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“The Optimum Film-Density Range for Diagnostic X-ray Radiographs
By

Hitoshi Kanamori
Radiation Apparatus Division, Shimadzu Seiskusho Ltd. Kyoto, Japan

1. Introduction

There have been several opinions about the optimum film-density of X.ray radiographs
for the perception of change in thickness or composition of objects, and also on the density
range if thickness or compoéition changes over a wide range. These values were derived by
experience, but the reason why the optimum values exist is uncertain. This reason should
be important in determining the quality control and automatization standards of a *‘ good
radiograph ”’. A good radicgraph should have good physiological contrast and sharpness
in its entire'y, but only contrast is considered.

2. Minimum Perceptible Film-Contrasts

If a test-piece of brightness Ho is surrounded by brightness Hs, the minimum perceptible
«contrast (diferent from film-conirast) cmin has been given the empirical equation, eq. (1), by
Moon-Spencer!). Where, Ha is adaptation-helios (brightness) which depends on the distribution
of brightness around the test-piece as shown in eq. (2) (3) (4). Let Hs, Ho, Hs be the
brightness at the film-density DB, Do and of a viewer respectively, we have eq. (5). Using
(1) and (5), we obtain eq. (6) of the minimum percertible film-contrast 4Dpin. Calculated
ADmin to base density Ds are shown in the left side of Fig. 1. In the figere, Hs are expre-
ssed in rlx. (= blondel), and curve-numbers relate to adaptation-helios as shown in Table 1.
Factors of viewers used are shown in Table 2. About Z0 persons including X-ray technicians
distinguished change in film-density. Thus, 4Dmin were plctted and smoothed into the curves
in Fig. 1. Density-distribution of films are shown in Fig. 2. Density was measured by a
microphotometer. Films were inspected as follows with respect to curve numbers :

Curve (D): First the entire film was inspected. Then the test piece was just surrounded by
a black cover and tested. The values recieved were identical.

Curve (®: Each belts having the same density DB was separated and made a width of
25mm. The belts having similar densities were placed in rows, 25mm apart.

Cusve 3 : One belt was put on the center of a viewer.

Curve @—@ : Every test piece was separated such that it included a vicinity having base
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density, making its diameter as indicated in the fifth column of Tabls 1, and put
on the center of a viewer.

Curve @ ® were taken instead of diagnostic radiographs because of complex density-distrib-
ution.

In Fig. 1, calculated and experimental curves of the same number agree within experi-
mental errors. Moon-Spencer’s empirical equation used in illuminating engineering can be,
therefore, applied to radiography. Fig. 1 shows that change in density or film-contrast is more
easily perceptible with the rise of brightness of a viewer and the fall of base-density. The
optimum density, therefore, dose not exist if only difference in density without the effect of
change in object-thickness is considered.

3. Optimum Film-Density

Film-contrast in physical meaning 4D constituted by a change in thickness 4x is put in
eq. (7),where g is the gradient of a radiation absorption ciurve (thickness-brightness curve of
an intensifyng screen) and « is that of a density-exposure curve.

Now, we may define a physioclogical contrast 4S as shown in eq. (8). Some of calculated
4S are plotted in Fig. 4, where experimental 4Dy in Fig.1 and ¢ of a typical film FUJI PX
(Fig. 3) are used. The ordinate § is physiologically modified ¢ as expressed in eq. (9) (10).
Larger ¢ means more perceptible. The abscissa is exposure and corresponding film-density.
Since the brightness of viewers used in diagnoses are about 2000-rlx., we obtain that the
optimum densities are 1.26, 1.3 and 1.6 from the curves ®, @ and @ of Hs=2000.
Moreover, the corresponding 4Dpmim are 0.0068, 0.0066 and 0.0058, from Fig. 1. The values
derived from @), @ corresponding to diagnoses are more perceptible than the experiential
values 1.0 and 0.02~6), This difference may be caused by using a larger test-piece area
than that of clinical radiographs.

Film density is more uniform and viewers are brighter in industrial radiography than in
diagnostic radiography. It is known by experience that for industry the optimum density is
1.5 or more®. Curve (1) of Hs=2000, 16000, corresponding to industrial cases, may explain
these experiential values.

4. In Cases of Small Test Pieces
Films as shown in Fig. 5 were inspected as follows with respect to curve numbers :

Curve @: Procedures and results were the same as curve (D.

Curve @: Each column was separated such that test-pieces having same diameters were arran-
ged in one belt. Three belts were arranged on the center of a viewer and together
laterally. The middle belt being more easily perceptible than others was inspected.

