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The goal of computer research in diagnostic radiology is to make such machines that can recognize
and interpret radiographic images and make correct diagnoses in place of radiologists. At first they
should be trained by human beings, but eventually they will grow up to learn by themselves from their
own experiences; that is, they are learning machines. For the sake of explanatory convenience, learning
machines are considered to have two main processesP?!®, The first is that of extracting features, or
radiological findings, from the input radiographic images, and the second is that of making decisions
on the diagnosis assignment to the input images in some way based on the radiological features extracted
in the first process. Indeed both processes are inseparably related to each other, but computer approaches
have been easier for the latter with some triable mathematical methods. So far clinical diagnostic radio-
logy has contributed mainly to discovering and systematizing the radiological features for each disease

category and the latter process has been inclined to be thought as intangible or intuitive, and the amount
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of medical knowledge was so small as to make diagnosis almost intuitively. However, the number of
new facts and methods we are now getting in medicine is increasing at an unprecedented rate. In this
situation, the concept of computer-aided diagnosis®®, a trial to combine computers as a helper in deci-
sion-making with physicians as the best feature extractor, has been suggested and tried. This is a pre-
liminary stage to complete learning machines in medical diagnosis.

For the purpose of making decisions most correctly and efficiently based on the present, vastly in-
creasing amount of knowledge, we have to select the most effective set of symptoms and findings from
what appear important. This is the problem of feature or measurement selection. A trial of feature
selection was made in the roentgenologic examination of four categories of primary malignant bone
tumors which are Ewing’s sarcoma, fibrosarcoma, reticulum cell sarcoma and osteosarcoma, by analys-
ing the coded information which had been punched into the IBM data cards for each patient, using
22 contingency tables and the chi-square test. Based on the results of feature selection, linear dis-
criminant function analyses were tried for each pair of categories of bone tumors in two different ways:
one is derived from assuming multivariate normal distributions!®1, another is from using estimating
equations?.

The effect of feature selection should be evaluated from the results of the decision-making which is
based on the selected features. For the purpose of this evaluation, features were selected at several
tentative critical levels of the chi-square values, and the effect of selection was examined in association
with the results of linear discriminant analyses.

Then diagnostic classification or differentiation was tried using the results of linear discriminant
analyses in both the training group and the testing group of bone tumor cases. The differences of the

results in differential diagnoses were examined between these two groups.

Material
This study was concerned with four categories of primary malignant bone tumors, which are Ewing’s
sarcoma, fibrosarcoma, reticulum cell sarcoma and osteosarcoma. First, a total of 599 histologically
proven cases of these bone tumors was examined using the 2 X 2 contingency table analysis and the chi-
square test for the purpose of feature selection, that is, estimating the importance of each radiological
finding for discriminantion between each pair of disease categories. Based on the results of feature
selection, each pair of disease categories was examined using linear discriminant analyses, where 582

cases were available because 17 cases were discarded due to insufficient coding. Then using the results

Table 1. Grouping of rnaterial cases of bone tumors

Category Total Training Testing
Ewing’s sarcoma 179 119 60
Fibrosarcoma 151 101 50
Reticulum cell sarcoma 43 30 13
Osteosarcoma 226 151 75
Sum 599 401 198
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Table 2. Items and questions about the radiological findings and the age of primary
bone tumor cases. The random variable X; has a value of unity when the
response to the i-th question is yes, and it has a value of zero when the
response to the i-th question is no.

No. (i) Questions of the “‘yes-no’’ type about radiological findings plus the age
1, Age, 00—09 years
2. 10—14 years
3¢ 15—19 years
4, 20—29 years
5. 30—39 years
6. 40 years and over
7. Tumor size 01—30 mm.
8. 31—60 mm.
9. 61—90 mm.
10, 91 mm. and over
11. Shape, round (Length Less Than 1.5 x Width) ?f round, x 3 =1.
if elongated, x ;; == 0.
12. Location, central
13. eccentric
14. cortex or parosteal
15. Bone type, tubular
16. flat
17. small
18. sacrum or pelvis
| 19. Epiphysis, involved
20, Growth plate, involved
21, Articular cortex, involved
22, Metaphysis involved
23. Shaft, involved
24, Radiolucency, present
25, Bone destruction pattern, absent
26. geographic with a regular margin
27. geographic with a lobulated margin
28. geographic with a metamorphic margin
29, geographic with moth-eaten zone more than 1 cm. in width
30. geographic with moth-eaten zone less than or equal to 1 cm. in width
31, geographic and permeated
32, moth-eaten only
33. moth-eaten and permeated
34, permeated only
35. geographic, moth-eaten and permeated
36. Fracture and displacement, both absent
37. Fracture, present
38. Displacement, present
39. Penetration of cortex, absent

40. partial present
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41, total present |
42. Tumor matrix mineralization, flocculent present
43. solid present

44, lumps present

45, clouds presen

46, Sclerotic rim, present

47, Mottling, present

48, Endostosis, present

49, Hyperostosis, present

50, Buttress, present

51, Septa, present

52. Expanded shell, absent

53. Codman’s triangle, absent

54, one present

88, two present

6. three or more present
57. Periostosis, absent

8. laminated present
59, amorphous present
60. Spiculation, absent

61. sunburst present

62. hair-on-end present
63. velvet present

of linear discriminant analyses, differential diagnosis or diagnostic classification was tried for 576 cases
of these four categories, where 23 cases, 3.8 per cent of the total, were excluded because of insufficient
coding for the classification.

