<table>
<thead>
<tr>
<th>Title</th>
<th>Nash G manifold structures of compact or compactifiable C^∞ G manifolds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>川上，智博</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>https://doi.org/10.11501/3110235</td>
</tr>
<tr>
<td>DOI</td>
<td>10.11501/3110235</td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
</tbody>
</table>
NASH G MANIFOLD STRUCTURES OF COMPACT OR COMPACTIFIABLE $C^\infty G$ MANIFOLDS

TOMOHIRO KAWAKAMI
NASH G MANIFOLD STRUCTURES OF COMPACT OR COMPACTIFIABLE $C^\infty G$ MANIFOLDS

Tomohiro Kawakami
Department of Liberal Arts, Osaka Prefectural College of Technology, Neyagawa Osaka 572, Japan

1. Introduction.

Let G be a compact affine Nash group. We say that a $C^\infty G$ manifold X admits a (resp. an affine, a nonaffine) Nash G manifold structure if there exists a (resp. an affine, a nonaffine) Nash G manifold Y such that X is $C^\infty G$ diffeomorphic to Y. In the present paper we consider Nash G manifold structures of compact or compactifiable $C^\infty G$ manifolds.

We have the following when X is compact.

Theorem 1. Let G be a compact affine Nash group and let X be a compact $C^\infty G$ manifold with $\dim X \geq 1$.

(1) X admits exactly one affine Nash G manifold structure up to Nash G diffeomorphism.

(2) If G acts on X transitively then a Nash G manifold structure of X is unique up to Nash G diffeomorphism.

(3) If X is connected and the action on X is not transitive, then X admits a continuum number of nonaffine Nash G manifold structures.

In the non-equivariant category, M. Shiota in [4] proved that any compactifiable C^∞ manifold X admits a continuum number of nonaffine Nash manifold structures. When X is not compact but compactifiable, an affine Nash compactification of X is not unique, and the number of affine ones can be investigated by the cardinality of the Whitehead torsion of X [6]. Here an affine Nash compactification of X means an affine Nash manifold Y with boundary so that X is C^∞ diffeomorphic to the interior of Y.

We say that a $C^\infty G$ manifold X is compactifiable as a $C^\infty G$ manifold if there exists a compact $C^\infty G$ manifold Y with boundary so that X is $C^\infty G$ diffeomorphic to the interior of Y. We obtain the following.

Theorem 2. Let G be a compact affine Nash group and let X be a non-compact compactifiable $C^\infty G$ manifold with $\dim X \geq 1$.

(1) X admits an affine Nash G manifold structure.

(2) X admits a continuum number of nonaffine Nash G manifold structures.

This paper consists of two parts. The first half is to investigate Nash G manifold structures of compact $C^\infty G$ manifolds. We consider Nash G manifold structures of compactifiable (not compact) $C^\infty G$ manifolds in the latter half.
In this paper all Nash G manifolds and all Nash G maps are of class C^∞ unless otherwise stated.

Acknowledgement. I would like to thank Professor M. Shiota for many useful conversations and suggestions. Theorem 1 (2) is due to the cooperation of Professor M. Shiota.

First of all we recall the definition of Nash groups.

Definition 2.1. A group is called a (resp. an affine) Nash group if it is a (resp. an affine) Nash manifold and that the multiplication $G \times G \to G$, the inversion $G \to G$ are Nash maps.

We remark that one-dimensional Nash groups are classified by J.J. Madden and C.M. Stanton [2]. Let G be an affine Nash group. In this paper, a *representation* of G means a Nash group homomorphism $G \to GL(\mathbb{R}^n)$ for some \mathbb{R}^n. Here a Nash group homomorphism means a group homomorphism which is a Nash map. We use a representation as a representation space.

Definition 2.2. Let G be an affine Nash group

1. An affine Nash submanifold in some representation of G is called an affine Nash G submanifold if it is G invariant. A Nash manifold X with G action is said to be a Nash G manifold if the action map $G \times X \to X$ is a Nash map.

2. Let X and Y be Nash G manifolds. A Nash map $f : X \to Y$ is called a Nash G map if it is a G map. We say that X is Nash G diffeomorphic to Y if there exist Nash G maps $f : X \to Y, h : Y \to X$ so that $f \circ h = id, h \circ f = id$.

3. A Nash G manifold X is said to be affine if there exists an affine Nash G submanifold Y so that X is Nash G diffeomorphic to Y.

