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Abstract

Joint attention, defined as looking at the same object that someone else is looking

at, plays an important role for imitation learning, language communication, and

mind-reading in human and human-robot communication. In this study, we aim at

building a robot that acquires various forms of joint attentional behavior in an infant-

like manner in order to provide a new understanding of the developmental process

of joint attention, and to realize the function of joint attention in a robot. We focus

on contingency in interaction between a caregiver and a robot to make the robot

acquire various forms of behavior. This causes two problems: how a robot can find

a contingent relationship in interaction with its environment including a caregiver,

and what kind of learning mechanism and environmental setting a robot requires to

sequentially acquire several forms of joint attentional behavior based on the found

contingencies. In order to address these problems, we deal with the following three

issues.

First, an information theoretic measure is proposed to find a contingency structure

in the interaction between a caregiver and a robot. We investigate how the proposed

measure is used to quantify the contingency inherent in computer simulations of face-

to-face interaction. The results indicate that it enables a robot to find a contingent

relationship between face pattern of a caregiver and shifting its own gaze for learn-

ing a sensory-motor map to achieve gaze following. Next, we propose a learning

mechanism that iteratively acquires several kinds of joint attentional behavior based

on the proposed measure. The mechanism constructs a sensory-motor mapping to

perform the behavior that reproduces the found contingency. It uses outputs from

the previously acquired sensory-motor maps to change the contingency structure of

the interaction with a caregiver. The results of computer simulations indicate that

a robot acquires a series of actions related to joint attention in an order that almost
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matches with an infant’s development of joint attention. Furthermore, in order to

apply the proposed mechanism to a real robot, the real-time face-to-face interaction

where a human caregiver and a robot shift their gaze without assuming turn-taking

of gaze change between them is considered. How a robot decides when to shift its

gaze to acquire gaze following with a human is addressed. We propose a method

that solves the issue by introducing an attention selector based on a measure con-

sisting of saliencies of object features and motion information. The motion cues are

expected to reduce the number of incorrect training data pairs due to asynchronous

interaction that affects the convergence of the contingency learning. The experimen-

tal result shows that gaze shift utilizing motion cues enables a robot to synchronize

its own motion with human motion and to learn gaze following efficiently. Finally,

this dissertation is concluded and future issues are given.
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Chapter 1

Introduction

1.1 Overview

Communicative robots have received increasing attention in autonomous robotics

since communication is one of the most fundamental functions in both humans and

robots [1; 2; 3]. They are expected to perform complicated collaborative tasks with

human partners by knowing what to do, and how to do it, through communication

with their partners. In such situations, sharing attention with their partners is the

first critical step for the robots to realize smooth communication.

Humans, however, do not confront such a difficult problem. When we learn some-

thing from another person, we can find what to learn by sharing the person’s attention

from the observation of gaze direction and gesture. We can even estimate the per-

son’s intention by attention sharing. Therefore, attention sharing is a basic process

to understand the other’s intention [4; 5]. Human infants seem to acquire this ability

for attention sharing through interaction with their caregivers since they do not have

such a ability from the beginning. They can perform imitation learning, understand

the other’s intention, and acquire language after they acquire understanding, manip-

ulating, and coordinating other’s attention [5]. Therefore, understanding when and

how they acquire this ability is one of the central topics in developmental psychology,

cognitive science, and neuroscience.

Human gaze direction provides useful information to understand the direction

of the other’s attention. Joint attention, especially joint visual attention defined as

1



looking at an object that someone else is looking at, is regarded as the elemental

component of attention sharing [6]. Therefore, developmental psychologists have in-

vestigated the development of various forms of behavior to achieve joint attention [7].

There are two types of abilities to achieve joint attention:

• following gaze of others and/or pointing gesture and,

• directing gaze of others to something to be looked at,

where the former is called RJA (responding to joint attention) and the latter is named

as IJA (initiating joint attention) [8; 9]．The abilities of joint attention in human

infants appears to develop from RJA to IJA. First, infants begin to follow gaze of

others from about six months of age [10]. After that, they show gaze alternation

(successive looking between a caregiver and an object), social referencing (looking

back at a caregiver to obtain her emotional information in an unknown situation),

showing an object, and pointing to an object in an almost fixed order between about

nine and twelve months of age [11].

Some psychologists have claimed that human beings have an innate ability of at-

tention sharing independent from the development of joint attentional behavior [12]

while others have hypothesized that the development of these forms of joint atten-

tional behavior is related to that of the ability of attention sharing [5; 13]. In one of

these hypotheses, Moore and his colleagues mentioned that infants can acquire joint

attentional behavior by learning based on a contingent structure of interaction with

a caregiver, such as giving a reward to infants only when they achieve gaze follow-

ing for a caregiver [13; 14]. In addition, they also suggested that the experience of

engaging in joint attention leads infants to understand sharing attention with others

once they begin to show the acquired behavior. However, Tomasello pointed out that

they do not indicate how learning based on the contingent structure produces the

developmental order of joint attention [5]. He also described that longitudinal studies

on several forms of behavior to achieve joint attention should be conducted to verify

those hypotheses. In practise, a longitudinal study has started in Japan [15], but it

is unclear why such developmental order is produced.

In AI (artificial intelligence) and robotics, synthetic approaches have been applied
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to understand development of joint attention from the viewpoint of cognitive develop-

mental robotics [16] aiming at understanding the cognitive developmental process of

biological agents and realizing cognitive functions in robots. Synthetic approaches [17;

16] are expected to provide new knowledge about problems that cannot be dealt with

through analytical methodology of existing disciplines, such as developmental psy-

chology and cognitive science. It aims at acquiring new knowledge about internal

mechanisms of a biological system through the repetition of modeling the system

based on knowledge in the existing disciplines, verifying the model, and improving it.

Synthetic approaches are expected to help the advancement of existing disciplines as

well as building more intelligent system. Some synthetic studies focusing on develop-

ment of gaze following have indicated that contingency in interaction with a caregiver

enables a robot to acquire gaze following [18; 19; 20]. However, it still remains un-

clear what kind of underlying mechanism determines the development order of several

forms of the joint attentional behavior.

Therefore, this dissertation addresses the issue of building a mechanism that en-

ables a robot to autonomously acquire several forms of behavior to achieve joint at-

tention through interaction with a caregiver in an infant-like manner. In accordance

with Moore’s hypothesis, we focus on contingency in interaction with a caregiver as

a clue for acquisition of joint attentional behavior. A robot finds the contingency by

itself and performs actions to reproduce the found contingency. Through the rep-

etition of finding the contingency and its reproduction, the robot acquires different

forms of behavior. We expect that the proposed mechanism does not only provide

new knowledge about the developmental relationships between different forms of joint

attentional behavior, but also enables a robot to develop socially in an infant-like

manner.

1.2 The Problems

We consider building a learning mechanism that enables a robot to autonomously

acquire several forms of joint attentional behavior based on contingency of the inter-

action with a caregiver in an infant-like manner. Here, contingency means relationship

among a preceding stimulus, an action, and its consequence. If a response of a robot
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to a stimulus causes a certain result with high probability, the contingency exists

between the response and stimulus on the result.

In a naturalistic interaction between a caregiver and an infant, the caregiver does

not necessarily provide any explicit instruction for the infant to ease acquisition of

joint attention related actions. The infant should find contingency through interaction

with the caregiver. In order to realize a robot that acquires the actions autonomously,

therefore, we need to address two issues: how does the robot find the contingency in

the interaction and how can it autonomously acquire various forms of behavior based

on that.

Finding contingency In previous synthetic studies on development of gaze fol-

lowing [18; 19; 20; 21], the designers provided a robot with a priori knowledge about

what kind of contingency should be used to acquire gaze following. All that the robot

does is to learn the predefined sensory-motor map. When the robot does not have

such knowledge, however, it first needs to find a sensory-motor map including an

appropriate contingency by itself. To address this issue, we introduce a contingency

measure to find contingency in interaction. The robot decides sensory-motor map

that it should learn based on the measure.

Moreover, we should consider that contingency in interaction with a caregiver is

influenced by when a robot acts. The robot cannot find the contingency unless it

coordinates its behavior adequately. This is a problem which we call asynchronous

problem for finding contingent structure. The robot often encounters this problem in

real-time interaction. For example, in face-to-face interaction between a human and

a robot, the robot can find the contingency involving the human gaze easily under

the assumption of turn taking of their gaze changes because it can knows when the

human is looking at something. In the case of autonomous gaze shifting, however,

that is difficult because the robot has to detect when the human is looking at the

object.

We hypothesize that innate bias of human for shifting the attention helps human

infants to solve this problem. Therefore, we introduce a human-like attention system.

Motion information in the environment is utilized because it is expected to provide

information about when a human begins to shift the gaze and where the human

4



directs the attention.

Autonomously acquiring various actions based on finding and reproducing

contingency In order to make a robot acquire several forms of joint attentional

behavior without any explicit instruction from the caregiver, we focus on reproduc-

ing the found contingency. We do this because human infants seem to not only find

contingency in interaction with their caregivers but also try to perform the behav-

ior to reproduce the found contingency [22]. We hypothesize that reproducing the

found contingency further leads novel contingency to emerge from interaction with

the caregiver because it introduces a change of the caregiver’s response to the robot

into the interaction (Figure 1.1). We expect this loop of finding and reproducing the

contingency to enable autonomous development of joint attention.

Therefore, we aim at building a robot that can acquire various forms of joint

attentional behavior through finding contingency in interaction with a caregiver and

reproducing the found contingency.

1.3 Issues to be tackled

To build a learning mechanism that enables a robot to autonomously acquire several

forms of joint attentional behavior, we deal with the components mentioned above.

The proposed mechanism is examined in a computer-simulated setting involving face-

to-face interaction. In addition, to apply the mechanism to a real robot interacting

with a human caregiver naturally, real-time interaction without any synchronization

assumption is considered. We deal with the problem of how to decide when to shift

the gaze to achieve gaze following with a human, that is the asynchronous problem.

Figure 1.2 represents what types of problems are addressed in each chapter. The rest

of the dissertation is organized as follows:

Chapter 2 The findings about the development of various forms of joint attentional

behavior from cognitive developmental science are described. We review them from

three points of view: developmental process, its underlying mechanism, and the dif-

ference between individuals. In addition, previous synthetic studies on development
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Figure 1.1: Autonomous acquisition of joint attentional behavior through finding
contingency and its reproduction: first, a robot finds the contingency in interaction
with a caregiver through performing several forms of behavior and observing the
caregiver’s response to them. Then, once it performs the behavior to reproduce the
found contingency, the caregiver is expected to show new response. As a result, the
robot has a chance to find novel contingency.
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Figure 1.2: The model of autonomously social development. The gray boxes are
addressed in this dissertation. The numbers correspond to the chapters where the
problems related to learning based on contingency are addressed. Finding contingent
pair between sensory information and action is tackled in chapter 4. Autonomous
acquisition of contingent action based on the found pair is a main topic in chapter 5.
Asynchronous problem is addressed in chapter 6 to use a learning mechanism proposed
in chapter 5 in real-time interaction.
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of joint attention and learning mechanisms for open-ended development are described.

Chapter 3 The face-to-face interaction between a robot and a human caregiver for

development of joint attention is given. The robot observes environmental informa-

tion and its own actions as variables. We explain about contingency in face-to-face

interaction from the standpoint of a statistical bias in the combination of the vari-

ables.

Chapter 4 To find the contingent structure in face-to-face interaction between a

caregiver and a robot, we propose an information theoretic measure that detects

causality. Transfer entropy that shares some of the desired properties of mutual

information but also takes into account the dynamics of information transport [23] is

extended and utilized for that purpose.

We investigate how the proposed measure is used to quantify the contingency

inherent in face-to-face interaction. In computer simulations of human-robot interac-

tion, we examine which pair of perceptions and actions is selected as the contingent

pair and show that the selected pairs can be used for learning a sensory-motor map

for gaze following.

Chapter 5 To build a learning mechanism that enables a robot to autonomously

acquire several forms of joint attentional behavior based on contingency in the in-

teraction with a caregiver, we propose a mechanism that iteratively acquires several

kinds of behavior based on the measure proposed in Chapter 4. The mechanism not

only finds a combination of contingent variables but also constructs a sensory-motor

mapping to reproduce behavior based on the found contingency. In the iterative pro-

cess, a new variable expressing whether each sensory-motor mapping is used is added

to promote finding the contingency depending on other contingent structures.

In computer simulations, we examine what kinds of actions related to joint at-

tention can be acquired in order by changing the actions of the caregiver agent. The

results indicate that a robot acquires a series of actions related to joint attention in

an order that almost matches with an infant’s development of joint attention. The

difference between them is discussed based on the analysis of the robot behavior and
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future issues are given.

Chapter 6 In order to adopt the proposed mechanism to a real robot, we address

real-time interaction including the asynchronous problem. The issue is how to decide

when to shift the gaze to achieve gaze following with a human.

We propose a method that solves the issue by introducing an attention selector

based on a measure consisting of saliencies of object features and motion informa-

tion. In order to realize natural interaction, that means real-time response without

constrained synchronization of gaze shift between human and robot, self-organizing

map (SOM) for real-time face pattern discrimination [24] and contingency learning

for gaze following without external evaluation are utilized. The attention selector

controls the robot gaze to switch often from the human face to an object and vice

versa, and pairs of a face pattern and a gaze motor command are input to the con-

tingency learning. The motion cues are expected to reduce the number of incorrect

training data pairs due to asynchronous interaction that affects the convergence of

contingency learning [19].

