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1. Introduction.

Let G be a compact affine Nash group. We say that a C°°G manifold X admits
a (resp. an af fine, a nonaf fine) Nash G manifold structure if there exists a
(resp. an affine, a nonaffine) Nash G manifold Y such that X is C*°G diffeomorphic
to Y. In the present paper we consider Nash G manifold structures of compact or
compactifiable C°°G manifolds.

We have the following when X is compact.

Theorem 1. Let G be a compact affine Nash group and let X be a compact C*G
manifold with dim X > 1.

(1)X admits exactly one affine Nash G manifold structure up to Nash G diffeomor-
phism.

(2)If G acts on X transitively then a Nash G manifold structure of X is unique up
to Nash G diffeomorphism.

(3)If X is connected and the action on X is not transitive, then X admits a con-
tinuum number of nonaffine Nash G manifold structures.

In the non-equivariant category, M. Shiota in [4] proved that any compactifiable
C* manifold X admits a continuum number of nonaffine Nash manifold structures.
When X is not compact but compactifiable, an affine Nash compactification of X is
not unique, and the number of affine ones can be investigated by the cardinality of
the Whitehead torsion of X [6]. Here an affine Nash compactification of X means
an affine Nash manifold Y with boundary so that X is C* diffeomorphic to the
interior of Y.

We say that a C°°G manifold X is compacti fiable as a C*°G mani fold if there
exists a compact C*°G manifold Y with boundary so that X is C*°G diffeomorphic
to the interior of Y. We obtain the following.

Theorem 2. Let G be a compact affine Nash group and let X be a non-compact
compactifiable C*°G manifold with dim X > 1.

(1)X admits an affine Nash G manifold structure.

(2)X admits a continuum number of nonaffine Nash G manifold structures.

This paper consists of two parts. The first half is to investigate Nash G manifold
structures of compact C*°G manifolds. We consider Nash G manifold structures of
compactifiable (not compact) C*°G manifolds in the latter half.
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In this paper all Nash G manifolds and all Nash G maps are of class C* unless
otherwise stated.

Acknowledgement. I would like to thank Professor M. Shiota for many useful
conversations and suggestions. Theorem 1 (2) is due to the cooperation of Professor

M. Shiota.

2. Nash G manifolds.
First of all we recall the definition of Nash groups.

Definition 2.1. A group is called a (resp. an af fine) Nash group if it is a (resp
an affine) Nash manifold and that the multlphcatlon G x G — G, the inversion
G — G are Nash maps.

We remark that one-dimensional Nash groups are classified by J.J. Madden and
C.M. Stanton [2].

Let G be an affine Nash group. In this paper, a representation of G means
a Nash group homomorphism G — GL(R") for some R™. Here a Nash group
homomorphism means a group homomorphism which is a Nash map. We use a
representation as a representation space.

Definition 2.2. Let G be an affine Nash group

(1)An affine Nash submanifold in some representation of G is called an af fine
Nash G submani fold if it is G invariant. A Nash manifold X with G action is said
to be a Nash G manai fold if the action map G x X — X is a Nash map.

(2)Let X and Y be Nash G manifolds. A Nash map f: X — Y is called a Nash
G map if it is a G map. We say that X is Nash G dif feomorphic to Y if there
exist Nash G maps f: X — Y,h:Y — X so that foh =1id,ho f =1d.

(3)A Nash G manifold X is said to be af fine if there exists an affine Nash G
submanifold Y so that X is Nash G diffeomorphic to Y.

Tubular neighborhood theorem and collaring theorem are well known in the
smooth equivariant category. They are proved in the Nash category by M. Shiota
(Lemma 1.3.2 [7], Lemma 6.1.6 [7]). Since M. Shiota’s proofs work in the equivariant
Nash category, the following two propositions are obtained.

