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synopsis

Two lattice gas models which describe well the surface reconstruc-
tion of Ge(111) and Si(111), respectively, both below and above
the transition aréproposed. For the Ge(111) case, a lattice gas
model on a triangular net with up to the sixth neighbour pairwise
interaction is proposed. Monte Carlo calculations of phase dia-
grams and diffuse scatterings of electron in the high-temperature
(1x1) phases within the kinematical approximation are presented.
The phase transition from the ordered state to the (1x1) one is
shown to be of the first kind. It is also shown in the calculation of
diffuse scatterings that the model can reproduce the temperature
evolution of the characteristic patterns observed in the LEED ex-
periment. It is found that the (1x1) state following the c¢(2x8)
ordered one is divided into domains of irregular polygons in each of
which particles take a (2x2) arrangement. Moreover, the under-
lying mechanism of the characteristic domain structure of particle
arrangements is elucidated. On the other side, for the Si(111) case
the model modified in the way that the Takayanagi mechanism
stabilizing the (7x7) structure of the Si(111) surface is incorpo-
rated is proposed. It is shown that the first order transition from
the (7x7) state into the (1x1) one takes place. It is also shown
that the model can reproduce diffuse spots around the (v/3 x v/3)
Bragg points just above the transition. Furthermore, the disap-
pearance of the stacking fault in the (1x1) phase is concluded from
the calculation. A unified understanding of the reconstruction of

Si(111) and Ge(111) is presented on the basis of the calculations.
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CHAPTER |

Introduction

§1.1 General Introduction to the (111) Surfaces of Si and
Ge and the Lattice Gas Model

The (111) surface of Ge undergoes a phase transition at
about 300°C from the c¢(2x8) state into the (1x1) one where dif-
fuse spots around the (2x2) superlattice Bragg points are observed
in the reflection high-energy electron diffraction (RHEED) and
low-energy electron diffraction (LEED) experiments (Ichikawa and
Ino, 1980; Phaneuf and Webb, 1985). For the Si(111) the transi-
tion from the (7x7) state to the (1x1) occurs at about 860°C
above which (v/3 x /3) diffuse spots are observed (Ino, 1977;
Iwasaki et al., 1987). Thus the ordered structures and the short-
range orders in the high-temperature (1x1) phases of the surfaces
apparently look quite different. Nevertheless, it is natural to con-
sider that the underlying mechanisms of the phenomena should
be similar to each other, since Si and Ge atoms of constituents
of the two surfaces are similar to each other. In this thesis we
give a unified understanding of the reconstruction aspects of the
surfaces through the Monte Carlo calculations at finite tempera-

tures of lattice gas models presented in the following chapters. The
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present investigation is the one that gives the first unified theory of
the underlying mechanism of the characteristic short-range order

observed in the (1x1) phases of Si(111) and Ge(111).

The condition that each particle of the lattice gas model on
a triangular net cannot come to nearest neighbour sites of other
particles is satisfied by regarding the particles as ‘hard hexagons.’
In this sense the lattice gas model on a triangular lattice whose
particles never come to the nearest neighbour sites of each other
is called the hard hexagon model. It was shown by Baxter (1980)

that the model without second and more distant neighbour inter-

actions is exactly solvable.

| Kanamori (1985) previously pointed out that the (V3 x+/3)
short-range order observed in the (1x1) phase of the Si(111) sur-
face might be yielded by the random distribution of adatoms that
avoid coming to nearest neighbour sites of each other on a trian-
gular net consisting of favourable sites of adatoms on the surface.
This was confirmed by a Monte Carlo simulation in collaboration
with Okamoto (Kanamori, 1985) and by a calculation with the ex-
act solution for the hard hexagon model (Fujimoto, unpublished).
Thus a system of hard hexagons whose concentration is 1/4 pro-
duces (v/3 x /3) diffuse spots in the momentum-space correlation
function at sufficiently high temperatures where the second and
more distant neighbour interactions are not important. The sys-
tem takes the c(2x8) structure as the grouﬁd state for appropri-
ate sets of interaction parameters (Kanamori, 1984). We note that

the adatom concentrations for the ¢(2x8) and (7x7) arrangements |

are equal to and slightly less than 1/ 4,»respective1y. Therefore we
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might regard this model as a unified one of the (1x1) states of
Si(111) and Ge(111) and also the ordered state of Ge(111), in-
terpreting the difference between the (1x1) states of Si(111) and
Ge(111) as that between the transition temperatures of the sur-
faces. In order to discuss the ordered state of Si(111) it is necessary
to extend the model in such a way that the (7x7) state is stabi-
lized as a ground state, since the (7x7) arrangement of particlés

cannot be of the lowest energy in the simplé lattice gas model.

§1.2 Organization of the Present Thesis

In the next chapter, Chap. II, an experimental overview
and a brief review of the theoretical approach to the ordering
problem of the (111) surfaces of Si and Ge are presented. Monte
Carlo method for a system of classical particles is also summarized.
Chapter ITI deals with the reconstruction of Ge(111) with a simple
lattice gas model; the model and the Mdnte Carlo calculation are
presented. We discuss there the (1x1) phase of the model at high
temperatureé on the basis of the simulation calculation, focusing
our attention on the diffuse scattering patterns which reflect the
short-range order. The adatom arrangement which produces the
characteristic diffuse scattering pattern observed in the LEED and
RHEED experiments and its underlying mechanism are also dis-
cussed. In Chap. IV an extended lattice gas model which can
describe the reconstruction of the Si(111) surface both below and
above the transition is cbnstructed, and the Monte Carlo calcula-
~ tion of the model is carried out. Moreover, the disappearance of

the stacking fault in the (1x1) phase of the surface is discussed on
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the basis of the calculation. The final chapter, Chap. V, is devoted
to a summary of the results obtained in Chaps. III and IV and
some supplementary discussions. The interrelation between the
reconstructions of the Si(111) and Ge(111) surfaces is discussed

there.



CHAPTER Il

Historical Overview

The present chapter presents an overview of previous inves-
tigations on the (111) surfaces of Si and Ge from experimental and
also theoretical points of view. In §2.1 we give a brief review of
the experimental feature of the surfaces with an attention focused -
upon the temperature dependence of the surfaces, i.e., the phase
transitions and the ordered and disordered reconstruction struc-
tures. In §2.2 some important results of the theoretical approach
to the ordering problem of the surfaces with the triangular lattice
gas model are presented. Finally in §2.3 Monte Carlo method for
a system of classical particles after Metropolis et al. used in the

present investigation is summarized.

§2.1 Experimental Overview of the (111) Surfaces of Si
and Ge

- Each surface of solids takes a structure of atomic arrange-
ment specific to the surface which is differeﬁt from the structure
in the bulk state. This is because atoms at the surface make a re-
construction to recover the stability which is broken by the abrupt
termination of the periodic atomic arrangement seen in the bulk

state. The (111) surfaces of Si and Ge have been known for about
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thirty years as ones which show distinct and interesting recon-
structions, and many investigations about them have been made

by various methods from different points of view.

It was first found by Schlier and Farnsworth (1959) that the
Si(111) surface takes a structure with the (7x7) periodicity at low
temperat;lres Since then many investigations have been made and
various structure models of the surface havé been proposed. It has
been clarified that the structure corresponds to the (7x7) arrange-
ment of adatoms on the surface (Binnig et al., 1983). Also it has al-
ready been settled that the structure corresponds microscopically
to the dimer adatom and stacking-fault (DAS) model (Takayanagi
et al., 1985) which is also called the Takayanagi model.

Figure 2.1 presents a top-view sketch of the DAS structure
corresponding to the (7x7) state of the Si(111) surface; in the
figure the location of atoms in up to the fourth underlayer is indi-
cated schematically. Open circles in the figure denote atoms in the
surface layer, i.e., the first underlayer and the second underlayer.
It is distinct characteristics of the Takayanagi structure that both
normally-stacking regions and stacking-faulted ones in the first un-
derlayer exist which correspond to the upper and lower triangles,
respectively, in the unit cell shown in the figure, and that dimers
of Si atoms are formed in the second underlayer along walls each
of which separates a stacking-faulted region from a nearby normal
region. In this sense the first and second underlayers are usu-
ally referred to as the stacking-fault layer ‘and the dimer layef,
respectively. Though the surface energy is raised by generating

stacking-faulted regions, the dimer formation lowers the surface
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Figure 2.1

Top view of the (7x7) structure in the DAS model. Filled circles are
adatoms. Open circles denote atoms in the first and second underlaye.rs.
Dots and small open circles show atoms in the bulk unreconstructed
double layer corresponding to the third and fourth underlayers. The
upper and lower triangle regions in the unit cell correspond to the normal
and stacking faulted ones, respectively. Bonds between atoms in up to
second underlayer are shown by lines.

energy sufficiently to stabilize the (7Xx7) structure. We notice that
both stacking-faulted regions and normal ones are necessary for
the dimer formation. This is considered to be the mechanism to
stabilize the reconstruction structure of the Si(111) surface. We
will refer to this mechanism as the Takayanagi mechanism here-
after. To reduce the number of dangling bonds in the surface,
additional Si atoms which are called adatoms are adsorped on the
surface layer. The layer in which adatoms sit is called the adatom
layer. In order to reduce dangling bonds atoms at wall vertices in

the dimer layer are missing; therefore the portions of the surface
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Figure 2.2
A sketch of the diffuse scattering of electron in the reciprocal space.

(a) The data on the (1x1) state of Ge(111), and (b) the corresponding
one of Si(111).

corresponding to wall vertices are called corner holes.

The Si(111) surface undergoes a first-order phase transition
at about 860°C from the (7x7) state into the (1x1) one (Lander,
1964). The (1x1) state of Si(111) was first investigated by Ino
(1977) with the RHEED experiment and afterwards by Iwasaki
et al. (1987) with the LEED experiment. They found that diffuse
spots around the (v/3x+/3) superlattice Bragg points are observed
in the (1x1) state; a sketch of the diffuse scattering pattern is
presented in Fig. 2.2b. |

On the other side, since it was found that the Ge(111) sur-
face takes a structure which posseéses the periodicity of eight times
of a unit lattice spacing of the (111) surface (Palmberg and Pe-
ria, 1967; Palmberg, 1968; Henzler, 1969) at low temperatures,
many investigations on the microscopic structure of the surface
have been made. Chadi and Chiang (1981) and Yang and Jona
(1984) discussed theoretically that the structure corresponds to a
superposition of the three ¢(2x8) structures on a triangular net

whose adatom arrangement is shown in Fig. 2.3. They stressed
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The ¢(2x8) arrangement of adatoms on the Ge(111) surface. A unit cell
is shown by a parallelogram.

that the structure is not the primitive (2x8) one but the centred
(2x8) one. Then the structure was investigated experimentally in
detail (Phaneuf and Webb, 1985), and this was confirmed. The
atomic-scale structure of the surface has recently been clarified by
the scanning tunneling microscopy (STM) experiments (Becker et
al., 1986; Becker et al., 1989); the structure corresponds to the
¢(2x8) arrangement of adatoms on a surface layer without stack-
ing faults.