Curve @: Some belts were arranged in column with interval of 1 cm, and one of the belts
was placed on the center of aviewer. The former may be nearly equivalent to
chest diagnoses. The both showed the same results.

Curve @: The columns having test piece diameter of Imm to 3 mm were cut into belts 4mm
wide and tested.

Experimental results of 4D, are plotted in Fig. 6. With the larger Dp, the smaller test
pieces are hardly perceptible. Fig. 7 shows ¢ under Hs=2000 rlx, derived from Fig. 6. From
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the curves @, @ and @, we obtain that the optimum densities are 1.1, 1.0, and 0.9 respec-
tively. Thus we have confirmed the experiential value 1.0.

5. Optimum Density-Hange

If the film-contrast 4D due to thickness-change 4x is larger than the minimum perceptible
film-contrast 4Dmin, we obtain eq. (11) from (8) and (9). Let g be such constant as eq.
(12), the density range in which 4x can be distinguished must be obtained from eg. (13).
Where, fluorescence Ei, Es correspond to the ends of thickness-range (x;, x2) of an absorption-
curve, and x=x2—x;. Corresponding density-range (D1, D:) is obtained from Fig. 3. Let do,
dxo be the values of 4, 4x at the ends of the range, respectively, we obtain eq. (14). Fig.
8 illustrates eq. (13) (14). In the figure, the d-curve shows one of the curves in Fig. 4
and 7. The straight line passing through do is parallel to abscissa. Then, the density-range
corresponds to the interval between the two intersections. The left side of ey. (14) is egual
to the area of the shaded rectangle in Fig. 8. The right side iz the reciprocal ratio of
perceptible thickness-change Axo to thickness range x corresponding to the rangs (Di, D).
This 4x¢ takes a minimum of 4x in the range.

Relations between 4dxo/x and do, calculated from the curves under 2000 riz. in Fig. 4
and Fig. 7, are shown in Fig. 9. Every curve in the figure has a minimum of 4xo/x to do,
since the shaded area in Fig. 8 has a maximum. The discovery of the minima is the
original point of this paper. If do is taken such that 4xo/x reaches a minimum, change in
thickness of the object may be most perceptible, not only at the ends of the range but also
all over the entire range (Dj, D2.) If ¢ is smaller than that, x decreases. Therefore 4x/x
increases. If g is smaller than that, 4xo increases at the both end. Therefore 4x/x increases.
If, therefore, a j-curve intersects with its optimum dp-level, the limited range of abscissa
corresponds to the optimum density-range. The range calculated from the curves under 2000
rlx. in Fig. 4. and Fig. 7, and corresponding 4x¢/x are shown in Table 3. The range become
more narrow and the change in thickness become less perceptible with the fall of uniformity
of density. Industrial radiograph, therefore, has a wider range than diagnostic radiograph.

The range obtained from curve @), @, which correspond to chest radiographs, agree with
several experiential results shown in Table 4. ‘The optimum density-range for other objects
or other inspecting factors could be found utilizing the same process.

Conclusion

Minimum perceptible change in ﬁlm-density or film-contrast 4D were calculated for several
factors from an empirical formula of vision utilized in illuminating engineering. These agreed
with experimental results. Physiological film-contrast was quantitized as the ratio of film-gamma
10 ADmin. The optimum densities for several factors were obtained form the maxima of the
ratio, and agreed within the experiential values generally cited. The optimumn density-ranges
were obtained from graphs of above ratio to exposure. If density of a radiograph of an
object having a wide range of thickness coincides to such a range, perceptible percent-change
in thickness takes a maximum. The range of chest radiograph, for exarple, obtained by
this procedure was 0.27-1.75, which agreed with the experiential values.
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Fig. 1 Minimum perceptible fillm contrast
4D,,;, to base density Ds and brightness
of viewer Hs
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Fig. 2 Density distrshution of films inspected:
Base density Ds gradually increase from
left to right. Contrasts to test pieces,
De-Do, gradually increase in every columnmn,

Table 2 Factors of viewers
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Fig. 5 Density distribution of films inspected
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mm. from upper curve of 10,11, and 1,3
mm. of 12
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v, Zhix, Fig. 1o e y—8d 5.