Next, the total of 599 cases was divided into two parts, the training group and the testing group,
according to only the order in which cases had been collected. The former has 401 cases and the latter
has 198 cases. This relation is shown in Table 1. The training group was analysed using the 2x2
contingency table and the chi-square test for the purpose of feature selection. Based on the results,
each pair of categories was examined using linear discriminant analyses, where 391 cases of the training
group were used while 10 cases were unavailable because of insufficient coding. Using the results of
discriminant analyses, both 387 cases of the training group and 189 cases of the testing group were clas-
sified into the four disease categories. Because of insufficient coding, 14 cases (3.5%,) and 9 cases (4.5%,)

were excluded from each of the training group and the testing group respectively.

Selection of Radiological Features
As for each pair of bone tumor categories, the responses to 63 questions of the “yes-no” type were
obtained, for 25 items of radiological findings and the age of patients, by having an IBM-360 computer
manipulate the data cards into which the coded information had been punched according to the coding
system devised and developed at the University of Missouri Medical Center®®, The items and ques-

tions are tabulated as Table 2. Each question is given a number (i) shown in the table, Then the
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responses can be expressed mathematically, in other words, measured as that the random wvariable X;
has a value of unity when the response to the i-th question is yes, and it has a value of zero when the
response to the i-th question is no. For example, if a patient is 8 years old and his left femur is involved,
x,=x;;=1 and X=Xy =X, =Xy =Xg=X;s=X;;=X;3=0.

The frequencies of the response, yes or no, to each question were counted to make a 2 x 2 contingency
table and the difference of the frequencies existing between each pair of disease categories was evaluated

for each question by computing the chi-square value for the 2x 2 contingency table. In Table 3a 2 x 2

Table 3. A 2 x 2 contingency table

Category 1 Category 2 Sum
Yes a, a, Na .
No b, b, Ng
Sum N, N, N

contingency table is shown, and the simple formula for computing the chi-square value (32) is as follows.

= (a1—|—32—!—b1+bz)(albz—-agbl)z _ N(a;by—agh,)?
(a;+by)(a;+by) (a; +a5) (b +by) N;NyNaNg

where a; and a, are the frequencies of cases in Category 1 and 2 whose responses to a given question are

yes, and b, and b, are the frequencies of cases in Category | and 2 whose responses to the same question
are no, N=a,+a,+b;+b,, N;=a,+b;, Ny=a,+b,, Na=a,+a,, Ng==h,+b,.

The larger the chi-square value is, the greater the difference of frequencies existing between two
categories is. Now then, we are not examining the difference of frequencies of each finding existing
between the two categories, but we want to know the discriminating power of each finding for discrimi-
nation between the two categories. A computer program was made to pick up questions or random
variables which have the larger chi-square values than several tentative critical levels. The values of
10.83, 6.63 and 3.84 were taken for all pairs of disease categories. These are the critical values in the
chi-square test for one degree of freedom at the 0.19%, 19 and 5%, levels of significance, respectively.
As for the pair of Ewing’s sarcoma and fibrosarcoma, the values of 40, 30 and 20 were added as the critical
values. Thus, applying the 22 contingency table and the chi-square test to the questions listed in
Table 2, a trial of radiological feature selection was made for discrimination between each pair of bone
tumor categories. The results of this trial for the total of 599 cases are shown in Table 4 where the selected
questions or random variables are listed by their number for each pair of categories and for each critical
chi-square value. '

Discriminant Analysis _

Supposing that n radiological features are to be measured from each patient, each patient is re-
presented as a set of n features or measurements. Each set of n features can be considered as a vector
K =(%y,Xp,..,Xn), Or a point in the n-dimensional Euclidean space E® called a vector space, which may
be referred to as a patient vector in a patient vector space!”. The rectangular coordinates of the point

are the real numbers x,x,,..., and x,. In this study they are binary numers, that is, each x;=1 or 0.
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Table 4. Feature selection in the total group of 599 cases. Questions were
' selected for each pair of categories at various critical chi-square
values. Each question is expressed by its number (i).

Critical »* Ewing’s sarcoma—fibrosarcoma
40 6 19 34 47 58
30 6 19 27 30 34 46 47 58 59 60
20 1 2 6 11 15 19 22 27 30 34 36 39 41 43 46 47 48 52 53 58
59 60 62

10.83 1 2 5 6 11 12 13 15 16 19 21 22 27 30 84 36 38 39 41 43
(0.19% level) | 45 46 47 48 51 52 53 58 59 60 62

6.63 T 2 5 6 11 12 13 15 15 19 21 22 27 30 94 36 37 38 89 41
(19 level) | 42 43 45 46 47 48 51 52 53 55 58 59 60 62
2.8 1 2 3 5 6 9 10 11 12 13 15 16 18 19 21 22 27 30 31 3

(59 lovely | 38 37 38 39 41 42 43 45 45 47 48 5L 52 53 54 %5 % 57 5 59

Critical »* Ewing’s sarcoma—-reticulum cell sarcoma

10.83 ‘
(0.1%  lovel) 6 19 21 59

1 3 5 6 19 21 43 53 55 59 60 62

3.84 T 2 3 5 6 11 12 13 19 21 33 36 37 43 47 48 53 55 58 59
(59 level) | 60 62

Critical »* Ewing’s sarcoma—osteosarcoma

6.63
(1% level)

1 11 15 16 19 22 24 25 34 39 43 45 47 48 51 61 62

6.63 1 3 11 13 15 16 18 19 21 22 24 25 26 31 34 39 41 42 43 45
(1% level) 47 48 51 53 54 61 62

3.84 1 3 11 12 13 15 16 17 18 19 21 22 23 24 25 26 27 31 34 &9
(59 level) 40 41 42 43 45 47 48 51 53 54 60 61 62

Critical »* fibrosarcoma—reticulum cell sarcoma

10.83
(0.19 level)

(0-19160'81§ve1) 12 13 15 16 34 41 47

6. 63
(1% level)

