

Solutions

Abstract

Hydrogen hydration in the gas hydrates generated from three ternary mixtures of hydrogen 

+ hydrocarbon (ethane, cyclopropane, or propane) + water have been studied by use of Raman 

spectroscopic analyses at 276.1 K. The Raman spectra reveal that hydrogen is enclathrated in the 

small hydrate cage for the mixture of hydrogen, propane, and water only. In addition, isothermal 

phase equilibria (pressure - composition in the gas phase) for three ternary systems of hydrogen 

+ hydrocarbon (ethane, cyclopropane, or propane) + water have been measured at 276.1 K in 

the pressure range from 0.1 to 5 MPa. The thermodynamic analysis using Soave - Redlich - 

Kwong equation of state supports that hydrogen is enclathrated in the hydrate cage for only the 

mixture of hydrogen, propane, and water, even in the lower pressure than 5 MPa at 276.1 K. 

Keywords: gas hydrate; phase equilibria; cage occupancy; hydrogen; hydrocarbon; gas storage
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III-1 Introduction

The separation, storage, and transportation of H2 are one of the most important techniques 

for developing a new society sustained by H2 energies. The generation of pure s-II H2 hydrate 

requires an extremely high pressure of 100 - 360 MPa at ambient temperatures [1]. The hydrate 

cages are multiply occupied with a cluster of two H2 molecules in the S-cage and four H2 

molecules in the L-cage, respectively [2]. Recently, it has been reported that H2 and 

tetrahydrofuran (hereafter, THF) can form the mixed gas hydrate at much milder condition than 

pure H2 hydrate [3-5]. For the application of gas hydrates to above techniques, it is necessary to 

reveal the thermodynamic properties of H2-containing mixed hydrate as well as pure H2 hydrate.

In the Chapter II, phase equilibria containing gas hydrate for the ternary system of H2 + 

CO2 + water have been investigated at 274.3 - 281.9 K up to 10 MPa. The s-I CO2 hydrate 

generated from the mixture cannot entrap the H2 molecule. On the other hand, it has been 

revealed that the THF molecule occupies the L-cage completely while the H2 occupies the S-cage 

of s-II hydrate (q. v. Chapter VI) [5]. Zhang et al. [6] and Klauda and Sandler [7] have reported 

that H2 may partially fill the hydrate cages with other guest species. Hence, the H2 occupation 

may depend on the mixed other component and the type of unit-cell structure as well as the 

pressure and temperature conditions. In order to make clear the mechanism of H2 enclathration, 

it is important to investigate other H2 mixed systems.

In the Chapter III, the hydrate-cage occupancies of each hydrocarbon and H2 are 

investigated for the three ternary systems of H2, light hydrocarbon (ethane (C2H6), cyclopropane 

(c-C3H6), or propane (C3H8), and water by use of in situ Raman micro-spectroscopy at 276.1 K 

in a pressure range up to 2 MPa. In addition, the isothermal phase equilibria (pressure - 

composition relation) for the H2 + each hydrocarbon + water ternary system have been 

measured at 276.1 K in a pressure range of 0.1 to 5 MPa. Both C2H6 and c-C3H6 form the s-I 

hydrate, on the other hand, C3H8 generates the s-II hydrate under the present experimental 

conditions. These hydrocarbon hydrates have empty S-cages in a low-pressure region.

III-2 Experimental Section

III-2.1 Apparatus

The experimental apparatus for the phase equilibrium measurements were the same as the 

one in the Chapter II. A detail description was given in the previous chapter.

The experimental apparatus for the Raman spectroscopic analysis were the same as the one 

in the Chapter II except for the high-pressure optical cell. A schematic illustration 

(cross-sectional view) of the high-pressure optical cell is shown in Fig. III-1. The inner volume 
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and maximum working pressure of the high-pressure optical cell were 0.2 cm3 and 400 MPa, 

respectively. The high-pressure optical cell for the Raman spectroscopic analysis has a pair of 

quartz (highly pure) windows on both the upper and lower sides (6 mm). Each window was 

sealed with a packing of Teflon type material. In the Chapter II, the ordinary sapphire windows 

were mainly used, however, the fluorescence peak derived from the impurities of sapphire 

window was overlapped with the H2 vibration peaks. Therefore, the windows made of quartz 

(highly pure) were adopted in the Chapter III. The thermostated water was circulated constantly 

in the exterior jacket of high-pressure optical cell. A ruby ball was enclosed to agitate the 

contents by the vibration from outside.

The system temperature was measured within an uncertainty of 0.02 K using a thermistor 

probe (Takara D-632), which was inserted into a hole in the cell wall. The probe was calibrated 

with a Pt resistance thermometer defined by ITS-90. The system pressure was measured by a 

pressure gage (Valcom VPRT) calibrated by RUSKA quartz Bourdon tube gage (Direct 

Reading Pressure Gage, series 6000) with an estimated maximum uncertainty of 0.01 MPa.
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III-2.2 Procedures

Phase equilibrium measurement

The gas mixture of H2 and each hydrocarbon prepared at a desired composition was 

introduced into the evacuated high-pressure cell. A detail description of the following procedures 

was given in the previous chapter.

Raman spectroscopic analysis

The distilled water was introduced into the evacuated high-pressure optical cell. The 

contents were pressurized up to a desired pressure by supplying H2 and hydrocarbon mixture 

prepared at a desired composition continuously. The procedure for the preparation of hydrate 

single-crystal was similar to that of the Chapter II. The single crystal was observed by the CCD 

camera through the quartz window. Almost all Raman spectra were obtained from the single 

crystals prepared under three-phase equilibrium condition. 

This single crystal of gas hydrate was analyzed by in situ Raman spectroscopy by use of a 

laser Raman microprobe spectrometer with a multichannel CCD detector. The CCD detector was 

maintained at ~200 K for heat-noise reduction. The argon ion laser beam (wavelength: 514.5 nm 

and generation power: 100 mW) condensed to 2 μm in spot diameter were irradiated to the 

single crystals from the object lens through the upper quartz window. The backscatter of the 

opposite direction was taken in with the same lens. The spectral resolution was about 1 cm-1. The 

exposed time was varied within the range 60 to 120 sec., depending on the intensity of Raman 

scattering. The spectra were obtained with three or four integrations.

Thermodynamic analysis

The method used in the Chapter II were also adopted in the Chapter III to calculate the 

equilibrium pressure and compare the experimental results with the estimated data. The fugacity 

coefficient of hydrocarbon in the gas mixture was calculated by Soave - Redlich - Kwong 

equation of state [8] with the ordinary mixing rule (binary parameter: k1 2 = 0.1867 (H2 + C2H6), 

0.0 (H2 + c-C3H6), 0.2359 (H2 + C3H8)) [9]. The applicable binary parameter for the H2 + 

c-C3H6 system could not be found, therefore, the value of k1 2 = 0.0 for the H2 + c-C3H6 system 

is compelled to be used. The critical constants of hydrocarbons and H2 and other parameters 

were obtained from the reference [10].

III-2.3 Materials

Research grade H2 (mole fraction purity 0.999999) was obtained from the Neriki Gas Co., 

Ltd. The maximum impurity was 0.2 ppm of nitrogen. Research grade C2H6, c-C3H6, and C3H8 
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(mole fraction purity 0.999, 0.995, and 0.9999, respectively) were obtained from the Takachiho 

Tradings Co., Ltd. The distilled water was obtained from the Wako Pure Chemical Industries, 

Ltd. All of them were used without further purifications.

III-3 Results & Discussion

III-3.1 Isothermal Phase Equilibria

The isothermal phase equilibria for the three ternary systems containing gas hydrate at 

276.1 K are summarized in Table III-1, and shown in Fig. III-2. The present experimental data 

on the each pure hydrocarbon hydrate (left axis in Fig. III-2) agree well with the previous data 

(C2H6 [11], c-C3H6 [12, 13], and C3H8 [14] hydrates). The three-phase equilibrium pressure
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Figure III-2 Isothermal three-phase equilibrium (pressure - composition) relations for the H2 

+ each hydrocarbon + water mixed systems at 276.1 K. The curves are estimated pressures by 

numerical calculations on the assumption that the equilibrium fugacity of hydrocarbon in gas

mixture is equal to that of pure hydrocarbon hydrate system in the whole composition range.
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Additive yH2 p / MPa Additive yH2 p / MPa

c-C3H6 0.00 0.11 0.79 3.32

0.33 0.16 0.83 4.44

0.48 0.18 C3H8 0.00 0.33

0.58 0.21 0.23 0.35

0.60 0.23 0.38 0.43

0.65 0.26 0.41 0.46

0.67 0.27 0.57 0.53

0.68 0.28 0.55 0.59

0.69 0.31 0.66 0.67

0.71 0.33 0.66 0.74

0.80 0.50 0.71 0.84

0.84 0.71 0.72 1.00

0.90 1.18 0.78 1.07

C2H6 0.00 0.67 0.82 1.19

0.11 0.75 0.81 1.31

0.20 0.82 0.83 1.38

0.39 1.03 0.83 1.54

0.54 1.55 0.88 1.78

0.57 1.55 0.85 1.93

0.58 1.70 0.85 1.94

0.67 2.08 0.86 2.03

0.73 2.50 0.90 2.44

0.78 2.91 0.89 2.91

Table III-1 Phase equilibrium data for the H2 + hydrocarbon + water mixed system in the 

presence of gas hydrate.



increases monotonically with the increase of H2 mole fraction. The curves in Fig. III-2 are 

estimated pressures by Eq. (3) (in the Chapter II) on the assumption that the equilibrium 

fugacity of hydrocarbon in gas mixture is equal to that of pure hydrocarbon hydrate system in 

the whole composition range. In both H2 + C2H6 + water and H2 + c-C3H6 + water systems, the 

estimated pressures agree well with the experimental pressures as shown in Fig. III-2. On the 
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Figure III-3 Raman spectra of the intramolecular vibration for C2H6 (around 1000 cm-1) (a), 

and around 4100 cm-1 (b) in the gas and hydrate phases for the H2 + C2H6 + water mixture at

1.95 MPa, yH2 = 0.62, and 276.1 K. Panel (a) contains the Raman peak (around 1030 cm-1) 

corresponding to the rotation of H2.
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other hand, the experimental pressures shift to the high-temperature or low-pressure side of the 

estimated pressures in the H2 + C3H8 + water mixed system. This indicates that the hydrate 

phase would be changed from the pure C3H8 hydrate to the mixed C3H8 one. In other words, 

there is a possibility that H2 can be enclathrated in the hydrate generated from H2 + C3H8 + 

water mixture.

The hydrates prepared from gas mixtures at 276.1 K were quenched and taken out from the 

high-pressure cell at 243 K. After the dissociation of gas hydrate, gas sample was analyzed by 

use of the TCD-Gas chromatography. The mole fraction of H2 (water free) in the dissociation 

gas of the hydrate generated from H2 + C3H8 gas mixture is about 0.2 at 276.1 K and 1.5 MPa, 

which supports the above experimental data. About ten percent of S-cages in the s-II hydrate are 

occupied by H2 molecule at such mild condition. In the H2 + C2H6 gas mixture as a typical 

system of no Raman peak of H2, the mole fraction (water free) of H2 in the dissociation gas is 

less than 0.001.
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Figure III-4 Raman spectra of the intramolecular vibration for c-C3H6 (a), and around 4100

cm-1 (b) in the hydrate generated from the H2 + c-C3H6 + water mixed system at 0.403 MPa,

yH2 = 0.71, and 276.1 K.
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III-3.2 Raman Spectroscopic Analysis

The Raman spectra obtained in the present study are shown in Fig. III-3, -4, and -5. Figure 

III-3(a) shows that the Raman peak corresponding to the intramolecular C-C stretching vibration 
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Figure III-5 Raman spectra of the intramolecular vibration for C3H8 (around 870 cm-1) (a), and 

H2 (around 4100 cm-1) (b) in the gas and hydrate phases for the H2 + C3H8 + water mixture at

1.50 MPa, yH2 = 0.82, and 276.1 K. Panel (a) contains the Raman peak (around 590 cm-1) 

corresponding to the rotation of H2.
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mode of C2H6 is detected at 997 cm-1 in the gas phase, while at 1000 cm-1 in the hydrate phase. 

The peak corresponding to the intramolecular C-C stretching vibration mode of C2H6 in the 

M-cage of s-I hydrate is detected at 1000 cm-1 [11]. As shown in Fig. III-4(a), the Raman peak 

corresponding to the ring breathing mode of c-C3H6 is detected at 1193 cm-1 in the hydrate 

phase. It agrees well with that of the ring breathing vibration mode of c-C3H6 in the M-cage of 

s-I hydrate [12]. As shown in Fig. III-3(b) and Fig. III-4(b), no peak of the intramolecular H-H 

stretching vibration of H2 in the hydrate phase is detected in both H2 + C2H6 + water and H2 + 

c-C3H6 + water systems (The peak should be detected around 4130 cm-1 if the H2 is entrapped 

in the S-cage). Hence, the hydrates generated from these mixed systems are s-I hydrate 

originated in the pure C2H6 or c-C3H6 hydrates and H2 cannot be entrapped with hydrate cages. 

Incidentally, the Raman peaks of H2 rotation and vibration in the gas phase are observed around 

1036 and 4159 cm-1 for the H2 + C2H6 + water mixed system, while the peak of H2 rotation and 

vibration cannot be detected in the gas phase for the H2 + c-C3H6 + water system under the 

present experimental condition because of considerably low equilibrium pressure.

    Figure III-5(a) shows that the Raman peak corresponding to intramolecular C-C stretching 

vibration mode of C3H8 is detected at 871 cm-1 in the gas phase, while at 877 cm-1 in the hydrate 

phase. It is known that the peak corresponding to the C-C stretching vibration mode of C3H8 in 

the L-cage of s-II hydrate is detected at 877 cm-1 [15]. Figure III-5(a) also shows that the 

Raman peak derived from the H2 rotation is detected around 350, 590, and 820 cm-1 in the gas 

phase. On the other hand, a single peak is detected around 585 cm-1 in the hydrate phase, which 

is the most intensive peak corresponding to the H2 rotation [16]. The peak derived from the H-H 

stretching vibration of H2 is detected around 4159 cm-1 in the gas phase, while around 4131 cm-1 

in the hydrate phase as shown in Fig. III-5(b). This Raman shift of hydrate phase agrees with 

that of H2 encaged in the S-cage of s-II hydrate (Chapter IV). That is, H2 can selectively occupy 

the S-cage of s-II hydrate generated from H2 + C3H8 + water mixture, while C3H8 occupies the 

L-cage entirely.

