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General Introduction 

 

    Development of C-C bond formation reaction is one of the most important subjects in 

modern organic chemistry.  The palladium-catalyzed cross-couplings are now recognized to be 

powerful synthetic tools for C–C bond formation because they can form various types of C-C 

bonds with high efficiency and selectivity (Scheme 1).1   

 

R = R' = aryl, alkenyl,  alkyl,・・・

X = I, Br, Cl, TfO,・・・ m = Mg, B, Si, Sn, Zn・・・

Xm+ (1)R m + R' X
Pd cat.

R R'
(addtive)

 
SCHEME 1. Cross-Coupling Reaction  

     

Recently, not only the above traditional cross-couplings with organometallic reagents but 

also direct couplings via C-H bond cleavage have attracted much attention since they require no 

prefunctionalization step of the starting materials and provide a potentially more efficient 

alternative to the conventional methodologies.2  In particular, various Pd-catalyzed direct 

arylations of electron-rich and -deficient heteroarenes have been widely explored (Scheme 2).3  

The reactions of electron-rich heteroarenes are mostly considered to proceed via SE type 

mechanism, while those of electron-deficient ones may involve concerted 

metallation-deprotonation (CMD) mechanism.2 
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Ar1 H

Ar2-X
Pd cat.

Ar1 Ar2(additive)

Ar1 H
Y

Y

N
H

H
H

H

Y = O, S, NR

= N H
O

 

SCHEME 2. Direct C-H Arylation of Electron-Rich and -Deficient Heteroarenes  

 

The direct arylation of benzene rings also proceeds with the aid of directing groups2 such as 

phenolic hydroxyl group,4 amide,5 2-pyridyl,6 and carbamate.7  The reaction gives the 

corresponding ortho-arylated product with high regioselectivity via proximal C-H bond cleavage 

(Scheme 3).   

 

DG Pd cat.
(additive) DG

Ar

Ar

X Ar

or
DG

ArH  

SCHEME 3. Direct C-H Arylation of Arenes Having a Directing Group 

 

In addition, recent efforts have enabled the direct arylation of electron-deficient 

fluoroaromatics and benzene itself without the above chelation assistance (Scheme 4).8  

Moreover, direct dehydrogenative coupling reactions have also been developed.9  

 

Ar-X
Pd cat.
additiveH

or
Ar

or
Ar

Fn

H
Fn

 

SCHEME 4. Direct C-H Arylation of Electron-Deficient Fluoroaromatics or Simple Benzenes 
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On the other hand, cross-coupling via cleavage of C-C bond as well as C-H bond has also 

received great interest.10  For example, Miura and co-workers reported the arylation of 

D,D-disubstituted arylmethanols with aryl halides via cleavage of the sp2C-sp3C bond with the 

liberation of a ketones (E-carbon elimination) to give the corresponding biaryls (Scheme 5).11  

 

 

ArCR2OH

Ar-X
Pd cat.

R' R'

X = Br, Cl R R

O
+

 

SCHEME 5. Cross-Coupling via E-Carbon Elimination 

 

Goossen et al. developed the Pd/Cu or Pd/Ag co-catalyzed decarboxylative arylation of 

ortho-substituted benzoic acids with aryl halides (Scheme 6).12  The analogous reaction of 

potassium carboxylates with aryl triflates was found to accommodate meta- and para-substituted 

patterns.13 

 

COOY
R

Ar-X
Pd/Cu or Pd/Ag cat.

X = I, Br, Cl, OTf
Y = H, K

R
Ar + CO2

 

SCHEME 6. Decarboxylative Arylation 

 

These carbon functional groups work as not only a leaving group but also a directing group.  

Miura and co-workers reported the multi-arylation of thiophenes bearing an amide, an 

D,D-disubstituted methanol, or a carboxyl group via successive C-H and C-C bond cleavages 

(Scheme 7).14  
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S

H

CONHPhH S

CR2OH

H

S

COOHH

HH

Ar-X
Pd cat.

X = Br, Cl

S ArAr

ArAr

S Ar

Ar

S ArAr

Ar

 
SCHEME 7. Multi-Arylation of Thiophenes Having Carbon Functional Groups via C-H and 

C-C bond Cleavages 

 

Meanwhile, multi-substituted heteroarenes are found in a large number of biologically 

active natural and unnatural compounds, and functional materials.  Therefore, the development 

of efficient and selective methods for the construction of these compounds is of considerable 

importance in organic synthesis. 

The purpose of this study is to develop methods for the synthesis of multi-substituted 

heteroarenes via C-H bond cleavage and decarboxylation using palladium catalysts. This thesis 

consists of the following three chapters. 

    Chapter 1 describes the synthesis of 2,3-diarylindoles via C-H bond cleavage and 

decarboxylation. 

Chapter 2 describes the synthesis of multi-substituted benzothiophenes via decarboxylative 

arylation as the key synthetic process.     

Chapter 3 refers to the synthesis of 5-alkenylazoles via direct alkenylation, so-called 

Fujiwara-Moritani reaction. 

    Finally, this work is summarized in the conclusion section. 
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Chapter 1 

 

Synthesis of 2,3-Diarylindoles via C-H Bond Cleavage and Decarboxylation 

 

1.1  Introduction 

    The indole nucleus is found in a large number of biologically active natural and unnatural 

compounds, and the synthesis of its derivatives is of considerable importance in organic 

chemistry. 1  In addition, as tryptophan is an intrinsic fluorescent probe in proteins, indole 

derivatives are known to display fascinating photophysical properties.2  Thus, suitably arylated 

indoles may be considered to exhibit fluorescence, and the wavelength and intensity may depend 

on the nature of the aryl substituents.  A literature search indicates that some 2,3-diarylindoles, 

for example 2,3-bis(4-methoxy and hydroxyphenyl)indoles, show not only interesting biological 

activities,3a-g but also fluorescence3e-h in the blue region, whereas very little is known about their 

fluorescent efficiency.  Accordingly, because the development of efficient blue emitters is 

currently one of the important subjects in materials chemistry,4,5 the synthesis of various related 

compounds is of particular interest in terms of their physical features and their biological 

behavior.   

Transition-metal-catalyzed biaryl cross-coupling with aryl halides and aryl metal reagents is 

one of the most reliable methods for the synthesis of indoles having a variety of aryl 

functionalities, and recent advances in the metal-mediated direct C-H arylation reactions of 

heteroarenes provide an efficient access to C2- or C3-monoarylated indoles.6,7  However, the 

2,3-diarylation reactions on an indole scaffold are quite rare.8  Thus, efficient methods for 

installing identical and different aryl groups at the 2- and 3-positions are required.10  The 

present synthetic strategy involves sequential ortho- and ipso-arylations, and gratifyingly, it has 

been successfully utilized in carboxyindole systems.12-14  Herein, the author reports the 

palladium-catalyzed 2,3-diarylation of carboxyindole derivatives with aryl bromides, as well as a 
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practical route to 2,3-diarylindoles having different aryl substituents by performing ester 

hydrolysis in the sequence.  As result of these studies, the author has found a highly fluorescent 

2,3-diarylindoles among the products, and their photoluminescent properties are described. 

 

 

1.2  Results and Discussion 

    In a typical synthesis, treatment of 1-methyl-1H-indole-2-carboxylic acid (1a) with 

bromobenzene (2a) (3 equiv) in the presence of Pd(OAc)2 (5 mol%), PCy3 (10 mol%), and 

Cs2CO3 (4 equiv) in refluxing o-xylene for 4 h afforded 1-methyl-2,3-diphenyl-1H-indole (3a) in 

90% yield (Scheme 1).  In the reaction of 1-methyl-1H-indole-3-carboxylic acid (4) in place of 

1a under the same conditions, formation of the 2-monophenylated product, 1-methyl-2- 

phenyl-1H-indole-3-carboxylic acid (5a) (55%) was observed together with 3a (36%).  Thus, 

the second ipso-phenylation at the 3-position appears to be a relatively slower process.  The 

reaction of 4 at a higher temperature using mesitylene as a solvent, however, gave 3a in an 

acceptable yield (77%). 

 

N
Me

Ph Br
N
Me

Ph

Ph

reflux, 4 hCOOH
o-xylene or mesitylene

Pd(OAc)2 5 mol%
PCy3 10 mol%

(2a)

Cs2CO3 4 equiv

N
Me

+

COOH

Ph

 5  55%b,d

N
Me

COOH

+

1a

4

3a  90%,a 36%,b 77%c

 
SCHEME 1. a Reaction of 1a in o-xylene. b Reaction of 4 in o-xylene. c 
Reaction of 4 in mesitylene with addition of MS 4A (150 mg). d 
Determined by GC as its methyl ester 7a after methylation with MeI. 
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    Various aryl bromides having an electron-donating or -withdrawing group could be 

employed for the diarylation reaction of 1a (Table 1).  The reaction using other 

2-carboxyindoles was also undertaken. Under the standard reaction conditions, 

N-methoxymethyl-protection was tolerated, and thus, carboxyindole 1b coupled with 2a to give 

the expected products 3f. 

 

TABLE 1. Reaction of 2-Carboxyindoles 1 with Aryl Bromides 2.a,b 

N
R

COOH
N

R

Ar

Ar

o-xylene
Cs2CO3

Ar Br
Pd(OAc)2, PCy3

+

1 2 3

N
Me

Ph

Ph

3a, 90%

N
Me

Me

Me

3b, 86%

N
Me

OMe

OMe

3c, 93%

N
Me

F

F

3d, 78%

N
Me

CF3

CF3

N
MOM

Ph

Ph

3f, 82%3e, 79%
 

a A mixture of 1 (0.50 mmol), 2 (1.5 mmol), Pd(OAc)2 (0.025 mmol), PCy3 
(0.05 mmol), and Cs2CO3 (1.5mmol) was stirred in refluxing o-xylene (2.5 
mL) for 4 h under N2. b Isolated yield. 
 

To achieve the selective synthesis of indoles having different aryl groups at the 2- and 

3-positions, we examined a stepwise diarylation with methyl esters of 1a and 4 as the starting 

materials, since an ester function was found to be inert under the present conditions.  The latter 

ester, methyl 1-methyl-1H-indole-3-carboxylate (6a) was effectively monoarylated with 2a, 2c, 

and 2d using P(biphenyl-2-yl)tBu2 as a ligand to give the corresponding 2-arylated products 7a–c 
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in good yields (Table 2, entries 1–3), whereas the former ester did not react at all.  The ligand 

PCy3 was less effective in this case (entry 4).  MOM-protected indole 6b was also available for 

use (entry 5).  

 
TABLE 2. Reaction of 3-(Methoxycarbonyl)indoles 6 with Aryl Bromides 2.a 

N
R

Ar1 Br

COOMe

o-xylene

Pd(OAc)2, P(biphenyl-2-yl)tBu2

Cs2CO3 N
R

COOMe

Ar1

entry 6, R 2, Ar1 7, Yield (%)b

1

2

3

5

6a, Me

6b, MOM

2a,Ph 7a, 82

2b, 4-MeOC6H4

2a, Ph

7b, 90

7c, 79

7d, 82

2c, 4-CF3C6H4

+

6a, Me

6a, Me

4c 6a, Me 2a, Ph 7a, 57

6 2 7

 
a A mixture of 6 (0.50 mmol), 2 (1.0 mmol), Pd(OAc)2 
(0.025 mmol), P(biphenyl-2-yl)tBu2 (0.05 mmol), and 
Cs2CO3 (1.0 mmol) was stirred in refluxing o-xylene (2.5 
mL) for 6 h under N2. b Yield of isolated product. c PCy3 
was used as a ligand. 

 

Then, 7a, 7c, and 7d were hydrolyzed with ethanolic KOH to quantitatively afford the 

corresponding carboxylic acids.  Subsequently, the acids were subjected to the second arylation 

accompanied by decarboxylation in mesitylene, and diarylindoles 8a–8f were obtained in good 

yields (Table 3). 
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TABLE 3. Decarboxylative Arylation of 5.a,b 

8a, 84% 8b, 60% 8c, 89%

8d, 94% 8e, 70% 8f, 55%

N
Me

Ph

Me

N
Me

Ph

CF3

N
Me

Ph

COOEt

N
R

Ar2 Br

COOH

mesitylene

Pd(OAc)2, PCy3

Cs2CO3, MS4A N
R

Ar2

Ar1+

5 2 8

Ar1

N
Me

Ph

Ph

N
Me

Ph

CF3
N

MOM

Ph

Me

 
a A mixture of 5 (0.50 mmol), 2 (1.0 mmol), Pd(OAc)2 (0.025 mmol), 
PCy3 (0.05 mmol), and Cs2CO3 (1.0 mmol) was stirred in refluxing 
mesitylene (2.5 mL) for 6 h under N2. b Isolated yield. 
 

With the above 2,3-diarylindoles 3 and 8 in hand, a preliminary survey of their solid-state 

photoluminescence by using a UV lamp was carried out.  It was found that 1- 

methyl-2,3-bis(4-trifluoromethylphenyl)-1H-indole (3d) was especially luminescent.  

Consequently, the photoluminescence spectra of 3d and, to examine the substituent effects on the 

aryl groups, those of 3a, 3c, 8b, and 8e as well as their absorption spectra were measured for 

their ethanol solutions and solid powders (Table 4 and Figure 1).  Accordingly, diarylindole 3d 

is highly luminescent with emission maxima at 436 nm and 422 nm and with quantum yields of 

0.90 and 0.97, in solution and as a solid, respectively.  The quantum efficiency of the solid 

samples decreased in the following order: 3d>8e>3a>8b>3c.  This trend is the same as that in 

solution. In each case, the discrepancy between the emission maxima in solution and in the solid 

state is relatively small.  These facts suggest that the solid-state luminescence in each case is 
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essentially based on the intrinsic structure and electronic conjugation of individual molecules.  

 

TABLE 4. Optical Properties of 1-Methyl-2,3-diarylindoles. 

N
Me

X

Y
3a; X = Y = H

3c; X = Y = MeO

8b; X = H, Y = CF3

3d; X = Y = CF3

8a; X = CF3, Y = H

entry 3 or 8
 (nm)a
Oabs-sl

log H
 (nm)b

Oem-sl
)f-sl

c Oem-pw
)f-pw

e
(nm)d

4.631 3a 225 0.51 419 0.65
298 4.24

418

4.482 3c 248 0.13 441 0.44
299 4.22

421

4.803 3d 225 0.90 422 0.97
286 4.46

436

4.664 8b 225 0.37 420 0.56
296 4.30

419

4.635 8e 225 0.64 426 0.76
303 4.12

438

 
a Absorption maximum in EtOH. b Emission maximum in EtOH. c 
Determined by comparison with ethanol solution of anthracene ()f = 
0.30) excited at 254 nm. d Emission maximum of solid powder excited at 
350 nm. e Absolute quantum yield determined by an integrating sphere 
system. 
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FIGURE 1. Photoluminescence Spectra of the Powders of 1-Methy-2,3-diarylindoles 3 and 8. 

 

This was, at least in the case of 3d, supported by the crystal structure and packing 

determined by single-crystal X-ray diffraction (Figure 2).  The torsion angles between the 

indole plane and the C2 and C3 aryl groups are 45 º and 43 º, respectively, which appear to 

prevent intermolecular electronic interactions. In this case, the presence of two CF3 substituents 

also appears to be an important factor in allowing the almost perfect quantum yield in the solid 

(Table 4).  However, further studies are needed to gain a better understanding of the observed 

remarkable effect of the substituents on the luminescent efficiency. 

