

| Title        | Peptide Thiolate Fe2S2 Complexes as Model of Plant-Type Ferredoxins |
|--------------|---------------------------------------------------------------------|
| Author(s)    | Ueno, Satoru                                                        |
| Citation     | 大阪大学, 1989, 博士論文                                                    |
| Version Type | VoR                                                                 |
| URL          | https://hdl.handle.net/11094/183                                    |
| rights       |                                                                     |
| Note         |                                                                     |

## Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University

[29].-

うえ の きとる 氏名・(本籍) **植 野 哲** 

学位の種類 理 学 博 士

学位記番号 第 8511 号

学位授与の日付 平成元年3月15日

学位授与の要件 学位規則第5条第2項該当

学位論文題目 植物型フェレドキシンモデルとしての2鉄ペプチド錯体の研究

(主査) 論文審査委員 教授中村 晃

(副香)

教 授 勝部 幸輝 教 授 蒲池 幹治

## 論文内容の要旨

「金属タンパク質の特異な機能の発現のために金属タンパク質全体の構造が必要であるのか、それとも 金属イオンを保持している活性中心部分の構造のみで十分であるのか」、は未解決の問題である。この点

を明らかとするために、高等植物の光合成系に存在する植物型フェレドキシンの活性中心部分(図1円内)と同一構造を取ることができるモデルペプチド(20ーpeptide)を合成しその錯体としての電気化学的性質を中心に検討した。2鉄2硫黄のコアを持つ20ーpeptideの錯体は、酸化還元電位としてー0.64 V(Vs. SCE)と植物型フェレドキシンと同一の値を示した。このことから植物型フェレドキシンの酸化還元電位という機能

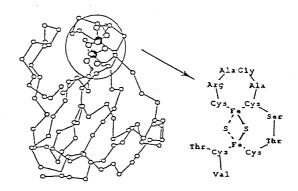



図1 Plant-type ferredoxin and its active center

発現には活性中心部分のみで十分であることを明らかとした。しかし、20 - peptide錯体では図2に見られる異性体が存在し、そして酸化還元電位のシフトの原因が明らかでないことからより単純なオリゴペプチドリガンドによる研究を行なった。

オリゴペプチド錯体の結果から、酸化還元電位のシフトはペプチド鎖からのNH-S 水素結合の形成によることがわかった。さらに異性体の存在はモデル錯体においてCys-X-Y-Cys部分と Cys-A-B-C-D-Cys部分の2鉄2硫黄コアへのキレート配位が競合するためとわかった。

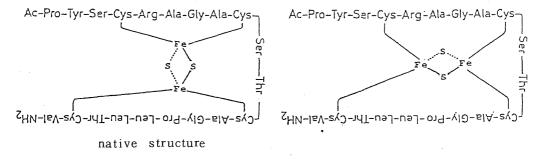



図 2. 20-peptide

NH-S水素結合以外の錯体性質を変化させる要因としてペプチド錯体の結果よりFe-S結合のひずみの影響がわかったため、Fe-S結合に大きなひずみを持つバルキーなトリメチルベンゼンチオラートをリガンドとする錯体を合成した。このバルキーチオラート錯体のX線構造解析の結果と分子軌道法による計算からFe-S結合のひずみの影響を明らかとした。

## 論文の審査結果の要旨

植物型フェレドキシンは光合成系 I の中に在って迅速な電子移動の中心となっている。この著るしい機能はフェレドキシン中に存在する  $Fe_2S_2$  部分の酸化還元によって行われるが、まわりの高分子環境つまりシステインのチオラート配位子の独得の三次元構造をもたらす蛋白質の立体構造がこの部分の性質を決定している。

すでに本学の研究者の協力によってこれらの蛋白質の立体構造が決定されているので、これに基き  ${
m Fe}_2{
m S}_2$  中心のまわりに存在するペプチド部分を合成し、  $({
m Fe}_2{
m S}_2)^{2+}$  を結合させて、天然の植物型フェレドキシンのモデルとする研究が重要な知見をもたらすと思われる。

植野君の研究は上記の様なフェレドキシンの機能に決定的な影響を与える  $Fe_2S_2$  中心の近傍にあるペプチド部分を小分子から高分子にわたる領域で系統的に合成し,その鉄錯体化反応を行い,これまで全く行れていない「ペプチド・ $Fe_2S_2$  錯体」合成に成功した。特にこの型のモデル化合物として,最も天然に近い構造を持つと思われる「20ーペプチド錯体」(最も重要と思われるアミノ酸残基の殆どを1本のペプチド分子としたあと, $Fe_2S_2$  部分と錯形成させたもの)がこの様な考えによって合成され,その酸化還元特性が天然のフェレドキシンとよく似ている事を見出したのは特筆に価する業績と思われる。確実な構造的基盤の上に着実に合成を進めて行く研究方針は,複雑な生体高分子の示す性質を解明するために有力である事が立証された。従って本論文は理学博士論文として十分価値あるものと認める。