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Chapter 1

Strong unique continuation
property for some second
order elliptic systems

1.1 Introduction

In this chapter we prove the strong unique continuation property for some second
order systems. There are many results for second order single equation (for
example [4], [5] and [10]). Let Ω be a nonempty open connected subset of Rn

containing the origin, and let

p(x, ∂) =
∑

1≤j,k≤n

aj,k(x)∂j∂k

be an elliptic differential operator in Ω such that aj,k(0) is real and aj,k(x) is
Lipschitz continuous in Ω. In [5], he proved that if u ∈ H1

loc(Ω) satisfies

|p(x, ∂)u| ≤ C0|x|−2+ϵ|u| + C1|x|−1+ϵ|∇u|, ϵ > 0

and
lim
ρ→0

ρ−β

∫
|x|≤ρ

|u|2dx = 0

for any positive β, then u is identically zero in Ω.
In [10], he improved Hörmander’s result. He proved that the same result

holds for inequality of the form

|p(x, ∂)u| ≤ C0|x|−2|u| + C1|x|−1|∇u|

if C1 is sufficiently small.
We are interested in second order systems, that is, aj,k(x) is of matrix valued.

1



2 Chapter 1. Strong unique continuation property

1.2 Main Results 1

Let Ω be a nonempty open connected subset of Rn containing the origin, and
let

P (x, ∂) =
∑

1≤j,k≤n

Aj,k(x)∂j∂k (1.2.1)

be an elliptic differential operator in Ω where Aj,k is an N × N matrix valued
function with the entries which are Lipschitz continuous in Ω for any 1 ≤ j, k ≤
n. We assume that P (x, ∂) satisfies the following properties;

A∗
j,kAl,m = Al,mA∗

j,k (1.2.2)

for any 1 ≤ j, k, l,m ≤ n, and there exist an elliptic differential operator p(∂) =∑
1≤j,k≤n aj,k∂j∂k with real coefficients and complex numbers λj j = 1, 2 . . . , N

such that

P (0, ∂) = diag

λ1p(∂)
. . .

λNp(∂)

 . (1.2.3)

Then it follows the following theorem.

Theorem 1.2.1. There exists a positive constant C∗ depending only on p(∂)
such that if u ∈ {H1

loc(Ω)}N satisfies

|P (x, ∂)u| ≤ C0|u|/|x|2 + C1|∇u|/|x| (1.2.4)

with C1 < C∗ and

lim
ρ→0

ρ−β

∫
|x|≤ρ

|u|2dx = 0 (1.2.5)

for any positive β, then u is identically zero in some neighborhood of the origin.

Remark 1.2.1. In [2], they proved S.U.C.P fails if C1 is not small.

Remark 1.2.2. In [1], he proved the following theorem:
Let P (x1, x2, x̃, ∂x1 , ∂x2 , ∂x̃) be a m-th order (m ≥ 2) elliptic differential op-

erator defined in a neighborhood of the origin in Rn and let Pm be the principal
symbol. If Pm(0, 0, 0, 1, η, 0) has two simple, non real and non conjugate roots,
then there exist a neighborhood V of the origin, two functions a, u ∈ C∞(V ),
both satisfying (1.2.5), such that Pu−au = 0 in V and {0} ∈ suppu. Therefore
the assumption (1.2.3) is essential. In fact, let p(∂) and q(∂) ̸= λp(∂) be second
order elliptic operators with real coefficients and let

P (0, ∂) = diag

λ1p(∂)
λ2q(∂)

. . .

 .
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By Alinhac’s theorem there exist a neighborhood V of the origin, two functions
a, u ∈ C∞(V ), both satisfying (1.2.5), such that p(∂)q(∂)u − au = 0 in V and
{0} ∈ suppu. Setting U = (q(∂)u, u, · · · ) it follows that

|P (0, ∂)U | = |(λ1p(∂)q(∂)u, λ2q(∂)u, · · · )|
= |(λ1au, λ2q(∂)u, · · · )|
≤ C|U |,

U satisfies (1.2.5) and {0} ∈ suppU.



4 Chapter 1. Strong unique continuation property

1.3 Proof of Theorem 1.2.1

In this section, we shall prove Theorem 1.2.1. The letter C stands for a generic
constant whose value may vary from line to line.

After a linear transform, we may assume that p(∂) = △. Considering ũ =
(λ−1

1 u1, . . . , λ
−1
N uN ), without loss of generality, it suffices to prove the theorem

assuming P (0, ∂) = △IN .

In [10] Regbaoui proved the following result.

