<table>
<thead>
<tr>
<th>Title</th>
<th>Synthesis of Multi-Substituted Heteroarenes via Palladium-Catalyzed C-H Bond Cleavage and Decarboxylation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Miyasaka, Mitsuru</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/1838</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
Synthesis of Multi-Substituted Heteroarenes via Palladium-Catalyzed C-H Bond Cleavage and Decarboxylation

Mitsuru Miyasaka

Osaka University

2011
Preface

The study in this thesis has been carried out under the direction of Professor Masahiro Miura at the Department of Applied Chemistry, Faculty of Engineering, Osaka University from April 2008 to March 2011.

The thesis is concerned with the synthesis of multi-substituted heteroarenes via palladium-catalyzed C-H bond cleavage and decarboxylation.

Department of Applied Chemistry
Graduate School of Engineering, Osaka University
Suita, Osaka, Japan
March, 2011

Mitsru Miyasaka
Contents

General Introduction
 References

Chapter 1 Synthesis of 2,3-Diarylindoles via C-H Bond Cleavage and Decarboxylation
 1.1 Introduction
 1.2 Results and Discussion
 1.3 Conclusion
 1.4 Experimental Section
 1.5 References and Notes

Chapter 2 Synthesis of 2,3-Disubstituted Benzothiophenes via Decarboxylative Arylation
 2.1 Introduction
 2.2 Results and Discussion
 2.3 Conclusion
 2.4 Experimental Section
 2.5 References and Notes

Chapter 3 Synthesis of 5-Alkenylazoles via Fujiwara-Moritani Reaction
 3.1 Introduction
 3.2 Results and Discussion
 3.3 Conclusion
 3.4 Experimental Section
 3.5 References and Notes

Conclusion

List of Publications

Acknowledgement
General Introduction

Development of C-C bond formation reaction is one of the most important subjects in modern organic chemistry. The palladium-catalyzed cross-couplings are now recognized to be powerful synthetic tools for C–C bond formation because they can form various types of C-C bonds with high efficiency and selectivity (Scheme 1).\(^1\)

\[
\begin{align*}
R-m & \quad + \quad R'-X \quad \xrightarrow{\text{Pd cat.}} \quad \text{(additive)} \quad R-R' + Xm \quad (1)
\end{align*}
\]

\(X = I, \text{Br, Cl, TfO}, \cdots \quad m = \text{Mg, B, Si, Sn, Zn}, \cdots \)

\(R = R' = \text{aryl, alkenyl, alkyl}, \cdots\)

SCHEME 1. Cross-Coupling Reaction

Recently, not only the above traditional cross-couplings with organometallic reagents but also direct couplings via C-H bond cleavage have attracted much attention since they require no prefunctionalization step of the starting materials and provide a potentially more efficient alternative to the conventional methodologies.\(^2\) In particular, various Pd-catalyzed direct arylation reactions of electron-rich and -deficient heteroarenes have been widely explored (Scheme 2).\(^3\)

The reactions of electron-rich heteroarenes are mostly considered to proceed via \(S_E\) type mechanism, while those of electron-deficient ones may involve concerted metallation-deprotonation (CMD) mechanism.\(^2\)
The direct arylation of benzene rings also proceeds with the aid of directing groups\(^2\) such as phenolic hydroxyl group,\(^4\) amide,\(^5\) 2-pyridyl,\(^6\) and carbamate.\(^7\) The reaction gives the corresponding ortho-arylated product with high regioselectivity via proximal C-H bond cleavage (Scheme 3).

In addition, recent efforts have enabled the direct arylation of electron-deficient fluoroaromatics and benzene itself without the above chelation assistance (Scheme 4).\(^8\) Moreover, direct dehydrogenative coupling reactions have also been developed.\(^9\)
On the other hand, cross-coupling via cleavage of C-C bond as well as C-H bond has also received great interest.10 For example, Miura and co-workers reported the arylation of \(\alpha,\alpha\)-disubstituted arylmethanols with aryl halides via cleavage of the sp\(^2\)-sp\(^3\)C bond with the liberation of a ketones (β-carbon elimination) to give the corresponding biaryls (Scheme 5).11

![Scheme 5](image)

SCHEME 5. Cross-Coupling via β-Carbon Elimination

Goossen et al. developed the Pd/Cu or Pd/Ag co-catalyzed decarboxylative arylation of \textit{ortho}-substituted benzoic acids with aryl halides (Scheme 6).12 The analogous reaction of potassium carboxylates with aryl triflates was found to accommodate \textit{meta-} and \textit{para}-substituted patterns.13

![Scheme 6](image)

SCHEME 6. Decarboxylative Arylation

These carbon functional groups work as not only a leaving group but also a directing group. Miura and co-workers reported the multi-arylation of thiophenes bearing an amide, an \(\alpha,\alpha\)-disubstituted methanol, or a carboxyl group via successive C-H and C-C bond cleavages (Scheme 7).14
Meanwhile, multi-substituted heteroarenes are found in a large number of biologically active natural and unnatural compounds, and functional materials. Therefore, the development of efficient and selective methods for the construction of these compounds is of considerable importance in organic synthesis.

The purpose of this study is to develop methods for the synthesis of multi-substituted heteroarenes via C-H bond cleavage and decarboxylation using palladium catalysts. This thesis consists of the following three chapters.

Chapter 1 describes the synthesis of 2,3-diarylindoles via C-H bond cleavage and decarboxylation.

Chapter 2 describes the synthesis of multi-substituted benzothiophenes via decarboxylative arylation as the key synthetic process.

Chapter 3 refers to the synthesis of 5-alkenylazoles via direct alkenylation, so-called Fujiwara-Moritani reaction.

Finally, this work is summarized in the conclusion section.

References

Chapter 1

Synthesis of 2,3-Diarylindoles via C-H Bond Cleavage and Decarboxylation

1.1 Introduction

The indole nucleus is found in a large number of biologically active natural and unnatural compounds, and the synthesis of its derivatives is of considerable importance in organic chemistry.\(^1\) In addition, as tryptophan is an intrinsic fluorescent probe in proteins, indole derivatives are known to display fascinating photophysical properties.\(^2\) Thus, suitably arylated indoles may be considered to exhibit fluorescence, and the wavelength and intensity may depend on the nature of the aryl substituents. A literature search indicates that some 2,3-diarylindoles, for example 2,3-bis(4-methoxy and hydroxyphenyl)indoles, show not only interesting biological activities,\(^3a-g\) but also fluorescence\(^3e-h\) in the blue region, whereas very little is known about their fluorescent efficiency. Accordingly, because the development of efficient blue emitters is currently one of the important subjects in materials chemistry,\(^4,5\) the synthesis of various related compounds is of particular interest in terms of their physical features and their biological behavior.

Transition-metal-catalyzed biaryl cross-coupling with aryl halides and aryl metal reagents is one of the most reliable methods for the synthesis of indoles having a variety of aryl functionalities, and recent advances in the metal-mediated direct C-H arylation reactions of heteroarenes provide an efficient access to C2- or C3-monoarylated indoles.\(^6,7\) However, the 2,3-diarylation reactions on an indole scaffold are quite rare.\(^8\) Thus, efficient methods for installing identical and different aryl groups at the 2- and 3-positions are required.\(^10\) The present synthetic strategy involves sequential ortho- and ipso-arylations, and gratifyingly, it has been successfully utilized in carboxyindole systems.\(^12-14\) Herein, the author reports the palladium-catalyzed 2,3-diarylation of carboxyindole derivatives with aryl bromides, as well as a
practical route to 2,3-diarylindoles having different aryl substituents by performing ester hydrolysis in the sequence. As result of these studies, the author has found a highly fluorescent 2,3-diarylindoles among the products, and their photoluminescent properties are described.

1.2 Results and Discussion

In a typical synthesis, treatment of 1-methyl-1H-indole-2-carboxylic acid (1a) with bromobenzene (2a) (3 equiv) in the presence of Pd(OAc)$_2$ (5 mol%), PCy$_3$ (10 mol%), and Cs$_2$CO$_3$ (4 equiv) in refluxing o-xylene for 4 h afforded 1-methyl-2,3-diphenyl-1H-indole (3a) in 90% yield (Scheme 1). In the reaction of 1-methyl-1H-indole-3-carboxylic acid (4) in place of 1a under the same conditions, formation of the 2-monophenylated product, 1-methyl-2-phenyl-1H-indole-3-carboxylic acid (5a) (55%) was observed together with 3a (36%). Thus, the second ipso-phenylation at the 3-position appears to be a relatively slower process. The reaction of 4 at a higher temperature using mesitylene as a solvent, however, gave 3a in an acceptable yield (77%).

![Scheme 1](attachment:Scheme1.png)

SCHEME 1. a Reaction of 1a in o-xylene. b Reaction of 4 in o-xylene. c Reaction of 4 in mesitylene with addition of MS 4A (150 mg). d Determined by GC as its methyl ester 7a after methylation with MeI.
Various aryl bromides having an electron-donating or -withdrawing group could be employed for the diarylation reaction of 1a (Table 1). The reaction using other 2-carboxyindoles was also undertaken. Under the standard reaction conditions, N-methoxymethyl-protection was tolerated, and thus, carboxyindole 1b coupled with 2a to give the expected products 3f.

TABLE 1. Reaction of 2-Carboxyindoles 1 with Aryl Bromides 2.

\[
\begin{align*}
\text{COOH} + \text{Ar-Br} & \xrightarrow{\text{Pd(OAc)}_2, \text{PCy}_3, \text{Cs}_2\text{CO}_3, \text{o-xylene}} \text{3} \\
\text{1a} & \xrightarrow{\text{1b}, \text{90%}} \text{3a} \\
\text{1b} & \xrightarrow{\text{2a}, \text{2c}, \text{2d}, \text{PCy}_3} \text{3b, 86%} \\
\text{1c} & \xrightarrow{\text{PCy}_3} \text{3c, 93%} \\
\text{1d} & \xrightarrow{\text{2a}, \text{2c}, \text{2d}, \text{PCy}_3} \text{3d, 78%} \\
\text{1e} & \xrightarrow{\text{2a}, \text{2c}, \text{2d}, \text{PCy}_3} \text{3e, 79%} \\
\text{1f} & \xrightarrow{\text{MOM}} \text{3f, 82%}
\end{align*}
\]

\(^a \) A mixture of 1 (0.50 mmol), 2 (1.5 mmol), Pd(OAc)_2 (0.025 mmol), PCy_3 (0.05 mmol), and Cs_2CO_3 (1.5mmol) was stirred in refluxing o-xylene (2.5 mL) for 4 h under N_2. \(^b \) Isolated yield.

To achieve the selective synthesis of indoles having different aryl groups at the 2- and 3-positions, we examined a stepwise diarylation with methyl esters of 1a and 4 as the starting materials, since an ester function was found to be inert under the present conditions. The latter ester, methyl 1-methyl-1H-indole-3-carboxylate (6a) was effectively monoarylated with 2a, 2c, and 2d using P(biphenyl-2-yl)Bu_2 as a ligand to give the corresponding 2-arylated products 7a–c.
in good yields (Table 2, entries 1–3), whereas the former ester did not react at all. The ligand PCy₃ was less effective in this case (entry 4). MOM-protected indole 6b was also available for use (entry 5).

TABLE 2. Reaction of 3-(Methoxycarbonyl)indoles 6 with Aryl Bromides 2.^a

![Chemical structure](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>6, R</th>
<th>2, Ar¹</th>
<th>7, Yield (%)<sup>b</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6a, Me</td>
<td>2a, Ph</td>
<td>7a, 82</td>
</tr>
<tr>
<td>2</td>
<td>6a, Me</td>
<td>2b, 4-MeOC₆H₄</td>
<td>7b, 90</td>
</tr>
<tr>
<td>3</td>
<td>6a, Me</td>
<td>2c, 4-CF₃C₆H₄</td>
<td>7c, 79</td>
</tr>
<tr>
<td>4<sup>c</sup></td>
<td>6a, Me</td>
<td>2a, Ph</td>
<td>7a, 57</td>
</tr>
<tr>
<td>5</td>
<td>6b, MOM</td>
<td>2a, Ph</td>
<td>7d, 82</td>
</tr>
</tbody>
</table>

^a A mixture of 6 (0.50 mmol), 2 (1.0 mmol), Pd(OAc)₂ (0.025 mmol), P(biphenyl-2-yl)Bu₂ (0.05 mmol), and Cs₂CO₃ (1.0 mmol) was stirred in refluxing o-xylene (2.5 mL) for 6 h under N₂. ^b Yield of isolated product. ^c PCy₃ was used as a ligand.

Then, 7a, 7c, and 7d were hydrolyzed with ethanolic KOH to quantitatively afford the corresponding carboxylic acids. Subsequently, the acids were subjected to the second arylation accompanied by decarboxylation in mesitylene, and diarylindoles 8a–8f were obtained in good yields (Table 3).
TABLE 3. Decarboxylative Arylation of 5^{a,b}

![Chemical structures of the reactions and products](image)

A mixture of 5 (0.50 mmol), 2 (1.0 mmol), Pd(OAc)₂ (0.025 mmol), PCy₃ (0.05 mmol), and Cs₂CO₃ (1.0 mmol) was stirred in refluxing mesitylene (2.5 mL) for 6 h under N₂. ^b Isolated yield.

With the above 2,3-diarylindoles 3 and 8 in hand, a preliminary survey of their solid-state photoluminescence by using a UV lamp was carried out. It was found that 1-methyl-2,3-bis(4-trifluoromethylphenyl)-IH-indole (3d) was especially luminescent. Consequently, the photoluminescence spectra of 3d and, to examine the substituent effects on the aryl groups, those of 3a, 3c, 8b, and 8e as well as their absorption spectra were measured for their ethanol solutions and solid powders (Table 4 and Figure 1). Accordingly, diarylindole 3d is highly luminescent with emission maxima at 436 nm and 422 nm and with quantum yields of 0.90 and 0.97, in solution and as a solid, respectively. The quantum efficiency of the solid samples decreased in the following order: 3d>8e>3a>8b>3c. This trend is the same as that in solution. In each case, the discrepancy between the emission maxima in solution and in the solid state is relatively small. These facts suggest that the solid-state luminescence in each case is
essentially based on the intrinsic structure and electronic conjugation of individual molecules.

TABLE 4. Optical Properties of 1-Methyl-2,3-diarylindoles.

\[
\begin{array}{ccccccc}
\text{entry} & \text{3 or 8} & \lambda_{\text{abs-sl}} & \log \varepsilon & \lambda_{\text{em-sl}} & \Phi_{\text{sl}} & \lambda_{\text{em-pw}} & \Phi_{\text{pw}} \\
& & (\text{nm})^a & & (\text{nm})^b & ^c & (\text{nm})^d & ^e \\
1 & \text{3a} & 225 & 4.63 & 418 & 0.51 & 419 & 0.65 \\
& & 298 & 4.24 \\
2 & \text{3c} & 248 & 4.48 & 421 & 0.13 & 441 & 0.44 \\
& & 299 & 4.22 \\
3 & \text{3d} & 225 & 4.80 & 436 & 0.90 & 422 & 0.97 \\
& & 286 & 4.46 \\
4 & \text{8b} & 225 & 4.66 & 419 & 0.37 & 420 & 0.56 \\
& & 296 & 4.30 \\
5 & \text{8e} & 225 & 4.63 & 438 & 0.64 & 426 & 0.76 \\
& & 303 & 4.12 \\
\end{array}
\]

a Absorption maximum in EtOH. b Emission maximum in EtOH. c Determined by comparison with ethanol solution of anthracene ($\Phi_f = 0.30$) excited at 254 nm. d Emission maximum of solid powder excited at 350 nm. e Absolute quantum yield determined by an integrating sphere system.
This was, at least in the case of 3d, supported by the crystal structure and packing determined by single-crystal X-ray diffraction (Figure 2). The torsion angles between the indole plane and the C2 and C3 aryl groups are 45° and 43°, respectively, which appear to prevent intermolecular electronic interactions. In this case, the presence of two CF$_3$ substituents also appears to be an important factor in allowing the almost perfect quantum yield in the solid (Table 4). However, further studies are needed to gain a better understanding of the observed remarkable effect of the substituents on the luminescent efficiency.