Tubular neighborhood theorem and collaring theorem are well known in the smooth equivariant category. They are proved in the Nash category by M. Shiota (Lemma 1.3.2 [7], Lemma 6.1.6 [7]). Since M. Shiota's proofs work in the equivariant Nash category, the following two propositions are obtained.

Proposition 2.3. Let G be a compact affine Nash group and let X be an affine Nash G submanifold in a representation Ω of G. Then there exists a Nash G tubular neighborhood (U, p) of X in Ω, namely, U is an affine Nash G submanifold in Ω and the orthogonal projection $p : U \to X$ is a Nash G map. □

Proposition 2.4. Let G be a compact affine Nash group. Any compact affine Nash G manifold X with boundary ∂X admits a Nash G collar, that is, there exists a Nash G imbedding $\phi : \partial X \times [0, 1] \to X$ so that $\phi|_{\partial X \times 0} = t\partial X$, where the action on the closed unit interval $[0, 1]$ is trivial. □

3. Compact $C^\infty G$ manifolds.

Recall a theorem proved by K.H. Doerrmann, M. Masuda, and T. Petrie [1], which is a partial solution of the equivariant Nash conjecture.
Theorem 3.1 [1]. Let \(G \) be a compact affine Nash group and let \(X \) be a compact \(C^\infty \) manifold so that \(X \) is \(G \) cobordant to a nonsingular algebraic \(G \) set. Then \(X \) is \(C^\infty \) diffeomorphic to a nonsingular algebraic \(G \) set. Here an algebraic \(G \) set means a \(G \) invariant algebraic subset of some representation of \(G \).

Proof of Theorem 1. The disjoint union \(X \cdot X \) is null cobordant. By Theorem 3.1, \(X \cdot X \) is \(C^\infty \) diffeomorphic to a nonsingular algebraic \(G \) set in some representation \(\Omega \) of \(G \). Since a \(G \) invariant collection of connected components of a nonsingular algebraic \(G \) set is an affine Nash \(G \) submanifold in \(\Omega \), \(X \) admits an affine Nash \(G \) manifold structure \(Y \subset \Omega \). Let \(Z \) be another affine Nash \(G \) manifold structure of \(X \) in \(\Omega' \). We have to prove \(Y \) is Nash \(G \) diffeomorphic to \(Z \). Let \(f \) be a \(C^\infty \) diffeomorphism from \(Y \) to \(Z \). Let \(F \) denote the composition of \(f \) with the inclusion \(Z \to \Omega' \). By [1] \(F \) can be approximated by a polynomial \(G \) map \(q : Y \to \Omega' \). By Proposition 2.3, we have a Nash \(G \) tubular neighborhood \((U, \rho) \) of \(Z \) in \(\Omega' \). Since \(Y \) is compact, if the approximation is close then the image of \(q \) lies in \(U \). Thus \(k := \rho \circ q \) is an approximation of \(f \). If the approximation is close then a Nash \(G \) map \(k : Y \to Z \) is a Nash \(G \) diffeomorphism. Therefore (1) is proved.

Next we prove (2). Let \(X_1, X_2 \) be two Nash \(G \) manifold structures (may not be affine) of \(X \) and let \(k \) be a \(C^\infty \) diffeomorphism from \(X_1 \) to \(X_2 \). Fix \(x_1 \in X_1 \), and let \(x_2 = k(x_1) \). Then the map \(f_i : G \to X_i : f_i(g) = gx_i \) is a surjective Nash \(G \) map because \(G \) acts on \(X_i \) (\(i = 1, 2 \)) transitively, and \(f_2 = k \circ f_1 \).

To prove \(k \) is a Nash map, it is enough to show \(k \) is a \(C^0 \) Nash map. By [4] we can find a \(C^0 \) Nash imbedding \(I_i \) from \(X_i \) to some Euclidean space \(\mathbb{R}^n \) (\(i = 1, 2 \)). Let \(X'_i = I_i(X_i) \) (\(i = 1, 2 \)), \(f'_i = I_i \circ f_i \) (\(i = 1, 2 \)) and \(k' = I_2 \circ k \circ I_1^{-1} \). Then \(f'_i : G \to X'_i \) (\(i = 1, 2 \)) is a \(C^0 \) Nash map. Since \(G \) and \(X_i \) (\(i = 1, 2 \)) are affine, there exists a finite semialgebraic open covering \(\{O_i \}_i \) of \(G \) such that each \(f'_i \mid O_i \) is semialgebraic. Therefore \(f'_i \) (\(i = 1, 2 \)) is semialgebraic. Since \(k' \) is \(C^0 \) Nash if and only if \(k \) is \(C^0 \) Nash, we have only to show that \(k' \) is \(C^0 \) Nash.