 

 
FIGURE 2. Molecular Structure of 3d and its Packing (P21/n ) 
within the Crystal Determined by Single-Crystal X-ray 
Diffraction. 
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1.3  Conclusion 

Physically and biologically interesting 2,3-diarylindoles can be readily prepared by 

palladium-catalyzed direct and decarboxylative arylations using commercially available 

carboxyindoles.  This approach has led to the discovery of a highly luminescent solid blue 

emitter. 

 

 

1.4  Experimental Section 

General Remarks.  1H and 13C NMR spectra were recorded at 400 MHz and 100 MHz, 

respectively, for CDCl3 solutions. MS data were obtained by EI. GC analysis was carried out 

using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 

25 m).  The fluorescence analysis of some products was carried out with the samples 

recrystallized from hexane-toluene or hexane-dichloromethane and then crashed.  The absolute 

fluorescence quantum efficiency of the crashed crystal of 3a, 3c, 3d, 8b, and 8e encapsulated in a 

quartz cell (30 x 30 x 0.3 mm) under deoxygenated conditions, was measured by using an 

integrating sphere unit (the excitation wavelength: 350 nm).  Silica gel (Wakogel 200 mesh) 

was used for column chromatography. All reactions were carried out under nitrogen 

atmospheres. 

Materials.  Unless otherwise noted, materials obtained from commercial suppliers were used 

without further purification.  o-Xylene and mesitylene were distilled from CaH.  Pd(OAc)2 

was purchased from Wako.  PCy3 and P(biphenyl-2-yl)tBu2 were obtained from Strem.  

Indolecarboxylate esters 6a13a and 6b13b were prepared by the methods reported previously.  

 

Experimental Procedure 

Palladium-Catalyzed Reaction of 1-Methyl-1H-indole-2-carboxylic Acid (1a) with 

Bromobenzene (2a).  In a 20 mL two-necked flask were added bromobenzene (2a) (2 mmol, 
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374 mg), 2-carboxyindole 1a (0.5 mmol, 87 mg), Pd(OAc)2 (0.025 mmol, 5.6 mg), PCy3 (0.05 

mmol, 14 mg), Cs2CO3 (2 mmol, 652 mg), 1-methylnaphthalene (ca. 50 mg) as internal standard, 

and o-xylene (2.5 mL).  The resulting mixture was stirred under N2 (balloon) at 170 ºC (bath 

temperature) for 4 h.  After cooling, analysis of the mixture by GC confirmed the formation of 

compound 3a (quantitatively).  The product (127 mg, 90%) was also isolated by filtration of the 

mixture through a filter paper with ether as an eluent, evaporation of the solvents, and 

chromatography on silca gel using hexane-ethyl acetate (98:2, v/v). 

 

Palladium-Catalyzed Reaction of Methyl 1-Methyl-1H-indole-3-carboxylate (6a) with 

Bromobenzene (2a).  In a 20 mL two-necked flask were added bromobenzene (2a) (1 mmol, 

157 mg), methyl 1-methyl-1H-indole-2-carboxylate (6a) (0.5 mmol, 94mg), Pd(OAc)2 (0.025 

mmol, 5.6 mg), P(biphenyl-2-yl)tBu2 (0.05 mmol, 15 mg), Cs2CO3 (1 mmol, 325 mg), 

1-methylnaphthalene (ca. 50 mg) as internal standard, and o-xylene (2.5 mL).  The resulting 

mixture was stirred under N2 (balloon) at 150 ºC (bath temperature) for 6 h.  After cooling, 

analysis of the mixture by GC confirmed the formation of compound 7a (quantitatively).  The 

product (108 mg, 82%) was also isolated by filtration of the mixture through a filter paper with 

ether, evaporation of the solvents, and chromatography on silca gel using hexane-ethyl acetate 

(95:5, v/v) 

 

Hydrolysis of Methyl 1-Methyl-2-phenyl-1H-indole-3-carboxylate (7a).  In a 100mL flask 

were added methyl 1-methyl-2-pheny-1H-lindole-3-carboxylate (7a) (4.7 mmol, 1.2 g), 

potassium hydroxide (1.7 g, 30 mmol), water (24 mL), and ethanol (12 mL).  The mixture was 

heated at 80 ºC (bath temperature) for 8 h under N2.  After cooling and acidification with aq. 

HCl (2 M), white precipitate was collected, washed with water, and dried under vaccum to afford 

carboxylic acid 5a (1.12 g, 95%). 
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Palladium-Catalyzed Reaction of 1-Methyl-2-phenyl-1H-indole-3-carboxlic Acid (5a) with 

4-bromotoluene (2b).  In a 20 mL two-necked flask were added 4-bromotoluene (2b) (1 mmol, 

171 mg), 1-Methyl-2-phenyl-1H-indole-3-carboxlic acid (5a) (0.5 mmol, 125mg), Pd(OAc)2 

(0.025 mmol, 5.6 mg), PCy3 (0.05 mmol, 14 mg), Cs2CO3 (1 mmol, 325 mg), MS4A (150 mg), 

1-methylnaphthalene (ca. 50 mg) as internal standard, and mesitylene (2.5 mL).  The resulting 

mixture was stirred under N2 (balloon) at 170 ºC (bath temperature) for 6 h.  The product 8a 

(125 mg, 84%) was isolated by filtration of the mixture through a filter paper with ether, 

evaporation of the solvents, and chromatography on silca gel using hexane-ethyl acetate (98:2, 

v/v) 

 

Characterization Data of Products. 

1-Methyl-2,3-diphenyl-1H-indole (3a)  

m.p. 137-139 oC; 1H NMR (400 MHz, CDCl3) δ 3.67 (s, 3H), 7.14-7.42 (m, 

13H), 7.79 (d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 31.2, 109.8, 

115.3, 119.8, 120.4, 122.4, 125.7, 127.2, 128.2, 128.4, 128.6, 130.1, 131.4, 

132.1, 135.4, 137.5, 137.9; Anal. Calcd for C21H17N: C, 89.01; H, 6.05; N, 4.94. Found: C, 

88.73; H, 6.05; N, 4.87. 

 

1-Methyl-2,3-bis(4-methylphenyl)-1H-indole (3b) m.p. 124-126 oC; 

1H NMR (400 MHz, CDCl3) δ 2.32 (s, 3H), 2.38 (s, 3H), 3.65 (s, 3H), 

7.08 (d, J = 7.7 Hz, 2H), 7.14-7.23 (m, 7H), 7.28 (dd, J = 7.8 Hz, 7.8 Hz, 

1H), 7.39 (d, J = 8.0 Hz, 1H), 7.78 (d, J = 7.6 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 21.4, 21.6, 31.1, 109.7, 119.8, 120.2, 122.2, 128.6, 128.7, 129.1, 129.28, 129.32, 

129.9, 131.2, 132.6, 135.1, 137.5, 137.9, 138.0; HRMS m/z (M+) calcd for C23H21N: 311.1682, 

found: 311.1674. 

 

N
Me

N
Me

Me

Me
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2,3-Bis(4-methoxyphenyl)-1-methyl-1H–indole (3c) m.p. 114-116 

oC; 1H NMR (400 MHz, CDCl3) δ 3.65 (s, 3H), 3.79 (s, 3H), 3.83 (s, 

3H), 6.83 (d, J = 8.8 Hz, 2H), 6.91 (d, J = 8.8 Hz, 2H), 7.14-7.29 (m, 

6H), 7.38 (d, J = 8.4 Hz, 1H), 7.74 (d, J = 8.1 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 31.0, 55.38, 55.46, 109.6, 114.0, 114.1, 114.4, 119.7, 120.2, 122.1, 124.5, 127,4, 

128.0, 131.1, 132.5, 137.4, 137.5, 157.8, 159.6; HRMS m/z (M+) calcd for C23H21NO2: 343.1567, 

found: 343.1572. 

 

1-Methyl-2,3-bis(4-trifluoromethylphenyl)-1H-indole (3d) m.p. 

170-172 oC; 1H NMR (400 MHz, CDCl3) δ 3.69 (s, 3H), 7.23 (t, J = 

6.6 Hz, 1H), 7.34-7.38 (m, 3H), 7.44 (d, J = 7.3 Hz, 3H), 7.53 (d, J = 

8.5 Hz, 2H), 7.67 (d, J = 8.0 Hz, 2H), 7.75 (d, J = 8.0 Hz, 1H); 13C 

NMR (100 MHz, CDCl3) δ 31.1, 109.9, 114.8, 119.5, 121.0, 123.1, 124.0 (q, J = 270 Hz), 124.4 

(q, J = 270 Hz), 125.3 (q, J = 3.8 Hz), 125.6 (q, J = 3.8 Hz), 126.6, 127.8 (q, J = 32 Hz), 130.4, 

129.5 (q, J = 32 Hz), 131.4, 135.2, 136.6, 137.7, 138.6; Anal. Calcd for C23H15F6N: C, 65.87; H, 

3.61; N, 3.34. Found: C, 65.60; H, 3.59; N, 3.36. 

 

2,3-Bis(4-fluorophenyl)-1-methyl-1H–indole (3e) m.p. 147-150 oC; 1H 

NMR (400 MHz, CDCl3) δ 3.66 (s, 3H), 6.97 (dd, J = 8.8Hz, 8.8Hz, 2H), 

7.09 (dd, J = 8.8 Hz, 8.8 Hz, 2H), 7.17-7.33 (m, 6H), 7.41 (d, 1H), 7.71 

(d, 1H); 13C NMR (100 MHz, CDCl3) δ 31.1, 109.8, 115.4 (d, J  = 21 

Hz), 115.9 (d, J = 21 Hz), 119.6, 120.6, 122.7, 127.1, 128.0, 131.17, 131.20, 131.5 (d, J = 7.5 

Hz), 133.1 (d, J = 8.4 Hz), 136.8, 137.5, 161.4 (d, J = 243 Hz), 162.9 (d, J = 247 Hz); HRMS 

m/z (M+) calcd for C21H15F2N: 319.1171, found: 319.1173.  
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1-Methoxymethyl-2,3-diphenyl-1H-indole (3f) m.p. 113-115 oC; 1H NMR 

(400 MHz, CDCl3) δ 3.25 (s, 3H), 5.37 (s, 2H), 7.16-7.40 (m, 12H), 7.57 (d, 

J = 8.0 Hz, 1H), 7.76 (d, J = 7.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 

21.1, 55.9, 74.7, 110.2, 116.6, 119.73, 119.76, 121.0, 122.8, 125.8, 127.7, 

128.2, 130.0, 131.37, 131.43, 134.7, 137.2, 137.6; Anal. Calcd for C22H19NO: C, 84.31; H, 6.11; 

N, 4.47. Found: C, 84.02; H, 6.04; N, 4.41. 

 

1-Methyl-2-phenyl-1H-indole-3-carboxylic acid (5a) m.p. 194-196 ºC; 1H 

NMR (400 MHz, CDCl3) δ 3.54 (s, 3H), 7.28-7.50 (m, 8H), 8.30-8.32(m, 

1H); 13C NMR (100 MHz, CDCl3) δ 30.9, 104.3, 109.7, 122.3, 122.4, 123.0, 

127.1, 128.1, 129.0, 130.3, 131.2, 136.9, 147.6, 170.1. HRMS m/z (M+) Calcd for C16H13NO2: 

251.0946. Found: 251.0948. 

 

1-Methyl-2-(4-trifluoromethylphenyl)-1H-indole-3-carboxylic acid 

(5b) m.p. 216-218 ºC; 1H NMR (400 MHz, CDCl3) δ 3.45 (s, 3H), 

7.32-7.39 (m, 3H), 7.55 (d, J = 8.1 Hz, 2H), 7.75 (d, J = 8.1 Hz, 2H), 

8.29-8.31, (m, 1H); 13C NMR (100 MHz, CDCl3) δ 31.0, 104.9, 109.8, 122.4, 122.7, 123.5, 

124.0 (q, J = 271 Hz), 125.1 (q, J = 3.8 Hz), 126.8, 130.9, 131.2 (q, J = 33 Hz), 134.9, 137.1, 

145.8, 170.1. HRMS m/z (M+) Calcd for C17H12F3NO2: 319.0820. Found: 319.0819. 

 

1-Methoxymethy-2-phenyl-1H-indole-3-carboxylic acid (5c) m.p. 

190-192 ºC; 1H NMR (400 MHz, CDCl3) δ 3.54 (s, 3H), 5.25 (s, 2H), 

7.32-7.35 (m, 2H), 7.45-7.55 (m, 6H), 8.29-8.31 (m, 1H); 13C NMR (100 

MHz, CDCl3) δ 56.0, 74.7, 105.9 110.6, 122.3, 122.9, 123.5, 127.2, 128.1, 129.3, 130.6, 130.7, 

136.5, 147.6, 170.0. HRMS m/z (M+) Calcd for C17H15NO3: 281.1052. Found: 281.1048. 
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Methyl 1-methyl-2-phenyl-1H-indole-3-carboxylate (7a) m.p. 120-122 ºC; 

1H NMR (400 MHz, CDCl3) δ 3.57 (s, 3H), 3.76 (s, 3H), 7.31-7.51 (m, 8H), 

8.22-8.24 (m, 1H); 13C NMR (100 MHz, CDCl3) δ 30.8, 50.6, 105.0, 109.7, 

122.0, 122.1, 122.8, 126.6, 128.0, 128.9, 130.3, 131.5, 136.8, 146.9, 165.5; Anal. Calcd for 

C17H15NO2: C, 76.96; H, 5.70; N, 5.28. Found: C, 76.70; H, 5.78; N, 5.24. 

 

Methyl 2-(4-methoxyphenyl)-1-methyl-1H-indole-3-carboxylate 

(7b) m.p. 147-148 ºC; 1H NMR (400 MHz, CDCl3) δ 3.57 (s, 3H), 

3.77 (s, 3H), 3.88 (s, 3H), 7.00-7.04 (m, 2H), 7.28-7.38(m, 5H), 

8.20-8.22(m, 1H); 13C NMR (100 MHz, CDCl3) δ 30.8, 50.6, 55.3, 104.9, 109.7, 113.6, 121.9, 

122.0, 122.7, 123.4, 126.6, 131.7, 136.8, 147.0, 160.1, 165.7; Anal. Calcd for C18H17NO3: C, 

73.20; H, 5.80; N, 4.74. Found: C, 72.81; H, 5.84; N, 4.69. 

 

Methyl 

1-methyl-2-(4-trifluoromethylphenyl)-1H-indole-3-carboxylate (7c) 

m.p. 142-144 ºC; 1H NMR (400 MHz, CDCl3) δ 3.56 (s, 3H), 3.76 (s, 

3H), 7.33-7.41 (m, 3H), 7.55 (d, J = 8.0Hz, 2H), 7.76 (d, J = 8.0Hz, 2H), 8.22-8.24(m, 1H), 13C 

NMR (100 MHz, CDCl3) δ 30.9, 50.8, 105.6, 109.8, 122.1, 122.4, 123.3, 124.0 (q, J = 270 Hz), 

125.1 (q, J = 3.8 Hz), 126.3, 130.8, 131.0 (q, J = 32 Hz), 135.2, 137.0, 144.9, 165.3; HRMS m/z 

(M+) Anal. Calcd for C18H14F3NO2: C, 64.86; H, 4.23; N, 4.20. Found: C, 64.68; H, 4.35; N, 

4.10. 