(506 Severy | 12 13 15 16 22 26 27 30 34 38 39 41 45 46 47 50 51 52 58

12 13 15 16 22 27 34 39 41 46 47 51 52 58

Critical »* fibrosarcoma—osteosarcoma

10.83 2 3 5 6 19 24 25 26 27 30 34 36 37 38 39 41 43 45 46 51
(0.19 level) 52 53 54 55 58 59 60 61

6.63 2 3 5 6 19 24 25 26 27 30 34 36 37 38 39 41 43 45 46 &1
(19 level) 52 53 54 55 58 59 60 61 62

3.84 2 3 5 6 19 24 25 26 27 30 34 36 37 38 39 41 43 45 46 50
(5% level) 51 52 53 54 55 57 58 59 60 61 62
Critical »* reticulum cell sarcoma—osteosarcoma

(019 dowey | 3 5 6 13 15 16 22 25 43 45 47 53 59 60

3 5 6 12 13 15 16 22 24 25 43 45 47 53 55 59 60 61

6. 63
(1% level)

3.84 2 3 5 6 12 13 15 16 21 22 24 25 27 34 836 37 39 41 43 45
(5% level) 47 53 54 55 58 59 60 61
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The problem of diagnostic classification or differential diagnosis is to assign each possible patient
vector or point in the patient vector space to a proper pattern class or a disease category. As for the
differential diagnosis of bone tumors, this can be interpreted as a partition of the vector space into mutu-
ally exclusive regions, each of which will correspond to a particular histological type of bone tumiors,
The boundary of partition, called the decision boundary, between regions in the vector space, can be
expressed mathematically by various kinds of equations.

‘When only two regions, that is, only two categories of bone tumors are concerned, the decision on
which category a patient is to be assigned to can be implernented by evaluating the sign of a single dis-
criminant function g(X)=g(x;,%,,...,%a). If g(X) is positive for a set of n features, that is, a vector X=
(X4,Xg,...,%n), the vector X or the patient is placed in one category; if g(X) is negative, X is placed in
another category. The equation g(X)=0 gives the decision boundary for separating the two categories.
A two-dimensional illustration of discriminant function analysis or discriminant analysis is shown in

Fig. 1 where only two features are measured from each patient.

o [+]

) A

o ]
% o o
k4 & o 2
Region 2(Category 2):giX)<0 X %
x| % ® o o

\ Region1(Category 1): g(X) >0

x * o

B

Decision Boundary:g(X)=0

Tig. 1. An example of discriminant analysis in a two-dimensional space.

When a linear combination of the feature measurements x,,X,,...,X, is selected for the discriminant
function g(X), this is called a linear discriminant function analysis or a linear discriminant analysis.

The linear function g(X) is expressed as follows.

g(X)=oaptopmx,tagxs ... —|—ot.,x,,=ao+_znfoc;x1

i=1
where o; represents the weight or coefficient of x; and o, is the constant.
A complete specification of any linear discriminant function is achieved by specifying the values
of the weights or coefficients of the function family. The equation g(X)=0 is the equation of a hyper-
plane in the n-dimensional space E*. This corresponds to a straight line in a two-dimensional space.

So the decision boundary is a hyperplane in linear discriminant analysis.

Linear Discriminant Analyses
In this study two different methods were tried to specify the values of the weights or coefficients

of linear discriminant functions. The first is the linear discriminant analysis assurning multivariate
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normal distributions of patient vectors with identical covariance matrices. There are two major as-
sumptions in this method. One is that random variables representing n radiological features shall be
normally distributed, another is that the covariance matrices shall be identical in hoth categories of each
pair. Under these assumptions, we can specify such values of the weights or coefficients that will mini-
mize the probability of erroneous discrimination from the viewpoint of decision theory!®. In this method,
the values of the coefficients, oy,0,...,0, are obtained from,

o=W-1d
where o is a n X | column vector with elements o, d is a n X 1 column. vector with elements d;= (&, — &),
where Xi; and X, are the means of x; in Category 1 and 2 respectively, and W-! is the inverse of the
nxn covariance matrix with elements defined by

Ny Ny

Wi = NN, —2) | El(xilc_-ill) (xi1c“fi1)+§l(xisc““iiz)(Xisc—iiz):l

for all i, j=1,...,n, where N; and N, are the sample sizes of patients in Category 1 and 2 respectively,

Xjze and x;c are the values of x; for the patients in Category 1, xjpc and x;,c are the values of x; for the

patients in Category 2. After the coefficients, o;,a,...,00, have been determined, the values of J; «; x;

are calculated for all sample cases in each category, then the means of }} a; x;, represented as ¥, and ¥,
i=1

for Category | and 2 respectively, are calculated. With the assumption of identical covariance matrices,
the value of the constant o, is determined to be— (—3@‘—). Then the decision boundary is a hyperplane
which is expressed by the following equation with the unknowns x;, X,...,Xx.
—_ (371—;5?2—) —f—i:oc,xl =0
i=1
A patient is classified into one category if the value of ocu+Zn{1ani, that is, the discriminant value is
=

positive, and into another category if the discriminant value is negative, where %:_(_]?"142-_)’2_)-

The second is the linear discriminant analysis using estimating equations. The values of the weights
or coefficients of linear discriminant functions are specified as follows. The estimated value y. shall be
expressed as a linear function, i.e.,

Ye=B-+ox;+opXp+ ... Xy
Suppose that y.=1, if a patient belongs to one category, and y.=: — 1, if he belongs to another category.
Then a equation with the unknown @,e;,us,...,0, is made for each patient vector. If Category 1 and
2 have N; and Nj cases respectively, a set of N;--N, simultaneous equations is composed. The set of
simultaneous equations is approximately solved by solving the following system of n simultaneous equa-

tions in the unknowns, B,;,0,...,00.