Since \(f'_i \) (\(i = 1, 2 \)) is a \(C^0 \) Nash map, there exist finite systems of coordinate neighborhoods \(\{\phi_i : W_i \to \mathbb{R}^n \} \) of \(G \), \(\{\psi_j : U_j \to \mathbb{R}^n \} \) of \(X_1 \), and \(\{\varphi_l : V_l \to \mathbb{R}^n \} \) of \(X_2 \) such that, for any \(i, j \) and \(l \), \(\phi_i((f'_i)^{-1}(U_j) \cap W_i), \varphi_l((f'_i)^{-1}(V_l) \cap W_i) \) are semialgebraic, and that \(\psi_j \circ f'_i \circ \phi_i^{-1} \) is \(\phi_i((f'_i)^{-1}(U_j) \cap W_i) \to \mathbb{R}^n \). \(\varphi_l \circ f'_i \circ \phi_i^{-1} \) is \(\phi_i((f'_i)^{-1}(V_l) \cap W_i) \to \mathbb{R}^n \) are \(C^0 \) Nash maps, where \(m \) (resp. \(n \)) denotes the dimension of \(G \) (resp. \(X_1 \)). We have only to show that each \(\phi_i \circ k' \circ \psi_j^{-1} \) is semialgebraic. For a map \(h \), let \(graph(h) \) denote the graph of \(h \). For \(j \) and \(l \), let

\[
K = \bigcup_i graph(\psi_j \circ f'_i \circ \phi_i^{-1}) \times graph(\varphi_l \circ f'_i \circ \phi_i^{-1}).
\]

Then \(K \) is semialgebraic in \((\mathbb{R}^m \times \mathbb{R}^n) \times (\mathbb{R}^m \times \mathbb{R}^n) \), hence the image \(K' \) of \(K \) by the projection \((\mathbb{R}^m \times \mathbb{R}^n) \times (\mathbb{R}^m \times \mathbb{R}^n) \to \mathbb{R}^n \times \mathbb{R}^n \) is semialgebraic in \(\mathbb{R}^n \times \mathbb{R}^n \). Since \(f'_i \) (\(i = 1, 2 \)) is surjective and \(f'_2 = k' \circ f'_1 \), \(graph(\varphi_l \circ k' \circ \psi_j^{-1}) = K' \). Thus each \(\varphi_l \circ k' \circ \psi_j^{-1} \) is semialgebraic. Hence \(k' \) is a \(C^0 \) Nash. Therefore \(k \) is a Nash \(G \) diffeomorphism.

Now we prove (3). By (1) we can assume that \(X \) is an affine Nash \(G \) submanifold of a representation \(\Omega \) of \(G \). For any \(x \in X \), the orbit \(G(x) \) of \(x \) is a \(C^\infty \) submanifold of \(\Omega \) because \(G \) is compact. Moreover \(G(x) \) is a semialgebraic set. Hence \(G(x) \)
is an affine Nash G submanifold in Ω. Since the action on G is not transitive and by Proposition 2.3, there exists some Nash G tubular neighborhood (U', p) of some orbit $G(x)$ in Ω with $X \neq U := U' \cap X$.

For $0 < c < 1$, set
\[
 a = 2^{2.5}(1 + c)^2/(1 - c)^2,
\]
\[
 d = 2 + 2^{0.5}\alpha + a^2 - (a + \sqrt{2})\sqrt{a^2 + 2^{2.5}a}.
\]

Then $a > 2^{2.5}, 1 < d < 2$. Suppose k is a Nash function satisfying
\[
\sqrt{2}(x + k(x)) = (x - k(x))^2/a.
\]

The graph of k comes to a rotation of the graph of $y = x^2/a$ with center at the origin. It follows from this and $a > 2^{2.5}$ that k and its Nash extension k' to
\[
[1 - 2^{-0.25}\sqrt{a}, 1 + 2^{-0.25}\sqrt{a}] \supset (-1, 3)
\]
is well-defined, and that k' satisfies
\[
k'[1 - 2^{-0.25}\sqrt{a}, 1 + 2^{-0.25}\sqrt{a}] = [1 - 2^{-0.25}\sqrt{a}, 1 + 2^{-0.25}\sqrt{a}],
\]
the derivative of k' is negative, $k' \circ k' = id$.