 

Methyl 1-methoxymethyl-2-phenyl-1H-indole-3-carboxylate (7d) m.p. 

76-78 ºC; 1H NMR (400 MHz, CDCl3) δ 3.16 (s, 3H), 3.75 (s, 3H), 5.27 (s, 

2H), 7.32-7.34 (m, 2H), 7.43-7.59(m, 6H), 8.22-8.24 (m, 1H); 13C NMR 

(100 MHz, CDCl3) δ 50.8, 56.0, 74.7, 106.6, 110.6, 122.0, 122.6, 123.4, 126.7, 128.0, 129.1, 

N
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130.6, 130.9, 136.4, 146.8, 165.4; HRMS m/z (M+) Calcd for C18H17NO3: 295.1208. Found: 

295.1220. 

 

1-Methyl-3-(4-methylphenyl)-2-phenyl-1H-indole (8a) m.p. 155-156 oC; 

1H NMR (400 MHz, CDCl3) δ 2.31 (s, 3H), 3.66 (s, 3H), 7.07 (d, J = 8.1 Hz, 

2H), 7.15-7.40 (m, 10H), 7.78 (d, J = 7.7 Hz, 1H);13C NMR (100 MHz, 

CDCl3) δ 21.1, 30.9, 109.5, 115.1, 119.7, 120.0, 122.0, 127.1, 127.9, 128.3, 

128.9, 129.7, 131.1, 132.1, 132.2, 134.9, 137.3, 137.5; HRMS m/z (M+) calcd for C22H19N: 

297.1517, found: 297.1522. 

 

1-Methyl-2-phenyl-3-(4-trifluoromethylphenyl)-1H-indole (8b) m.p. 

134-136 oC; 1H NMR (400 MHz, CDCl3) δ 3.69 (s, 3H), 7.24 (t, J = 7.0 Hz, 

1H), 7.30-7.45 (m, 9H), 7.50 (d, J = 8.4 Hz, 2H), 7.78 (d, J = 8.0 Hz, 

1H);13C NMR (100 MHz, CDCl3) δ 31.1, 109.8, 113.8, 119.2, 120.7, 122.5, 

124.5 (q, J  = 270 Hz), 125.1 (q, J  = 3.8 Hz), 126.8, 127.3 (q, J = 32 Hz), 128.4, 128.6, 129.7, 

130.6, 131.5, 137.4, 138.5, 139.2; HRMS m/z (M+) calcd for C22H16F3N: 351.1235, found: 

351.1241. 

 

Ethyl 4-(1-methyl-2-phenyl-1H-indole-3-yl)benzoate (8c) m.p. 131-133 

oC; 1H NMR (400 MHz, CDCl3) δ 1.37 (t, J = 7.3 Hz, 3H), 3.68 (s, 3H), 

4.35 (q, J = 7.3 Hz, 2H), 7.19-7.42 (m, 10H), 7.81 (d, J = 7.7 Hz, 1H), 7.93 

(d, J = 8.4 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 14.4, 30.9, 60.7, 109.7, 

114.3, 119.4, 120.6, 122.5, 126.7, 127.3, 128.4, 128.6, 129.4, 129.5, 131.1, 131.6, 137.5, 138.5, 

140.4, 166.8; Anal. Calcd for C24H21NO2: C, 81.10; H, 5.96; N, 3.96. Found: C, 80.89; H, 5.96; 

N, 3.94. 
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3-(4-Biphenylyl)-1-methyl-2-phenyl-1H-indole (8d) m.p. 132-134 oC; 1H 

NMR (400 MHz, CDCl3) δ 3.69 (s, 3H), 7.21 (t, J = 7.7 Hz, 1H), 7.29-7.44 

(m, 12H), 7.50-7.52 (m, 2H), 7.59-7.61 (m, 2H), 7.86 (m, 1H); 13C NMR 

(100 MHz, CDCl3) δ 30.9, 109.6, 114.7, 120.0, 120.3, 122.2, 126.82, 

126.86, 126.94, 126.99, 128.1, 128.4, 128.7, 130.1, 131.2, 132.0, 134.4, 137.4, 137.9, 138.0, 

141.0; HRMS m/z (M+) calcd for C27H21N: 359.1674, found: 359.1671. 

 

1-Methyl-3-phenyl-2-(4-trifluoromethylphenyl)-1H-indole (8e) m.p. 

139-141 oC; 1H NMR (400 MHz, CDCl3) δ 3.67 (s, 3H), 7.19-7.22 (m, 

2H), 7.28-7.35 (m, 5H), 7.43 (m, 3H), 7.63 (d, J = 8.1 Hz, 2H), 7.78 (d, 

J = 8.1 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 31.1, 109.7, 116.3, 

119.9, 120.5, 122.8, 124.1, (q, J = 271 Hz), 125.3 (q, J = 3.8 Hz), 125.9, 127.0, 128.4, 129.95 (q, 

J = 32 Hz), 129.96, 131.4, 134.6, 135.7, 135.9, 137.7; HRMS m/z (M+) calcd for C22H16F3N: 

351.1235, found: 351.1233. 

 

1-Methoxymethy-3-(4-methylphenyl)-2-phenyl-1H-indole (8f) m.p. 

113-115 oC; 1H NMR (400 MHz, CDCl3) δ 2.32 (s, 3H), 3.24 (s, 3H), 5.37 (s, 

2H), 7.15-7.32 (m, 11H), 7.39 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H); 

13C NMR (100 MHz, CDCl3) δ 21.1, 55.9, 74.7, 110.2, 116.6, 119.8, 120.9, 

122.7, 127.8, 128.1, 128.3, 129.0, 129.8, 131.4, 131.6, 131.7, 135.4, 137.2, 

137.4; Anal. Calcd for C23H21NO: C, 84.37; H, 6.46; N, 4.28. Found: C, 84.09; H, 6.40; N, 4.17. 

 

Crystal dada for compound 3d (CCDC No. 713262) MF C23H15F6N, MW 419.37, Crystal 

Dimensions 0.58 x 0.27 x 0.10 mm, monoclinic, space group P21/n, a = 8.006(3) Å, b = 

10.620(3) Å, c = 22.036(7) Å, E = 95.280(8)
o
, V = 1865.7(10) Å

3
, Z = 4, Dcalc 1.493 g/cm
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P(MoKD) 1.290 cm
-1

, 21158 reflections easured, R1 = 0.15, R = 0.29, wR2 = 0.47. 

 
FIGURE 3 An ORTEP Drawing of Compound 3d. 
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Chapter 2 
 

Synthesis of 2,3-Disubstituted Benzothiophenes via Decarboxylative Arylation 

 

2.1  Introduction 

    The benzo[b]thiophene nucleus is ubiquitous in biologically active compounds and 

functional materials.1  In particular, 2,3-diarylbenzo[b]thiophenes and their 3-carbonyl- or 

heteroatom-inserted analogues are known to work as selective estrogen receptor modulator,2 

stubulin-binding agents,3 multidrug resistanceassociated protein (MRP1) inhibitors,4 

angiogenesis inhibitors,5 site-directed thrombin inhibitors,6 anti-inflammatory agents,7 and 

antifungal agents.8  On the other hand, multiply arylated benzo[b]thiophenes9 and further 

S-extended benzo[1,2-b;4,5-b’]dithiophenes as well as their condensed aromatics10 have recently 

aroused considerable interest in the field of organic electronics including light-emitting diodes 

(LEDs) and field-effect transistors (FETs).11  Therefore, the development of efficient and 

selective methods for the construction of these arylated benzothiophenes and benzodithiophenes 

is of considerable importance in organic synthesis.   

    Here the author reports an efficient, convergent protocol for the synthesis of various 

2,3-diarylbenzo[b]thiophenes and 2,3,6,7-tetraarylbenzo[1,2-b;4,5-b’]dithiophenes.  As outlined 

in Scheme 1, the present synthetic approach relies on the sequential Suzuki–Miyaura 

cross-coupling reaction and decarboxylative arylation of 

3-chloro-2-methoxycarbonylbenzo[b]thiophene.  The benzothiophene scaffold is easily 

prepared from cinnamic acid and thionyl chloride.12  The use of commercially available 

1,4-phenylenediacrylic acid instead of cinnamic acid as the starting material also allows the 

concise synthesis of the benzodithiophene system.  The decarboxylative arylation with aryl 

halides under palladium catalysis has very recently emerged as one of the potential 

cross-coupling methods.13,14   
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SCHEME 1. Synthetic Approach 
 
 
2.2 Results and Discussion 

Initially, the author carried out the first arylation of 

3-chloro-2-methoxycarbonylbenzo[b]thiophene (1) through nickel-catalyzed Suzuki–Miyaura 

cross-coupling reaction with arylboronic acids 2 (Table 1).  The nickel based method induced 

efficient activation of the C-Cl bond.15  Thus, benzothiophene 1 coupled with phenylboronic 

acid (2a) effectively in the presence of 5 mol% of NiCl2(dppe) and 2.0 equivalents of K3PO4 in a 

boiling toluene to furnish 3a in 91% isolated yield (entry 1).  Electron-rich and 

electron-deficient aryl groups as well as the sterically demanding naphthalene motif could be 

introduced to the benzothiophene core without any difficulties (entries 2–5). 

 
TABLE 1. Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling Reaction of 
3-Chloro-2-methoxycarbonylbenzo[b]thiophene (1) with Arylboronic Acids 2.a 

S

Ar1 B(OH)2 (2)

S
COOMe

Ar1Cl

toluene

NiCl2(dppe)

K3PO4
COOMe

entry 2, Ar1 Yield (%)b

2
3
4

2b, 4-MeC6H4 3b, 83
3c, 97
3d, 93

2c, 4-MeOC6H4

2d, 4-CF3C6H4

5 3e, 932e, 1-nap

1 2a, Ph 3a, 93

1 3

 
a A mixture of 1 (3.0 mmol), 2 (4.5 mmol), 
NiCl2(dppe) (0.15 mmol), and K3PO4 (6.0 mmol) 
was stirred in a boiling toluene (10 mL) for 6 h at 
120 ºC under N2. b Isolated yield. 

S

Cl

COOMe

Ni-Catalyzed Suzuki-Miyaura
Cross-Coupling

Hydrolysis then Pd-Catalyzed
Decarboxylative Arylation

S
Ar2

Ar1
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The monoarylated benzothiophenes 3 obtained above were readily hydrolyzed upon 

treatment with ethanolic KOH to afford the corresponding carboxylic acids 4a–e quantitatively.  

Subsequently, the author selected 4a and bromobenzene (5a) as model substrates and performed 

the palladium-catalyzed second arylation accompanied by decarboxylation 13,14 (Table 2).  It 

was found that 4a was transformed to 6aa in 37% yield in o-xylene (entry 1).  The addition of 

CuI had no positive effect on the yield (entry 2).13a,c-f  On the other hand, a choice of solvent 

dramatically affected the reaction efficiency (entries 3–6).  While the reaction proceeded 

sluggishly in DMSO, the use of amide solvents improved the yield of 6aa, with DMAc proving 

to be optimal.  Although the author tested MS4A and PCy3 as a dehydrating reagent and ligand, 

respectively, based on our previous findings,14b the yield was decreased (entries 7 and 8).  

Finally, with 3.0 equivalents of 5a and a prolonged reaction period (48 h), the desired product 

6aa was obtained in 94% isolated yield (entry 10).16 
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TABLE 2. Optimization for Palladium-catalyzed Decarboxylative Arylation of 

3-Phenylbenzo[b]thiophene-2-carboxylic Acid (4a) with Bromobenzene (5a).a 

entry 5a, X 6aa, GC Yield (%)b

1

3
4
5
6

9

2.0 37

76
67
62
10

84

Solvent

o-xylene

DMAc
DMF
NMP
DMSO

3.0 DMAc

2c 2.0 10o-xylene
2.0
2.0
2.0
2.0

Ph Br (5a)

solvent
Cs2CO3S

Ph

COOH
S

Ph

Ph
Pd(OAc)2, P(biphenyl-2-yl)tBu2

8e 242.0 DMAc
7d 492.0 DMAc

10f 983.0 DMAc

4a 6aa

 
a A mixture of 4a (0.50 mmol), 5a, Pd(OAc)2 (0.050 
mmol), P(biphenyl-2-yl)tBu2 (0.10 mmol), and Cs2CO3 
(2.0 mmol) was stirred in solvent (2.5 mL) for 24 h at 160 
ºC under N2. b GC yield. c With CuI (0.50 mmol). d With 
MS4A (400 mg). e With PCy3 instead of 
P(biphenyl-2-yl)tBu2. f 48 h. 

 

By employing the optimized conditions, the author examined the decarboxylative arylation 

of 4a–e with various aryl bromides 5.  The results are illustrated in Table 3.  As observed in 

the first arylation, electron-donating and electron-withdrawing groups as well as the bulky 

naphthyl core were tolerant toward the reaction. 
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TABLE 3. Palladium-Catalyzed Decarboxylative Arylation of 4a–e with Various Aryl Bromides 

5.a, b 

Cs2CO3S

Ar1

COOH
S

Ar1

Ar2

Ar2-Br (5)

DMAc

6aa, 94% 6ba, 94% 6bb, 77%

Pd(OAc)2, P(biphenyl-2-yl)tBu2

4 6

S S

Me

S

Me

OMe

6bc, 84% 6bd, 80% 6ca, 85%

S S

Me

S

OMeMe

CF3

6da, 91% 6ea, 83%

S S

CF3

 
a A mixture of 4 (0.50 mmol), 5 (1.5 mmol), Pd(OAc)2 (0.050 mmol), 
P(biphenyl-2-yl)tBu2 (0.10 mmol), and Cs2CO3 (2.0 mmol) was stirred in DMAc 
(2.5 mL) for 48 h at 160 ºC under N2. Ar-Br 5: Ar = Ph; 5a, Ar = 4-MeOC6H4 ; 5b, 
Ar = 4-CF3C6H4 ; 5c, and Ar = 1-naphthyl; 5d. b Isolated yield. 
 

3-Chloro-2-methoxycarbonylbenzo[b]thiophene (1) may also be a useful building block for 

the synthesis of 3-heteroatom-substituted 2-arylbenzothiophenes of high pharmaceutical value 

(Scheme 2).17  The carbon-chlorine bond in 1 is activated toward the nucleophilic substitution 

reaction with the aid of the electron-withdrawing nature of the proximal methoxycarbonyl group 
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so that the coupling with thiols is possible through an SNAr reaction even in the absence of 

transition metal catalysts.  Thus, the reaction of 1 with 3,4-dimethoxybenzenethiol (7) gave the 

expected product 8 and subsequent hydrolysis followed by palladium-catalyzed arylation under 

the same conditions as in Table 3 produced compound 9 in a good yield. 

S

Cl

COOMe HS OMe

OMe

+

160 ºC, 48 h

Pd(OAc)2 10 mol%
P(biphenyl-2-yl)tBu2 20 mol%

Cs2CO3 2 equiv

S

S

COOMe

Ph-Br (5a)

DMAc

K2CO3

DMF
60 ºC, 8 h

OMe

OMe

7, 60%

S

S

Ph

OMe

OMe

9, 70% in 2 steps
80 ºC, 8 h

KOH 2 equiv

EtOH/H2O

1

 

SCHEME 2. Synthesis of 2-Phenyl-3-sulfanylbenzo[b]thiophene 9. 