2Ve=B(N;+Ng) 4oty 1%, Fep 2%y +evennnns +-0tn 2 Xn
Txye=BT®, AT ATt et o EXaXy
Ex?ye-:Bsz +czlzlx1xa—|—ocﬂ}:",x§ S TTToN ot 1 XXy

}:‘x;ye=|32x.. + (xl};'jxlxn—i— a,=2x3x5+ cevrrren 0 2 X5
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where the symbol ] is used to denote the sum over the total of N+ N, cases. After the coefficients

oy, Og,...,0n and the constant § have been determined, the value of B+ Z‘ o; X; are calculated for all sample

cases in each category, then the means and the standard deviations of 3+ E oy Xi, expressed as Ve, oy
i=1
and Fep, gy for Category 1 and 2 respectively, are calculated. The value of the constant o, of a linear

discriminant function is determined to be p—(- ggy;‘ ii‘y“ ). Then the decision boundary is a hyper-
1

plane whose equation is

B—(- 02?e1+0'1y92 )+E oixi=0

ay |‘0' i=1

n
with the unknowns x;, X,,...,xa. A patient is classified into one category if the value of ay+ 37 o xi,
i=1

that is, the discriminant value is positive, and into another category if the discriminant value is negative,

p— (%2 95Ve1+01Ves T Ves

where o,==
g o1t ay

Results of Analyses

In Table 5 the results of linear discriminant analyses when assurning multivariate normal distribu-

Table 5. Linear discriminant analysis assuming multivariate normal distributions. Discriminations
between Fwing’s sarcoma and fibrosarcoma in the total group.

Critical 7* Number of selected Rate of correct discriminations
value (% level) queé;;igﬁs)and Ewing’s sarcoma fibrosarcoma
40 5 (5) 125/176 (719) 134/150 (899)
30 10 ( 7) 152/176 (8695) 124/149 (839%)
20 23 (16) 152/176 (86%) 134/149 (909%)
0.1%" ﬁfvel) 31 (19) 156/176 (899) 135/149 (919)
(196 vel) % (19) 156/176 (89%) 134/149 (902%)
(5% 3. ffgvel) 43 (20) (Discriminant coefficients not obtainable)

tions are shown along with the number of selected questions for discrimination between Ewing’s sarcoma
and fibrosarcoma. Indeed the rates of correct discriminations increase as the number of selected ques-
tions, that is, feature measurements increases, but the improvement is not remarkable compared with
the great increase of questions in number. Though the number of questions increases about 6 times,
the rate of correct discriminations shows only about 10 per cent improvement, and appears to reach the
highest plateau about the critical chi-square value of 10.83 which is the 0. 19 level of significance in
the chi-square test. At the critical value of 3.84, the coefficients of the linear function can not be ob-
tained because the covariance matrix is singular for this pair of categories. In Table 6 the results of
discrimination between each pair of 4 categories of bone tumors, except for the pair of Ewing’s sarcoma

and fibrosarcoma, are shown at each of the critical values 10.83, 6.63 and 3.84. Within this range of
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Linear discriminant analysis assuming multivariate normal distributions.

Discriminations between earch pair of Ewing's sarcoma, fibrosarcoma,
reticulum cell sarcoma and osteosarcoma, except for the pair of Ewing’s
sarcoma and fibrosarcoma.

o=

Critical %* value
(% level)

Number of selected
questions and
(items)

Rate of correct discrirninations

Ewing’s sarcoma and reticulum cell sarcoma

Ewing’s sarcoma

reticulum cell sarcoma

(0.1915-0'%.31) 4 (4D 159/178 (892) 29/42  (69%)
(1%6' Glgvel) 2 (D 162/178 (91%) 3042 (719%)
(5%3'?2%1) 22 (13) 162/176 (929%) o041 (78%)

Ewing’s sarcoma and osteosarcoma

Ewing’s sarcoma

osteosarcoma

10. 83

(0.1% level) 17 (13) 158/177 (89%) 178/212 (849)
(1% > Elizvel) 27 (16) 153/177 (89%) 185/212 (87%)
(5%3' Ef:vel) 33 (A7 162/177 (92%) 184/212 (87%)

Fibrosarcoma and reticulum cell sarcoma

fibrosarcoma reticulurn cell sarcoma
0.198" Tovel) 7 (5 148/150 (99%) 2542 (6096)
(19 vl 14 (10 147/150 (989%) 26/41  (63%)
(59 Jovel) 19 (13) 148/150 (99%) 27/41  (66%)

Fibrosarcoma and osteosarcoma
fibrosarcoma osteosarcoma
0. i ; :

0.19 " Sovel) 28 (13) 129/149 (87%) 194/210 (929)
1% D) 29 (13) 129/149 (87%) 194/210 (929%)
e 31 (14) 129/149 (879%) 194/210 (929%)

Reticulum cell sarcoma and osteosarcoma

reticulum cell sarcoma

osteosarcoma

(0,156 Tovel) 14 (10) 5/41 (85%) 203/210 (97%)
(1 %'3—?12%1) 18 (11) 541 (85%) 200/210 (95%)
(5% 3. 51‘3‘,&13 28 (14) 541 (85%) 201/210 (96%)
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Table 7. Linear discriminant analysis using estimating equations. Discriminations
between Ewing’s sarcoma and fibrosarcoma in the total group.