Lemma 1.3.1. There exists a positive constant C such that∑
|α|≤2

β2−2|α|
∫

|x|−2β+2|α|−3|∂α
x u|2dx ≤ C

∫
|x|−2β+1|△u|2dx (1.3.1)

for any β ∈ {j + 1/2; j ∈ N} and any u ∈ C∞
0 (Rn \ {0}).

Remark 1.3.1. The estimate (1.3.1) in Lemma remains valid if we assume
u ∈ {H2

loc(Ω)}N with compact support satisfies (1.2.5).

Proposition 1.3.2. Let u ∈ {H1
loc(Ω)}N satisfy (1.2.4) and (1.2.5). Then

u ∈ {H2
loc(Ω)}N and there exist positive C2 and C3 such that

∑
|α|≤2

∫
B(ρ)

|∂α
x u|2dx ≤ C2 exp(−C3ρ

−1)

for any small positive ρ and for any |α| ≤ 2 where B(ρ) = {x; |x| ≤ ρ}.

Proof. First we shall prove that u ∈ H2
loc(Ω), and satisfies

lim
ρ→0

ρ−β

∫
B(ρ)

|∂α
x u|2dx = 0 (1.3.2)

for any positive β and |α| ≤ 2. By regularising and using Friedrichs’s lemma
and ellipticity of P (x, ∂), we get without difficulties u ∈ H2

loc(Ω\{0}). Following
Hörmander [6] (Corollary 17. 1. 4.) we obtain

lim
ρ→0

ρ−β

∫
B(2ρ)\B(ρ)

|∂α
x u|2dx = 0 (1.3.3)

for any positive β and |α| ≤ 2. Hence u is the sum of a function in H2
loc(Ω) and

a distribution with support at {0}. But no distribution with support at {0} is in
L2

loc. It follows that u ∈ H2
loc(Ω). Since u ∈ H2

loc(Ω) it is clear that from (1.3.3)
we have also (1.3.2).

Let χ(r) ∈ C∞
0 ([0,∞)) be a nonnegative function such that χ(r) = 1 when

0 ≤ r ≤ 1, χ(r) = 0 when 2 ≤ r and |χ′| ≤ C. Setting ũ(x) = χ(ϵ−1β|x|)u(x)
where ϵ is a small positive parameter which will be determined later.
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By Lemma 1.3.1, Remark 1.3.1 and (1.2.3) we have∑
|α|≤2

β2−2|α|
∫

|x|−2β+2|α|−3|∂α
x ũ|2dx ≤ C

∫
|x|−2β+1|△ũ|2dx

≤ C

∫
|x|−2β+1|P (0, ∂)ũ|2dx. (1.3.4)

Since Aj,k is Lipschitz continuous and |x| ≤ 2ϵβ−1, it follows that∫
|x|−2β+1|P (0, ∂)ũ|2dx ≤

∫
|x|−2β+1|(P (x, ∂) − P (0, ∂))ũ − P (x, ∂)ũ|2dx

≤ 2
∫

|x|−2β+1|P (x, ∂)ũ|2dx

+ 2
∑
|α|≤2

∫
|x|−2β+3|∂α

x ũ|2dx (1.3.5)

and ∑
|α|≤2

∫
|x|−2β+3|∂α

x ũ|2dx ≤ 4ϵ2β−2
∑
|α|≤2

∫
|x|−2β+1|∂α

x ũ|2dx. (1.3.6)

Fixing ϵ such that 1 − 8Cϵ2 > 0, we obtain∑
|α|≤2

β2−2|α|
∫

|x|−2β+2|α|−3|∂α
x ũ|2dx ≤ C

∫
|x|−2β+1|P (x, ∂)ũ|2dx (1.3.7)

by (1.3.4), (1.3.5) and (1.3.6).
On the other hand, from (1.2.4) and ϵβ−1 ≤ |x| ≤ 2ϵβ−1 if x ∈ B(2ϵβ−1) \

B(ϵβ−1), we have∫
|x|−2β+1|P (x, ∂)ũ|2dx ≤

∫
B(ϵβ−1)

|x|−2β+1|P (x, ∂)u|2dx

+
∫

B(2ϵβ−1)\B(ϵβ−1)

|x|−2β+1|P (x, ∂)ũ|2dx

≤ 2
∫

B(ϵβ−1)

|x|−2β−1(C2
0 |x|−2|u|2 + C2

1 |∇u|2)dx

+ C
∑
|α|≤2

∫
B(2ϵβ−1)\B(ϵβ−1)

|x|−2β+2|α|−3|∂α
x u|2dx.