 

Next, the author applied the strategy to the construction of 

2,3,6,7-tetraarylbenzo[1,2-b;4,5-b’]dithiophenes.  The readily accessible 

2,6-bis(butoxycarbonyl)-3,7-dichlorobenzo[b]thiophene (10) from 1,4-phenylenediacrylic acid12c 

was employed as a platform, and the Suzuki–Miyaura coupling/ester hydrolysis/decarboxylative 

arylation sequence led to the facile preparation of tetraarylbenzodithiophenes 13 (Scheme 3).  It 

is noted that the corresponding dimethyl ester as the starting material was sparingly soluble in 

common organic solvents so that the author employed the dibutyl ester 10. 
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S

Cl

COOBu
S

Cl

BuOOC

Ar B(OH)2

120 ºC, 6 h
toluene

Ni cat.
K3PO4

80 ºC, 8 h

KOH

EtOH/H2O

160 ºC, 48 h

Pd cat.

Cs2CO3

Ar-Br

DMAc

S
COOBu

S
BuOOC

R1

R1

R1 = H; 11a, 76%
R1 = Me; 11b, 79%

S
COOH

S
HOOC

R1

R1

S

S

R1

R1

R2R2

R1 = H, R2 = H; 13aa 68%
R1 = H, R2 = OMe; 13ab 30%
R1 = H, R2 = NMe2; 13ae 35%
R1 = Me, R2 = H; 13ba 86%

quant.

 
SCHEME 3. Synthesis of 2,3,6,7-tetraarylbenzo[1,2-b;4,5-b’]dithiophenes 13. 

 

With the above benzodithiophenes 13, the investigation into their optical properties in 

CHCl3 solution was conducted.  The results are summarized in Table 4, and the spectra are 

shown in Figures 1 and 2.  The absorption and emission spectra of tetraphenyl derivative 13aa 

exhibited the major bands with maximum absorption Oabs and emission Oem at 344 and 412 nm, 

respectively (entry 1).  By the installation of the strongly electron-donating dimethylamino 

group to the benzene ring at the 2- and 6-positions, these peaks were red-shifted by about 35 nm 

to 378 and 447 nm, respectively (entry 3).  The methoxy substituent caused similar shifts, 

although the effects were relatively small (entry 2).  In accordance with the trend, the optical 

band gap E00 decreased in the order 13aa>13ab>13ae.  On the other hand, the modification at 

the 3- and 7-positions with the 4-tolyl substituted that may enhance the solubility gave only a 

minor change in the optical properties of the parent structure of 13aa (entry 4). 
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TABLE 4. Optical Properties of 2,3,6,7-Tetraarylbenzo[1,2-b;4,5-b’]dithiophenes 13. 

entry 13
 (nm)a
Oabs-sl

log H
 (nm)b

Oem-sl
)f-sl

c E00

(eV)d

4.311 13aa 344 0.30 3.29412
4.412 13ab 349 0.51 3.21421
4.603 13ae 378 0.35 2.94447
4.354 13ba 345 0.31 3.26412

 
a Absorption maximum in CHCl3 (5.0 x 5-10 M).  b Emission 
maximum in CHCl3 (5.0 x 5-10 M).  c Determined by 
comparison with CHCl3 solution (5.0 x 6-10 M) of quinine 
sulfate ()f = 0.55) exited at 366 nm.  d Optical band gap. 
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FIGURE 1. Absorption Spectra of the CHCl3 Solution of 13. 
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FIGURE 2. Photoluminescence spectra of the CHCl3 solution of 13. 

 
 

2.3 Conclusion 

In summary, the author has developed an effective method for the concise and convergent 

synthesis of 2,3-diarylbenzo[b]thiophenes from 3-chloro-2-methoxycarbonylbenzo[b]thiophene 

via nickel-catalyzed Suzuki–Miyaura cross-coupling and palladium-catalyzed decarboxylative 

arylation as the key transformations.  Its application to the construction of 

2,3,6,7-tetraarylbenzo[1,2-b;4,5-b’]dithiophene S systems appears to demonstrate the high 

synthetic utility of this methodology. 

 
 
2.4 Experimental Section 

General Remarks.  1H and 13C NMR spectra were recorded at 400 MHz and 100 MHz, 

respectively, for CDCl3 or DMSO-d6 solutions.  MS data were obtained by EI. GC analysis was 

carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. 
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d. 0.5 mm x 25 m).  Silica gel (Wakogel 200 mesh) was used for column chromatography.  All 

reactions were carried out under nitrogen atmospheres. 

Materials.  Unless otherwise noted, materials obtained from commercial suppliers were used 

without further purification.  Toluene and N,N-dimethylacetamide (DMAc) were freshly 

distilled from CaH2 prior to use.  Pd(OAc)2 was purchased from Wako.  P(biphenyl-2-yl)tBu2 

obtained from Strem.  NiCl2(dppe) was synthesized from NiCl2 and dppe.18  Methyl 

3-chlorobenzo[b]thiophene-2-carboxylate (1)12a and 

3,7-dichlorobenzo[1,2-b;4,5-b’]dithiophene-2,6-dicarbonyl dichloride12c were prepared by the 

methods reported previously.   

 

Experimental Procedure 

Nickel-Catalyzed Suzuki–Miyaura Cross-Coupling Reaction of 

3-Chloro-2-methoxycarbonylbenzo[b]thiophene (1) with Phenylboronic Acid (2a)  In a 

20-mL two-necked flask were added methyl 3-chlorobenzo[b]thiophene-2-carboxylate (1) (3.0 

mmol, 680 mg), phenylboronic acid (2a) (4.5 mmol, 549 mg), NiCl2(dppe) (0.15 mmol, 79 mg), 

K3PO4 (6.0 mmol, 1.3 g), and toluene (10 mL).  The resulting mixture was stirred under N2 

(balloon) at 120 ºC (bath temperature) for 10 h.  The product 3a (yield: 732 mg, 2.7 mmol, 

91%) was isolated by filtration of the mixture through a filter paper with diethyl ether as an 

eluent, evaporation of the solvents, and column chromatography on silica gel using hexane-ethyl 

acetate (98:2, v/v) 

 

Hydrolysis of Methyl 3-Phenylbenzo[b]thiophene-2-carboxylate (3a)  In a 100-mL flask 

were added methyl 3-phenylbenzo[b]thiophene-2-carboxylate (3a) (2.0 mmol, 536 mg), 

potassium hydroxide (12 mmol, 673 mg), water (4.0 mL), and ethanol (8.0 mL).  The mixture 

was heated at 80 ºC (bath temperature) for 8 h under N2.  After cooling and acidification with 

aqueous HCl (2.0 M), a white precipitate was collected, washed with water, and dried under 
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vacuum to afford carboxylic acid 4a. 

 

Palladium-Catalyzed Decarboxylative Arylation of 

3-Phenylbenzo[b]thiophene-2-carboxylic Acid (4a) with Bromobenzene (5a)  In a 20-mL 

two-necked flask were added 3-phenylbenzo[b]thiophene-2-carboxylic acid (4a) (0.50 mmol, 

127 mg), bromobenzene (5a) (1.5 mmol, 235 mg), Pd(OAc)2 (0.050 mmol, 11 mg), 

P(biphenyl-2-yl)tBu2 (0.10 mmol, 30 mg), Cs2CO3 (1.0 mmol, 325 mg), 1-methylnaphthalene (ca. 

50 mg) as an internal standard, and DMAc (2.5 mL).  The resulting mixture was stirred under 

N2 (balloon) at 160 ºC (bath temperature) for 48 h.  Analysis of the mixture by GC confirmed 

the formation of compound 6aa (yield: 140 mg, 98%).  After cooling, the reaction mixture was 

poured into diluted aqueous HCl, extracted with diethyl ether, and dried over Na2SO4.  The 

product 6aa (yield: 135 mg, 0.47 mmol, 94%) was isolated by column chromatography on silica 

gel using hexane as an eluent. 

 

Reaction of Methyl 3-Chlorobenzo[b]thiophene-2-carboxylate (1a) with 

3,4-Dimethoxybenzenethiol (7)  In a 100-mL two-necked flask were added 

3-chlorobenzo[b]thiophene-2-carboxylate (1a) (3.0 mmol, 680 mg), 3,4-dimethoxybenzenethiol 

(7) (3.6 mmol, 612 mg), K2CO3 (6.0 mmol, 829 mg), and DMF (20 mL).  The resulting mixture 

was stirred under N2 (balloon) at 80 ºC (bath temperature) for 6 h.  After cooling, the reaction 

mixture was poured into diluted aqueous HCl, extracted with diethyl ether, and dried over 

Na2SO4.  The product 8 (yield: 623 mg, 1.8 mmol, 60%) was isolated by column 

chromatography on silica gel using hexane-ethyl acetate as eluents (90:10, v/v) 

 

Preparation of 2,6-Bis(butoxycarbonyl)-3,7-dichlorobenzo[1,2-b;4,5-b’]dithiophene (10)  

In a 100-mL two-necked flask were added 3,7-dichlorobenzo[1,2-b;4,5-b’]- 

dithiophene-2,6-dicarbonyl dichloride (5.0 mmol, 1.9 g), butanol (20 mmol, 1.8 mL), pyridine 
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(20 mmol, 1.6 mL), and chlorobenzene (10 mL).  The resulting mixture was stirred under N2 

(balloon) at 100 ºC (bath temperature) for 6 h.  After cooling, the reaction mixture was filtered 

through a filter paper with diethyl ether as an eluent followed by evaporation of the solvent.  

The resulting solid was washed with water, and dried under vacuum.  The diester 10 (yield: 1.9 

g, 4.2 mmol, 83%) was isolated by recrystallization from toluene/hexane. 

 
Characterization Data of Products. 

Methyl 3-phenylbenzo[b]thiophene-2-carboxylate (3a) m.p. 154-155 

ºC; 1H NMR (400 MHz, CDCl3): δ 3.78 (s, 3H), 7.32-7.55 (m, 8H), 7.88 

(d, J = 8.1 Hz, 1H); 13C NMR: (100 MHz, CDCl3) δ 52.2, 122.5, 124.8, 

125.3, 127.2, 127.8, 128.0, 128.1, 129.6, 134.5, 140.1, 140.4, 144.2, 162.9; HRMS m/z = 

268.0557 (M+), calcd. for C16H12O2S: 268.0558. 

 

Methyl 3-(4-methylphenyl)benzo[b]thiophene-2-carboxylate (3b) m.p. 

95-97 ºC; 1H NMR (400 MHz, CDCl3): δ 2.44 (s, 3H), 3.79 (s, 3H), 

7.29-7.36 (m, 5H), 7.47 (m, 1H), 7.57 (d, J = 8.4 Hz, 1H), 7.87 (d, J = 8.1 

Hz, 1H); 13C NMR (100 MHz, CDCl3): δ 21.4, 52.1, 122.4, 124.7, 125.4, 

127.2, 128.8, 129.5, 131.4, 133.6, 137.8, 140.1, 140.4, 144.4, 162.9; HRMS m/z = 282.0712 

(M+), calcd. for C17H14O2S: 282.0715. 

 

Methyl 3-(4-methoxyphenyl)benzo[b]thiophene-2-carboxylate (3c) m.p. 

164-166 ºC; 1H NMR (400 MHz, CDCl3): δ 3.80 (s, 3H), 3.89 (s, 3H), 

7.01-7.05 (m, 2H), 7.33-7.38 (m, 3H), 7.47 (m, 1H), 7.59 (d, J = 7.7 Hz, 

1H), 7.87 (d, J = 8.0 Hz, 1H); 13C NMR (100 MHz, CDCl3): δ 52.2, 55.3, 

113.5, 122.5, 124.7, 125.4, 126.5, 127.2, 127.4, 131.0, 140.2, 140.4, 144.1, 159.5, 163.0; HRMS 

m/z = 298.0660 (M+), calcd. for C17H14O3S: 298.0664. 

S
COOMe

S
COOMe

Me

S
COOMe

OMe
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Methyl 3-(4-trifluoromethylphenyl)benzo[b]thiophene-2-carboxylate 

(3d) m.p. 127-129 ºC; 1H NMR (400 MHz, CDCl3): δ 3.63 (s, 3H), 

7.23-7.49 (m, 5H), 7.76 (d, J = 8.0 Hz, 2H), 7.91-7.97 (m, 1H); 13C NMR 

(100 MHz, CDCl3): δ 52.3, 122.6, 124.2 (q, J = 273.3 Hz), 124.9, 125.0 (q, 

J = 3.8 Hz), 125.1, 127.5, 128.5, 130.1, 130.2 (q, J = 32.9 Hz), 138.4, 139.6, 140.5, 142.4, 162.7; 

HRMS m/z = 336.0423 (M+), calcd. for C17H11F3O2S: 336.0432. 

 

Methyl 3-(1-naphthyl)benzo[b]thiophene-2-carboxylate (3e) m.p. 

135-136 ºC; 1H NMR (400 MHz, CDCl3): δ 3.66 (s, 3H), 7.22-7.49 (m, 

7H), 7.56-7.60 (m, 1H), 7.91-7.97 (m, 3H); 13C NMR (100 MHz, CDCl3): 

δ 52.1, 122.5, 124.8, 125.2, 125.47, 125.50, 125.8, 126.1, 127.2, 127.3, 

128.3, 128.5, 129.5, 132.2, 132.6, 133.5, 140.4, 140.6, 142.5, 162.7; HRMS m/z = 318.0721 

(M+), calcd. for C20H14O2S: 318.0714. 

 

3-Phenylbenzo[b]thiophene-2-carboxylic acid (4a) m.p. 188-191 ºC; 1H 

NMR (400 MHz, DMSO-d6): δ 7.38-7.56 (m, 8H), 8.08 (d, J = 8.0 Hz, 1H); 

13C NMR (100 MHz, DMSO-d6): δ 122.9, 124.6, 125.2, 127.3, 127.9, 128.0, 

129.69, 129.72, 134.3, 139.4, 139.8, 142.3, 163.3; HRMS m/z = 254.0399 (M+), calcd. for 

C15H10O2S: 254.0402. 

 

3-(4-Methylphenyl)benzo[b]thiophene-2-carboxylic acid (4b) m.p. 

229-230 ºC; 1H NMR (400 MHz, DMSO-d6): δ 2.38 (s, 3H), 7.29 (s, 4H), 

7.37-7.44 (m, 2H), 7.51 (m, 1H), 8.05 (d, J = 6.4 Hz, 1H); 13C NMR (100 

MHz, DMSO-d6): δ 20.9, 122.9, 124.6, 125.1, 127.1, 128.6, 129.7, 130.2, 

131.4, 137.1, 139.4, 139.9, 142.0, 163.5; HRMS m/z = 268.0562 (M+), calcd. for C16H12O2S: 

268.0558. 
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3-(4-Methoxyphenyl)benzo[b]thiophene-2-carboxylic acid (4c) m.p. 

233-235 ºC; 1H NMR (400 MHz, DMSO-d6): δ 3.82 (s, 3H), 7.04 (d, J = 

8.2 Hz, 2H), 7.33 (dt, J = 8.2 Hz, 0.5 Hz, 2H), 7.40 (m, 1H), 7.47 (d, J = 8.2 

Hz, 1H), 7.50-7.55 (m, 1H), 8.05 (d, J = 8.2 Hz, 1H); 13C NMR (100 MHz, 

DMSO-d6): δ 55.1, 113.5, 122.9, 124.7, 125.1, 126.2, 127.2, 129.3, 131.1, 139.4, 139.9, 142.2, 

159.0, 163.5; HRMS: m/z = 284.0508 (M+), calcd. for C16H12O3S: 284.0507. 