(3) HoCBWESRs 3 E, TOROE
ERKEWTZERZ (A B L, Fig.1tk
FBRTH B R, & 5T, BOEERNE {4
BIEBERZICLCAB, 2000 (rlx) @ & &
B2 ET AR L.
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(3 ZoROHHFRDD 5 b OEE 7Ok
3@ (7 4 V20 2.5m) G (£ 1.5m) ®
iz 3. @TiE, BERKELAZZICLERD
TONLDOF—FITESL. Zhid, JTERKERE
R EHA HHEINEZYTHS.

. P&, Fig. 612 ko T AEBMNREE 35T
3¢ Fig.ToXx3whs. FEWCIX, 2E0E
L2000 (rlx) @ HBA 2 FERLE= Zhick
OTHGEMEE ARk bh, @OTIk 1.1, OTik
1.0, @Tix 0.9 THB. Tabb, 741
& FTRGEGOMmRANE R BIE ERERER
EWIFCBRILT, 6 RS {Ah2TR AT
2%, Bosoma@Cehhid, BESKE
B ZATIE, T DORTOFRIIY OBEEE RN
WIEERLZWC B, Lk LoEEE, T
DHEE X Y YIDBEFOMIoTEE 5.
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Fig. 7T 'The dependency of & to fluorescence
and density in the case of small test piecs:
The diversing curves correspond to diame-
ters of test pieces—1,3,5,7 mm from the
lower curve of 10,11; and 1,3mm of 12.
Every curve is derived from the curve of

the same Hs and number in Fig. 6

DLEo#EE, ANXAaEsE s E B0, Hiffl
TRD IR 1.2~ 1.3k by E L A0
T, ~fRIBDENTVWBETHS 1.0ESL
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LEEHERT B LR TER.

5 REREERAL [ROEHR] 08K

WERD BB E DRV ROERECT S L, *
DILE s b BEN B2 U 72203 2 T PRI TR BE 23/
L aoT, —~EOHM X I TIXEROEMH:
NBh{ADB., “OEHRINBEEOMMEE, XE
ERREGIEERI(AS. LT, BPHAHER
T, HEEROFHEPILE DG L2>THRS
DT, MEOLME L ZES OWBERE-. £ L
T, [WEE] & (EHREAZESOHE] Lo
MR RE (T 5, PEECHIEE &+ Yo/ T
NI hERIZEEEITHS.

WHEMAR OB E D% 42 k0T AT 5 RE
4D 725 ADmin & WK7Z Z#EHH, 3 Ab Db 4x B0
BIL S 2EEE, B (DRLV2FDL IR
BhENB.

og 4x=>1 (1)

A, BERRBHRNREZETIZ LTS E, £

DOEREZOED X 2R B,
g=log(E2/E1) [x (12)

L, BRAEORSR LA B JE S & (X1,%2)
T2k, x=x1—%2 T X1, X2 12 WIET 380
Bnzneh E, Ex T35, ZoSGREEHC

WepEEi (D1, D2) BT 5. (11)
(12) K& Y >EFDEHREE 5.
d (log E2—log Eq)=x/4x (13)

—F, 8 & log E @ [z iz, Fig. 4, Fig. 7

DOEERDZOT, FEIBWT
do (log Ez—log E1) =x/dx0 (14)

B k5%, 6o, Ey, B2 sk hid, E1 &
Ez MOHEM T3 KL T2 2 & Bbhhsb.
~oF:oEnE Fig. 81t R Y. oRodhik
Fig. 4, Fig. 7Toiig #5565 b LT3, (14)
oy, Fig. 8 @ Fisss o wkk ¢, 434
1, “oHEOmE B, B2 12BwTHEIL S 3
B x o4 dxo/x @ Wigk ¢ »%, *+ ¢, Fig
4k Fig. 755, (14) T EDOT do & A%o/x
LoBRER w3 &, Fig.ooxiiwwns. 7272
L, 2Tk, 2% g4 & L2000 (rlx)
DFATEFER L. ZOEE, 4=o/x R8N
B ES3% G0 BAET B LR LT w5,
Jo NNV ARELANIERINDES x 28
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Fig. 8 Illustration obtaining the optimum den-
sity-range: If the shaded area reaches a
maximum, the density range (D,, D,) corres-
ponding to the exposure range (E,, E.) is the
optimum.
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Fig. 9 4x,/x and 4§, calculated from
the data of Fig. 4 and 7

W LT dxo/x BHEIML, & IRz S
WTR AT (DT I BINT 2D T, i
NOBEIRZ LB, 7=, dzo/x 2348/
273 &, BEBEOWRSEY R, *
DPFIZBEVTY dx/x BN ZZDT, 20
& EWTW, BEBESERICIhOTY 0L L ERE
LT, L7=23>T Fig. 4, Fig. 712833
5 OfRE Z D do TYWF L7- L ¥ ORI
VIR SRR 23, XHREIR OB LR e ¢
BH5. FHEI, REOWHE R SHEHER S &
5 EZOWMECAD X3 AERER, o T
SONTW [RWER] OFR TS BEEZL
B. 3, DX BBEREEZ XS LBEL

RAEFHARE LM (9236 %55

HRRIEBER R T 5.