Critical 3* value Number of selected Rate of correct discrirninations
(% level) questions and
J (items) Ewing’s sarcoma fibrosarcoma
40 5 (5) 160/176 (91%) 105/150 (702)
30 10 (7 152/176 (869) 124/149 (83%)
20 23 (16) 153/176 (872) 130/149 (&7%)
0.1% ovel) 31 (19) 157/176 (89%) 134149 (909%)
(1% ovel) 34 (19) | 159176 (90%) 132/149 (89%)
(5% 3. ?gvel) 43 (20) (Discriminant coefficients not obtainable)
A T
23 7 Bwing's sacoma 1y, criticai? : 663 (1% level) 28 7] ewings sarcoma o
B By Z1  number of questions : 34 ig
g ﬂ P, ‘E umber of g b ;:EE m Feticulum cell sarcoma gl }
N & 0250 the crticel x2: 6,630 % tovely 5|
DEf s Number of questions : |2 2
Lz 02t B gl
0.5 g |
{’% 7 0J5¢ 1 :
o1} 2572 |
“ Z | i
7 /7: ot | i
| A |
005t 1 Z ;:
I /‘é’ 005t el
. i hm A EE
-0630 0 0680 Discriminant Ll Ll I L
Value - '545 0298 Discriminant
ue
Fig. 2. Discriminant analysis using estimating
equations. Relative frequency distributions of Fig. 3. Discriminant analysis using estimating
discriminant values, for the pair of Ewing’s equations. Relative frequency distributions of
sarcoma and fibrosarcoma. discriminant values, for the pair of Ewing’s

sarcoma and reticulum cell sarcoma.

the critical levels, the rate of correct discriminations shows no marked improvement with the increase
of questions in number. All pairs including reticulum cell sarcoma as a partner show that their decision
boundaries are relatively biased toward the prototype pattern of reticulum cell sarcomas.

The results of linear discriminant analyses using estimating equations are shown in Table 7 and
8 along with the number of selected questions for each pair of categories. All pairs of Ewing’s sarcoma,
fibrosarcoma and ostcosarcoma show the results which are almost the same as those of analyses with
the assumption of normal distributions. The pairs including reticulum cell sarcoma show the results
which are more favorable than those of the former method of analysis, but the positional control of deci-
sion boundaries appears yet unsatisfactory. As for the latter method of analysis, some examples are
shown as graphed relative frequency distributions of the discriminant values in Fig. 2, 3 and 4 which
illustrate the situations described above.
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Table 8. Linear discriminant analysis using estimating equations. Discriminations
between each pair of Ewing’s sarcoma, fibrosarcoma, reticulum cell
sarcama and osteosarcoma, except for the pair of Ewing’s sarcoma and
fibrosarcoma.

Critical ¥* velue
(% level)

Number of selected
questions and
(items)

Rate of correct discriminations

Ewing’s sarcoma and reticulum cell sarcoma

Ewing’s sarcoma

reticulum cell sarcoma

(0.195 " Sovel) 4 (8 158/178 (89%) 30/42  (71%)
(1% oel) 12 (7) 160/178 (9095) 3342 (79%)
(595 Tovel) 22 (13) 159/176 (909) 3441 (83%)

Ewing’s sarcorna and osteosarcoma

Ewing’s sarcoma

osteosarcoma

10. 83

(0.19 Tovel) 17 (13) 155/177 (81%) 180/212 (85%)
(19" Sovel) 21 (16) 157/177 (89%) 185/212 (87%)
(5% Tovel) 33 (17) 160/177 (909%) 187/212 (88%)

Fibrosarcoma and reticulum cell sarcoma

fibrosarcoma reticulum cell sarcoma
(0.196 " Sovel 7 (5) 135/150 (909%) 3342 (79%)
(195 Sevel) 14 (10) 136/150 (91%) 32/41  (78%)
(59 dovel) 19 (13) 139/150 (93%) 33/41  (80%)

Fibrosarcoma and ostecsarcoma

fibrosarcoma osteosarcoma
0.0 Bvely 28 (13) 129/149 (8795) 1047210 (929)
(19 6. ﬁfvel) 29 (13) 129/149 (879%) 194/210 (929)
(5o ﬁvel) 31 (14) 129/149 (879%) 194/210 (92%)

Reticulum cell sarcoma and osteosarcoma

reticulum cell sarcoma osteosarcoma

(0.198" Sovel) 14 (10) 36/41  (389%) 192/210 (91%)
(19 Sovel) 18 (11) 36/41  (38%) 194/210 (92%)
3.8 28 (14) 35/41 (85%) 195/210 (93%)

(5% level)

WLk H59 %
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1 Ewing's sarcoma The critical X*: 3.84(5% level)

@ g Number of questions : 22
_%Sé- [—l Rebiculum cell sarcoma Ell
S &l
0.2+ |
0.15F
0.1t
0.05- )
= -i ] | Iy e
-0600 0 0365 Distriminant
Value

Fig. 4.. Discriminant analysis using estimating equations. Relative frequency
distributions of discriminant values, for the pair of Ewing’s sarcoma and
reticulum cell sarcoma.

Differential Diagnosis
It can be said that discrimination between each pair of all considerable disease categories is the
base of diagnostic classification or differential diagnosis. One method of classifying patients into R
disease categories is to assign one category to a patient if’ the number of linear discriminant analyses
which favor the category is maximum, after all pairs of R categories have been examined for the patient,

R(R—1)

5 and a system for differentiation

When R categories are concerned, the total number of pairs is

R(Rz_ﬂ linear discriminant functions. So when 4 categories are considered as possible,

there are 6 pairs each of which can be divided into two categories by each specified linear discriminant

consists of

function. In this method, however, it is possible that more than one category have the same maximum
number of linear discriminant functions which favor each of them. In such cases, it is impossible to select
only one category as a correct diagnosis.

First, as shown in the section of material, 576 cases were classified based on the results of linear dis-

Table 9 Differential diagnosis in the total group, using the questions
selected at the critical chi-square value of 6.63.