 

3-(4-Trifluoromethylphenyl)benzo[b]thiophene-2-carboxylic acid (4d) 

m.p. 266-268 ºC; 1H NMR (400 MHz, DMSO-d6): δ 7.37-7.43 (m, 2H), 

7.53-7.57 (m, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.84 (d, J = 8.0 Hz, 2H), 

8.08-8.11 (m, 1H); 13C NMR (100 MHz, DMSO-d6): δ 123.0, 124.36, 

124.37 (q, J = 270.8 Hz), 124.9 (q, J = 3.8 Hz), 125.4, 127.5, 129.4 (q, J = 32.4 Hz), 130.6, 

130.7 138.8, 139.3, 139.5, 140.7, 163.1; HRMS m/z = 322.0272 (M+), calcd. for C16H9F3O2S: 

322.0275. 

 

3-(1-Naphthyl)benzo[b]thiophene-2-carboxylic acid (4e) m.p. 213-214 

ºC; 1H NMR (400 MHz, DMSO-d6): δ 7.03 (d, J = 8.2 Hz, 1H), 7.29 (m, 

2H), 7.35 (m, 1H), 7.44-7.54 (m, 3H), 7.60-7.65 (m, 1H), 8.02 (dd, J = 7.8 

Hz, 8.3 Hz, 2H), 8.14 (d, J = 8.2 Hz, 1H); 13C NMR (100 MHz, DMSO-d6): 

δ 123.0, 124.6, 125.1, 125.2, 125.5, 125.9, 126.3, 127.3, 127.4, 128.2, 128.3, 131.4, 131.8, 132.5, 

133.1, 139.5, 140.4, 140.6, 163.2; HRMS m/z = 304.0559 (M+), calcd. for C19H12O2S: 304.0558. 
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2,3-Diphenylbenzo[b]thiophene (6aa) m.p. 115-117 ºC; 1H NMR (400 

MHz, CDCl3): δ 7.22-7.27 (m, 3H), 7.30-7.42 (m, 9H), 7.58-7.61 (m, 1H), 

7.85-7.90 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 122.1, 123.4, 124.4, 

124.5, 127.4, 127.7, 128.3, 128.6, 129.6, 130.4, 133.2, 134.2, 135.5, 138.8, 139.5, 140.9; HRMS 

m/z = 286.0811 (M+), calcd. for C20H14S: 286.0816. 

 

3-(4-Methylphenyl)-2-phenylbenzo[b]thiophene (6ba) m.p. 58-60 ºC; 1H 

NMR (400 MHz, CDCl3): δ 2.39 (s, 3H), 7.17-7.27 (m, 7H), 7.29-7.37 (m, 

4H), 7.58-7.61 (m, 1H), 7.84-7.88 (m, 1H); 13C NMR (100 MHz, CDCl3): 

δ 21.3, 122.0, 123.4, 124.4, 124.5, 127.6, 128.3, 129.4, 129.6, 130.3, 132.4, 

133.2, 134.4, 137.0, 138.8, 139.2, 141.0; HRMS m/z = 300.0974 (M+), calcd for C21H16S: 

300.0973. 

 

2-(4-Methoxyphenyl)-3-(4-methylphenyl)benzo[b]thiophene 

(6bb) m.p. 105-106 ºC; 1H NMR(400 MHz, CDCl3): δ 2.38 (s, 3H), 

3.74 (s, 3H), 6.76 (m, 2H), 7.17-7.32 (m, 8H), 7.52-7.55 (m, 1H), 

7.79-7.85 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 21.3, 55.2, 113.8, 

122.2, 123.2, 124.2, 124.3, 126.8, 129.4, 130.3, 130.7, 132.3, 132.6, 136.9, 138.5, 139.1, 141.1, 

159.1; HRMS m/z = 330.1078 (M+), calcd. for C22H18OS: 330.1078. 

 

3-(4-Methylphenyl)-2-(4-trifluoromethylphenyl)benzo[b]thiophen

e (6bc) m.p. 122-123 ºC; 1H NMR (400 MHz, CDCl3): δ 2.41 (s, 3H), 

7.18-7.23 (m, 4H), 7.35 (quint-d, J = 7.3 Hz, 1.8 Hz, 2H), 7.42 (d, J 

= 8.0 Hz, 2H), 7.49, (d, J = 8.0 Hz, 2H), 7.58-7.63 (m, 8.2 Hz, 1H), 

7.85-7.88 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 21.3, 122.7, 123.8, 124.1 (q, J = 273.3 Hz), 

124.6, 125.0, 125.3 (q, J = 3.8 Hz), 129.4 (q, J = 32.9 Hz), 129.6, 129.7, 130.1, 131.9, 134.7, 
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137.2, 137.5, 138.0, 139.0, 140.9; HRMS m/z = 368.0852 (M+), calcd. for C22H15F3S: 368.0847. 

 

3-(4-Methylphenyl)-2-(1-naphthyl)benzo[b]thiophene (6bd) m.p. 

130-132 ºC; 1H NMR (400 MHz, CDCl3): δ 2.22 (s, 3H), 6.97 (d, J = 8.3 

Hz, 2H), 7.14 (d, J = 8.3 Hz, 2H), 7.15-7.40 (m, 10H), 7.78 (d, J = 7.7 Hz, 

1H); 13C NMR (100 MHz, CDCl3): δ 21.1, 122.1, 123.5, 124.4, 124.5, 

125.0, 125.9, 126.17, 126.22, 128.1, 128.7, 128.9, 129.6, 129.7, 131.9, 

132.1, 132.6, 133.4, 135.8, 136.6, 137.4, 139.8, 139.9; HRMS m/z 350.1130 (M+), calcd. for 

C25H18S: 350.1129. 

 

3-(4-Methoxyphenyl)-2-phenylbenzo[b]thiophene (6ca) m.p. 127-128 

ºC; 1H NMR (400 MHz, CDCl3): δ 3.83 (s, 3H), 6.93 (m, 2H), 7.22-7.28 

(m, 5H), 7.30-7.36 (m, 4H), 7.56-7.61 (m, 1H), 7.84-7.90 (m, 1H); 13C 

NMR (100 MHz, CDCl3): δ 55.2, 114.1, 122.1, 123.4, 124.4, 124.5, 127.6, 

127.7, 128.3, 129,6, 131.5, 132.9, 134.4, 138.8, 139.1, 141.1, 159.9; HRMS m/z = 316.0916 

(M+), calcd. for C21H16OS: 316.0922. 

 

2-Phenyl-3-(4-trifluoromethylphenyl)benzo[b]thiophene (6da) m.p. 

89-91 ºC; 1H NMR (400 MHz, CDCl3): δ 7.25-7.31 (m, 5H), 7.33-7.40 (m, 

2H), 7.46 (d, J = 8.4 Hz, 2H), 7.53-7.57 (m, 1H), 7.65 (d, J = 8.4 Hz, 2H), 

7.87-7.91 (m, 1H); 13C NMR (100 MHz, CDCl3): δ 122.2, 122.9, 124.2 (q, 

J = 273.4 Hz), 124.7, 124.8, 125.6 (q, J = 3.8 Hz), 128.1, 128.6, 129.5 (q, J = 32.5 Hz), 129.7, 

131.8, 131.6, 133.7, 139.0, 139.4, 140.3, 140.8; HRMS m/z = 354.0688 (M+), calcd. for 

C19H13F3S: 354.0690. 
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3-(1-Naphthyl)-2-Phenylbenzo[b]thiophene (6ea) m.p. 144-146 ºC; 1H 

NMR (400 MHz, CDCl3): δ 7.06-7.40 (m, 10H), 7.43-7.49 (m, 2H), 7.59 (d, 

J = 8.4 Hz, 1H), 7.90 (m, 3H); 13C NMR (100 MHz, CDCl3): δ 122.0, 

123.8, 124.4, 124.6, 125.8, 126.0, 126.1, 126.2, 127.7, 128.2, 128.3, 128.7, 

28.8, 131.6, 132.7, 133.5, 133.8, 134.2, 138.5, 140.8, 141.9 (One signal would be overlapped by 

other signal.); HRMS: m/z = 336.0972 (M+), calcd. for C24H16S: 336.0973.  

 

Methyl 

3-(3,4-dimethoxyphenylthio)benzo[b]thiophene-2-carboxylate (8) 

m.p. 111-113 ºC; 1H NMR (400 MHz, CDCl3): δ 3.74 (s, 3H), 3.82 (s, 

3H), 3.95 (s, 3H), 6.72 (d, J = 8.4 Hz, 1H), 6.83-6.90 (m, 2H), 7.29-7.33 (m, 1H), 7.42-7.46 (m, 

1H), 7.78-7.84 (m, 2H); 13C NMR (100 MHz, CDCl3): δ 52.5, 55.87, 55.92, 111.6, 113.3, 122.6, 

122.7, 125.0, 125.5, 126.6, 127.4, 132.7, 132.9, 139.8, 139.9, 148.3, 149.2, 162.4; HRMS: m/z = 

360.0488 (M+), calcd. for C18H16O4S2: 360.0490. 

 

3-(3,4-Dimethoxyphenylthio)benzo[b]thiophene-2-carboxylic acid 

m.p. 172-174 ºC; 1H NMR (400 MHz, DMSO-d6): δ 3.66 (s, 3H), 

3.69 (s, 3H), 6.71 (dd, J = 8.4 Hz, 2.2 Hz, 1H), 6.85 (d, J = 8.4 Hz, 

1H), 6.99 (d, J = 2.2 Hz, 1H), 7.38 (m, 1.1 Hz, 1H), 7.51 (m, 1H), 7.72 (d, J = 8.4 Hz, 1H), 8.06 

(d, J = 8.4 Hz, 1H); 13C NMR (100 MHz, DMSO-d6): δ 55.9, 56.0, 112.9, 113.8, 122.6, 123.7, 

125.1, 125.7, 126.3, 127.8, 130.9, 135.5, 139.4, 139.8, 148.5, 149.4, 163.1; HRMS: m/z = 

346.0331 (M+) calcd for C17H14O4S2: 346.0334. 
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3-(3,4-Dimethoxyphenylthio)-2-phenylbenzo[b]thiophene (9) m.p. 

97-100 ºC; 1H NMR (400 MHz, CDCl3): δ 3.68 (s, 3H), 3.77 (s, 3H), 

6.57-6.67 (m, 3H), 7.34-7.46 (m, 5H), 7.72 (m, 2H), 7.82-7.89 (m, 

2H); 13C NMR (100 MHz, CDCl3): δ 55.7, 55.9, 111.0, 111.8, 119.7, 119.8, 122.1, 122.9, 125.0, 

125.1, 128.3, 128.4, 128.8, 129.9, 133.5, 138.3, 141.1, 147.4, 148.8, 149.2; HRMS m/z = 

378.0743 (M+), calcd. for C22H18O2S2: 378.0748. 

 

2,6-Bis(butoxycarbonyl)-3,7-dichlorobenzo[1,2-b;4,5-b’]d

ithiophene (10) m.p. 128-129 ºC; 1H NMR (400 MHz, 

CDCl3): δ 1.01 (t, J = 7.3 Hz, 6H), 1.48-1.57 (m, 4H), 

1.76-1.84 (m, 4H), 4.40 (t, J = 6.6 Hz, 4H), 7.96 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 13.9, 

19.5, 30.8, 66.1, 121.4, 126.5, 128.4, 133.1, 137.3, 161.0; HRMS: m/z = 458.0172 (M+), calcd. 

for C20H20Cl2O4S2: 458.0180. 

 

3,7-Diphenyl-2,6-bis(butoxycarbonyl)benzo[1,2-b;4,5-b’]

dithiophene (11a) m.p. 100-103 ºC; 1H NMR (400 MHz, 

CDCl3): δ 0.89 (t, J = 7.3 Hz, 6H), 1.22-1.32 (m, 4H), 

1.52-1.59 (m, 4H), 4.21 (t, J = 6.6 Hz, 4H), 7.37-7.51 (m, 

12H); 13C NMR (100 MHz, CDCl3): δ 13.7, 19.1, 30.5, 65.4, 

122.1, 128.1, 128.2, 128.6, 129.7, 134.4, 134.5, 139.5, 144.5, 162.4; HRMS: m/z = 542.1578 

(M+), calcd. for C32H30O4S2: 542.1586. 
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2,6-Bis(butoxycarbonyl)-3,7-bis(4-methylphenyl)benzo[1,

2-b;4,5-b’]dithiophene (11b) m.p. 110-111 ºC; 1H NMR 

(400 MHz, CDCl3): δ 0.90 (t, J = 7.4 Hz, 6H), 1.24-1.34 (m, 

4H), 1.51-1.62 (m, 4H), 2.44 (s, 6H), 4.21 (t, J = 6.7 Hz, 4H), 

7.29 (s, 8H), 7.40 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 

13.7, 19.1, 21.4, 30.5, 65.3, 122.1, 128.2, 128.8, 129.6, 

131.5, 134.4, 138.0, 139.5, 144.8, 162.4; HRMS: m/z = 570.1893 (M+), calcd. for C34H34O4S2: 

570.1899. 

 

3,7-Diphenylbenzo[1,2-b;4,5-b’]dithiophene-2,6-dicarboxyli

c acid (12a) m.p. >300 ºC; 1H NMR (400 MHz, DMSO-d6): δ 

7.38 (s, 2H), 7.41-7.52 (m, 10H); 13C NMR (100 MHz, 

DMSO-d6): δ 122.0, 128.0, 128.1, 129.5, 129.6, 133.0, 133.9, 

139.0, 143.3, 162.7; HRMS: m/z = 430.0329 (M+), calcd. for C24H14O4S2: 430.0334. 

 

3,7-Bis(4-methylphenyl)benzo[1,2-b;4,5-b’]dithiophene-2,6-

dicarboxylic acid (12b) m.p. >300 ºC; 1H NMR (400 MHz, 

DMSO-d6): δ 2.38 (s, 6H), 7.28-7.31 (m, 8H), 7.34-7.36 (m, 

2H); 13C NMR (100 MHz, DMSO-d6): δ 21.7, 122.8, 129.5, 

130.1, 130.4, 131.8, 133.8, 138.2, 139.9, 144.2, 163.6; HRMS: 

m/z = 458.0655 (M+), calcd. for C26H18O4S2: 458.0647. 

 

2,3,6,7-Tetraphenylbenzo[1,2-b;4,5-b’]dithiophene (13aa) 

m.p. 262-265 ºC; 1H NMR (400 MHz, CDCl3) δ 7.24-7.29 (m, 

6H), 7.34-7.44 (m, 14H), 7.48 (s, 2H); 13C NMR (100 MHz, 
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CDCl3) δ 120.4, 127.5, 127.7, 128.4, 128.7, 129.6, 130.5, 132.2, 134.1, 134.2, 135.7, 138.0, 

138.6; HRMS m/z (M+) calcd for C34H22S2: 494.1163, found: 494.1160. 