Proposition 2.3. Let G be a compact affine Nash group and let X be an affine
Nash G submanifold in a representation 2 of G. Then there exists a Nash G tubular
neighborhood (U, p) of X in Q, namely, U is an affine Nash G submanifold in
and the orthogonal projection p: U — X is a Nash G map. [0

Proposition 2.4. Let G be a compact affine Nash group. Any compact afline
Nash G manifold X with boundary X admits a Nash G collar, that is, there
exists a Nash G imbedding ¢ : 0X x[0,1] — X so that ¢|gx xo = tdsx, where the
action on the closed unit interval [0,1] is trivial. O

3. Compact C>*G manifolds.
Recall a theorem proved by K.H. Dovermann, M. Masuda, and T. Petrie [1},
which is a partial solution of the equivariant Nash conjecture.
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Theorem 3.1 [1]. Let G be a compact affine Nash group and let X be a compact
C*°G manifold so that X is G cobordant to a nonsingular algebraic G set. Then
X is C*°G diffeomorphic to a nonsingular algebraic G set. Here an algebraic G set
means a G invariant algebraic subset of some representation of G. 0O

Proof of Theorem 1. The disjoint union X IT X is null cobordant. By Theorem 3.1,
XIIX is C*G diffeomorphic to a nonsingular algebraic G set in some representation
2 of G. Since a G invariant collection of connected components of a nonsingular
algebraic G set is an affine Nash G submanifold in §2, X admits an affine Nash G
manifold structure Y C §2. Let Z be another affine Nash G manifold structure of
X in . We have to prove Y is Nash G diffeomorphic to Z. Let f be a C®G
diffeomorphism from Y to Z. Let F' denote the composition of f with the inclusion
Z — Q. By [1] F can be approximated by a polynomial G map ¢ :Y — Q. By
Proposition 2.3, we have a Nash G tubular neighborhood (U, p) of Z in Q. Since
Y is compact, if the approximation is close then the image of ¢ lies in U. Thus
k := p o q is an approximation of f. If the approximation is close then a Nash G
map k:Y — Z is a Nash G diffeomorphism. Therefore (1) is proved.

Next we prove (2). Let X1, X2 be two Nash G manifold structures (may not be
affine) of X and let k be a C*°G diffeomorphism from X; to X,. Fix z; € X, and
let 23 = k(x1). Then the map fi : G — X, : fi(g) = gzi (¢ = 1,2) is a surjective
Nash G map because G acts on X; (¢ = 1,2) transitively, and f, = ko f;.

To prove k is a Nash map, it is enough to show k is a C° Nash map. By [4] we
can find a C° Nash imbedding [; from X; to some Euclidean space R® (i = 1,2).
Let X! = I(X:) (i = 1,2), fl=FLofi (1 =1,2) and ¥ = [ okoI;'. Then
fl:G — X! (i =1,2)is a C° Nash map. Since G and X; (i = 1,2) are affine,
there exists a finite semialgebraic open covering {O;}; of G such that each f]|O; is
semialgebraic. Therefore f! (i = 1,2) is semialgebraic. Since k' is C? Nash if and
only if k is C® Nash, we have only to show that &' is C® Nash.

Since f! (i = 1,2) is a C° Nash map, there exist finite systems of coordinate
neighborhoods {¢; : W; — R™} of G, {¢; : Uj — R"} of X;, and {¢;: Vi —
R"} of X, such that , for any 7,7 and I, ¢;((f1) " (U;)NW3), ¢:((f3)~H(Vi))NW;) are
semialgebraic, and that ¥; o f] 0 67" : ¢:((f1)"HU;) N Wi) — R™, g0 fho¢; '
$:((fH) Y (Vi) N W;) — R" are C° Nash maps, where m (resp. n) denotes the
dimension of G (resp. X;). We have only to show that each ¢; 0 k' o ;bj_l is
semialgebraic. For a map h, let graph(h) denote the graph of h. For j and [, let

K = graph(s; o f{ 0 67") x graphipro f; 0 67,

Then K is semialgebraic in (R™ x R™) x (R™ x R"), hence the image K’ of K by
the projection (R™ x R™") x (R™ x R") — R™ x R" is semialgebraic in R® x R".
Since f! (¢ = 1,2) is surjective and f; = k' o f{, graph(p;o k' o ¢]_1) = K'. Thus
each p;o0k' o w;l is semialgebraic. Hence k' is a C° Nash. Therefore k is a Nash

G diffeomorphism.