In this chapter, the occupation of H2 in the hydrate generated from H2 + C3H8 + water 

mixture has been confirmed by use of Raman spectroscopic analysis. The cage occupancy of H2 

in various mixed systems at relatively low-pressure condition (up to 2 MPa) is summarized in 

Table III-2. H2 molecule can occupy the S-cage of s-II hydrate even at a few MPa, while it 
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Component with H2 Hydrate structure Occupation of H2

CO2 I -

C2H6 I -

c-C3H6 I -

C3H8 II occupied

Table III-2 Summary of H2 occupation for various guest molecules.



cannot occupy that of s-I hydrate at similar conditions. In the cases of C2H6 or c-C3H6 additive, 

H2 cannot be enclathrated in the hydrate despite the existence of empty S-cages. The S-cage of 

s-II is somewhat smaller than that of s-I [17], which may causes the variation of H2 occupation 

depending on the difference between s-I and -II.

III-4 Summary

Raman micro-spectroscopy reveals that the H2 can occupy the small cage of s-II C3H8 

hydrate. On the other hand, the small cage in the C2H6 and c-C3H6 hydrates cannot trap the H2 

despite all the small cages are vacant in these two gas hydrates. These facts may suggest that the 

H2 does not generate any mixed hydrate of s-I. These results are also supported by Isothermal 

phase equilibria and the thermodynamic analysis using numerical calculation.

Notation

f: fugacity [Pa]

k: binary parameter for Soave - Redlich - Kwong equation of state [-]

p: pressure [Pa]

T: temperature [K]

y: composition of gas phase [-]
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Chapter IV

Stability Boundaries of Structure-H hydrate for 

Dimethylcyclohexane Stereo Isomers Helped by Xenon or Methane

Abstract

Four mixtures of 1,1-, cis-1,2-, trans-1,2-, and cis-1,4-dimethylcyclohexanes (hereafter 

abbreviated DMCH) including water and xenon were investigated in a temperature range over 

274.5 K and a pressure range up to 2.7 MPa. The 1,1-DMCH and cis-1,2-DMCH generate the 

structure-H hydrate in the temperature range up to 295.2 K and 280.2 K, respectively. 

Especially, very large depression of equilibrium pressure was observed in the structure-H 

1,1-DMCH hydrate system. On the other hand, neither trans-1,2-DMCH nor cis-1,4-DMCH 

generates the structure-H hydrate in the present temperature range. It is an important finding that 

the cis-1,4-DMCH does not generate the structure-H hydrate in the presence of xenon, while the 

mixture of cis-1,4-DMCH and methane generates the structure-H hydrate.

In addition, the structure-H hydrate of 1,1-DMCH helped by methane was also investigated 

in a temperature range of 274.6 - 289.3 K and pressure range up to 6.7 MPa. The results 

indicate that 1,1-DMCH is a suitable additive which makes a mild-pressure handling of 

natural-gas hydrate possible.

Keywords: gas hydrate; phase equilibria; pressure depression; stability; gases; transport 

process
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IV-1 Introduction

The s-H hydrates, found out by Ripmeester et al. [1], consist of large guest species and 

help gas (CH4, Xe, N2 and so on) in the water host cages. There are three types of cages in the 

s-H hydrate, pentagonal dodecahedron (51 2, S-cage), dodecahedron (435663, S'-cage) and 

icosahedron (51 268, U-cage). The large guest molecules, such as adamantane [2], 

methylcyclohexane [3-6] or other large guest species [7-9], can be entrapped in the U-cage while 

help gas occupies selectively both S- and S'-cages. The structure of s-H hydrate becomes stable 

with the cooperative interaction between help gas and large guest species which is unable to 

generate s-H hydrate by itself.

Recently, a new transportation system using natural-gas hydrates (hereafter, NGH) has 

attracted much attention from an economical standpoint. It is regarded that the NGH 

transportation system is much effective in the development of small and middle-size natural-gas 

fields in the world. Main reason is that the initial investment in facilities for producing NGH is 

considerably small in comparison with the liquefied natural-gas (LNG) system. Besides that, the 

temperature of cargoes in a tanker is by far higher than that of LNG (it is 253 K for NGH while 

111 K for LNG). However, the NGH reaction from a mixture of water and natural-gas requires 

high pressure conditions, for example, it becomes over 3 MPa at 275 K.

One of our objectives is to search an effective additive which is able to reduce the reaction 

pressures without significant reduction in the gas storage capacity. This is why we direct our 

attention to the s-H hydrate systems [10]. Usually, the large molecules are adopted as additives 

which occupy the icosahedron hydrate cage to generate the s-H hydrate crystal [1]. Some 

chemicals, e.g. neohexane [3, 11-13], methylcyclohexane [3-6, 14], 2,2,3-trimethylbutane [8, 11] 

and pinacolone [13] have been investigated as a candidate for additives. All of them show a large 

pressure depression from the equilibrium pressure of pure CH4 (as a representative of 

natural-gas) hydrate system.

In the Chapter IV, the 1,1-DMCH, cis-1,2-DMCH, trans-1,2-DMCH and cis-1,4-DMCH 

including water and Xe were investigated using an ordinary static method. In addition, phase 

equilibria for the s-H hydrate system of 1,1-DMCH, water, and CH4 was also measured. Then, 

the difference of function between CH4 and Xe for the DMCH stereo isomer system has been 

briefly discussed and consequently we found that 1,1-DMCH gives by far the largest pressure 

depression in the DMCH isomers.
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IV-2 Experimental Section

IV-2.1 Apparatus

The experimental apparatus used in the Chapter IV was essentially the same to the previous 

one [6, 15]. Two high-pressure cells were used for the phase equilibrium measurements. One 

was a glass cell (Hiper Glass Cylinder, purchased from Taiatsu Techno Corporation), whose 

inner volume was about 10 cm3, was made of tempered glass (as shown in Fig. IV-1). Its 

maximum working pressure was 5 MPa. In 

the inside of the cell, a magnetic stirrer bar 

was controlled to move up and down by 

permanent magnets outside. The other was 

the same as the one in the Chapter II or III 

except for the gas and liquid sampling lines. 

A detail description was given in the previous 

chapter.

The system temperature was measured 

within an uncertainty of 0.02 K using a 

thermistor probe (Takara D-632), which was 

inserted into a hole in the cell wall. The probe 

was calibrated with a Pt resistance 

thermometer defined by ITS-90. The system 

pressure was measured by a pressure gage 

(Valcom VPRT) calibrated by RUSKA quartz Bourdon tube gage (Direct Reading Pressure 

Gage, series 6000) with an estimated maximum uncertainty of 0.01 MPa.

IV-2.2 Procedures

In the measurement for the s-H hydrate system, a sufficient amount of water and DMCH 

was supplied to the vacuumed high-pressure cell. The contents were then pressurized carefully 

by the introduction of Xe or CH4 (not to go over the equilibrium pressure of pure Xe or CH4 

hydrate which was measured in advance by an ordinary method). To generate the first gas 

hydrate particle of s-H, the system pressure was swung delicately just below the equilibrium 

pressure of help-gas hydrate (s-I) and then the agitation by the external magnetic was started. 

The up-and-down mixing is very important to supply fine particles of oil into water phase. In 

order to determine the four-phase (s-H hydrate + aqueous + liquid 1,1-DMCH + gas phases) 

equilibrium pressure precisely, the s-H hydrate was formed or dissociated by the pressure 
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high-pressure cell (hiper glass)
(inner volume: 10 cm3,
maximum working pressure: 5 MPa)

Figure IV-1 Schematic illustration of 

high-pressure glass cell.



control shown in Fig. IV-2. This procedure is quite important to prevent generating peritectic, 

otherwise a long time is necessary to establish the equilibrium state. When the pressure-change 

became within 0.01 MPa, the system was regarded as the equilibrium state. After confirming the 

equilibrium state of four-phase coexistence, the equilibrium temperature and pressure were 

measured. 

V-2.3 Materials

Xe was purchased from Daido Hoxan Inc., having a stated minimum purity of 99.995 

mol%. Kr was the maximum impurity of 3.78 ppm. Research grade CH4 of purity 99.99 % was 

obtained from Neriki Gas Co., Ltd. The distilled water was obtained from Wako Pure Chemical 

Industries, Ltd.. The special grade of 1,1-DMCH (purity 99.0 %) was obtained from Aldrich. 

The special grade of cis-1,2-DMCH (purity 98.0 %), trans-1,2-DMCH (purity 99.0 %) and 

cis-1,4-DMCH (purity 98.0 %) were obtained from Tokyo Chemical Industry Co., Ltd.. All of 

them were used without further purifications.
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Figure IV-2 Schematic drawing of pressure controll in order to determine the equilibrium 

pressure for the s-H hydrate system.



IV-3 Results & Discussion

IV-3.1 Phase Equilibria

1,1-DMCH + CH4 s-H hydrate system

The equilibrium data on the four-phase coexisting curve for the 1,1-DMCH + CH4 hydrate 

system are summarized in Table IV-1. From the slope of the four-phase coexisting curve, the 

overall enthalpy of hydrate formation (per 1 mol of s-H hydrate), hydH, is evaluated by use of 

the Clapeyron equation under the assumption of ideal hydration (5CH4 + 1,1-DMCH + 

34H2O), where the volumetric properties of CH4 and 1,1-DMCH are calculated from the IUPAC 

recommendation [16] and the Rackett equation [17], respectively. The molar volume of s-H 

hydrate is calculated from the hexagonal lattice constant of s-H hydrate (a =1.226 nm and c 

=1.017 nm) [18]. The hydH of the 1,1-DMCH + CH4 hydrate changes from 375 to 400 kJ/mol 

(average ca. 388.33 kJ / mol) in the temperature range of 274.6 - 289.3 K.

The phase equilibrium (pressure - temperature) relation obtained in the present study is 

shown in Fig. IV-3. A large depression of the equilibrium pressure from the pure CH4 hydrate 

(solid line) is observed. The equilibrium pressure would be reduced from 3 to 1 MPa by adding 

a small amount of 1,1-DMCH, as we assume that the temperature is around 275 K for 

producing NGH. Thomas and Behar [11] also reported the equilibrium relations for the CH4, 

1,1-DMCH and water system at higher temperature than 280 K. The present results agree well 

with theirs (solid circles) in that temperature region.

It is well-known that a few water-soluble organic compounds, e.g. tetrahydrofuran [19, 20], 

acetone [19-22], and 1,4-dioxane [20, 23], generate the s-II hydrate crystal in the presence of 

CH4 and reduce the equilibrium pressure. These additives are, however, unsuitable for our 

practical object because they are perfectly soluble in water. From an environmental standpoint, it 

is more desirable to reutilize an additive in this transport system. We try to search a candidate 

among hydrocarbons which would be easily separated from water after re-gasification or 

dissociation of NGH.
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T / K p / MPa hydH / kJmol-1 T / K p / MPa hydH / kJmol-1

274.67 1.07 388 284.57 3.74 382

276.67 1.37 394 286.53 4.75 389

278.65 1.76 395 288.51 6.08 382

280.63 2.19 400 289.31 6.77 375

282.61 2.90 390

Table IV-1 Four-phase equilibrium data for the s-H 1,1-DMCH hydrate helped by CH4.



The pressure depression from the pure CH4 hydrate system, p, is plotted in Fig. IV-4 in 

company with some candidate systems of neohexane [13], 2,2,3-trimethylbutane [11], and 

pinacolone [13]. The value of p for all s-H hydrates, which are formed with the selected 

candidate as additive, increases with the temperature. The 1,1-DMCH system exhibits the largest 

pressure depression in the candidate systems of s-H hydrate. A further investigation using the 

natural gas instead of pure methane is necessary to define the validity of 1,1-DMCH.

DMCH stereo isomer + Xe mixed systems

The equilibrium data on the four-phase coexisting curve for the 1,1-DMCH + Xe and 

cis-1,2-DMCH + Xe hydrate systems are summarized in Tables IV-2 and -3 and shown in Fig. 

IV-5. The solid line in Fig. IV-5 corresponds to the three-phase coexisting curve for the pure 

Xe hydrate [15]. The 1,1- and cis-1,2-DMCHs in the presence of Xe generate the s-H hydrate, 

while neither trans-1,2-DMCH nor cis-1,4-DMCH generates the s-H hydrate in the whole 

temperature range of the present study. It is noted that the 1,1-DMCH helped by Xe easily 

generates the s-H hydrate without special procedures which were contrived in the 

methylcyclohexane hydrate system [15].
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Figure IV-3 Four-phase equilinrium (pressure - temperature) relations of stability boundary

for the s-H 1,1-DMCH hydrate in the presence of CH4.