 

2,6-Bis(4-methoxyphenyl)-3,7-diphenylbenzo[1,

2-b;4,5-b’]dithiophene (13ab) m.p. 220-224 ºC; 

1H NMR (400 MHz, CDCl3): δ 3.79 (s, 6H), 

6.78-6.82 (m, 4H), 7.25-7.30 (m, 4H), 7.34-7.44 

(m, 12H); 13C NMR (100 MHz, CDCl3): δ 55.2, 113.9, 120.1, 126.6, 127.4, 128.7, 130.5, 130.7, 

131.8, 133.3, 135.9, 137.8, 138.5, 159.2; HRMS: m/z = 554.1370 (M+), calcd. for C36H26O2S2: 

554.1374. 

 

2,6-Bis(4-dimethylaminophenyl)-3,7-diphen

ylbenzo[1,2-b;4,5-b’]dithiophene (13ac) m.p. 

279-282 ºC; 1H NMR (400 MHz, CDCl3): δ 

2.94 (s, 12H), 6.58 (d, J = 8.8 Hz, 4H), 

7.21-7.25 (m, 4H), 7.34-7.44 (m, 12H); 13C NMR (100 MHz, CDCl3): δ 40.2, 112.0, 119.7, 

122.0, 127.1, 128.6, 130.2, 130.6, 131.5, 132.0, 136.5, 138.6, 149.8 (One signal would be 

overlapped by other signal.); HRMS: m/z = 580.2003 (M+), calcd. for C38H32N2S2: 580.2007. 

 

3,7-Bis(4-methylphenyl)-2,6-diphenylbenzo[1,2-b;4,5-b’]di

thiophene (13ba) m.p. 224-225 ºC; 1H NMR (400 MHz, 

CDCl3): δ 2.40 (s, 6H), 7.20-7.29 (m, 14H), 7.35-7.40 (m, 

4H), 7.48 (s, 2H); 13C NMR (100 MHz, CDCl3): δ 21.3, 

124.0, 127.6, 128.4, 129.4, 129.6, 130.3, 132.2, 132.7, 134.2, 

134.3, 137.2, 137.6, 138.6; HRMS: m/z = 522.1469 (M+), 

calcd. for C36H26S2: 522.1476. 
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Chapter 3 
 

Synthesis of 5-Alkenylazoles via Fujiwara-Moritani Reaction 

 

3.1 Introduction  

The palladium-catalyzed oxidative cross-coupling of arenes and alkenes via C-H bond 

cleavage of each substance, so-called Fujiwara-Moritani reaction, is quite attractive from the 

viewpoint of step economy and enables a rapid increase of molecular complexity in various 

arenes and heteroarenes.1  For example, the reactions of six-membered arenes having a 

directing group2 such as benzoic acid, anilide, and benzylamine, and electron-rich heteroarenes3 

including indole, thiophene, furan, and indolizine have been developed.  In addition, the direct 

alkenylation of unactivated electron-deficient arenes like pyridine N-oxide and perfluoroarene 

has been achieved.5  However, less attention has so far been focused on azoles, which are useful 

heteroaromatic cores in pharmaceutical and material chemistry.6  Most direct alkenylations of 

azoles still rely on the use of the corresponding alkenyl halides7 due to the problematic 

homocoupling under the oxidative conditions.8  Herein, the author reports an efficient 

palladium-based catalyst system for the direct C-H alkenylation of azoles with a number of 

alkenes.    

 

 
3.2 Results and Discussion 

As an initial attempt, treatment of isobutylthiazole (1a) with butyl acrylate (2a) in the presence 

of 10 mol% of Pd(OAc)2 and 3.0 equiv of AgOAc as an oxidant in mesitylene (2.5 mL) at 120 

˚C for 8 h afforded the corresponding 5-alkenylated product 3aa albeit in 29% yield (Table 1, 

entry 1).  While an acidic additive, PivOH, was found to accelerate the direct alkenylation, a 

small but significant amount of alkenylated mesitylene was also detected as a byproduct (entry 

2).  Thus, nonaromatic solvents were tested.  Aprotic polar solvents such as DMAc and 
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DMSO were ineffective (entries 3 and 4).  On the other hand, the reaction in PivOH itself gave 

3aa in high yield, and no byproduct was formed (entry 5).  EtCOOH further improved the yield 

of 3aa (entry 6).  The use of Cu(OAc)2 in place of AgOAc or lower temperature decreased the 

reaction efficiency (entries 7 and 8).  The lower catalyst loading had no negative influence on 

the yield (entry 9). 

 

TABLE 1. Optimization for Palladium-Catalyzed Reaction of Isobutylthiazole (1a) with Butyl 
Acrylate (2a). a 

+

oxidant

solvent, 8 h

N

SBui

N

SBui COOBu
COOBu

additive

entry     oxidant      additive        solvent      temp (ºC)     yield (%)b

1

3
4
5
6

8

120 29

15
49
88
93

30

PivOH
PivOH

-
-

- 90

-
2 120 88mesitylene

DMSO

7 54- EtCOOH

120
120
120
120
120

AgOAc
AgOAc
AgOAc
AgOAc
AgOAc
AgOAc

AgOAc
Cu(OAc)2

9 93- 120AgOAc

PivOH
mesitylene

DMAc
PivOH

EtCOOH

EtCOOH
EtCOOHc

 Pd(OAc)2

1a 2a 3aa

 
a) A mixture of 1a (0.2 mol), 2a (0.4 mmol), Pd(OAc)2 (0.02 mmol), 
additive (0.2 mmol), and oxidant (0.6 mmol) was stirred in solvent (1 
mL) for 8 h. b) GC yield. c) Pd(OAc)2 (0.01 mmol) was used. 
 

With the optimized reaction conditions in hand (Table 1, entry 9), a variety of alkenes were 

tested for the direct alkenylation of 1a (Table 2).  Acrylate esters bearing bulky t-butyl 2b and 

aromatic phenyl groups 2c resulted in the formation of 3ab and 3ac in 62% and 81% yields, 

respectively.  Acrylamide 2d showed a similar reactivity.  Styrenes also could be employed for 

the oxidative coupling.  Not only simple styrene (2e) but also electron-rich and -deficient 

styrenes 2f and 2g reacted with 1a smoothly to furnish 3ae-ag in good yields.  Interestingly, 
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methacrylate ester 2h provided the unconjugated (to azole) product 3ah as the major product 

(3ah : 3ah’ = 4.2 : 1).  In contrast, internal alkenes such as methyl cinnamate and 1-hexene 

gave the corresponding 5-alkenylated products in low yields (ca. <10%). 

 

TABLE 2. Palladium-Catalyzed Alkenylation of 2-Isobuylthiazole (1a) with Various Alkenes 2a. 

a, b 

3aa, 88% 3ab, 62% 3ac, 81%

3ad, 85% 3ae, 78% 3af, 69%

3ag, 64% 3ah + 3ah', 78%

N

SBui COOBu
N

SBui COOtBu
N

SBui COOPh

N

SBui CONMe2

N

SBui Ph
N

SBui
OMe

N

SBui
F

N

SBui COOBu
N

SBui COOBu

(4.2 : 1)

+
N

SBui

N

SBui R
R

 Pd(OAc)2
AgOAc

EtCOOH

1 2 3

 
a A mixture of 1a (0.50 mmol), 2 (1.0 mmol), Pd(OAc)2 (0.025 mmol), and AgOAc (1.5 mmol) 
was stirred in EtCOOH (2.5 mL) at 120 ˚C for 8 h.  Key: 2a, R = COOBu; 2b, R = COOtBu; 2c, 
R = COOPh; 2d, R = CONMe2; 2e, R = Ph; 2f, R = 4-MeOC6H4; 2g, R = 4-FC6H4. b Isolated 
yield.  c Butyl methacrylate was used as an alkene. 
 

The oxidative coupling reaction was further extended to various thiazoles 1 as shown in 

Table 3.  A smaller methyl-substituted thiazole 1b also afforded the desired product 3ba in 80% 

yield.  Thiazole having a free hydroxyl group 1c reacted with 2a without any difficulties.  

Moreover, thiazoles bearing heteroatom substituents at the 2-poition 1d-f gave 3da, 3ea, and 3fa 

in moderate to good yields. On the other hand, 2-phenylthiazole showed less activity toward the 
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reaction.  This is probably because of the catalyst deactivation arising from a competitive 

cyclopalladation on benzene ring.9  Therefore, the author tested 2-(2,6-dimethylphenyl)thiazole 

(1h) as the reactant to suppress the unfavorable palladation mentioned above.  As expected, 1h 

could be transformed to 3ha in 71% yield.  Notably, an introduction of a methyl group to the 

4-potition of thiazole significantly accelerated the reaction despite the presence of a phenyl 

substituent at the 2-potion (3ja).10  Furthermore, the coupling of 2,4-dimethylthiazole (1j) 

proceeded smoothly under the standard conditions. 

 

TABLE 3. Palladium-Catalyzed Alkenylation of Various Thiazoles 1 with n-Butyl Acrylate 

(2a).a 

+

 Pd(OAc)2 (10 mol%)
AgOAc (3.0 equiv)

EtCOOH, 120 ºC, 8 h
1 2a

N

S

3

R

N

SR COOBu

N

SMe COOBu

3ba, 80

N

S
COOBu

3ca, 73

Bu
Bu
HO

N

S
COOBu

3ha, 71

N

SMeO COOBu

N

SMeS COOBu

N

SBuAcN COOBu

N

SMe COOBu

Me
N

S
COOBu

Me

R'

3da, 56

3ea, 40 3fa, 73

3ja, 753ia, 63

R'

N

S
COOBu

3ga, trace

COOBu

 
a A mixture of 1 (0.50 mmol), 2a (1.0 mmol), Pd(OAc)2 (0.05 mmol), and AgOAc (1.5 mmol) 
was stirred in EtCOOH (2.5 mL) at 120 ˚C for 8 h. Key: 1b, R = Me, R’ = H; 1c, R = Bu2COH, 
R’ = H; 1d, R = MeO, R’ = H; 1e, R = MeS, R’ = H; 1f, R = NBuAc, R’ = H; 1g, R = Ph, R’ = 
H; 1h, R = 2,6-Me2C6H3, R’ = H; 1i, R = Ph, R’ = Me; 1j, R, R’ = Me. b Isolated yield.   
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2-Substituted oxazoles instead of thiazoles 1 were also available for use (Table 4). 

Interestingly, 2-phenyloxazole (4a) gave 5-alkenyled product 5a in 69% yield, which is in 

marked contrast to the trend of thiazole (Table 2, 3ga). 2,4-Dimethyloxazole (4b) also reacted 

with 2a and 2e smoothly to afford excellent yields of 5ab and 5be, respectively. 

 
TABLE 4. Palladium-Catalyzed Alkenylation of Oxazoles 4 with Alkenes 2. 

5aa: 69% 5ab: 95%

N

O
COOBu

N

OMe COOBu

Me

N

OMe Ph

Me

5be: 89%

+

4 2

N

O

5

R1
N

OR1 R3

R2 R2

R3

 Pd(OAc)2
AgOAc

EtCOOH

 
a A mixture of 1 (0.50 mmol), 2a (1.0 mmol), Pd(OAc)2 (0.05 mmol), 
and AgOAc (1.5 mmol) was stirred in EtCOOH (2.5 mL) at 120 ˚C 
for 8 h. Key: 4a, R1 = Ph, R2 = H; 4b, R1, R2 = Me; b Isolated yield.   

 

Next, the author attempted the direct C2 alkenylation of 4,5-dimethylthiazole (6) (Scheme 1).  

Under the standard conditions, the desired 7 was obtained albeit in 35% yield, contaminated with 

the conceivable homocoupling product 8. 
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+

 Pd(OAc)2 (10 mol%)
AgOAc (3.0 equiv)

EtCOOH, 120 ºC, 8 h
6 2d

N

S

7 35%

N

S Me

Me

Me

Me

Me2NOC

N

S Me

MeN

S

Me

Me

8 25%

+

CONMe2

 

SCHEME 1. Palladium-Catalyzed Alkenylation of 4,5-Dimethylthiazole (6) with 2d 

 

S-Extended 2,5-disubstituted thiazoles are known to show unique optical properties.11  

Inspired by the literature, the author synthesized some 2,5-dialkenylated thiazoles 10 and 

investigated their fluorescence in the solid state (Scheme 2).  The mono-alkenylated thiazole 

3bb was first prepared by the palladium-catalyzed direct alkenylation of 2-methylthiazole (1b).  

The deprotonation of 3bb with LDA at -78 ºC in THF and addition of the resultant lithium 

reagent to aromatic aldehydes at room temperature gave aldol-type products 9a-d. Finally, the 

author obtained the desired 2,5-dialkenylthiazoles 10 by dehydration of 9 upon treatment with 

mesyl chloride and triethylamine. 

 

N

SMe

N

SMe COOtBu
LDA

THF, -78 ºC,

ArCHO

rt, 3 h

N

S
COOtBu

OH

Ar

MsCl
NEt3

CH2Cl2, rt, 3 h

N

S
COOtBuAr

Pd(OAc)2
AgOAc

1b 3bb 69%

Ar = Ph 9a  45%
= 4-C6H4OMe 9b  69%

= 4-C6H4NMe2 9c  71%
9

10

= 4-C6H4CF3 9d  59%

10a  85%
10b  78%
10c  62%
10d  70%

30 min120 ºC, 8 h
EtCOOH

2b

 

SCHEME 2. Synthesis of 2,5-Dialkenylthizoles 10. 
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Dialkenylthiazoles 10 except for 10d showed solid-state fluorescence (Figure 1). The 

emission spectra of styryl-substituted 10a exhibited the major band with maximum emission Oem 

at 492 nm. By the installation of the strongly electron-donating dimethylamino group to the 

benzene ring, this peak was red-shifted by 78 nm (10c). The methoxy substituent caused a 

similar shift, although the effect was considerably small (10b).  These compounds exhibited 

similar or relatively strong emissions compared to a typical emitter, 

tris(8-hydroxyquinolinato)aluminum (Alq3). 
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FIGURE 1. Fluorescence Spectra of 10a,a 10b,a 10c,b and Alq3
c in the Solid State. a Exited at 

430 nm.b Exited at 500 nm. c Exited at 380 nm. 

 

 
3.3 Conclusion 

In summary, the author has described an effective palladium catalyst system for the direct 

alkenylation of thiazoles and oxazoles with alkenes.12  In addition, with the catalysis as the key 

transformation, the author succeeded in the efficient synthesis of S-conjugated 2,5-dialkenylated 
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thiazoles with interesting optical properties. 

 
 
3.4 Experimental Section 

General Remarks.  1H and 13C NMR spectra were recorded at 400 MHz and 100 MHz, 

respectively, for CDCl3 solutions. MS data were obtained by EI. GC analysis was carried out 

using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or a CBP-1 capillary column (i. d. 0.5 mm x 

25 m).  Silica gel (Wakogel 200 mesh) was used for column chromatography.  

Materials.  Unless otherwise noted, materials obtained from commercial suppliers were used 

without further purification.  Pd(OAc)2 and AgOAc were purchased from Wako.  

2-Phenylthiazole (2g)13 and 2-phenyloxazole (4a)14 were prepared by the methods reported 

previously. 

 

Experimental Procedure 

Synthesis of 5-(thiazol-2-yl)nonan-5-ol (1c).  In a 20 mL two-necked flask were added 

2-bromothiazole (3 mmol, 492 mg) and Et2O (2.5 mL) under nitrogen. nBuMgBr (3.6 mmol, 4.2 

mL, 0.85 M, Et2O solution) were added dropwise, and the resulting mixture was then stirred at 

40 ºC (bath temperature) for 1 h.  The reaction mixture was cooled to room temperature, and 

5-nonanone (512 mg, 3.6 mmol) was added.  The mixture was stirred overnight, poured into 

saturated aq. NH4Cl, and extracted with diethyl ether. The organic layer was dried over Na2SO4 

and concentrated in vacuo.  The product 1c (2.24 mmol, 509 mg, 75%) was isolated by 

chromatography on silca gel using hexane-ethyl acetate (9:1, v/v). 