Let
\[
N_1 = (-\infty, d), N_2 = (0, \infty), N_3 = (0, 1).
\]

Define the Nash maps $h_1 : N_3 \to N_1, h_2 : N_3 \to N_2$ by
\[
h_1(t) = t^2 + k(t)^2 \text{ and } h_2(t) = 2t - t^2.
\]

Then h_1 and h_2 are Nash imbeddings so that $h_1(N_3) = (0, d), h_2(N_3) = (0, 1)$. We can extend h_1 to
\[
h_1' : [1 - 2^{-0.25}\sqrt{a}, 1 + 2^{-0.25}\sqrt{a}] \to \mathbb{R}
\]
as a Nash function such that the derivative vanishes at only 0 and that $h_1' = h_1' \circ k'$ because the derivative of k' is negative and $k' \circ k' = id$.

Applying Proposition 2.3 to the boundary ∂U of the closure \overline{U} of U in X, there exists a Nash G collar $\phi : \partial U \times [0, 1] \to \overline{U}$. Let $D(\varepsilon) (0 < \varepsilon < 1)$ denote $\phi(\partial \overline{U} \times (0, \varepsilon))$. Take a Nash diffeomorphism $f : \mathbb{R} \to (0, 1)$ (e.g. the inverse map of the composition of $f : (0, 1) \to (-1, 1) : f(x) = 2x - 1$ with $h : (-1, 1) \to \mathbb{R} : h(x) = x/(1 - x^2)$). Set
\[
U_1 = D(f(d)), U_2 = X - \overline{D(f(0))}, U_3 = D(f(1)) - \overline{D(f(0))}.
\]

Then each U_i is an open affine Nash G submanifold of X. Let
\[
H_1 = \phi \circ (id \times (f \circ h_1 \circ f^{-1})) \circ \phi^{-1} : U_3 \to U_1,
\]
\[
H_2 = \phi \circ (id \times (f \circ h_2 \circ f^{-1})) \circ \phi^{-1} : U_3 \to U_2.
\]

We define X_c by the quotient topological space of the disjoint union $\coprod_{i=1}^3 U_i$, and the equivalence relation $x \sim H_1(x) \sim H_2(x)$ for $x \in U_3$ on the union. Then one can check that X_c is a Nash G manifold which is $C^\infty G$ diffeomorphic to X. Next we prove X_c is nonaffine. To prove this, we use the following lemma.
Lemma 3.2 (c.f. Remark 1.2.2.15 [7]). Let f be a locally semialgebraic C^∞ map from a Nash manifold M to a Nash manifold N. If N is affine then f is a Nash map.

Fix $0 < c < 1$ and $z \in S(f(1))$, where $S(f(1))$ denotes $\phi(\partial U \times \{f(1)\})$. Let $\psi_c : (f(0), f(1)) \to X_c$ be the composition

$$(f(0), f(1)) \to S(f(1)) \times (f(0), f(1)) \to U_3 \to X_c,$$

where the first map is $x \mapsto (z, x)$, the second is the natural Nash G diffeomorphism from $S(f(1)) \times (f(0), f(1))$ to U_3, and the third is the natural imbedding from U_3 into X_c. Then ψ_c is an imbedding. We extend ψ_c as follows. Let $l_{ci} (i = 1, 2, 3)$ be the natural imbedding $U_i \to X_c$ and let $V_{ci} (i = 1, 2, 3)$ denote its image. Then

$$p \circ k_1^{-1} \circ l_1^{-1} \circ \psi_c = f \circ h_1 \circ f^{-1}, p \circ k_2^{-1} \circ l_2^{-1} \circ \psi_c = f \circ h_2 \circ f^{-1} \text{ on } (f(0), f(1)),$$