It is known for the Ge(111) surface that a phase transi-
tion from the c(2x8) state to the (1x1) one which is of the first
order takes place at about 300°C (Palmberg, 1968) above which
diffuse spots around the (2x2) superlattice Bragg points are ob-
served (Ichikawa and Ino, 1980; Phaneuf and Webb, 1985). A
" sketch of diffuse scattering pattern observed above the transition
temperature is presented in Fig. 2.2a. Aarts et al. (1988) per-
formed photoemission measurements of the Ge 3d core level on
the surface to find that no significant changes occur in the binding-

energy spectra both below and above the c(2x8)-to-(1x1) transi-
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tion. Thereby they concluded that the phase transition is of the
order-disorder type, and that the (1x1) state corresponds to a ran-
dom distribution of adatoms at the energetically favourable sites
on the (1x1) substrate. Phaneuf and Webb (1985) investigated in
detail the temperature evolution of the diffuse scattering patterns
in the (1x1) phase by a LEED experiment. The diffuse peaks give
us some information about the short-range order of adatoms on
the surface. Immediately above the transition relatively weak dif-
fuse spots at the (2x2) superlattice Bragg points and additional
ones with strong inﬁensity closer to the (2x2) superlattice Bragg
points than the eighth order spots observed’ in the ordered state
appear. The additional spots split into two in the direction from
the (2x2) superlattice Bragg points towards the (v/3 x v/3) ones,
as is shown in Fig. 2.2a. With increasing temperature the weak
(2x2) peaks disappear, while the additional strong ones move away
towards (v/3 x v/3) superlattice Bragg points with decreasing the
peak height and increasing the peak width. The feature has been
observed in RHEED experiments as well, though the data about
the peak width seems not to agree with that of the LEED exper-
iment. In the RHEED experiment by Ichikawa and Ino (1980)
distinct split peaks are observed. While in the LEED experiment
by Phaneuf and Webb they are more diffuse and the splitting of

the peaks are not so distinct.
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§2.2 Lattice Gas Approach to the Ordering Problem
of Si(111) and Ge(111)

Kaburagi and Kanamori (1974; 1978) developed a lattice
gas model on a triangular net with extended but finite range in-
teractions by the use of the method of geometrical inequalities
(Kanamori, 1966; Kaburagi and Kanamori, 1975) which deter-
mines the states of the lowest energy of a system of Ising spins or
lattice gases in a rigorous way; the lattice gas model is referred
to as ‘a simple lattice gas model’ in the present thesis in order to
distinguish it from another one extended for the purpose of dis-
cussing the reconstruction of the Si(111) surface. The result is
applicable generally to the ordering problem on surfaces and of
magnetic systems with competing interactions, regarding the par-
ticles as equivalent local units of reconstruction on the surfaces and
as Ising spins in the magnetic systems, respectively. Afterwards
the lattice gas model was applied to the ordering problem of the
(111) surfaces of Si, Ge, and Sn overlaid Ge; it was shown that the
c(2x8), (7x7), and (5x5) ordered states can be regarded as the
lowest energy particle arrangements of lattice gases (Kanamori,
1984; 1985). A different but more transparent point of view where
the ordered particle arrangements were regarded as patterns con-
sisting of discommensuration walls in the (2x2) arrangement of
particles was proposed (Kanamori and Okamoto, 1985; Kanamori,
1986). In the investigation Kanamori had first clarified the inter-
relation between the ordered states of the surfaces. In addition

he had shown that the (7x7) arrangement of particles cannot be
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of the lowest energy in the lattice gas model. We summarize the

discussion briefly below.

Figure 2.4 shows the ¢(2x8) and (7x7) arrangements of par-
ticles which correspond to reconstruction units of the surfaces,
i.e., adatoms in the present cases. Althoﬁgh the arrangements
apparently look quite different, we can give a following transpar-
ent picture to them. We can regard the particle arrangements
as patterns of discommensuration walls running in the (2x2) ar-
rangement where particles occupy mutually third neighbour lattice
sites; the c(2x8) particle arrangement corresponds to the pattern
of walls running parallel in one direction at the same interval of
four lattice spacings, while the (7x7) one to the network of walls
which run in three directions at intervals of seven lattice spacings.
A discommensuration wall separates two domains in each of which
particles take one of four (2x2) arrangements corresponding to the
four sublattices of the original triangular net and particles close to
the wall are situated at second neighbour sites across the wall. The
discommensuration walls corresponding to the c(2x8) and (7Xx7)
arrangements of particles are shown by lines in the figure. This

picture clarifies the interrelation between the c(2x8) and (7x7)

particle arrangements.

The lowest energy state of the lattice gas model can be ana-
lyzed by considering which of patterns consisting of discommensu-
ration walls is of the lowest energy. Figure 2.5 shows the patterns
corresponding to the ¢(2x8) state and the (7x7) one. The energy
of the system of discommensuration walls is constructed by the

wall energy which is required for produciné a wall in the (2x2)
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c(2X8)

Figure 2.4

The particle arrangement on a triangular net in the c(2x8) state and
the (7x7) one. Discommensuration walls are shown by lines.

state, the vertex energy which corresponds to the energy of such a
wall vertex as is seen in the (7x7) state where three walls running
in the three directions meet, and the interaction energies between
walls and between vertices. On the basis of the energy analysis
of the wall system Kanamori (1985) pointéd out that the (7x7)
arrangement of particles of the lattice gas model cannot be of the
lowest energy except for the case that the (7x7) state is degener-
ate in energy with the (5x5) one and also c(2x8) one within the
assumiation that the energy of the system is presented by a sum
of wall energies, vertex energies, and interaction energies between
adjacent walls. We assume that we have no interaction between
walls at interval of more than two lattice spacings in the original
triangular lattice; we notice that discommensuration walls in the

c(2x8) state do not interact with each other. Thus the energy of
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1)

(b)

Figure 2.5
Configurations of systems of discommensuration walls. (a) The c(2x8)

state and (b) the (7x7) one.

the c(2x8) state Epxs is expressed by
1
E2x3 = szz -+ Z.N”LU, (21)

where F,yo denotes the energy of the (2x2) state, w the wall
energy which is assumed to be negative, and N the number of
lattice sites; the energy of the (2x2) state Ejx2 is presented, for
example, in the case with up to the sixth neighbour pair interaction
by

3 3
CNVa+ =
4N 3+4

where V3, Vg and p denote the third and sixth neighbour inter-

1
Eoxo = NVg + ZN#, (2.2)

action energies and the chemical potential, respectively. On the
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other hand, the energy of the (n X n) state E,xn with n=3, 5, 7,

.. 1s given by
3Nw N(4v - p)
Enxn = E2x2 + t = (2.3)
where v denotes the vertex energy. Thus we obtain
. N :
Eoxn— FEaxg = 4—7;5[(1271—71 )w+4v—u] (24)

This expression shows us that the energy of the (5x5) state is
lower than that of the (7x7) one if we assume w < 0 and F7x7 <
Eyys; the (Tx7) state is of the lowest energy only in the case of
E7y7=Fsxs5 where the c(2x8) state should also possess the same
energy. From the result we conclude that the (7x7) state of the
Si(111) surface should have some additional mechanism to stabilize
the structure; this gives a theoretical support to the Takayanagi
mechanism by which the (7x7) adatom arrangement of the Si(111)

surface seems to be stabilized.

§2.3 Monte Carlo Method for a System of Classical

Particles

Monte Caﬂo method is a technique to evaluate the summa-
tion of values of a physical observable over a given configuration
space, sampling a relatively small number of configurations from
the configuration space with a sequence of some random numbers;
an ‘observable’ is meant as a function of the configuration. Since
Metropolis et al. (1953) developed the fast method of calculations,
it has been widely used for statistical-mechanical calculations.

So far as a classical system in a thermal equilibrium state

is concerned, we can say that the Monte Carlo method is that for

15



calculating an ensemble average
= p(0)Ac) . (2.5)
cen
of a physical observable A in the following way:
1) We construct (s2mP = {¢1, €2,y .00y cm}, taking M samples from
Q) according to a given probability psamP(c),

2) calculate the value of

Z ensump psu}:rgs)(c)A( )

2.6)
(c) ’ (
ZCEqump. psamp. (C)

A(Qsamp.) —

3) and regard the above-calculated value of A(Q*mP-) as that of

(4),
(A) = A(QE2™P), (2.7)

where € is the configuration space, or more generally the phase
space, of the system under consideration and p(c) the probability
that a configuration c of the system will be realized. According to
this method we can evaluate any thermodynamic quantities rep-
resented by ensemble averages of some observables exactly within
the statistical accuracy of the calculation; the accuracy is enabled
to be sufficiently excellent if we use an appropriate technique for
the problem and 2°2™P- of some extent. This is one of the advan-
tages of this calculation method.

When we use the canonical ensemble

o B(c)/ksT
p(c) = S g e BO/kT (2.8)
and adopt p*™P(c) = p(c), eq. 2.6 is reduced to
samp. A
A(Qsamp.) — ZCEQ i (C) (29)
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and

M= > 1, (2.10)

ceQeemp.
where E(c) denotes the energy of the system with a configuration
¢, T is the temperature of the system, and kp is the Boltzmann
constant. We have taken above p**™P:(c) to be equal to p(c). This
enables us to make a calculation, utilizing each sample from 2 ef-
fectively. Each term in the summation over °*™P gets to take a
value of the same order of magnitude as well; this reduces a com-
putational effort. This selection of p**™P*(c) is called ‘importance
sampling,” because then the 15*™P- is constructed by such config-
urations that importantly contribute to the ensemble average of
the energy. |

Now we discuss the way of constructing 2°*™P- with above-
assumed p(c) and p*>™-(c). For the purpose of constructing {25
we use a Markov process which is such a stochastic process that
the configuration ¢; is determined by an zippropriate transition
probability that is a function of ¢; and c¢;—;, where the index ¢
denotes the discrete time variable. We note that we can easily
generate a Markov chain on a computer system, using a uniform
sequence of random numbers which is produced, for example, with
the method by Tausworthe (1965) and Lewis and Payne (1973)
(Kirkpatrick and Stoll, 1981).

We consider such a Markov process that the transition prob-

ability from a configuration ¢ to ¢’ is given by
P..min|[1, e~ (B()=E(e)/kaT) (2.11)
where P, is usually called e prior: probabilfty that is used for the

17



purpose of limiting configurations into which it is a priori allowed

to make a transition from a given configuration in a trial, and
min|z, y| is such a function as

: z, ifz<y;
min(z,y] = {y, PN Z (2.12)

We call hereafter such configurations ¢ and ¢’ as P # 0 ‘neigh-
bouring configurations to each other.” We let P,(c) denote the
probability that the configuration of the system reached after n
times of such transitions from a given initial configuration is c.
If E(c) < E(¢') for two neighbouring configurations ¢ and c¢', the

flow of the probability Py,(c) from the configuration c into ¢ is
Pn(C)Pccle—(E(CI)—E(c))/kBT _ Pn(c’)Pc’c- (2.13)

Especially in the case of Peer=PFerc, this is written as

—E(c')/ kT '
PchPn(C){e P‘n(c )

o—B(c)/ksT - Pn(C) } (2.14)

As can be seen from the expression, this flow of the probability
forces the probability P,(c) to approach a function of ¢ with in-
creasing n. Thus we obtain for two neighbouring configurations ¢
and ¢’ P (e B ko T

G = RaTRT (2.15)

for large n. If the transition probability eq. 2.11 is, in addition,

ergodic, we thus obtain for any two configurations ¢ and ¢’ in the

configuration space §)

P—n(C,) e—E(c')/kBT
Poe) ~ e E@TRT (2.16)

18



for sufficiently large values of n; we mean that the transition prob-
ability is ergodic when the following ergodicity condition holds: n
which is not very large exists where Py(c) # 0 is satisfied both for
Ve € Q and any initial configurations.

In the result, when the ergodicity condition is satisfied in
the Markov process used in a calculation, the following expression

holds for sufficiently large no:
P.(c) e~ () /kaT for Yn > ng > 1. (2.17)

Thus we can construct §2%2™P" = {Cn,,Cnyy - Cny }» S2IMPling M
configurations Cu,,Cngy .-+, Cnyy from the configuration space of the
system ) via the Markov process where ni, na, .., and nps are
larger than ng in eq. 2.17.