Computer's Diagnoses
Ewing's fibro- retiilﬂum osteo- undeter- Sum
sarcoma | sarcoma ’ sarcoma mined
sarcoma
Ewing’s 135 176
sarcoma (T7%) o 6 16 4 | 1009)
. fib i} 6 119 1 8 149
Pathological rosarcoma (80%) 5 1 ( 1002%)
Diagnoses reticulum 3 7 23 2 1 41
cell sarcoma (56%) ( 100%)
osteosarcoma 20 12 2 168 8 210
i (80%) ( 100%)
Sum 169 154 36 196 21 576
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Table 10. Feature selection in the training group of 401 cases. Questions
were selected at the critical chi-square value of 6.63.

Pairs of categories Selected questions
Ewing’s sarcoma 1 2 5 6 11 15 19 21 22 27 30 32 34 36 37 38
-fibrosarcorna 39 41 43 45 46 47 48 51 52 53 55 57 58 59 60 62
Ewing’s sarcoma . ,
-reticulum cell sarcoma 1 6 21 43 53 58 59 60 62
Ewing’s sarcoma 1 3 11 15 16 19 22 24 25 32 34 39 41 42 43 45
-osteosarcoma 47 48 61 62
Sbrgsrcama 12 34 39 41 47

-reticulum cell sarcoma

fibrosarcoma 2 3 5 6 19 24 25 26 27 30 34 36 37 38 39 41
-osteosacoma 43 45 46 51 52 53 B4 55 57 58 59 60 61 62
reticulum cell sarcoma ' " ‘ \
-osteosatcoraa 3 5 6 12 13 22 24 25 37 43 45 47 53 59 60 61

criminant analyses using estimating equations where the feature selection was made at the critical chi-
square value of 6.63, that is, the 1 per cent level of significance in the chi-square test. The results are
shown in Table 9. On the average, 77 per cent of pathological diagnoses coincide with computer’s
diagnoses.

Second, as shown before, the total cases were divided into the training group of 401 cases and the
testing group of 198 cases. After feature selection and linear discriminant analyses using estimating
equations had been done at the critical chi-square value of 6.63 for the training group in the same way
as described before, differential diagnoses were tried for both 387 cases of the training group and 189
cases of the testing group, as explained before. The results of feature selection and discriminant analyses
are shown in Table 10 and 11. In Table 12 and 13 the results of differential diagnoses are shown for

each group. As for the training group, the numbers of selected questions disagree with those selected
in the total group, and the system of linear discriminant functions is different from that of the total group.
However, differential diagnoses show almost the same results in the training group as in the total group.
On the average, 78 per cent of pathological diagnoses coincide with computer’s diagnoses in the training
group.

In the testing group, the results of differential diagnoses are, on the average, about 10 per cent worse
than those in the training group. On the average, 70 per cent of pathological diagnoses coincide with

computer’s diagnoses in the testing group

Discussion
The problem of feature selection or measurement selection in diagnostic radiology consists in know-
ing what features or measurements should be taken from the input radiographic images for correct di-
agnosis. Selected features are supposed to be invariant with respect to the coramonly encountered
variations and also to contain less redundancies. © Unfortunately, at present there is no established rule
for the selection of features, even though some have studied this problem®11®),  Usually, the decision

on what to measure or detect is rather subjective and is often guided only by personal intuitive ideas.
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Table 11.

in the training group.

1021—(31)

Linear discriminant analyses using estimating equations

Critical ¥* value
(% level)

Number of selected
questions and
(items)

Rate of correct discriminations

Ewing’s sarcoma and fibrosarcoma

Ewing’s sarcoma

fibrosarcoma

iy

6‘ [
(19 level)

32 (19)

105/117 (90%)

93/99 (94%)

|

Ewing’s sarcoma and reticulum cell sarcoma

Ewing’s sarcoma

reticulum cell sarcorna

6. 63
(1% level)

BRI

108/118 (91%)

21429 (72%)

Ewing’s sarcoma and osteosarcoma

Ewing’s sarcoma

osteosarcoma

6.63
(1% level)

| 20 (14)

106/118 (90%)

125/144 (87%)

Fibrosarcoma and reticulum cell sarcoma

fibrosarcoma

reticulum cell sarcorna

6. 63
(1% level)

‘ 5 (4)

89/100 (89%)

21/29  (72%)

Fibrosarcoma and osteosarcoma

fibrosarcoma

osteosarcoma

6.63
(1% level)

[ 30 (14)

89/99 (90%)

137/143 (96%)

Reticulum cell sarcoma and osteosarcoma

reticulum cell sarcoma

osteosarcoma

6.63
(1% level)

16 (12)

2528 (89%)

134/143 (942 )

Table 12. Differential diagnosis in the training group, based on the results

of linear discriminant analyses shown in Table 11.

Computer’s Diagnoses
Ewing’s | fibro- |reticulum | osteo- | undeter- | SU@
sarcoma | sarcoma | cell sarc. | sarcoma mined
Ewing’s 92 117
sarcoma (79%) 8 8 J 5 ( 1009)
81 99
Pathological fibrosarcoma 4 (82%) 2 6 6 ( 1009)
Diagnoses reticulum 8 - 12 1 0 28
cell sarc. y (43%) ( 100%)
osteosarcoma 12 6 3 (8%:6{) 5 ( 1%3:36 ;
Sum 116 102 20 133 16 387
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Table 13. Differential diagnosis in the testing group, based on the results
of linear discriminant analyses in the training group.

Computer’s Diagnoses
- Ewing’s fibro- |reticulum | osteo- undeter- Sum
sarcoma | sarcoma [cell sarc. | sarcoma mined
Ewing’s 36 ‘ 59
sarcoma (61%) 7 3 10 3 ( 1009)
36 p 50
Pathological fibrosarcoma 1 (72%) 2 7 4 ( 100%)
Diagnoses reticulum 4 13
2 cell sarc. 3 2 | (319%) 2 2| (1009)
! | ] 56 67
osteosarcomo | 3 5 1 (83%) 2 ( 100%)
Sum 43 50 10 75 11 189

Generally speaking, this should depend upon the established statistics which are supported by other
studies, such as chemical, histological, microbiclogical and so on.