The four-phase coexisting curves of s-H hydrates for the cis-1,2-DMCH and 1,1-DMCH 

hydrate systems intersect the three-phase coexisting curve of s-I hydrate for the pure Xe hydrate 

system at 280.2 and 295.2 K, respectively. In the higher temperature region, the four-phase 

coexisting curves of the both systems agree with the three-phase coexisting curve of Xe hydrate 

system. In these mixed system, the overall enthalpy of hydrate formation (per 1 mol of s-H 

hydrate), is also evaluated from the slope of the four-phase coexisting curve by use of the 

Clapeyron equation under the assumption of ideal hydration (5Xe + 1,1-DMCH or 

cis-1,2-DMCH + 34H2O), where the volumetric properties of fluid Xe and 1,1- and 

cis-1,2-DMCHs are calculated from the Lee-Kesler equation of state and the modified Rackett 

equation [17], respectively. As mentioned above, the molar volume of s-H hydrate is calculated
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Figure IV-4 Comparison of pressure depressions in the s-H hydrates: ○ : 1,1-DMCH 

(present study); ●: neohexane [13]; ▲: 2,2,3-trimethylbutane [8]; ◆: methylcyclohexane [6]; 

□: pinacolone [13].
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T / K p / MPa hydH / kJmol-1 T / K p / MPa hydH / kJmol-1

s-H hydrate 286.67 0.493 399

274.73 0.103 416 287.67 0.554 401

274.86 0.106 409 288.77 0.629 404

275.05 0.108 412 289.29 0.660 405

275.14 0.109 414 289.90 0.717 405

275.27 0.110 419 290.33 0.758 403

275.52 0.114 416 290.83 0.803 403

276.40 0.129 414 291.32 0.855 401

276.80 0.136 414 291.84 0.911 400

277.20 0.144 413 292.30 0.963 399

278.24 0.164 417 292.76 1.021 397

278.79 0.175 420 293.24 1.087 403

279.60 0.202 421 293.77 1.165 400

280.46 0.223 414 294.25 1.245 395

280.70 0.231 413 294.88 1.342 394

281.22 0.247 414 s-I hydrate

281.71 0.263 414 295.34 1.420 69.3

282.26 0.280 417 295.81 1.503 68.5

282.77 0.305 410 296.21 1.563 68.5

283.29 0.323 402 296.71 1.645 68.3

283.80 0.342 404 297.18 1.725 68.1

284.24 0.362 404 297.66 1.812 67.9

284.72 0.383 405 298.69 2.017 67.1

285.22 0.407 405 299.68 2.235 66.3

285.65 0.431 403 301.64 2.759 63.4

Table IV-2 Four-phase equilibrium data for the s-H 1,1-DMCH hydrate helped by Xe.
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T / K p / MPa hydH / kJmol-1 T / K p / MPa hydH / kJmol-1

s-H hydrate 279.85 0.296 392

274.51 0.153 381 280.15 0.307 393

275.42 0.171 384 s-I hydrate

276.21 0.190 384 280.45 0.316 63.8

277.01 0.210 385 280.62 0.322 63.7

277.95 0.235 388 280.83 0.328 63.9

278.54 0.252 390 281.15 0.338 64.0

278.85 0.261 391 281.63 0.356 64.0

279.24 0.275 391 282.74 0.397 64.5

279.56 0.285 392 283.74 0.439 64.6

Table IV-3 Four-phase equilibrium data for the s-H 1,2-DMCH hydrate helped by Xe.
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p 
/ M
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T / K
Figure IV-5 Four-phase equilibrium (pressure - temperature) relations of stability boundaries 

in two DMCH stereo isomers + Xe mixed systems.



 from the hexagonal lattice constant of s-H hydrate (a =1.226 nm and c =1.017 nm) [18]. The 

details of calculation procedures are described elsewhere [24]. The hydH of the 1,1-DMCH + 

Xe (s-H) and cis-1,2-DMCH + Xe (s-H) hydrates has weak temperature dependence; the value 

changes from 395 to 420 kJ / mol in the temperature range of 274.73 - 294.88 K and from 381 

to 393 kJ / mol in the temperature range of 274.51 - 280.15 K, respectively.

IV-3.2 Icosahedron-cage Occupancy

In the comparison with the CH4 system for the DMCH stereo isomers, we found that there 

is the distinction of s-H hydrate stability between the methane and Xe systems. In the CH4 

systems, 1,1-DMCH and two cis-isomers (cis-1,2- and cis-1,4-DMCHs) generate the s-H 

hydrate, while neither trans-DMCHs nor cis-1,3-DMCH generates the s-H hydrate. 

Exceptionally, the trans-1,2-DMCH generates the s-H hydrate with cooperative assistance of 

CH4 and cis-1,2-DMCH [6, 25, 27]. On the other hand, only 1,1- and cis-1,2-DMCHs can 

generate the s-H hydrate in the Xe system as summarized in Table IV-4. The largest van der 

Waals diameter of each DMCH isomer is also listed in Table IV-4 for reference. The value of 

diameter is evaluated from PM3 method of MOPAC6 [28] and a practical assumption [29]. It is 

difficult to draw a definite boundary line in a series of the largest van der Waals diameters, 

however, the transitional point would be located in the region of 0.84-0.88 nm. These results 

suggest that the magnitude of U-cage expansion allowed in the CH4 system is larger than that of 

Xe. According to Gough [30], the distortion of hydrate cage is occasionally observed when the 
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LGS d / nm* CH4 Xe

1,1-DMCH 0.84 s-H formation s-H formation

cis-1,2-DMCH 0.84 s-H formation s-H formation

trans-1,2-DMCH 0.84 -** -

cis-1,3-DMCH 0.92 - -

trans-1,3-DMCH 0.84 - -

cis-1,4-DMCH 0.88 s-H formation -

trans-1,4-DMCH 0.95 - -

Table IV-4 Summary of s-H hydrate formation for DMCH stereo isomers in the presence of

CH4 or Xe [6, 25-27].

*The symbol d stands for the largest van der Waals diameter.

* *trans-1,2-DMCH generates the s-H hydrate with cooperative assistance of CH4 and

cis-1,2-DMCH [26, 27].



large guest species is entrapped in the cage. That is, the U-cage occupancy of large guest species 

depends on the function of help gas.

IV-4 Summary

The findings obtained in the Chapter IV are summarized as follows:

I. The s-H hydrate of 1,1-DMCH helped by CH4 has been investigated in order to search an 

effective additive for natural-gas transportation system. By adding a small amount of 

1,1-DMCH, it is possible that the equilibrium pressure would be reduced from 3 MPa (s-I CH4 

hydrate) to 1 MPa (s-H CH4 + 1,1-DMCH hydrate) around 275 K for producing natural-gas 

hydrates.

II. The four-phase coexisting curves for the s-H hydrate of 1,1-DMCH + Xe, cis-1,2-DMCH + 

Xe have been investigated in a pressure range up to 2.7 MPa.  The DMCH stereo isomers which 

generate the s-H hydrate helped by Xe are the 1,1- and cis-1,2-DMCHs. The cis-1,4-DMCH, 

which generates the s-H hydrate in the presence of CH4, can not generate the s-H hydrate in the 

presence of Xe. One of the most important findings is that the U-cage occupancy limit of large 

guest species depends on the function of help gas.

Notation

a, c : lattice constant [m]

H : enthalpy [J / mol]

p : pressure [Pa]

T : temperature [K]
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Chapter V

Effect of Water-soluble Additives on Hydrogen + Carbon Dioxide 

+ Water Mixed System

Abstract

Isothermal phase equilibria (pressure - composition in the gas phase) for the quaternary 

systems of hydrogen, carbon dioxide, tetrahydrofuran or tetra-n-butyl ammonium bromide, and 

water have been measured in the presence of gas hydrate phase. In the hydrogen + carbon 

dioxide + tetrahydrofuran + water mixed system, the lowest three-phase equilibrium pressure is 

obtained under the condition that the mole fraction of tetrahydrofuran in water is 0.056. The 

three-phase equilibrium curves have a stepwise increase in the equilibrium pressure around 0.2 

in the hydrogen mole fraction of gas phase. The Raman spectra show that the hydrogen and 

carbon dioxide molecules competitively occupy the small cage of structure-II in the region of  

hydrogen mole fraction higher than 0.2, while no hydrogen molecule is entrapped with the 

hydrate cage in the region of hydrogen mole fraction lower than 0.2. That is, the hydrogen 

molecule can be encaged in the hydrate cages with a small amount of tetrahydrofuran at 

considerably low pressure, which may be occurred in the region of hydrogen mole fraction 

higher than 0.2.

The three-phase equilibrium curve for the hydrogen + carbon dioxide + tetra-n-butyl 

ammonium bromide + water mixed system shows similar behavior to that of hydrogen + carbon 

dioxide + tetrahydrofuran + water mixed system.

Keywords: gas hydrate, phase equilibria, Raman spectroscopy, hydrogen, carbon dioxide, 

solution
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V-1 Introduction

The purification of H2 from gas mixtures is one of the most important techniques for 

developing new society sustained by H2 energies. An option of H2 separation would be an 

application of gas hydrates, that is, impurities in the gas mixtures are removed from the H2 

stream by generating gas hydrates where impurities are selectively entrapped in the hydrate 

cages. It is well known that the pure H2 hydrate is generated only in extremely high-pressure 

regions [1, 2].

In the Chapter II, we have investigated the phase equilibria for the ternary mixtures of H2, 

CO2, and water. The isothermal equilibrium pressure of three-phase coexistence (gas hydrates, 

aqueous solution, and gas phase) has increased in proportion with the H2 composition in the gas 

phase. It has been also shown that the isothermal equilibrium pressure can be estimated under a 

constant fugacity of CO2 from the assumption of pure CO2 hydrate formation. In addition, the 

Raman spectra for the single crystal generated from H2, CO2, and water mixtures suggest that 

hydrogen is not enclathrated in the hydrate cages. It is suggested that H2 would behave only like 

the diluent gas toward the formation of s-I carbon dioxide hydrate. That is, it has been revealed 

that the separation of H2 from gas mixture containing some impurities can be performed by use 

of gas hydrates.

In the Chapter V, quaternary mixtures including tetrahydrofuran (hereafter, THF) or 

tetra-n-butyl ammonium bromide (hereafter, TBAB) were investigated at the same temperature 

with the aim of reducing operation pressures. The dependence of THF composition in the 

aqueous solution has been also investigated near the stoichiometric THF composition. Finally, 

the cage occupancy of the H2 molecules in the hydrate generated from the H2 + CO2 + THF + 

water mixture were discussed briefly by use of Raman spectroscopic analysis.

V-2 Experimental Section

V-2.1 Apparatus

The experimental apparatus for the phase equilibrium measurements were the same as the 

one in the Chapter II or III except for the supply line for the aqueous solutions (as shown in 

Fig. V-1). A detail description was given in the previous chapter.

A schematic illustration of the experimental apparatus for the Raman spectroscopic analysis 

is shown in Fig. V-2. The experimental apparatus for the Raman spectroscopic analysis were the 

same as the one in the Chapter II or III except for the supply line for the aqueous solution. The 

high-pressure optical cell was the same as the one in the Chapter III. A detail description of the 

high-pressure optical cell was given in the previous chapter.

Thesis for Doctorate by S. Hashimoto

-78-



The system temperature was measured within an uncertainty of 0.02 K using a thermistor 

probe (Takara D-632), which was inserted into a hole in the cell wall. The probe was calibrated 

with a Pt resistance thermometer (25 ) defined by ITS-90. The system pressure was measured 

by a pressure gage (Valcom VPRT) calibrated by RUSKA quartz Bourdon tube gage (Direct 

Reading Pressure Gage, series 6000) with an estimated maximum uncertainty of 0.01 MPa.

V-2.2 Procedures

Phase equilibrium measurement

The THF or TBAB aqueous solution prepared at a desired composition was introduced 

into the evacuated high-pressure cell. The THF molecule generates the s-II hydrate and the 

stoichiometric mole fraction is 0.056 for the pure THF hydrate formation [3-5]. In the present 

study, the THF mole fractions (xTHF) of 0.030, 0.056 and 0.080 were adopted. The TBAB mole 

fraction (xTBAB) of 0.037 was adopted, which is the stoichiometric mole fraction for the tetragonal 

TBAB hydrate formation [6, 7]. The contents were pressurized up to a desired pressure by 

supplying H2 + CO2 mixture at a desired composition and then continuously agitated using the 

mixing bar driven by a permanent magnetic ring. After the formation of gas hydrates, the system 

temperature was kept constant to establish the three-phase coexisting state of hydrate + aqueous 

solution + gas. The phase behavior was observed directly through the window. After reaching 
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Figure V-1 Schematic illustration of experimental apparatus for phase equilibrium 

measurement.
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the equilibrium state of three-phase coexistence, a small amount of gas phase was sampled for 

the composition analysis. The equilibrium composition of gas phase was analyzed for the H2 

and CO2 by the TCD-Gas Chromatography (TCD-GC, Shimadzu GC-14B) as the water and 

THF or TBAB composition of gas phase is negligibly small under the present experimental 

conditions.

Raman spectroscopic analysis

The THF aqueous solution prepared at a desired composition was introduced into the 

evacuated high-pressure optical cell. The THF mole fractions of 0.056 were adopted, which is 

the stoichiometric mole fraction for the pure THF hydrate formation. The contents were 

pressurized up to a desired pressure by supplying H2 + CO2 mixture prepared at a desired 

composition. The procedure for the preparation of hydrate single-crystal was similar to that of 

the Chapter II or III. In the case that the single crystal was prepared from aqueous solution, the 

rate and range of temperature drop should be paid special attention in order not to grow the 

single crystal overly. We also paid enough attention to preparing as few single-crystals as 

possible. The single crystal was observed by the CCD camera through the quartz window. The 

photo of single crystal is shown in Fig. V-3.
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This single crystal of gas hydrate was analyzed by in situ Raman spectroscopy by use of a 

laser Raman microprobe spectrometer with a multichannel CCD detector. The CCD detector was 

maintained at ~200 K for heat-noise reduction. The argon ion laser beam (wavelength: 514.5 nm 

and generation power: 100 mW) condensed to 2 μm in spot diameter were irradiated to the 

single crystals from the object lens through the upper quartz window. The backscatter of the 

opposite direction was taken in with the same lens. The spectral resolution was about 1 cm-1. The 

exposed time and integration number were 60 sec. and 3 times, respectively.

V-2.3 Materials

Research grade H2 (mole fraction purity 0.999999) was obtained from the Neriki Gas Co., 

Ltd. The maximum impurity was 0.2 ppm of nitrogen. Research grade CO2 (mole fraction purity

0.9999) was obtained from the Takachiho Tradings Co., Ltd. Research grade THF (mole 

fraction purity 0.997), TBAB (mole fraction purity 0.980) and the distilled water were obtained 

from the Wako Pure Chemical Industries, Ltd. All of them were used without further 

purifications.
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Figure V-3 A photo of hydrate single-crystal prepared from H2 + CO2 + THF + water 

mixture.