Finally we note that the above-mentioned calculation meth-
od for classical systems is easily extended to that of quantum
systems formally. ‘A quantum system’ is meant for such one
as either some interesting physical quantities cannot be diago-
nalized simultaneously with the hamiltonian of the system but
the eigenvalues and eigenstates of the hamiltonian are known or
both eigenvalues and eigenstates of the hamiltonian cannot be
found easily at a glance. In the former case the above-mentioned
method for a classical system works, if only we take the repre-
sentation to diagonalize the hamiltonian, replace such products
of physical quantities as A(c)B(c) in the above discussion with
A(c1,c2)B(ca,c1), and extend the configuration space to Q1 x Q,
where A(cy,c2) denotes a matrix element (c1]A|c2) and ¢; and ¢z

the labels which distinguish between the eigenstates of the hamil-
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tonian. In this case we regard ¢ = (¢1,¢2) € QxQasa configura-
tion of the system. While in the latter case in order to utilize the
method described above it is necessary to decompose the hamil-
tonian H into a summation of H=H/v where v > 1 is so-called
the Trotter number and to extend more the configuration space to
OxNx...xQ={cler € } x{cz|cz € Q} X ... X {eptnlCoyn € O}
in calculating an ensemble average (A;Aj...As), where c1, ¢z, and
so on denote the labels to distinguish between the states which
form a complete set convenient for the calculation. Thus we can
use the method developed for classical systems to calculate some
ensemble averages of quantum-mechanical quantities. However, it
is more difficult in general to carry out calculations of such sys-
tems; to sophisticate the method and much computational effort

are necessary there.
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CHAPTER Il

Simple Lattice Gas Model:
Ge(111) Case

In this chapter we investigate the reconstruction of the (111)
surface of Ge, carrying out the Monte Carlo calculation of a lattice
gas model which is referred to as the simple lattice gas model in
the present thesis. In the first section, §3.1, the model is presented.
We analyze the ground states of the model in §3.2, regarding par-
ticle arrangements as patterns made of discommensuration walls
which run parallel in the (2x2) state. The ground-state phase di-
agram of the model is presented there. In this chapter we make an
investigation on the reconstruction of the Ge(111) surface, carry-
ing out Monte Carlo calculations of the simple lattice gas model.
A detailed description of the computational method for the model
is presented in §3.3. Sections 3.4 and 3.5 present the Monte Carlo
calculation of the model. In §3.4 the phase transition from each of
the ordered states into the disordered (1x1) state is investigated.
Section 3.5 presents a detailed investigation of the (1x1) phase
of the model. The temperature evolutidn of the reciprocal-space
correlation function which corresponds Withi‘n the kinematical ap-
proximation to the scattering pattern in electron-diffraction ex-

periments is calculated, and it is demonstrated that the present
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model is capable of reproducing the temperature dependence of
the Ge(111) surface. On the basis of the calculation the adatom
arrangement which causes the characteristic diffuse scattering ob-
served in electron-diffraction experiments on the (1x1) phase of
the surface is proposed, and its underlying mechanism is discussed
from a statistical-mechanical view point; in the discussion the re-
lation between the entropy of the model and the number of triplets
of mutually second neighbouring particles is also clarified. The dis-
cussion in the present chapter has been presented partly in the pre-
vious publications (Sakamoto and Kanamori, 1989a, 1989b, 1991;

Kanamori and Sakamoto, 1991).

§3.1 Model

It seems that the c(2x8) arrangement of adatoms with the
stacking-faulted substratum where zigzag walls are necessary to
run is energetically unfavourable; it is conjec’tured that the c(2x8)
state of the Ge(111) surface probably corresponds to the simple
adatom model where adatoms are located at the favourable sites
on the surface layer without the stacking fault. Although it has
recently been clarified by the STM (Becker et al., 1986; Becker
et al., 1989), ion-beam scattering (Maree et al., 1988), and X-ray
diffraction (Feidenhans’l et al., 1988) experiments that no stack-
ing fault is present in the substratum layer of the surface, the
present investigation through the lattice-gas Monte Carlo calcula-
tion had motivated the present author to confirm theoretically the
conjecture that the reconstruction of Ge(111) is accompanied by

no stacking-faulted substratum unlike the case of the (7x7) state
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of Si(111). We try to discuss the reconstruction of the surface
with a simple lattice gas model on a triangular net whose particles
correspond to the adatoms, and to confirm the conjecture on the
basis of the investigation. In this section the simple lattice gas
model used in the present investigation is presented.

The energy of the model E is given by
E = Vipy + Vaps + Vaps + Vaps + Vsps + Vops,  (3.1)

where pi denotes the number of the k-th neighboring pairs of par-
ticles and Vi the interaction energy of the corresponding pairs.
The definition of the k-th neighbour sites is shown in Fig. 3.1.
In the figure a triplet of mutually second neighbouring particles
whose number in the system is denoted by X; and a linear one of
‘the second neighbours the interaction energy of which 1s denoted
by Us are alsd shown. Figure 3.2 shows particle arrangements in
the ordered structures. The interaction energies of the pairs are
effective interactions between corresponding adatoms through the
substratum layers. We assume that the essential part of the total
energy of the surface is composed of the energies of the effective
interactions. A Monte Carlo study demonstrating that the model
can reproduce essential features of the temperature dependence
of the Ge(111) surface would justify the assumption. We have
assumed above that the interaction is extended up to the sixth
neighbour sites; the repulsive sixth neighbour interaction is essen-
tial to the discussion of the reconstruction of the surface. The
assumption is discussed in the next section in detail.

We assume that the available sites for particles of the model

make a triangular net, since the adatom arrangement on the (111)
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Figure 3.1
Definition of neighbours and triplets of particles. (a) Neighbours of

a particle denoted by an open circle, (b) a triplet of mutually second
neighbouring particles, and (c) a linear triplet of the second neighbours.

Figure 3.2

Particle arrangements in (a) the (2x2) state, (b) the (/3 x V3)R30°
state, (c) the c(2x4) state, and (d) the c(2x8) state. Circles and dots
denote particles and unoccupied sites, respectively. Discommensuration

walls are also denoted by lines.

surface of Ge can be described as a particle arrangement on a
triangular lattice. In addition we also assume that the concen-
tration of particles is 1/4 which corresponds to that of adatoms
on the surface in the c(2x8) state. However, the concentration of
adatoms on the surface may change with temperature. This will

be discussed in Chap. V.
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It is energetically unfavourable that adatoms come to the
nearest neighbour positions where they have to share a dangling
bond of a substratum atom. The situation corresponds to the suf-
ficiently repulsive nearest neighbour interaction between particles
of the lattice gas model. Thus we assume in the model Vi=+o0.
With this assumption the term of Vipy in the energy expression
eq. 3.1 is eliminated, because we have no nearest neighbouring
pairs of particles, p;=0. The condition Vyj=400 or p;=0 in the
triangular lattice gas model is called the hard hexagon condition.
The condition ensures the (v/3 x V/3) short-range order at suffi-
ciently high temperatures. Since the (V3 x V/3) short-range or-
der is observed in electron-diffraction experiments on the (1x1)
~phase of Si(111), the present model might also describe the (1x1)
state of the Si(111) surface. This is discussed in the next chapter,
Chap. IV.

The present model corresponds to a specific case of the ex-
tended lattice gas model which will be discussed in the following
chapter for the Si(111) surface, as will be discussed in Chap. V.
For simplicity, however, we restrict ourselves to the simple lattice

gas model in the present chapter.

§3.2 Ground States of the Model

In this section we consider the lowest-energy states of the
hard-hexagon system with up to the sixth neighbour interaction
whose concentration is 1/4.

In the case of V5 > 0 and V=0 for k& > 3, we can see
straightforwardly that the (2x2) state where each particle is sit-
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uated at one of the third neighbour sites of its neighbouring par-
ticles is the lowest-energy state. While for V2 < 0 we obtain the
(\/§ x V/3) state as the lowest-energy one., We assume Vo > 0
hereafter, because the (\/§ x +/3) structure does not appear as the
ordered states of the (111) surfaces of Si and Ge.

The lowest-energy states of the system with up to the sixth
neighbour interaction can be regarded as such states that can be
generated from the (2x2) state by introducing discommensuration
walls, if V3 is not so large and Vo > 0 is assumed; we regard the
(2x2) state as the reference state. When V; is sufficiently large, no
ordered structures with the concentration 1/4 can be of the lowest
energy. We do not consider such a case in the following part of
this section.

The energy of the system with N=L x L lattice sites in
which v discommensuration walls parallel to each other run can

be expressed as

E =F;y2 + vwL + w101 L, (32)
Favs = %NV}; 4 %st, (3.3)
w=%vz—v3+v4—zv6, (3.4)

and
V1 = %, (35)

where Fayo is the energy in the (2x2) reference state; w denotes
the energy per unit lattice spacing necessary for producing a dis-
commensuration wall; v; is the interaction energy per unit lattice

spacing between walls which are situated at the nearest neighbour
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positions of each other, or in other words that between walls which
run parallel at the interval of two lattice spacings (an example of a
nearest neighbouring pair of discommensuration walls is shown 1n
Fig. 3.3); and m; denotes the number of the corresponding pairs of
walls. We notice that the number of the walls can take the values
v =0,1,2,...,L/2; v=0, L/2, and L[4 correspond to the (2x2),
c(2x4), and c(2x8) states, respectively.

Figure 3.3
Discommensuration walls in the (2x2) state. (2) A discommensuration

wall which separates two (2x2) domains, and (b) a pair of adjacent walls,
i.e., parallel walls at the smallest interval. ‘

We have included the interaction energy at the sixth neigh-
bour sites into the energy expression eq. 3.1. This is essential to
the discussion of the reconstruction of the Ge(111) surface. The
c(2x8) structure which is the ordered state of the surface can be

regarded as the one where the walls separating the (2x2) domains
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run parallel at the regular intervals of four lattice spacings; if they
run at the shortest intervals of two lattice spacings, the structure
is the c(2x4). The repulsive sixth neighbour pairwise interaction
and the repulsive three particle interaction of the particle arrange-
ment shown by Fig. 3.1c whose energy is denoted by U, can give
rise to a repulsive interaction of the walls at this shortest interval,
while no such an interaction arises from other pairwise interac-
tions up to the fifth neighbour. The sixth 'neighbour interaction
changes the reagion in the interaction-parameter space where the
(2x2) state is the ground state in the case with up to the third
neighbour interaction into that of the c(2x8) one, while the three-
particle interaction changes the reagion of the c(2x4) into the
c¢(2x8). The three particle interaction cannot reproduce the fea-
ture in the (1x1) phase of the surface, as is mentioned in §§3.5.1.
Thus the repulsive sixth-neighbour pair interaction is the simplest
one which generates the repulsive interaction between adjacent
walls. Therefore we adopt the repulsive sixth neighbour inter-
action as the representative which stabilizes the c(2x8) particle

arrangement.

We consider first the case of v; > 0 (repulsive inter-wall in-
teraction) or Vg > 0. For w > 0 or V3 < —2V5+ Vi +(1/2)V2, since
no interactions compete with each other, the lowest energy state
of the model is simply the state with no discommensuration walls,
namely, the (2x2) state. While in the case of w < 0 the com-
petition between w and v; complicates the analysis of the lowest
energy state of the model. In this case the lowest energy state 1s

determined by it whether the value of w + 2v; is positive or neg-
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ative. For w + 2v; < 0 or V3 > V4 + (1/2)V, the structure which
has a maximum number v=L/2 of discommensuration walls, i.e.,
the c(2x4) one is of the lowest energy under the condition X;=0;
we notice that this condition does not hold for sufficiently large
values of V. While in the case of w+2v; > 0 or V3 < V4 + (1/2)V,
in addition to the negative wall energy condition w < 0, a near-
est neighbour pair of walls raises the energy of the system by its
repulsive interaction though each wall lowers the energy of the
system. Therefore in this case the structure that possesses a max-
imum number of walls within the condition 71=0, i.e., the c(2x8)
structure is of the lowest energy.