Now we prove (3). By (1) we can assume that X is an affine Nash G submanifold
of a representation 2 of G. For any z € X, the orbit G(z) of 2 is a C*°G submani-
fold of 2 because G is compact. Moreover G(z) is a semialgebraic set. Hence G(z)
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is an affine Nash G submanifold in 2. Since the action on G is not transitive and
by Proposition 2.3, there exists some Nash G tubular neighborhood (U’, p) of some
orbit G(z) in @ with X #U :=U'n X.
For 0 < c <1, set
a= 2251+ /(1 - o,

d=2+2%%3a+a® — (a + V2)Va? + 225a.

Then a > 22°,1 < d < 2. Suppose k is a Nash function satisfying
V(s + k(x)) = (2 — k(@) a.

The graph of k comes to a rotation of the graph of y = z?/a with center at the
origin. It follows from this and a > 2%° that k and its Nash extension k' to

[1-279% /g 1+27°%,/3)(> (~1,3))
is well-defined, and that &’ satisfies
KL= 27025 /g 142702 /g = [1 — 27925, /g,1 4+ 27025, /4,
the derivative of k' is negative, k' o k' = id.

Let
N1 == (—OO,d),NQ = (0,00),N3 = (0, 1)
Define the Nash maps h; : N3 — Ny, hy : N3 — Nj by
hi(t) =2 + k(t)? and hy(t) = 2t — 2.

Then h; and hq are Nash imbeddings so that h;(N3) = (0,d), h2(N3) = (0,1). We
can extend hy to

B[ — 279 /g, 1+ 270%, /3] — R
as a Nash function such that the derivative vanishes at only 0 and that A} = A} o &'
because the derivative of k' is negative and k' o k' = id.

Applying Proposition 2.3 to the boundary 8U of the closure U of U in X, there
exists a Nash G collar ¢ : dU x [0,1] — U. Let D(¢) (0 < ¢ < 1) denote
#(dU x (0,¢)). Take a Nash diffeomorphism f: R — (0,1) (e.g. the inverse map
of the composition of f: (0,1) — (=1,1): f(z) =2z — 1 with h: (-1,1) — R
h(z) = z/(1 — 2?)). Set

Uy = D(f(d)), Uz = X — D(£(0)),Us = D(f(1)) — D(£(0)).
Then each U; is an open affine Nash G submanifold of X. Let
Hi=éo(idx(fohiof 1)) o™ :Us — Uy,
Hy=¢o0(idx(fohyof 1)) op™:Us —s Uy,

We define X, by the quotient topological space of the disjoint union II%_, U;, and
the equivalence relation @ ~ Hi(z) ~ Hy(z) for © € U; on the union. Then one
can check that X, is a Nash G manifold which is C*°G diffeomorphic to X. Next
we prove X, is nonaffine. To prove this, we use the following lemma.
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Lemma 3.2 (c.f. Remark 1.2.2.15 [7]). Let f be a locally semialgebraic C*
map from a Nash manifold M to a Nash manifold N. If N is affine then f is a
Nash map. O

Fix 0 < ¢ < 1 and z € S(f(1)), where S(f(1)) denotes ¢(8U x {f(1)}). Let
Ye @ (f(0), f(1)) — X. be the composition

(£(0), £(1)) — S(£(1)) x (f(0), f(1)) — Us — X,

where the first map is @ — (z, z), the second is the natural Nash G diffeomorphism
from S(f(1)) x (f(0), f(1)) to Us, and the third is the natural imbedding from Us
into X.. Then 1. is an imbedding. We extend 1. as follows. Let I.; (: = 1,2, 3) be
the natural imbedding U; — X, and let V;; (¢ = 1,2,3) denote its image. Then

pokitoli o= fohiof tpoky; oly  oho = fohyof~! on (£(0), f(1)),

where p denotes the projection Uz x (f(0), f(d)) — (£(0), f(d)) and k; (i = 1,2)
stands for the natural imbedding dUs x (f(0), f(d)) — U;. We extend . to
(f(0), f(1 +¢)) for small positive e. It suffices to consider pok; ' ol; ! 01, because
the image of ¢, lies in Vy and lim,_, (1) %c(t) € V3. Now po kol oy, =
FEFH®) = (F71(2))?) on (£(0), f(1)). Thus pok; ol o1, and . are extensible
to (f(0), f(2)) and

pokytolytote(t) = f(2f7H(t) = (f7H(1))?) on [£(1), £(2))-
Clearly we can extend 9. to [f(0), f(1)], and ¥.((f(0), f(2)) C ¥ ([f(0), fF(1)]).