The experimental result shows that gaze shift utilizing motion cues enables a

robot to synchronize its own motion with human motion and to learn gaze following

efficiently in about 20 minutes.

Chapter 7 Finally, conclusions of this dissertation and future works are given to

apply the proposed mechanism to a real robot.
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Chapter 2

Related Work

Many researchers in different fields have investigated the developmental process of

joint attention from different viewpoints. In this chapter, we review studies on the

development of joint attention in not only developmental psychology and neuroscience

but also robotics. The aims of this review are to make clear in what order the proposed

mechanism is expected to acquire various forms of joint attentional behavior, and the

difference between previous synthetic studies and our study.

2.1 Joint Attention

Joint attention is simply defined as looking where someone else is looking [10]. Many

researchers in developmental psychology have mainly investigated the development

of following the gaze of others [10; 14; 25] since Scaife and Bruner [26] reported that

human infants show that capability before their first birthday. It is suggested that

joint attention is one of the building blocks for social capabilities such as language

communication [27; 28; 29; 30] and mind-reading [11; 12]. Therefore, studies on joint

attention have recently been advanced taking into account other behaviors to achieve

joint attention, such as following pointing of others (point following), successive look-

ing between a caregiver and an object (gaze alternation), and pointing, as well as

gaze following [7].

In this section, we review human development of joint attention from the following

three viewpoints:
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• when infants acquire them (development of joint attention);

• how infants acquire them (underlying mechanism of development of joint atten-

tion); and

• what differences there are among infants (developmental differences between

individuals).

Section 2.1.1 shows in what order a robot should acquire various forms of joint

attentional behavior. We indicate two main streams about the underlying mecha-

nism of the development in section 2.1.2. Finally, we describe autism as one of the

developmental disorders in section 2.1.3.

2.1.1 Development of joint attention

Figure 2.1 illustrates the typical development of joint attention related actions. In

this section, we give an overview of the development of joint attentional actions during

two developmental periods; the first 9 months of life when poor skills to achieve joint

attention begin to emerge, and the period from 9 to 18 months when infants begin to

follow and direct the attention and behavior of other persons.

The first nine months of life

From birth, human infants have some innate capacities such as preference to the

human face [31], and objects with complex textures or symmetrical patterns [32].

They are also sensitive to eye-contact [33] and causality in their environment such as

physical rules [34].

Around 6 month, they begin to follow the gaze of others. This behavior, however,

seems responsive: they follow the gaze direction of their caregivers only when their

caregivers are looking at an object in their visual field. In addition, they look at

first distractor objects along their scan path. This earliest gaze following is called

“ecological” mechanism [10]. When caregivers show a pointing gesture, six-month-

old infants often look at the caregivers’ finger or hand [35]. Infants in this period seem

to shift their gaze reflexively by a cue of moving hands of their caregivers [36] and

emotional change [37]. They do not appear to understand triadic relations among
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Figure 2.1: Development of joint attention related actions
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their caregivers, an object, and themselves because they do not frequently look back

at their caregivers after looking at an object.

After “the nine-month revolution”

Infants experience critical development occurring at around nine months old. This

is called “the nine-month revolution” [5; 38]. During this period, they improve al-

ready acquired skills of joint attention dramatically and acquire different forms of

joint attentional behavior. Twelve-month-old infants attain correctly following the

gaze of others or pointing gesture. Butterworth [10] called this form of gaze following

“geometric” mechanism. They appear to notice the attention of others [39]. There

are observations that they can utilize the posture, pointing gesture, and motion in-

formation of their caregivers to achieve gaze following [25; 40]. At around 18-months

old, they can follow the other’s gaze to places outside their visual field. This is called

“representational” mechanism [10].

Infants acquire several forms of behavior categorized as IJA such as alternately

gazing between their caregivers and an object, and pointing. Infants at around twelve

months perform showing, social referencing, i.e., looking back at their caregivers to

obtain information about their emotion, and pointing [11]. They become interested

in words around the same time and pay attention to a novel object when adults are

talking about it [28]. Infants come to be engaged in triadic interaction. Bakeman

and Adamson found 13-month-old infants kept gazing at their caregivers and at an

object alternately [41].

As described above, the actions related to joint attention are acquired sequentially.

Tomasello [5] describes that, in order to understand how infants develop these actions,

it is important to investigate the underlying mechanism. Some studies about the

development of joint attention have been conducted [15; 42].

The main purpose of this study is building a learning mechanism that enables

a robot to autonomously acquire several forms of joint attentional behavior to un-

derstand the relations in their developmental processes as shown in Figure 1.2. In

chapter 5, we discuss the difference between the results of computer simulations and

an infant’s development of joint attention.

14



2.1.2 The underlying mechanism of development of joint at-

tention

There are mainly two theories about the underlying mechanism of developmental

processes of joint attentional skills. Tomasello has mentioned that the mechanism is

based on understanding others as intentional agents [5; 11] as suggested by observa-

tions that nine-months-old infants understand the purpose of CG (computer graphics)

agents [43] and thirteen-months-old ones perform imitation learning [42].

On the other hand, Moore and Corkum have proposed that infants acquire the

skills by learning based on contingent structure in interaction with a caregiver [13].

They also suggested that understanding of the other’s intention progresses through the

experience of engaging in joint attention [14]. There are some observations that sup-

port this hypothesis. Infants can not only find social contingency in interaction with

a partner but also coordinate their own actions based on the found contingency [44;

45; 46; 47]. In addition, their caregivers show a contingent response to infant’s be-

havior [22; 41; 48], and change according to the development of joint attention [49;

50; 51].

We consider that social contingency leads development of joint attention related

actions based on these studies. In chapter 5, therefore, we propose a learning mech-

anism based on Moore’s theory [13].

2.1.3 The difference between individuals

There are many studies on the development of infants with joint attention deficits

compared to a normal infants. In particular, understanding development of an infant

with autism is an important topic in developmental psychology and neuroscience.

Autism is a severe and pervasive neurodevelopmental disorder characterized by

abnormalities in face processing such as avoiding eye-contact with a partner and in

social communication skills including joint attention skills [12; 52; 53]. Infants with

autism have difficulty in estimating the intentions of others and sharing attention

with others. It is, however, suggested that they can acquire some forms of joint at-

tentional behavior such as gaze following and gaze alternation though they acquire
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them at an older age than typical infants [54]. Moreover, their development of lan-

guage and joint attention behavior is promoted when their caregivers often follow

their attention and engage in joint attention with them [55]. Behavioral treatment

based on operant learning shows the effect of improving communication skills in the

infants with autism [56]. This seems to suggest that infants with autism can acquire

some forms of joint attentional behavior based on contingency without though their

developmental process may be different from that of normal infants.

In this study, we do not build an autism model to compare the difference between

the model and a normal infant. In chapter 5, however, we mention that the proposed

mechanism is useful to investigate this difference.

2.2 Challenges for Joint Attention in robotics

In robotics, joint attention studies have recently been gaining increasing attention

not only from the viewpoint of building communicative robots [57; 58; 59; 60; 61] but

also from synthetic approaches to modeling and understanding human developmental

processes [16; 62] (see a survey [63]).

Many previous studies have concentrated on the development of gaze follow-

ing. We can categorize them according to the underlying theory: Moore’s theory

or Tomasello’s. In this section, we review them to clarify the significance of our study

by comparison with our study from two viewpoints of development of joint attention

and change in social interaction.

2.2.1 Acquisition of gaze following based on learning contin-

gency

Moore and his colleagues [13; 14] found that infants can learn following the gaze of

others based on contingent reinforcement. Many previous synthetic studies on the

development of gaze following were based on contingency learning. These can be

classified in to two categories: with and without explicit evaluation from a caregiver

for achieving gaze following.
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With external evaluation

Some studies have proposed a learning mechanisms that require evaluation for the

robot’s behavior from a caregiver. Matsuda and Omori [18] simulated the experiment

conducted by Moore and his colleagues and found that a learning agent based on re-

inforcement learning can acquire gaze following without the concept of understanding

the other’s intention.

Nagai et al. proposed a developmental learning model that involves a robot’s

development of vision processing, which is represented as a gradual increase of the

sharpness of a Gaussian spatial filter for the visual image, and a caregiver’s develop-

ment, which is expressed as adaptive evaluation from a human caregiver according

to the robot’s performance of gaze following [64]. They indicated that the caregier’s

help accelerates the robot’s learning of gaze following.

Without external evaluation

In naturalistic interaction, a caregiver does not necessarily evaluate an action of an

infant. The infant should have an ability to learn gaze following by itself. There-

fore, other studies have proposed mechanisms for learning of gaze following without

any explicit evaluation from a caregiver. Fasel at al. [65] who are members of the

MESA (Modeling the Emergence of Shared Attention) project suggested a basic set

to enable learning of gaze following without any explicit evaluation from a caregiver.

The basic set consists of (1) a set of motivational biases to look at and shift atten-

tion between interesting things, (2) a learning mechanism which takes advantage of

the temporal structure of predictable, contingent interactions, and (3) a structured

environment providing strong correlation between where caregivers look and where

interesting things are. They assumed that a shift in the caregiver’s gaze implies some-

thing salient in the direction of gaze. Based on this assumption, Triesch et al. [20]

proposed a learning mechanism based on reinforcement learning that enables learning

gaze following without any explicit evaluation from a caregiver and showed the effec-

tiveness using computer simulation of face-to-face interaction. Teuscher and Triesch

also investigated how the caregiver’s behavior influences the learning process of gaze

following for infant models with simulated developmental disorders such as autism
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and Williams syndrome [66]. As another research, they proposed a model that ac-

quires gaze following developmentally as shown by Butterworth and Jarrett [10] by

using depth information from the environment [67] although their previous models

did not acquire gaze following in such a way.

These studies were implemented in computer simulation, while our group has

proposed mechanisms for a real robot to acquire gaze following. Nagai et al. [19]

proposed a learning mechanism that enables a robot to acquire gaze following by

learning a sensory-motor mapping from the face pattern of a caregiver to its own motor

command based on the idea similar to a basic set proposed by Fasel at al. [65]. They

implemented the proposed mechanism into a real robot, and showed it can acquire

gaze following developmentally as shown by Butterworth [10] through interaction

with a human caregiver. Our group also proposed models that learn to achieve

gaze following for strangers based on generalization through interaction with several

caregivers [24] and that acquire gaze following through real-time interaction with a

human caregiver within a reasonable period of time by using an automatic attention

selector [68]. As another approach, Nagai proposed a model that learns joint attention

based on head movement imitation and showed that head movement information

accelerate learning of joint attention [69],

These studies showed that a robot can acquire gaze following without understand-

ing the intentions of others. However, they concentrated only on the mechanisms to

learn gaze following.

2.2.2 Acquisition of gaze following based on understanding

the other’s intention

Some studies based on Tomasello’s theory have been conducted. While a robot built

a direct sensory-motor map from the face pattern of a caregiver to motor commands

to achieve gaze following in previous studies based on Moore’s theory, they built a

controller for visual attention and a predictor about the environment. The predictor

learns what to look at through interaction with a caregiver. The controller learns

where to look. The predictor is expected to enable a robot to share attention with

others.
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Hoffman et al. [21] proposed a probabilistic model that learns gaze following by

imitating a caregiver based on a model for imitation in infants [70]. The model

learns a predictor about visual attention of the caregiver through experience of gaze

following for a caregiver. However, they did not compare the developmental process

of the model with that of a human infant.

Konno and Hashimoto [71] proposed a computational model that enables learning

of the gaze alternation to an object outside the visual field. The infant model learns a

controller for visual attention and a predictor about what to see at the next time step

through experience of looking between an object and a caregiver’s face alternately in

the visual field. However, it seems to be a quite strong assumption that the infant

model always looks between an object and a caregiver’s face alternately.

Although these studies are interesting in terms of providing different viewpoints

of studies based on Moore’s theory, they do not propose models that acquire various

forms of joint attentional behavior yet. In addition, their models always need the

explicit instruction from caregivers.

2.2.3 Open-ended development in robotics

As described above, previous synthetic studies have proposed models to acquire only

one ability of joint attentional behavior. To understand how a robot can share at-

tention with others, we should address how it can acquire various forms of joint

attentional behavior. Some researchers begin to study general developmental ap-

proaches [72] that may give a clue now to solve such an issue. They have suggested

that a robot should be equipped with capacities for autonomous development and

with intrinsic motivation systems [63; 72]. Artificial curiosity such as novelty[73] or

learning progress [74] has been proposed as intrinsic motivation systems. We can-

not, however, evaluate which motivation is appropriate for modeling development of

joint attention because the situation where a robot interacts with a partner is not

addressed.
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2.3 Summary

In this chapter, we gave an overview of the development of joint attention and previous

synthetic studies on modeling its development. Human infants seem to acquire various

actions related to joint attention in an almost fixed order as shown in Figure 2.1.

There still remain unclear points about the underlying mechanism that determines the

development order of several forms of joint attentional behavior. However, previous

synthetic studies did not focused on the development of several forms of joint attention

behavior. In order to realize a mechanism for acquiring several actions without any

external instruction from a caregiver, we take account of the fact that infants can not

only find social contingency in interaction with a partner but also coordinate their

own actions based on the found one.