FIGURE 2. Molecular Structure of 3d and its Packing (P2$_1$/n) within the Crystal Determined by Single-Crystal X-ray Diffraction.
1.3 Conclusion

Physically and biologically interesting 2,3-diarylindoles can be readily prepared by palladium-catalyzed direct and decarboxylative arylations using commercially available carboxyindoles. This approach has led to the discovery of a highly luminescent solid blue emitter.

1.4 Experimental Section

General Remarks. 1H and 13C NMR spectra were recorded at 400 MHz and 100 MHz, respectively, for CDCl$_3$ solutions. MS data were obtained by EI. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 25 m). The fluorescence analysis of some products was carried out with the samples recrystallized from hexane-toluene or hexane-dichloromethane and then crashed. The absolute fluorescence quantum efficiency of the crashed crystal of 3a, 3c, 3d, 8b, and 8e encapsulated in a quartz cell (30 x 30 x 0.3 mm) under deoxygenated conditions, was measured by using an integrating sphere unit (the excitation wavelength: 350 nm). Silica gel (Wakogel 200 mesh) was used for column chromatography. All reactions were carried out under nitrogen atmospheres.

Materials. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. o-Xylene and mesitylene were distilled from CaH. Pd(OAc)$_2$ was purchased from Wako. PCy$_3$ and P(biphenyl-2-yl)Bu$_2$ were obtained from Strem. Indolecarboxylate esters 6a13a and 6b13b were prepared by the methods reported previously.

Experimental Procedure

Palladium-Catalyzed Reaction of 1-Methyl-1H-indole-2-carboxylic Acid (1a) with Bromobenzene (2a). In a 20 mL two-necked flask were added bromobenzene (2a) (2 mmol,
374 mg), 2-carboxyindole 1a (0.5 mmol, 87 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), PCy$_3$ (0.05 mmol, 14 mg), Cs$_2$CO$_3$ (2 mmol, 652 mg), 1-methylnaphthalene (ca. 50 mg) as internal standard, and o-xylene (2.5 mL). The resulting mixture was stirred under N$_2$ (balloon) at 170 °C (bath temperature) for 4 h. After cooling, analysis of the mixture by GC confirmed the formation of compound 3a (quantitatively). The product (127 mg, 90%) was also isolated by filtration of the mixture through a filter paper with ether as an eluent, evaporation of the solvents, and chromatography on silica gel using hexane-ethyl acetate (98:2, v/v).

Palladium-Catalyzed Reaction of Methyl 1-Methyl-1H-indole-3-carboxylate (6a) with Bromobenzene (2a). In a 20 mL two-necked flask were added bromobenzene (2a) (1 mmol, 157 mg), methyl 1-methyl-1H-indole-2-carboxylate (6a) (0.5 mmol, 94 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), P(biphenyl-2-yl)Bu$_2$ (0.05 mmol, 15 mg), Cs$_2$CO$_3$ (1 mmol, 325 mg), 1-methylnaphthalene (ca. 50 mg) as internal standard, and o-xylene (2.5 mL). The resulting mixture was stirred under N$_2$ (balloon) at 150 °C (bath temperature) for 6 h. After cooling, analysis of the mixture by GC confirmed the formation of compound 7a (quantitatively). The product (108 mg, 82%) was also isolated by filtration of the mixture through a filter paper with ether, evaporation of the solvents, and chromatography on silica gel using hexane-ethyl acetate (95:5, v/v).

Hydrolysis of Methyl 1-Methyl-2-phenyl-1H-indole-3-carboxylate (7a). In a 100mL flask were added methyl 1-methyl-2-phenyl-1H-indole-3-carboxylate (7a) (4.7 mmol, 1.2 g), potassium hydroxide (1.7 g, 30 mmol), water (24 mL), and ethanol (12 mL). The mixture was heated at 80 °C (bath temperature) for 8 h under N$_2$. After cooling and acidification with aq. HCl (2 M), white precipitate was collected, washed with water, and dried under vaccum to afford carboxylic acid 5a (1.12 g, 95%).
Palladium-Catalyzed Reaction of 1-Methyl-2-phenyl-1H-indole-3-carboxlic Acid (5a) with 4-bromotoluene (2b). In a 20 mL two-necked flask were added 4-bromotoluene (2b) (1 mmol, 171 mg), 1-Methyl-2-phenyl-1H-indole-3-carboxlic acid (5a) (0.5 mmol, 125 mg), Pd(OAc)$_2$ (0.025 mmol, 5.6 mg), PCy$_3$ (0.05 mmol, 14 mg), Cs$_2$CO$_3$ (1 mmol, 325 mg), MS4A (150 mg), 1-methynaphthalene (ca. 50 mg) as internal standard, and mesitylene (2.5 mL). The resulting mixture was stirred under N$_2$ (balloon) at 170 °C (bath temperature) for 6 h. The product 8a (125 mg, 84%) was isolated by filtration of the mixture through a filter paper with ether, evaporation of the solvents, and chromatography on silca gel using hexane-ethyl acetate (98:2, v/v).

Characterization Data of Products.

1-Methyl-2,3-diphenyl-1H-indole (3a)

m.p. 137-139 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.67 (s, 3H), 7.14-7.42 (m, 13H), 7.79 (d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 31.2, 109.8, 115.3, 119.8, 120.4, 122.4, 125.7, 127.2, 128.2, 128.4, 128.6, 130.1, 131.4, 132.1, 135.4, 137.5, 137.9; Anal. Calcd for C$_{21}$H$_{17}$N: C, 89.01; H, 6.05; N, 4.94. Found: C, 88.73; H, 6.05; N, 4.87.

1-Methyl-2,3-bis(4-methylphenyl)-1H-indole (3b) m.p. 124-126 °C; 1H NMR (400 MHz, CDCl$_3$) δ 2.32 (s, 3H), 2.38 (s, 3H), 3.65 (s, 3H), 7.08 (d, J = 7.7 Hz, 2H), 7.14-7.23 (m, 7H), 7.28 (dd, J = 7.8 Hz, 7.8 Hz, 1H), 7.39 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.4, 21.6, 31.1, 109.7, 119.8, 120.2, 122.2, 128.6, 128.7, 129.1, 129.28, 129.32, 129.9, 131.2, 132.6, 135.1, 137.5, 137.9, 138.0; HRMS m/z (M$^+$) calcd for C$_{23}$H$_{21}$N: 311.1682, found: 311.1674.
2,3-Bis(4-methoxyphenyl)-1-methyl-1H-indole (3c) m.p. 114-116 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.65 (s, 3H), 3.79 (s, 3H), 3.83 (s, 3H), 6.83 (d, $J = 8.8$ Hz, 2H), 6.91 (d, $J = 8.8$ Hz, 2H), 7.14-7.29 (m, 6H), 7.38 (d, $J = 8.4$ Hz, 1H), 7.74 (d, $J = 8.1$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 31.0, 55.38, 55.46, 109.6, 114.0, 114.1, 114.4, 119.7, 120.2, 122.1, 124.5, 127.4, 128.0, 131.1, 132.5, 137.4, 137.5, 157.8, 159.6; HRMS m/z (M$^+$) calcd for C$_{23}$H$_{21}$NO$_2$: 343.1567, found: 343.1572.

1-Methyl-2,3-bis(4-trifluoromethylphenyl)-1H-indole (3d) m.p. 170-172 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.69 (s, 3H), 7.23 (t, $J = 6.6$ Hz, 1H), 7.34-7.38 (m, 3H), 7.44 (d, $J = 7.3$ Hz, 3H), 7.53 (d, $J = 8.5$ Hz, 2H), 7.67 (d, $J = 8.0$ Hz, 2H), 7.75 (d, $J = 8.0$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 31.1, 109.9, 114.8, 119.5, 121.0, 123.1, 124.0 (q, $J = 270$ Hz), 124.4 (q, $J = 270$ Hz), 125.3 (q, $J = 3.8$ Hz), 125.6 (q, $J = 3.8$ Hz), 126.6, 127.8 (q, $J = 32$ Hz), 130.4, 129.5 (q, $J = 32$ Hz), 131.4, 135.2, 136.6, 137.7, 138.6; Anal. Calcd for C$_{23}$H$_{18}$F$_6$N: C, 65.87; H, 3.61; N, 3.34. Found: C, 65.60; H, 3.59; N, 3.36.

2,3-Bis(4-fluorophenyl)-1-methyl-1H-indole (3e) m.p. 147-150 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.66 (s, 3H), 6.97 (dd, $J = 8.8$Hz, 8.8Hz, 2H), 7.09 (dd, $J = 8.8$ Hz, 8.8 Hz, 2H), 7.17-7.33 (m, 6H), 7.41 (d, 1H), 7.71 (d, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 31.1, 109.8, 115.4 (d, $J = 21$ Hz), 115.9 (d, $J = 21$ Hz), 119.6, 120.6, 122.7, 127.1, 128.0, 131.17, 131.20, 131.5 (d, $J = 7.5$ Hz), 133.1 (d, $J = 8.4$ Hz), 136.8, 137.5, 161.4 (d, $J = 243$ Hz), 162.9 (d, $J = 247$ Hz); HRMS m/z (M$^+$) calcd for C$_{21}$H$_{15}$F$_2$N: 319.1171, found: 319.1173.
1-Methoxymethyl-2,3-diphenyl-1H-indole (3f) m.p. 113-115 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.25 (s, 3H), 5.37 (s, 2H), 7.16-7.40 (m, 12H), 7.57 (d, $J = 8.0$ Hz, 1H), 7.76 (d, $J = 7.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 21.1, 55.9, 74.7, 110.2, 116.6, 119.73, 119.76, 121.0, 122.8, 125.8, 127.7, 128.2, 130.0, 131.37, 131.43, 134.7, 137.2, 137.6; Anal. Calcd for C$_{22}$H$_{19}$NO: C, 84.31; H, 6.11; N, 4.47. Found: C, 84.02; H, 6.04; N, 4.41.

1-Methyl-2-phenyl-1H-indole-3-carboxylic acid (5a) m.p. 194-196 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.54 (s, 3H), 7.28-7.50 (m, 8H), 8.30-8.32 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 30.9, 104.3, 109.7, 122.3, 122.4, 123.0, 127.1, 128.1, 129.0, 130.3, 131.2, 136.9, 147.6, 170.1. HRMS m/z (M$^+$) Calcd for C$_{16}$H$_{13}$NO$_2$: 251.0946. Found: 251.0948.

1-Methyl-2-(4-trifluoromethylphenyl)-1H-indole-3-carboxylic acid (5b) m.p. 216-218 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.45 (s, 3H), 7.32-7.39 (m, 3H), 7.55 (d, $J = 8.1$ Hz, 2H), 7.75 (d, $J = 8.1$ Hz, 2H), 8.29-8.31, (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 31.0, 104.9, 109.8, 122.4, 122.7, 123.5, 124.0 (q, $J = 271$ Hz), 125.1 (q, $J = 3.8$ Hz), 126.8, 130.9, 131.2 (q, $J = 33$ Hz), 134.9, 137.1, 145.8, 170.1. HRMS m/z (M$^+$) Calcd for C$_{17}$H$_{12}$F$_3$NO$_2$: 319.0820. Found: 319.0819.

1-Methoxymethyl-2-phenyl-1H-indole-3-carboxylic acid (5c) m.p. 190-192 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.54 (s, 3H), 5.25 (s, 2H), 7.32-7.35 (m, 2H), 7.45-7.55 (m, 6H), 8.29-8.31 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 56.0, 74.7, 105.9 110.6, 122.3, 122.9, 123.5, 127.2, 128.1, 129.3, 130.6, 130.7, 136.5, 147.6, 170.0. HRMS m/z (M$^+$) Calcd for C$_{17}$H$_{15}$NO$_3$: 281.1052. Found: 281.1048.
Methyl 1-methyl-2-phenyl-1H-indole-3-carboxylate (7a) m.p. 120-122 °C;

1H NMR (400 MHz, CDCl$_3$) δ 3.57 (s, 3H), 3.76 (s, 3H), 7.31-7.51 (m, 8H), 8.22-8.24 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 30.8, 50.6, 105.0, 109.7, 122.0, 122.1, 122.8, 126.0, 128.0, 128.9, 130.3, 131.5, 136.8, 146.9, 165.5; Anal. Calcd for C$_{17}$H$_{15}$NO$_2$: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.70; H, 5.78; N, 5.24.

Methyl 2-(4-methoxyphenyl)-1-methyl-1H-indole-3-carboxylate (7b) m.p. 147-148 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.57 (s, 3H), 3.77 (s, 3H), 3.88 (s, 3H), 7.00-7.04 (m, 2H), 7.28-7.38(m, 5H), 8.20-8.22(m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 30.8, 50.6, 55.3, 104.9, 109.7, 113.6, 121.9, 122.0, 122.7, 123.4, 126.6, 131.7, 136.8, 147.0, 160.1, 165.7; Anal. Calcd for C$_{18}$H$_{17}$NO$_3$: C, 73.20; H, 5.80; N, 4.74. Found: C, 72.81; H, 5.84; N, 4.69.

Methyl 1-methyl-2-(4-trifluoromethylphenyl)-1H-indole-3-carboxylate (7c) m.p. 142-144 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.56 (s, 3H), 3.76 (s, 3H), 7.33-7.41 (m, 3H), 7.55 (d, $J = 8.0$Hz, 2H), 7.76 (d, $J = 8.0$Hz, 2H), 8.22-8.24(m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 30.9, 50.8, 105.6, 109.8, 122.1, 122.4, 123.3, 124.0 (q, $J = 270$ Hz), 125.1 (q, $J = 3.8$ Hz), 126.3, 130.8, 131.0 (q, $J = 32$ Hz), 135.2, 137.0, 144.9, 165.3; HRMS m/z (M$^+$) Anal. Calcd for C$_{18}$H$_{14}$F$_3$NO$_2$: C, 64.86; H, 4.23; N, 4.20. Found: C, 64.68; H, 4.35; N, 4.10.

Methyl 1-methoxymethyl-2-phenyl-1H-indole-3-carboxylate (7d) m.p. 76-78 °C; 1H NMR (400 MHz, CDCl$_3$) δ 3.16 (s, 3H), 3.75 (s, 3H), 5.27 (s, 2H), 7.32-7.34 (m, 2H), 7.43-7.59(m, 6H), 8.22-8.24 (m, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 50.8, 56.0, 74.7, 106.6, 110.6, 122.0, 122.6, 123.4, 126.7, 128.0, 129.1,
130.6, 130.9, 136.4, 146.8, 165.4; HRMS m/z (M⁺) Calcd for C₁₈H₁₇NO₅: 295.1208. Found: 295.1220.

1-Methyl-3-(4-methylphenyl)-2-phenyl-1H-indole (8a) m.p. 155-156 °C; ¹H NMR (400 MHz, CDCl₃) δ 2.31 (s, 3H), 3.66 (s, 3H), 7.07 (d, J = 8.1 Hz, 2H), 7.15-7.40 (m, 10H), 7.78 (d, J = 7.7 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 21.1, 30.9, 109.5, 115.1, 119.7, 120.0, 122.0, 127.1, 127.9, 128.3, 128.9, 129.7, 131.1, 132.1, 132.2, 134.9, 137.3, 137.5; HRMS m/z (M⁺) calcd for C₂₂H₁₉N: 297.1517, found: 297.1522.