where p denotes the projection $\partial U_3 \times (f(0), f(d)) \to (f(0), f(d))$ and $k_i (i = 1, 2)$ stands for the natural imbedding $\partial U_3 \times (f(0), f(d)) \to U_i$. We extend ψ_c to $(f(0), f(1 + \epsilon))$ for small positive ϵ. It suffices to consider $p \circ k_2^{-1} \circ l_2^{-1} \circ \psi_c$ because the image of ψ_c lies in V_{c2} and $\lim_{t \to f(1)} \psi_c(t) \in V_{c2}$. Now $p \circ k_2^{-1} \circ l_2^{-1} \circ \psi_c = f(2f^{-1}(t) - (f^{-1}(t))^2)$ on $(f(0), f(1))$. Thus $p \circ k_2^{-1} \circ l_2^{-1} \circ \psi_c$ and ψ_c are extendible to $(f(0), f(2))$ and

$$p \circ k_2^{-1} \circ l_2^{-1} \circ \psi_c(t) = f(2f^{-1}(t) - (f^{-1}(t))^2) \text{ on } [f(1), f(2)).$$

Clearly we can extend ψ_c to $[f(0), f(1)]$, and $\psi_c([f(0), f(2)] \subset \psi_c([f(0), f(1)]).$ Hence

$$\psi_c^{-1} \circ \psi_c(t) = f(2 - f^{-1}(t)) \text{ on } [f(1), f(2)),$$

$f(1)$ is the only and nondegenerate critical point, where ψ_{c0} denotes the homeomorphism $\psi_c : [f(0), f(1)] \to [f(0), f(1)]$. In the same way, ψ_c can be defined on $(f(k'(1)), f(0))$ satisfying

$$\psi_{c0}^{-1} \circ \psi_c(t) = f(k'(f^{-1}(t))) \text{ for } t \in (f(k'(1)), f(0)),$$

and the critical point is only $f(0)$ and nondegenerated. Repeating this argument, ψ_c is extendible on

$$(f(1 - 2^{-0.25} \sqrt{a}), f(1 + 2^{-0.25} \sqrt{a})),$$

and ψ_c is locally semialgebraic, the image of ψ_c is $\psi_c([f(0), f(1)])$, and that for any $\epsilon \in (f(0), f(1))$, $(\psi_{c0}^{-1} \circ \psi_c)^{-1}(\epsilon)$ is discrete and consists of infinitely many elements. The set of critical points of ψ_c is $(\psi_{c0}^{-1} \circ \psi_c)^{-1}(f(0)) \cup (\psi_{c0}^{-1} \circ \psi_c)^{-1}(f(1))$, and they are nondegenerate ones. Since ψ_c is locally semialgebraic and not semialgebraic and by Lemma 3.2, X_c is not affine.

Finally we prove that X_c is not Nash G diffeomorphic to $X_{c'}$ if $0 < c, c' < 1, \alpha = \log f(c')/\log f(c)$ is irrational. Assume that there exists a Nash G diffeomorphism $u : X_c \to X_{c'}$. Then we have to prove $\log f(c')/\log f(c)$ is rational. Set

$$a = 2^{2.5}(1 + c)^2/(1 - c)^2, a' = 2^{2.5}(1 + c')^2/(1 - c')^2,$$

$$\psi_c : (f(1 - 2^{-0.25} \sqrt{a}), f(1 + 2^{-0.25} \sqrt{a})) \to X_c,$$

$$\psi_{c'} : (f(1 - 2^{-0.25} \sqrt{a'}), f(1 + 2^{-0.25} \sqrt{a'})) \to X_{c'}.$$
We also write

\[\psi_{c_0} = \psi_c([f(0), f(1)] : [f(0), f(1)] \rightarrow \psi_c([f(0), f(1)]), \]

\[\psi_{c'} = \psi_{c'}([f(0), f(1)] : [f(0), f(1)] \rightarrow \psi_{c'}([f(0), f(1)]), \]

Let \(L_1 \) be the composition of the diffeomorphism \(S(f(1)) \times (f(-10d), f(10d)) \rightarrow D(f(10d)) - D(f(-10d)) \) with the projection \(D(f(10d)) \rightarrow X_{c'}, \) and let \(L_2 \) be the projection \(S(f(1)) \times (f(-10d), f(-10d)) \rightarrow S(f(1)). \) By Lemma 3.2 and the infinite vibration of \(\psi_c, L_2 \circ L_1^{-1} \circ u \circ \psi_c \) is constant. Let \(z' \) denote this constant. Clearly the images of \(\phi(z' \times f(N_2)) \) and \(\phi(z' \times (f(1), f(d))) \) via \(\pi_{c'} \) in \(X_{c'} \) are affine Nash \(G \) submanifolds. Let \(k_c \) be the natural homeomorphism from \(U_3 \) into \(X_c. \)