(1.3.8)

By (1.3.7) and (1.3.8), if C1 is small enough, then we have∑
|α|≤2

β2−2|α|
∫

|x|−2β+2|α|−3|∂α
x ũ|2dx

≤ C
∑
|α|≤2

∫
B(2ϵβ−1)\B(ϵβ−1)

|x|−2β+2|α|−3|∂α
x u|2dx
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for any large β ∈ {j + 1/2; j ∈ N}. It follows that

β−2(ϵβ−1/2)−2β+1
∑
|α|≤2

∫
B(ϵβ−1/2)

|∂α
x u|2dx

≤
∑
|α|≤2

β2−2|α|
∫

B(ϵβ−1/2)

|x|−2β+2|α|−3|∂α
x u|2dx

≤
∑
|α|≤2

β2−2|α|
∫

|x|−2β+2|α|−3|∂α
x ũ|2dx

and∑
|α|≤2

∫
B(2ϵβ−1)\B(ϵβ−1)

|x|−2β+2|α|−3|∂α
x u|2dx

≤ (ϵβ−1)−2β−3
∑
|α|≤2

∫
B(2ϵβ−1)\B(ϵβ−1)

|∂α
x u|2dx.

Therefore there exist positive C3 and C4 such that∑
|α|≤2

∫
B(ϵβ−1/2)

|∂α
x u|2dx ≤ C(1/2)2β−1β6

∑
|α|≤2

∫
B(2ϵβ−1)\B(ϵβ−1)

|∂α
x u|2dx

≤ C3 exp(−C4β). (1.3.9)

Setting Rj = ϵ/(2j + 1), from (1.3.9) we have∑
|α|≤2

∫
B(Rj)

|∂α
x u|2dx ≤ C3 exp(−C4ϵ/(2Rj)), (1.3.10)

for any large j.
On the other hand, for any small R there exists a positive j such that

Rj+1 < R < Rj .

Since Rj ≤ 2Rj+1 for any j > 1, we have

Rj+1 < R < Rj < 2Rj+1.

By (1.3.10) it follows that∑
|α|≤2

∫
B(R)

|∂α
x u|2dx ≤

∑
|α|≤2

∫
B(Rj)

|∂α
x u|2dx

≤ C3 exp(−C4ϵ/(2Rj))
≤ C3 exp(−C4ϵ/(4Rj+1))
≤ C3 exp(−C4ϵ/(4R),

which proves the desired conclusion.
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Proposition 1.3.2 allows us to use eγ/2(log |x|)2 rather than the usual weight
|x|−γ . Using the similar method as [10], we can get the following Carleman
estimate under the hypothesis of Theorem 1.2.1.

Proposition 1.3.3. Under the hypothesis of Theorem 1.2.1 there exists a pos-
itive C such that

γ

∫
Ω̃

|x|2φ2
γ |∇u|2|x|−ndx + γ3

∫
Ω̃

φ2
γ |u|2|x|−ndx

≤ C

∫
Ω̃

|x|4φ2
γ |P (x, ∂)u|2|x|−ndx (1.3.11)

for any large γ and any u ∈ C∞
0 (Ω̃ \ {0}) with a sufficiently small Ω̃ where

φγ = exp(γ/2(log |x|)2).

Remark 1.3.2. The estimate (1.3.11) in Proposition 1.3.3 remains valid if we
assume u ∈ H2

loc(Ω̃) with compact support satisfies

lim
ρ→0

exp(β(log |ρ|)2)
∫
|x|≤ρ

|∂α
x u|2dx = 0

for any positive β and any |α| ≤ 2.

Proof. Let’s introduce polar coordinates in Rn \ {0} by setting x = etω, with
t ∈ R and ω = (ω1, . . . , ωn) ∈ Sn−1. For k = 1, . . . , n, we set Dk = Ωk and
D0 = ∂t. We have then

∂xj = e−t(ωj∂t + Ωj)

where Ωj is a vector field on Sn−1.
The vector fields Ωj have the properties

n∑
j=1

ωjΩj = 0 and
n∑

j=1

Ωjωj = n − 1. (1.3.12)

The adjoint of Ωj as an operator in L2(Sn−1) is

Ω∗
j = (n − 1)ωj − Ωj . (1.3.13)

Then the operator P (x, ∂) takes the form

e2tP (x, ∂) = e2tP (0, ∂) + e2t(P (x, ∂) − P (0, ∂))

= (∂2
t + (n − 2)∂t + △ω)IN

+
∑
j,k

(Aj,k(etω) − Aj,k(0))(ωj(∂t − 1) + Ωj)(ωk∂t + Ωk)

:= (∂2
t + (n − 2)∂t + △ω)IN +

∑
j+|α|≤2

Bj,α(t, ω)∂j
t Ωα,
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where Bj,α are N × N valued matrices such that Bj,α = O(et) as t tends to
−∞, and DkBj,α = O(et) as t tends to −∞, for any k ∈ {0, 1, . . . , n} and
△ω =