1-Methyl-2-phenyl-3-(4-trifluoromethylphenyl)-1H-indole (8b) m.p. 134-136 °C; ¹H NMR (400 MHz, CDCl₃) δ 3.69 (s, 3H), 7.24 (t, J = 7.0 Hz, 1H), 7.30-7.45 (m, 9H), 7.50 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 31.1, 109.8, 113.8, 119.2, 120.7, 122.5, 124.5 (q, J = 270 Hz), 125.1 (q, J = 3.8 Hz), 126.8, 127.3 (q, J = 32 Hz), 128.4, 128.6, 129.7, 130.6, 131.5, 137.4, 138.5, 139.2; HRMS m/z (M⁺) calcd for C₂₂H₁₆F₃N: 351.1235, found: 351.1241.

Ethyl 4-(1-methyl-2-phenyl-1H-indole-3-yl)benzoate (8c) m.p. 131-133 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.37 (t, J = 7.3 Hz, 3H), 3.68 (s, 3H), 4.35 (q, J = 7.3 Hz, 2H), 7.19-7.42 (m, 10H), 7.81 (d, J = 7.7 Hz, 1H), 7.93 (d, J = 8.4 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 14.4, 30.9, 60.7, 109.7, 114.3, 119.4, 120.6, 122.5, 126.7, 127.3, 128.4, 128.6, 129.4, 129.5, 131.1, 131.6, 137.5, 138.5, 140.4, 166.8; Anal. Calcd for C₂₉H₂₁NO₂: C, 81.10; H, 5.96; N, 3.96. Found: C, 80.89; H, 5.96; N, 3.94.
3-(4-Biphenyl)-1-methyl-2-phenyl-1H-indole (8d) m.p. 132-134 °C; ^{1}H NMR (400 MHz, CDCl$_{3}$) δ 3.69 (s, 3H), 7.21 (t, $J = 7.7$ Hz, 1H), 7.29-7.44 (m, 12H), 7.50-7.52 (m, 2H), 7.59-7.61 (m, 2H), 7.86 (m, 1H); ^{13}C NMR (100 MHz, CDCl$_{3}$) δ 30.9, 109.6, 114.7, 120.0, 120.3, 122.2, 126.82, 126.86, 126.94, 126.99, 128.1, 128.4, 128.7, 130.1, 131.2, 132.0, 134.4, 137.4, 137.9, 138.0, 141.0; HRMS m/z (M$^{+}$) calcd for C$_{27}$H$_{21}$N: 359.1674, found: 359.1671.

1-Methyl-3-phenyl-2-(4-trifluoromethylphenyl)-1H-indole (8e) m.p. 139-141 °C; ^{1}H NMR (400 MHz, CDCl$_{3}$) δ 3.67 (s, 3H), 7.19-7.22 (m, 2H), 7.28-7.35 (m, 5H), 7.43 (m, 3H), 7.63 (d, $J = 8.1$ Hz, 2H), 7.78 (d, $J = 8.1$ Hz, 1H); ^{13}C NMR (100 MHz, CDCl$_{3}$) δ 31.1, 109.7, 116.3, 119.9, 120.5, 122.8, 124.1, (q, $J = 271$ Hz), 125.3 (q, $J = 3.8$ Hz), 125.9, 127.0, 128.4, 129.95 (q, $J = 32$ Hz), 129.96, 131.4, 134.6, 135.7, 135.9, 137.7; HRMS m/z (M$^{+}$) calcd for C$_{22}$H$_{16}$F$_{3}$N: 351.1235, found: 351.1233.

1-Methoxymethyl-3-(4-methylphenyl)-2-phenyl-1H-indole (8f) m.p. 113-115 °C; ^{1}H NMR (400 MHz, CDCl$_{3}$) δ 2.32 (s, 3H), 3.24 (s, 3H), 5.37 (s, 2H), 7.15-7.32 (m, 11H), 7.39 (d, $J = 8.4$ Hz, 1H), 7.78 (d, $J = 8.0$ Hz, 1H); ^{13}C NMR (100 MHz, CDCl$_{3}$) δ 21.1, 55.9, 74.7, 110.2, 116.6, 119.8, 120.9, 122.7, 127.8, 128.1, 128.3, 129.0, 129.8, 131.4, 131.6, 131.7, 135.4, 137.2, 137.4; Anal. Calcd for C$_{23}$H$_{21}$NO: C, 84.37; H, 6.46; N, 4.28. Found: C, 84.09; H, 6.40; N, 4.17.

Crystal data for compound 3d (CCDC No. 713262) MF C$_{23}$H$_{15}$F$_{6}$N, MW 419.37, Crystal Dimensions 0.58 x 0.27 x 0.10 mm, monoclinic, space group P2$_{1}$/n, a = 8.006(3) Å, b = 10.620(3) Å, c = 22.036(7) Å, β = 95.280(8)$^{°}$, V = 1865.7(10) Å3, Z = 4, D$_{\text{calc}}$ 1.493 g/cm3,
\(\mu(\text{MoK}\alpha) \) 1.290 cm\(^{-1}\), 21158 reflections measured, R1 = 0.15, R = 0.29, wR2 = 0.47.

FIGURE 3 An ORTEP Drawing of Compound 3d.

1.5 References and Notes

Chapter 2

Synthesis of 2,3-Disubstituted Benzo[\textit{b}]thiophenes via Decarboxylative Arylation

2.1 Introduction

The benzo[\textit{b}]thiophene nucleus is ubiquitous in biologically active compounds and functional materials. In particular, 2,3-diarylbenzo[\textit{b}]thiophenes and their 3-carbonyl- or heteroatom-inserted analogues are known to work as selective estrogen receptor modulator,2 tubulin-binding agents,3 multidrug resistance-associated protein (MRP1) inhibitors,4 angiogenesis inhibitors,5 site-directed thrombin inhibitors,6 anti-inflammatory agents,7 and antifungal agents.8 On the other hand, multiply arylated benzo[\textit{b}]thiophenes9 and further π-extended benzo[1,2-\textit{b};4,5-\textit{b}']dithiophenes as well as their condensed aromatics10 have recently aroused considerable interest in the field of organic electronics including light-emitting diodes (LEDs) and field-effect transistors (FETs).11 Therefore, the development of efficient and selective methods for the construction of these arylated benzo[\textit{b}]thiophenes and benzodithiophenes is of considerable importance in organic synthesis.

Here the author reports an efficient, convergent protocol for the synthesis of various 2,3-diarylbenzo[\textit{b}]thiophenes and 2,3,6,7-tetraarylbenzo[1,2-\textit{b};4,5-\textit{b}']dithiophenes. As outlined in Scheme 1, the present synthetic approach relies on the sequential Suzuki–Miyaura cross-coupling reaction and decarboxylative arylation of 3-chloro-2-methoxycarbonylbenzo[\textit{b}]thiophene. The benzo[\textit{b}]thiophene scaffold is easily prepared from cinnamic acid and thionyl chloride.12 The use of commercially available 1,4-phenylenediacrylic acid instead of cinnamic acid as the starting material also allows the concise synthesis of the benzodithiophene system. The decarboxylative arylation with aryl halides under palladium catalysis has very recently emerged as one of the potential cross-coupling methods.13,14
2.2 Results and Discussion

Initially, the author carried out the first arylation of 3-chloro-2-methoxycarbonylbenzo[b]thiophene (1) through nickel-catalyzed Suzuki–Miyaura cross-coupling reaction with arylboronic acids 2 (Table 1). The nickel based method induced efficient activation of the C-Cl bond.15 Thus, benzo thiophene 1 coupled with phenylboronic acid (2a) effectively in the presence of 5 mol\% of NiCl\textsubscript{2}(dppe) and 2.0 equivalents of K\textsubscript{3}PO\textsubscript{4} in a boiling toluene to furnish 3a in 91\% isolated yield (entry 1). Electron-rich and electron-deficient aryl groups as well as the sterically demanding naphthalene motif could be introduced to the benzo thiophene core without any difficulties (entries 2–5).

TABLE 1. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling Reaction of 3-Chloro-2-methoxycarbonylbenzo[b]thiophene (1) with Arylboronic Acids 2.a

<table>
<thead>
<tr>
<th>entry</th>
<th>2, Ar1</th>
<th>Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2a, Ph</td>
<td>3a, 93</td>
</tr>
<tr>
<td>2</td>
<td>2b, 4-MeC\textsubscript{6}H\textsubscript{4}</td>
<td>3b, 83</td>
</tr>
<tr>
<td>3</td>
<td>2c, 4-MeOC\textsubscript{6}H\textsubscript{4}</td>
<td>3c, 97</td>
</tr>
<tr>
<td>4</td>
<td>2d, 4-CF\textsubscript{3}C\textsubscript{6}H\textsubscript{4}</td>
<td>3d, 93</td>
</tr>
<tr>
<td>5</td>
<td>2e, 1-nap</td>
<td>3e, 93</td>
</tr>
</tbody>
</table>

a A mixture of 1 (3.0 mmol), 2 (4.5 mmol), NiCl\textsubscript{2}(dppe) (0.15 mmol), and K\textsubscript{3}PO\textsubscript{4} (6.0 mmol) was stirred in a boiling toluene (10 mL) for 6 h at 120 °C under N\textsubscript{2}.b Isolated yield.
The monoarylated benzothiophenes 3 obtained above were readily hydrolyzed upon treatment with ethanolic KOH to afford the corresponding carboxylic acids 4a–e quantitatively. Subsequently, the author selected 4a and bromobenzene (5a) as model substrates and performed the palladium-catalyzed second arylation accompanied by decarboxylation \(^{13,14}\) (Table 2). It was found that 4a was transformed to 6aa in 37% yield in o-xylene (entry 1). The addition of CuI had no positive effect on the yield (entry 2).\(^ {13a,c-f}\) On the other hand, a choice of solvent dramatically affected the reaction efficiency (entries 3–6). While the reaction proceeded sluggishly in DMSO, the use of amide solvents improved the yield of 6aa, with DMAc proving to be optimal. Although the author tested MS4A and PCy\(_3\) as a dehydrating reagent and ligand, respectively, based on our previous findings,\(^ {14b}\) the yield was decreased (entries 7 and 8). Finally, with 3.0 equivalents of 5a and a prolonged reaction period (48 h), the desired product 6aa was obtained in 94% isolated yield (entry 10).\(^ {16}\)
TABLE 2. Optimization for Palladium-catalyzed Decarboxylative Arylation of 3-Phenylbenzo[\textit{b}]thiophene-2-carboxylic Acid (4\textit{a}) with Bromobenzene (5\textit{a}).a

![Scheme](image)

<table>
<thead>
<tr>
<th>Entry</th>
<th>5\textit{a}, X</th>
<th>Solvent</th>
<th>6\textit{aa}, GC Yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
<td>o-xylene</td>
<td>37</td>
</tr>
<tr>
<td>2c</td>
<td>2.0</td>
<td>o-xylene</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>2.0</td>
<td>DMAc</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>2.0</td>
<td>DMF</td>
<td>67</td>
</tr>
<tr>
<td>5</td>
<td>2.0</td>
<td>NMP</td>
<td>62</td>
</tr>
<tr>
<td>6</td>
<td>2.0</td>
<td>DMSO</td>
<td>10</td>
</tr>
<tr>
<td>7d</td>
<td>2.0</td>
<td>DMAc</td>
<td>49</td>
</tr>
<tr>
<td>8e</td>
<td>2.0</td>
<td>DMAc</td>
<td>24</td>
</tr>
<tr>
<td>9</td>
<td>3.0</td>
<td>DMAc</td>
<td>84</td>
</tr>
<tr>
<td>10f</td>
<td>3.0</td>
<td>DMAc</td>
<td>98</td>
</tr>
</tbody>
</table>

a A mixture of 4\textit{a} (0.50 mmol), 5\textit{a}, Pd(OAc)\textsubscript{2} (0.050 mmol), P(biphenyl-2-yl)3Bu\textsubscript{2} (0.10 mmol), and Cs\textsubscript{2}CO\textsubscript{3} (2.0 mmol) was stirred in solvent (2.5 mL) for 24 h at 160 °C under N\textsubscript{2}. b GC yield. c With CuI (0.50 mmol). d With MS4A (400 mg). e With PCy\textsubscript{3} instead of P(biphenyl-2-yl)3Bu\textsubscript{2}. f 48 h.

By employing the optimized conditions, the author examined the decarboxylative arylation of 4\textit{a}–\textit{e} with various aryl bromides 5. The results are illustrated in Table 3. As observed in the first arylation, electron-donating and electron-withdrawing groups as well as the bulky naphthyl core were tolerant toward the reaction.
TABLE 3. Palladium-Catalyzed Decarboxylative Arylation of 4a–e with Various Aryl Bromides 5,a,b

A mixture of 4 (0.50 mmol), 5 (1.5 mmol), Pd(OAc)$_2$ (0.050 mmol), P(biphenyl-2-yl)Bu$_2$ (0.10 mmol), and Cs$_2$CO$_3$ (2.0 mmol) was stirred in DMF (2.5 mL) for 48 h at 160 °C under N$_2$. Ar-Br 5: Ar = Ph; 5a, Ar = 4-MeOC$_6$H$_4$; 5b, Ar = 4-CF$_3$C$_6$H$_4$; 5c, and Ar = 1-naphthyl; 5d. b Isolated yield.

3-Chloro-2-methoxycarbonylbenzo[b]thiophene (1) may also be a useful building block for the synthesis of 3-heteroatom-substituted 2-arylbenzothiophenes of high pharmaceutical value (Scheme 2). The carbon-chlorine bond in 1 is activated toward the nucleophilic substitution reaction with the aid of the electron-withdrawing nature of the proximal methoxycarbonyl group.
so that the coupling with thiols is possible through an S_NAr reaction even in the absence of transition metal catalysts. Thus, the reaction of 1 with 3,4-dimethoxybenzenethiol (7) gave the expected product 8 and subsequent hydrolysis followed by palladium-catalyzed arylation under the same conditions as in Table 3 produced compound 9 in a good yield.

SCHEME 2. Synthesis of 2-Phenyl-3-sulfanylbenzo[\textit{b}]thiophene 9.

Next, the author applied the strategy to the construction of 2,3,6,7-tetraarylbenzo[\textit{1,2-\textit{b};4,5-\textit{b}'}]dithiophenes. The readily accessible 2,6-bis(butoxycarbonyl)-3,7-dichlorobenzo[\textit{b}]thiophene (10) from 1,4-phenylenediacyrylic acid12c was employed as a platform, and the Suzuki–Miyaura coupling/ester hydrolysis/decarboxylative arylation sequence led to the facile preparation of tetraarylbenzodithiophenes 13 (Scheme 3). It is noted that the corresponding dimethyl ester as the starting material was sparingly soluble in common organic solvents so that the author employed the dibutyl ester 10.
SCHEME 3. Synthesis of 2,3,6,7-tetraarylbenzo[1,2-b;4,5-b']dithiophenes 13.

With the above benzodithiophenes 13, the investigation into their optical properties in CHCl₃ solution was conducted. The results are summarized in Table 4, and the spectra are shown in Figures 1 and 2. The absorption and emission spectra of tetraphenyl derivative 13aa exhibited the major bands with maximum absorption \(\lambda_{\text{abs}} \) and emission \(\lambda_{\text{em}} \) at 344 and 412 nm, respectively (entry 1). By the installation of the strongly electron-donating dimethylamino group to the benzene ring at the 2- and 6-positions, these peaks were red-shifted by about 35 nm to 378 and 447 nm, respectively (entry 3). The methoxy substituent caused similar shifts, although the effects were relatively small (entry 2). In accordance with the trend, the optical band gap \(E_{\text{opt}} \) decreased in the order \(13\text{aa} > 13\text{ab} > 13\text{ae} \). On the other hand, the modification at the 3- and 7-positions with the 4-tolyl substituted that may enhance the solubility gave only a minor change in the optical properties of the parent structure of 13aa (entry 4).
TABLE 4. Optical Properties of 2,3,6,7-Tetraarylbenzo[1,2-b;4,5-b’]dithiophenes 13.