Thus \(u \circ k_c \circ \phi(z \times [f(0), f(1)]) \) is not contained in these affine Nash \(G \) submanifolds because the image of \(\psi_c \) is not affine. This implies that

\[u \circ k_c \circ \phi(z \times [f(0), f(1)]) \subset k_{c'} \circ \phi(z' \times [f(0), f(1)]). \]

Applying the same argument to \(u^{-1} \), we have

\[u^{-1} \circ k_{c'} \circ \phi(z' \times [f(0), f(1)]) \subset k_c \circ \phi(z \times [f(0), f(1)]). \]

Therefore

\[u \circ k_c \circ \phi(z \times [f(0), f(1)]) = k_{c'} \circ \phi(z' \times [f(0), f(1)]). \]

For any \(e \in (f(0), f(1)), \) let \((\psi_{c_0}^{-1} \circ \psi_c)^{-1}(e) = \{e_i\}_{i \in \mathbb{Z}}, \) \((\psi_{c_0}^{-1} \circ \psi_{c'})^{-1}(e) = \{e_i'\}_{i \in \mathbb{Z}}. \) Then

\[\lim_{i \to \infty} (f(1 + 2^{-0.25} \sqrt{a}) - e_{-i-2})/(f(1 + 2^{-0.25} \sqrt{a}) - e_{-i}) = f(c), \]

\[\lim_{i \to \infty} (f(1 + 2^{-0.25} \sqrt{a'}) - e'_{-i-2})/(f(1 + 2^{-0.25} \sqrt{a'}) - e'_{-i}) = f(c'), \]

are obtained as follows. The map \(t \rightarrow f(k'(2 - f^{-1}(t))) \) has fixed points only at the end of the interval, it repels from \(f(1 + 2^{-0.25} \sqrt{a}), \) attracts to \(f(1 - 2^{-0.25} \sqrt{a}) \) and its derivatives at the latter point is \(f(c). \) Thus \((f(1 + 2^{-0.25} \sqrt{a}) - e_{-i-2})/(f(1 + 2^{-0.25} \sqrt{a}) - e_{-i}) \) converges \(f(c) \) because \(e_{-i-2} = f(k'(2 - f^{-1}(e_{-i}))). \) Hence we have [3.1]. A similar argument shows [3.2]. Since

\[u \circ k_c \circ \phi(z \times [f(0), f(1)]) = k_{c'} \circ \phi(z' \times [f(0), f(1)]), \]

for a pair

\[e_0 \in (f(1 - 2^{-0.25} \sqrt{a}), f(1 + 2^{-0.25} \sqrt{a})) \] and

\[e_0' \in (f(1 - 2^{-0.25} \sqrt{a'}), f(1 + 2^{-0.25} \sqrt{a'})) \]

with

\[\psi_{c'}(e_0') = u \circ \psi_c(e_0) \]

there exits a homeomorphism

\[\tau : (f(1 - 2^{-0.25} \sqrt{a}), f(1 + 2^{-0.25} \sqrt{a})) \rightarrow (f(1 - 2^{-0.25} \sqrt{a}), f(1 + 2^{-0.25} \sqrt{a})) \]
so that $\tau(e_0) = e'_0$ and $\psi_c' \circ \tau = u \circ \psi_c$ on $(f(1 - 2^{-0.25} \sqrt{a}), f(1 + 2^{-0.25} \sqrt{a}))$. Remember that all critical points of ψ_c, ψ_c' are nondegenerate. This shows that τ is of class C^ω. Therefore, by Lemma 3.2, τ is a Nash diffeomorphism. Set

$$\psi_{c_0}^{-1} \circ \psi_c(e_0) = e, \psi_{c_0'}^{-1} \circ \psi_{c'}(e_0) = e',$$