The next chapter provides a basic environment setting where a robot learns joint

attentional behavior and a mathematical explanation about contingency of interaction

with a caregiver.
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Chapter 3

Interaction for development of

joint attention and the contingency

In this chapter, we explain about face-to-face interaction between a caregiver and a

robot in this study. Basically, the interaction mentioned here is used in the following

chapters 4, 5, and 6. Moreover, we show mathematical explanation about contingency

in interaction with a caregiver. We represent the interaction by three types of random

variables about sensory information obtained by a robot, the robot’s action, and the

consequences of its action to evaluate the contingency.

3.1 Face-to-face interaction

Fig. 3.1 shows an environmental setting in this study. A robot sits across from a

caregiver at a fixed distance while objects are randomly placed on the table between

them. The robot observes environmental information as follows:

1. the robot observes its environment including the caregiver to obtain sensory

information S called sensory variables one of which expresses a feature such as

gaze direction of the caregiver’s face,

2. it also observes the result of last own actions to obtain resultant sensory infor-

mation R called the resultant sensory variable one of which indicates a kind of

an internal reward such as looking at the frontal face of the caregiver, and
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Figure 3.1: Environmental setting for acquisition of joint attentional behavior

3. it takes actions based on motor commands A called action variables one of

which indicates a type of an action such as shifting the robot’s gaze.

We call a triplet (Si,Aj,Rk) an event. The robot’s task is to find a contingent event

from possible ones and to build a sensory-motor mapping from a sensory variable to

a motor one based on the selected event to reproduce the contingency.

3.2 Contingency in interaction

We regard the contingency inherent in the interaction as a statistical bias on the state

transition in a certain event. The event (Si,Aj,Rk) has contingency if a robot fre-

quently experiences a state transition in Rk deriving from a pair of states of Si and Aj.

Finding contingency indicates that the robot selects the event that has the strongest

bias. Reproducing contingency represents that it performs actions expressing the

bias.

We introduce a contingency measure to evaluate a statistical bias in an event, and

propose a mechanism to find and reproduce the contingency based on the measure in

the following chapters 4 and 5,
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Chapter 4

Detection of interaction

contingency by transfer entropy

4.1 Introduction

Human infants seem to learn gaze following in uncertain situations in which their

caregivers do not always attain joint attention with them. Previous synthetic studies

have argued that contingency between gazing behaviors of an infant and its caregiver

can be utilized to learn gaze following in such uncertain situations [19; 20]. These

studies assumed that a shift in the caregiver’s gaze implies something salient in the

direction of gaze, and such an object would also be salient to an infant robot.

This assumption implies underlying contingency appearing as statistical bias in

infants: they frequently find something salient by looking where a caregiver is look-

ing. Previous studies [19; 20] have shown that a robot can acquire sensory-motor

mapping to achieve gaze following by associating a pair of variables involved in such

contingent experiences, i.e., the action variable of shifting its gaze and the preceding

sensory variable of the direction of the caregiver’s gaze. However, no work has, to our

knowledge, presented a model to enable a robot to detect such contingency. In other

words, how a robot can select contingent pairs of variables from possible candidates

has not been addressed. Robots usually have many candidates of variables owing to

their multiple perceptual modalities and many degrees of motor freedom. Moreover,
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it is unknown what kind of contingency exists in the interaction since modeling hu-

man interaction itself is difficult. Building a robot that automatically selects pairs of

sensory and action variables that form a contingent structure is therefore formidable.

An important first step in determining this is investigating how contingency in

interactions between a caregiver and a robot is quantified. Transfer entropy — an

information theory measure that detects contingency — appears to be promising in

this regard. It shares some of the desired properties of mutual information but also

takes into account the dynamics of information transport [23]. Transfer entropy has

been shown to need fewer samples and cost in less calculation in detecting causality

than other methods for detecting causality such as measures based on Granger causal-

ity [75]. Sporns et al. showed that a robot with eyes can detect the causal structure

inherent in a given sensory-motor coordination, i.e., visual tracking behavior, using

transfer entropy [76; 77]. However, they did not address the learning of new behavior

based on the found contingency. We studied how transfer entropy can be applied to

detect contingency in interactions with a caregiver and how to utilize it to learn new

sensory-motor mapping, which appears to be a building block in basic social behavior,

i.e., gaze following.

The rest of this chapter is organized as follows. First, we explain the contingency

learning reported by Nagai et al. [19] as a learning mechanism and the contingency

that a robot should find. Next, we introduce a computer-simulated setting involving

face-to-face interaction to determine whether transfer entropy enables a robot to find

the contingency inherent in interactions with a caregiver. We discuss how to calculate

transfer entropy and present experimental results. We show that the robot can acquire

gaze following using the found contingency. Finally, discussion on projected issues

and concluding remarks are given.

4.2 Contingency detected in gaze following

Figure 4.1 shows gaze following behavior that a robot can acquire based on the learn-

ing mechanism proposed by Nagai et al. [19]. First, it observes the caregiver’s face

and then shifts its gaze to follow the caregiver’s gaze. Instead of explicitly instructing

the robot how to act, they showed that a robot could acquire a sensory-motor map
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Figure 4.1: gaze following

for gaze following by what they called contingency learning.

Since the robot had no experience with gaze following, it sometimes succeeded

and sometimes failed to find the same object that the caregiver was looking at. In

contingency learning, the robot evaluates only whether it successfully looked at the

salient object in both occasionally succeeded and, unfortunately, failed attempts to

look at the same object. When it looked at the salient object, its gaze shift and the

preceding perception of the caregiver’s face pattern (face orientation) were associated.

The assumption that the caregiver looks at a salient object for the robot enabled

it to acquire gaze following through contingency learning. This tendency derives

contingency form its own gaze shift: the robot observed something salient because

its gaze frequently followed the direction of the caregiver’s gaze. This contingency

appears as statistical bias based on frequent experiences of seeing something salient

when looking in the direction of the caregiver’s gaze. That is, by associating its gaze

shift (an action variable) and the caregiver’s face direction (a sensory variable), based

on the consequences of its action, i.e., the robot observed an salient object, the robot

can acquire a sensory-motor map for gaze following.

Nagai et al. showed that a robot can acquire gaze following by associating this

contingent pair of variables for the consequences of its action even without explicit
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instructions. The designers, however, had to specify what kinds of variables should

be associated to acquire it. We enhanced contingency learning [19] by investigating

whether a robot could automatically find a contingent pair of variables for an the

consequences of its action to be associated to acquire gaze following.

4.3 Environmental setting

Figure 4.2: Overview of caregiver-robot interaction

Table 4.1: Types of variables in robot

Type Name Elements

S
caregiver’s face S1 = {f1, f2, · · · , fN , fr, fφ}
type of object S2 = {o1, o2, · · · , oM , oφ}

A
shifting gaze A1 = {g1, g2, · · · , gN , gc}
moving hands A2 = {h1, h2, · · · , hNh

}

R
full face of caregiver R1 = {0, 1}

object R2 = {0, 1}

To determine whether a robot can find a contingent pair of variables for consequent

experience in face-to-face interaction with a caregiver, we start with a rough model
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of the caregiver’s gaze shift. We simulate almost the same interaction as in previous

studies [19; 20]; but, for the robot, we add actions such as hand gestures and sensory

variables such as types of objects not related to gaze following. This experiment

confirms whether the robot can eliminate unrelated variables from candidates for the

elements of the sensory-motor map for gaze following.

4.3.1 Environment and interactions between caregiver and

robot models

In an experimental computer simulation setting (Figure 5.2), the robot sits across

from the caregiver at a fixed distance while objects are randomly placed on the table

between them. Let N be the number of positions on the table, M ′ (0 < M ′ < N)

the number of salient objects placed on spots, and M the number of possible objects.

M ′ objects are selected from M candidates every L steps and spots on which they

are placed are determined randomly (only one object per spot). The robot gestures

and shifts its gaze, and the caregiver only shifts her gaze. The robot have random

variables shown in Table 5.1.

The caregiver and robot take turns observing objects or the other side in each time

step as below. First, the caregiver shifts gaze, then the robot observes the caregiver’s

face or a spot on the table as the current target, obtaining information about S1,

where the caregiver appears to be looking, or S2, what objects are being observed.

We assume that the robot prefers both the caregiver’s full face and salient objects to

the caregiver’s profile because infants appear to prefer the full human face [31] and

objects with complex textures or symmetrical patterns [32]. The robot has resultant

sensory variables representing such preferences. In the observation timing, it also

perceives resultant sensory variables of the caregiver’s full face, R1, and objects, R2.

After observation, the robot gestures (A2), then shifts its gaze (A1).

4.3.2 Robot model

Current sensory variable states of the caregiver’s gaze, S1, and objects, S2, are ob-

tained when the robot observes a target. The direction of the caregiver’s gaze in
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the t-th step is denoted by st
1 ∈ S1 = {f1, · · · , fN , fr, fφ}, where f1, · · · , fN indi-

cates at which spot the caregiver is looking, fr means the caregiver is looking at the

robot, and fφ means the robot is not looking at the caregiver’s face. The sensory

variable for objects in the t-th step indicating what it is looking at is denoted by

st
2 ∈ S2 = {o1, o2, · · · , oM , oφ}, of which o1, · · · , oM correspond to possible objects

and oφ indicates that it is looking at something else.

Current states of resultant sensory variables for the caregiver’s full face, R1, and

for objects, R2 are obtained in observation timing. These variables in the t-th step

are denoted by rt
1 ∈ R1 = {0, 1} and rt

2 ∈ R2 = {0, 1}, where ”1” means that the

robot is looking at its preferred face or an object while ”0” means “NOT.”

After these observations, it shifts its gaze and gestures. The gaze shift in the

t-th step is denoted by at
1 ∈ A1 = {g1, · · · , gN , gc}, indicating the target to be gazed

at, i.e., a certain location on the table (g1, · · · , gN) or the caregiver’s face (gc). The

gesture in the t-th step is denoted by at
2 ∈ A2 = {h1, · · · , hNh

}, indicating the type

of movement, and Nh indicating the number of different hand gestures. The robot

randomly selects one element in both A1 and A2 at each time step.

4.3.3 Caregiver model

A caregiver responds to an infant’s behavior and induces the infant’s response in

interactions with the infant in addition to looking at a salient object as a basic and

natural behavior. We modeled behavior so that the caregiver looks randomly at the

robot or at one of the objects and shows responsive and inductive behaviors regarding

robot behavior.

In the caregiver’s gaze shift, three options exist for shifting the gaze when looking

at the robot or at an object on the table (Figure 4.3): (1) following the robot’s gaze —

responding to joint attention (RJA) —; (2) shifting gaze to draw the robot’s attention

— initiating joint attention (IJA) —; and (3) randomly selecting a target to gaze at

(neutral) excluding behavior identical to the RJA and IJA. Note that the caregiver

invariably looks at the robot’s face or at an object on the table.

In each time step, the caregiver first perceives a target and selects an option

based on what is being looked at. If the robot’s face is being looked at, the caregiver
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Figure 4.3: Caregiver’s gaze shift

selects either RJA with probability pc
r or the neutral process with probability 1− pc

r.

Otherwise, (looking at a object on the table, for example), the caregiver selects either

IJA with probability pc
i or the neutral process with probability 1 − pc

i . In RJA, the

caregiver shifts her gaze to follow the direction of the robot’s face. If the robot is not

looking at an object, the caregiver selects an object at random and shifts her gaze to

it ( box, bottom left, Figure 4.3). In IJA, the caregiver shifts her gaze as if trying to

lead the robot’s gaze to the object that the caregiver is currently looking at, looking

back at the robot and shifting her gaze to the target object in the next step again (

box, bottom right, Figure 4.3).

29



4.4 Transfer entropy

We use transfer entropy [23] to quantify contingency of an event. Transfer entropy

is an information measure that represents the flow of information between stochas-

tic variables that cannot be extracted by other information criteria such as mutual

information.

We assume that the current state of stochastic variable X is only influenced by the

last state of X and the last one of another stochastic variable Y . Transfer entropy that

indicates the influence of stochastic variable Y on stochastic variable X is calculated

by

TY →X =
∑

xt+1,xt∈X,
yt∈Y

p(xt+1, xt, yt) log
p(xt+1|xt, yt)

p(xt+1|xt)
, (4.1)

where xt and yt are observables of X and Y at time step t. This is equivalent to

Kullback-Leibler entropy between p(xt+1|xt) and p(xt+1|xt, yt).

We calculate transfer entropy TSi,Aj→Rk
indicating the influence of a pair of sensory

variables Si (i = 1, 2) and actions Aj (j = 1, 2) for resultant sensory information Rk

(k = 1, 2):

TSi,Aj→Rk
=∑

Rk,Si,Aj

p(rt+1
k , rt

k, s
t
i, a

t
j) log

p(rt+1
k |rt

k, s
t
i, a

t
j)

p(rt+1
k |rt

k)
. (4.2)

An observed consequence is often strongly included in contingency inherent in spe-

cific actions. Here, shifting the gaze, for example, has a high contingent relationship

with the reward for the caregiver’s full face: the robot cannot look at the caregiver’s

face if it shifts its gaze to a spot on the table. In such cases, transfer entropy would

not work in finding contingent actions coordinated by any sensory information for

reward because the contingency between a result and an action is too strong. We

introduce transfer entropy TC that focuses on the effect of combining sensory and

action variables for resultant sensory variable:
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TC
Si,Aj→Rk

= TSi,Aj→Rk
− TAj→Rk

=
∑

Rk,Si,Aj

p(rt+1
k , rt

k, s
t
i, a

t
j) log

p(rt+1
k |rt

k, s
t
i, a

t
j)

p(rt+1
k |rt

k, a
t
j)

, (4.3)

which indicates the combinatorial influence of sensory variable Si and action variable

Aj for resultant sensory variable Rk. This appears equivalent to Kullback-Leibler

entropy between p(rt+1
k |rt

k, s
t
i, a

t
j) and p(rt+1

k |rt
k, a

t
j).