<table>
<thead>
<tr>
<th>entry</th>
<th>13</th>
<th>$\lambda_{\text{abs-si}}$ (nm)a</th>
<th>$\log \varepsilon$</th>
<th>$\lambda_{\text{em-si}}$ (nm)b</th>
<th>$\Phi_{\text{i-si}}$ c</th>
<th>E_{00} (eV)d</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13aa</td>
<td>344</td>
<td>4.31</td>
<td>412</td>
<td>0.30</td>
<td>3.29</td>
</tr>
<tr>
<td>2</td>
<td>13ab</td>
<td>349</td>
<td>4.41</td>
<td>421</td>
<td>0.51</td>
<td>3.21</td>
</tr>
<tr>
<td>3</td>
<td>13ae</td>
<td>378</td>
<td>4.60</td>
<td>447</td>
<td>0.35</td>
<td>2.94</td>
</tr>
<tr>
<td>4</td>
<td>13ba</td>
<td>345</td>
<td>4.35</td>
<td>412</td>
<td>0.31</td>
<td>3.26</td>
</tr>
</tbody>
</table>

a Absorption maximum in CHCl$_3$ (5.0 x 5$^{-10}$ M). b Emission maximum in CHCl$_3$ (5.0 x 5$^{-10}$ M). c Determined by comparison with CHCl$_3$ solution (5.0 x 6$^{-10}$ M) of quinine sulfate (Φ_f = 0.55) exited at 366 nm. d Optical band gap.

FIGURE 1. Absorption Spectra of the CHCl$_3$ Solution of 13.
2.3 Conclusion

In summary, the author has developed an effective method for the concise and convergent synthesis of 2,3-diarylbenzo[b]thiophenes from 3-chloro-2-methoxycarbonylbenzo[b]thiophene via nickel-catalyzed Suzuki–Miyaura cross-coupling and palladium-catalyzed decarboxylative arylation as the key transformations. Its application to the construction of 2,3,6,7-tetraarylbenzo[1,2-b;4,5-b']dithiophene π systems appears to demonstrate the high synthetic utility of this methodology.

2.4 Experimental Section

General Remarks. 1H and 13C NMR spectra were recorded at 400 MHz and 100 MHz, respectively, for CDCl$_3$ or DMSO-d$_6$ solutions. MS data were obtained by EI. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i.
d. 0.5 mm x 25 m). Silica gel (Wakogel 200 mesh) was used for column chromatography. All reactions were carried out under nitrogen atmospheres.

Materials. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Toluene and N,N-dimethylacetamide (DMAc) were freshly distilled from CaH₂ prior to use. Pd(OAc)₂ was purchased from Wako. P(biphenyl-2-yl)Bu₂ obtained from Strem. NiCl₂(dppe) was synthesized from NiCl₂ and dppe.¹⁸ Methyl 3-chlorobenzothiophene-2-carboxylate (1)²ᵃ and 3,7-dichlorobenzothiophene-2,6-dicarboxylic dichloride were prepared by the methods reported previously.

Experimental Procedure

Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling Reaction of 3-Chloro-2-methoxycarbonylbenzo[b]thiophene (1) with Phenylboronic Acid (2a)

In a 20-mL two-necked flask were added methyl 3-chlorobenzothiophene-2-carboxylate (1) (3.0 mmol, 680 mg), phenylboronic acid (2a) (4.5 mmol, 549 mg), NiCl₂(dppe) (0.15 mmol, 79 mg), K₃PO₄ (6.0 mmol, 1.3 g), and toluene (10 mL). The resulting mixture was stirred under N₂ (balloon) at 120 °C (bath temperature) for 10 h. The product 3a (yield: 732 mg, 2.7 mmol, 91%) was isolated by filtration of the mixture through a filter paper with diethyl ether as an eluent, evaporation of the solvents, and column chromatography on silica gel using hexane-ethyl acetate (98:2, v/v)

Hydrolysis of Methyl 3-Phenylbenzo[b]thiophene-2-carboxylate (3a)

In a 100-mL flask were added methyl 3-phenylbenzo[b]thiophene-2-carboxylate (3a) (2.0 mmol, 536 mg), potassium hydroxide (12 mmol, 673 mg), water (4.0 mL), and ethanol (8.0 mL). The mixture was heated at 80 °C (bath temperature) for 8 h under N₂. After cooling and acidification with aqueous HCl (2.0 M), a white precipitate was collected, washed with water, and dried under
vacuum to afford carboxylic acid 4a.

Palladium-Catalyzed Decarboxylative Arylation of 3-Phenylbenzo[b]thiophene-2-carboxylic Acid (4a) with Bromobenzene (5a) In a 20-mL two-necked flask were added 3-phenylbenzo[b]thiophene-2-carboxylic acid (4a) (0.50 mmol, 127 mg), bromobenzene (5a) (1.5 mmol, 235 mg), Pd(OAc)$_2$ (0.050 mmol, 11 mg), P(biphenyl-2-yl)Bu$_2$ (0.10 mmol, 30 mg), Cs$_2$CO$_3$ (1.0 mmol, 325 mg), 1-methylnaphthalene (ca. 50 mg) as an internal standard, and DMAc (2.5 mL). The resulting mixture was stirred under N$_2$ (balloon) at 160 ºC (bath temperature) for 48 h. Analysis of the mixture by GC confirmed the formation of compound 6aa (yield: 140 mg, 98%). After cooling, the reaction mixture was poured into diluted aqueous HCl, extracted with diethyl ether, and dried over Na$_2$SO$_4$. The product 6aa (yield: 135 mg, 0.47 mmol, 94%) was isolated by column chromatography on silica gel using hexane as an eluent.

Reaction of Methyl 3-Chlorobenzo[b]thiophene-2-carboxylate (1a) with 3,4-Dimethoxybenzenethiol (7) In a 100-mL two-necked flask were added 3-chlorobenzo[b]thiophene-2-carboxylate (1a) (3.0 mmol, 680 mg), 3,4-dimethoxybenzenethiol (7) (3.6 mmol, 612 mg), K$_2$CO$_3$ (6.0 mmol, 829 mg), and DMF (20 mL). The resulting mixture was stirred under N$_2$ (balloon) at 80 ºC (bath temperature) for 6 h. After cooling, the reaction mixture was poured into diluted aqueous HCl, extracted with diethyl ether, and dried over Na$_2$SO$_4$. The product 8 (yield: 623 mg, 1.8 mmol, 60%) was isolated by column chromatography on silica gel using hexane-ethyl acetate as eluents (90:10, v/v).

Preparation of 2,6-Bis(butoxycarbonyl)-3,7-dichlorobenzo[1,2-b:4,5-b’]dithiophene (10) In a 100-mL two-necked flask were added 3,7-dichlorobenzo[1,2-b:4,5-b’]-dithiophene-2,6-dicarbonyl dichloride (5.0 mmol, 1.9 g), butanol (20 mmol, 1.8 mL), pyridine
(20 mmol, 1.6 mL), and chlorobenzene (10 mL). The resulting mixture was stirred under N₂ (balloon) at 100 °C (bath temperature) for 6 h. After cooling, the reaction mixture was filtered through a filter paper with diethyl ether as an eluent followed by evaporation of the solvent. The resulting solid was washed with water, and dried under vacuum. The diester 10 (yield: 1.9 g, 4.2 mmol, 83%) was isolated by recrystallization from toluene/hexane.

Characterization Data of Products.

Methyl 3-phenylbenzo[b]thiophene-2-carboxylate (3a) m.p. 154-155 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.78 (s, 3H), 7.32-7.55 (m, 8H), 7.88 (d, J = 8.1 Hz, 1H); ¹³C NMR: (100 MHz, CDCl₃) δ 52.2, 122.5, 124.8, 125.3, 127.2, 127.8, 128.0, 128.1, 129.6, 134.5, 140.1, 140.4, 144.2, 162.9; HRMS m/z = 268.0557 (M⁺), calcd. for C₁₆H₁₂O₂S: 268.0558.

Methyl 3-(4-methylphenyl)benzo[b]thiophene-2-carboxylate (3b) m.p. 95-97 °C; ¹H NMR (400 MHz, CDCl₃): δ 2.44 (s, 3H), 3.79 (s, 3H), 7.29-7.36 (m, 5H), 7.47 (m, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.1 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 21.4, 52.1, 122.4, 124.7, 125.4, 127.2, 128.8, 129.5, 131.4, 133.6, 137.8, 140.1, 140.4, 144.4, 162.9; HRMS m/z = 282.0712 (M⁺), calcd. for C₁₇H₁₄O₂S: 282.0715.

Methyl 3-(4-methoxyphenyl)benzo[b]thiophene-2-carboxylate (3c) m.p. 164-166 °C; ¹H NMR (400 MHz, CDCl₃): δ 3.80 (s, 3H), 3.89 (s, 3H), 7.01-7.05 (m, 2H), 7.33-7.38 (m, 3H), 7.47 (m, 1H), 7.59 (d, J = 7.7 Hz, 1H), 7.87 (d, J = 8.0 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ 52.2, 55.3, 113.5, 122.5, 124.7, 125.4, 126.5, 127.2, 127.4, 131.0, 140.2, 140.4, 144.1, 159.5, 163.0; HRMS m/z = 298.0660 (M⁺), calcd. for C₁₇H₁₄O₃S: 298.0664.
Methyl 3-(4-trifluoromethylphenyl)benzo[\textit{b}]thiophene-2-carboxylate (3d) \(m.p. 127-129 \, ^\circ C; \) \(^1\)H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta \) 3.63 (s, 3H), 7.23-7.49 (m, 5H), 7.76 (d, \(J = 8.0 \) Hz, 2H), 7.91-7.97 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta \) 52.3, 122.6, 124.2 (q, \(J = 273.3 \) Hz), 124.9, 125.0 (q, \(J = 3.8 \) Hz), 125.1, 129.5, 128.5, 130.1, 130.2 (q, \(J = 32.9 \) Hz), 138.4, 139.6, 140.5, 142.4, 162.7; HRMS \(m/z = 336.0423 \) (M\(^+\)), calcd. for C\textsubscript{17}H\textsubscript{11}F\textsubscript{3}O\textsubscript{2}S: 336.0432.

Methyl 3-(1-naphthyl)benzo[\textit{b}]thiophene-2-carboxylate (3e) \(m.p. 135-136 \, ^\circ C; \) \(^1\)H NMR (400 MHz, CDCl\textsubscript{3}): \(\delta \) 3.66 (s, 3H), 7.22-7.49 (m, 7H), 7.56-7.60 (m, 1H), 7.91-7.97 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\textsubscript{3}): \(\delta \) 52.1, 122.5, 124.8, 125.2, 125.47, 125.50, 125.8, 126.1, 127.2, 127.3, 128.3, 128.5, 129.5, 132.2, 132.6, 133.5, 140.4, 140.6, 142.5, 162.7; HRMS \(m/z = 318.0721 \) (M\(^+\)), calcd. for C\textsubscript{20}H\textsubscript{14}O\textsubscript{2}S: 318.0714.

3-Phenylbenzo[\textit{b}]thiophene-2-carboxylic acid (4a) \(m.p. 188-191 \, ^\circ C; \) \(^1\)H NMR (400 MHz, DMSO-\textsubscript{d\textsubscript{6}}): \(\delta \) 7.38-7.56 (m, 8H), 8.08 (d, \(J = 8.0 \) Hz, 1H); \(^{13}\)C NMR (100 MHz, DMSO-\textsubscript{d\textsubscript{6}}): \(\delta \) 122.9, 124.6, 125.2, 127.3, 127.9, 128.0, 129.69, 129.72, 134.3, 139.4, 139.8, 142.3, 163.3; HRMS \(m/z = 254.0399 \) (M\(^+\)), calcd. for C\textsubscript{15}H\textsubscript{10}O\textsubscript{2}S: 254.0402.

3-(4-Methylphenyl)benzo[\textit{b}]thiophene-2-carboxylic acid (4b) \(m.p. 229-230 \, ^\circ C; \) \(^1\)H NMR (400 MHz, DMSO-\textsubscript{d\textsubscript{6}}): \(\delta \) 2.38 (s, 3H), 7.29 (s, 4H), 7.37-7.44 (m, 2H), 7.51 (m, 1H), 8.05 (d, \(J = 6.4 \) Hz, 1H); \(^{13}\)C NMR (100 MHz, DMSO-\textsubscript{d\textsubscript{6}}): \(\delta \) 20.9, 122.9, 124.6, 125.1, 127.1, 128.6, 129.7, 130.2, 131.4, 137.1, 139.4, 139.9, 142.0, 163.5; HRMS \(m/z = 268.0562 \) (M\(^+\)), calcd. for C\textsubscript{16}H\textsubscript{12}O\textsubscript{2}S: 268.0558.

39
3-(4-Methoxyphenyl)benzo[b]thiophene-2-carboxylic acid (4c) m.p. 233-235 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 3.82 (s, 3H), 7.04 (d, \(J = 8.2\) Hz, 2H), 7.33 (dt, \(J = 8.2\) Hz, 0.5 Hz, 2H), 7.40 (m, 1H), 7.47 (d, \(J = 8.2\) Hz, 1H), 7.50-7.55 (m, 1H), 8.05 (d, \(J = 8.2\) Hz, 1H); \(^{13}\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta\) 55.1, 113.5, 122.9, 124.7, 125.1, 126.2, 127.2, 129.3, 131.1, 139.4, 139.9, 142.2, 159.0, 163.5; HRMS: \(m/z = 284.0508\) (M\(^+\)), calcd. for C\(_{16}\)H\(_{12}\)O\(_3\)S: 284.0507.

3-(4-Trifluoromethylphenyl)benzo[b]thiophene-2-carboxylic acid (4d) m.p. 266-268 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 7.37-7.43 (m, 2H), 7.53-7.57 (m, 1H), 7.63 (d, \(J = 8.0\) Hz, 2H), 7.84 (d, \(J = 8.0\) Hz, 2H), 8.08-8.11 (m, 1H); \(^{13}\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta\) 123.0, 124.36, 124.37 (q, \(J = 270.8\) Hz), 124.9 (q, \(J = 3.8\) Hz), 125.4, 127.5, 129.4 (q, \(J = 32.4\) Hz), 130.6, 130.7 138.8, 139.3, 139.5, 140.7, 163.1; HRMS \(m/z = 322.0272\) (M\(^+\)), calcd. for C\(_{16}\)H\(_9\)F\(_3\)O\(_2\)S: 322.0275.

3-(1-Naphthyl)benzo[b]thiophene-2-carboxylic acid (4e) m.p. 213-214 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 7.03 (d, \(J = 8.2\) Hz, 1H), 7.29 (m, 2H), 7.35 (m, 1H), 7.44-7.54 (m, 3H), 7.60-7.65 (m, 1H), 8.02 (dd, \(J = 7.8\) Hz, 8.3 Hz, 2H), 8.14 (d, \(J = 8.2\) Hz, 1H); \(^{13}\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta\) 123.0, 124.6, 125.1, 125.2, 125.5, 125.9, 126.3, 127.3, 127.4, 128.2, 128.3, 131.4, 131.8, 132.5, 133.1, 139.5, 140.4, 140.6, 163.2; HRMS \(m/z = 304.0559\) (M\(^+\)), calcd. for C\(_{19}\)H\(_{12}\)O\(_2\)S: 304.0558.
2,3-Diphenylbenzo[b]thiophene (6aa) m.p. 115-117 °C; \(^1\H NMR (400 \text{ MHz, CDCl}_3): \delta 7.22-7.27 \text{ (m, 3H)}, 7.30-7.42 \text{ (m, 9H)}, 7.58-7.61 \text{ (m, 1H)}, 7.85-7.90 \text{ (m, 1H)}; \(^{13}\text{C} \text{ NMR (100 MHz, CDCl}_3): \delta 122.1, 123.4, 124.4, 124.5, 127.4, 127.7, 128.3, 128.6, 129.6, 130.4, 133.2, 134.2, 135.5, 138.8, 139.5, 140.9; \text{ HRMS } m/z = 286.0811 \text{ (M}^+\text{)}, \text{ calcd. for C}_{20}\text{H}_{14}\text{S}: 286.0816.