Next we consider the case with the attractive wall-wall in-
teraction v; = Vg < 0. When the wall energy w is negative, the
Jowest-energy state is clearly the c(2x4) so far as the condition
X;=0 holds. In the positive wall-energy case the lowest energy
state is determined by whether the value of w + vy 1s positive or
negative. If w + v; is positive, i.e., Va < =Vg + Vi +(1/2)Va, the
(2x2) state is of lowest energy because of the increase of the en-
ergy by producing a wall. While for negative w + v; the c(2x4)
state with a maximum number of walls is of the lowest energy,
since to generate a wall decreases the energy of the system.

We present the ground-state phase diagram of the present
lattice gas model in Fig. 3.4, where V;=0 is assumed which is
also assumed in the Monte Carlo calculations carried out in this

chapter; the assumption is more discussed in £83.3.6.
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c(2X8) c(2X4)
0 05 10 V3/V,
(2X2)
no order

Figure 3.4
Ground-state phase diagram of the simple lattice gas model. V,=0 is

assumed.

§3.3 Detailed Description of the Calculation Scheme

We carry out Monte Carlo calculations of the lattice gas
model at finite temperatures with canonical ensembles. The for-
mal description of the general method of the calculations is pre-
sented in §2.3. In the present section we describe the details of the

calculation for the lattice gas system considered in this chapter.

§83.3.1 Finite System Size
It is essential to the Monte Carlo calculation to sample some

configurations from the configuration space of the system under
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consideration. Since we cannot construct a configuration of a sys-
tem with the infinite size on a computer system, we are forced to
treat one with a finite system size. |

In the calculation carried out for the simple lattice gas model
in the present chapter, we adopt the lattice sizes of 24x24 and
48x 48 sites. These system sizes are sufficient to discuss the prob-
lem of the Ge(111) surface, since the chal'racteristic correlation
length of the system is probably shorter than the linear sizes we

adopt.

§83.3.2 Boundary Condition

A finite system has a boundary. The effect contributed by
the boundary is unfavourable, because we would like to investi-
gate properties of a system extended infinitely. We can, however,
eliminate the effect formally by using the periodic boundary condi-
tion and adopting a system size larger than the correlation length
characteristic of the problem. ‘

We note that the sixfold symmetry of the system which is
violated in a system with a free boundary is recovered by the
boundary condition; the boundary condition makes the configura-
tion made from rotating a given configuration by 27/6 around a
given lattice site an acceptable one with the same energy that the

original one has.

§83.8.8 Particle Number

As is discussed in the previous sections, we consider the

system whose concentration of particles z is 1/4. However, if we
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adopt r=1/4 precisely, we face a difficulty in carrying out the
calculations. |

We imagine a hard hexagon system of z=1 /4 which takes the
configuration of either the (2x2), c(2x4), or ¢(2x8) arrangement.
As far as we use the a priori probability defined in the following
subsection, the transition from the configuration into any other
ones cannot take place in any Monte Carlo trials and vice versa. If
the configurations (2x2), c(2x4), and ¢(2x8) were not important,
we could consider that the ergodicity condition in the calculation
holds in practice. These states, however, play an important role
in our discussion of the problem of Ge(111), because they are the

ground states of the model.

This difficulty can be removed by reducing the number of
particles slightly to the extent that this does not affect the ordered
state. With this reasoning we assume in the calculations that the

concentration is 143/576 which is slightly less than 1/4.

§63.3.4 Particle Number Firing

The calculations in the present chapter are carried out, fix-
ing the total number of particles in the system at the values cor-
responding to the above-mentioned concentration =143 /576. In
order to satisfy the condition we use such an a priori probability
that P.. # 0 if a configuration ¢’ is the one caused by moving a
particle in the system with a configuration ¢ to one of its nearest
neighbour lattice sites, and that P.» = 0 for other cases. In other
words, in a Monte Carlo trial we just either move a particle to

its nearest neighbour site or do not change the configuration. We
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note that we must take P, # 0 for the configuration ¢’ which
does not satisfy the hard hexagon condition p;=0 so as to satisfy
the symmetry condition of the a priors probability Peo=Py.; the
hard hexagon condition is then ensured by the other factor in the

transition probability eq. 2.11 which vanishes.

§63.3.5 Correlation Function Calculation
In order to discuss the diffuse scattering patterns observed
in the LEED and RHEED experiments we calculate the correlation

function of the lattice gas model in the momentum space
1 fr
S(k) = {1 )_n(r)e™ )
= Z G(r)etkT (3.6)

and

G(r) = -]17(2 n(r'n(r' + 1)), (3.7)

where n(r) is the occupation number at the lattice site r which
takes the unity if the site is occupied by a particle and takes the
nought if not. Since the function G(r) is the ensemble average
of an observable S, n(r')n(r' + r), we can evaluate it through a
Monte Carlo calculation.

In the calculation of the function S(k) we take an average
over three independent directions which correspond to rotating a
configuration by 0, 27/3, and 47/3, respectively, around a lattice
site in the real space to save the computational effort. Thereby
we obtain the result averaged over the six independent directions

corresponding to the full rotational symmetry of the lattice gas
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model, since the average over other three directions correspond-
ing to the inversion of the three configurations has already been
incorporated in the summation in eq. 3.7. For the c(2x8) ordered
state this corresponds to the superposition of the three ordered
configurations; we will not, however, carry out the calculation of

S(k) for the ordered state.

§63.3.6 Additional Assumption to the Interaction Parameters

As is mentioned in the previous section, we assume that
the second neighbour interaction is repulsive, i.e., the interaction
energy of a corresponding pair V3 is positive, because of the fact
that the (\/3- x v/3) structure does not appear as the ordered state
of the (111) surface of Ge. We measure hereafter the energy and
the temperature in a unit of the strength of the repulsive second

neighbour interaction V.

In addition, we assume that the enefgy of a fourth neigh-
bouring pair and a fifth neighbouring one of particles V; and Vs
take the value of nought. Since the fourth neighbour interaction
V. just shifts the wall energy w and the fifth neighbour one Vj
affect no effect to the energy of the ground state, we can omit
V4 and Vs so far as the ordered state of the model is concerned.
Although these interactions affect details of the temperature de-
pendence of the system, we believe that they do not change the

essential feature of the temperature dependence.

As is mentioned in §3.1, we also assume that the hard hex-

agon condition holds, i.e., V3=+00 or p1=0. Thus the energy of
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the model E given by eq. 3.1 is reduced to
E = Vaps + Vaps + Veps. (3.8)
Then the ensemble average of the energy (E) is evaluated from

(E) = Valps) + Va(ps) + Ve {ps). (3.9)

We notice that these assumptions force us to have just two ad-

justable parameters V3 [V, and Vg/V; in calculations.

§3.4 Phase Transitions

Figure 3.5 shows an example of the temperature evolution of
the energy per particle (E)/Nz, where N and z denote the num-
ber of lattice sites and the concentration of particles, respectively.
There N=48x48 is assumed. We also assume there Vs [V2=0.32
and V;/Va=0.1 where the ordered state is the c(2x8) one. En-
semble averages are taken over 50000 Monte Carlo steps in the
calculations; a Monte Carlo step corresponds to the completion of
Monte Carlo trials for the whole particle of the system. Although
the figure shows the energy versus temperature relation for the
lattice size of 48x 48, the result is independent of the system size.
The figure clearly indicates that the first-order phase transition
from the c(2x8) state into the (1x1) one takes place at the transi-
tion temperature; the first-order phase transition is meant as such
one that the state of the system changes discontinuously at the
transition point from the ordered state just below the transition
into the disordered one just above it. It can be revealed through
a histogram representation bf energy distribution at a tempera-

ture around the transition whether the phase transition is of the
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Figure 3.5
Temperature dependence of the energy in the case of V3/V,=0.32 and
Vis/Va=0.1, where N=48x48 and £=143/576 are assumed.
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Figure 3.6
Histogram for energy at kg7 /Vo=1.75 in the case of V3=V =0, N=24x.24,
and z=143/576.

first kind or the second one. Figure 3.6 shows an example of the
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histogram for energy at a temperature around the transition; we
assume there Va=V;=0 where the ordered state is the (2x2) one,
kgT/Vo=1.75, and N=24x24. We have a double peak split clearly

in the figure, which shows us that the phase transition is of the

first order.
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Temperature dependence of the numbers of pairs and triplets of parti-
cles in the case of V3/V>=0.32, Vs/Vo=0.1, N=48x48, and =143/576.
Open, double, and hatched circles and triangles show those of second,
third, and sixth neighbouring pairs and mutually second neighbouring
triplets, respectively.

Figure 3.7 shows the temperature dependence of the num-
bers per particle of second, third, and sixth neighbouring pairs of

particles (py)/Nz, (p3)/Nz, and (ps)/Nz and that of mutually
second neighbouring triplets (X1)/Nz. This shows us that in a

range of temperature above the transition the system still stay in
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Phase diagrams in the T vs. Vs plane for Vs /Vo=0 and 0.3.
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a state far from that which corresponds to the completely random
distribution of particles. This corresponds to the characteristic
short-range order observed in the LEED and RHEED experiments
on the (1x1) phase of the Ge(111) surface, the details of which will

be discussed in the following section.

We give examples of the calculated phase diagram in a T-V3
plane in Fig. 3.8. The phase transitions from each ordered state
to the disordered (1x1) state are of the first order in accordance
with the group theoretical argument (Domany et al., 1977, 1978).
Each transition temperature has been determined on the basis
of calculations carried out with increasing temperature. In the
present calculations the transition from the disordered state to
the ordered c¢(2x8) one has not occurred. We note, however, that
this does not mean that the transition from the (1x1) state to the
c¢(2x8) one cannot take place in the present model; this is caused
just by both the complicated ordered structure and the Monte
Carlo scheme in which a configuration is updated locally. In fact a
system of a smaller size with 88 lattice sites transforms reversibly
both from the c(2x8) state to the (1x1) and from the (1x1) to
the ¢(2x8). In the case where the ordered state is the (2x2) one,

the system even with 48x48 lattice sites transforms reversibly.

§3.5 High-Temperature (1x1) Phase

We have mentioned in §2.1 that characteristic diffraction
patterns which show diffuse spots around the (2x2) superlattice
Bragg points are observed in the RHEED and LEED experiments
on the high-temperature (1x1) phase of the Ge(lll) surface (Ichi-
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kawa and Ino, 1980; Phaneuf and Webb, 1985). In the present
section we try to clarify the experimental data on the basis of

Monte Carlo calculations with the lattice gas model provided in

the previous sections.

§83.5.1 Diffuse Scattering in the (1x 1) Phase

A diffraction pattern of electron from a surface gives us some
information about the long-range order and also the short-range
order in the surface. Especially in the surface with no long-range
order, i.e., in the disordered phase of the surface it gives some
important information on the short-range correlation of adatoms
on the surface. The correlation function in the momentum space
of the lattice gas model whose particles correspond to adatoms
_corresponds to the diffraction pattern of electron within the kine-
matical approximation. In the present subsection we discuss the
temperature evolution of the system in the (1x1) phase with an
attention focused upon the correlation function in the reciprocal

space.