4.5 Experiments

4.5.1 Experimental setup

We conducted a computer simulation to determine whether the robot could find

the contingent structure in face-to-face interactions using the proposed contingency

measure to acquire gaze following. Calculating transfer entropy requires determining

joint probabilities and conditional probabilities for each combination. We estimated

them using histograms of observable combinations of three variables: the history of

the robot’s experience. To demonstrate the potential of the proposed measure, we

iterated interaction steps and observed the transition of transfer entropy calculated

from histograms.

In experiments, we set nine spots on the table (N = 9), ten objects in the en-

vironment (M = 10), and three objects on the table (M ′ = 3). Note that we set

the number of possible objects M = N + 1 to nearly equal the number of elements

between sensory variables because the finer the resolution of a stochastic variable

is, the larger the transfer entropy. For the same reason, the number of hand ges-

tures Nh = N + 1. Other parameters (L, pc
r, p

c
i) = (10, 0.8, 0.2). Experiments lasted

while absolute differences between transfer entropies of all combinations of variables

between consecutive steps exceed constant value θ. Here, θ = 1.0 × 10−7.
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4.5.2 Transfer entropy in face-to-face interaction

As shown in previous studies [19; 20], the direction of the caregiver’s gaze sf
t leads to

a predictable consequence of the robot’s shifting its gaze ag
t , that is, finding a salient

object rt+1
2 . Conversely, the robot’s hand gestures, at

2, are not contingent because

the caregiver does not respond to them and her gaze direction does not lead to any

predictable consequence related to them. We expect the robot to find pair S1 and A1

for R2 matching the pair to which gaze following acquisition is attributed in previous

study [19].

Figure 4.4 shows examples of time courses of TCs of sensory information, actions,

and resultant sensory information in interactions. The vertical axis indicates the

logarithmic value of TC , and the horizontal axis indicates time steps. Since the

estimated probability distribution was less accurate at the beginning of interactions,

TCs seemed overestimated. After interactions are iterated, however, TC
S1,A1→R2

(blue

line in Figure 4.4) appeared larger than the others, i.e., the combination of the sensory

information of the caregiver’s gaze, the change in the robot’s gaze, and the reward

for salient objects was contingent, indicating that the robot detected a contingent

combination of variables with transfer entropy, that was used to acquire gaze following

in previous work [19].

To evaluate the robustness of transfer entropy measure for finding a contingent

combination of variables, we analyzed the influence of other parameters, such as

M ′, pc
r, and pc

i on target transfer entropy (TC
S1,A1→R2

) and the difference between

target transfer entropy and the highest transfer entropy among other combinations

(maxk,l,m TC
Si,Aj→Rk

). Note that this difference must be larger than zero for target

combinations of variables to be contingent. We call the difference ∆TC
diff . We varied

pc
r, pc

i , and M ′ at 0.25, 0.50, and 0.75 for pr and pi, and M ′ = 1, 2, · · · , 9. For

each parameter setting, we ran ten 30,000-step simulations and plotted the averages

and standard deviations of ∆TC
diff in the 30,000-th step for the number of objects

in Figure 4.5. Note that ∆TC
diff s for most parameter settings exceeded zero except

in the case of M ′ = 8, 9, confirming that the target combination of variables was

contingent for all parameter settings except extreme cases in which almost all places

are salient for the robot, although absolute differences appear to reflect the number
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Figure 4.4: Time courses of contingent measure of combinations of variables in face-
to-face interactions between caregiver and robot

of objects M ′. Note also that pc
r and pc

i do not affect ∆TC
diff from standard deviations

in Figure 4.5.

4.5.3 Influence of uncertain contingency

In actual interaction between a caregiver and infant, the caregiver may look at an

object not salient to the infant. Therefore, we examined to what extent the proposed

mechanism depends on the assumption that a caregiver tends to look at something

salient to the infant.

We changed the caregiver model to one that behaves as described in Section 4.3-C

with probability pc
c and looks at the robot or an empty spot with probability 1 − pc

c.

If we set pc
c to a lower value, the caregiver looks less often at an object and more often

at empty spots on the table and behaves completely randomly around pc
c = 0.5. We

compared the transfer entropies calculated in the 30,000-th step in interactions with

different of pc
c under the above setting.

Figure 4.6 shows the averages and standard deviations for ten simulations of

∆TC
diff . Since the difference became positive and TC

S1,A1→R2
had a higher value when pc

c

exceeded 0.6, the proposed mechanism appeared effective when the caregiver looked
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Figure 4.5: Change of difference between TC
S1,A1→R2

and largest TC in other combina-
tions in situations of different combinations of pc

i , pc
r, and M ′

sometimes at objects salient to the robot. Note that the difference again became pos-

itive when pc
c < 0.2, meaning that TC detects opposite contingency, i.e., if the robot

follows the direction of the caregiver’s gaze, it cannot look at any salient objects.

The proposed mechanism detects contingent combinations in face-to-face interaction

regardless of whether structures are related to the acquisition of gaze following. The

robot thus use the detected combination to acquire gaze following if the caregiver

looks often at objects salient to the robot, i.e., pc
c > 0.6.

4.5.4 Learning gaze following with detected contingent vari-

ables

We studied whether a combination of variables with maximum TC (TC
S1,A1→R2

) enables

the robot to learn gaze following. Before having the robot do so, we confirmed

that contingency of found combinations showed the robot’s experience from which it

learned gaze following. Figure 4.7 shows histograms of experience in which the robot

observed the caregiver’s face and chose to shift its gaze to a spot before observing

an object through interaction. Diagonal elements correspond to gaze following, and
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S1,A1→R2
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nations based on probability pc

c

showed that the robot tended to successfully observe an object when it occasionally

performed the same behavior as gaze following.

As shown by Nagai et al., a robot acquires gaze following using contingency learn-

ing [19] in situations where the robot’s experience is biased to occasionally achieve

successful gaze following. In subsequent computer simulation, we examined whether

it obtained a sensory-motor map for gaze following by contingency learning based on

the detected pair of sensory and action variables.

Sensory and action variables included in the contingent combination with the

highest TC were assigned to input and output layers of a two-layered perceptron

(Figure 4.8). Since contingency learning was conducted by associating sensory-motor

variables regardless of gaze following success, it is implemented using the current ob-

servable action variable A1 as the desired value of the output layer in backpropagation

learning. The perceptron was trained with data obtained through 30,000 interactions

in which actions of the caregiver and the robot were determined by models described

in Section 4.3. Sensory (action) variables were encoded so that input (output) to only

one node was “1” while others “0”. Suppose that the robot finds something salient

(rt+1
2 = 1) by shifting its gaze to the i-th spot on the table (at

1 = gi) after observing
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Figure 4.8: Network to learn gaze following.
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the caregiver’s face, perceived as looking in the j-th direction, (st
1 = fj). The percep-

tron receives an input vector of which fj is one while the others are zeros and receives

a reference vector of which gi is one while the others are zeros ( Figure 4.8 ).

After ten trials, each consisting of 30,000 interactions, we examined the average

success rate for gaze following, testing whether the perceptron output the action

variable corresponding to the caregiver’s gaze for each of N perceptual inputs. Success

rate for each trial was calculated by the number of pairs of input and output achieving

gaze following. Average success rate was 84%, confirming that contingent variables

selected by the proposed mechanism can be utilized to learn gaze following.

4.6 Summary and discussion

In this chapter, we showed that transfer entropy is promising in detecting the con-

tingency inherent in face-to-face interaction. Transfer entropy helps a robot detect

important variables constituting the contingent structure inherent in interaction. We

also demonstrated that appropriately chosen contingent variables can be used in learn-

ing gaze following.

Influence of other parameters We did not focus on parameters L, N , M , and

Nh in experiments because the behavior of L and N is easily predicted. As either

L or N increases, a robot needs more interactions to detect the target combination

(S1, A1, R2) because transfer entropies are overestimated due to the inaccuracy of the

estimated probability distribution. We set M and Nh as N + 1 to reduce differences

between transfer entropies that attribute to different numbers of possible elements

of variables. An infant, however, appears to have the different resolution of mul-

timodal sensations and various kinds of actions because these components develop

in parallel and at different time schedules. We should therefore utilize normalized

transfer entropies in the number of elements to adequately estimate the contingency

of combinations that consist of different numbers of elements.

Mutual response Experimental results showed that responsive and inductive be-

haviors of a caregiver influence the contingency inherent in interactions between the

37



caregiver and a robot only negligibly because the robot did not respond to the care-

giver’s actions. The caregiver’s behavior helps the robot to detect the contingent

combination for gaze following if we design the appropriate robot responses to the

caregiver’s actions. We should also add other action modalities, such as pointing or

vocalization to the caregiver. We plan to study what sort of contingency is detected

in interaction with such mutual responses.

Improvement toward biologically plausible mechanism Observations in de-

velopmental psychology imply that many contingent structures are inherent in infant-

caregiver interaction [32]. Infants start to become sensitive to social contingency from

about three months of age [45], and acquire related social skills [47; 38]. Such a con-

tingent structure is used to acquire gaze following [14]. Our mechanism appears

plausible in that a robot acquires gaze following only by finding the contingency of

interactions with humans. We cannot yet, however, explain information processing in

the human brain for detecting such contingency. We plan to use mechanisms to detect

such contingency in the human brain to propose biologically plausible mechanisms.

Application to other social skill Our mechanism can be applied to the acquisi-

tion of other social skills besides gaze following. As stated by Triesch et al. [20], the

acquisition of point following, defined as looking at an object that someone else is

pointing at, appears based on a contingency similar to gaze following, the contingency

between the infant’s gaze shift and the caregiver’s hand use when looking at a salient

object. Our mechanism may also enable social skills to be cumulatively acquired. If a

robot acquires and use new behavior, this behavior changes the caregiver’s behavior

and modifies contingent structure, leading the robot to acquire subsequent behavior.

Through such acquisition, we expect the mechanism to help us understand what sorts

of relationships should be found between the developmental processes of skills and

how a caregiver should behave to help a robot acquire skills more easily.

Adaptability to environmental change We expect that skills acquired by a

robot will be suitable to individual humans and tasks. Useful social skills are required

by social robots to communicate smoothly with humans. Pre-programming such
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abilities is, however, difficult because the usefulness of social skills depends on whom

the robots communicates with and what tasks they are involved in. As one key to

avoid such difficulty, we focused on the fact that many social skills are contingent in

interactions with humans. We expect that our mechanism will help us realize social

robots with social skills appropriate to humans and tasks.

Evaluating performance of the proposed measure Although the proposed

measure seems useful to find contingency in face-to-face interaction with a caregiver,

we do not compare it with other measures [75] such as Granger causality and mutual

information and examine what feature it has yet. It is beneficial to make clear the

limitation of the measure because of its application to other issues. Therefore, we

should analyze the features of the proposed measure as a future work.
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Chapter 5

Reproducing social contingency

toward open-ended development of

Joint Attention

5.1 Introduction

Human infants acquire a variety of social actions and gradually attain smooth com-

munication with others. In particular, the ability to achieve joint attention with

others is the basis to share attention among agents since the direction of the gaze of

a person often indicates where the person’s attention is being directed. Therefore,

understanding how infants develop actions related to joint attention such as gaze

following, pointing, gaze alternation, and social referencing is a central topic in devel-

opmental psychology [7]. Infants seem to acquire various kinds of actions gradually in

the development of joint attention; after learning gaze following, they begin to show

gaze alternation, i.e., successive looking between a caregiver and an object, social

referencing, and pointing [11]. However, it is still a mystery why most infants acquire

several forms of joint attention behavior in such order.

In robotics, joint attention studies have been done not only from the viewpoint of

building communicative robots [57] but also from synthetic approaches to modeling

and understanding human developmental processes [16]. Previous synthetic studies
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have addressed how infants can acquire gaze following without explicit instructions

about where to look [19; 20]. A contingent structure has been shown in a sequence

of gazing actions of an infant robot and its caregiver that enables it to successfully

acquire gaze following based on statistical association of these actions. The robot

acquired gaze following by associating the direction of the caregiver’s gaze and own

gazing actions, in other words, reproducing the contingency. However, in these stud-

ies, the robot was given a priori knowledge about which pair of sensory and action

variables should be associated. Communicative robots usually have many candidates

for sensory and action variables to be associated to acquire such social actions because

they are supposed to have multimodal sensori-motor experiences that reflect the con-

tingency in interaction with humans. This indicates that it is not trivial for a robot

to select such a pair of sensory and action variables by itself to model contingencies

involved in the interaction.