$$(\psi_{c_0}^{-1} \circ \psi_c)^{-1}(e) = \{e_i\}_{i \in Z},$$

$$(\psi_{c_0'}^{-1} \circ \psi_{c'})^{-1}(e') = \{e'_i\}_{i \in Z}.$$

Then τ satisfies

$$\tau(e_i) = e'_i \text{ for any } i \in Z \text{ or },$$

$$\tau(e_i) = e'_{-i} \text{ for any } i \in Z.$$

A map $f \circ (\text{translation}) \circ f^{-1}$ takes $(f(1 - 2^{-0.25} \sqrt{a}), f(1 + 2^{-0.25} \sqrt{a}))$ to $(f(0), f(2^{0.75} \sqrt{a}))$, and a similar map $f \circ (\text{translation}) \circ f^{-1}$ takes $(f(1 - 2^{-0.25} \sqrt{a'}), f(1 + 2^{-0.25} \sqrt{a'}))$ to $(f(0), f(2^{0.75} \sqrt{a'}))$, we may suppose that e_i and e'_i converge to 0 as $i \to \infty$. Assume that e and e' lie in $(f(0), f(1))$. Then it follows from [3.1] and [3.2] that

$$\lim_{i \to \infty} e_{-i-2}/e_{-i} = f(c),$$

$$\lim_{i \to \infty} e'_{-i-2}/e'_{-i} = f(c').$$

Let Z denote the Zariski closure of $\text{graph}(\tau)$. This is of dimension 1 because τ is semialgebraic. It is clear that Z contains all (e_i, e'_i). Let $P(x, y) = \sum S_{j=1}^s \delta_j x^{\beta_j} y^{\gamma_j}$ ($\delta_j \in \mathbb{R}, \beta_j, \gamma_j \in \mathbb{N}$) be a defining polynomial of Z. Then

$$P(e_i, e'_i) = 0 \text{ for any } i \in Z.$$

Since α is irrational,

$$\beta_i + \alpha \gamma_i \neq \beta_j + \alpha \gamma_j \text{ for } i \neq j.$$

Set

$$P_i(x, y) = y^i.$$

For each $n \in \mathbb{Z}$, let $E(n)$ denote the $s \times s$-matrix whose (i, j) entry is

$$P_i(e_{-n-2+i} + e'_{-n-2+j+1}).$$

Then

$$(\delta_1, \ldots, \delta_l)E(n) = (P(e_{-n-1} + e'_{-n-1}), \ldots, P(e_{-n-2s+1} + e'_{-n-2s+1})) = 0.$$

In particular $\det E(n) = 0$. On the other hand, we have

$$\det E(n) = \prod_{i=1}^S P_i(e_{-n-1} + e'_{-n-1}) \det F(n),$$
where $F(n)$ is the $s \times s$-matrix whose (i,j) entry is

$$P_i(e_{n-2j+1}, e'_{n-2j+1})/P_i(e_{n-1}, e'_{n-1}).$$

Now [3.3] and [3.4] mean that each entry of $F(n)$ converges to

$$(e^\beta_i (e')^\gamma_i)^{j-1} = e^{\beta_i + \alpha \gamma_i (j-1)}$$

as $n \to \infty$. Thus det $F(n)$ converges to a Vandermonde's determinant equals

$$\prod_{i<j} (e^{\beta_i + \alpha \gamma_i} - e^{\beta_j + \alpha \gamma_j}) \neq 0,$$

by [3.5]. Therefore det $E(n) \neq 0$ for large n. This proves the result. \qed

4. **Compactifiable $C^\infty G$ manifolds.**

The same argument of the proof of Theorem 1 (3) proves Theorem 2 (2). To prove Theorem 2 (1), we show a relative version of Theorem 3.1. After proving Theorem 4.2, we give a proof of Theorem 2 (1).

Definition 4.1. (1) An algebraic subset of a representation of G is said to be an algebraic G set if it is G invariant. Moreover we call it a nonsingular algebraic G set if it is nonsingular.

(2) Let X be a $C^\infty G$ manifold and let X' be a $C^\infty G$ submanifold of X. A pair (X, X') is called algebraically G cobordant if there exist a nonsingular algebraic G set Y, a nonsingular algebraic G subset Y' of Y, a G cobordism N between X and Y, and a G cobordism N' between X' and Y' such that N' is a $C^\infty G$ submanifold of N.

Theorem 4.2. Let G be a compact affine Nash group, X a compact $C^\infty G$ manifold, and X' a compact $C^\infty G$ submanifold of X. If the pair (X, X') is algebraically G cobordant then there exist a nonsingular algebraic G set Z in $X \times \Omega$ for some representation Ω of G, a nonsingular algebraic subset Z' of Z, and a $C^\infty G$ diffeomorphism $\phi : X \to Z$ with $\phi(X') = Z'$.