Differential diagnosis can be considered as based on discrimination hetween each pair of all possible
categories for a given set of features, that is, symptoms and findings. So the problem of feature selection
is reduced to knowing how we can quantitatively express the importance, in other words, the discriminat-
ing power of a radiological feature for separating two categories. Now then, it will be helpful to review
how physicians are used to determining the importance of a clinical finding for differential diagnosis.
When we evaluate the importance of a finding for differentiation between two disease categories, we
almost always compare the relative frequencies or the occurrence rates of the finding for patients in these
two categories. The relative frequency is regarded as an estimate for the conditional probability of
the finding with respect to each disease category. Actually we do not always rely upon the probability
of each disease with respect to the finding. In fact, it is very hard to estimate it. It seems quite certain
that the greater the difference of the conditional probabilities of a same finding between two different
diseases is, the more important and powerful the finding is for discriminating the two diseases. It looks
quite natural to express the discriminating power of a finding as the difference of the conditional pro-
babilities whose estimates are the relative frequencies, because most of the time we are using this way
of decision.

A chi-square test with a 2 X2 contingency table is equivalent to a significance test of differences in
proportions using the normal approximation. As the difference between two proportions or rates be-
comes greater, the chi-square value becomes larger. So the larger chi-square value can be considered
as to indicate the more important finding for discriminating two disease categories.

In this study several tentative critical levels were tried to select features according to the chi-square
values. Generally it can be said that the greater the number of selected features, which have large chi-
square values, is for a pair of disease categories, the easier the discrimination between these two categories
is. In this study feature measurements were selected from 63 questions about 25 items of radiological
findings plus the age of patients. The numbers of items and questions to be considered may be increased
and the members of selected features may be changed. In fact, this study shows that the results of feature

selection in the total group of 599 cases are fairly different from those in the training group of 401 cases.
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The problem of feature selection is associated not only with the present but also with the future. At
present we cannot but select features from what we can consider, but new facts and methods are inces-
santly appearing. We must always seek the most powerful set of features.

Moreover, the problem of feature selection is closely related to the decision-making scheme used.
In this method of feature selection, it can not be examined if there are mutually dependent features or
redundant features in the set of selected features, and it is rather evident that there are fairly many items
and questions which do not seem mutually independent at all. But we have no established method for
settling this problem as yet, even though some works have been reported!®!%. However, how much
the existence of mutual dependence of selected features influences the results of a discriminant analysis
depends upon what is taken in this analysis as a probabilistic model for the distribution of patient vectors.
As for the former method of discriminant analysis assuming normal distributions, it is favorable that
normal distributions encompass some situations in which the feature measurements or variables are not
statistically independent. Furthermore, in the latter method of discriminant analysis, where there is
no supposed probabilistic model, mutual dependence of feature measurement is of no concern.

Then what should be taken as the critical chi-square value for feature selection? As for the pair
of Ewing’s sarcoma and fibrosarcoma, the rate of correct discriminations appears to reach the highest
plateau about the critical value of 10.83 in both methods of linear discriminant analysis as shown in
Table 5 and 7, and however smaller the critical value is, that is, however more questions are picked up,
it increases only redundant information. As for other pairs also, the rates of correct discriminations were
improved, at most, only 39, in all pairs except for the pair of Ewing’s sarcoma and reticulum cell sar-
coma, as the critical value decreases from 6.63 to 3.84 (Table 6 and 8). The chi-square value of 3.84
corresponds to the differences between, for example, such couples of relative frequencies as 0.92 to 0.85,
0.19 to 0.12, and so forth. Considering these figures, more improvement can not be expected from
making the critical value smaller. Especially as for the pair of fibrosarcoma and reticulum cell sarcoma,
the number of questions selected in the training group at the critical value of 6.63 is only 5 compared
with 14 questions selected in the total group as shown in Table 4 and 10. But it is interesting to find
that the results of discriminant analyses using estimating equations show insignificant differences, as
shown in Table & and 11. This fact suggests the existence of redundancies.

In this study the scale of radiological features or measurements is a nominal or classificatory scale,
and the variables representing features take only the value of either 1 or 0 for each patient. Clearly,
this does not satisfy the first assumption of the former method of analysis assuming normal distributions.
The second assumption of identical covariance matrices also seems hard to be generally admitted. So
it means only approximation to take a multivariate normal distribution as a probabilistic model in this
study. The latter method of analysis using estimating equations is not based on these questionable
assumptions. This study shows that the rates of correct discriminations between all pairs of three bone
tumors except for reticulum cell sarcoma, which has a small number of cases compared with others,
are almost the same between these two different methods of znalysis. So it appears that the assump-
tions in the former method of analysis might be nearly satisfied for Ewing’s sarcoma, fibrosarcoma and
osteosarcoma. But the patient vectors of reticulum cell sarcoma are distributed with a greater within-

dispersion than those of other categories. When examining the standard deviations of discriminant values
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in the latter method of analysis for all pairs of bone turnor categories, it is found that the differences of
the standard deviations between each pair of Ewing’s sarcoma, fibrosarcoma and osteosarcoma are at
most 20 per cent, while as for the pairs including reticulum cell sarcoma, most of the standard deviations
of reticulum cell sarcoma are more than twice those of its partners. This suggests that the assumption
of identical covariance matrices in the former method of analysis cannot be admitted for the pairs in-
cluding reticulum cell sarcoma. Concerning the difference of covariance matrices, the latter method
of analysis is clearly better than the former because the decision boundary is determined by using the
standard deviations.