Figure 3.9 shows the temperature evolution of the calculated
diffuse scattering patterns in the (1x1) phase for V3/V,=0.32 and
Ve /Va=0.1 where the ordered state is c¢(2x8). In the figures the
integral-order Bragg spots whose intensities are far stronger than
those of the fractional-order ones are not drown. Diffuse spots
around the (2x2) superlattice Bragg points with strong intensity
and distinctly split peaks appear immediately above the transi-
tion temperature as is shown in Fig. 3.9a. Relatively weak peaks

at the (2x2) superlattice Bragg points are also reproduced. The
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Figure 3.9

Calculated diffuse scattering patterns at various temperatures. V3 /Vo =
0.32, Vg/Vo=0.1, N=48x48, and £=143/576 are assumed. The c(2x8)
superlattice Bragg points are also shown by filled circles.

peak height of the spots decreases with temperature, and at the
same time their positions move away toward the (\/_?: X \/?7) su-
perlattice Bragg points; we notice that the positions of the peaks
move continuously with temperature. With a further increase of
temperature the spots fade away once at a temperature and reap-
pear as diffuse spots around the (v/3 x v/3) superlattice Bragg
points at higher temperatures. Except for the reappearance of dif-
fuse spots around the (v/3 x /3) superlattice Bragg points at high
temperatures the calculated temperature evolution agrees with the
observed one (Phaneuf and Webb, 1985). |

We mention about the case where the ordered state is either
the (2x2) or the c(2x4) briefly. In the case where the ordered
state is the (2x2) one the essential feature in the (1x1) phase re-
mains the same as in the above-mentioned case where the ordered

state is the c(2x8), though the diffuse spots around the (2X 2)
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superlattice Bragg points just above the transition are too diffuse
to show any distinct split peaks. On the other side, in the case
where the ordered state is the c(2x4) one the situation is quite dif-
ferent; diffuse spots around the c(2x4) superlattice Bragg points
appear immediately above the transition, they move away toward
the (v/3 x V/3) superlattice Bragg points with temperature, and
finally the diffuse spots around the (V3 x +/3) superlattice Bragg
points appear at sufficiently high temperatures. As can be seen
from this, the (1x1) state for a set of interaction parameters with
which the ordered state is the ¢(2x4) is not appropriate for dis-
cussing the reconstruction of Ge(111) at finite temperatures. This
is the reason why we have chosen not three-particle interaction Us
but the sixth neighbour pairwise one V as a representative which

causes the repulsive interaction between adjacent walls.

Diffuse spots around the (\/§ X \/5) superlattice Bragg points
are observed in the (1x1) phase of the Si(111) surface by the
RHEED and LEED experiments (Ino, 1977; Iwasaki et al., 1987).
As is discussed in §§3.5.2, the (\/5 X \/§) short-range order that the
present model shows at sufficiently high temperatures is caused by
the aggregation of triplets of mutually second neighbouring parti-
cles which play an important role in the gain of the entropy that
is necessary in the (1x1) state. Although the existence of the
stacking fault is characteristic of the (7x7) ordered arrangement
of adatoms on the Si(111) surface, it is not compatible with the
existence of the triplets (Kanamori, 1986). Therefore we can con-
jecture that the stacking fault disappears in the (1x1) phase of
the Si(111) surface and that the present simple lattice gas model
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is applicable in the (1x1) phase. In §4.3 the conjecture will be

confirmed on the basis of the Monte Carlo calculation of another

Jattice gas model into which the Takayanagi mechanism stabilizing

the (7x7) arrangement of adatoms is incorporated.
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The temperature dependence of the splitting § of diffuse spots around
the (2x2) superlattice Bragg points. a and T¢ denote the lattice con-
stant of the triangular net and the transition temperature, respectively.
Calculated splittings are shown by open circles. The experimental data
after Phaneuf and Webb (1985) are shown by hatched circles for compar-
ison. V3/V2=0.32, Vg/Vo=0.1, N=48x48, z=143/576, kpTc/V,=0.42,
Tc=300°C, and a=4.4Aare assumed.

Figuré 3.10 shows the calculated temperature dependence of

the splitting of the diffuse spots that appear around the (2x2) su-

perlattice Bragg points for the case of V3 /V,=0.32 and Vs /V2=0.1.

The splittings measured in the LEED experiment on the Ge(111)
surface by Phaneuf and Webb (1985) are also indicated in the fig-

ure lfor comparison, where we assume kpTc/V2=0.42 which is the
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transition temperature of the present model, Tc=300°C, and the
lattice constant of the Ge(111) surface a=4.4Awhich corresponds
to a unit lattice spacing of the triangular net of the model. We
can see from the figure that both the splitting immediately above
the transition and the temperature evolution of the splitting in
the (1x1) phase can be reproduced well by the present lattice gas
model. We note that the temperature evolutions of the calcu-
lated peak height and peak width agree qualitatively with those
obtained in the experiments (Ichikawa and Ino, 1980; Phaneuf and
Webb, 1985), as can be seen from Fig. 3.9. We have a quantita-
tive disagreement between the experimental data; the diffuse peaks
just above the transition observed in the RHEED experiment are
sharper than ones in the LEED experiment. Therefore we have
above confined ourselves only to comparing the calculated tem-
perature dependence of the peak splitting with the experimental

data.

§63.5.2 Domain Structure of Particle Arrangement

One of the advantages of the simulation calculation is that it
can give the snapshots of the particle arrangements, which would
reveal the origin that the characteristic diffuse pattern immedi-

ately above the transition arises from.

We have found that the diffuse pattern immediately above
the transition arises from the characteristic domain structure shown
in Fig. 3.11a where particles keep one of the four kinds of the
(2x2) arrangements in each domain. The walls separating the do-

mains terminate either at triplets of mutually second neighboring
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Figure 3.11

Typical particle arrangements (a) just above the transition (kpT/V2 =
0.42) and (b) at a sufficiently high temperature (kpT'/V2=3) in the case
of V3/V2=0.32 and V,/V>=0.1. Those particles which participate in mu-
tually second neighbouring triplets are denoted by hatched circles. Walls

which separate the particle arrangement into (2x2) domains are shown
by lines.

particles or voids. Mean size of the domains corresponds to the
splitting of the diffuse spots, while thermal fluctuation or in other
words meandering of the domain walls makes the spots diffuse.
The sharpness of the diffuse spots which is in agreement with ex-
periment arises from the uniformity of the size of the domains.
The wall interaction affects the domain structure above the tran-

sition. The sixth neighbour interaction plays a role to hinder the
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formation of the smallest wall intervals and thus to make the size
distribution of the domains uniform. In fact in the case without
the sixth neighbour interaction the size distribution of domains
is more broad to make the spots which appear around the (2x2)
superlattice Bragg points in the reciprocal-space correlation func-
tion more diffuse. Phaneuf and Webb (1985) proposed two possi-
ble adatom arrangements which may correspond to the disordered
state of Ge(111). The particle arrangement found in the present

investigation is similar to one of them.

Triplets of mutually second neighboring particles make the
local concentration near the triplets higher than that of the inside
of the domains where the average concentration is kept. Thus the
appearance of the triplets should be always accompanied by that
of the voids. It is discussed in §§3.5.4 that the presence of the
triplets and voids is essential to the entropy gain required for the
high temperature (1x1) phase; in fact the entropy is shown to be
given approximately by a universal function of the number of the

triplets.

With increasing temperature the number of the triplets as
well as the voids increases to make the mean size of the domains
smaller; the splitting of the diffuse spots becomes larger accord-
ingly. Finally the domain structure collapses and the triplets ag-
gregate, giving rise to an apparent (\/?: X \/?—>) short-range order.
Figure 3.11b gives a snapshot at this stage. ‘

We have demonstrated that the present model can repro-
duce the essential feature of the temperature evolution of the

Ge(111) and clarified the origin from which the feature arises for
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just a choice of a set of parameters. We stress, however, that
the qualitative feature is not dependent on the choice of the pa-
rameters; the choice affects only quantitative aspects of the split-
ting just above the transition and the temperature dependence of
the splitting. Therefore we are able to say that the characteris-
tic feature of Ge(111) in the (1x1) phase can be understood from
a general statistical-mechanical behaviour of a system of lattice
gases ‘which correspond to adatoms situated at the energetically

favourable sites on the surface.

§83.5.8 Underlying Mechanism of the Characteristic Domain

Structure

We discuss the mechanism underlying the appearance of
the above-mentioned domain structure in the (1x1) phase of the

present lattice gas model.

The wall vertices corresponding to the triplets of mutually
second neighbouring particles and voids have a positive energy
which forbids them to appear in the ordered state. As is discussed
in §§3.5.4, the triplets and also the voids play an important role
for the entropy gain required in the (1x1) state. Above the tran-
sition temperature the entropy gain makes the free energy of the
vertices negative. The wall energy is negative in the case where the
ordered state is the c(2x8); while for the ordered state of (2x2)
the wall energy is positive, but the free energy of the walls which
should be accompanied by mutually second neighbour triplets and
voids is probably negative in the (1x1) state. It is known that a

honeycomb network of the walls is favoured as the ground state if
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both the wall energy and the wall vertex energy are negative (Bak
et al., 1979). In the present case the thermal fluctuation forces
the walls to meander. Thus it is understandable that the domain

structure above the transition corresponds to a deformed network

of the walls.

§83.5.4 Entropy
Kanamori (1986) conjectured previously that the entropy of

the present lattice gas system in the (1x1) state is mainly con-
tributed by triplets of mutually second neighbouring particles. In
the state without the triplets, X;=0, the system have no entropy,
since each particle cannot move freely; the entropy of the system
takes the value of the order of magnitude of kg N at most. While
the finite (X;) produces room for the movement of the particles;
then the system has a finite entropy. And the larger the number
of the triplets is, the more the entropy of the system. Thus the
entropy of the present system is closely related with the number
of the triplets. In this section we clarify the relation between the
entropy of the system and the number of triplets of mutually sec-
ond neighbouring particles on the basis of the present Monte Carlo
calculations.

We estimate the entropy at finite temperatures from the
present Monte Carlo data with the use of the method proposed by
Binder (1981). The entropy of the system S at a temperature T’
is given by

(Byes |
S=5. - / AE) (3.10)
. (E)r T

or
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where S, and (E)e denote the entropy and the energy of the

(3.11)

system at the high temperature limit T’ = +o0, respectively, and
d(E) is defined by
d(E) = C(T)dT (3.12)

with the specific heat of the system C(T') at a temperature T. The
integration in eq. 3.11 has been evaluated, interpolating by linear
functions the derivatives of the integrand in the equation at some
temperatures sufficient to obtain values of the entropy with the

accuracy which is necessary for the present discussion.

L=24 L=48
(p2)eo/Nz ~ 1.783 +0.008  1.789 % 0.002
(p3)eo/Nz ~ 0.375+0.007  0.371 & 0.002
(psYoo/Nz ~ 1.349 £ 0.018  1.365 + 0.005
(X1)oo/Nz ~ 0.840 £ 0.007  0.847 =+ 0.002

Table 3.1

The numbers of second, third, and sixth neighbouring pairs of particles
and that of triplets of mutually second neighbouring particles at the
infinite temperature. The linear system sizes L=24 and 48 are assumed.

The Monte Carlo data for the energy of the system and
the number of the triplets at the infinite temperature (E)oo and
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(X1)eo are necessary for the estimate of the entropy of the system:.
Table 3.1 presents the numbers of pairs of particles (P2)oos (P3)00>
and (ps)eo and that of triplets (X1)oo at T=+00. The energy of
the system at the infinite temperature is evaluated, putting these
values (pz)oo, (P3)oos and <P6>oo for <P2>, (p3), and (P(s), respec-
tively, in eq. 3.9. We have obtained these values from calculations
where particles of the system are assumed not to interact with
each other except for the hai‘d hexagon condition V3 =+o00. In the
calculations the ensemble averages have been taken over 10000
and 20000 Monte Carlo steps for linear system sizes of L=24 and
48, respectively.