3-(4-Methylphenyl)-2-phenylbenzo[b]thiophene (6ba) m.p. 58-60 °C; \(^1\H\text{ NMR (400 MHz, CDCl}_3): \delta 2.39 \text{ (s, 3H), 7.17-7.27 \text{ (m, 7H)}, 7.29-7.37 \text{ (m, 4H)}, 7.58-7.61 \text{ (m, 1H)}, 7.84-7.88 \text{ (m, 1H)}; \(^{13}\text{C} \text{ NMR (100 MHz, CDCl}_3): \delta 21.3, 122.0, 123.4, 124.4, 124.5, 127.6, 128.3, 129.4, 129.6, 130.3, 132.4, 133.2, 134.4, 137.0, 138.8, 139.2, 141.0; \text{ HRMS } m/z = 300.0974 \text{ (M}^+\text{)}, \text{ calcd for C}_{21}\text{H}_{16}\text{S}: 300.0973.

2-(4-Methoxyphenyl)-3-(4-methylphenyl)benzo[b]thiophene (6bb) m.p. 105-106 °C; \(^1\H\text{ NMR (400 MHz, CDCl}_3): \delta 3.74 \text{ (s, 3H), 6.76 \text{ (m, 2H), 7.17-7.32 \text{ (m, 8H), 7.52-7.55 \text{ (m, 1H), 7.79-7.85 \text{ (m, 1H)}; \(^{13}\text{C} \text{ NMR (100 MHz, CDCl}_3): \delta 21.3, 55.2, 113.8, 122.2, 123.2, 124.2, 124.3, 126.8, 129.4, 130.3, 130.7, 132.3, 132.6, 136.9, 138.5, 139.1, 141.1, 159.1; \text{ HRMS } m/z = 330.1078 \text{ (M}^+\text{)}, \text{ calcd. for C}_{22}\text{H}_{18}\text{OS}: 330.1078.

3-(4-Methylphenyl)-2-(4-trifluoromethylphenyl)benzo[b]thiophene (6bc) m.p. 122-123 °C; \(^1\H\text{ NMR (400 MHz, CDCl}_3): \delta 7.18-7.23 \text{ (m, 4H), 7.35 \text{ (quint-d, } J = 7.3 \text{ Hz, 1.8 Hz, 2H), 7.42 \text{ (d, } J = 8.0 \text{ Hz, 2H), 7.49, (d, } J = 8.0 \text{ Hz, 2H), 7.58-7.63 \text{ (m, 8.2 Hz, 1H), 7.85-7.88 \text{ (m, 1H); \(^{13}\text{C} \text{ NMR (100 MHz, CDCl}_3): \delta 21.3, 122.7, 123.8, 124.1 \text{ (q, } J = 273.3 \text{ Hz), 124.6, 125.0, 125.3 \text{ (q, } J = 3.8 \text{ Hz), 129.4 \text{ (q, } J = 32.9 \text{ Hz), 129.6, 129.7, 130.1, 131.9, 134.7, 135.5, 138.8, 139.5, 140.9; \text{ HRMS } m/z = 330.1078 \text{ (M}^+\text{)}, \text{ calcd. for C}_{22}\text{H}_{18}\text{OS}: 330.1078.
3-(4-Methylphenyl)-2-(1-naphthyl)benzo[b]thiophene (6bd) m.p. 130-132 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 2.22 (s, 3H), 6.97 (d, \(J = 8.3\) Hz, 2H), 7.14 (d, \(J = 8.3\) Hz, 2H), 7.15-7.40 (m, 10H), 7.78 (d, \(J = 7.7\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 21.1, 122.1, 123.5, 124.4, 124.5, 125.0, 125.9, 126.17, 126.22, 128.1, 128.7, 128.9, 129.6, 129.7, 131.9, 132.1, 132.6, 133.4, 135.8, 136.6, 137.4, 139.8, 139.9; HRMS \(m/z\) 350.1130 (M\(^+\)), calcd. for C\(_{25}\)H\(_{18}\)S: 350.1129.

3-(4-Methoxyphenyl)-2-phenylbenzo[b]thiophene (6ca) m.p. 127-128 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 3.83 (s, 3H), 6.93 (m, 2H), 7.22-7.28 (m, 5H), 7.30-7.36 (m, 4H), 7.56-7.61 (m, 1H), 7.84-7.90 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 55.2, 114.1, 122.1, 123.4, 124.4, 124.5, 127.6, 127.7, 128.3, 129.6, 131.5, 132.9, 134.4, 138.8, 139.1, 141.1, 159.9; HRMS \(m/z\) = 316.0916 (M\(^+\)), calcd. for C\(_{21}\)H\(_{16}\)OS: 316.0922.

2-Phenyl-3-(4-trifluoromethylphenyl)benzo[b]thiophene (6da) m.p. 89-91 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.25-7.31 (m, 5H), 7.33-7.40 (m, 2H), 7.46 (d, \(J = 8.4\) Hz, 2H), 7.53-7.57 (m, 1H), 7.65 (d, \(J = 8.4\) Hz, 2H), 7.87-7.91 (m, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 122.2, 122.9, 124.2 (q, \(J = 273.4\) Hz), 124.7, 124.8, 125.6 (q, \(J = 3.8\) Hz), 128.1, 128.6, 129.5 (q, \(J = 32.5\) Hz), 129.7, 131.8, 131.6, 133.7, 139.0, 139.4, 140.3, 140.8; HRMS \(m/z\) = 354.0688 (M\(^+\)), calcd. for C\(_{19}\)H\(_{13}\)F\(_3\)S: 354.0690.
3-(1-Naphthyl)-2-Phenylbenzo[b]thiophene (6a) m.p. 144-146 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 7.06-7.40 (m, 10H), 7.43-7.49 (m, 2H), 7.59 (d, \(J = 8.4\) Hz, 1H), 7.90 (m, 3H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 122.0, 123.8, 124.4, 124.6, 125.8, 126.0, 126.1, 126.2, 127.7, 128.2, 128.3, 128.7, 28.8, 131.6, 132.7, 133.5, 133.8, 134.2, 138.5, 140.8, 141.9 (One signal would be overlapped by other signal); HRMS: \(m/z = 336.0972\) (M\(^+\)), calcd. for C\(_{24}\)H\(_{16}\)S: 336.0973.

Methyl 3-(3,4-dimethoxyphenylthio)benzo[b]thiophene-2-carboxylate (8) m.p. 111-113 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)): \(\delta\) 3.74 (s, 3H), 3.82 (s, 3H), 6.72 (d, \(J = 8.4\) Hz, 1H), 6.83-6.90 (m, 2H), 7.29-7.33 (m, 1H), 7.42-7.46 (m, 1H), 7.78-7.84 (m, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)): \(\delta\) 52.5, 55.87, 55.92, 111.6, 113.3, 122.6, 122.7, 125.0, 125.5, 126.6, 127.4, 132.7, 132.9, 139.8, 139.9, 148.3, 149.2, 162.4; HRMS: \(m/z = 360.0488\) (M\(^+\)), calcd. for C\(_{18}\)H\(_{16}\)O\(_4\)S\(_2\): 360.0490.

3-(3,4-Dimethoxyphenylthio)benzo[b]thiophene-2-carboxylic acid m.p. 172-174 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)): \(\delta\) 3.66 (s, 3H), 3.69 (s, 3H), 6.71 (dd, \(J = 8.4\) Hz, 2.2 Hz, 1H), 6.85 (d, \(J = 8.4\) Hz, 1H), 6.99 (d, \(J = 2.2\) Hz, 1H), 7.38 (m, 1.1 Hz, 1H), 7.51 (m, 1H), 7.72 (d, \(J = 8.4\) Hz, 1H), 8.06 (d, \(J = 8.4\) Hz, 1H); \(^{13}\)C NMR (100 MHz, DMSO-d\(_6\)): \(\delta\) 55.9, 56.0, 112.9, 113.8, 122.6, 123.7, 125.1, 125.7, 126.3, 127.8, 130.9, 135.5, 139.4, 139.8, 148.5, 149.4, 163.1; HRMS: \(m/z = 346.0331\) (M\(^+\)) calcd for C\(_{17}\)H\(_{14}\)O\(_4\)S\(_2\): 346.0334.
3-(3,4-Dimethoxyphenylthio)-2-phenylbenzo[b]thiophene (9) m.p. 97-100 °C; 1H NMR (400 MHz, CDCl₃): δ 3.68 (s, 3H), 3.77 (s, 3H), 6.57-6.67 (m, 3H), 7.34-7.46 (m, 5H), 7.72 (m, 2H), 7.82-7.89 (m, 2H); 13C NMR (100 MHz, CDCl₃): δ 55.7, 55.9, 111.0, 111.8, 119.7, 119.8, 122.1, 122.9, 125.0, 125.1, 128.3, 128.4, 128.8, 129.9, 133.5, 138.3, 141.1, 147.4, 148.8, 149.2; HRMS $m/z = 378.0743$ (M⁺), calcd. for C$_{22}$H$_{18}$O$_2$S$_2$: 378.0748.

2,6-Bis(butoxycarbonyl)-3,7-dichlorobenzo[1,2-b;4,5-b’]dithiophene (10) m.p. 128-129 °C; 1H NMR (400 MHz, CDCl₃): δ 1.01 (t, $J = 7.3$ Hz, 6H), 1.48-1.57 (m, 4H), 1.76-1.84 (m, 4H), 4.40 (t, $J = 6.6$ Hz, 4H), 7.96 (s, 2H); 13C NMR (100 MHz, CDCl₃): δ 13.9, 19.5, 30.8, 66.1, 121.4, 126.5, 128.4, 133.1, 137.3, 161.0; HRMS: $m/z = 458.0172$ (M⁺), calcd. for C$_{20}$H$_{20}$Cl$_2$O$_4$S$_2$: 458.0180.

3,7-Diphenyl-2,6-bis(butoxycarbonyl)benzo[1,2-b;4,5-b’]dithiophene (11a) m.p. 100-103 °C; 1H NMR (400 MHz, CDCl₃): δ 0.89 (t, $J = 7.3$ Hz, 6H), 1.22-1.32 (m, 4H), 1.52-1.59 (m, 4H), 4.21 (t, $J = 6.6$ Hz, 4H), 7.37-7.51 (m, 12H); 13C NMR (100 MHz, CDCl₃): δ 13.7, 19.1, 30.5, 65.4, 122.1, 128.1, 128.2, 128.6, 129.7, 134.4, 134.5, 139.5, 144.5, 162.4; HRMS: $m/z = 542.1578$ (M⁺), calcd. for C$_{32}$H$_{30}$O$_4$S$_2$: 542.1586.
2,6-Bis(butoxycarbonyl)-3,7-bis(4-methylphenyl)benz[1,2-\(b\);4,5-\(b'\)]dithiophene (11b) m.p. 110-111 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.90 (t, \(J = 7.4\) Hz, 6H), 1.24-1.34 (m, 4H), 1.51-1.62 (m, 4H), 2.44 (s, 6H), 4.21 (t, \(J = 6.7\) Hz, 4H), 7.29 (s, 8H), 7.40 (s, 2H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 13.7, 19.1, 21.4, 30.5, 65.3, 122.1, 128.2, 128.8, 129.6, 131.5, 134.4, 138.0, 139.5, 144.8, 162.4; HRMS: \(m/z = 570.1893\) (M\(^+\)), calcd. for C\(_{34}\)H\(_{34}\)O\(_4\)S\(_2\): 570.1899.

3,7-Diphenylbenzo[1,2-\(b\);4,5-\(b'\)]dithiophene-2,6-dicarboxylic acid (12a) m.p. >300 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) 7.38 (s, 2H), 7.41-7.52 (m, 10H); \(^{13}\)C NMR (100 MHz, DMSO-d\(_6\)) \(\delta\) 122.0, 128.0, 128.1, 129.5, 129.6, 133.0, 133.9, 139.0, 143.3, 162.7; HRMS: \(m/z = 430.0329\) (M\(^+\)), calcd. for C\(_{24}\)H\(_{14}\)O\(_4\)S\(_2\): 430.0334.

3,7-Bis(4-methylphenyl)benzo[1,2-\(b\);4,5-\(b'\)]dithiophene-2,6-dicarboxylic acid (12b) m.p. >300 °C; \(^1\)H NMR (400 MHz, DMSO-d\(_6\)) \(\delta\) 2.38 (s, 6H), 7.28-7.31 (m, 8H), 7.34-7.36 (m, 2H); \(^{13}\)C NMR (100 MHz, DMSO-d\(_6\)) \(\delta\) 21.7, 122.8, 129.5, 130.1, 130.4, 131.8, 133.8, 138.2, 139.9, 144.2, 163.6; HRMS: \(m/z = 458.0655\) (M\(^+\)), calcd. for C\(_{26}\)H\(_{18}\)O\(_4\)S\(_2\): 458.0647.

2,3,6,7-Tetraphenylbenzo[1,2-\(b\);4,5-\(b'\)]dithiophene (13aa) m.p. 262-265 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 7.24-7.29 (m, 6H), 7.34-7.44 (m, 14H), 7.48 (s, 2H); \(^{13}\)C NMR (100 MHz,
CDCl$_3$) δ 120.4, 127.5, 127.7, 128.4, 128.7, 129.6, 130.5, 132.2, 134.1, 134.2, 135.7, 138.0, 138.6; HRMS m/z (M$^+$) calcd for C$_{34}$H$_{22}$S$_2$: 494.1163, found: 494.1160.

2,6-Bis(4-methoxyphenyl)-3,7-diphenylbenzo[1, 2-b;4,5-b']dithiophene (13ab) m.p. 220-224 °C; 1H NMR (400 MHz, CDCl$_3$): δ 3.79 (s, 6H), 6.78-6.82 (m, 4H), 7.25-7.30 (m, 4H), 7.34-7.44 (m, 12H); 13C NMR (100 MHz, CDCl$_3$): δ 55.2, 113.9, 120.1, 126.6, 127.4, 128.7, 130.5, 130.7, 131.8, 133.3, 135.9, 137.8, 138.5, 159.2; HRMS: m/z = 554.1370 (M$^+$), calcd. for C$_{36}$H$_{26}$O$_2$S$_2$: 554.1374.

2,6-Bis(4-dimethylaminophenyl)-3,7-diphenylbenzo[1,2-b;4,5-b']dithiophene (13ac) m.p. 279-282 °C; 1H NMR (400 MHz, CDCl$_3$): δ 2.94 (s, 12H), 6.58 (d, J = 8.8 Hz, 4H), 7.21-7.25 (m, 4H), 7.34-7.44 (m, 12H); 13C NMR (100 MHz, CDCl$_3$): δ 40.2, 112.0, 119.7, 122.0, 127.1, 128.6, 130.2, 130.6, 131.5, 132.0, 136.5, 138.6, 149.8 (One signal would be overlapped by other signal.); HRMS: m/z = 580.2003 (M$^+$), calcd. for C$_{38}$H$_{32}$N$_2$S$_2$: 580.2007.

3,7-Bis(4-methylphenyl)-2,6-diphenylbenzo[1,2-b;4,5-b']dithiophene (13ba) m.p. 224-225 °C; 1H NMR (400 MHz, CDCl$_3$): δ 2.40 (s, 6H), 7.20-7.29 (m, 14H), 7.35-7.40 (m, 4H), 7.48 (s, 2H); 13C NMR (100 MHz, CDCl$_3$): δ 21.3, 124.0, 127.6, 128.4, 129.4, 129.6, 130.3, 132.2, 132.7, 134.2, 134.3, 137.2, 137.6, 138.6; HRMS: m/z = 522.1469 (M$^+$), calcd. for C$_{36}$H$_{26}$S$_2$: 522.1476.
2.5 References and Notes

(16) The excess of bromo-derivatives was essential for the full conversion of 4a. The protodebromination would be competitive under the reaction conditions.