Hence

Yo' o%e(t) = f(2— f7H(#)) on [f(1), f(2)),
f(1) is the only and nondegenerate critical point, where . denotes the homeo-
morphism v : [f(0), f(1)] — ¥([f(0), f(1)]). In the same way, 1. can be defined
on ( f(k'(1)), f(0)] satisfying

Yoo 0 Ye(t) = F(K'(f71(1))) for t € (f(K'(1)), £(0)),

and the critical point is only f(0) and nondegenerated. Repeating this argument,

Y. 1s extensible on
(f(1 = 27°%Va), f(1 4+ 27°%V/a)),

and 1. is locally semialgebraic, the image of ¥, is ¥.([f(0), f(1)]), and that for any
e € (£(0), f(1)), (¥ o)~ 1(e) is discrete and consists of infinitely many elements.

The set of critical points of 1, is (¥ 0%.) "1(F(0))U (5 01, )~1(f(1)), and they
are nondegenerate ones. Since 1. is locally semialgebraic and not semialgebraic
and by Lemma 3.2, X, is not affine.

Finally we prove that X, is not Nash G diffeomorphic to X if 0 < ¢,c < 1,0 =
logf(c')/logf(c) is irrational. Assume that there exists a Nash G diffeomorphism
u: X, — Xo. Then we have to prove logf(c')/logf(c) is rational. Set

a = 22.5(1 + C)z/(l . c)z,a' — 22.5(1 + C')2/(1 _ C,)2,
e : (f(1-27""Va), f(1+27°%Va)) — X,
Yo+ (f(1=2702Var), f(1+27Va) — X
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We also write
d)cO = ¢'c|[f(0)vf(1)] : [f(0)7 f(l)] - 1/"c([f(0)7f(1)])a

pero = e |[£(0), F(1)] : [£(0), f(1)] — e ([£(0), F(1))),

Let L; be the composition of the diffeomorphism S(f(1)) x (f(-10d), f(10d)) —
D(f(10d)) — D(f(—10d)) with the projection D(f(10d)) — X, and let L, be
the projection S(f(1)) x (f(—10d), f(—10d)) — S(f(1)). By Lemma 3.2 and the
infinite vibration of ., Ly 0 Ll_1 ou o1, is constant. Let z' denote this constant.
Clearly the images of ¢(z' x f(N32)) and ¢(z' x (f(1), f(d))) via s in X are affine
Nash G submanifolds. Let k. be the natural homeomorphism from Us into X..
Thus uok.o¢(z x [f(0), f(1)]) is not contained in these affine Nash G submanifolds
because the image of ¢, is not affine. This implies that

uo ke o ¢(z x [£(0), F(1)]) C ker 0 4(2" x [£(0), F(1)]).

1

Applying the same argument to u™", we have

u™ o ke 0 @(=' x [£(0), F(L)]) C ke o ¢(z x [£(0), F(1))).

Therefore
uokeo@(z x [£(0), f(1)]) = ke 0 ¢(z" x [£(0), f(1)])-
%)r any e € (f(0), (1)), let (¥ 0%e) ™' (e) = {ei}tiez, (Y7 0 Yer) 7 (€) = {e}}iez-

[B.1] D (F(14+270%Va) — eLi) (1 +27°7a) — ) = £(0)