Figure 3.12 shows the calculated entropy vs. (X1) relation
for various sets of interaction parameters in each case of which
the ordered state is either the (2x2), c(2x4), or c(2x8) state.
This shows clearly that the entropy of the system is given approx-
imately by a universal function of the number of the triplets which
is independent of the choice of a set of the interaction parameters
except for the case of V3/V,=0.8 and Vg=0; some additional effect
probably works in the exceptional case where the set of interaction
parameters is situated in the parameter space near the parameter
| region with no ordered ground state as is seen from Fig. 3.4. Thus
the present investigation has assured us of the conjecture previ-

ously discussed by Kanamori.

Finally we note that we can conclude from the above discus-
sion that the following relation holds independently of the choice

of values of the interaction parameters, i.e., independently of the
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Figure 3.12

Entropy S vs. the number of triplets of mutually second neighbouring
. particles {X1). Seo and (X1)eo denote the entropy and the number of
the triplets, respectively, at the infinite temperature.

ordered state of the system:

Soo - S [<X1>oo - <X1>]a. (313)

The exponent « takes the value a ~ 2.3 except for the exceptional

case of V3/V,=0.8 and V=0 where a=2.64+0.01.
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CHAPTER IV

Extended Lattice Gas Model:
Si(111) Case

In the present chapter we introduce a lattice gas model mod-
ified in a way that the essential part of the Takayanagi mechanism
which stabilizes the (7x7) state as the ground state is incorpo-
rated, and carry out the Monte Carlo calculation to discuss the
reconstruction of the Si(111) surface at finite temperatures. In
§4.1 the model is presented, stressing the relation with the Si(111)
surface. The ground states of the model is also analyzed. Sec-
tion 4.2 describes the computational method used in the follow-
ing Monte Carlo calculation in detail. In the next section, §4.3,
the Monte Carlo calculation is presented. It is shown that the
model reproduces the feature observed in experiments on the sur-
face both below and above the transition. The disappearance of
stacking faults in the (1x1) phase is also discussed on the basis of
the calculation. A part of the discussion presented in this chap-
ter has been published (Kanamori and Sakamoto, 1991; Sakamoto
and Kanamori, 1991). '
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§4.1 An Extended Lattice Gas Model for the

Takayanagi Reconstruction

As is mentioned in §2.2, the (7X7) afrangement. of Si(111)
below the transition temperature cannot be of the lowest energy
of a simple lattice gas model applicable to Ge(111). This gives
a theoretical support to the fact that the (7x7) arrangement of
adatoms takes the structure with the dimer formation and the

stacking fault in the substratum layers.

One of ways to discuss the phase transition and the (1x1)
phase of the surface theoretically is to make an investigation of
a lattice gas model modified in such a way that the stabilizing
mechanism of the Takayanagi model is incorporated. In the model
we distinguish between two kinds of particles each of which corre-
sponds to an adatom on a normal or a stackiﬁg-fa,ulted substratum
layer; the available sites for them are assumed to make a triangu-
lar net. The effect to stabilize the structure through the dimer
formdtion itself is introduced into the model as appropriate val-
ues of the interaction energy between different sorts of particles
at the second neighbour sites; as is discussed in detail below, the
second neighbour interaction between such particles is of threefold

symmetry.

§84.1.1 Model

The Takayanagi model stabilizes the adatom arrangement
observed in the Si(111) surface essentially by the dimer formation

in the second underlayer of the surface. So as to form dimers
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it is necessary that the surface should be accompanied by both
stacking-faulted regions and normal ones in the surface layer, i.e.,
in the first underlayer. Although the stacking fault raises the sur-
face energy to some extent, the dimer formation stabilizes the
structure of the surface sufficiently. Thus we have to give each
particle of the lattice gas model with which we discuss the Si(111)
surface an attribution indicating whether the particle corresponds
to an adatom on a normal substratum layer or on a stacking-
faulted one. In other words, we may regard each particle as one
which possesses such an internal degree of freedom as the Ising
psudospin. Moreover, the available sites for particles of the model
are assumed to make a triangular net, since the adatom arrange-
ment of the surface can be described as a particle arrangement on
a triangular lattice. In addition we assume that the concentration
of particles is 12/49 which corresponds to that of adatoms on the

surface in the (7x7) state.

We may represent the particles by equilateral triangles whose
vertices correspond to substratum atoms making bonds with the
corresponding adatoms. There are two possible orientations of
the triangles corresponding to the choice of normal or stacking
faulted substratum. Figure 4.1 shows the particle arrangement
corresponding to the (7x7) state of the Si(111) surface as an ex-
ample of the representation. The comparison with Fig. 2.1 which
displays the (7x7) DAS structure will make the definition of the
triangles transparent. Figure 4.2 shows more examples of the rep-

resentation.

We assume that the interaction between particles is ex-
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Figure 4.1
The (7x7) arrangement of triangles. A unit cell is shown.

Figure 4.2
Triangles of different orientations at (a) second and (b) third neighbour

sites.
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tended up to the third neighbour sites on a triangular net. The
third neighbour interaction is necessary for the appearance of the
(7xT) state as the ground state, as is discussed in the next sub-

section §84.1.2. The energy of the model is represented by
E = §uN*% + Vipy + Vip1+Vaps + Vol + Vo +Vaps + Vaps, (4.1)

where p; and py (and p5) denote the number of the k-th neighbor-
ing pairs of the same and different triangles, respectively; Vi and
Vi (and V7)) denote the interaction energy of the corresponding
pairs of particles, i.e., triangles; 64 1s the chemical potential dif-
ference between particles corresponding to adatoms on the normal
and stacking-faulted substratum layer, which corresponds to the
energy increase per particle by producing stacking faults in the
substratum; and N®{- is the number of particles corresponding to
adatoms on the stacking-faulted substratum.

Two adatoms on the surface corresponding to a nearest
neighbouring pair of triangles of the same orientation which have
to share a dangling bond of an atom in the substratum will have
a sufficiently repulsive interaction; we assume Vi =++00. Since two
adatoms which correspond to a nearest neighbouring pair of dif-
ferent triangles make substratum atoms too' close, the pair is also
forbidden energetically (Vi=+00). The second neighbour interac-
tion of triangles of the same orientation is assumed to be repulsive,
since the (v/3 x v/3) arrangement of adatoms does not appear as
the ordered state of the surface; we use hereafter the interaction
energy V2 > 0 as units by which the energy and the temperature

of the system are measured. We distinguish between two kinds of
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second neighbouring pairs of triangles of different orientations, the
numbers of which are denoted by p2 and Py, and their interaction
constants V» and V; by the directions of the pairs. In one of them
the line connecting the two particles passes vertices of the triangles
pointing to each other, and in the other the line passes the facing
edges, as is illustrated in Fig. 4.2a. The first case is forbidden,
since the substratum atoms come too close to each other; we as-
sume the corresponding interaction energy V4=+o0c. While pairs
in the second case are found in a discommensuration wall where a
chain of dimers in the Takayanagi model is generated. The pairs
should lower the wall energy sufficiently to stabilize the (7x 7) ar-
rangement as the ground state; the condition is Vo < V,. Thus the
interaction between triangles of different orie'ntations at the second
neighbour sites is of threefold symmetry. We notice that the state
where the Takayanagi walls run parallel cannot be allowed in the
present model because of V) = +0o0; the c(2x4) state which is one
of the ground states of the model is made of just a kind of triangles.
Furthermore we assume that the interaction between triangles of
different orientations at third neighbour sites is sufficiently repul-
sive but finite. Figure 4.2b shows examples of the associated pairs.
The atom which is a bonding mate of adatoms corresponding to
the pair has a dangling bond, and the situation makes the pair
energetically unfavourable. Finally we mention about the third
neighbour interaction energy of triangles of the same orientation
V; and the energy increase per adatom by producing a stacking
faulted substratum 6u. The third neighbour interaction energy is

used as an adjustable parameter in calculations; the strength of

58



it determines the ground state of the model which corresponds ei-
ther to the (7x7), (2X2), or ¢c(2x4) arrangement of particles. The
energy increase éu is assumed to be positive but not too large to
stabilize the (7x7) arrangement as the groﬁnd state. The choice
of the values of them in calculations is mentioned in §4.3.

We have assumed above Vy=V;=V/=+00, or py=p1=p=0.
We notice that the hard hexagon condition p;=p;=0 holds in the
present model which ensure the (v/3 x +/3) short-range order at
sufficiently high temperatures. Thus the energy of the model E
given by eq. 4.1 is reduced to

E = 6uNst 4+ Vaps + Vopy + Vaps + VsPs. (4.2)

Then the ensemble average of the energy (E) is evaluated from the

following expression:
(E) = 6p(N*T) + Va(pa) + Va(D2) + Va(ps) + Va(ps).  (4:3)

We have assumed that V; is sufficiently large. Since the value of Vs
is not essential to the discussion of the reconstruction of Si(111),
we assume rather arbitrarily V3 /V,=2.0 in the Monte Carlo calcu-
lations presented in the following section. We notice that we thus
have three adjustable parameters V2/Va, V3/V2, and éu/V2 in the

calculations.

884.1.2 Ground States of the Model
We consider the lowest-energy state of the extended lattice
gas model presented above. If the triangles are all in the same

orientation, the model reduces to the simple lattice gas model. In
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the following we confine ourselves for simplicity to the states of
the simple lattice gas model and the (n x n) states composed by
triangles of different orientations.

We can regard the (2x2) state as that corresponding to
the (n x n) state of the Takayanagi model with infinitely large n.
Since the energy of the (n x n) state of the present model varies
monotonically with n, the lowest energy state of the (nxn) ones is
either the (2x2) state or the (n xn) one with the smallest n that is
allowed in the model. The (3x3) and (5x5) states cannot appear
as the ground state of the model, since we assume in the model
that the concentration of particles is 12/49; thus the (n X n) state
with the smallest 7 is the (7x7) one. As has been mentioned in
§3.2, the lowest-energy state of the simple lattice gas model with
up to the third ﬁeighbour interaction is either the (2x2) state or
the c(2x4) one. Thus the ground state of the present lattice gas
model is the lowest-energy one of the (7x7), (2x2), and c(2x4)
ones so far as we assume the condition X;=0.

The energy of the system in the (7Tx7) state Eqx7 1s repre-

sented by
3

4

where N and z denote the number of lattice sites and the concen-

1 — 3 i}
Erxr = {55/1 + -V + §V3}-7\’$, (4.4)

tration of particles, respectively. The energies in the (2x2) and
c(2x4) states, E2x2 and Eoxy, are written as
E2><2 = 3%]\715, (45)

and
Foxs = {Vz -+ V';J,}NIE, (46)
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respectively. Dividing the parameter space into two regions makes
the analysis of the ground state easy. In the case that the wall
energy w = (1 [2)Vo—V3 is positive the lowest energy state is either
the (2x2) one or the (7X7) one, and in the other case (w < 0) that
can be either the c(2x4) or the (7x7) with the condition X1=0. In
the former case, if Erx7 > Faxa, i.e., V3 < (1/3)0p + (1/2)Vs, the
(2x2) state is of the lowest energy; otherwise the lowest energy
state is the (7x7) one. In the latter case: of the negative wall
energy, Va3 > —bu + 2V2 — (3/2)V; makes the ¢(2x4) state of the
lowest energy with the condition X;=0 that is satisfied for V3 < V3,
and with Vs < —6u+2Va—(3/2)V2 and X1=0 the (7X7) state is the
lowest energy one. We note that for the positive but not too large
value of 6 we have the parameter region where the (7x7) state
appears as the ground state. In the region, although the energy of
the system is raised by producing stacking faults, the Takayanagi
walls lower the energy of the system sufficiently to stabilize the

(TXT) state.