Chapter 3

Synthesis of 5-Alkenylazoles via Fujiwara-Moritani Reaction

3.1 Introduction

The palladium-catalyzed oxidative cross-coupling of arenes and alkenes via C-H bond cleavage of each substance, so-called Fujiwara-Moritani reaction, is quite attractive from the viewpoint of step economy and enables a rapid increase of molecular complexity in various arenes and heteroarenes. For example, the reactions of six-membered arenes having a directing group such as benzoic acid, anilide, and benzylamine, and electron-rich heteroarenes including indole, thiophene, furan, and indolizine have been developed. In addition, the direct alkenylation of unactivated electron-deficient arenes like pyridine N-oxide and perfluoroarene has been achieved. However, less attention has so far been focused on azoles, which are useful heteroaromatic cores in pharmaceutical and material chemistry. Most direct alkenylations of azoles still rely on the use of the corresponding alkenyl halides due to the problematic homocoupling under the oxidative conditions. Herein, the author reports an efficient palladium-based catalyst system for the direct C-H alkenylation of azoles with a number of alkenes.

3.2 Results and Discussion

As an initial attempt, treatment of isobutylthiazole (1a) with butyl acrylate (2a) in the presence of 10 mol% of Pd(OAc)\textsubscript{2} and 3.0 equiv of AgOAc as an oxidant in mesitylene (2.5 mL) at 120 °C for 8 h afforded the corresponding 5-alkenylated product 3aa albeit in 29% yield (Table 1, entry 1). While an acidic additive, PivOH, was found to accelerate the direct alkenylation, a small but significant amount of alkenylated mesitylene was also detected as a byproduct (entry 2). Thus, nonaromatic solvents were tested. Aprotic polar solvents such as DMAc and
DMSO were ineffective (entries 3 and 4). On the other hand, the reaction in PivOH itself gave 3aa in high yield, and no byproduct was formed (entry 5). EtCOOH further improved the yield of 3aa (entry 6). The use of Cu(OAc)$_2$ in place of AgOAc or lower temperature decreased the reaction efficiency (entries 7 and 8). The lower catalyst loading had no negative influence on the yield (entry 9).

TABLE 1. Optimization for Palladium-Catalyzed Reaction of Isobutylthiazole (1a) with Butyl Acrylate (2a).a

<table>
<thead>
<tr>
<th>entry</th>
<th>oxidant</th>
<th>additive</th>
<th>solvent</th>
<th>temp (°C)</th>
<th>yield (%)b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>AgOAc</td>
<td>-</td>
<td>mesitylene</td>
<td>120</td>
<td>29</td>
</tr>
<tr>
<td>2</td>
<td>AgOAc</td>
<td>PivOH</td>
<td>mesitylene</td>
<td>120</td>
<td>88</td>
</tr>
<tr>
<td>3</td>
<td>AgOAc</td>
<td>PivOH</td>
<td>DMSO</td>
<td>120</td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>AgOAc</td>
<td>PivOH</td>
<td>DMAc</td>
<td>120</td>
<td>49</td>
</tr>
<tr>
<td>5</td>
<td>AgOAc</td>
<td>-</td>
<td>PivOH</td>
<td>120</td>
<td>88</td>
</tr>
<tr>
<td>6</td>
<td>AgOAc</td>
<td>-</td>
<td>EtCOOH</td>
<td>120</td>
<td>93</td>
</tr>
<tr>
<td>7</td>
<td>Cu(OAc)$_2$</td>
<td>-</td>
<td>EtCOOH</td>
<td>120</td>
<td>54</td>
</tr>
<tr>
<td>8</td>
<td>AgOAc</td>
<td>-</td>
<td>EtCOOH</td>
<td>90</td>
<td>30</td>
</tr>
<tr>
<td>9c</td>
<td>AgOAc</td>
<td>-</td>
<td>EtCOOH</td>
<td>120</td>
<td>93</td>
</tr>
</tbody>
</table>

a A mixture of 1a (0.2 mol), 2a (0.4 mmol), Pd(OAc)$_2$ (0.02 mmol), additive (0.2 mmol), and oxidant (0.6 mmol) was stirred in solvent (1 mL) for 8 h. b GC yield. c Pd(OAc)$_2$ (0.01 mmol) was used.

With the optimized reaction conditions in hand (Table 1, entry 9), a variety of alkenes were tested for the direct alkenylation of 1a (Table 2). Acrylate esters bearing bulky tert-butyl 2b and aromatic phenyl groups 2c resulted in the formation of 3ab and 3ac in 62% and 81% yields, respectively. Acrylamide 2d showed a similar reactivity. Styrenes also could be employed for the oxidative coupling. Not only simple styrene (2e) but also electron-rich and -deficient styrenes 2f and 2g reacted with 1a smoothly to furnish 3ae-ag in good yields. Interestingly,
methacrylate ester 2h provided the unconjugated (to azole) product 3ah as the major product (3ah : 3ah' = 4.2 : 1). In contrast, internal alkenes such as methyl cinnamate and 1-hexene gave the corresponding 5-alkenylated products in low yields (ca. <10%).

TABLE 2. Palladium-Catalyzed Alkenylation of 2-Isobutylthiazole (1a) with Various Alkenes 2a. a, b

<table>
<thead>
<tr>
<th>Alkene</th>
<th>Product</th>
<th>Yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>2a, R = COOBu</td>
<td>3aa</td>
<td>88%</td>
</tr>
<tr>
<td>2b, R = COO'Bu</td>
<td>3ab</td>
<td>62%</td>
</tr>
<tr>
<td>2c, R = COOPh</td>
<td>3ac</td>
<td>81%</td>
</tr>
<tr>
<td>2d, R = CONMe2</td>
<td>3ad</td>
<td>85%</td>
</tr>
<tr>
<td>2e, R = Ph</td>
<td>3ae</td>
<td>78%</td>
</tr>
<tr>
<td>2f, R = 4-MeOC6H4</td>
<td>3af</td>
<td>69%</td>
</tr>
<tr>
<td>2g, R = 4-FC6H4</td>
<td>3ag</td>
<td>64%</td>
</tr>
<tr>
<td>2h, R = Bu</td>
<td>3ah + 3ah'</td>
<td>78%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(4.2 : 1)</td>
</tr>
</tbody>
</table>

a A mixture of 1a (0.50 mmol), 2 (1.0 mmol), Pd(OAc)2 (0.025 mmol), and AgOAc (1.5 mmol) was stirred in EtCOOH (2.5 mL) at 120 °C for 8 h. Key: 2a, R = COOBu; 2b, R = COO'Bu; 2c, R = COOPh; 2d, R = CONMe2; 2e, R = Ph; 2f, R = 4-MeOC6H4; 2g, R = 4-FC6H4. b Isolated yield. c Butyl methacrylate was used as an alkene.

The oxidative coupling reaction was further extended to various thiazoles 1 as shown in Table 3. A smaller methyl-substituted thiazole 1b also afforded the desired product 3ba in 80% yield. Thiazole having a free hydroxyl group 1c reacted with 2a without any difficulties. Moreover, thiazoles bearing heteroatom substituents at the 2-poision 1d-f gave 3da, 3ea, and 3fa in moderate to good yields. On the other hand, 2-phenylthiazole showed less activity toward the
reaction. This is probably because of the catalyst deactivation arising from a competitive cyclopalladation on benzene ring. Therefore, the author tested 2-(2,6-dimethylphenyl)thiazole (1h) as the reactant to suppress the unfavorable palladation mentioned above. As expected, 1h could be transformed to 3ha in 71% yield. Notably, an introduction of a methyl group to the 4-position of thiazole significantly accelerated the reaction despite the presence of a phenyl substituent at the 2-position (3ja). Furthermore, the coupling of 2,4-dimethylthiazole (1j) proceeded smoothly under the standard conditions.

TABLE 3. Palladium-Catalyzed Alkenylation of Various Thiazoles 1 with n-Butyl Acrylate (2a).^a^

<table>
<thead>
<tr>
<th>R</th>
<th>R'</th>
<th>Pd(OAc)₂ (10 mol%)</th>
<th>AgOAc (3.0 equiv)</th>
<th>EtCOOH, 120 °C, 8 h</th>
<th>Isolated yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Me</td>
<td>Bu</td>
<td>3b, 80</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MeS</td>
<td>BuAc</td>
<td>3e, 40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ph</td>
<td>Me</td>
<td>3i, 63</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,6-Me₂C₆H₃</td>
<td>Me</td>
<td>3j, 75</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^a^ A mixture of 1 (0.50 mmol), 2a (1.0 mmol), Pd(OAc)₂ (0.05 mmol), and AgOAc (1.5 mmol) was stirred in EtCOOH (2.5 mL) at 120 °C for 8 h. Key: 1b, R = Me, R' = H; 1c, R = Bu₂COH, R' = H; 1d, R = MeO, R' = H; 1e, R = MeS, R' = H; 1f, R = NBuAc, R' = H; 1g, R = Ph, R' = H; 1h, R = 2,6-Me₂C₆H₃, R' = H; 1i, R = Ph, R' = Me; 1j, R, R' = Me. b Isolated yield.
2-Substituted oxazoles instead of thiazoles 1 were also available for use (Table 4). Interestingly, 2-phenyloxazole (4a) gave 5-alkenyled product 5a in 69% yield, which is in marked contrast to the trend of thiazole (Table 2, 3ga). 2,4-Dimethyloxazole (4b) also reacted with 2a and 2e smoothly to afford excellent yields of 5ab and 5be, respectively.

TABLE 4. Palladium-Catalyzed Alkenylation of Oxazoles 4 with Alkenes 2.

![Chemical Structures]

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>2</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>4a</td>
<td>R1 = Ph, R2 = H</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4b</td>
<td>R1, R2 = Me</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5aa: 69%
5ab: 95%
5be: 89%

* A mixture of 1 (0.50 mmol), 2a (1.0 mmol), Pd(OAc)_2 (0.05 mmol), and AgOAc (1.5 mmol) was stirred in EtCOOH (2.5 mL) at 120 °C for 8 h. Key: 4a, R1 = Ph, R2 = H; 4b, R1, R2 = Me; * Isolated yield.

Next, the author attempted the direct C2 alkenylation of 4,5-dimethylthiazole (6) (Scheme 1). Under the standard conditions, the desired 7 was obtained albeit in 35% yield, contaminated with the conceivable homocoupling product 8.
SCHEME 1. Palladium-Catalyzed Alkenylation of 4,5-Dimethylthiazole (6) with 2d

π-Extended 2,5-disubstituted thiazoles are known to show unique optical properties.11 Inspired by the literature, the author synthesized some 2,5-dialkenylated thiazoles 10 and investigated their fluorescence in the solid state (Scheme 2). The mono-alkenylated thiazole 3bb was first prepared by the palladium-catalyzed direct alkenylation of 2-methylthiazole (1b). The deprotonation of 3bb with LDA at -78 °C in THF and addition of the resultant lithium reagent to aromatic aldehydes at room temperature gave aldol-type products 9a-d. Finally, the author obtained the desired 2,5-dialkenylthiazoles 10 by dehydration of 9 upon treatment with mesyl chloride and triethylamine.

SCHEME 2. Synthesis of 2,5-Dialkenylthiazoles 10.
Dialkenylthiazoles 10 except for 10d showed solid-state fluorescence (Figure 1). The emission spectra of styryl-substituted 10a exhibited the major band with maximum emission λ_{em} at 492 nm. By the installation of the strongly electron-donating dimethylamino group to the benzene ring, this peak was red-shifted by 78 nm (10c). The methoxy substituent caused a similar shift, although the effect was considerably small (10b). These compounds exhibited similar or relatively strong emissions compared to a typical emitter, tris(8-hydroxyquinolinato)aluminum (Alq$_3$).

FIGURE 1. Fluorescence Spectra of 10a, 10b, 10c, and Alq$_3$ in the Solid State. a Exited at 430 nm. b Exited at 500 nm. c Exited at 380 nm.

3.3 Conclusion

In summary, the author has described an effective palladium catalyst system for the direct alkenylation of thiazoles and oxazoles with alkenes.12 In addition, with the catalysis as the key transformation, the author succeeded in the efficient synthesis of π-conjugated 2,5-dialkenylated
thiazoles with interesting optical properties.

3.4 Experimental Section

General Remarks. ¹H and ¹³C NMR spectra were recorded at 400 MHz and 100 MHz, respectively, for CDCl₃ solutions. MS data were obtained by EI. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 25 m). Silica gel (Wakogel 200 mesh) was used for column chromatography.

Materials. Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Pd(OAc)₂ and AgOAc were purchased from Wako. 2-Phenylthiazole (2g)¹³ and 2-phenyloxazole (4a)¹⁴ were prepared by the methods reported previously.

Experimental Procedure

Synthesis of 5-(thiazol-2-yl)nonan-5-ol (1c). In a 20 mL two-necked flask were added 2-bromothiazole (3 mmol, 492 mg) and Et₂O (2.5 mL) under nitrogen. ⁶BuMgBr (3.6 mmol, 4.2 mL, 0.85 M, Et₂O solution) were added dropwise, and the resulting mixture was then stirred at 40 °C (bath temperature) for 1 h. The reaction mixture was cooled to room temperature, and 5-nonanone (512 mg, 3.6 mmol) was added. The mixture was stirred overnight, poured into saturated aq. NH₄Cl, and extracted with diethyl ether. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The product 1c (2.24 mmol, 509 mg, 75%) was isolated by chromatography on silica gel using hexane-ethyl acetate (9:1, v/v).

Synthesis of 2-(2,6-dimethylphenyl)thiazole (1h). In a 20 mL two-necked flask were added 2-bromothiazole (2 mmol, 325 mg), 2,6-dimethylphenylboronic acid (2 mmol, 300 mg), Pd(PPh₃)₄ (0.2 mmol, 231 mg), 2 M aq. Na₂CO₃ (2.4 mL), toluene (2.4 mL) and EtOH (1 mL). The resulting mixture was stirred under nitrogen at 90 °C (bath temperature) overnight. After
cooling, the reaction mixture was poured into H₂O, extracted with Et₂O, and dried over Na₂SO₄.

The product 1h (0.55 mmol, 104 mg, 28%) was isolated by chromatography on silica gel using hexane-ethyl acetate (95:5, v/v).

Typical Procedure for Palladium-Catalyzed Alkenylation of Azoles 1 or 4 with Alkenes 2.

In a 20 mL two-necked flask were added 2-isobutylthiazole (1a, 0.5 mmol, 71 mg), butyl acrylate (2a, 1 mmol, 128 mg), Pd(OAc)₂ (0.03 mmol, 5.6 mg), AgOAc (1.5 mmol, 250 mg), dibenzyl (ca. 50 mg) as internal standard, and propionic acid (2.5 mL). The resulting mixture was stirred under nitrogen at 120 °C (bath temperature) for 8 h. After the suspension was allowed to cool to room temperature, analysis of the mixture by GC confirmed the formation of the desired compound. The reaction mixture was poured into saturated aq. NaHCO₃ and extracted with Et₂O. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The product 3aa (0.44 mmol, 118 mg, 88%) was also isolated by chromatography on silica gel using hexane-ethyl acetate (95:5, v/v).

Aldol-Type Reaction of 3bb with Benzaldehyde. In a 20 mL two-necked flask were added diisopropylamine (1 mmol, 145 µL) and THF (1 mL) under nitrogen. BuLi (1 mmol, 625 µL, 1.6 M hexane solution) was added dropwise at 0 °C, and the solution was stirred for 1 h at the same temperature. The reaction mixture was cooled to -78 °C and 3bb (225 mg, 1 mmol) in THF (1 mL) was added. After 1 h, benzaldehyde (127 mg, 1.2 mmol) was added dropwise. The mixture was allowed to warm to room temperature and stirred overnight. The resulting mixture was poured into saturated aq. NH₄Cl and extracted with diethyl ether. The organic layer was dried over Na₂SO₄ and concentrated in vacuo. The product 9a (146 mg, 0.45 mmol, 45%) was also isolated by chromatography on silica gel using hexane-ethyl acetate (8:2, v/v).