Diagnostic classification or differential diagnosis was tried using a system of 6 linear discriminant;
functions for 4 bone tumors as shown before with the results. This method has a disadvantage that
there may be cases whose diagnoses can not be determined in the event that more than one categories
have the same maximum number of discriminant functions which favor cach of them. The diagnoses
of 4 to 5 per cent of cases were undetermined through the differential trials in this study. Reticulum
cell sarcoma whose cases are distributed with a greater within-dispersion shows the worse results of com-
puter differentiation. This corresponds to the difficulty of this bone tumor in clinical differential di-
agnosis.

This study shows that the testing group was differentiated with the results which are about 10 per
cent worse on the average than the training group, nevertheless the training and the total groups have
almost the same results of differentiation. It will be certain that z system for differentiation derived from
a training group can be more improved and lessen the difference of the results existing between the train-
ing group and the testing group, as the training group becomes larger. It will be interesting to observe
how the gap will become smaller in the future.

So far several kinds of decision-making schemes have been proposed and tried in application of
computers in medical diagnosis, which are based on Boclean algebra®®, Bayes’ rule®®, maximum-
likelihood decision!®, discriminant functions, some combinations of these methods?” and so on. Indeed
they are triable in clinical medicine, but there is no established general method as yet. A lot of new
theories and methods will probably be proposed in the future. The only way to find the best decision-
making scheme for computer diagnosis is to try what appears promising, using the largest possible amount of

reliable data.

Summary

Using the 22 contingency tables and the chi-square test, a method of feature selection was tried
in the roentgenologic examination of four categories of primary malignant bone tumors, which are Ewing’s
sarcoma, fibrosarcoma, reticulum cell sarcoma and. osteosarcoma, whose coded data of 599 histologically
proven cases had been punched into the IBM cards. Based on the results of feature selection, two differ-
ent methods of linear discriminant analysis were tried and compared for each pair of categories of bone
tumors, one is derived from assuming multivariate normal distributions and another is from using esti-
mating equations. The results of discriminant analyses were examined and discussed along with the
results of feature selection.

A system of linear discriminant functions for differential diagnosis was composed, based on the re-
sults of feature selection and linear discriminant analyses in the training group of 401 cases, and used
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to differentiate the testing group of 198 cases from which 9 cases (4.5%) were excluded because of in-

sufficient coding. On the average, 70 per cent of pathological diagnoses coincided with computer’s

diagnoses in the testing group, while the average rate of coincidence was 78 per cent in the training group.

Acknowledgment: The authors express their gratitude to Dr. Samuel J. Dwyer III, Professor, and
Mr. Joseph K. Bryan, Graduate Student, Department of Electrical Engineering, University of Missouri,

for their helpful suggestions and observations during the course of this work.

1)

2)
3)

4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)

16)

References
Fu, K.5.: Sequential Methods in Pattern Recognition and Machine Learning. New York, Academic Press,
1968.
Watanabe, S.: Recognition and Information, Tokyo, Japan Broadcasting Association (NHK) Press, 1968.
Ledley, R.S., and Lusted, L.B.: Reasoning Foundations of Medical Diagnosis; Symbolic Logic, Probability,
and Value Theory Aid Our Understanding of How Physicians Reason. Science, 130: 9-21, July 3, 1959.
Lodwick, G.S.: Solitary Malignant Tumors of Bone: The Application of Predictor Variables in Diagnosis.
Seminars in Roentgenology, 1: 293-313, July, 1966.
Lodwick, G.S., Haun, C.L., Smith, W.E., Keller, R.F., and Robertson, E.D.: Computer Diagnosis of Pri-
mary Bone Tumors: A Preliminary Report. Radiology, 80: 273-275, February, 1963.
Lodwick, G.S., Keats, T.E., and Dorst, J.P.: The Coding of Roentgen Images for Computer Analysis as
Applied to Lung Cancer. Radiology, 81: 185-200, August, 1963.
Lodwick, G.S., and Reichertz, P.L.: Computerunterstiitzte Diagnostik von Tumoren und tumorihnlichen
Verdnderungen des Knochens. Das begrenzte Bayes-Konzept. Réntgen-Blitter, 22: 162--168, April, 1969.
Lodwick, G.S., Turner, A.H., Jr., Lusted, L.B., and Templeton, A.W.: Computer-Aided Analysis of
Radiographic Images. J. Chron. Dis., 19: 485-496, 1966.
Miyawaki, K.: Medical and Biological Information Processing, Ist ed., Tokyo, Corona Co., 1966, p. 180-237.
Nilsson, Nils J.: Learning Machines, New York, McGraw-Hill, 1965.
Pipberger, H.V., Klingeman, J.D., and Cosma, J.: Computer Evaluation of Statistical Properties of Clinical
Information in the Differential Diagnosis of Chest Pains. Meth. Inform. Med., 7: 79-92, April, 1968.
Takahashi, K., Miyata, M., Miyahara, H., and Dohmae, A.: Localization of Cerebellar Tumors. Clinic
All-Round 17: 19-25, January, 1968.
Templeton, AW., Jansen, C., Lehr, J.L., and Hufft, R.: Solitary Pulmonary Lesions: Computer-Aided
Differential Diagnosis and Evaluation of Mathematical Methods. Radiology 89: 605-614, October, 1967.
Templeton, A.W., Simmons, C., and Lehr, J.L.: Computer Diagnosis of Heart Disease: The Public Modlel.
The Am. J. Roentgenol., 102: 865-874, April, 1968.
Torii, T., Takahashi, K., and Doi, I.: Inferential Statistics for Medicine and Biology, Ist ed., Tokyo, Tokyo
Univ. Press, 1954, p. 73-88.
Wilson, W.J., Templeton, A.W., Turner, A.H., Jr., and Lodwick, G.S.: The Computer Analysis and Diag-
nosis of Gastric Ulcers. Radiology, 85: 1064-1073, December, 1965.