V-3 Results & Discussion

V-3.1 Isothermal Phase Equilibria

The isothermal phase equilibrium (p - y) relations for the H2 + CO2 + THF + water mixed 

system (xTHF = 0.030, 0.056, and 0.080) containing gas hydrate at 280.1 K are summarized in 

Table V-1, and shown in Fig. V-4. In the present study, it is assumed that the mole fraction of 

THF in the gas phase can be neglected. The three-phase equilibrium pressure increases 

monotonically with the composition of H2. In comparison with the Chapter II, the most 

remarkable change is a large depression of equilibrium pressure which is caused by the addition 

of a small amount of THF.  This pressure depression is the greatest at xTHF = 0.056, which is 

stoichiometric for the pure THF hydrate. The degree of pressure depression depends on the 

additive composition, that is, the additional THF depresses the equilibrium pressure till the THF 

composition comes up to the stoichiometric mixture. The THF composition exceeding the 

stoichiometric ration does not depress the equilibrium pressure any more because excess THF 

molecules may play the role of a inhibitor. In the present study, the isothermal phase equilibria 

(p - y) relation for the same mixed system was also measured at 281.9 K under the condition 

that the THF mole fraction in water is 0.056. The results are summarized in Table V-2, and 
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Figure V-4 Isothermal phase equilibrium (pressure - composition in the gas phase) relations 

for H2 + CO2 + THF + water mixed system in the presence of hydrate phase at 280.1 K at xTHF 

= 0.030, 0.056, and 0.080.

x
THF
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x
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x
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shown in Fig. V-5 accompanied with the results at 280.1 K at the same THF concentration. As 

shown in Fig. V-5, the three-phase equilibrium pressure increases monotonically with the 

composition of H2. The large pressure depression from the equilibrium pressure without 

additives is observed at each temperature condition. There is no remarkable difference of phase 

behavior between these results except for the equilibrium condition. That is, the effect of THF 

does not depend on the system temperature.

It is also notable characteristic that the unusual behavior comes into existence on the p - y 

curve for the quaternary mixtures including THF. A stepwise increase in the equilibrium 

pressure appears around 0.2 in the H2 mole fraction of gas phase (yH2) for every aqueous 

solution of different THF mole fractions. It is reasonable to guess that the H2 molecule starts to 

occupy the S-cage of s-II in the CO2 + THF mixed gas hydrate at yH2 = ca. 0.2.

The isothermal phase equilibrium (p - y) relations for the H2 + CO2 + TBAB + water 

mixed system (xTBAB = 0.037) containing gas hydrate at 285.9 K are summarized in Table V-3, 

and shown in Fig. V-6 accompanied with the results of H2 + CO2 + THF + water mixed 

system at the stoichiometric THF mole fraction (280.1 K). The behavior of p - y curve for the H2 

+ CO2 + TBAB + water mixed system is very similar to that of H2 + CO2 + THF + water 

mixed system. The depression of equilibrium pressure for the H2 + CO2 + TBAB + water
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Figure V-5 Isothermal phase equilibrium (pressure - composition in the gas phase) relations

for H2 + CO2 + THF + water mixed system in the presence of hydrate phase at 280.1 K and

281.9 K at xTHF =  0.056.
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xTHF yH2 p / MPa xTHF yH2 p / MPa

0.030 0.000 0.32 0.657 0.64

0.157 0.40 0.705 0.68

0.201 0.52 0.728 0.71

0.255 0.65 0.808 0.97

0.439 0.79 0.832 1.02

0.570 0.92 0.840 1.11

0.661 1.06 0.864 1.25

0.723 1.17 0.879 1.37

0.795 1.44 0.881 1.39

0.810 1.71 0.898 1.64

0.855 2.08 0.904 1.95

0.875 2.30 0.945 2.32

0.887 2.51 0.960 2.81

0.905 2.82 0.985 3.61

0.934 3.46 0.080 0.000 0.23

0.056 0.000 0.22 0.183 0.34

0.186 0.38 0.253 0.45

0.194 0.33 0.591 0.61

0.230 0.37 0.752 0.80

0.237 0.38 0.794 1.00

0.259 0.44 0.849 1.26

0.363 0.41 0.874 1.43

0.431 0.44 0.925 2.00

0.495 0.50 0.946 2.47

0.569 0.55 0.967 3.10

0.569 0.59

Table V-1 Isothermal phase equilibrium data for H2 + CO2 + THF + water mixed system in

the presence of hydrate phase at 280.1 K at xTHF = 0.030, 0.056, and 0.080.
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xTHF yH2 p / MPa xTHF yH2 p / MPa

0.056 0.000 0.39 0.827 1.90

0.143 0.51 0.852 2.21

0.219 0.62 0.878 2.52

0.382 0.72 0.909 3.11

0.516 0.80 0.925 3.49

0.606 0.94 0.939 4.03

0.648 1.07 0.957 4.80

0.695 1.23 0.975 5.73

0.782 1.58

Table V-2 Isothermal phase equilibrium data for H2 + CO2 + THF + water mixed system at 

281.9 K at xTHF = 0.056.
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Figure V-6 Isothermal phase equilibrium (pressure - composition in the gas phase) relations

for H2 + CO2 + THF + water (at 280.1 K and at xTHF = 0.056) and H2 + CO2 + TBAB + 

water (at 285.9 K and at xTBAB = 0.037) mixed system in the presence of hydrate phase.



 mixed system, in spite of higher temperature, is greater than that of H2 + CO2 + THF + water 

mixed system. In addition, a stepwise increase in the equilibrium pressure at yH2 = ca. 0.2 

observed in the H2 + CO2 + THF + water mixed system also appears in the H2 + CO2 + TBAB 

+ water mixed system.

V-3.2 Raman Spectroscopic Analysis

In order to confirm the existence of H2 in the hydrate phase, the single crystals of gas 

hydrate were prepared from the H2 + CO2 + THF + water mixture in the higher or lower 

composition region than yH2 = 0.2. The mole fraction of THF is 0.056. Raman spectroscopic 

analysis was performed for these single crystals. The Raman peaks obtained in the higher 

composition region than yH2 = 0.2 (at 280.1 K and 4.3 MPa, yH2 = ~0.95) are shown in Fig. 

V-7(a), (b), and (c). The Raman spectra gives the characteristic signals of THF, H2, and CO2. As 

shown in Fig. V-7(a), the single peak detected at 919 cm-1 corresponds to the ring breathing 

mode of the THF molecules enclathrated in the hydrate phase. In addition, the quadruplet peak 

corresponding to the H2 rotation in the gas phase is observed at around 350, 590, 820, and 1036 

cm-1. The three weak and broad peaks except for the peak around 1036 cm-1 are also detected at 

the similar position in the hydrate phase. The peak around 1036 cm-1 overlaps with that of THF. 

Figure V-7(c) indicates that the split peak by Fermi resonance effect corresponding to C=O 

symmetric stretching vibration mode of CO2 are detected at 1286 and 1389 cm-1 in the gas 

phase, and at 1274 and 1381 cm-1 in the hydrate phase. These peaks are consistent with the 

previous study [8]. As shown in Fig. V-7(b), the peaks corresponding to the H-H stretching 

vibration mode of H2 are observed at 4129, 4146, 4159, and 4165 cm-1 in the gas phase, and at 
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xTBAB yH2 p / MPa xTBAB yH2 p / MPa

0.037 0.000 0.088 0.785 0.47

0.158 0.093 0.861 0.62

0.168 0.11 0.933 0.76

0.212 0.12 0.947 0.87

0.338 0.19 0.973 1.26

0.510 0.25 0.974 1.27

0.671 0.35

Table V-3 Isothermal phase equilibrium data for H2 + CO2 + TBAB + water mixed system

in the presence of hydrate phase at 285.9 K at xTBAB = 0.037.



4131 cm-1 in the hydrate phase. These sharp peaks in the gas phase and the broad and single 

peak in the hydrate phase corresponding to the H-H stretching vibration mode of the H2 

molecule are consistent with the reference data [9]. These findings reveal that the THF molecules 

occupy L-cages and the H2 and CO2 molecules are competitively enclathrated in the S-cages.

Figure V-8(a), (b), and (c) show the Raman spectra of H2 + CO2 + THF + water mixed 
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Figure V-7 (a) Raman spectra of the intramolecular vibration for THF in the gas and hydrate

phases. Panel (a) contains the spectra corresponding to the rotation of H2. The high base line

less than 520 cm-1 is due to the quartz windows of high-pressure optical cell. (b) Raman spectra

of the intramolecular vibration for H2 in the gas and hydrate phases. (c) Raman spectra of the

intramolecular vibration for CO2 in the gas and hydrate phases. All Raman spectra were

obtained at the composition region of yH2 > 0.2.
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system obtained in the composition region of yH2 < 0.2 (at 280.1 K and 0.3 MPa, yH2 = ~0.10). 

As shown in Fig. V-8(a), the single peak detected at 920 cm-1 corresponds to the ring breathing 

mode of the THF molecules enclathrated in the hydrate phase. No peak of H2 rotation is 

detected in the hydrate phase. As shown in Fig. V-8(c), the split peaks of CO2 vibration are 

detected in the hydrate phases at the almost same position for the results of yH2 > 0.2. Figure 

V-8(b) shows that the peak is not observed in the hydrate phase. That is, in the composition 

region of yH2 < 0.2, H2 molecule cannot occupy the hydrate cages and s-II CO2 + THF mixed 

gas hydrate is generated. It is suggested that the H2 cage occupancy changes depending on yH2 

in the H2 + CO2 + THF + water mixed system.

In the Chapter II, it has been claimed that the hydrate generated in the ternary system of H2, 

CO2 and water (without THF) can be regarded as the pure CO2 hydrate crystal (s-I) from 

Raman spectroscopic study. The author have also tried to estimate the equilibrium curve under 

the constant fugacity of pure CO2. The gas hydrate crystal generated in the present study is the 

s-II. The S-cage of s-II is somewhat smaller than that of s-I [10]. Therefore, it is possible that 

the H2 molecule occupies the S-cage to generate H2 + CO2 + THF mixed hydrate crystal.
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Figure V-8 (a) Raman spectra of the intramolecular vibration for THF in the hydrate phase. 

The high base line less than 520 cm-1 is due to the quartz windows of high-pressure optical

cell. (b) Raman spectra obtained around 4100 cm-1 in the hydrate phase. (c) Raman spectra of

the intramolecular vibration for CO2 in the hydrate phase. All Raman spectra were obtained at 

the composition region of yH2 < 0.2.
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V-4 Summary

Isothermal phase equilibria for the H2 + CO2 + THF or TBAB + water mixed systems 

were measured. The results reveal that the equilibrium pressure considerably reduces with a 

small amount of THF or TBAB. In the H2 + CO2 + THF + water mixed system, the largest 

pressure depression is obtained when the THF concentration is the stoichiometric composition 

for the pure THF hydrate formation. The pressure depression for the H2 + CO2 + TBAB + 

water mixed system is greater than that of H2 + CO2 + THF + water mixed system. The Raman 

spectroscopy for the hydrate single crystal generated from the H2 + CO2 + THF + water 

mixtures reveal that the cage occupancy of H2 molecule changes depending on the composition 

of H2 in the gas phase. In the region higher than 0.2 in the H2 mole fraction of gas phase, the H2 

and CO2 molecules are competitively enclathrated in the S-cages of s-II hydrate while the THF 

molecules occupy L-cages.

Notation

Nomenclature

p: pressure [Pa]

T: temperature [K]

x: mole fraction of aqueous solution

y: composition of gas phase [-]

Subscript

H2: H2, THF: THF solution, TBAB: TBAB solution
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Part B

Thermodynamic Stability of Hydrogen-containing Mixed 

Gas Hydrates for Hydrogen Storage

 (Chapters VI and VII)
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Preliminaries

Historically, the H2 molecule was considered to be too small to contribute to the stability of 

clathrate hydrates. In 1999, the first pure H2 hydrate has been demonstrated. Pure H2 hydrate 

has several advantages as a H2 storage material. Firstly, the storage material is pure water. When 

the H2 is released from the hydrate, the only byproduct is harmless water which is reusable and 

compatible with hydrogen fuel cells. Secondly, the formation and decomposition kinetics can be 

very fast. Furthermore, the hydrogen storage in molecular form is possible. This means that no 

chemical reaction is required for the H2 release, and the binding energy is low so heat generation 

will not be problematic. Finally, water is abundant and cheap. However, the H2 requires the high 

pressure (~200 MPa at 273 K) for the hydrate formation, and this severe condition is clearly 

disadvantageous to the H2 storage. It is necessary to reduce the high equilibrium pressure of 

pure H2 hydrate. For the pressure depression of pure H2 hydrate system, I regard the addition of 

other components as the most advantageous method.

In Part B, the objective is to obtain the fundamental information about the thermodynamic 

stabilities of mixed gas hydrates containing H2 for H2 storage and transportation using gas 

hydrates. From the contents in the Chapter V, two guest species are adopted as the assistant 

additive for the formation of H2-containing mixed gas hydrate: THF (Chapter VI) and TBAB 

(Chapter VII).
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Chapter VI

Stability Boundary and Cage Occupancy on Hydrogen + 

Tetrahydrofuran Mixed Gas Hydrate

Abstract

Phase equilibrium curves of hydrogen + tetrahydrofuran mixed gas hydrate were measured 

in a pressure range up to 200 MPa for the stoichiometric and non-stoichiometric aqueous 

solutions. Three-phase equilibrium curves for the non-stoichiometric aqueous solutions are 

shifted to the low-temperature or high-pressure side from that of the stoichiometric ones. Each 

three-phase equilibrium curve converges at the equilibrium point of the pure tetrahydrofuran 

hydrate for the mother aqueous solution of same mole fraction. It is directly confirmed by use of 

Raman spectroscopy that hydrogen is enclathrated in the hydrate cages by adding a small 

amount of tetrahydrofuran. Hydrogen is enclathrated in only the small cage while 

tetrahydrofuran occupies the large cages of each mixed gas hydrate. The selectivity of 

hydrate-cage occupancy by hydrogen does not change with the variation of mole fraction in the 

aqueous solution. Hydrogen is entrapped in the only small cages of tetrahydrofuran hydrate in 

the whole mole fraction ranges. The structural transition does not occur and the hydrogen 

gradually occupies empty small cages of structure-II tetrahydrofuran hydrate depending on the 

pressure.