In order to select appropriate variables among many candidates, the learning

mechanisms based on intrinsic motivation such as novelty [73] or learning progress [74]

seem useful because they enable a robot to select actions to be acquired without de-

signing task-dependent reward. Although these intrinsic motivations enabled robots

to acquire several kinds of behaviors, the effects of taking the acquired social actions

on interaction with a caregiver were not handled. If a robot prefers to contingency in-

herent in interaction with a caregiver, it can find the contingency by itself and acquire

a social action by reproducing the found contingency as shown in previous studies [19;

20]. We hypothesize that reproducing the found contingency further leads novel con-

tingency to emerge from interaction with a caregiver because it introduces the change

of the caregiver’s response to the robot into the interaction. We expect this loop of

finding and reproducing the contingency to enables open-ended development of social

actions. In addition, such preference to the contingency in interaction with a care-

giver seems reasonable as a model of an intrinsic motivation in human infants because

developmental psychologists observe that they are sensitive to the contingency called

contingency [22].

Therefore, we focus on contingencies in pairs of sensory and motor variables to

select a pair involving contingency to be reproduced. To determine to what extent
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variables constitute strong causality [76; 77; 78], we use the transfer entropy mea-

sure [23]. This information theoretic measure shares some of the desired properties of

mutual information but also considers the dynamics of information transport. In com-

puter simulations of face-to-face interaction between a robot and a caregiver agent,

transfer entropy was confirmed to be useful for the robot to find an appropriate com-

bination of variables that enables to learn gaze following [79]. Such a measure of

contingency is expected useful for acquiring not only gaze following but also different

kinds of joint attention behavior. We expect to model the developmental process

of joint attention by finding contingency and its reproduction: the joint attention

behavior acquired by a robot will change the caregiver’s response and induce novel

contingency in the interaction to acquire another action related to joint attention.

In this chapter, we propose a mechanism that iteratively acquires social actions by

extending the measure proposed in our previous work [79]. The mechanism not only

finds a combination of contingent variables and constructs a sensori-motor mapping

to reproduce behavior based on the found contingency but also selects which sensori-

motor mapping should be used to select the next action. In the iterative process, a new

variable expressing whether each sensori-motor mapping is used is added to promote

finding the contingency depending on other contingencies. In computer simulations,

we examine what kinds of actions related to joint attention can be acquired in order

by changing the actions of the caregiver agent. The results indicate that a robot

acquires a series of actions related to joint attention in order that almost matches

with an infant’s development of joint attention. The difference between them is

discussed based on the analysis of the robot behavior and future issues are given.

The rest of the chapter is organized as follows. We give the learning mechanism

for sequential acquisition of social actions. Next, we introduce a computer-simulated

setting involving face-to-face interaction to determine what actions a robot acquires

through such interaction and then show our experimental results with it. Finally,

discussion on future issues and the results of the analysis of the robot behavior and

concluding remarks are given.
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5.2 Proposed mechanism to successively develop

social behaviors

Figure 5.1 shows a mechanism that enables a robot to acquire social actions based

on finding contingency inherent in interaction and reproducing the found one. The

mechanism consists of four modules: (1) a contingency detector, (2) contingency

reproduction modules (CMs), (3) reactive behavior modules (RMs), and (4) a module

selector. The number of RMs is constant, while there are no CMs at beginning of

learning. They are generated by the contingency detector once it finds the contingency

through interactions between a caregiver and the robot.

Figure 5.1: Proposed mechanism to successively develop social actions

RMs and CMs output not only motor commands to be executed but also values of

their reliability for the current state r, s. The reliability indicates how much a motor

command selected by each of RMs and CMs is appropriate for the current state in

terms of information theory. The module selector determines an action m of the

robot based on the reliability. The state and the selected commands are used by the

contingency detector to constitute a new CM as well as to determine a contingent
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event based on information theoretic measure described in the following section.

5.2.1 Contingency detector

A contingency detector has two main roles: finding a contingent event and gener-

ating a new CM based on it. We proposed an information theoretic measure of

contingency based on transfer entropy [23] to quantify the contingency inherent in

events experienced through interactions with a caregiver. Transfer entropy is a kind

of information measure that represents the flow of information between stochastic

variables that cannot be extracted by other information criteria such as mutual infor-

mation. The contingency detector evaluates contingency in interaction by calculating

the measures for all events.

Here, we assume that the current state of stochastic variable X is only influenced

by the last states of X and another stochastic variable Y . Transfer entropy that

indicates the influence of Y on X is defined by

TY →X =
∑

xt+1,xt∈X,
yt∈Y

p(xt+1, xt, yt) log
p(xt+1|xt, yt)

p(xt+1|xt)
, (5.1)

where xt and yt are the observables of X and Y at time step t, respectively.

Suppose that combinatorial joint probabilities are given for all possible events. To

quantify joint effect of sensory variable Si and action variable Aj on resultant sensory

variable Rk, we introduce state-action contingency (SAC) Cj
i,k, which is defined and

expanded as follows:

Cj
i,k = T(Si,Aj)→Rk

− (TSi→Rk
+ TAj→Rk

)

=
∑

st
i∈Si,

rt
k∈Rk

p(rt
k, s

t
i)

∑
rt+1
k ∈Rk,

at
j∈Aj

e(rt+1
k , at

j; r
t
k, s

t
i), (5.2)

where e(rt+1
k , at

j; r
t
k, s

t
i) in Eq. (5.2) is called a contingent saliency under a pair of

observables (rt
k, s

t
i).

e(rt+1
k , at

j; r
t
k, s

t
i) = p(rt+1

k , at
j|rt

k, s
t
i) log

p(rt+1
k |rt

k, s
t
i, a

t
j)

p(rt+1
k |rt

k, s
t
i)

− p(rt+1
k , at

j|rt
k) log

p(rt+1
k |rt

k, a
t
j)

p(rt+1
k |rt

k)
.(5.3)
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e(rt+1
k , at

j; r
t
k, s

t
i) represents a statistical bias on the state transition from rt

k to rt+1
k

deriving from a pair (st
i, at

j). If the resultant experience rt+1
k depends on a triplet (st

i,

rt
k, at

j), the difference between p(rt+1
k |rt

k, s
t
i, a

t
j) and p(rt+1

k |rt
k, s

t
i) in the first term of

Eq. (5.3) becomes larger. However, there is a possibility that the difference derives

from a dependency only on a pair (at
j, rt

j). Therefore, the second term in Eq. (5.3),

which represents influence of only at
j on the state transition from rt

j to rt+1
j , is sub-

tracted from the first term to capture a combinatorial bias in an event.

After calculating the SACs for all triplets, the detector evaluates whether to gen-

erate a new CM for an event with the highest SAC value. Here, a new CM for a SAC

is generated if its SAC keeps the highest value during TC time steps and the absolute

difference between the highest SAC and the second highest one between the last con-

secutive steps is lower than a constant value θ. Hereafter, a CM that is constituted

for an event of Si, Aj, and Rk is denoted as CM(i, j, k).

When the contingency detector creates the i-th new CM, the set of events is

extended by adding new variables related to the CM, AΠi
and SΠi

. Here, AΠi
rep-

resents whether output from the i-th CM is used as a current motor command to

perform its current action while SΠi
represents whether output from the i-th CM was

used to perform the previous action at the last step. Therefore, after the number

of generated CMs is NΠ, the contingency detector calculates the SACs Cj
i,k where

Si ∈ {S1, · · · , SNS , SΠ1 , · · · , SΠ
NΠ

} and Aj ∈ {A1, · · · , ANA , AΠ1 , · · · , AΠ
NΠ

}, and

NS and NA indicates the numbers of pre-determined sensory variables and motor

variables, respectively.

5.2.2 Contingency reproduction module

A CM is composed of a sensori-motor map from a sensory variable Si to a action

variable Aj of the found event (Si, Aj, Rk). The map is built to output the contingent

motor command under each pair of observables. Here, the contingent motor com-

mand is defined as the motor command with the highest contingent saliency of all

ones under a pair of observables because a contingent saliency under a pair of observ-

ables represents effectiveness of an action in interaction. Therefore, the contingent

motor command a∗
j and the expected resultant sensory information r∗k under a pair
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of observables (rk, si) are given by:

(r∗k, a
∗
j) = argmax

r′k,a′
j

e(r′k, a
′
j; rk, si). (5.4)

A CM also calculates the reliability for the contingent motor command under a

pair of observables. This measure is used by a module selector as described in the

section 5.2.4 . We define the reliability Z(rk, si) as z-score for the highest contingent

saliency under a pair of observables:

Z(rk, si) =
emax(rk, si) − µsi,rk

σsi,rk
, (5.5)

where emax(rk, si) = e(r∗k, a
∗
j ; rk, si), and µrk,si and σrk,si denote the average of the

contingent saliencies under observables (rk, si) and the standard deviation, respec-

tively.

However, not every pair of observables will necessarily be involved in the con-

tingency found in the interaction. The contingent saliencies under the pairs of ob-

servables involved in the contingency should be higher than those uninvolved in the

contingency. In addition, the differences between the highest contingent saliency and

the others under a pair of observables involved in the contingency should also be

large. Therefore, we evaluate the reliability as follows:

1. we calculate the average of all the positive or null contingent saliencies (ignoring

the negative ones) under all pairs of observables;

2. we check if the highest contingent saliency under each pair of observables exceeds

the average. If this is not the case, no further computation is performed;

3. we determine the z-scores of the highest contingent saliency and the second

highest one under each pair of observables that satisfies the condition of step 2;

and

4. if the difference between the z-scores of the highest contingent saliency and

the second one is higher than Zθ, the reliability under the pair is determined,

otherwise the reliability is not computed.
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5.2.3 Reactive behavior module

A RM outputs a motor command based on the behavior policies pre-programmed by

a designer. Here, we use random selection. We could also use more biased selection

because infants seem to have innate preferences, such as preferences to human faces

or objects with complex textures. A RM outputs a constant value α as the reliability

under each pair of observables too.

5.2.4 Module selector

As the number of CMs increases, a robot must determine which outputs from the

CMs and RMs to be selected. A module selector serves this purpose. The module

selector determines an action of a robot from outputs of the CMs and RMs based on

values of their reliability.

Let CN i and RN i denote the numbers of CMs and RMs that output motor com-

mands for the i-th joint of a robot, respectively. Here, we express CN i CMs and RN i

RMs as Γi
j ∈ {RMi

1, RMi
2, · · · , RMi

RN i , CMi
1, CMi

2, · · · , CMi
CN i} . Probability Pr(Γi

j)

of choosing the output from Γi
j at the t-th step is given by softmax selection such as:

Pr(Γi
j) =

exp(Zj(rt, st, t′)/τi)∑
l∈RN i+CN i exp(Z l(rt, st, t′)/τi)

, (5.6)

where Z l(st, rt, t′) is introduced to avoid producing the same behavior continuously

such as keeping fixation on the same target. It indicates the value of reliability

of the l-th CM that continues to receive the same observables during last t′ steps:

Z l(rt, st, t′) = Z l(rt, st)e−βt′ . The parameter β is a positive constant and τi is the

temperature parameter. If τi is set as a constant value, the increase of CN i decreases

the Pr(Γi
j). So, we decrease τi as CN i increases: τi = 1/(CN i + 1)

5.2.5 Sequential acquisition of behavior based on reproduc-

ing the acquired behavior

At the beginning of learning, the module selector selects the outputs of RMs that

output pre-programmed actions as current motor commands of a robot. As interaction

between a caregiver and the robot is iterated, however, the contingency detector
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selects a contingent event and generates a new CM that constructs a sensori-motor

map based on the found event. The CM outputs a contingent motor command for each

pair of observables to reproduce the contingent relation in the event. The contingency

detector adds SΠ and AΠ as sensory and action variables involving the CM, and comes

to evaluate events including them, too. Through the loop of finding the contingent

event and reproducing the contingent motor commands, a new CM for an event

involving SΠ or AΠ can be generated. As a result, the robot acquires actions that are

related to each other.

5.3 Computer simulation of developing joint at-

tention related behavior

Figure 5.2: Experimental setting for acquisition of actions related to joint attention

The performance of the proposed model was tested in computer simulations where

an infant model (hereafter a robot) interacted with a caregiver model in face-to-face

situations. The robot selected actions based on the proposed mechanism and caregiver

actions were simulated more faithfully as described in the section 5.3.1.
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5.3.1 Experimental setting

Environment and Infant model

Figure 5.2 shows an overview of the setting in the computer simulation. There are

three spots on a table, and two objects are randomly placed. The spots on which

they are placed are determined randomly every ten steps (no more than one object

at one spot). Here, we assume that the caregiver and the robot take turns observing

environmental information.

Table 5.1: Initial variables in robot

Type Name Variables

S
caregiver’s face S1 = {f1, f2, f3, fr, fφ}

object S2 = {o, oφ}

A
shifting gaze A1 = {g1, g2, g3, gc}
hand gesture A2 = {h1, h2, h3, h4}

R
frontal face of caregiver R1 = {0, 1}

caregiver profile R2 = {0, 1}
object R3 = {0, 1}

The variables in Table 5.1 were set as initial ones in the robot’s program. The

direction of the caregiver’s gaze is denoted by S1 each member of which indicates

the gaze to a particular location of a table (f1, f2, f3) or the robot’ frontal face (fr),

or indicates that the robot is not looking at the caregiver’s face (fφ). The sensory

variable for objects representing whether the robot is looking at an object is denoted

by S2 each member of which indicates that the robot is looking at an object (o)

or something else (oφ). We prepare three types of variables as resultant sensory

variable: caregiver’s frontal face R1, the caregiver’s profile R2, and objects R3. These

are binary variables indicating whether the robot is looking at its preferred face or

an object (”1”) or not (”0”).