Dehydration of 9a. In a 20 mL two-necked flask were added 9a (0.4 mmol, 132 mg), MsCl
(0.48 mmol, 37 μL) and CH₂Cl₂ (2 mL). Triethylamine (0.96 mmol, 136 μL) was added at 0°C. The mixture was stirred at room temperature under air overnight and then poured into H₂O. The organic layer was extracted with CH₂Cl₂, dried over Na₂SO₄, and concentrated in vacuo. The product 10a (0.34 mmol, 106 mg, 85%) was also isolated by chromatography on silca gel using hexane-ethyl acetate (9:1, v/v).

Characterization Data of Products.

(E)-Butyl 3-(2-isobutylthiazol-5-yl)acrylate (3aa) oil; ¹H NMR (400 MHz, CDCl₃) δ 0.96 (t, J = 7.3 Hz, 3H), 1.00 (d, J = 6.9 Hz, 6H), 1.39-1.45 (m, 2H), 1.64-1.69 (m, 2H), 2.09-2.16 (m, 1H), 2.87 (d, J = 7.0 Hz, 2H), 4.19 (t, J = 7.0 Hz, 2H), 6.13 (d, J = 15.7 Hz, 1H), 7.74 (d, J = 15.7 Hz, 1H), 7.76 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 13.6, 19.1, 22.2, 29.7, 30.7, 42.7, 64.5, 119.6, 134.0, 134.3, 145.4, 166.3, 172.8; HRMS m/z (M⁺) calcd for C₁₄H₂₁NO₂S: 267.1293, found: 267.1297.

(E)-tert-Butyl 3-(2-isobutylthiazol-5-yl)acrylate (3ab) oil; ¹H NMR (400 MHz, CDCl₃) δ 1.00 (d, J = 6.6 Hz, 6H), 1.52 (s, 9H), 2.08-2.15 (m, 1H), 2.86 (d, J = 7.3 Hz, 2H), 6.06 (d, J = 15.7 Hz, 1H), 7.63 (d, J = 15.7 Hz, 1H), 7.73 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 22.2, 28.1, 29.7, 42.7, 80.8, 121.7, 133.1, 134.5, 145.1, 165.5, 172.5; HRMS m/z (M⁺) calcd for C₁₄H₂₁NO₂S: 267.1293, found: 267.1291.

(E)-Phenyl 3-(2-isobutylthiazol-5-yl)acrylate (3ac) m.p. 81-82 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.02 (d, J = 6.6 Hz, 6H), 2.11-2.18 (m, 1H), 2.90 (d, J = 7.3 Hz, 2H), 6.32 (d, J = 15.8 Hz, 1H), 7.15 (d, J = 7.7 Hz, 2H), 7.22-7.26 (m, 1H), 7.40 (t, J = 7.7 Hz, 2H), 7.83 (s, 1H), 7.93 (d, J = 15.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 22.2, 29.8, 42.8, 118.6, 121.5, 125.8, 129.4, 134.1, 136.0, 146.2, 150.7, 164.7, 173.6; HRMS m/z (M⁺) calcd for C₁₆H₁₇NO₂S: 287.0980, found: 287.0983.
(E)-3-(2-Isobutylthiazol-5-yl)-N,N-dimethylacrylamide (3ad) m.p. 73-75 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.01 (d, \(J = 6.6\) Hz, 6H), 2.09-2.16 (m, 1H), 2.86 (d, \(J = 7.3\) Hz, 2H), 3.06 (s, 3H), 3.14 (s, 3H), 6.18 (d, \(J = 15.0\) Hz, 1H), 7.72 (s, 1H) 7.74 (d, \(J = 15.0\) Hz, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 22.2, 29.7, 35.9, 37.2, 42.7, 118.8, 132.1, 135.1, 144.6, 165.8, 171.6; HRMS \(m/z\) (M\(^+\)) calcd for C\(_{12}\)H\(_{18}\)N\(_2\)O\(_{3}\): 238.1140, found: 238.1141.

(E)-2-Isobutyl-5-styrylthiazole (3ae) m.p. 64-66 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.01 (d, \(J = 6.6\) Hz, 6H), 2.09-2.16 (m, 1H), 2.85 (d, \(J = 7.0\) Hz, 2H), 6.80 (d, \(J = 16.2\) Hz, 1H), 7.16 (d, \(J = 16.2\) Hz, 1H), 7.23-7.27 (m, 1H), 7.32-7.36 (m, 2H), 7.43-7.45 (m, 2H), 7.56 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 22.3, 29.7, 42.7, 118.7, 126.3, 127.9, 128.7, 130.9, 136.6, 137.3, 140.8, 169.1; HRMS \(m/z\) (M\(^+\)) calcd for C\(_{13}\)H\(_{17}\)NS: 243.1082, found: 243.1078.

(E)-2-Isobutyl-5-(4-methoxystyryl)thiazole (3af) m.p. 59-61 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.01 (d, \(J = 6.6\) Hz, 6H), 2.08-2.15 (m, 1H), 2.85 (d, \(J = 7.3\) Hz, 2H), 3.83 (s, 3H), 6.76 (d, \(J = 16.1\) Hz, 1H), 6.87-6.90 (m, 2H), 7.03 (d, \(J = 16.1\) Hz, 1H), 7.37-7.40 (m, 2H), 7.55 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 22.3, 29.7, 42.7, 55.3, 114.2, 116.6, 127.6, 129.4, 130.5, 137.7, 140.8, 159.5, 168.6; HRMS \(m/z\) (M\(^+\)) calcd for C\(_{16}\)H\(_{19}\)NOS: 273.1187, found: 273.1182.

(E)-5-(4-Fluorostyryl)-2-isobutylthiazole (3ag) m.p. 51-52 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.01 (d, \(J = 6.6\) Hz, 6H), 2.09-2.16 (m, 1H), 2.85 (d, \(J = 7.3\) Hz, 2H), 7.76 (d, \(J = 16.2\) Hz, 1H), 7.01-7.10 (m, 3H), 7.39-7.42 (m, 2H), 7.58 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 22.3, 29.8, 42.7, 115.7 (d, \(J = 21.8\) Hz), 118.5, 127.8 (d, \(J = 8.0\) Hz), 129.6, 132.8 (d, \(J = 3.4\) Hz), 137.1, 140.8, 162.4 (d, \(J = 249.3\) Hz), 169.2; HRMS \(m/z\) (M\(^+\)) calcd for C\(_{13}\)H\(_{16}\)FNS: 261.0987, found: 261.0985.
Butyl 2-[2-isobutylthiazol-5-yl]methylacrylate (3ah) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.93 (t, $J = 7.3$ Hz, 3H), 0.97 (d, $J = 6.5$ Hz, 6H), 1.33-1.43 (m, 2H), 1.61-1.68 (m, 2H), 2.04-2.11 (m, 1H), 2.80 (d, $J = 7.3$ Hz, 2H), 3.78 (s, 2H), 4.17 (t, $J = 7.0$ Hz, 2H), 5.59-5.60 (m, 1H), 6.22 (s, 1H), 7.37 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.1, 22.3, 29.4, 29.7, 30.6, 42.5, 64.9, 126.4, 134.7, 139.1, 140.3, 166.4, 169.8; HRMS m/z (M$^+$) calcd for C$_{15}$H$_{23}$NO$_2$S: 281.1449, found: 281.1443.

(E)-Butyl 3-[2-isobutylthiazol-5-yl]-2-methylacrylate (3ah') oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.97 (t, $J = 7.3$ Hz, 3H), 1.00 (d, $J = 6.6$ Hz, 6H), 1.39-1.47 (m, 2H), 1.66-1.73 (m, 2H), 2.11-2.18 (m, 4H), 2.90 (d, $J = 7.3$ Hz, 2H), 4.12 (t, $J = 6.5$ Hz, 2H), 7.78 (s, 1H), 7.81(s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 14.3, 19.2, 22.3, 29.8, 30.7, 42.5, 65.0, 126.6, 128.6, 133.2, 146.0, 168.1, 178.3; HRMS m/z (M$^+$) calcd for C$_{15}$H$_{23}$NO$_2$S: 281.1449, found: 281.1444.

(E)-Butyl 3-(2-methylthiazol-5-yl)acrylate (3ba) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.96 (t, $J = 7.7$ Hz, 3H), 1.38-1.47 (m, 2H), 1.64-1.69 (m, 2H), 2.73 (s, 3H), 4.20 (t, $J = 7.0$ Hz, 2H), 6.12 (d, $J = 15.7$ Hz, 1H), 7.72, (d, $J = 15.7$ Hz, 1H), 7.73 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.2, 19.7, 30.7, 64.6, 119.8, 134.0, 134.8, 145.5, 166.3, 168.4; HRMS m/z (M$^+$) calcd for C$_{11}$H$_{15}$NO$_2$: 225.0823, found: 225.0822.

(E)-Butyl 3-[2-(5-hydroxynonan-5-yl)thiazol-5-yl]acrylate (3ca) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.86 (t, $J = 7.4$ Hz, 6H), 0.96 (t, $J = 7.3$ Hz, 3H), 1.03-1.10 (m, 2H), 1.23-1.47 (m, 8H), 1.64-1.71 (m, 2H), 1.82-1.97 (m, 4H), 2.85 (s, 1H), 4.20 (t, $J = 6.9$ Hz, 2H), 6.18 (d, $J = 15.6$ Hz, 1H), 7.74 (d, $J = 15.6$ Hz, 1H), 7.79 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 13.9, 19.1, 22.8, 25.4, 30.7, 42.2, 64.6, 78.3, 120.0, 134.1, 134.9, 145.2, 166.4, 180.5; HRMS m/z (M$^+$) calcd for C$_{19}$H$_{17}$NO$_3$: 353.2025, found:
(E)-Butyl 3-(2-methoxythiazol-5-yl)acrylate (3da) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.96 (t, $J = 7.3$ Hz, 3H), 1.42 (sex, $J = 7.3$ Hz, 2H), 1.67 (quin, $J = 7.3$ Hz, 2H), 4.11 (s, 3H), 1.48 (d, $J = 15.6$ Hz, 1H), 7.29 (s, 1H), 7.64 (d, $J = 15.6$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.1, 30.7, 58.6, 64.4, 117.3, 127.9, 134.9, 141.5, 166.6, 176.0; HRMS m/z (M$^+$) calcd for C$_{11}$H$_{15}$NO$_3$S: 241.0773, found: 241.0777.

(E)-Butyl 3-[2-(methylthio)thiazol-5-yl]acrylate (3ea) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.96 (t, $J = 7.7$ Hz, 3H), 1.42 (sex, $J = 7.7$ Hz, 2H), 1.63-1.70 (m, 2H), 2.72 (s, 3H), 1.49 (t, $J = 6.9$ Hz, 2H), 6.03 (d, $J = 15.8$ Hz, 1H), 7.70, (d, $J = 15.8$ Hz, 1H) 7.71 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 16.3, 19.1, 30.7, 64.5, 119.2, 133.4, 134.1, 145.7, 166.3, 169.7; HRMS m/z (M$^+$) calcd for C$_{11}$H$_{15}$O$_2$S$_2$: 257.0544, found: 257.0543.

(E)-Butyl 3-[2-(N-butyacetamido)thiazol-5-yl]acrylate (3fa) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.94-1.01 (m, 6H), 1.40-1.46 (m, 4H), 1.64-1.78 (m, 4H), 2.43 (s, 3H), 4.12-4.20 (m, 4H), 6.15 (d, $J = 15.8$ Hz, 1H), 7.60 (s, 1H), 7.74 (d, $J = 15.8$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.71, 13.73, 19.2, 20.0, 22.6, 30.6, 30.7, 48.3, 64.4, 117.5, 129.7, 135.0, 141.3, 160.2, 166.8, 169.9; HRMS m/z (M$^+$) calcd for C$_{16}$H$_{24}$N$_2$O$_2$S: 324.1508, found: 324.1511.

(E)-Butyl 3-[2-(2,6-dimethylphenyl)thiazol-5-yl]acrylate (3ha) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.97 (t, $J = 7.3$ Hz, 3H), 1.44
(sex, $J = 7.3$ Hz, 2H), 1.69 (quin, $J = 7.3$ Hz, 2H), 2.18 (s, 6H), 4.21 (t, $J = 7.3$ Hz, 2H), 6.23 (d, $J = 15.1$ Hz, 1H), 7.12 (d, $J = 7.8$ Hz, 2H), 7.26 (t, $J = 7.8$ Hz, 1H), 7.85 (d, $J = 15.1$ Hz, 1H), 8.01 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.2, 20.2, 30.8, 64.6, 120.5, 127.7, 129.7, 132.9, 133.8, 136.3, 137.6, 145.9, 166.3, 168.7; HRMS m/z (M$^+$) calcd for C$_{18}$H$_{21}$NO$_2$S: 315.1293, found: 315.1298.

(E)-Butyl 3-(4-methyl-2-phenylthiazol-5-yl)acrylate (3ia) m.p. 53-55 °C; 1H NMR (400 MHz, CDCl$_3$) δ 0.96 (t, $J = 7.7$ Hz, 3H), 1.44 (sex, $J = 7.7$ Hz, 2H), 1.66-1.72 (m, 2H), 2.57 (s, 3H), 4.21 (t, $J = 7.0$ Hz, 2H), 6.13 (d, $J = 15.4$ Hz, 1H), 7.42-7.46 (m, 3H), 7.80 (d, $J = 15.4$ Hz, 1H), 7.92-7.95 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 15.1, 15.7, 19.2, 30.7, 64.5, 118.9, 126.7, 128.5, 129.0, 130.7, 133.1, 133.8, 156.6, 166.6, 167.5; HRMS m/z (M$^+$) calcd for C$_{17}$H$_{19}$NO$_2$S: 301.1136, found: 301.1139.

(E)-Butyl 3-(2,4-dimethylthiazol-5-yl)acrylate (3ja) oil; 1H NMR (400 MHz, CDCl$_3$) δ 0.97 (t, $J = 7.3$ Hz, 3H), 1.43 (sex, $J = 7.3$ Hz, 2H), 1.64-1.71 (m, 2H), 2.48 (s, 3H), 2.67 (s, 3H), 4.19 (t, $J = 6.6$ Hz, 2H), 6.01 (d, $J = 15.4$ Hz, 1H), 7.74 (d, $J = 15.4$ Hz, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 15.5, 19.1, 19.6, 30.7, 64.4, 118.5, 128.2, 133.9, 155.1, 166.4, 166.7; HRMS m/z (M$^+$) calcd for C$_{12}$H$_{17}$NO$_2$S: 239.0980, found: 239.0977.

(E)-Butyl 3-(2-phenyloxazol-5-yl)acrylate (5aa) m.p. 83-85 °C; 1H NMR (400 MHz, CDCl$_3$) δ 0.97 (t, $J = 7.3$ Hz, 3H), 1.44 (sex, $J = 7.3$ Hz, 2H), 1.66-1.73 (m, 2H), 4.20 (t, $J = 6.6$ Hz, 2H), 6.47 (d, $J = 15.7$ Hz, 1H), 7.37 (s, 1H), 7.47-7.51 (m, 4H), 8.07-8.10 (m, 2H); 13C NMR (100 MHz, CDCl$_3$) δ 13.7, 19.1, 30.7, 64.6, 118.2, 126.7, 126.8, 127.6, 128.3, 131.2, 131.9, 148.0, 163.0, 166.5; HRMS m/z (M$^+$) calcd for...
C_{16}H_{17}NO_3: 271.1208, found: 271.1199.