The storage capacity of hydrogen in the tetrahydrofuran hydrate was investigated by the 

data obtained from Raman spectroscopic measurements. It is directly confirmed by use of 

Raman spectroscopy that the amount of enclathrated hydrogen molecules in the mixed gas 

hydrate increases as the pressure rises. The storage capacity would reach the ceiling value at 

about 80 MPa. This ceiling value seems to be about 1.0 mass% which is almost equal to the 

maximum amount of hydrogen storage in the structure-II tetrahydrofuran hydrate on the 

assumption that the only one hydrogen molecule can occupy the small cage of tetrahydrofuran 

hydrate. 

Keywords: gas hydrate; phase equilibria; cage occupancy; hydrogen; solution; gas storage

Chapter VI: Stability of H2 +  THF Mixed Gas Hydrate System

-93-



VI-1 Introduction

H2 has become the object of attention as a clean and promising energy resource. Recently, 

H2 hydrate is being considered as a medium of H2 storage and transportation. However, the pure 

H2 hydrate is generated only in extremely high-pressure region of 100-360 MPa [1]. Mao et al. 

[2] and Mao and Mao [3] reveal that H2 + water mixtures generate the s-II hydrate at high 

pressure of 200 MPa and low temperature of ca. 80 K, where the hydrate cages are multiply 

occupied by two H2 molecules in the S-cage and four in the L-cage. Much milder conditions are 

desired to utilize H2 hydrate as a medium of H2 storage and transportation.

Tetrahydrofuran (hereafter, THF), well known as a common solvent, generates s-II hydrate 

[4] below atmospheric pressures. THF can be enclathrated in the L-cage while it cannot occupy 

the S-cage. The chemical formula of ideal THF hydrate is written as THF•17H2O [5]. THF has 

been widely used as an additive that would reduce the equilibrium pressure of other gas hydrates 

(for example, CH4 and N2 hydrates). Furthermore, the effect of THF addition was the highest 

among several additives (for example, acetone, 1, 4-dioxane) [6, 7]. Florusse et al. [8] have 

firstly reported that H2 can be entrapped in hydrate cages with the existence of THF at low 

pressures. They have also revealed that the crystal structure of H2 + THF mixed gas hydrate 

belongs to the s-II hydrate by X-ray diffraction measurement. According to Florusse et al. [8] 

and Lee et al. [9], one or two H2 molecules are only enclathrated in the S-cage and one THF 

molecule in the L-cage. Phase behavior of H2 + THF hydrate, however, is unclear in a low 

pressure region where the pure THF hydrate exist stable [10].

In addition, Lee et al. [9] have investigated the binary-mixed gas hydrate containing H2 + 

THF at various THF concentrations by use of Nuclear Magnetic Resonance (NMR). They have 

claimed that the H2 molecule can occupy the L-cage  as well as the S-cage at THF mole fractions 

lower than 0.020, and that THF occupies the L-cage completely, while H2 is entrapped by only 

the S-cage in the THF mole fraction region higher than 0.020. Recently, Strobel et al. [11] have 

reported that the cage occupancy of H2 is independent of the THF concentration in the mole 

fraction range lower than 0.056 based on gas release data and H2 does not occupy the L-cage. 

They have also reported that he storage capacity of H2 in the THF hydrate reaches the ceiling 

value at ca. 70 MPa, where the peak value is about 1.0 mass% of hydrogen. The results about 

the L-cage occupancy of H2 reported by Strobel et al. [11] are inconsistent with those of Lee et 

al. [9]. In order to reveal the storage capacity of H2, it is necessary to verify the cage occupancy 

of H2 by spectroscopic method other than NMR. Furthermore, the variation of the THF 

concentration results in the change of the phase equilibrium relation for mixed hydrate 

containing THF. For example, it is well known that phase equilibrium curves for the N2 + THF 

mixed gas hydrate in non-stoichiometric THF concentration are shifted to a high-pressure or 

low-temperature condition compared with those of stoichiometric concentration [7]. Considering 

this tendency in the N2 + THF mixed-gas hydrate system, thermodynamic stability boundary of 
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H2 + THF mixed-gas hydrate in non-stoichiometric THF concentration would be also shifted to 

a high-pressure or low temperature condition. Therefore, it is necessary to determine both the 

phase behavior and cage occupancy of H2 in the H2 + THF mixed gas hydrate system 

simultaneously for H2 storage using gas hydrates.

In the Chapter VI, thermodynamic stabilities of H2 + THF mixed gas hydrate were 

measured (for the stoichiometric aqueous solution, in the lower pressure region than the 

previous report [8]). Raman spectra for each single crystal of H2 + THF mixed gas hydrate were 

measured under the three-phase coexisting conditions. In order to confirm the results reported 

by Lee et al. [9], the effect of thermodynamic stability and H2 occupancy on mole fraction of 

aqueous solution were also investigated for the H2 + THF mixed gas hydrate system. Finally, 

the H2 storage capacity of THF hydrates can be evaluated by the data obtained from Raman 

spectroscopic measurements under the three-phase (gas, aqueous, and hydrate phases) 

equilibrium and isothermal conditions. 

VI-2 Experimental Section

VI-2.1 Apparatus

The experimental apparatus for the phase equilibrium measurements in the low-pressure 

range (up to 10 MPa) was the same as the one in the Chapter III except for the lack of gas 

sampling lines (Fig. VI-1). As shown in Fig. VI-1, two types of high-pressure cell were used 

for phase equilibrium measurements. The high-pressure cell made of stainless steel had an inner 

volume of ca. 150 cm3. The maximum working pressure was 10 MPa. The cell had a set of 

windows for visually observing the phase behavior. The other was pressure-proof glass cell. The 

inner volume and maximum working pressure of the high-pressure glass cell were 10 cm3 and 5 

MPa, respectively. All parts of the high-pressure cell were immersed in a temperature-controlled 

water bath. The contents were agitated using an up-and-down mixing bar driven by an exterior 

permanent magnetic ring.

For the phase equilibrium measurements in the high-pressure range (up to 200 MPa) and 

Raman spectroscopic analyses, the high-pressure optical cell was used, which had a pair of 

quartz (highly pure) or sapphire (highly pure) windows on both the upper and lower sides. The 

apparatus containing the high-pressure optical cell was the same as the one in the Chapter III 

and IV, except for the pressurizing line. The schematic illustration of experimental apparatus is 

shown in Fig. VI-2. As shown in Fig. VI-2, the intensifier was added to the gas introducing 

line.

The system temperature was measured within an uncertainty of 0.02 K using a thermistor 

probe (Takara D-632), which was inserted into a hole in the cell wall. The probe was calibrated 
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with a Pt resistance thermometer defined by ITS-90. The system pressure was measured by a 

pressure gage (Valcom VPRT) calibrated by RUSKA quartz Bourdon tube gage (Direct 

Reading Pressure Gage, series 6000) with an estimated maximum uncertainty of 0.01 MPa 

(low-pressure range) and 0.1 MPa (high-pressure range).

VI-2.2 Procedures

Phase equilibrium measurement

The THF aqueous solution prepared at a desired mole fraction (xTHF = 0.010, 0.024, 0.056 

or 0.130) was introduced into the evacuated high-pressure cell. The content was pressurized up 

to the desired pressure by supplying H2. In the present study, we have adopted the method 

similar to the "T-cycle method [12]" for the three-phase equilibrium measurement. At first, the 

system temperature was decreased and kept constant at the point of pressure depression which is 

caused by the H2 + each additive mixed gas hydrate formation (the formation can be confirmed 

through the window of the cell). We cannot directly measure the equilibrium composition of 

aqueous phase under the coexistence of gas hydrate phase. Therefore, the content was heated 

very gradually and step by step (0.1 K each) until there was a negligibly small amount of gas 

Thesis for Doctorate by S. Hashimoto

-96-

high-pressure cell (stainless steel)
(inner volume: 150 cm3,
maximum working pressure: 10 MPa)

vacuum pump

P

water bath

programming thermocontroller

T

P pressure gage (±10 kPa ) thermometer (±0.02 K)T

permanent 
magnet

adiabatic wall

H2

aqueous solution

high-pressure cell (hiper glass)
(inner volume: 10 cm3,
maximum working pressure: 5 MPa)

Figure VI-1 Schematic illustration of experimental appratus for the phase equilibrium 

measurements in the low-pressure range.



hydrate left in order to minimize change of concentration in the aqueous solution. The interval 

time was taken adequately (at least one day) for establishing equilibrium state at each 

temperature step. When the last particle of hydrates disappeared on gradually heating, we 

adopted this point as the equilibrium point. In order to eliminate a hysteresis effect, we have used 

the annealing method (0.05 K one cycle per day) in addition to the "T-cycle method [12]". We 

never fail to repeat several times the T-cycle and annealing methods. In addition, we also 

repeated the same equilibrium measurements using the fresh solution at the same mole fraction.

Raman spectroscopic analysis

Three-phase equilibrium state

The aqueous solution prepared at a desired composition (xTHF = 0.024 or 0.056) was 

introduced into the evacuated high-pressure cell. The contents were pressurized up to a desired 

pressure by supplying H2 and then cooled and agitated with an enclosed ruby ball in order to 

prepare the gas hydrate. The procedure for the preparation of hydrate single-crystal was similar 

to that of the previous chapter. A photo of single crystal for the H2 + THF mixed gas hydrate is 

shown in Fig. VI-3. We also paid enough attention to preparing as few single-crystals as 

possible.

This single crystal of gas hydrate was analyzed by in situ Raman spectroscopy by use of a 

laser Raman microprobe spectrometer with a multichannel CCD detector. The CCD detector was 

maintained at ~200 K for heat-noise reduction. The argon ion laser beam (wavelength: 514.5 nm 

and generation power: 100 mW) condensed to 2 μm in spot diameter were irradiated to the 
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Figure VI-2 Schematic illustration of experimental apparatus for phase equilibrium

measurement in the high-pressure range and Raman spectroscopic analysis.
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single crystals from the object lens through the upper quartz or sapphire window. The 

backscatter of the opposite direction was taken in with the same lens. The spectral resolution was 

about 1 cm-1. The exposed time was 60 sec. The spectra were obtained with three integrations.

Isothermal condition

The aqueous THF solution prepared at xTHF = 0.056 was introduced into the evacuated 

high-pressure cell. The contents were supercooled and agitated with an enclosed ruby ball in 

order to prepare the THF hydrate. After the complete formation of gas hydrates, the system 

temperature was kept constant for more than one day at 277 K to mature the hydrate. Then, the 

contents were pressurized up to a desired pressure by supplying H2 and the cell was kept quiet 

in order to establish the two-phase (gas and hydrate phases) equilibrium state. After one day, the 

hydrate phase was analyzed through the upper quartz or sapphire window by in situ Raman 

spectroscopy. The other measurement conditions were similar to those performed under the 

three-phase equilibrium state.

VI-2.3 Materials

Research grade H2 (mole fraction purity 0.999999) was obtained from the Neriki Gas Co., 

Ltd. The maximum impurity was 0.2 ppm of nitrogen. Research grade THF (mole fraction 

purity 0.997) and the distilled water were obtained from the Wako Pure Chemical Industries, 

Ltd. All of them were used without further purifications.
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Figure VI-3 A photo of single crystal for H2 + THF mixed gas hydrate prepared at 137.0 

MPa, 294.39 K, and xTHF = 0.024.
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VI-3 Results & Discussion

VI-3.1 Phase Equilibria

Phase equilibria for the H2 + THF mixed gas hydrate system at various THF 

concentrations are summarized in Table VI-1 and shown in Fig. VI-4. The mole fractions of 

THF (xTHF) in the aqueous solutions are 0.010, 0.024, 0.056, and 0.130. The stoichiometric mole 

fraction of the pure THF hydrate is xTHF = 0.056 [10]. As shown in Fig. VI-4, the three-phase 

equilibrium curve of pure THF hydrate has a maximum temperature point at 277.45 K and 4.9 

kPa [10]. The three-phase equilibrium curve of H2 + THF hydrate, which is prepared from the 

THF stoichiometric aqueous solution, converges at the maximum temperature point. The 

three-phase equilibrium curves of H2 + THF mixed gas hydrate, which were obtained from the 

THF aqueous solution of xTHF = 0.024 and 0.130, converge at each equilibrium point of pure 

THF hydrate prepared from the same mole fraction solution, (275.73 K, 2.6 kPa) and (276.21 

K, 6.3 kPa) [10], respectively. Each equilibrium curve vertically rises up in the pressure up to 

about 2 MPa, which may be attributed to the hydrogen content in the hydrate. Each three-phase 

equilibrium pressure increases continuously with the temperature increase. The quadruple point 

of gas, aqueous solution, ice, and hydrate phases for the THF + water mixed system is located at 

xTHF = 0.0106, 272.06 K and 1.1 kPa [10]. The three-phase equilibrium line of H2 + THF mixed 
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Figure VI-4 Three-phase equilibrium curves of the H2 + THF mixed gas hydrate system. The

solid lines are fitting lines for the experimental data, and broken line is an extraporated line on

the assumption that three-phase equilibrium line for the THF mole fraction of 0.010 has a

similar behavior as the other lines.

THF hydrate (Makino et al. [10])
Florusse et al. [8]
xTHF = 0.056
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xTHF = 0.024
xTHF = 0.130



gas hydrate of xTHF = 0.010 would converge at the vicinity of the quadruple point as well as those 

of xTHF = 0.024, 0.056, and 0.130. The phase behaviors of all equilibrium curves agree well with 

one another.