The robot shifts its gaze and gestures. The robot’s gaze shift is denoted by A1

each member of which indicates the target to be gazed at, i.e., a particular location

on the table (g1, g2, g3) or the caregiver’s face (gc). The gesture is denoted by A2 each

member of which indicates the four different hand gestures. Here, parameters about
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the proposed mechanism were set as (TC , θ, Zθ, α, β) = (30, 5.0 × 10−5, 0.5, 1.0, 0.5).

The behavior rules of the caregiver model

The robot moves its hands and shifts its gaze, while the caregiver only shifts the gaze.

In the chapter 4, we modeled the caregiver’s behavior so that the caregiver not only

randomly looks at the robot or at one of the objects but also shows responsive and

inductive behaviors. Here, we adopt a similar model for the caregiver, except that the

current model shows responsive behavior also when it achieves joint attention with

the robot.

The caregiver always looks at the robot’s face or an object on the table. In the

caregiver’s gaze shift, three options exist for shifting the gaze when looking at the

robot or at an object on the table: 1) following the robot’s gaze (RJA process); 2)

shifting gaze to draw the robot’s attention (IJA process); and 3) randomly selecting

a target to gaze at (neutral process) excluding behavior identical to the RJA and IJA

processes.

In each time step, the caregiver selects an option based on what she is looking at.

The caregiver basically selects neutral process and selects the RJA or IJA processes

in the following cases:

• if the caregiver is looking at the robot’s face directed to a spot on the table, the

RJA process is selected with probability pc
r and the neutral process is selected

otherwise; and

• if the caregiver is looking at an object, the IJA process is selected with proba-

bility pc
i and the neutral process is selected otherwise.

In addition, the caregiver shifts the gaze to the robot’s face with probability pc
e if the

caregiver and the robot successfully look at the same object regardless of the selected

option. In the RJA process, the caregiver shifts the gaze to follow the direction of the

robot’s face. If the robot is not looking at an object, the caregiver selects an object

at random and shifts the gaze to it. In the IJA process, she shifts the gaze as if trying

to lead the robot’s gaze to an object that she is currently looking at. She looks back

at the robot and shifts her gaze to the target object in the next step again.
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5.3.2 Sequential acquisition of joint attention behavior

We ran ten 100,000 steps simulations where the parameters were set as (pc
r, p

c
i , p

c
e) =

(0.5, 0.5, 1.0). The average number of CMs found by the contingency detector was

3.5. In 90 % of the simulations, a particular set of CMs was generated in a fixed order,

which was CM(1, 1, 3), CM(Π1, 1, 1), and then CM(Π1, 1, 2). Moreover, they were of-

ten generated earlier than other CMs for different events. Each of these CMs enabled

a robot to achieve social behavior: following a caregiver’s gaze (CM(1, 1, 3); here-

after FG-m), shifting its gaze to the caregiver after gaze following for the caregiver

(CM(Π1, 1, 1); hereafter SCf-m), and shifting its gaze to the caregiver regardless of

gaze following (CM(Πi, 1, 2); hereafter SC-m). Moreover, they were often generated

earlier than other CMs for different events.
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Figure 5.3: Time courses of the state-action contingency of events in a simulation
face-to-face interactions between a caregiver and a robot.

Figure 5.3 shows examples of time courses of SACs for several events which have

ever been one of the two highest SAC values through 80,000 steps in a simulation.

The vertical axis indicates the logarithmic value of the SACs. We also show the

timing of generating new CMs as inverted black triangle on the top of the graph.

After interactions were iterated, C1
1,3 first became the highest among all SACs (red

52



curve in Figure 5.3). As a result, the FG-m was generated at the 5748-th step, and

SΠ1 and AΠ1 were added as sensory and action variables, respectively. The robot then

began to follow the caregiver’s gaze by using output from FG-m when it looked at

the caregiver who was looking at an object. Through iterating the interaction, C1
1,3

gradually decreased because using particular output based on acquired sensori-motor

map makes the difference between p(rt+1
3 |rt

3, s
t
1, a

t
1) and p(rt+1

3 |rt
3, s

t
1) (the first term

of Eq. (5.3)) smaller. The decrease made C1
Π1,1 the next highest value, and the SCf-m

whose sensory variable SΠ1 is related to using output from FG-m was generated at

the 42862-th step. It enabled the robot to direct its gaze to the caregiver after gaze

following for the caregiver,

Using output from SCf-m changed the contingency in interaction again and pro-

moted increase of C1
Π1,2 (blue curve in Figure 5.3). This caused the generation of

SC-m for the event (SΠ1 , A1, R2) at the 47686-th step. It enabled the robot to shift

its gaze to the caregiver despite achieving following the caregiver’s gaze. As a result,

the robot alternately shifted its gaze between a caregiver and an object, that is, it ac-

quired gaze alternation. This indicates that a robot acquired not only gaze following

but also gaze alternation through the repetition of finding and reproducing a chain

of contingencies in interaction that change by using output from existing CMs.

5.3.3 Influence of caregiver’s behavior

In a naturalistic interaction between a caregiver and an infant, the behavior of the

caregiver can be different from the one simulated in the previous section. We examined

to what extent the sequence of acquired actions depends on the behavior of the

caregiver.

In the simulations, pc
r and pc

i were set to either of 0.0, 0.25, 0.5, 0.75, and 1.00

while pc
e was set to 0.0 or 1.0. If we set pc

e = 1.0, the robot can expect to look at

the caregiver’s frontal face when it shifts its gaze to the caregiver after gaze following

for the caregiver but cannot if pc
e = 0.0. For each parameter setting, we ran ten

100,000-step simulations.

Fig. 5.4 shows the sequence of acquired actions in the case of pc
e = 1.0 (Fig. 5.4(a))

and pc
e = 0.0 (Fig. 5.4(b)). Each section in Figure 5.4 shows the average timing when
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(a) a case of pc
e = 1.0.

(b) a case of pc
e = 0.0.

Figure 5.4: The timing of generating CMs under different parameter sets (pc
r, p

c
i , p

c
e)

in face-to-face interactions between a caregiver and a robot.
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new CMs were generated. Note that in this analysis, we pick up only CMs that were

generated more than five simulations under each parameter set. The horizontal axis

in a block indicates time step. The median in a colored rectangle denotes the average

and its width represents the standard deviation. A colored rectangle about a CM is

stacked in the generated order. We can see that FG-m is first generated under most

of parameter sets at almost same time step regardless of the value of pc
e. A main

difference between values of pc
e is the types of CMs which are generated after FG-m.

In the case of pc
e = 1.0, the robot acquired SCf-m and SC-m in the same order as

shown in the previous section under most of parameter sets. However the robot could

not acquire SC-m if pc
r was high while pc

i was low (Figure 5.4(a)).

In the case of pc
e = 0.0, on the other hand, the other CMs were generated as

next module of FG-m under some parameter sets (Figure 5.4(b)). CM(2, 1, 2) found

in the case with larger pc
i seems to be another version of shifting the gaze to the

caregiver: it enabled the robot to shift the gaze to the caregiver when it was looking

at somewhere on the table or the frontal face of the caregiver. CM(1, 1, 2) that was

generated before CM(2, 1, 2) constituted a sensori-motor map by which the robot kept

looking at the caregiver when it established eye contact with the caregiver. These

CMs had contingent connection with FG-m, but they did not have such connection

with each other: using output from the CM(1, 1, 2) did not have any positive influence

on generation of CM(2, 1, 2), such as promoting increase of C1
2,2 although using output

from SCf-m promoted increase of C1
Π1,2 in the case of pc

e = 1.0 as shown in the previous

section.

These results indicate that a caregiver should often shift the gaze to a robot

after achieving joint attention with a robot if the caregiver wants it to acquire gaze

alternation. We also confirmed the high value of pc
e promotes generation of SCf-m

and SC-m by experiments with setting pc
e as either of 0.25, 0.5, and 0.75.

5.4 Summary and discussion

In this chapter, we proposed a mechanism to enable a robot to developmentally

acquire social actions based on finding and reproducing contingency inherent in face-

to-face interaction by the contingency measure based on transfer entropy [23]. We
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Figure 5.5: Change of the robot’s behavior in face-to-face interactions between care-
giver and robot.

confirmed that a robot sequentially acquires gaze alternation after acquiring gaze

following in computer simulation.

Similarity of developmental order The order of acquiring gaze following and

alternation in the experiments is one of remarkable results. In previous studies about

acquiring gaze following, gaze alternation was pre-programmed [19] or acquired before

acquiring gaze following [20]. However, previous studies in developmental psychology

suggest that human infants do not shift their gaze to the caregiver even if they acquire

gaze following, but, as they grow, they often shift their gaze to the caregiver [11]. The

developmental process of acquiring gaze following and alternation in the experiment

is similar to the one of infants. Reproducing contingency inherent in interaction

with the caregiver may play an important role in acquiring actions related to joint

attention.

Relationship between gaze following and gaze alternation We examined the

change of interaction between a caregiver and a robot from the viewpoint of what
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actions appear in the interaction as well as of what types of CMs were generated.

Figure 5.5 shows an example of change of the frequency of robot actions through

interactions with a caregiver with a parameter set (pc
r, p

c
i , p

c
e) = (0.5, 0.5, 1.0). Here,

we separated robot actions into two groups, corresponding to different situations:

the first group consists of actions after looking at the caregiver while the second

one consists of those after looking at another target. Furthermore, each group was

divided into three actions: for the situation of looking at the caregiver following the

gaze of a caregiver (FG), not following the gaze of a caregiver (NFG), and keeping eye

contact (KEC); while for the situation of looking at other target shifting the gaze to

the caregiver (SC), shifting the gaze to the same spot on the table (SS), and shifting

the gaze to the other spot on the table (SO). We calculated occurrence rate for each

index in interaction during last 1,000 steps.

Interestingly, gaze following for the caregiver and looking at the caregiver after

gaze following promoted little change in the robot’s behavior (P2 and P3 in Figure 5.5)

while looking at the caregiver regardless of gaze following changed the robot’s behavior

drastically (P4 in Figure 5.5). We can see that the gaze alternation promotes following

the caregiver’s gaze ( red curve in P4 of Figure 5.5) as well as looking at the caregiver

( blue and pink curves in P4 of Figure 5.5). This transition might explain conflict of

the observation in the developmental process of infant: the observation in laboratory

experiments suggests that 6-month-old infants can follow the other’s gaze to some

extent [10], while caregivers feel that their infants show neither gaze following nor

gaze alternation until about ten month of age [15].

Autonomous development An important point of the proposed mechanism is

that it enables a robot to acquire social actions sequentially without explicit instruc-

tions from a caregiver. This means that a robot can develop them continuously by

itself. In the future, adding other action modalities such as pointing or vocalization

and sensory modalities to perceive other information about a caregiver such as hand

gesture or voice of the caregiver would allow us to examine the relation between other

kinds of social actions. Furthermore, we did not consider internal states such as emo-

tion yet. Analyzing the elements with including such states might give us hints to

understand how to infer intentions of others.
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Modeling of autism Some of previous synthetic approaches [20; 66] have extended

their models to autistic models. We can also use the proposed mechanism to under-

stand the developmental process of autistic infants. Some autistic children perform

little or no eye contact and tend to avoid looking at human faces. We can realize

a model of an autistic infant by using these tendencies as behavior policies in reac-

tive behavior modules. Analyzing contingencies found by a model of a typical infant

and the autistic model might provide new understanding of the difference between

developmental processes of infants with and without autism. Additionally, we can

investigate how the caregiver’s behavior influences the learning of several actions re-

lated to joint attention for infant models with autism. This might give us new way

to improve joint attention skills in autistic infants.

Improvement toward biologically plausible mechanism In human brain, ini-

tiating joint attention such as pointing and responding to joint attention such as gaze

following seems processed in different areas [9]. Understanding the development of

these areas is one of issues to be tackled in neuroscience. We cannot give any sug-

gestion for information processing in human brain during the developmental process

of them yet since our mechanism is not based on any findings in neuroscience. We

will utilize mechanisms to find contingency in human brain to propose biologically

plausible mechanism as a future work.
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Chapter 6

Acquisition of gaze following

through real-time natural

interaction with a human caregiver

6.1 Introduction

In a previous chapter, we proposed that a learning mechanism that enables a robot to

acquire several forms of joint attentional behavior and showed the effectiveness of the

proposed mechanism using computer simulations. We must, however, determine to

what extent the proposed mechanism detects contingency in real-world interaction.

Therefore, as the first step to adopt the proposed mechanism to a real robot, we

address an issue of how a robot acquires gaze following through real-time interaction

with a human caregiver that causes asynchronous problem.

The design issues of gaze following are ”where and when to shift the gaze,” and

the existing approaches have been focusing on only ”where” issue by assuming the

turn taking of gaze change between a human and a robot. Further, they can be

classified into two categories: with and without external evaluation. In the former,

reinforcement learning [18] or probabilistic algorithms [21] with task evaluation from

a supervisor are utilized. In this category, the supervisor always needs to evaluate

the robot’s behavior. On the other hand, the second category [80; 19] does not need
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such evaluation by utilizing the consistency of the relationship between the other

agent’s gaze direction and the location of a salient object. Especially, Nagai et al.

introduced a contingency learning mechanism which enabled a robot to acquire gaze

following by learning sensory-motor mappings from a human face pattern to own

motor command to gaze at an object [19]. However, these approaches are implemented

in only computer simulation or not in real-time when applied to real robots. Further,

they have not considered ”when” issue by synchronizing turn taking of gaze changes

between a human and a robot. In order to realize natural interaction between them,

real-time interaction without a synchronization assumption should be considered.