(E)-Butyl 3-(2,4-dimethoxazol-5-yl)acrylate (5ba) oil; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 0.96 (t, \(J = 7.4\) Hz, 3H), 1.43 (sex, \(J = 7.4\) Hz, 2H), 1.64-1.71 (m, 2H), 2.24 (s, 3H), 2.46 (s, 3H), 4.20 (t, \(J = 6.9\) Hz, 2H), 6.20 (d, \(J = 15.6\) Hz, 1H), 7.42 (d, \(J = 15.6\) Hz, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 11.8, 13.7, 14.1, 19.2, 30.7, 64.4, 115.4, 127.1, 140.6, 143.4, 162.4, 167.0; HRMS \(m/z\) (M\(^+\)) calcd for C\(_{12}\)H\(_{17}\)NO\(_3\): 233.1208, found: 233.1206.

(E)-2,4-dimethyl-5-styryloxazole (5be) 65-67 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.21 (s, 3H), 2.45 (s, 3H), 6.81 (d, \(J = 16.5\) Hz, 1H), 6.90 (d, \(J = 16.5\) Hz, 1H), 7.22-7.26 (m, 1H), 7.32-7.36 (m, 2H), 7.45 (d, \(J = 7.3\) Hz, 2H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 11.5, 13.9, 112.6, 126.2, 126.7 127.6, 128.7, 133.8, 136.8, 145.0, 159.3; HRMS \(m/z\) (M\(^+\)) calcd for C\(_{13}\)H\(_{13}\)NO: 199.0997, found: 199.0995.

(E)-3-(4,5-Dimethythiazol-2-yl)-N,N-dimethylacrylamide (7) m.p. 93-94 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 2.36 (s, 3H), 2.38 (s, 3H), 3.06 (s, 3H), 3.17 (s, 3H), 7.14 (d, \(J = 15.0\) Hz, 1H), 7.60 (d, \(J = 15.0\) Hz, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 11.6, 14.7, 35.9, 37.4, 119.9, 129.2, 133.6, 150.5, 159.2, 165.8; HRMS \(m/z\) (M\(^+\)) calcd for C\(_{10}\)H\(_{14}\)N\(_2\)OS: 210.0827, found: 210.0828.

(E)-tert-Butyl 3-(2-methylthiazol-5-yl)acrylate (3bb) m.p. 58-59 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta\) 1.58 (s, 9H), 2.72 (s, 3H), 6.04 (d, \(J = 15.7\) Hz, 1H), 7.63 (d, \(J = 15.7\) Hz, 1H), 7.70 (s, 1H); \(^13\)C NMR (100 MHz, CDCl\(_3\)) \(\delta\) 19.7, 28.1, 80.8, 121.7, 133.0, 134.9, 145.1, 165.5, 168.1; HRMS \(m/z\) (M\(^+\)) calcd for C\(_{11}\)H\(_{15}\)NO\(_2\)S: 225.0823, found: 225.0821.
E-tert-Butyl

3-[2-(2-hydroxy-2-phenylethyl)thiazol-5-yl]acrylate (9a) oil; 1H NMR (400 MHz, CDCl$_3$) δ 1.58 (s, 9H), 3.33-3.35 (m, 2H), 3.92 (bs, 1H), 5.16-5.19 (m, 1H), 6.08 (d, $J = 15.6$ Hz, 1H), 7.28-7.42 (m, 5H), 7.63 (d, $J = 15.6$ Hz, 1H), 7.77 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 42.5, 72.8, 81.0, 122.3, 125.7, 127.9, 128.6, 132.6, 134.8, 142.6, 144.7, 165.4, 169.5; HRMS m/z [(M+H)$^+$] calcd for C$_{18}$H$_{22}$NO$_3$S: 332.1320, found: 332.1317.

E-tert-Butyl

3-[2-(2-hydroxy-2-(4-methoxyphenyl)ethyl)thiazol-5-yl]acrylate (9b) m.p. 125-126 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.51 (s, 9H), 3.31-3.33 (m, 2H), 3.81 (s, 3H), 3.81-3.83 (m, 1H), 5.10-5.14 (m, 1H), 6.07 (d, $J = 15.8$ Hz, 1H), 6.89 (d, $J = 8.8$ Hz, 2H), 7.32 (d, $J = 8.8$ Hz, 2H), 7.63 (d, $J = 15.8$ Hz, 1H), 7.75 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 42.6, 55.3, 72.4, 80.9, 113.9, 122.2, 127.0, 132.7, 134.7, 134.8, 144.7, 159.2, 165.4, 169.6; HRMS m/z (M$^+$) calcd for C$_{19}$H$_{23}$NO$_4$S: 361.1348, found: 361.1341.

E-tert-Butyl

3-[2-(2-(4-dimethylaminophenyl)-2-hydroxyethyl]thiazol-5-yl]acrylate (9c) m.p. 99-100 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.52 (s, 9H), 2.95 (s, 6H), 3.28-3.40 (m, 2H), 3.49 (bs, 1H), 5.06-5.07 (m, 1H), 6.07 (d, $J = 15.8$ Hz, 1H), 6.71 (d, $J = 8.8$ Hz, 2H), 7.26 (d, $J = 8.8$ Hz, 2H), 7.63 (d, $J = 15.8$ Hz, 1H), 7.75 (s, 1H); 13C NMR (100 MHz, CDCl$_3$) δ 28.1, 40.6, 42.6, 72.7, 80.9, 112.5, 122.2, 126.7, 130.4, 132.8, 134.8, 144.7, 150.4, 165.5, 170.0; HRMS m/z (M$^+$) calcd for C$_{20}$H$_{26}$N$_2$O$_3$S: 374.1664, found: 374.1668.

E-tert-Butyl

3-[2-(2-(4-trifluoromethylphenyl)-2-hydroxyethyl]thiazol-5-yl]acrylate (9d) m.p. 164-165 °C; 1H NMR (400 MHz, CDCl$_3$) δ 1.52 (s, 9H),
3.29-3.34 (m, 2H), 4.42 (bs, 1H), 5.24-5.26 (m, 1H), 6.08 (d, J = 15.6 Hz, 1H), 7.53 (d, J = 7.8 Hz, 2H), 7.62 (d, J = 7.8 Hz, 1H), 7.63 (d, 15.6 Hz, 1H), 7.77 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 28.1, 42.1, 72.0, 81.0, 122.6, 124.1 (q, J = 270.3 Hz), 125.5 (q, J = 3.8 Hz), 126.0, 130.0 (q, J = 32.4 Hz), 132.4, 134.9, 144.6, 146.5, 165.3, 168.9; HRMS m/z (M⁺) calcd for C₁₉H₂₀F₃NO₅S: 399.1114, found: 399.1111.

(E)-tert-Butyl 3-(2-styrylthiazol-5-yl)acrylate (10a) m.p. 96-97 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.53 (s, 9H), 6.13 (d, J = 15.8 Hz, 1H), 7.25 (d, J = 16.5 Hz, 1H), 7.34-7.40 (m, 3H), 7.42 (d, J = 16.5 Hz, 1H), 7.54-7.56 (m, 2H), 7.67 (d, J = 15.8 Hz, 1H), 7.85 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 28.1, 80.9, 121.2, 122.1, 127.3, 129.0, 129.4, 132.8, 134.3, 135.4, 136.1, 146.5, 165.5, 168.3; HRMS m/z (M⁺) calcd for C₁₈H₁₉NO₂S: 313.1136, found: 313.1122.

(E)-tert-Butyl 3-[2-(4-methoxystyrlyl)thiazol-5-yl]acrylate (10b) m.p. 128-129 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.53 (s, 9H), 3.85 (s, 3H), 6.10 (d, J = 15.7 Hz, 1H), 6.92 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 16.5 Hz, 1H), 7.41 (d, J = 16.5 Hz, 1H), 7.49 (d, J = 8.8 Hz, 2H), 7.66 (d, J = 15.7 Hz, 1H), 7.81 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 28.1, 55.4, 80.8, 114.4, 119.1, 121.7, 128.1, 128.8, 132.9, 133.8, 135.9, 146.5, 160.7, 165.5, 168.9; HRMS m/z (M⁺) calcd for C₁₀H₂₁NO₃S: 343.1242, found: 343.1238.

(E)-tert-Butyl 3-[2-(4-dimethylaminostyrlyl)thiazol-5-yl]acrylate (10c) m.p. 150-152 °C; ¹H NMR (400 MHz, CDCl₃) δ 1.53 (s, 9H), 3.02 (s, 6H), 6.07 (d, J = 15.6 Hz, 1H), 6.69 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 16.0 Hz, 1H), 7.38 (d, J = 16.0 Hz, 1H), 7.43 (d, J = 8.7 Hz, 2H), 7.66 (d, J = 15.6 Hz, 1H), 7.78 (s, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 28.1,
40.2, 80.7, 112.0, 116.5, 121.0, 123.2, 128.9, 132.9, 133.1, 136.8, 146.6, 151.1, 165.7, 169.9; HRMS \textit{m/z} (M⁺) calcd for C_{20}H_{28}N_{2}O_{3}S: 356.1558, found: 356.1555.

\[\text{F}_3\text{C} \quad \begin{array}{c} \text{N} \\ \text{Thiazole} \end{array} \quad \begin{array}{c} \text{COO} \text{Bu} \\ \text{Acrylate} \end{array} \]

\((E)-\text{tert-Butyl} \ 3-[2-(4\text{-trifluoromethylstyrlyl} \text{thiazol-5-yl} \text{]acrylate} \)

\((10d) \) m.p. 153-155 °C; \(^1\)H NMR (400 MHz, CDCl\(_3\)) \(\delta \) 1.53 (s, 9H), 6.16 (d, \(J = 15.8 \) Hz, 1H), 7.31 (d, \(J = 16.5 \) Hz, 1H), 7.47 (d, \(J = 16.0 \) Hz, 1H), 7.65 (m, 4H), 7.68 (d, \(J = 16.0 \) Hz, 1H), 7.88 (s, 1H); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) \(\delta \) 28.1, 81.0, 122.6, 123.4, 124.0 (q, \(J = 273.3 \) Hz), 125.9 (q, \(J = 3.2 \) Hz), 127.4, 130.8 (q, \(J = 32.8 \) Hz), 132.5, 134.0, 135.0, 138.7, 146.6, 165.3, 167.2; HRMS \textit{m/z} (M⁺) calcd for C\(_{19}\)H\(_{18}\)F\(_3\)NO\(_2\)S: 381.1010, found: 381.1009.

3.5 References and Notes

(10) This is probably because the methyl group at 4-position in thiazole inhibited the unfavorable coordination of nitrogen to the palladium center necessary for the competitive cyclopalladation.

(12) The fact that the alkenylation of azoles 1 and 4\textit{a} occurs selectively at the relatively electrophile-susceptible 5-position rather than the 4-position is consistent with the relevant Pd-catalyzed direct arylation chemistry.

Conclusion

Included in this thesis is the synthesis of multi-substituted heteroarenes via palladium-catalyzed C-H bond cleavage and decarboxylation. The contents of this thesis is summarized as follows.

Chapter 1 described that 2,3-diarylindoles can be readily prepared by the palladium-catalyzed direct and decarboxylative arylations of carboxyindoles. This approach led to the discovery of a highly luminescent solid blue emitter.

In chapter 2, the author had developed an effective method for the concise and convergent synthesis of 2,3-diarylbenzo[b]thiophenes from readily available 3-chloro-2-methoxycarbonylbenzo[b]thiophene via nickel-catalyzed Suzuki–Miyaura cross-coupling and palladium-catalyzed decarboxylative arylation.

Chapter 3 addressed an effective palladium catalyst system for the direct alkenylation with thiazoles and oxazoles with alkenes. In addition, with the catalysis as the key transformation, the author succeeded in the efficient synthesis of π-conjugated 2,5-dialkenylated thiazoles of interesting optical properties.

This study showed that Pd-catalyzed C-H and C-C bond cleavages provided a new opportunity for C-C bond formation and contributed to the development of synthetic methods for multi-substituted heteroarenes. Moreover, the author revealed their applications to the efficient synthesis of organic fluorescent compounds.
List of Publications

The contents of this thesis are composed of the following papers:

(1) Fluorescent Diarylindoles by Palladium-Catalyzed Direct and Decarboxylative Arylations of Carboxyindoles

Miyasaka, M.; Fukushima, A.; Satoh, T.; Hirano, K.; Miura, M.

(2) Synthesis of 2,3-Diarylbenzo[b]thiophenes via Nickel-Catalyzed Suzuki-Miyaura Cross-Coupling and Palladium-Catalyzed Decarboxylative Arylation

Miyasaka, M.; Hirano, K.; Satoh, T.; Miura, M.

(3) Palladium-Catalyzed Direct Oxidative Alkenylation of Azoles

Miyasaka, M.; Hirano, K.; Satoh, T.; Miura, M.

Supplementary List of Publications

(1) Preparation, Structures, and Thermal Reactivity of Alkoxycarbonyl(cyano)palladium(II) Complexes trans-Pd(COOR)(CN)(PPh$_3$)$_2$ (R = Me, Et, "Pr, "Pr, "Bu, "Bu, and Bn) as Intermediates of the Palladium-Catalyzed Cyanoesterification of Norbornene Derivatives
Nishihara, Y.; Miyasaka, M.; Inoue, Y.; Yamaguchi, T.; Kojima, M.; Takagi, K.

(2) Zirconocene-Mediated Highly Regio- and Stereoselective Synthesis of Multisubstituted Olefins Starting from 1-Alkynylboronates
Nishihara, Y.; Miyasaka, M.; Okamoto, M.; Takahashi, H.; Inoue, E.; Tanemura, K.; Takagi, K.

(3) Copper-Catalyzed Direct Sulfoxylimination of Azoles and Polyfluorobenzenes under Ambient Conditions
Acknowledgements

At the conclusion of Ph.D. study and of his life as a student, the author has numerous people to thank.

The author would like to express my utmost gratitude to Professor Masahiro Miura for his guidance and suggestions throughout this work. The point that the author respects him is not only his posture to chemistry but also his personality. This thesis was never possible without his smart and elegant ideas.

The author also appreciates the helpful advice and discussion with Professor Tetsuya Satoh and Dr. Koji Hirano.

The author thanks Ms. Noriko Fujimoto for her kind help.

His gratitude is extended to all of the members of Miura’s group: Mr. Naoto Matsuyama, Mr. Takashi Katagiri, Mr. Masaki Shimizu, Mr. Hakaru Horiguti, Mr. Kazuki Yoshizumi, Mr. Nobuyoshi Umeda, Mr. Tsuyoshi Kawano, Mr. Jun Kumagae, Mr. Koichi Sakabe, Ms. Azusa Fukushima, Mr. Tomoya Mukai, Mr. Masanori Kitahara, Mr. Hitoshi Hachiya, Mr. Tatsuya Fukutani, Mr. Satoshi Mochida, Ms. Mana Yamashita, Mr. Shinya Ota, Mr. Yoshiro Oda, Mr. Keisuke Morimoto, Mr. Tomoaki Yao, Mr. Takumi Ueyama, Mr. Daisuke Takeda, Ms. Mayuko Nishino, and Mr. Naoki Matsuda. Without their kind help, the author could not accomplish his thesis.

Same year students of the Ph.D. program belonging to Department of Applied Chemistry deserve special thanks for their friendship: Dr. Yusuke Kita, Mr. Masaaki Omichi, Mr. Yohei Sano, Mr. Atsuro Takai, Mr. Masashi Nitani, Mr. Tomoya Hirose, Mr. Hiroaki Yoshida, and Mr. Shuji Watanabe.

Professor Miura allowed me to leave his group and stay in Germany. Professor Carsten Bolm at the Institute of Organic Chemistry, the RWTH Aachen University allowed the author to join his research group. During July-September 2010, he taught the author various organometallic chemistry especially copper-catalyzed direct sulfoximination. The author was much impressed with his passion and personality which let me think that the author wants to be a great chemist like him.

The author acknowledge the Research Fellowship from the Japan Society for the Promotion Science for Young Scientists and the Global COE Program — Global Education and Research Center for Bio-Environmental Chemistry of Osaka University.

Finally, the author would like to express his thanks to his parents, Dr. Tadayo Miyasaka, Dr. Junko Miyasaka, and his brother Mr. Akira Miyasaka for their perpetual support and continuous encouragement.