Figure VI-5 shows the phase equilibrium (pressure - temperature) relations for the H2 + 

THF mixed gas hydrate system including the high-pressure region. The phase equilibrium data 

are also summarized in Table VI-1. In the high-pressure region, the equilibrium curve of xTHF = 

0.056 agrees well with that of Florusse et al. [8]. The three-phase equilibrium pressure increases 

monotonically with the temperature increase from the low-pressure to high-pressure region, and 

does not exhibit a stepwise variation. Therefore, it is likely that the structural transition of 

hydrate structure or variation of cage occupancy may not occur under the present experimental 

condition.

VI-3.2 Raman Spectroscopic Analysis

In situ Raman microspectroscopy was performed at xTHF = 0.010, 0.024, 0.056, and 0.130 

under the three-phase equilibrium conditions. Figure VI-6 shows a few typical Raman spectra 

derived from the THF and H2 molecules for the H2 + THF mixed gas hydrate system (at 294.39 

K, 137.0 MPa, and xTHF = 0.024). As shown in Fig. VI-6(a), the Raman peaks corresponding to
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Figure VI-5 Phase equilibrium (p - T) relation for the H2 + THF mixed gas hydrate system

including the high-pressure region.
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T / K p / MPa T / K p / MPa

xTHF = 0.010 272.89 1.13 292.28 95.0

273.25 2.78 295.25 140.0

273.42 3.41 298.38 190.0

273.68 4.05 xTHF = 0.056 277.47 0.10

273.86 4.86 277.47 0.33

274.08 5.43 277.56 0.55

274.36 6.02 277.80 1.03

274.42 6.36 277.96 1.55

274.68 6.83 278.20 2.13

274.94 7.36 279.20 4.87

275.11 7.86 280.10 8.30

275.29 8.33 280.76 11.3

275.56 8.88 281.39 13.3

275.69 9.38 286.10 30.5

275.91 9.73 293.39 80.0

276.26 11.0 xTHF = 0.130 276.23 0.09

277.36 13.8 276.30 0.42

xTHF = 0.024 275.86 0.11 276.42 0.70

276.03 0.38 276.53 1.01

276.13 0.70 276.74 1.55

276.21 0.90 276.91 2.01

276.45 1.48 277.25 2.61

276.68 2.09 277.54 3.24

277.13 3.34 277.87 4.31

277.63 4.92 278.26 5.37

278.50 7.15 278.79 6.74

279.08 8.94 279.15 7.64

280.31 13.7 279.55 8.56

283.50 26.2 279.81 9.60

286.20 39.7 280.28 11.2

289.94 71.2 280.41 12.5

Table VI-1 Phase equilibrium data for the H2 + THF mixed gas hydrate system at various 

THF mole fractions.



 the enclathrated THF molecule are detected at 919 and 1033 cm-1 in the hydrate phase, while the 

three peaks are detected at 883, 920, and 1036 cm-1 in the aqueous phase [13-15]. Therefore, it 

can be confirmed from the Raman spectra that the peaks of hydrate phase are not affected by the 

aqueous phase. The peaks corresponding to the H2 rotation are obtained at 354, 588, 816, and 

1036 cm-1 in the gas phase, while detected at 351, 584, and 814 cm-1 in the hydrate phase [16]. 

The peak around 1036 cm-1 overlaps with that of THF. As shown in Fig. VI-6(b), the peaks 

corresponding to the C-H vibration of THF are obtained around 2900 cm-1 in the aqueous and 

hydrate phases. Figure VI-6(b) contains the broad peaks derived from the O-H vibration of 

host water molecules. In this region, no peak is obtained in the gas phase. As shown in Fig. 
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Figure VI-6 Typical Raman spectra derived from the THF, H2, and host water molecules for 

the H2 + THF mixed gas hydrate system (at 294.39 K, 137.0 MPa, and xTHF = 0.024).



VI-4(c), four peaks corresponding to the H-H stretching vibration of H2 are detected at 4129, 

4146, 4159, and 4165 cm-1 in the gas phase, while a broad and single peak is detected at 4139 

cm-1 and 4131 cm-1 in the aqueous and hydrate phases, respectively. In addition, Figure VI-6(d) 

shows that the peak corresponding to the intermolecular O-O vibration of water is detected at 

210 cm-1. This indicates that the H2 + THF mixed gas hydrate is the s-II unit-cell structure [17, 
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Figure VI-7 Raman spectra of the intramolecular vibration for the THF (a) and H2 (b) 

molecules in the gas and hydrate phases at various THF mole fractions. Panel (a) contains the 

spectra corresponding to the rotation of H2. Typical spectra obtained in the gas and aqueous

solution phases at xTHF = 0.056 are contained. The broad signals that appear in lower than 520

cm-1 correspond to the quartz windows of high-pressure optical cell.
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18]. Incidentally, the signals which appear around 419 and 751 cm-1 are due to the sapphire 

windows of high-pressure optical cell.

The change of Raman spectra on the THF concentration is shown in Fig. VI-7(a) and (b). 

As shown in Fig. VI-7, the position and shape of all peaks derived from H2 in the hydrate phase 

agree well with one another. There is no remarkable change of Raman spectrum with the 

variations of THF concentration. Therefore, the cage occupancies of guest molecules for the H2 

+ THF mixed gas hydrate are independent of THF concentrations in the aqueous solutions 

under the present experimental condition. That is, the THF molecule occupies the L-cage 

completely while the H2 selectively occupies the S-cage of s-II hydrate. The results obtained in 

this study are consistent with those of Strobel et al. [11] on the point that the H2 molecule 

cannot occupy the L-cage for the H2 + THF mixed gas hydrate.

Figure VI-8 shows the pressure dependence of the peak derived from the H2 molecule. In 
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Figure VI-8 Pressure dependence of the normalized Raman peak derived from the H2 

molecule under the three-phase equilibrium state at xTHF = 0.024. The peak of H2 is normalized 

by that of THF ring-breathing mode.
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Fig. VI-8, the peaks of H2 (4131 cm-1) are normalized by use of the sharp peak (920 cm-1) 

corresponding to the ring-breathing (C-C-C-C) vibration mode of THF. As shown in Fig. VI-8, 

the peak area of H2 increases successively with the system pressure increases. That is, the 

storage amount of H2 in the THF hydrate increases with the pressure increases. In the case of 

pure THF hydrate, it was reported previously that the structural transition from s-II to s-I occurs 

at 268 K and 200 MPa [10, 13, 19]. On the other hand, Raman shift obtained in the present 

study does not depend on the system pressure, that is, the structural transition of hydrate 

structure or the variation of cage occupancy may not occur under the present experimental 

condition.
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Figure VI-9 Pressure dependence of the normalized Raman peak derived from the H2 

molecule under the isothermal condition (at 277 K) and xTHF = 0.056. The peak of H2 is

normalized by that of THF ring-breathing mode.



In the Chapter VI, Raman spectroscopy was performed at the constant temperature of 277 

K and xTHF = 0.056 under the two-phase equilibrium conditions. Figure VI-9 shows the 

pressure dependence of the peak derived from the H2 molecule. In Fig. VI-9, the peaks of H2 

are normalized as well as Fig. VI-8. As shown in Fig. VI-9, the peak intensity or area of H2 

increases successively with the system pressure increases. That is, the H2 storage in the THF 

hydrate may be potential by the pressurization of the THF hydrate using H2 gas.

VI-3.3 Storage Capacity

Figure VI-10 shows the pressure dependence of normalized peak area ratio (H2 vibration / 

THF ring-breathing). Figure VI-10 indicates that the storage amount of H2 approaches about 

maximum area ratio and reaches plateau in the pressure region more than 80 MPa. This 

maximum value seems to be ca. 1.05 mass%, which is almost equal to the maximum amount of 

hydrogen storage in the s-II THF hydrate on the assumption that the only one hydrogen 

molecule can occupy the small cage of tetrahydrofuran hydrate. These findings are consistent 
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Figure VI-10 Pressure dependence of normalized Raman peak area (H2 vib. / THF 

ring-breathing).
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with the data reported by Strobel et al. [11]. In addition, as shown in Fig. VI-10, the H2 storage 

amount does not depend on the difference of aqueous concentrations or coexisting phase. It is 

suggested that the storage capacity of H2 in THF hydrate can be evaluated simply by means of 

Raman spectroscopic method.

VI-4 Summary

Phase equilibria for the ternary systems of H2 + THF + water were measured at the various 

mole fractions of aqueous solution. The three-phase (gas, aqueous solution, and hydrate phases) 

equilibrium curves of each mixed gas hydrate converge at the equilibrium point of each pure 

THF hydrate prepared from the same aqueous solution. Three-phase equilibrium curves of H2 

+ THF mixed gas hydrate changes smoothly and successively from the low-pressure to 

high-pressure region up to 200 MPa. From Raman spectroscopy for the single crystals of H2 + 

THF mixed gas hydrates, it is concluded that the S-cages and the other large-cages are 

selectively occupied by H2 and THF in all mole fraction range of aqueous solution, respectively. 

The Raman spectra also reveal that the amount of enclathrated H2 molecules in the mixed gas 

hydrate increases as the system pressure rises and reaches plateau around ca. 80 MPa. On the 

other hand, the shift and shape of Raman peaks do not depend on the system pressure. These 

findings indicate that the structural transition does not occur and the H2 gradually occupies 

empty small cages of s-II THF hydrate depending on the system pressure under the present 

experimental condition. 

Notation

Nomenclature

p: pressure [Pa]

T: temperature [K]

x: mole fraction of aqueous solution

Subscript

THF: THF solution
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Chapter VII

Stability Boundary and Cage Occupancy on Hydrogen + 

Tetra-n-butyl Ammonium Bromide Mixed Gas Hydrate

Abstract

Phase equilibrium curves of tetra-n-butyl ammonium bromide mixed gas hydrates were 

measured in a pressure range from 0.1 MPa to 13.6 MPa for the stoichiometric and 

non-stoichiometric aqueous solutions. The equilibrium curve of hydrogen + tetra-n-butyl 

ammonium bromide mixed gas hydrate shifts to the high-temperature side from that of 

hydrogen + tetrahydrofuran mixed gas hydrate. The difference of equilibrium temperature is 

about 8 K for the hydrogen + tetra-n-butyl ammonium bromide mixed gas hydrate. Three-phase 

equilibrium curves for the non-stoichiometric aqueous solutions are shifted to the 

low-temperature or high-pressure side from that of the stoichiometric ones. Each three-phase 

equilibrium curve converges at the vicinity of equilibrium point of the pure tetra-n-butyl 

ammonium bromide hydrate for the mother aqueous solution of same mole fraction. Raman 

spectra show that hydrogen is enclathrated in only the small cage, while tetra-n-butyl ammonium 

bromide occupies the large cages of mixed gas hydrate. The selectivity of hydrate-cage 

occupancy by hydrogen does not change with the variation of mole fraction in the aqueous 

solution and the difference of hydrate unit-cell structure for the hydrogen + tetra-n-butyl 

ammonium bromide mixed gas hydrate.

Keywords: gas hydrate; phase equilibria; cage occupancy; hydrogen; solution; gas storage
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VII-1 Introduction

Recently, the mixed gas hydrate containing H2 has become the object of an attention as a 

potential medium that enables to storage and transport H2 at relatively mild conditions [1-5]. It is 

required for the assistant component to construct the clathrate hydrate by itself at moderate 

conditions. The generated hydrate has some empty cages, where can be occupied with H2 

molecules. Tetrahydrofuran (hereafter, THF) is familiar as the assistant additive, which forms the 

s-II hydrate containing sixteen empty S-cages per unit lattice. In the literatures [1, 3, 5], it has 

been reported that H2 + THF mixed gas hydrate can generate at much lower pressure than the 

pure H2 hydrate. In the Chapter VI, I have also investigated the H2 + THF mixed gas hydrate 

system by thermodynamic and Raman spectroscopic methods. It is necessary to search the 

suitable additives or innovative methods which enable the safe and bulk storage of H2 using gas 

hydrates under low-pressure and high-temperature conditions.

Shimada et al. [6] and Oyama et 

al. [7] have reported that isobaric 

phase equilibrium (T - x) relations for 

the tetra-n-butyl ammonium bromide 

(hereafter, TBAB) hydrate have the 

maximum temperature point (285.15 

K) at atmospheric pressure with 40.5 

mass% (3.7 mol%) water solution. 

As shown in Fig. VII-1, TBAB 

hydrate is a semi-clathrate hydrate 

where TBAB is incorporated with the 

water molecules to construct the 

hydrate cage. TBAB hydrate also has 

some empty S-cages in common with THF hydrate. The higher stability of TBAB hydrate than 

THF hydrate indicates that H2 storage in TBAB hydrate has prospects of large advantage. There 

are various reports about the crystal structure and the role of bromine for the TBAB hydrates 

[8-10], however, the structure of TBAB hydrate is considered to be less certain. The hydration 

numbers of these structures are 26 and 38, which are described as Type A and Type B, 

respectively [6, 7]. The concentration of aqueous TBAB solutions results in differences of the 

crystal structure and thermodynamic stability of TBAB hydrate. It is necessary to determine 

both the phase behavior and H2 occupancy in the H2 + TBAB + water mixed system.

In the Chapter VII, thermodynamic stabilities of H2 + TBAB mixed gas hydrate were 

measured. In addition, Raman spectra for the single crystals of H2 + TBAB mixed gas hydrates 

were measured under the three-phase (gas, aqueous solution, and hydrate phases) coexisting 

conditions. In addition, the dependence of thermodynamic stability and H2 occupancy on mole 
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Figure VII-1 Schematic illustration of TBAB molecule

and Type A TBAB hydrate.



fraction of aqueous solution were also investigated for the three mixed gas hydrate systems.

VII-2 Experimental Section

VII-2.1 Apparatus

The experimental apparatus for the phase equilibrium measurements and Raman 

spectroscopic analyses were the same as the ones in the Chapter VI. A detail description was 

given in the previous chapter.