Table 31z, 2000 (rlx) o & ¥ DIk
& XAXoDfEEFR L. e kg, BEo—
BMaGE (O, @) I3 EE R 255
UATFLNBERE, BEZLLE S A3 LE
BOT, REAPREGHEREILLADTI T WE
IREIT A Z ERbas. MK E el
AR BEHC A VAT BED T, @Dk 51z
TANLHONSBBEDT—F REHETH 5.

Table 3 The optimum density range and
4%./x at the ends of the range, calcul-
ated from the curves of Hs=2000 rix
in Fig. 4and 7

' g"ér_‘ve: I Density Range !| _‘dxﬂ (%) i
@, @ | 0.8~ 2.6 0.55 |
f @ ' 0.4~2.41 0.55 |
I ® | 0.4~215 0.60 |
© | 0.28~2.05 0.68 |
o 0.27~17.5 0.7 |
@ 0.2~ 1.6 0.87 |

6. EHEZEC L OTERBRMICELN R
I3 |

IERERTBRLT, 2MGET2RCEEY
MO L, OB ZMEL S DF—F
BHEFEN TS, #h % Tabledizz®+. =

Tatl: 4 Experiential values of the opti-
mum density ranges

Density |

Author range i object
Nl ]‘ 0.3— 1.5/ Chest
Tasaka'® | 0.3— 1.7| Chest
| Takahashi | 0.3—1.74| Chest, 1859 Contest
| 10 i : by Konishiroku Inc.
| Soc. X-ray
| Tech., | o . . s
| Sizuoka 0.23—1. 55/ Ibid, 1960
Pref'#,
0.16—1.69) Chest, 60mm Film,
w 1960 Contest by
Saito'” Fuji Film Inc,
| 10.15—1.63 1bid, 1958
| 0.2~1.4 | Chest, Standard of
Matuda'® ; : Automatic Film
1.9
i Processors
| Kumagai™ 0.6— 1.4] Bone

— 24 —



FRFI384E 8 H25H

T, Biltav TR0 ifRoOEELE DD
WTw 38, ZOavFXFoik 2HLeT
& | ORI LHEEI NS0T, KiFgRoEMN
DEIBOTHB. ZhZLhE, WPERTE
HOE P HERR 130, 25~ 1T B, Z Offi
Table 3 DR L —FH T 50T, Z DOINTHREY
LZETHE LEAC L. BOREOEAZIAR
BOBELI VIR ECEEICEZOTWEE, Zh
W, ERRE L D RS B (RS —REE)
THOT 4%/x PKRELTH Lo, Fig.oo
Axo/X PN B X 578 do kR KREL § ¢
Fig. 8 oiliig 28] oTY, EALFZESCHB &
TARTHLDOTHS. EE, B OBERE T, B
DEINIHZ B30 ELTE 0.50OWEMI LD
ERFINT 3 8, FEHBRTIEE0.05 L0
FENTD, JED X 512, HEEKOMHENE
HZ2oT, Lad BoRBOEss ooz
L3 TEBEENER SR, sl
W 2 ERECAS B NER DB Z L Rb2 B,
BB T EOMOBCESOMmR 1ang &
W27% 30T, Table 3DOQ~@D3HT 74 L&
M omo & & DHHFRODOMHENRLZTH B, Lizs
DT, ACEMEHRAERTD 3 L FoE
RDREREWEE 2, —J5, 0.27~1L.75 %L
THL. ZofEiE, 74 Va0, YyYUhR
FYDHHBECEOTRESZ Y, BRTikE
20T, EOWREREY LAY (EB Lk
bz, F7z, EREOBLRRGHIE T
2R THE 1S, HRE L BE L L <3
&, (1) R &k o THRom R R R BT
ha. Lal, BESHEE (77954 1) coT
NN E T, BE 0.1 EEhb LR WS, [
2T, Table 3 DULEEMEMH * —MNAEEEZ 3
ZENTES.