Figure 4.3 shows the ground-state phase diagram for the
case of u=0. We can see from the figure that the condition the
Takayanagi model is stabilized is Vo < Vs

§4.2 Details of the Calculation Method

In this chapter we carry out Monte Carlo calculations of
the present extended lattice gas model at finite temperatures with
canonical ensembles, fixing the total number of particles in the
model. We have described in detail in §3.3 the calculation method

for the simple lattice gas model applicable to Ge(111). The essen-
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Figure 4.3

Ground-state phase diagram of the extended lattice gas model. § p=0 is
assumed.

tial part of the method for the present extended model] is the same
as that in the simple model case. In the present section we de-
scribe the calculation method briefly, focusing our attention upon

the difference from that in the previous case.

§§4.2.1 System Size, Particle Number, and Boundary Condition

Each calculation presented in this chapter is carried out with
a system of a finite size. We assume the lattice sizes of 28x28
and 56x56 sites. These system sizes are sufficient to discuss the
problem of the Si(111) surface, since the characteristic correlation

length of the system is probably shorter than the linear sizes we
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adopt. So as to eliminate the boundary eflect from the calcula-
tions, we use lattices with periodic boundary conditions.

As is discussed in the previous section, we consider the
system whose concentration of particles z is 12/49. Adopting
£=12/49 precisely, however, we should have the same difficulty
as in the previous simple lattice gas model case. Therefore we
assume in the calculations that the concentration of particles is
191/784 which is slightly less than 12/49.

In order to fix the total number of particles we use an a
priori probability similar to the one for the case of the simple
lattice gas model. Because we have two kinds of particles in the
present extended model, we have to incorporate into the transition
probability the process that a triangle chanées its orientation in a
Monte Carlo trial in addition to the process of moving a particle to
one of its nearest neighbour sites. Thus we assume in the present
calculations that P.» # 0 if a configuration ¢’ is one caused by
either movirig a particle of the system with a configuration ¢ to
one of the nearest neighbour lattice sites or changing the sort of
the particle, and that P, = 0 for other cases. The a priori prob-
ability by which a given particle changes to the other sort of one
is assumed to be (2/8)(1/Nz), and that for moving to one of its
nearest neighbour sites is to be (1/8)(1/Nz). This choice of an a
priori probability is convenient for a calculation; because we use
a sequence of integral random numbers in the calculation, we can

generate the probability by taking three bits of a random number.
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§§4.2.2 Correlation Function Calculation

In order to demonstrate that the present extended lattice
gas model can reproduce the (1x1) state of the Si(111) surface we
calculate the correlation function S(k) of the present model in the
momentum space which is defined by the same equation as in the
case of the simple lattice gas model, eq. 3.6. In the equation we
do not distinguish between two sorts of particles; if the site r is
occupied by a particle, the occupation number n(r) in the equation

takes the value of unity independently of the kind of the particle.

In the calculation of the function S(k) for the previous sim-
ple model case we took an average over three independent direc-
tions which correspond to rotating a configuration by 0, 27 /3, and
47 [3, respectively, around a lattice site. In the present extended

model case we also take an average over the three directions in the

~evaluation of S(k).

§4.3 Phase Transitions and the (1x1) Phase

In this section we carry out the Monte Carlo calculation of
the lattice gas model for the Takayanagi reconstruction presented
in the previous section in order to discuss the Si(111) surface at
finite teniperatures. In §84.3.1 and §§4.3.2 it is demonstrated that
the model can reproduce the phase transition and the diffuse scat-
terings of electron in the (1x1) phase. We discuss the disappear-
ance of the stacking fault in the (1x1) phase in §§4.3.3.

§84.3.1 Phase Transitions

It is not clear whether or not the phase transition between
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the ordered state and the disordered one occurs in the present
model. We first have to confirm this point to discuss the recon-

struction of the Si(111) surface with the model.
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Figure 4.4
The temperature dependence of the energy for Vo /Vo=0.1, V3/V2=0.5,

and §u=0.

Figure 4.4 shows an example of the calculated temperature
dependence of the energy for the case of Vo /Vo=0.1, V3/V2=0.5,
and 6u=0 where the ordered state is the (7x7) one. Ensemble
averages were taken over 100000 Monte Carlo steps in the cal-
culations. The lattice with 56x56 sites is assumed there. ‘This
clearly indicates the occurrence of the first-order phase transition
between the disordered (1x1) state and the (7x7) state. The en-
ergy vs. temperature relation has been obtained from calculations

with increasing temperature. The transition from the disordered
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Phase diagrams in the T vs. V3 plane for () V2/V,=0.1 and (b) 0.8.
Su=0 is assumed.

(1x1) state to the ordered (7x7) one has not taken place in the

present calculations due to the complicated ordered structure and
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the local updating of the configuration in the Monte Carlo scheme.
A system of a smaller size with 14x14 lattice sites, however, trans-

forms reversibly both from the (7x7) state to the (1x1) and from
the (1x1) to the (7x7).

Though we have above presénted just an example, the fea-
ture of the phase transition is independent of the choice of a param-
eter set. Figure 4.5 shows the phase diagrams in the T-V3 plane
for the cases of Vg/Vg:O.l and 0.8, where 6u=0 is assumed. In the
case of V3 /Vo=0.1 the ordered state of the model is the (2x2) state
for V3 /Va < 0.05 and the (7x 7) one for 0.05 < V3/V,. While in the
case of V5 /Vo=0.8 the c(2x4) state appears as the ground state;
the ground state of the model is the (2x2), (7x7), and c(2x4)
states for V3/Vz < 0.4, 0.4 < V3/V2 < 0.8, and 0.8 < V3/WV, < 1,
respectively. For the values of the interaction parameters where
the ordered state is either the (2x2) or c(2x4) state the present
extended model is reduced to the simple lattice gas model with
up to the third neighbour interaction so far as the ordered state is
concerned. The phase transition from each of the ordered states

(7x7), (2x2), and c(2x4) to the (1x1) state is of the first kind.

§6.4.3.2 Diffuse Scatterings Just above the Transition

Figure 4.6 shows the calculated diffuse scattering patters
just above the transitions for various values of the third neighbour
interaction energy Vs with which the ordered state is the (7TXT)
one; V4 /V2=0.1 and éu=0 are assumed. Each calculation was con-
tinued to 200 000 Monte Carlo steps because of a large fluctuation

in the configuration space. For the cases of large values of V3/V;
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Figure 4.6
Diffuse scattering patterns immediately above the transitions for various
values of V3. V5 /V,=0.1 and 6u=0 are assumed.
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the (\/§ X \/5) diffuse spots which are observed in the RHEED and
LEED experiments on the (1x1) state of the Si(111) surface are
reproduced. Thus it has been clarified that the present model with
appropriate sets of interaction parameters is' capable of describing
well the surface reconstruction of Si(111) in the whole range of the

temperature both below and above the transition.

As is mentioned above, the large value of V3 yields diffuse
spots around the (V3 x v/3) Bragg points immediately above the
transition, which is in agreement with experiments. The following
two mechanisms give an explanation of this result. The large value
of V3 raises the energy of the (1x1) state divided by (2x2) domains
in which particles show one of the four (2x2) arrangements found
in the investigation on Ge(111) presented in §3.5, and favours the
more disordered state which gives rise to tbe (\/f’; X \/§) diffuse
spots. Also the Takayanagi mechanism which is incorporated in
the present model stabilizes the ordered state, raising the transi-
tion temperature to skip the temperature range of the (1x1) state
of the Ge(111) type; the Takayanagi mechanism plays an impor-
tant role in producing the diffuse spots around the (v/3 x V/3)

superlattice Bragg points just above the transition.

§64.3.8 Disappearance of Stacking Faults in the (1x1) Phase

The existence of triplets of mutually second neighbouring
particles is essential to the (1x1) state of the surface for the en-
tropy gain necessary there. It is not, however, compatible with
that of both normal and stacking faulted regions in the surface

layer. With this reasoning Kanamori (1986) conjectured that the
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stacking fault should disappear in the (1x1) phase of the Si(111)
surface and that the simple lattice gas model is there applica-
ble. The conjecture has not been confirmed experimentally as yet.
Since our aim is to construct a model capable of reproducing the
evolution of the surface in the whole temperature range without
making ad hoc assumptions for each phase, it is an important prob-
lem to examine whether the stacking faults will persist in the (1x1)
phase or not. In the present subsection we try to confirm the con-
jecture theoretically on the basis of the Monte Carlo calculation

of the present extended lattice gas model.

Figure 4.7 shows the temperature dependence of the number
of particles which correspond to adatoms on the normal substra-
tum layer N*om®al=Nz — N*{ for the cases of 6u/V>=0 and 0.5;
V/Vo=0.1 and V3/V>=0.5 where the ordered state is the (7x7) are
assumed. Ensemble averages were taken over 100 000 Monte Carlo
steps in the calculations. The lattice with 56X 56 sites is assumed
there. In the figure the increase of the number of particles cor-
responding to the normal substratum in the (1x1) phase clearly
indicated even for the case of §u=0. We note that the increase of
Nrmeormal in this case is caused only by the entropy gain necessary
in the (1x1) phase. If we assume the finite energy increase by pro-
ducing the stacking faulted substratum, the imbalance between the
numbers of particles corresponding to normal and stacking-faulted
substratum layers will be more distinct. In fact, the calculation
for 6u1/V2=0.5 indicated in the figure shows that it decreases the
stacking-faulted substratum region to about 1/20 of the normal

one; we notice that the transition temperature is lowered to some
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Figure 4.7

Temperature dependence of the number of particles corresponding to
adatoms on the normal substratum layer. Open and hatched circles
correspond to the cases of 6u/Vo=0 and 0.5, respectively.

extent by finite éu, as we expect, but that the ordered state is still
the (7x7) one. The present result justifies the simple lattice gas
model for the (1x1) phase of the Si(111) sutface.
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CHAPTER V

Summary and Discussion

In this chapter we present a brief summary of the results
obtained in the previous chapters, Chaps. III and IV, and some

additional discussions of the present investigation.

§5.1 Summary

We have carried out the Monte Carlo calculation of two lat-
tice gas models which reproduce well the temperature dependence
of Ge(111) and Si(111), respectively, both below and above the

transition.

In the investigation on the Ge(111) surface phase diagrams
and diffuse scatterings of electron in the high-temperature (1x1)
phase within the kinematical approximation have been presented,
carrying out Monte Carlo calculations of the simple lattice gas
model with up to the sixth neighbour interevxction on a triangular
net. The phase transition from each of the ordered states, the
(2x2), ¢(2x4), and ¢(2x8) ones, into the (1x1) has been shown
to be of the first kind. It has been shown that the temperature de-
pendence of diffuse scatterings observed in the RHEED and LEED
experiments can be reproduced by the model. The origin of the

temperature evolution of the characteristic diffuse patterns has
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been discussed on the basis of the calculations. We have found
that in a temperature range above the transition the (1x1) state
following the c(2x8) ordered one is divided into domains of irregu-
lar polygons in each of which particles take a (2x2) arrangement;
the domain structure reproduces the characteristic diffuse scatter-
~ ing observed in the experiments. The underlying mechanism of
the characteristic domain structure of particle arrangements just
above the transition has also been discussed.

In the investigation on the Si(111) surface we have proposed
an extended lattice gas model where the Takayanagi mechanism
stabilizing the (7x7) arrangement of adatoms is incorporated. It
has been shown that the model transforms from the (7x7) state
into the (1x1) one; the phase transition is of the first kind which
is in agreement with experiments. We have also shown that the
diffuse scatterings of electron in the (1x1) phase observed in the
LEED and RHEED experiments can be reproduced by the model.
Moreover, we have demonstrated that the stacking faults should
decrease in the (1x1) phase even when we do not assign any
additional energy to them; the entropy increase causes the de-
crease, because the Takayanagi wall hinders random distributions
of adatoms. In addition, with the finite energy increase by yielding
a stacking fault a more distinct decrease of stacking faults in the
(1x1) phase has been shown. From the calculations, we have con-
cluded the disappearance of the stacking fault in the (1x 1) phase
of the Si(111) surface.
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§5.2 Supplementary Discussions

Before closing the present thesis, we give several additional
discussions associated with the (111) surfaces of Si and Ge and
the lattice gas model. We discuss first that we can understand
the reconstruction of Si(111) and Ge(111) in a unified way with
the lattice gas model. In §§5.2.2, §§5.2.3, and §§5.2.4, some dis-
cussions about the (1x1) phases of Ge(111) and Si(111) which
supplement the discussion in Chaps. III and IV are presented. In
§85.2.5 the possibility of the floating phase in the lattice gas model
is discussed. Finally in §§5.2.6 a supplementary description of the
lattice gas models with which we have made an investigation on

the surface problems is presented.