[3.2] lim (f(14+27°%Va') — e ;) /(f(1 +27%8Va') — e.,) = (<),

100

are obtained as follows. The map t — f(k'(2 — f~*(¢))) has fixed points only at
the end of the interval, it repels from f(1+27925,/a), attracts to f(1—27%2%,/a)
and its derivatives at the latter point is f(c). Thus (f(1+27°25 /a)~e—_;—2)/(f(1+
27925, /a) — e_;) converges f(c) because e_;—o = f(k'(2 — f~!(e—;))). Hence we
have [3.1]. A similar argument shows [3.2]. Since

u o kc 0 ¢(Z X [f(O),f(l)]) = kc' o ¢(zl X [f(0)7f(1)])7

for a pair

eo € (f(1-27""Va), f(1+27°%/a)) and
ey € (f(1—27°%Va!), f(1427°%Va')) with

Yer(eq) = uothe(eo)

there exits a homeomorphism
ro(F1= 270 @), (14270 a) — (F1 - 27 a), (1427 a)
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so that 7(ep) = ef and o o7 = u o, on (f(1—27925,/a), f(1 + 27°25,/a)).
Remember that all critical points of ¥, 1 are nondegenerate. This shows that 7
is of class C'¥. Therefore, by Lemma 3.2, 7 is a Nash diffeomorphism. Set

1/);)1 o ',/Jc(@o) = eal/)c_'(l) 0 ¢c’(€0) = el’

(e 0%e) " (e) = {ei}iez,

(Vg 0 e )N (e') = {ei}iez.
Then 7 satisfies

7(e;) = e} for any 1 € Z or ,

7(e;) = e'_; for any i € Z.

A map f o (translation) o f~! takes (f(1 —27%25,/a), f(1 + 27925 /a)) to (f(0),
F(2°7%,/a)), and a similar map f o (translation)o f 1 takes (f(1—27%25/a"), f(1+
27025,/a")) to (£(0), f(2°75\/a")), we may suppose that e; and e’ are converge to
0 as i — oco. Assume that e and €' lie in (f(0), f(1)). Then it follows from [3.1]
and [3.2] that

[3.3] lim e—i—p/e—; = f(c),
[3.4] zh_jgo eli_a/ei = f(c).

Let Z denote the Zariski closure of graph(r). This is of dimension 1 because 7 is
semialgebraic. It is clear that Z contains all (e;, e}). Let P(z,y) = 2;=1 §;zhiy
(6; € R, Bj,7j € N) be a defining polynomial of Z. Then

P(e;,el) =0 for any : € Z.
Since « is irrational,
[3.5] Bi + avi # B; + ayj for i # j.

Set o
Pl(x,y): ‘,L,ﬂiy‘ﬁ.

For each n € Z, let E(n) denote the s x s-matrix whose (7, j) entry is
Pi(e—n—z2j+1,€ pgjt1)-
Then
(61,.-.60)E(n) = (Pe—n-1,€_p_1)s s P(€—n—-2s41,€"n_2541) = 0.

In particular det E(n) = 0. On the other hand, we have
det E(n) = (] Pi(e=n-1,€¢_p_y)) det F(n),
i=1
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‘where F(n) is the s x s-matrix whose (7,7) entry is
Pi(e—n—2j+1, 6'_n_2j+1)/Pi(e—n—1a el p1)-
Now [3.3] and [3.4] mean that each entry of F(n) converges to

(Cﬂ;(cl)'n )j—l = (Bitari)(i-1)
as n — 00. Thus det F(n) converges to a Vandermonde’s determinant equals

TL(cP+es — cPitemy o,

i<
by {3.5]. Therefore det E(n) # 0 for large n. This proves the result. O

4. Compactifiable C*°G manifolds.

The same argument of the proof of Theorem 1 (3) proves Theorem 2 (2). To
prove Theorem 2 (1), we show a relative version of Theorem 3.1. After proving
Theorem 4.2, we give a proof of Theorem 2 (1).

Definition 4.1. (1)An algebraic subset of a representation of G is said to be an
algebraic G set if it is G invariant. Moreover we call it a nonsingular algebraic G
set if it 1s nonsingular.