The issue is how to decide when to shift the gaze to achieve the joint attention with

a human.

In this chapter, we present a method that solves the issue by introducing an

attention selector based on a measure consisting of saliencies of object features and

motion information. In order to realize natural interaction that means real-time

response without constrained synchronization of gaze shift between a human and a

robot, self-organizing map (SOM) for real-time face pattern discrimination [24] and

contingency learning for gaze following without external evaluation are utilized. The

attention selector controls the robot gaze to switch often from the human face to

an object and vice versa, and pairs of a face pattern and a gaze motor command

are input to the contingency learning. The motion cues are expected to reduce the

number of the incorrect training data pairs due to the asynchronous interaction that

affects the convergence of the contingency learning [19].

The rest of this chapter is organized as follows. First, we describe the task of gaze

following between a human and a robot, and the problem addressed in this chapter.

Next, we give a learning architecture with an attention selector. Then, experimental

results on a real robot are given. Finally, we discuss future issues and conclude the

chapter.

6.2 gaze following between a human and a robot

The task environment of gaze following between a human and a robot is shown in

Figure 6.1. Here, suppose that the robot knows what kind of sensory-motor mapp
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it should learn to acquire gaze following. The robot is sitting in front of the human,

and there are some objects between them. The robot looks at the human’s face

pointed to an object and then captures the face pattern fv from its camera image

(see Figure 6.1 (a)). According to the face pattern fv, the robot calculates its head

motion ∆θ = (∆θp, ∆θt) to turn its head to the object (see Figure 6.1 (b)). Note

that a face pattern fv does not directly indicate an orientation of the face. To achieve

gaze following, therefore, the robot needs to learn the sensory-motor mappings from

fv to ∆θ.

fv

human

robot

object

θpan

θtilt
=θ

(a) The human looks at an object, and the robot
captures a face image pattern, fv.

θ tilt∆
θpan∆

θpan

θtilt

∆

∆
=θ∆

(b) Based on fv, the robot outputs a motor com-
mand ∆θ to gaze at the same object the human
is looking at (the success of gaze following).

Figure 6.1: gaze following between a robot and a human.

In the previous work [19], this sensory-motor mapping was learned through inter-

actions where the timing of gaze shift between the robot and a human was constrained

to ensure consistency of the relation between a human face pattern and positions of

the object that the human is looking at: that is, the human needs to tell the robot

when to shift its gaze. Since we aim at more natural interactions between a human and

a robot, we like to relax such a constraint. If each other’s gaze shift is asynchronous,

the relationship between a human face pattern and the robot’s motor command is

not always consistent. This means that it becomes difficult for the robot to learn the

sensory-motor mappings because the number of pairs of the incorrect training data
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increases. To learn the sensory-motor mapping to perform gaze following, the robot

needs to shift its gaze when the consistency of the relation between a human face

pattern and positions of objects is ensured.

6.3 The learning architecture utilizing motion cues

Instead of human instructor to tell the robot when to shift its gaze, we utilize motion

cues to synchronize the turn taking of gaze change between the human and the robot.

The proposed architecture is shown in Figure 6.2, where two key components are 1)

an attention selector that decides which face or one of objects to gaze at and when

to turn its head utilizing motion information, and 2) an online contingency learning

module that enables to acquire gaze following by a spatial contingency within a certain

time period [24].

Saliency filters extract different features from the captured camera images. Based

on these features (including motion information), an attention selector decides where

and when to gaze at. The position of a target (x, y) in the robot’s view is sent to the

visual feedback module (VFM) that outputs a motor command to gaze at the object.

At the same time, an online contingency learning module (LM) outputs another motor

command based on similarities between the captured face pattern and pre-categorized

face patterns contained in a SOM, and on the robot’s posture θ at that time. A gate

selects one of these commands and then the robot behaves according to the selected

motor command ∆θ.

6.3.1 Learning process

The robot shifts its gaze to the human’s face or a salient object selected by the atten-

tion selector (described in the next section). Note that the robot is not programmed

to direct its gaze alternately to the human’s face and one of objects. Instead, the

attention selector decides both which the human face or one of objects to gaze at and

when to shift the robot’s gaze. It is designed to regard the face as the most salient

object because infants are supposed to have innate preference to human faces [32].

Consequently, the robot more often shifts its gaze between the human’s face and an
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Figure 6.2: An architecture for learning of gaze following through natural interactions
based on motion cues.

object.

The robot learns the sensory-motor mapping from the face patterns to the motor

commands in an almost the same manner as in the previous work [19] but with an

attention selector. Now, let the robot gaze at the human’s face, and capture the face

pattern. Then, it turns its head whenever triggered by the attention selector that

utilizes motion cues as one of triggers to shift its gaze. The gate decides whether

the robot adopts output from the online contingency learning module (LM) as motor

command or not. We use a predetermined sigmoid function as the gate to represent

the selecting rate of LM. At the beginning of learning, the gate selects the output from

the visual feedback module (VFM) as the robot’s motor command and the robot will

turn its head to the most salient object that is determined by the attention selector.

When it succeeds in gazing at the object around the center of the view, it strengthens

the connection between the last face pattern obtained before shifting its gaze and the

motor command to gaze at the object regardless of which output the gate selects.

Here, this process also occurs in the case of gaze shift from an object to the face to

have double chances to obtain the number of the training data pairs and, as a result,

it is expected to accelerate learning of gaze following. As learning proceeds, the gate

gradually comes to adopt the output from the LM more than one from the VFM.
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6.3.2 An attention selector

(a) How it works

Although the previous architecture [19] included a mechanism to shift its gaze to

the most interesting object, a robot was not able to shift its gaze to another object

automatically without any cue from a human after gazing at the object (see Fig-

ure 6.3 (a) ). In order to realize unconstrained interaction, we introduce an attention

selector that is designed based on the phenomenon called habituation in develop-

mental psychology. Habituation can be explained such that human infants lose the

interest when they perceive the same stimulus for a while. Therefore, infants change

their gaze directions to another stimulus. Some robotics researchers also point out

that it is needed for the development of joint attention [80; 81; 65]. We define an

interest measure for each object based on image features to model the habituation.

The attention selector selects an object according to its selection probability that

depends on the interest measure for the object. The higher the probability is, the

more often the object is selected to gaze at. As the robot gazes at it, the measure

gradually decreases, and then the robot shifts its gaze to another object that has

higher interest measure than the current object.
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(a) gaze shift triggered by human in Nagai et
al. [19] and performed by a selector without uti-
lizing motion cues.

(b) gaze shift performed with motion cues and
transition of the interest measure of the human
face.

Figure 6.3: Effects of motion information on the time periods of the robot’s gaze
shifts.
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Habituation enables a robot to shift its gaze automatically. However, at the same

time, it is necessary for the robot to find the periods when the human is gazing at an

object and when to shift its gaze to the human or the object to learn gaze following

through natural interaction with a human. “Natural interaction” means real-time

response with unconstrained synchronization of gaze shift between the human and

the robot. This is important especially in the case that the human moves the object

that he/she is looking at to a different location: in such a case, since the robot needs

the time to change its gaze, the robot may miss the timing to capture the correct pair

of the human face pattern and the position of object. For example, Figure 6.3 (a)

shows a simple example to indicate the difference between the gaze shifts triggered

by a human and by an attention selector based on habituation but without motion

cues.

In Figure 6.3, it is assumed that a human shifts the gaze alternately to the objects

A and B at a constant frequency and a robot looks at the object A, a face, and the

object B in order. Note that the robot captures a human face pattern both before its

gaze shift from the human face to an object and after from an object to the face 1.

With the attention selector, there are two cases; the case where only correct pairs

of the face pattern and the motor command are input to the learning system and

the case where incorrect pairs are included: if the robot shifts its gaze during gaze

shift by a human, it cannot learn the correct relation between the last face pattern

obtained before shifting its gaze and the motor command output to gaze at an object

(see solid both–side arrows).

To solve this problem, we construct the interest measure including not only object–

specific image features, such as color and edge, but also motion information such as a

human head turn or motions of objects manipulated by the human. In developmental

psychology, there are some observations that an infant shifts its gaze utilizing an

adult’s head turn or the moving hand as well as motion of objects [25; 36] as one

of cues of gaze shift. Therefore, this implementation is appropriate as a human

infant model. Shifting the gaze based on motion cues enables a robot to change the

timing of the gaze shift depending on the timing when the human shifts the gaze

1It captures a face pattern only before it shifts its gaze from the face to an object in previous
work [19].
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and picks up an object. Then, we designed the parameters of attention selector in

a such a way that motion cue causes the rapid increase of the interest measure of

a moving object or a turning face. If a robot gazes at the moving object or face,

the robots gaze at it longer. If the robot does not, the robot shifts its gaze to it

immediately. Figure 6.3 (b) indicates a simple example in the case where a robot

gaze at the turning face. The top shows changes of robot’s gaze shift based on

motion cues. The bottom shows transition of the interest measure of the human face,

where H and D indicate habituation and dishabituation phases, respectively. Note

that interest measures between phases do not change because they are not calculated

when the robot rotates its head. Motion cues about a human head turn increase the

interest measure of the face, and the robot keeps gazing at the face until the human

stops turning the head. As a result, an attention selector with motion information

can provide a robot with more chances to obtain the correct training data pairs in

the inconsistent case of Figure 6.3 (a) than one without motion information, and

acceleration of learning gaze following is expected.

(b) The mechanisms of the attention selector

The robot can extract a human’s face image by detecting a face-like area, and extract

objects by detecting object-specific features such as color and edge. These image

features, including the face-like one, are candidates for the robot to gaze at.

Let n be the number of candidates for objects to be looked at in the robot’s camera

image. The interest measure Ii(t) of each candidate is defined as

Ii(t) = Mi(t)Si(t) (i = 1, 2, · · · , n, n + 1), (6.1)

where t is the sampling time, and the (n+1)-th candidate shows the interest measure

of the human’s face. Ii(t) consists of the motion saliency, Mi(t)(> 0), and the object-

specific saliency, Si(t)(> 0). Mi(t) denotes a value that is influenced by how long the

i-th candidate moves until the sampling time t and is defined as

Mi(t) = g(mi(t)), (6.2)
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where mi(t) represents the degree of motion and is defined as follows:

mi(t) =

{
mi(t − 1) + 1 (|f i| > εi)

max{mi(t − 1) − 1, 0} (|f i| ≤ εi)
, (6.3)

where the flow vector f i for the i-th candidate is calculated by optical flows, and εi is

a small positive constant. Motion detection is prohibited when the robot rotates its

head to avoid the confusion of motion detection due to its own motion or independent

object motions.

In equation (6.2), the function g is a kind of threshold function. Here we use the

following function:

g(x) = 1 +
a

1 + exp{(d − x)/T}
, (6.4)

where a, d, T are positive real numbers. The parameter a decides influence of motion

information on the interest measure. The larger a is, the higher the probability of

selection for the i-th candidate is when it moves. The parameter d is set to absorb

noise about the flow vector and T decides the sensitivity to motion information. We

set each parameter in terms that the function enables a robot to detect both human

face motion and objects’.

The motion saliency, Mi(t), changes the gaze duration of a robot, such as “object-

A-looking period”, “object-B-looking period” and “face-looking period” in Figure 6.3

significantly. If a human turns the head when the robot is gazing at the face, an

attention selector with motion cues detects the timing of a human head turn and the

motion saliency about the human face Mn+1(t) increases. As a result, the robot keeps

looking at the face until the head turn stopping because the interest measure about

the human face In+1(t) is increasing. This increase realizes the motion synchronization

of shifting the gaze between the robot and the human to obtain the correct training

data.

Si(t) shows the object-specific saliency of the i-th candidate. We set an initial

value of Si(t) as

Si(0) = Ci (Ci > 0), (6.5)

where Ci is a weighting constant to decide the basic bias for the robot to select the i-th

candidate, that is, a preference to the candidate. We initialize the larger value of the
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human face than other objects’ so that the robot can simulate the innate preference

of infants to human faces [32]. Si(t) is defined as follows:

Si(t + 1) =

{
αiSi(t) if the i-th candidate is attended

max{Ci, βiSi(t)} else
, (6.6)

where αi (0 < αi < 1) is a decay factor while βi (> 1) is a growth factor. Equa-

tion (6.6) means the object-specific saliency Si(t) gradually decreases during the robot

continues to gaze at the i-th candidate and vice versa. The decay and growth fac-

tors for a candidate influence habituation and dishabituation phases, respectively as

shown in the bottom of Figure 6.3 (b). It is expected that the robot shifts its gaze

more frequently than the human because it can have the more opportunities to learn

training data pairs in the situation where the consistency of the relationship between

the other agent’s gaze direction and the location of a salient object is ensured. The

robot also needs to experience shifting the gaze alternately to the human’s face and

one of objects as much as possible to learn gaze following. Therefore, the interest

measure of the human face should be designed to decrease and recover faster than

the measures of other objects.