 

Synthesis of 2-(2,6-dimethylphenyl)thiazole (1h).  In a 20 mL two-necked flask were added 

2-bromothiazole (2 mmol, 325 mg), 2,6-dimethylphenylboronic acid (2 mmol, 300 mg), 

Pd(PPh3)4 (0.2 mmol, 231 mg), 2 M aq. Na2CO3 (2.4 mL), toluene (2.4 mL) and EtOH (1 mL).  

The resulting mixture was stirred under nitrogen at 90 ºC (bath temperature) overnight.  After 
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cooling, the reaction mixture was poured into H2O, extracted with Et2O, and dried over Na2SO4.  

The product 1h (0.55 mmol, 104 mg, 28%) was isolated by chromatography on silca gel using 

hexane-ethyl acetate (95:5, v/v). 

 

Typical Procedure for Palladium-Catalyzed Alkenylation of Azoles 1 or 4 with Alkenes 2.  

In a 20 mL two-necked flask were added 2-isobutylthiazole (1a, 0.5 mmol, 71 mg), butyl 

acrylate (2a, 1 mmol, 128 mg), Pd(OAc)2 (0.03 mmol, 5.6 mg), AgOAc (1.5 mmol, 250 mg), 

dibenzyl (ca. 50 mg) as internal standard, and propionic acid (2.5 mL). The resulting mixture 

was stirred under nitrogen at 120 ºC (bath temperature) for 8 h. After the suspension was allowed 

to cool to room temperature, analysis of the mixture by GC confirmed the formation of the 

desired compound. The reaction mixture was poured into saturated aq. NaHCO3 and extracted 

with Et2O. The organic layer was dried over Na2SO4 and concentrated in vacuo. The product 3aa 

(0.44 mmol, 118 mg, 88%) was also isolated by chromatography on silica gel using hexane-ethyl 

acetate (95:5, v/v). 

 

Aldol-Type Reaction of 3bb with Benzaldehyde.  In a 20 mL two-necked flask were added 

diisopropylamine (1 mmol, 145 PL) and THF (1 mL) under nitrogen.  BuLi (1 mmol, 625 PL, 

1.6 M hexane solution) was added dropwise at 0 ºC, and the solution was stirred for 1 h at the 

same temperature.  The reaction mixture was cooled to -78 ºC and 3bb (225 mg, 1 mmol) in 

THF (1 mL) was added.  After 1 h, benzaldehyde (127 mg, 1.2 mmol) was added dropwise.  

The mixture was allowed to warm to room temperature and stirred overnight. The resulting 

mixture was poured into saturated aq. NH4Cl and extracted with diethyl ether. The organic layer 

was dried over Na2SO4 and concentrated in vacuo.  The product 9a (146 mg, 0.45 mmol, 45%) 

was also isolated by chromatography on silca gel using hexane-ethyl acetate (8:2, v/v). 

 

Dehydration of 9a.  In a 20 mL two-necked flask were added 9a (0.4 mmol, 132 mg), MsCl 
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(0.48 mmol, 37 PL) and CH2Cl2 (2 mL).  Triethylamine (0.96 mmol, 136 PL) was added at 0 ºC.  

The mixture was stirred at room temperature under air overnight and then poured into H2O.  

The organic layer was extracted with CH2Cl2, dried over Na2SO4, and concentrated in vacuo.  

The product 10a (0.34 mmol, 106 mg, 85%) was also isolated by chromatography on silca gel 

using hexane-ethyl acetate (9:1, v/v). 

 

Characterization Data of Products. 

(E)-Butyl 3-(2-isobutylthiazol-5-yl)acrylate (3aa) oil; 1H NMR (400 

MHz, CDCl3) δ 0.96 (t, J = 7.3 Hz, 3H), 1.00 (d, J = 6.9 Hz, 6H), 

1.39-1.45 (m, 2H), 1.64-1.69 (m, 2H), 2.09-2.16 (m, 1H), 2.87 (d, J = 7.0 Hz, 2H), 4.19 (t, J = 

7.0 Hz, 2H), 6.13 (d, J = 15.7 Hz, 1H), 7.74 (d, J = 15.7 Hz, 1H), 7.76 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 13.6, 19.1, 22.2, 29.7, 30.7, 42.7, 64.5, 119.6, 134.0, 134.3, 145.4, 166.3, 172.8; 

HRMS m/z (M+) calcd for C14H21NO2S: 267.1293, found: 267.1297. 

 

(E)-tert-Butyl 3-(2-isobutylthiazol-5-yl)acrylate (3ab) oil; 1H NMR 

(400 MHz, CDCl3) δ 1.00 (d, J = 6.6 Hz, 6H), 1.52 (s, 9H), 2.08-2.15 

(m, 1H), 2.86 (d, J = 7.3 Hz, 2H), 6.06 (d, J = 15.7 Hz, 1H), 7.63 (d, J = 15.7 Hz, 1H), 7.73 (s, 

1H); 13C NMR (100 MHz, CDCl3) δ 22.2, 28.1, 29.7, 42.7, 80.8, 121.7, 133.1, 134.5, 145.1, 

165.5, 172.5; HRMS m/z (M+) calcd for C14H21NO2S: 267.1293, found: 267.1291. 

 

(E)-Phenyl 3-(2-isobutylthiazol-5-yl)acrylate (3ac) m.p. 81-82 ºC; 

1H NMR (400 MHz, CDCl3) δ 1.02 (d, J = 6.6 Hz, 6H), 2.11-2.18 (m, 

1H), 2.90 (d, J = 7.3 Hz, 2H), 6.32 (d, J = 15.8 Hz, 1H), 7.15 (d, J = 7.7 Hz, 2H), 7.22-7.26 (m, 

1H), 7.40 (t, J = 7.7 Hz, 2H), 7.83(s, 1H), 7.93 (d, J = 15.6 Hz, 1H); 13C NMR (100 MHz, 

CDCl3) δ 22.2, 29.8, 42.8, 118.6, 121.5, 125.8, 129.4, 134.1, 136.0, 146.2, 150.7, 164.7, 173.6; 

HRMS m/z (M+) calcd for C16H17NO2S: 287.0980, found: 287.0983. 

N

SBui COOPh

N

SBu COOtBu

N

SBu COOBu
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(E)-3-(2-Isobutylthiazol-5-yl)-N,N-dimethylacrylamide (3ad) m.p. 

73-75 ºC; 1H NMR (400 MHz, CDCl3) δ 1.01 (d, J = 6.6 Hz, 6H), 

2.09-2.16 (m, 1H), 2.86 (d, J = 7.3 Hz, 2H), 3.06 (s, 3H), 3.14 (s, 3H), 6.18 (d, J = 15.0 Hz, 1H), 

7.72 (s, 1H) 7.74 (d, J = 15.0 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 22.2, 29.7, 35.9, 37.2, 

42.7, 118.8, 132.1, 135.1, 144.6, 165.8, 171.6; HRMS m/z (M+) calcd for C12H18N2OS: 238.1140, 

found: 238.1141. 

(E)-2-Isobutyl-5-styrylthiazole (3ae) m.p. 64-66 ºC; 1H NMR (400 MHz, 

CDCl3) δ 1.01 (d, J = 6.6 Hz, 6H), 2.09-2.16 (m, 1H), 2.85 (d, J = 7.0 Hz, 

2H), 6.80 (d, J = 16.2 Hz, 1H), 7.16 (d, J = 16.2 Hz, 1H), 7.23-7.27 (m, 1H), 7.32-7.36 (m, 2H), 

7.43-7.45 (m, 2H), 7.56 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 22.3, 29.7, 42.7, 118.7, 126.3, 

127.9, 128.7, 130.9, 136.6, 137.3, 140.8, 169.1; HRMS m/z (M+) calcd for C15H17NS: 243.1082, 

found: 243.1078. 

 

(E)-2-Isobutyl-5-(4-methoxystyryl)thiazole (3af) m.p. 59-61 

ºC; 1H NMR (400 MHz, CDCl3) δ 1.01 (d, J = 6.6 Hz, 6H), 

2.08-2.15 (m, 1H), 2.85 (d, J = 7.3 Hz, 2H), 3.83 (s, 3H), 6.76 (d, J = 16.1 Hz, 1H), 6.87-6.90 (m, 

2H), 7.03 (d, J = 16.1 Hz, 1H), 7.37-7.40 (m, 2H), 7.55 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 

22.3, 29.7, 42.7, 55.3, 114.2, 116.6, 127.6, 129.4, 130.5, 137.7, 140.1, 159.5, 168.6; HRMS m/z 

(M+) calcd for C16H19NOS: 273.1187, found: 273.1182. 

 

(E)-5-(4-Fluorostyryl)-2-isobutylthiazole (3ag) m.p. 51-52 ºC; 

1H NMR (400 MHz, CDCl3) δ 1.01 (d, J = 6.6 Hz, 6H), 2.09-2.16 

(m, 1H), 2.85 (d, J = 7.3 Hz, 2H), 7.76 (d, J = 16.2 Hz, 1H), 7.01-7.10 (m, 3H), 7.39-7.42 (m, 

2H), 7.58 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 22.3, 29.8, 42.7, 115.7 (d, J = 21.8 Hz), 118.5, 

127.8 (d, J = 8.0 Hz), 129.6, 132.8 (d, J = 3.4 Hz), 137.1, 140.8, 162.4 (d, J = 249.3 Hz), 169.2; 

HRMS m/z (M+) calcd for C15H16FNS: 261.0987, found: 261.0985. 
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Butyl 2-[(2-isobutylthiazol-5-yl)methyl]acrylate (3ah) oil; 1H 

NMR (400 MHz, CDCl3) δ 0.93 (t, J = 7.3 Hz, 3H), 0.97 (d, J = 6.5 

Hz, 6H), 1.33-1.43 (m, 2H), 1.61-1.68 (m, 2H), 2.04-2.11 (m, 1H), 2.80 (d, J = 7.3 Hz, 2H), 3.78 

(s, 2H), 4.17 (t, J = 7.0 Hz, 2H), 5.59-5.60 (m, 1H), 6.22 (s, 1H), 7.37 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 13.7, 19.1, 22.3, 29.4, 29.7, 30.6, 42.5, 64.9, 126.4, 134.7, 139.1, 140.3, 166.4, 

169.8; HRMS m/z (M+) calcd for C15H23NO2S: 281.1449, found: 281.1443.  

 

(E)-Butyl 3-(2-isobutylthiazol-5-yl)-2-methylacrylate (3ah’) oil; 1H 

NMR (400 MHz, CDCl3) δ 0.97 (t, J = 7.3 Hz, 3H), 1.00 (d, J = 6.6 

Hz, 6H), 1.39-1.47 (m, 2H), 1.66-1.73 (m, 2H), 2.11-2.18 (m, 4H), 2.90 (d, J = 7.3 Hz, 2H), 4.12 

(t, J = 6.5 Hz, 2H), 7.78 (s, 1H), 7.81(s, 1H); 13C NMR (100 MHz, CDCl3) δ 13.7, 14.3, 19.2, 

22.3, 29.8, 30.7, 42.5, 65.0, 126.6, 128.6, 133.2, 146.0, 168.1, 178.3; HRMS m/z (M+) calcd for 

C15H23NO2S: 281.1449, found: 281.1444.  

 

(E)-Butyl 3-(2-methylthiazol-5-yl)acrylate (3ba) oil; 1H NMR (400 

MHz, CDCl3) δ 0.96 (t, J = 7.7 Hz, 3H), 1.38-1.47 (m, 2H), 1.64-1.69 

(m, 2H), 2.73 (s, 3H), 4.20 (t, J = 7.0 Hz, 2H), 6.12 (d, J = 15.7 Hz, 1H), 7.72, (d, J = 15.7 Hz, 

1H), 7.73 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 13.7, 19.2, 19.7, 30.7, 64.6, 119.8, 134.0, 

134.8, 145.5, 166.3, 168.4; HRMS m/z (M+) calcd for C11H15 NO2S: 225.0823, found: 225.0822. 

 

(E)-Butyl 3-[2-(5-hydroxynonan-5-yl)thiazol-5-yl]acrylate (3ca) 

oil; 1H NMR (400 MHz, CDCl3) δ 0.86 (t, J = 7.4 Hz, 6H), 0.96 (t, 

J = 7.3 Hz, 3H), 1.03-1.10 (m, 2H), 1.23-1.47 (m, 8H), 1.64-1.71 (m, 2H), 1.82-1.97 (m, 4H), 

2.85 (s, 1H), 4.20 (t, J = 6.9 Hz, 2H), 6.18 (d, J = 15.6 Hz, 1H), 7.74 (d, J = 15.6 Hz, 1H), 7.79 (s, 

1H); 13C NMR (100 MHz, CDCl3) δ 13.7, 13.9, 19.1, 22.8, 25.4, 30.7, 42.2, 64.6, 78.3, 120.0, 

134.1, 134.9, 145.2, 166.4, 180.5; HRMS m/z (M+) calcd for C19H31NO3S: 353.2025, found: 
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353.2019. 

 

(E)-Butyl 3-(2-methoxythiazol-5-yl)acrylate (3da) oil; 1H NMR 

(400 MHz, CDCl3) δ 0.96 (t, J = 7.3 Hz, 3H), 1.42 (sex, J = 7.3 Hz, 

2H), 1.67 (quin, J = 7.3 Hz, 2H), 4.11 (s, 3H), 4.18 (t, J = 7.3 Hz, 2H), 5.94 (d, J = 15.6 Hz, 1H), 

7.29 (s, 1H), 7.64 (d, J = 15.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 13.7, 19.1, 30.7, 58.6, 

64.4, 117.3, 127.9, 134.9, 141.5, 166.6, 176.0; HRMS m/z (M+) calcd for C11H15NO3S: 241.0773, 

found: 241.0777. 

 

(E)-Butyl 3-[2-(methylthio)thiazol-5-yl]acrylate (3ea) oil; 1H 

NMR (400 MHz, CDCl3) δ 0.96 (t, J = 7.7 Hz, 3H), 1.42 (sex, J = 

7.7 Hz, 2H), 1.63-1.70 (m, 2H), 2.72 (s, 3H), 4.19 (t, J = 6.9 Hz, 2H), 6.03 (d, J = 15.8 Hz, 1H), 

7.70, (d, J = 15.8 Hz, 1H) 7.71 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 13.7, 16.3, 19.1, 30.7, 

64.5, 119.2, 133.4, 134.1, 145.7, 166.3, 169.7; HRMS m/z (M+) calcd for C11H15NO2S2: 

257.0544, found: 257.0543. 

 

(E)-Butyl 3-[2-(N-butylacetamido)thiazol-5-yl]acrylate (3fa) 

oil; 1H NMR (400 MHz, CDCl3) δ 0.94-1.01 (m, 6H), 1.40-1.46 

(m, 4H), 1.64-1.78 (m, 4H), 2.43 (s, 3H), 4.12-4.20 (m, 4H), 6.15 (d, J = 15.8 Hz, 1H), 7.60 (s, 

1H), 7.74 (d, J = 15.8 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 13.71, 13.73, 19.2, 20.0, 22.6, 

30.6, 30.7, 48.3, 64.4, 117.5, 129.7, 135.0, 141.3, 160.2, 166.8, 169.9; HRMS m/z (M+) calcd for 

C16H24N2O3S: 324.1508, found: 324.1511. 