(2)Let X be a C°°G manifold and let X' be a C*°G submanifold of X. A pair
(X, X') is called algebraically G cobordant if there exist a nonsingular algebraic G
set Y, a nonsingular algebraic G subset Y’ of Y| a G cobordism N between X and
Y, and a G cobordism N' between X' and Y’ such that N’ is a C°°G submanifold

of N.

Theorem 4.2. Let G be a compact affine Nash group, X a compact C*°G mani-
fold, and X' a compact C*°G submanifold of X. If the pair (X, X') is algebraically
G cobordant then there exist a nonsingular algebraic G set Z in X x §) for some
representation S} of G, a nonsingular algebraic subset Z' of Z, and a C*G diffeo-

morphism ¢ : X — Z with ¢(X') = Z'.

For any C*°G manifold X and C*°G submanifold X' of X, the pair (X [] X,
X'T] X') is algebraically G cobordant. Therefore we have the next corollary be-
cause a G invariant collection of connected components of a nonsingular algebraic
G set is an affine Nash G submanifold in some representation of G.

Corollary 4.3. Let G be a compact affine Nash group, X a compact C*°G man-
ifold, and X' a compact C*°G submanifold of X. Then there exist an affine Nash
G manifold Y, an affine Nash G submanifold Y' of Y, and a C*°G diffeomorphism
¢$: X — Y sothat (X')=Y'. O

Proof of Theorem 4.2. By the proof of Theorem 1.3 [1], X' is G isotopic to a
nonsingular algebraic G subset Z' of X x Q by an arbitrarily small isotopy, for
some representation of G. Extending this isotopy, we may assume that it maps
X x 0 to some C°G manifold M in X x @ so that M — X x 0 has compact
closure and that the composition of the inclusion M — X x Q with the projection
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X xQ — X is a C*°G diffeomorphism. In particular Z' C M. Since Z' is compact
and by Lemma 4.7 [1], one can find a proper G invariant polynomial p such that
p~1(0)=2Z". Let a : X — Q be a C®°G map with compact support so that

M = {(z,y) € X x Q|y = a(x)}.

Take a G invariant C* function § : X x Q — [0,1] with compact support with
B(z,y) =1 when |y| < 2|a(z)]. Let v: X x Q@ — Q be

Yz, y) = Bz, y)(y — a(z)) + (1 — Bz, )0’ (z,y)y.

Then 0 is a regular value of v, y7!(0) = M, and v is equal to the polynomial
p*(z,y)y outside of a G invariant compact set. By Lemma 5.1 [1], one can C!
approximates y(z,y) — p?(z,y)y by an equivariant entire rational map u : (X x
N,2") — (Q,0). Here an entire rational map means a fraction of polynomial
maps with nowhere vanishing denominator. This approximation is close on all
X x . Thus

w(z,y) = u(z,y) + p*(z,y)y

is C! approximation of v on X x Q. Since p is proper and by equivariant Morse
theory, there exists a C*°G diffeomorphism from Z := w™1(0) to M = y~1(0) fixing
zZ'. O

Proof of Theorem 2 (1). Since X is compactifiable, there exists a C*°G manifold
X' with boundary 8X so that X is C*°G diffeomorphic to the interior of X'. Let
Y be the double of X'. Applying Corollary 4.3 to the pair (¥,8X'), one can find
a representation 2 of G and a C°G imbedding F' : Y — § such that F(Y') and
F(0X') are affine Nash G manifolds. Hence F(X) is an affine Nash G manifold.
Therefore X admits an affine Nash G manifold structure. [

On the other hand, T. Petrie 3] proved that any nonsingular algebraic G set is
compactifiable as a C°°G manifold when G is an algebraic group. A similar proof
shows the next theorem, because the number of connected components of the zeros
of a Nash map is finite.

Theorem 4.4. Let G be a compact affine Nash group. Then every affine Nash G
manifold is compactifiable as a C*°G manifold. O

M. Shiota studied compactifications of Nash manifolds as either C'* manifolds

(4] or Nash manifolds [5].
By Theorem 2 (1) and Theorem 4.4, we have the following.

Theorem 4.5. Let G be a compact affine Nash group. Then a C®G manifold is
compactifiable if and only if it admits an affine Nash G manifold structure. [J
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