The system temperature was measured within an uncertainty of 0.02 K using a thermistor 

probe (Takara D-632), which was inserted into a hole in the cell wall. The probe was calibrated 

with a Pt resistance thermometer defined by ITS-90. The system pressure was measured by a 

pressure gage (Valcom VPRT) calibrated by RUSKA quartz Bourdon tube gage (Direct 

Reading Pressure Gage, series 6000) with an estimated maximum uncertainty of 0.01 MPa.

VII-2.2 Procedures

In the Chapter VII, the phase equilibrium (temperature - composition) relation was 

measured for the pure TBAB hydrate system. The TBAB aqueous solution prepared at a desired 

mole fraction was introduced into the glass tube. We have also adopted the method similar to the 

"T-cycle method [11]" for this equilibrium measurement. At first, the system temperature was 

decreased and kept constant at the point of pressure depression which is caused by the H2 + 

each additive mixed gas hydrate formation. We cannot directly measure the equilibrium 

composition of aqueous phase under the coexistence of gas hydrate phase. Therefore, the 

content was heated very gradually and step by step (0.1 K each) until there was a negligibly 

small amount of gas hydrate left in order to minimize change of concentration in the aqueous 

solution. The interval time was taken adequately (at least one day) for establishing equilibrium 

state at each temperature step. When the last particle of hydrates disappeared on gradually 

heating, we adopted this point as the equilibrium point. In order to eliminate a hysteresis effect, 

we have used the annealing method (0.05 K one cycle per day) in addition to the "T-cycle 

method [11]". We never fail to repeat several times the T-cycle and annealing methods. In 

addition, we also repeated the same equilibrium measurements using the fresh solution at the 

same mole fraction.

For the three-phase equilibrium measurements and Raman spectroscopic analyses, the 

procedures were similar to those of the Chapter VI. A detail description was given in the 

previous chapter.
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VII-2.3 Materials

Research grade H2 (mole fraction purity 0.999999) was obtained from the Neriki Gas Co., 

Ltd. The maximum impurity was 0.2 ppm of nitrogen. Research grade TBAB (mole fraction 

purity 0.980) and the distilled water were obtained from the Wako Pure Chemical Industries, 

Ltd. All of them were used without further purifications.

VII-3 Results & Discussion

VII-3.1 Phase Equilibria

Stability boundaries of pure TBAB hydrates

In the Chapter VII, the phase equilibrium (temperature - composition) relations for the pure 

TBAB hydrate system was also measured under the atmospheric conditions. The result is shown 
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Figure VII-2 Phase equilibrium (T - x) relation for the pure TBAB hydrate system under the 

atmospheric conditions.
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in Fig. VII-2. Interestingly, it has been reported that a structural phase transition occurs, 

depending on the mole fraction of aqueous solution, for the pure TBAB hydrate [6-9, 12]. In the 

mole fraction region of xTBAB < 0.014, the Type B TBAB hydrate generates preferentially. On the 

other hand, the Type A TBAB hydrate is more stable than the Type B in the mole fraction region 

of xTBAB > 0.014. As shown in Fig. VII-2, Type A TBAB hydrate is most stable at xTBAB = 0.037 

(40.5 mass%) which is the stoichiometric concentration of the Type A TBAB hydrate [6, 7], 

where the equilibrium temperature is 285.35 K. This maximum equilibrium temperature of Type 

A TBAB hydrate agrees well with the previous one [6, 7, 12]. The structural-transition point of 

TBAB hydrates between Type A and Type B would be located at xTBAB = 0.014 and 282.15 K in 

the present study. The phase behavior for the pure TBAB hydrate system obtained in the present 

study agrees with that of previous reports [6, 7, 12]. For convenience, the description of Types A 

and B is adopted hereafter following Shimada's expression.

H2 + TBAB mixed gas hydrate ~Stoichiometric (Type A) aqueous solution~

Phase equilibria for the H2 + TBAB mixed gas hydrate system are summarized in Table 

VII-1 and shown in Fig. VII-3 accompanied with that of H2 + THF mixed gas hydrate system. 

As shown in Fig. VII-3, the mole fraction of TBAB aqueous solutions xTBAB is 0.037, which is 

the stoichiometric concentration of the Type A pure TBAB hydrates. The three-phase 

equilibrium curve of H2 + TBAB mixed gas hydrate converges at the atmospheric temperature 
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Figure VII-3 Three-phase equilibrium curves of H2 + THF and H2 + TBAB mixed gas 

hydrate systems. The solid lines are fitting lines for experimental data.
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point of stoichiometric pure TBAB hydrate (Type A). The equilibrium temperature for the pure 

TBAB hydrate of stoichiometric composition at atmospheric pressure is 285.35 K. The 

equilibrium curve vertically rises up in the pressure range up to 2 MPa. The phase behavior of 

H2 + TBAB hydrate is similar to that of H2 + THF hydrate, while the three-phase equilibrium 

curve of H2 + TBAB hydrate shifts to the higher temperature of about 8 K than that of H2 + 

THF hydrate.
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Figure VII-4 Three-phase equilibrium curves of the H2 + TBAB mixed gas hydrate system at

various mole fractions. Closed keys represent the three-phase equilibrium points of pure TBAB 

hydrates at atmospheric pressure. The solid lines are fitting lines for the experimental data.

xTBAB = 0.006, Type B

xTBAB = 0.037
xTBAB = 0.070

xTBAB = 0.020
Type A

Figure VII-5 Photos of a hydrate crystal for the H2 + TBAB mixed gas hydrate at xTBAB = 

0.070 (Type A) (a) and xTBAB = 0.006 (Type B).



H2 + TBAB mixed gas hydrate ~Non-stoichiometric aqueous solution~

Phase equilibrium (pressure - temperature) relations for the H2 + TBAB mixed gas hydrate 

systems at various TBAB concentrations are also summarized in Table VII-1 and shown in 

Fig. VII-4. The three-phase equilibrium curves of H2 + Type A TBAB mixed gas hydrate, 

which were obtained from the TBAB aqueous solution of xTBAB = 0.020 and 0.070, converge at 

the vicinity of each atmospheric equilibrium temperature (283.65 K and 284.73 K) of pure 
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T / K p / MPa T / K p / MPa

xTBAB = 0.006 279.43 0.52 285.46 0.70

Type B 279.62 1.41 285.75 1.19

279.78 2.07 285.94 2.19

280.04 3.11 286.05 3.27

280.27 4.03 286.17 5.30

280.46 4.92 286.26 6.05

280.86 7.50 286.45 7.10

281.33 11.5 286.59 7.93

281.73 12.1 286.67 8.66

281.91 12.7 287.19 13.4

xTBAB = 0.020 283.79 0.49 287.30 13.6

Type A 283.87 1.52 xTBAB = 0.070 284.84 0.50

283.99 2.28 Type A 284.93 1.39

284.13 3.32 285.06 2.30

284.38 4.09 285.29 3.12

284.56 4.95 285.55 4.12

284.96 7.30 285.74 4.91

285.67 12.2 286.16 7.30

285.95 13.7 286.89 13.2

xTBAB = 0.037 285.35 0.13 287.16 14.7

Type A 285.35 0.18

Table VII-1 Phase equilibrium data fot the H2 + TBAB mixed gas hydrate system at various 

TBAB mole fractions.



TBAB hydrate prepared from the same mole fraction solution, respectively. In the case of xTBAB 

= 0.006, the three-phase equilibrium curve of H2 + TBAB mixed gas hydrate converges at the 

vicinity of temperature of 279.25 K, which agrees with the equilibrium temperature of Type B 

pure TBAB hydrate under the atmospheric conditions [6, 7]. That is, the H2 + TBAB mixed gas 

hydrate of xTBAB = 0.006 has the crystal structure originated from the Type B TBAB hydrate. 

Fig. VII-5 shows a crystal of two types of H2 + TBAB mixed gas hydrates; (a) Type A at xTBAB 

= 0.070, (b) Type B at xTBAB = 0.006. There seems to be morphologic differences between H2 + 

Type A and Type B TBAB mixed gas hydrates, which the appearance of Type A and Type B 

hydrate would be table-like crystal and columnar or spicular, respectively. All three-phase 

equilibrium curves obtained in the present study shift to the side of lower-temperature than that 

of stoichiometric concentration. Each equilibrium curve vertically rises up in the pressure up to 

about 3 MPa, which may be attributed to the hydrogen content in the hydrate. Each three-phase 

equilibrium pressure increases continuously with the temperature increasing.

VII-3.2 Raman Spectroscopic Analysis

The Raman spectra for the H2 + TBAB mixed gas hydrates under the three-phase 
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Figure VII-6 Raman spectra originated in TBAB in the aqueous and hydrate phases at various 

TBAB mole fractions in the low (a) and high (b) wavenumber ranges. In the hydrate phase, 

Type B: xTBAB = 0.006, 281.73 K, 12.1 MPa; Type A: xTBAB = 0.037, 287.20 K, 13.4 MPa.



equilibrium state obtained at xTBAB = 0.006, 0.020, 0.037, and 0.070 are shown in Figs. VII-6, -7, 

and -8. The characteristic Raman peaks derived from TBAB molecule are detected around 

700-1500 cm-1 and 2800-3000 cm-1 in the aqueous and hydrate phases. Figs. VII-6 and -7 show 

the Raman spectra of TBAB molecule for the H2 + TBAB mixed gas hydrates. As shown in 

Fig. VII-6, the spectra are different between hydrate and aqueous solution phases. Moreover, the 

crystal structures (Type A and Type B) affect the Raman spectra, especially the peaks around 

1100 cm-1, 1400 cm-1, and 2900 cm-1 of TBAB and the broad peak at 3200-3400 cm-1 

corresponding intramolecular O-H vibration of host water lattice. That is, it is possible to 

distinguish the crystal type of H2 + TBAB mixed gas hydrate by the Raman spectroscopy. On 

the other hand, there is no remarkable change of Raman spectra with the various TBAB 

concentrations for the H2 + Type A TBAB mixed gas hydrate as shown in Fig. VII-7.

Fig. VII-8 shows that four peaks corresponding to the H-H stretching vibration mode are 

observed at (4130, 4147, 4159, and 4166 cm-1) in the gas phase. In the aqueous and hydrate 

phases, a broad single peak is detected at 4140 and 4132 cm-1, respectively. The position and 

shape of all peaks derived from H2 in the hydrate phase agree well with one another. In addition, 

these peaks corresponding to the vibration of H2 are consistent with that of H2 + THF mixed 

gas hydrate system. There is no remarkable change of Raman spectra of H2 vibration with the 

various crystal structure and TBAB concentrations. Therefore, the cage occupancy of H2 for the 

H2 + TBAB mixed gas hydrate is independent of TBAB concentrations in the aqueous solutions 

under the present experimental condition. That is, as shown in Fig. VII-9, the H2 selectively 
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xTBAB = 0.020
285.67 K, 12.2 MPa

xTBAB = 0.037
287.20 K, 13.4 MPa

xTBAB = 0.070
286.89 K, 13.2 MPa

xTBAB = 0.020
285.67 K, 12.2 MPa

xTBAB = 0.037
287.20 K, 13.4 MPa

xTBAB = 0.070
286.89 K, 13.2 MPa

Figure VII-7 Raman spectra originated in TBAB in the Type A-hydrate phases at various 

TBAB mole fractions in the low (a) and high (b) wavenumber ranges. 



occupies the empty small cages of semi-clathrate hydrate, while the butyl-group of TBAB 

molecule occupies the other cages completely. The results obtained in this study are consistent 

with our previous data on the point that H2 molecule occupies the only small cage for the H2 + 

THF mixed gas hydrate. On the other hand, H2 peaks in the H2 + TBAB hydrate seem to be bit 

weaker than those of H2 + THF hydrate. Type A TBAB hydrate is composed of ten S-cages, 
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xTBAB = 0.020
285.67 K, 12.2 MPa

xTBAB = 0.037
287.20 K, 13.4 MPa

xTBAB = 0.070
286.89 K, 13.2 MPa

xTBAB = 0.006 (Type B)
281.73 K, 12.1 MPa

Figure VII-8 Raman spectra corresponding to the intramolecular vibration for H2 in the gas, 

aqueous, and hydrate phases at various TBAB mole fractions. Panel contains typical spectra

obtained in the gas and aqueous solution phases under the coexistence with Type A hydrate

(xTBAB = 0.037).



sixteen M-cages, and four pentakaidecahedrons (L'-cage) [6], and Type B hydrate consists of 

six S-cages, four M-cages, and four L'-cages [8]. In the TBAB hydrate, bromine makes a role of 

cage frame with the water molecules and 

tetra-n-butyl ammonium is enclathrated in the 

hollow center of four large cages. Therefore, the 

ratio of empty S-cages to all cages in TBAB 

hydrate is smaller than that of THF hydrate. This 

may be one of the reasons why H2 peaks in the 

H2 + TBAB hydrate seem to be bit weaker than 

those of H2 + THF hydrate. That is, the storage 

capacity of H2 in the TBAB hydrate seems to be 

smaller than that of the THF hydrate under the 

present experimental condition.

VII-4 Summary

Phase equilibria for the ternary system of H2 + TBAB + water were measured at the 

various mole fractions of aqueous solution. The three-phase (hydrate + aqueous solution + 

fluid) equilibrium curves of H2 + TBAB mixed gas hydrate converge at the equilibrium point of 

pure TBAB hydrate prepared from the same aqueous solution. The H2 + TBAB mixed gas 

hydrate can exist at much higher (~8 K) temperature than that of H2 + THF mixed gas hydrate. 

From Raman spectroscopy for the single crystal of H2 + TBAB mixed gas hydrates, neither the 

difference of concentration in the aqueous TBAB solution nor crystal structure between Type A 

and Type B TBAB hydrates affects the cage-occupying selectivity of H2. It is concluded that 

only the empty small cages of TBAB hydrate are occupied by one H2 molecule in the TBAB 

mole fraction range from 0.006 to 0.070.