The robot calculates the interest measure Ii(t) for each candidate. According

to the interest measures, the selection probability Pr(i, t) for the i-th candidate is

calculated as follows:

Pr(i, t) =
Ii(t)∑n+1

j=1 Ij(t)
. (6.7)

Note that the human’s face and objects are not distinguished in the target selection

process though they are different in learning process. Therefore, the robot sometimes

shifts the gaze from one object to another or keeps gazing at the same target.

6.3.3 An online contingency learning module

An online contingency learning module strengthens the connection between a face

pattern and own motor command to turn its head to an object. The point of this

learning process is that the human does not provide the robot with any evaluation

whether or not the connection is appropriate to acquire gaze following. In addition,
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the robot cannot explicitly find which object the human looks at. That is, through

the learning process, the contingency learning module strengthens not only relevant

connections but also irrelevant ones. Nagai et al. [19], however, shows if positions of

objects change randomly and the human gazes at objects, the relevant connections

to acquire gaze following are more strengthened than irrelevant ones because there

exists a contingency between a face pattern and the position of the object that the

human looking at. As a result, the robot can acquire gaze following based on this

contingency. We leave the details to Nagai et al. [19].

Instead of the high-dimensional face image matching [19] that consume a large

amount of computation, we utilize a SOM of face patterns [24]. In advance, we make

a robot learn the SOM to categorize face patterns in which each neuron represents a

vector of a gray scale face image. As inputs of learning of gaze following, we utilize

the activations of each neuron calculated based on the similarity with a face image

that the robot is gazing at. Figure 6.4 shows a network, where two-layered perceptron

with an SOM input layer is learned through backpropagation by utilizing the robot’s

motor command as reference signal. The compression of input dimension by the SOM

enables the robot to discriminate face pattern in real time.
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Figure 6.4: Online contingency learning module: a robot learns the relation between
the activations of individual neurons in the SOM calculated based on the similarity
with the captured face pattern and its motor command.

70



6.4 Experiments

Figure 6.5: The experimental setting: the robot and the human are seated face-to-face
and between them there are four objects with different colors.

6.4.1 Environmental setup

The experimental setup is shown in Figure 6.5. The robot and the human are seated

face-to-face. Throughout the experiment, the distance between a human and a robot

is constant. Four objects with different colors are placed on the table between them.

The robot head has two degrees of freedoms (DOFs): the pan and tilt. A CCD

camera (Firefly produced by Point Grey) on the head provides 320× 240 color video

images at 30 frames per second. Note that the horizontal and vertical angles of view

of the camera are about 61.9 and 48.5 degrees, respectively, and these angles are wide

enough for the robot to capture both the human face and objects on the table. The

template matching method is used as face detector and a 32×32 pixel face-like region

is extracted. Also, the color areas are extracted as object regions, and an optical flow

by the block matching method is detected.

The robot learned the SOM to categorize face patterns within three minutes before
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it learns joint attention. Figure 6.6 shows a learned SOM used in the later gaze

following learning. The learned SOM consists of 9 × 9 clusters, each of which is

constituted by a 32×32 pixel gray scale image based on the face-like region extracted

by the face detector.

Figure 6.6: A learned SOM of the face patterns.

In the following experiments, we assume the robot can always observe a human

face and some objects in the field of view. Table 6.1 shows parameters used in the

attention selector, and parameters in the threshold function g(x) (eq. (6.4)) were set

as (a, d, T ) = (4.5, 20, 1.4). The robot took about one second to shift its gaze from

one target to another.

In addition, we used a sigmoid function as a gate. The robot decides whether it

adopts the output from the online contingency learning module as a motor command

according to the probability Prg:

Prg(l) =
1

1.0 + exp {(p − l)/q}
, (6.8)

where l is the number of learning iteration. As the learning proceeds, Prg becomes
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higher. As a result, the robot gradually comes to adopt the output from the learn-

ing module. Each of parameters in the gate function decides learning time. Before

experiments, therefore, we performed preliminary experiments to determine the pa-

rameters of the gate in an environment where the robot could learn most easily, that

is, the timing of gaze shift between the human and the robot is synchronized com-

pletely. Based on the result, parameters of Prg were set as (p, q) = (150, 22.5) (see

Figure 6.7). This represents selecting rate of learning module’s output reaches to 50%

at the 150th learning step.
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Figure 6.7: The gating function used in the experiments.

Table 6.1: parameters of attention selector.

Candidate Ci αi βi

the human’s face 1500 exp (−2.0 × 10−2) exp (1.2 × 10−2)
the object: A (red), B (yellow), C (blue), D (green) 800 exp (−1.0 × 10−2) exp (2.0 × 10−3)
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6.4.2 Human behavior

The task for the human is the object-transfer task: a person (here, a male) randomly

selects one object and directs his gaze to it. Next, he picks it up and observes it for

about two seconds, and then, puts it somewhere on the table, gazes at it for about

two seconds, and selects another object. Note that the object manipulated by him is

arranged in different positions of the table as evenly as possible and a moving object

is only what he is manipulating. The robot also shifts its gaze to one of the objects

and the person’s face according to the decision of its attention selector.

6.4.3 Learning gaze following

We investigated whether the robot could acquire gaze following through human–robot

natural interaction. To validate an effect of motion cues, we compared performances

between the architectures with and without motion cues five times. Note that the ar-

chitecture without motion cues utilizes only object-specific features to select a target.

In each session, we counted whether the robot was able to perform joint attention

with the human or not when it directed its gaze from his face to an object. Each

session lasted approximately 26 minutes. The average number of the robot’s gaze

shift was 302.0 times with motion cues and 279.6 times without them. The standard

deviations were 6.87 and 8.36, respectively. Also, the average numbers of success of

gaze following were 199.6 and 124.4, respectively and the standard deviations were

6.25 and 19.26, respectively.

Figure 6.8 shows the averages and standard deviations in five sessions of moving

averages of the success rate of gaze following in terms of with/without motion cues.

Each moving average at a given time t minutes, mov ave(t), in one experiment was

calculated as follows:

mov ave(t) =
number of gaze following from t-1 to t+1

number of robot’s gaze shift from t-1 to t+1
. (6.9)

In Figure 6.8, ’×’ and ’+’ indicate the results with and without motion cues, re-

spectively. The vertical bar at each point represents the standard deviation of five

sessions. Note that the success rate at the beginning of learning includes the success

of gaze following by visual feedback. While, the success rate at the end of learning
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indicates the performance by the online contingency learning module. We can see the

gaze shift with motion cue significantly improves the performance over without mo-

tion cue, and the success rate of gaze following by the proposed architecture reaches

80% after about 20 minutes. Most of failures happened when the robot gazes at a

distractor very close to the target. Here, distractors mean the other objects that the

subject does not gaze at.

Although the subject did not exactly behave in the same manner, we observed

the same tendencies in five sessions in spite that a robot experienced different timing

and frequency of human gaze shift. The results with other subjects also showed

the same tendencies. Therefore, the proposed architecture may have the validity in

experimental environment.
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Figure 6.8: The time courses of success rate of gaze following through interaction
with a human.
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6.5 Summary and discussion

In this chapter, we concentrated on acquisition of gaze following through real-time

interaction as the first step to adopt the mechanism proposed in the chapter 5 to a

real robot. In such interaction, the robot confronts asynchronous problem: it has to

know when to shift its gaze to acquire gaze following. Here, we presented a method

that solves this problem by introducing an attention selector based on a measure

consisting of saliencies of object features and motion information. The experimental

result showed the gaze shift utilizing motion cues enables a robot to acquire gaze

following efficiently.

Biological plausibility In our approach, we utilized the motion information ex-

pecting to accelerate learning of gaze following, and we obtained successful results.

In developmental psychology, it is suggested as one of precursors of gaze following

that 3– and 4– month-olds, who do not have an ability of gaze following with adults,

often shift their gaze to adults’ moving hand and/or an object in their hand [36].

Therefore, it is plausible that shifting the gaze based on motion information increases

the chances to obtain the consistent training data pairs and helps infants to acquire

joint attention.

Improvement of performance As mentioned in the previous section, most fail-

ures are caused by distractors near by the target in the image. If they were distant

from the target in 3–D space, these failures might have been avoided by using the

depth cues from binocular vision system. In addition, if the robot knows the human

attention strategy model through interactions with him/her, the robot might be able

to find the target correctly. Hoffman et al. propose a model that enables a robot to

learn instructor–specific saliency models by performing gaze following with a human

but they need the evaluation for robot’s behavior [21]. Without such evaluation, we

should build a learning model that can acquire both gaze following and an ability to

infer other’s preference.
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Learning of synchronization In our experiments, the designer specified the pa-

rameters of habituation such as how long the robot gazes at an object. These pa-

rameters should be estimated for the robot to be synchronized with human behaviors

(head turn and object transfer) through real interactions. Carlson and his colleagues

propose a simulation model that can synchronize the gaze shift by a reinforcement

learning method [80; 81], and we may apply their method to estimate the parameters

for the synchronization.

Utilizing temporal structure The attention selector directly utilized the motion

cues in the object–transfer task. In the behavior such as the object manipulation, it is

supposed that coordination of eye and hand movements has a temporal structure [82].

Therefore, such a structure might be useful for more accurate synchronization due

to the capability of prediction of motion sequences. Furthermore, if the pace of

each motion can be estimated through interactions, more adaptive synchronization

might be possible depending on situations. Actually, the caregivers may change

the paces of their motions to adapt themselves with children’s behaviors [83; 84;

85].

Analysis of human–robot interaction In Figure 6.3 (b), the motion cue is used

in one way from the human to the robot, but actually the human caregiver is also

affected by the robot behavior. In Figure 6.8, the performance without motion cues

appears to have slightly improved by accident due to this effect. We need to observe

human–robot interaction with and without this effect and utilize the result to build

a robot that can acquire shared gaze following through more natural interaction with

a human.

77





Chapter 7

Conclusion and future work

In this dissertation, we dealt with building a robot that acquires various forms of

joint attentional behavior. The following issues were addressed in previous chapters.

• The issue of chapter 4 was how the robot can find the contingency in the in-

teraction. An information theoretic measure was proposed to find a contin-

gent structure in face-to-face interaction between a caregiver and a robot. The

measure consists of transfer entropy that is an information theoretic measure

representing the flow of information between stochastic variables. We showed

that it enables a robot to find a contingent relationship between a variable of

face pattern and a variable of shifting its gaze utilized used for learning gaze

following in computer simulations of face-to-face interaction.

• In chapter 5, we proposed a learning mechanism that developmentally acquires

various forms of joint attention related actions based on the proposed measure in

chapter 4. The mechanism constructed sensory-motor mapping from a state of

a sensory variable to a most informative action of a action variable in the found

contingent pair of sensory and action variables. The robot showed behavior

based on the already acquired sensory-motor mapping to reproduce the found

contingency. That further led novel contingency from the interaction with a

caregiver. The results of computer simulations indicated that a robot acquires

a series of actions related to joint attention in an order that almost matches

with an infant’s development of joint attention. In addition, we indicated that
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looking back at a caregiver may be important behavior to utilize gaze following.

• As the first step to apply the proposed mechanism to a real robot, we considered

that the real-time interaction without an assumption of turn taking of gaze

change between a caregiver and a robot in chapter 6. We addressed the issue of

how to decide when to shift the gaze for learning gaze following with a human.

We introduced an attention selector based on a measure consisting of saliencies

of object features and motion information. The motion cues provided a robot

with when a human caregiver shift the gaze. The experimental result shows the

gaze shift utilizing motion cues enables a robot to synchronize its own motion

with human motion and to learn gaze following efficiently in about 20 minutes.

7.1 Future work

In each chapter, we discussed some future works. We did not, however, describe issues

to be addressed to apply the proposed mechanism to a real robot. Our mechanism is

influenced by interaction between a caregiver and a robot. To validate our mechanism,

we need to implement our mechanism into a real robot. Therefore, we discuss future

works to apply the proposed mechanism to a real robot in this section.

Rapid mechanism for finding contingency It is an important topic to find

a contingency quickly because a human caregiver has difficulty in keeping natural

interaction with a robot for a long time. Our mechanism needs too many interactions

at least 45,000 steps for acquiring gaze alternation as shown in the chapter 5. In

order to counter this problem, we should improve the proposed measure by using

more effective measure such as effective transfer entropy [86].

Resolution of random variables The resolution of the random variables may

influence the estimation of SAC concerning the variables though we set it in advance.

An infant seems to be faced with situations in which the resolutions of multimodal

sensation or various kinds of action are different because these components develop in

parallel and according to a different time schedule. The resolutions of random vari-

ables would improve incrementally along with the infant’s development. Therefore,
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we should address the issue of how a robot can improve such resolutions and maintain

the development of social skill based on the detection of the contingencies.

Reproducing contingency in continuous space A contingency reproduction

module introduced in chapter 5 was composed of a sensory-motor map based on

discrete data set of sensory information and motor command. In order to apply our

mechanism in real-time interaction, we need to deal with continuous data set of them.

One solution is that after the contingency detector finds a contingency for an event,

it learns a sensory-motor map using the continuous data set. The contingency repro-

duction module can know which combination of states in the variables is informative

by contingent saliencies of the event. Therefore, we expect that a contingency re-

production module can learn a sensory-motor map based on continuous data set by

regarding the most informative combination as a reward.
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