7. =
JRIATHECB W THW b B IR OIS 2 X5
FEIWCEAL, AL ERBICL 0T, oFDLE
EHE LML

(D REL S 20ANBEEEE, BERTC L
IAOWEEREL, BRELBYclEO B R 2
{, BESHR—MRZIEERE .

589

(2 7AN20FELTREEIE G D T 3
L, HBWEDTHB T, BEL I 3=
ZLENbRE. ZhE, BBk BRENLEDH
NTCCTRRECH T, EFLER ORISR
FERTE LUFETES EEbA TR0
B Rbh b hok. fER ok oT
LW 2B EM@HT 22 N TE . T2
JEMEMRAEN L X1, IBWCEABIEY, B
Bk —FL7s.

(3) g, EF¥RFAXRER T, BE
DHFEABBER T HTELT, KEHcbh:
B EITENR DT, FORE, 2FDEITL
TSR P E T 2 LN TE

(4) JRBEEEERH 2[R L W4 &5 LIBERPC
FHEhBBLE x3mts. Lal, Mtk
RACCoCHEFE LI 2R/0E & 4x 1%, x
DLECHINS 3. Bl mEEs2g 2E> &, R
RFTVDT I FPNE LA BR, & -HpE 72
LAFERIAZCOT x BFADLEICNE LR
. FIT, MECB W3 dx/x BRNCE B X
SLMEWMAFET S, 20 X2, LR
B2 TSI DRI SELMIILOT (A
5. Zhig, fEkErs, BERETEbh TR
PRI T B 5. HEMROME 31T B REERAR
B EOMFEMIRS, HETH bbIh3Ab
W, ARSI 0.27~1.75TCH D, HoTw
N, DLELAB. 2P LI0fEE, 7404
L rBEOREE S oM 9o & E OERREH
bRDIETHOT, RWPEIHLE TS, =D
iy, BEBZC I O>TREBMMIRKD BT
fili 2 —B L 7=,

(5) WMAONLE 4 3)E SHH (x1, X2) A
FOEIEERGEIC b X D EADE EIC, BE3LRK
e o TAEMIERERRE TR 20T, Zh
PIOEA EELITE . 20 X 3 R ER
RN, fEk, BRTROAL T [RWER] o—
DOHUMETH D,

2L LT, §ER, PRDOT—F 74 V25
A, ORI OB 3T 3 RE
PEZ B EWXOT, AMOHTRERILER, SO
YeEE, OEIEEEEE D XU [ WER| 0E%E Y

95



590 HAE AR 25 W28% m5 %

WET 2THEEELT, {3, BBRAMAELNT —4) i, fii: AEKEE, 8 5(1948), 8, 9
bv‘:%’ﬂ%%ﬁiii{b?% LR TE. 7, 4 (1948), 9, 4 (1‘949_) -—5:3 A. .Sichaal F(}_r‘ttschr.
. . . Ront. 93, 119 (1961) —6) /N = HE #Ek, 18,
i, SERBNbRDNTE T LIT—&LT 1548 (1959) —7) #&% : H ki i, 14, 11 (1958)
WBEDT, BETHD. 8) W. J. Gonnagle: Non Destructive Testing,
- - o ORI H e g o 129, 133 Mc Graw-Hill (1961) —9) Robert C.
(Kumjc@?u ¥ S0, BEAFETHER :..4\!5!4 McMaster: Non Destructive Testing Handbook
TR TRRL - ) Vol. 1, 20—35, Ronald Prese (1959) —10) [
0 ic, AT HHER & BRI B B ECR R T B X IR oA & JigE, 28, B (1954)
KR A SR, Ko R RE LT, 11) i : X | o Forg, 6, MU
(1961) —12) g UL X HE A 2 i il ¢ B ARIGER
* B T, 1125, 16 (1963) —13) W, fi
1) P. Moon, D.E. Spencer: Lighting Design, H s, 14, 206, (1959) —14) F¥EE : H ik
Chapter 8, Addison-Wesley Press (1948) —2) B, 18. 77 (1962) -—15) FAH = H fitdk 3, 18, 130
7= & %1%, E. Jahnke, F. Emde: Funktionta- (1962) —16) & « XEWRE & L oV Wk E
felen, 78, B.G. Teubner in Leipzig u. Berlin o BEHHR (55 3#) HEHEE3, 646,

(1933) —3) B, Bekk ¢ HEREE, 5, 226 (1944).

— 26 —