For any $C^\infty G$ manifold X and $C^\infty G$ submanifold X' of X, the pair $(X \coprod X', X' \coprod X')$ is algebraically G cobordant. Therefore we have the next corollary because a G invariant collection of connected components of a nonsingular algebraic G set is an affine Nash G submanifold in some representation of G.

Corollary 4.3. Let G be a compact affine Nash group, X a compact $C^\infty G$ manifold, and X' a compact $C^\infty G$ submanifold of X. Then there exist an affine Nash G manifold Y, an affine Nash G submanifold Y' of Y, and a $C^\infty G$ diffeomorphism $\phi : X \to Y$ so that $\phi(X') = Y'$. \qed

Proof of Theorem 4.2. By the proof of Theorem 1.3 [1], X' is G isotopic to a nonsingular algebraic G subset Z' of $X \times \Omega$ by an arbitrarily small isotopy, for some representation of G. Extending this isotopy, we may assume that it maps $X \times 0$ to some $C^\infty G$ manifold M in $X \times \Omega$ so that $M - X \times 0$ has compact closure and that the composition of the inclusion $M \to X \times \Omega$ with the projection
$X \times \Omega \rightarrow X$ is a $C^\infty G$ diffeomorphism. In particular $Z' \subset M$. Since Z' is compact and by Lemma 4.7 [1], one can find a proper G invariant polynomial ρ such that $\rho^{-1}(0) = Z'$. Let $\alpha : X \rightarrow \Omega$ be a $C^\infty G$ map with compact support so that

$$M = \{(x, y) \in X \times \Omega | y = \alpha(x)\}.$$

Take a G invariant C^∞ function $\beta : X \times \Omega \rightarrow [0, 1]$ with compact support with $\beta(x, y) = 1$ when $|y| < 2|\alpha(x)|$. Let $\gamma : X \times \Omega \rightarrow \Omega$ be

$$\gamma(x, y) = \beta(x, y)(y - \alpha(x)) + (1 - \beta(x, y))\rho^2(x, y)y.$$

Then 0 is a regular value of γ, $\gamma^{-1}(0) = M$, and γ is equal to the polynomial $\rho^2(x, y)y$ outside of a G invariant compact set. By Lemma 5.1 [1], one can C^1 approximates $\gamma(x, y) - \rho^2(x, y)y$ by an equivariant entire rational map $u : (X \times \Omega, Z') \rightarrow (\Omega, 0)$. Here an entire rational map means a fraction of polynomial maps with nowhere vanishing denominator. This approximation is close on all $X \times \Omega$. Thus

$$w(x, y) = u(x, y) + \rho^2(x, y)y$$

is C^1 approximation of γ on $X \times \Omega$. Since ρ is proper and by equivariant Morse theory, there exists a $C^\infty G$ diffeomorphism from $Z := w^{-1}(0)$ to $M = \gamma^{-1}(0)$ fixing Z'. \Box

Proof of Theorem 2 (1). Since X is compactifiable, there exists a $C^\infty G$ manifold X' with boundary ∂X so that X is $C^\infty G$ diffeomorphic to the interior of X'. Let Y be the double of X'. Applying Corollary 4.3 to the pair $(Y, \partial X')$, one can find a representation Ω of G and a $C^\infty G$ imbedding $F : Y \rightarrow \Omega$ such that $F(Y)$ and $F(\partial X')$ are affine Nash G manifolds. Hence $F(X)$ is an affine Nash G manifold. Therefore X admits an affine Nash G manifold structure. \Box

On the other hand, T. Petrie [3] proved that any nonsingular algebraic G set is compactifiable as a $C^\infty G$ manifold when G is an algebraic group. A similar proof shows the next theorem, because the number of connected components of the zeros of a Nash map is finite.

Theorem 4.4. Let G be a compact affine Nash group. Then every affine Nash G manifold is compactifiable as a $C^\infty G$ manifold. \Box

M. Shiota studied compactifications of Nash manifolds as either C^∞ manifolds [4] or Nash manifolds [5].

By Theorem 2 (1) and Theorem 4.4, we have the following.

Theorem 4.5. Let G be a compact affine Nash group. Then a $C^\infty G$ manifold is compactifiable if and only if it admits an affine Nash G manifold structure. \Box

REFERENCES

1. K.H. Dovermann, M. Masuda and T. Petrie, Fixed point free algebraic actions on varieties diffeomorphic to \mathbb{R}^n, Progress in Math. 80, Birkhäuser (1990), 49-80.