Notation

Nomenclature

p: pressure [Pa]

T: temperature [K]

x: mole fraction of aqueous solution

Subscript

TBAB: TBAB solution
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Figure VII-9 Schematic illustration of H2 + 

TBAB mixed gas hydrate (Type A ).
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Chapter VIII

General Conclusion

The gas hydrate systems generated from various mixtures containing from the smallest (H2) 

to the largest guest (DMCH stereo isomers) were studied in this thesis. The gas storage and 

transportation, particularly H2 storage technology, are the essential techniques for developing 

new society sustained by H2 energies. I considered that gas hydrates have a huge potential as a 

medium for these applied techniques. There are a lot of important topics such as hydrate 

structure, phase equilibrium, cage occupancy, storage capacity for various mixed gas hydrate 

systems. These systems were investigated by mainly use of thermodynamic and Raman 

spectroscopic methods. The fundamental findings obtained in the present study are very 

important to develop the future technologies for utilization of natural gas or H2 energies as well 

as to understand the characters of mixed gas hydrate. The author hopes that the present findings 

can contribute to develop the new society sustained by H2 energies. In the Chapter I, earlier 

chapters (Chapters II-VII) have already divided into two categories according to the basic 

concept. The findings are summarized as follows:
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Part A: Thermodynamic Properties of Mixed Gas Hydrates (Chapters 

II-V)

The four ternary systems containing H2 + (CO2 or hydrocarbons (C2H6, c-C3H6, or C3H8)) 

+ water were studied. The s-H hydrate systems which are composed of DMCH stereo-isomers 

helped by Xe or CH4 were studied. In addition, THF and TBAB were adopted as additives which 

depress the equilibrium pressure and the H2 + CO2 + (THF or TBAB) + water quaternary 

system (THF: at 280.1 K and 281.9 K, TBAB: 285.9 K) was studied. The isothermal phase 

equilibria were measured by means of TCD-GC. The single crystals were analyzed under the 

three-phase (gas, aqueous, and hydrate phases) equilibrium condition by use of Raman 

micro-spectrometer.

A-1 Phase Behavior

Three-phase (gas + aqueous + hydrate phases) equilibrium pressure increases 

monotonically with the H2 composition of gas phase for all ternary systems of H2 + (CO2 or 

hydrocarbons (C2H6, c-C3H6, or C3H8)) + water. According to the thermodynamic analysis 

using numerical calculation in order to give the equilibrium fugacity of pure or hydrocarbon 

hydrate, the isothermal phase equilibrium relation for the ternary system of H2 + C3H8 + water 

exhibits the different behavior from those of H2 + (CO2, C2H6 or c-C3H6) + water. In the only 

case of H2 + C3H8 + water  system, the experimental pressure shifts to the lower side than the 

estimated ones.

The equilibrium pressure of each s-H system helped by CH4 is lower than that of pure CH4 

s-I hydrate. By adding a small amount of 1,1-DMCH, the equilibrium pressure can be reduced. 

The 1,1-DMCH is a suitable additive which makes a mild-pressure handling of natural-gas 

hydrate possible. The cis-1,4-DMCH, which generates the s-H hydrate in the presence of CH4, 

can not generate the s-H hydrate in the presence of Xe. It is firstly suggested that the U-cage 

occupancy limit of large guest species depends on the function of help gas.

The equilibrium pressure of H2 + CO2 + water mixed system considerably is reduced with 

a small amount of THF or TBAB. In the H2 + CO2 + THF + water mixed system, the largest 

pressure depression is obtained when the THF concentration is the stoichiometric composition 

for the pure THF hydrate formation. The pressure depression for the H2 + CO2 + TBAB + 

water mixed system is greater than that of H2 + CO2 + THF + water mixed system. All 

three-phase equilibrium curves exhibit a stepwise increase around 0.2 in the H2 mole fraction of 

gas phase. It is suggested that the H2 molecule starts to occupy the hydrate cages at ca. 0.2 in 

the H2 mole fraction of gas phase.

Thesis for Doctorate by S. Hashimoto

-126-



A-2 Cage Occupancy

In the H2 + (CO2 or hydrocarbons (C2H6, c-C3H6, or C3H8)) + water ternary systems, the 

Raman spectra reveals that the H2 can occupy the S-cage of s-II C3H8 hydrate. The H2 + C3H8 

+ water mixture can generate the mixed H2 hydrate. On the other hand, the small cage in the 

CO2, C2H6, and c-C3H6 hydrates cannot trap the H2 even though all the S-cages are vacant in 

these two gas hydrates. The hydrate generated from the H2 + (CO2, C2H6 or c-C3H6) + water 

mixture is s-I hydrate originated in pure CO2, C2H6 or c-C3H6 and the H2 behaves only like a 

diluent gas toward the formation of these hydrates under the experimental conditions of this 

thesis. These results are good consistent with the isothermal phase equilibrium data including 

the numerical calculation.

The Raman spectroscopy for the hydrate single crystal generated from the H2 + CO2 + 

THF + water mixtures reveal that the cage occupancy of H2 molecule change depending on the 

composition of H2 in the gas phase. In the region higher than ca. 0.2 in the H2 mole fraction of 

gas phase, the H2 and CO2 molecules are competitively enclathrated in the S-cages of s-II 

hydrate while the THF molecules occupy L-cages selectively.

Part B: Thermodynamic Stability of Hydrogen-containing Mixed Gas 

Hydrates for Hydrogen Storage (Chapters VI and VII)

The three-phase equilibrium (pressure - temperature) relations for the H2 + water-soluble 

additive (THF or TBAB) mixed gas hydrate systems were measured at various concentrations in 

the aqueous solutions up to 15 MPa. In all mixed systems, the single crystals were analyzed 

under the three-phase (gas, aqueous, and hydrate phases) equilibrium condition by use of 

Raman microspectrometer in order to confirm the existence of H2 in the hydrates directly. In 

addition, in the case of THF which is most familiar as a additive, the phase equilibrium 

measurement and Raman spectroscopic analysis were performed up to 200 MPa in order to 

investigate the pressure dependence on thermodynamic stability and cage occupancy. Finally, the 

storage capacity of H2 in the THF hydrate was estimated by Raman spectroscopy under the 

three-phase (gas, hydrate, and aqueous phases) and isothermal (two-phase coexisting of gas and 

hydrate) conditions.

B-1 Phase Behavior

The three-phase equilibrium curves of H2 + water-soluble additive (THF or TBAB) mixed 
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gas hydrate systems converge at the vicinity of the equilibrium point of the pure hydrate for the 

mother aqueous solution of same mole fraction. The equilibrium curve of H2 + TBAB mixed 

gas hydrate shifts to the high-temperature side from that of H2 + THF mixed gas hydrate. The 

difference of equilibrium temperature is ca. 8 K in the case of the H2 + TBAB mixed gas 

hydrate. For each mixed system, three-phase equilibrium curves for the non-stoichiometric 

aqueous solutions are shifted to the low-temperature or high-pressure side from that of the 

stoichiometric ones.

Three-phase equilibrium curves of H2 + THF mixed gas hydrate changes smoothly and 

successively from low-pressure to high-pressure region up to 200 MPa. That is, the structural 

transition does not occur for the H2 + THF mixed gas hydrate system depending on the system 

pressure under the present experimental condition.

B-2 Cage Occupancy

It is directly confirmed from Raman spectroscopy that H2 is enclathrated in the hydrate 

cages by adding a small amount of THF or TBAB. In these mixed gas hydrates, H2 is 

enclathrated in only the small cage while THF or TBAB occupy the large cages of each mixed 

gas hydrate. These cage occupancies does not depend on the mole fraction in the aqueous 

solution for each mixed system.

Table VIII-1 shows the dependence of H2 occupancy on all additive species adopted in this 
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Additives Structure H2 occupancy Conditions

CO2 I × -

CH4 [1, 2] I × -

C2H6 I × -

c-C3H6 I × -

C3H8 II ○ ~276 K, 2 MPa

THF II ○ ~280 K, 10 MPa

TBAB *1 ○ ~288 K, 10 MPa

Table VIII-1 Dependence of H2 occupancy on various additive species.

*1. semi-clathrate, tetragonal or orthorhombic [3]



thesis. Table VIII-1 indicates the characteristic property that the H2 occupancy in the gas 

hydrates depends on the structure of unit-cell. That is, H2 would be encaged with the small cages 

of s-II hydrate or semi-clathrate hydrate, while it cannot occupy those of s-I hydrate.

The Raman spectroscopy for the H2 + THF mixed gas hydrate reveals that the amount of 

enclathrated H2 molecules in the mixed gas hydrate increases as the system pressure rises and 

reaches about 1.0 mass% around ca. 80 MPa. On the other hand, the shift and shape of Raman 

peaks is independent of the system pressure. Therefore, the structural transition does not occur 

and the H2 gradually occupies empty small cages of s-II THF hydrate depending on the system 

pressure under the present experimental condition.

Figure VIII-1 shows the storage density of H2 for various storage media and methods. The 

storage amount of H2 in the THF hydrate is ca. 1.05 mass% and 10.38 kg / m3, which is 

calculated on the assumption that one H2 molecule can occupy the S-cage of THF hydrate 

completely. THF hydrate includes the more empty S-cages in the unit cell than other additive 

hydrates. At present, this storage amount of H2 in the THF hydrate seems to be the largest 

among other mixed gas hydrates. As shown in Fig. VIII-1, from only the point of view of 

storage capacity, mixed gas hydrates containing H2 are unfortunately inferior to other storage 

methods. However, mixed gas hydrates containing H2 have a number of advantages as the H2 

storage material. For example, the storage material is harmless water containing little bit additive. 

In addition, the H2 storage in molecular form is possible at relatively mild conditions. Hence, it is 

suggested that H2 mixed hydrate holds promise of future growth for the H2 storage material.

Following the experimental data obtained in the Chapters VI and VII, it is suggested that the 

assistance of an additive enables us to perform the storage and transportation of H2 using gas 
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Figure VIII-1 Comparison of H2 storage density for various storage technologies.
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hydrates as "molecular storehouse" at relatively mild conditions. However, there is several issues 

such as the limitation of the storage amount of H2 in the H2-containing mixed gas hydrates and 

the toxicity of additives. I eagerly realizes that further studies about the more innovative additives 

are required.

Suggestions for Future Studies

This thesis comes to an end with some suggestions of further and expanded studies for the 

mixed gas hydrates containing H2 in the future.

Experiments in a wide range of pressure and temperature

In this thesis, the experiments were performed at ca. 276 - ca. 300 K up to 200 MPa. 

However, the region to investigate further remains. For example, it was previously reported that 

H2 can be encaged with the cages of CO2 hydrate at extremely low temperature conditions [4, 5]. 

Therefore, further experiments at higher pressure and lower temperature conditions than this 

thesis will be required.

Measurements by means of other devices and equipments

In this thesis, the findings were obtained from thermodynamic and Raman spectroscopic 

analyses. There is information required for the application of gas hydrates to H2 energy 

utilization, for example, location and mobility of H2 in hydrate cages. Needless to say, there are 

many experimental methods and tools such as Neutron Diffraction and Scattering, Nuclear 

Magnetic Resonance (NMR), Electron Spin Resonance (ESR), Molecular Dynamics (MD) 

Simulation, and so on. In particular, Neutron Scattering and NMR have a potential as the tool in 

order to determine the position, mobility, and enclathration mechanism of H2 in the hydrate 

cages [6-8]. The enclathration mechanism of H2 in the mixed gas hydrates under the assistance 

of suitable additives is still unclear. I speculate that there is difference of H2 difusivity between 

pure H2 and H2 mixed hydrates. The size of H2 is somewhat smaller than that of polygonal face 

of hydrate-cages, and consequently H2 can diffuse inside the unit-cell structure through 

polygonal faces of hydrate-cages. According to the previous report [8], the diffusion rate of H2 

through the larger hexagonal faces of the L-cages is much larger than that through the smaller 

pentagonal faces of the S-cages. In the case that the L-cages are occupied with additive 

molecules, for example THF, it is reasonable to guess that H2 cannot diffuse through the 

hexagonal faces of the L-cages because there are nuisances in the L-cages. Therefore, the 

diffusion rate of H2 in the H2 mixed hydrate is smaller than that of pure H2 hydrate, and 

consequently H2 may be entrapped in the H2 mixed hydrate under much milder conditions than 

the pure H2 hydrate. Anyway, I believe that H2 enclathration mechanism can be the guidance for 
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the search of effective additives. The author expects these tools to elucidate the property of 

H2-containing mixed gas hydrate in more detail from the view of micro scale.

Search of effective additives for the H2 storage using mixed gas hydrates

As mentioned above, it is necessary for the effective H2 storage using mixed gas hydrates 

that we find more innovative additives. As the indispensable property for this additive, the author 

would like to enumerate three special feature as follows:

1. Formation of hydrates at a mild condition by itself

2. Possession of many empty cages in unit-cell structure

3. Successive and linear connection of empty cages in unit-cell structure

First of all, it is important to find the additive which can satisfy the feature 1. At present, 

tetra-n-butyl ammonium fluoride (hereafter, TBAF) is potential as an additive. TBAF can form 

the hydrate at ~301 K and atmospheric pressure, whose equilibrium temperature is much higher 

than that of THF or TBAB. Accurate analysis and investigation about the thermodynamic 

stability of H2 + TBAF mixed gas hydrate are required.

For example, the THF molecule, which is considered as the most effective additive for the 
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S-cage

THF

H2

reversibly!!H2 storage and release

pressurization

depressurization

Figure VIII-2 Schematic illustration of "storage and release" process by pressurization or 

depressurization without the destruction of hydrate cages.



H2 storage using mixed gas hydrates at present, forms the s-II hydrate. THF can form the 

hydrate at atmospheric pressure and ~277 K. In addition, in the case of s-II type, S-cage is twice 

as much as L-cage and these S-cages connect linearly and successively with each other. 

Therefore, as shown in Fig. VIII-2, the H2 molecule can diffuse through these S-cages in the 

THF hydrate [8, 9] and consequently the "storage and release" processes of H2 can be 

performed reversibly by pressurizing or depressurizing without the destruction of hydrate cages. 

For this applied technology, it is required that the velocity and repetition of H2 storage and 

release are investigated. The author expects scientists to find the additive which covers above 

three key-factors.
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