§§5.2.1 A Unified Understanding of the Reconstruction of Si(111)
and Ge(111)

As is shown in Chap. III, the simple lattice gas model can
reproduce features of the Ge(111) surface in the whole tempera-
ture range both below and above the transition. Moreover, the
(1x1) phase of the Si(111) surface can be interpreted to corre-
spond to the state of the model at temperatﬁres high sufficiently
_ to yield the strong (v/3 x /3) short-range order. On the other
hand, we have shown in Chap. IV that the extended lattice gas
model is applicable to the Si(111) surface both below and above
the transition. The simple lattice gas model is a specific case of
the extended one. In Chap. IV we have assumed up to the third
neighbour interaction between particles. If we add the repulsive

sixth neighbour interaction, we can change a part of the param-
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eter region where the ground state is the (2x2) state in the case
with up to the third neighbour interaction into the region where
the ground state is the c(2x8) one. Although we have a degree of
freedom of orientations of a triangle in the extended model, a state
just above the transition should be the one in the simple lattice gas
model if we assume the sufficiently large value of Va. Thus we can
describe the reconstruction of Ge(111) in the whole temperature

range with the lattice gas model applicable to Si(111).

The difference of the constituents of the surfaces is proba-
bly reflected in the effective interaction between adatoms. Thereby
the difference between the ordered structures of the surfaces is pro-
duced. In both the (1x1) phases of the surfaces, triplets of mu-
tually second neighbouring particles which give the entropy gain
necessary in the (1x1) phase play the primary role in the recon-
strutions. It seems that more entropy is necessary for the (1x1)
state of Si(111) than that of Ge(111) because of the more stability
of the ordered state due to the Takayanagi mechanism. This gives

the difference between the (1x1) states of the surfaces.

Finally, we notice that the lattice gas model is probably
applicable to such systems as the Ge(111)-Sn surface, the Si(111)-
Ge one, and the C(111) one which show the reconstruction similar

to that of the (111) surfaces of Si and Ge.

§§5.2.2 Additional Discussion on the (1x1) Phase of Ge(111)

In §§3.5.1 we have calculated the temperature evolution of
the grobal correlation function in the reciprocal space and shown

that the qualitative feature which is observed in the diffraction ex-
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periments of electron on the Ge(111) surface can be reproduced for
any sets of interaction parameters with which the c(2x8) state 1s
the ordered state. For quantitative comparison, however, it is nec-
essary to adjust the interaction parameters; in the subsection we
have demonstrated that the temperature dependence of the split-
ting of diffuse peaks around the (2x2) superlattice Bragg points
can be well reproduced by the present lattice gas model, having a

choice of the parameter set.

In another feature of the diffuse peaks we have a discrepancy
between the LEED and RHEED experiments (Ichikawa and Ino,
1980; Phaneuf and Webb, 1985); the peak width in the RHEED
experiment is smaller than that in the LEED one. Therefore we
have not presented the comparison of the calculated temperature
dependence of the peak width with the experiments. We believe,
however, we can also show that the present model quantitatively
well reproduces the temperature dependence of the peak width
observed in experiments, if we have the more settled experimental
data.

Detailed experimental data for the terﬁperature dependence
of the peak height of the diffuse spots have not been reported as
yet. When we have the experimental data, we shall be able to

show the present model to reproduce it also.

§65.2.8 Dependence of Adatom Concentration on Temperature

Although the concentration of particles has been fixed in
a value near 1/4 in the calculation for Ge(111), in practice the

number of adatoms on the surface might be changed with tem-
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perature. Now we have no experimental data on the temperature
dependence of the concentration of adatoms. With the experimen-
tal data, however, we could show that the present lattice gas model
reproduce the temperature evolution of the surface; then it would
be necessary to choose another set of the interaction parameters

appropriate for the case.

We notice a recent experimental work by medium-energy
jon scattering (van der Gon et al., 1991). From the comparison
of the experiment with a computer simulation of the ion scatter-
ing experiment, they have concluded the reduction of the adatom
concentration above the transition to about 60% of the concen-
tration in the ordered state. With a reason of the large reduction
of adatom concentration, one may have an impression that our
treatment with the lattice gas model fixing the particle concentra-
tion at 1/4, i.e., the value in the ordered state is not fit for the
discussion of the reconstruction of Ge(111) in the (1x1) phase.
Their conclusion is, however, just an interpretation of the result
of the experiment on the basis of a simulation performed by them;
another interpretation of the experimental data may be effectivé.
Moreover, the concluded value of the concgntration of adatoms
above the transition seems to be strongly dependent on the energy
of incident ion beam; it is distributed from 50% to 75% within the
incident energies adopted in their experiment. Thus we cannot ask
at this stage only from the experiment whether or not the present
investigation with fixing the particle concentration at 1/4 misfits
the problem of the reconstruction of the surface; we stress that the

present model reproduces features of the surface successfully.
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§§5.2.4 Additional Discussion on the (1x1) Phase of Si(111)

In the LEED experiment on the (1x1) phase of the Si(111)
surface additional diffuse spots at the (2x2) superlattice Bragg
points are observed along with the diffuse ones around the (v/3 x
/3) superlattice Bragg points (Iwasaki et al., 1987). As is shown
in Fig. 4.6, the feature can be reproduced by the present lattice gas
model. However, the (2x2) diffuse spots there split into two; the
splitting of the spots is disagreement with the experiment. The
direction towards which the spots split corresponds to the division
into domains by such a network of walls as in the (7x7) ordered
state but unlike that seen in the (1x1) state of the simple model
applicable to Ge(111). In the present thesis we give no reason
with which the additional diffuse spots are caused. It is left for

the future to clarify the feature in the experiment.

It has also been reported that the slight displacement from
the (\/§ X \/§) positions of the diffuse spots around the (\/?: X \/§)
superlattice Bragg points are observed and that the spots show the
threefold symmetry and rotate around the (\/-3— X \/§) superlattice
Bragg points with the change in the primary energy of electron
(Iwasaki et al., 1987). These features cannot be reproduced within
the present treatment with the lattice gas model on a triangular
net, since the model possesses the full symmetry of the triangular
lattice, i.e., the sixfold symmetry. If we would like to reproduce
them, we just try to extend the model into one on a honeycomb
lattice where the two triangular sublattices'are distinguished be-

{tween.
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§85.2.5 Floating Phase

Kanamori previously conjectured (Kanamori and Okamoto,
1985; Kanamori, 1986) that the (1x1) phase of Ge(111) might cor-
respond to the floating phase (Nelson and Halperin, 1979) which is
discussed by Villain and Bak (1981) for the case of the axial next-
nearest neighbour Ising (ANNNI) model (Elliott, 1961; Fisher and
Selke, 1980). In the present lattice gas model the floating phase
may appear between the ordered c(2x8) phase and the disordered
(1x1) one if we choose the parameter set within a region in the
parameter space very close to the (2x2) region. The transition
temperatures around the phase boundary between the (2x2) and
c(2x8) ordered phases are relatively high, as has been shown n
the calculated phase diagram Fig. 3.8; this shows that the discom-
mensuration walls are still stable at relatively high temperatures.
In fact in the present Monte Carlo calculations for the wall energy
w ~ 0 the state where v walls with v < L/ 4 (v=L/4 corresponds
to the c(2x8) state) run parallel has been observed at tempera-
tures around the transition, though the meandering of the walls
with kinks for which it is necessary to decrease the number of
particles does not take place because of thé assumption that the
concentration of particles is fixed at 1/4. This state, however, ap-
pears within a very small region of the interaction parameter space,
while the polygonal domain structure which has been found in the
present investigation is the general feature in the (1x1) phase of
the present lattice gas model whose ordered state is the c(2x8).

Therefore it is natural to conclude that the domain structure found
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in the present Monte Carlo study corresponds to the (1x1) state
of the Ge(111) surface; the state divided by (2x2) domains can be
considered to be a substitute for the floating state which produces
the characteristic diffuse spots in the reciprocal-space correlation
function. Nevertheless, it is quite interesting from the statistical-
mechanical point of view to confirm the appearance of the floating
phase in a model with the isotropic interaction unlike the case of
the ANNNI model. It is reported that the eighth-order spots move
towards the (2X2) superlattice Bragg points with temperature be-
tween the c(2x8) state and the (1x1) one. The floating state in

the present model may give an explanation of the aspect.

§85.2.6 Supplementary Discussion of the Models

We have presented the Monte Carlo calculation of the two
lattice gas models on a triangular net which, we believe, elucidates
the underlying mechanism of the phase transition and the temper-
ature evolution of the short-range order in the (1x1) phase. One
may have the impression that the lattice gas models assume too
much details of the interaction. We emphasize here that the es-
sential mechanisms deduced from the calculation can be given in
general terms, although one has to return to a well defined model
for quantitative details. In other words, the assumed particular in-
teractions in the models are the simplest representatives of those
capable of explaining the interrelations among the experimental

results which have not been elucidated so far.

We discuss first the case of Ge(111) for which the simple

lattice gas model is shown to be applicable. The ordered struc-
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ture can be discussed in terms of the energy required to produce a
discommensuration wall in the (2x2) state, the interaction energy
between adjacent walls, and the energy of the intersection of the
walls, provided that the interaction of the nearest neighbouring
pairs of particles on the triangular lattice is repulsive enough to
forbid the formation of them. If the wall interaction unfavours
the smallest interval of the walls and the wall intersection energy
is sufficiently positive, the c(2x8) state is realized as the ground
state; at the same time the (7x7) state of this simple lattice gas
is proved not to be the ground state. The sixth neighbour in-
teraction invoked in the present model is t'he interaction of the
shortest distance which is capable of producing the wall interac-
tion. The physical mechanism underlying the wall interaction may
be an elastic energy produced by accompanying elastic strains of
adatoms which may give rise to more distant neighbour interac-
tions than sixth as well. We emphasize that the most essential part
of the wall interaction is the energy difference between the shortest
interval and larger intervals which the sixth neighbour interaction
is capable of representing. We have shown that the interaction pro-
duces the uniformity of the domain sizes in the (1x1) phase just
above the transition temperature which explains the sharpness,
approximate positions, and direction of the ﬁemperature evolution
of diffuse spots. Thus we assert that our statistical-mechanical
approach has elucidated the essential mechanism operating in the
Ge(111) surface for the evolution of the reconstructed structure in

the whole temperature range.

In the case of Si(111) we have extended the model to in-
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corporate the possibility of a lower energy of the wall of the Ta-
kayanagi model which separates the stackiﬁg faulted substratum
from the normal substratum. With this device we can stabilize the
(7xT) state as the ground state. Takayanagi and Tanishiro (1986)
previously proposed a similar model to the present one; by the
use of it they discussed the DAS structures corresponding to the
(7x7) state of Si(111) and the c(2x8) one of Ge(111). The DAS
structure of c(2x8) state they proposed is the same one proposed
by Kanamori (1986) independently; we notice that the structure
model for Ge(111) is now being settled negatively. We stress here
that the present model is one defined completely as a lattice gas
model with extended range pairwise interactions for the purpose
of discussing the reconstruction of the (111) surface of Si at finite

temperatures.
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