     

(E)-Butyl 3-[2-(2,6-dimethylphenyl)thiazol-5-yl]acrylate (3ha)  

oil; 1H NMR (400 MHz, CDCl3) δ 0.97 (t, J = 7.3 Hz, 3H), 1.44 
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(sex, J = 7.3 Hz, 2H), 1.69 (quin, J = 7.3 Hz, 2H), 2.18 (s, 6H), 4.21 (t, J = 7.3 Hz, 2H), 6.23 (d, 

J = 15.1 Hz, 1H), 7.12 (d, J = 7.8 Hz, 2H), 7.26 (t, J = 7.8 Hz, 1H), 7.85 (d, J = 15.1 Hz, 1H), 

8.01 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 13.7, 19.2, 20.2, 30.8, 64.6, 120.5, 127.7, 129.7, 

132.9, 133.8, 136.3, 137.6, 145.9, 166.3, 168.7; HRMS m/z (M+) calcd for C18H21NO2S: 

315.1293, found: 315.1298. 

 

(E)-Butyl 3-(4-methyl-2-phenylthiazol-5-yl)acrylate (3ia) m.p. 

53-55 ºC; 1H NMR (400 MHz, CDCl3) δ 0.96 (t, J = 7.7 Hz, 3H), 

1.44 (sex, J = 7.7 Hz, 2H), 1.66-1.72 (m, 2H), 2.57 (s, 3H), 4.21 (t, 

J = 7.0 Hz, 2H), 6.13 (d, J = 15.4 Hz, 1H), 7.42-7.46 (m, 3H), 7.80 (d, J = 15.4 Hz, 1H), 

7.92-7.95 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 13.7, 15.7, 19.2, 30.7, 64.5, 118.9, 126.7, 

128.5, 129.0, 130.7, 133.1, 133.8, 156.6, 166.6, 167.5; HRMS m/z (M+) calcd for C17H19NO2S: 

301.1136, found: 301.1139. 

 

(E)-Butyl 3-(2,4-dimethylthiazol-5-yl)acrylate (3ja) oil; 1H NMR 

(400 MHz, CDCl3) δ 0.97 (t, J = 7.3 Hz, 3H), 1.43 (sex, J = 7.3 Hz, 

2H), 1.64-1.71 (m, 2H), 2.48 (s, 3H), 2.67 (s, 3H), 4.19 (t, J = 6.6 Hz, 2H), 6.01 (d, J = 15.4 Hz, 

1H), 7.74 (d, J = 15.4 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 13.7, 15.5, 19.1, 19.6, 30.7, 64.4, 

118.5, 128.2, 133.9, 155.1, 166.4, 166.7; HRMS m/z (M+) calcd for C12H17NO2S: 239.0980, 

found: 239.0977. 

 

(E)-Butyl 3-(2-phenyloxazol-5-yl)acrylate (5aa) m.p. 83-85 ºC; 

1H NMR (400 MHz, CDCl3) δ 0.97 (t, J = 7.3 Hz, 3H), 1.44 (sex, 

J = 7.3 Hz, 2H), 1.66-1.73 (m, 2H), 4.20 (t, J = 6.6 Hz, 2H), 6.47 (d, J = 15.7 Hz, 1H), 7.37 (s, 

1H), 7.47-7.51 (m, 4H), 8.07-8.10 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 13.7, 19.1, 30.7, 64.6, 

118.2, 126.7, 126.8, 127.6, 128.9, 131.2, 131.9, 148.0, 163.0, 166.5; HRMS m/z (M+) calcd for 
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C16H17NO3: 271.1208, found: 271.1199. 

 

(E)-Butyl 3-(2,4-dimethyloxazol-5-yl)acrylate (5ba) oil; 1H NMR 

(400 MHz, CDCl3) δ 0.96 (t, J = 7.4 Hz, 3H), 1.43 (sex, J = 7.4 Hz, 

2H), 1.64-1.71 (m, 2H), 2.24 (s, 3H), 2.46 (s, 3H), 4.20 (t, J = 6.9 Hz, 2H), 6.20 (d, J = 15.6 Hz, 

1H), 7.42 (d, J = 15.6 Hz, 1H); 13C NMR (100 MHz, CDCl3) δ 11.8, 13.7, 14.1, 19.2, 30.7, 64.4, 

115.4, 127.1, 140.6, 143.4, 162.4, 167.0; HRMS m/z (M+) calcd for C12H17NO3: 233.1208, 

found: 233.1206. 

 

(E)-2,4-dimethyl-5-styryloxazole (5be) 65-67 ºC; 1H NMR (400 

MHz, CDCl3) δ 2.21 (s, 3H), 2.45 (s, 3H), 6.81 (d, J = 16.5 Hz, 1H), 

6.90 (d, J = 16.5 Hz, 1H), 7.22-7.26 (m, 1H), 7.32-7.36 (m, 2H), 7.45 

(d, J = 7.3 Hz, 2H); 13C NMR (100 MHz, CDCl3) δ 11.5, 13.9, 112.6, 126.2, 126.7 127.6, 128.7, 

133.8, 136.8, 145.0, 159.3; HRMS m/z (M+) calcd for C13H13NO: 199.0997, found: 199.0995. 

 

(E)-3-(4,5-Dimethylthiazol-2-yl)-N,N-dimethylacrylamide (7) m.p. 

93-94 ºC; 1H NMR (400 MHz, CDCl3) δ 2.36 (s, 3H), 2.38 (s, 3H), 

3.06 (s, 3H), 3.17 (s, 3H), 7.14 (d, J = 15.0 Hz, 1H), 7.60 (d, J = 15.0 Hz, 1H); 13C NMR (100 

MHz, CDCl3) δ 11.6, 14.7, 35.9, 37.4, 119.9, 129.2, 133.6, 150.5, 159.2, 165.8; HRMS m/z (M+) 

calcd for C10H14N2OS: 210.0827, found: 210.0828. 

 

(E)-tert-Butyl 3-(2-methylthiazol-5-yl)acrylate (3bb) m.p. 58-59 

ºC; 1H NMR (400 MHz, CDCl3) δ 1.58 (s, 9H), 2.72 (s, 3H), 6.04 (d, 

J = 15.7 Hz, 1H), 7.63 (d, J = 15.7 Hz, 1H), 7.70 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 19.7, 

28.1, 80.8, 121.7, 133.0, 134.9, 145.1, 165.5, 168.1; HRMS m/z (M+) calcd for C11H15NO2S: 

225.0823, found: 225.0821. 
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(E)-tert-Butyl 

3-[2-(2-hydroxy-2-phenylethyl)thiazol-5-yl]acrylate (9a) 

oil; 1H NMR (400 MHz, CDCl3) δ 1.58 (s, 9H), 3.33-3.35 (m, 2H), 3.92 (bs, 1H), 5.16-5.19 (m, 

1H), 6.08 (d, J = 15.6 Hz, 1H), 7.28-7.42 (m, 5H), 7.63 (d, J = 15.6 Hz, 1H), 7.77 (s, 1H); 13C 

NMR (100 MHz, CDCl3) δ 28.1, 42.5, 72.8, 81.0, 122.3, 125.7, 127.9, 128.6, 132.6, 134.8, 142.6, 

144.7, 165.4, 169.5; HRMS m/z [(M+H)+] calcd for C18H22NO3S: 332.1320, found: 332.1317. 

 

(E)-tert-Butyl 

3-[2-{2-hydroxy-2-(4-methoxyphenyl)ethyl}thiazol-

5-yl]acrylate (9b) m.p. 125-126 ºC; 1H NMR (400 MHz, CDCl3) δ 1.51 (s, 9H), 3.31-3.33 (m, 

2H), 3.81 (s, 3H), 3.81-3.83 (m, 1H), 5.10-5.14 (m, 1H), 6.07 (d, J = 15.8 Hz, 1H), 6.89 (d, J = 

8.8 Hz, 2H), 7.32 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 15.8 Hz, 1H), 7.75 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 28.1, 42.6, 55.3, 72.4, 80.9, 113.9, 122.2, 127.0, 132.7, 134.7, 134.8, 144.7, 

159.2, 165.4, 169.6; HRMS m/z (M+) calcd for C19H23NO4S: 361.1348, found: 361.1341. 

 

(E)-tert-Butyl 

3-[2-{2-(4-dimethylaminophenyl)-2-hydroxyethyl}

thiazol-5-yl]acrylate (9c) m.p. 99-100 ºC; 1H NMR (400 MHz, CDCl3) δ 1.52 (s, 9H), 2.95 (s, 

6H), 3.28-3.40 (m, 2H), 3.49 (bs, 1H), 5.06-5.07 (m, 1H), 6.07 (d, J = 15.8 Hz, 1H), 6.71 (d, J = 

8.8 Hz, 2H), 7.26 (d, J = 8.8 Hz, 2H), 7.63 (d, J = 15.8 Hz, 1H), 7.75 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 28.1, 40.6, 42.6, 72.7, 80.9, 112.5, 122.2, 126.7, 130.4, 132.8, 134.8, 144.7 

150.4, 165.5, 170.0; HRMS m/z (M+) calcd for C20H26N2O3S: 374.1664, found: 374.1668. 

 

(E)-tert-Butyl 

3-[2-{2-(4-trifluoromethylphenyl)-2-hydroxyethyl}t

hiazol-5-yl]acrylate (9d) m.p. 164-165 ºC; 1H NMR (400 MHz, CDCl3) δ 1.52 (s, 9H), 
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3.29-3.34 (m, 2H), 4.42 (bs, 1H), 5.24-5.26 (m, 1H), 6.08 (d, J = 15.6 Hz, 1H), 7.53 (d, J = 7.8 

Hz, 2H), 7.62 (d, J = 7.8 Hz, 1H), 7.63 (d, 15.6 Hz, 1H), 7.77 (s, 1H); 13C NMR (100 MHz, 

CDCl3) δ 28.1, 42.1, 72.0, 81.0, 122.6, 124.1 (q, J = 270.3 Hz), 125.5 (q, J = 3.8 Hz), 126.0, 

130.0 (q, J = 32.4 Hz), 132.4, 134.9, 144.6, 146.5, 165.3, 168.9; HRMS m/z (M+) calcd for 

C19H20F3NO3S: 399.1114, found: 399.1111. 

 

(E)-tert-Butyl 3-(2-styrylthiazol-5-yl)acrylate (10a) m.p. 

96-97 ºC; 1H NMR (400 MHz, CDCl3) δ 1.53 (s, 9H), 6.13 

(d, J = 15.8 Hz, 1H), 7.25 (d, J = 16.5 Hz, 1H), 7.34-7.40 (m, 3H), 7.42 (d, J = 16.5 Hz, 1H), 

7.54-7.56 (m, 2H), 7.67 (d, J = 15.8 Hz, 1H), 7.85 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 28.1, 

80.9, 121.2, 122.1, 127.3, 129.0, 129.4, 132.8, 134.3, 135.4, 136.1, 146.5, 165.5, 168.3; HRMS 

m/z (M+) calcd for C18H19NO2S: 313.1136, found: 313.1122. 

 

(E)-tert-Butyl 

3-[2-(4-methoxystyryl)thiazol-5-yl]acrylate (10b) 

m.p. 128-129 ºC; 1H NMR (400 MHz, CDCl3) δ 1.53 (s, 9H), 3.85 (s, 3H), 6.10 (d, J = 15.7 Hz, 

1H), 6.92 (d, J = 8.8 Hz, 2H), 7.12 (d, J = 16.5 Hz, 1H), 7.41 (d, J = 16.5 Hz, 1H), 7.49 (d, J = 

8.8 Hz, 2H), 7.66 (d, J = 15.7 Hz, 1H), 7.81 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 28.1, 55.4, 

80.8, 114.4, 119.1, 121.7, 128.1, 128.8, 132.9, 133.8, 135.9, 146.5, 160.7, 165.5, 168.9; HRMS 

m/z (M+) calcd for C19H21NO3S: 343.1242, found: 343.1238. 

 

(E)-tert-Butyl 

3-[2-(4-dimethylaminostyryl)thiazol-5-yl]acrylate 

(10c) m.p. 150-152 ºC; 1H NMR (400 MHz, CDCl3) δ 1.53 (s, 9H), 3.02 (s, 6H), 6.07 (d, J = 

15.6 Hz, 1H), 6.69 (d, J = 8.7 Hz, 2H), 7.05 (d, J = 16.0 Hz, 1H), 7.38 (d, J = 16.0 Hz, 1H), 7.43 

(d, J = 8.7 Hz, 2H), 7.66 (d, J = 15.6 Hz, 1H), 7.78 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 28.1, 
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40.2, 80.7, 112.0, 116.5, 121.0, 123.2, 128.9, 132.9, 133.1, 136.8, 146.6, 151.1, 165.7, 169.9; 

HRMS m/z (M+) calcd for C20H24N2O2S: 356.1558, found: 356.1555. 

 

(E)-tert-Butyl 

3-[2-(4-trifluoromethylstyryl)thiazol-5-yl]acrylate 

(10d) m.p. 153-155 ºC; 1H NMR (400 MHz, CDCl3) δ 1.53 (s, 9H), 6.16 (d, J = 15.8 Hz, 1H), 

7.31 (d, J = 16.5 Hz, 1H), 7.47 (d, J = 16.0 Hz, 1H), 7.65 (m, 4H), 7.68 (d, J = 16.0 Hz, 1H), 

7.88 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 28.1, 81.0, 122.6, 123.4, 124.0 (q, J = 273.3 Hz), 

125.9 (q, J = 3.2 Hz), 127.4, 130.8 (q, J = 32.8 Hz), 132.5, 134.0, 135.0, 138.7, 146.6, 165.3, 

167.2; HRMS m/z (M+) calcd for C19H18F3NO2S: 381.1010, found: 381.1009. 
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Conclusion 

 

Included in this thesis is the synthesis of multi-substituted heteroarenes via 

palladium-catalyzed C-H bond cleavage and decarboxylation.  The contents of this thesis is 

summarized as follows. 

Chapter 1 described that 2,3-diarylindoles can be readily prepared by the 

palladium-catalyzed direct and decarboxylative arylations of carboxyindoles.  This approach 

led to the discovery of a highly luminescent solid blue emitter. 

In chapter 2, the author had developed an effective method for the concise and convergent 

synthesis of 2,3-diarylbenzo[b]thiophenes from readily available 

3-chloro-2-methoxycarbonylbenzo[b]thiophene via nickel-catalyzed Suzuki–Miyaura 

cross-coupling and palladium-catalyzed decarboxylative arylation.   

Chapter 3 addressed an effective palladium catalyst system for the direct alkenylation with 

thiazoles and oxazoles with alkenes.  In addition, with the catalysis as the key transformation, 

the author succeeded in the efficient synthesis of S-conjugated 2,5-dialkenylated thiazoles of 

interesting optical properties. 

This study showed that Pd-catalyzed C-H and C-C bond cleavages provided a new 

opportunity for C-C bond formation and contributed to the development of synthetic methods for 

multi-substituted heteroarenes.  Moreover, the author revealed their applications to the efficient 

synthesis of organic fluorescent compounds. 
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