∑n
j=1 Ω2

j is the Laplace-Beltrami operator in Sn−1.
We note

B∗
j,αBk,β = Bk,βB∗

j,α (1.3.14)

for any j, k, α and β thanks to the hypothesis (1.2.2).
Setting u = e−γt2/2v and Pγv = eγt2/2P (e−γt2/2v), Pγ can be written

e2tPγv = (∂t − γt)2v + (n − 2)(∂t − γt)v + △ωv

+
∑

j+|α|≤2

Bj,α(∂t − γt)jΩαv

= ∂2
t v + (n − 2 − 2γt)∂tv + (γ2t2 − γ − (n − 2)γt + △ω)v

+
∑

j+|α|≤2

Bj,α(∂t − γt)jΩαv

= a1 + a2 + a3 + a4

where a1 := ∂2
t v, a2 := (n− 2− 2γt)∂tv, a3 := (γ2t2 − γ − (n− 2)γt+△ω)v and

a4 :=
∑

j+|α|≤2 Bj,α(∂t − γt)jΩαv.

The estimate (1.3.11) in Theorem 1.2.1 is then equivalent to

C

∫
|e2tPγv|2dtdω ≥ γ3

∫
|v|2dtdω + γ

∫
|∂tv|2dtdω + γ

n∑
j=1

∫
|Ωjv|2dtdω

(1.3.15)

for any v ∈ C∞
0 ((−∞, T0) × Sn−1).

We shall prove (1.3.15). Set

e2tP−
γ v = (−∂t − γt)2v + (n − 2)(−∂t − γt)v + △ωv − 2γv

+
∑

j+|α|≤2

B∗
j,α(−∂t − γt)j(Ω∗)αv

= ∂2
t v − (n − 2 − 2γt)∂tv + (γ2t2 − γ − (n − 2)γt + △ω)v

+
∑

j+|α|≤2

B∗
j,α(−∂t − γt)j(Ω∗)αv

= a1 − a2 + a3 + a5,

D(γ, v) =
∫

|e2tPγv|2dtdω −
∫

|e2tP−
γ v|2dtdω

and
S(γ, v) =

∫
|e2tt−1Pγv|2dtdω +

∫
|e2tt−1P−

γ v|2dtdω

where
a5 :=

∑
j+|α|≤2

B∗
j,α(−∂t − γt)j(Ω∗)αv.
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Thus we have

D(γ, v) = (a1 + a2 + a3 + a4, a1 + a2 + a3 + a4)
− (a1 − a2 + a3 + a5, a1 − a2 + a3 + a5)
= 4Re{(a1, a2) + (a2, a3)}
+ 2Re{(a4, a1 + a2 + a3) − (a1 − a2 + a3, a5)} + ∥a4∥2 − ∥a5∥2

S(γ, v) = ∥t−1a1 + t−1a2 + t−1a3 + t−1a4∥ + ∥t−1a1 − t−1a2 + t−1a3 + t−1a5∥
≥ ∥t−1(a1 + a2 + a3)∥2/2 + ∥t−1(a1 − a2 + a3)∥2/2

− ∥t−1a4∥2 − ∥t−1a5∥2

= ∥t−1a1∥2 + ∥t−1a2∥2 + ∥t−1a3∥2

+ 2Re(t−1a1, t
−1a3) − ∥t−1a4∥2 − ∥t−1a5∥2

where (·, ·) is the L2 inner product and ∥ · ∥ is the L2 norm. Using integration
by parts, we have

2Re(a1, a2) = 2Re(∂2
t v, (n − 2 − 2γt)∂tv)

= (∂2
t v, (n − 2 − 2γt)∂tv) + ((n − 2 − 2γt)∂tv, ∂2

t v)

= 2γ

∫
|∂tv|2dtdω.

From (1.3.12) and (1.3.13) it follows that

△ω = −
n∑

j=1

Ω∗
jΩj . (1.3.16)

Using integration by parts and (1.3.16) we have

2Re(a2, a3) = 2Re((n − 2 − 2γt)∂tv, (γ2t2 − γ − (n − 2)γt + △ω)v)

= ((n − 2 − 2γt)∂tv, (γ2t2 − γ − (n − 2)γt)v)

+ ((γ2t2 − γ − (n − 2)γt)v, (n − 2 − 2γt)∂tv)
+ ((n − 2 − 2γt)∂tv,△ωv) + (△ωv, (n − 2 − 2γt)∂tv)

= (v,−∂t{(n − 2 − 2γt)(γ2t2 − γ − (n − 2)γt)}v)

−
n∑

j=1

{((n − 2 − 2γt)∂tv, Ω∗
jΩv) + (Ω∗

jΩv, (n − 2 − 2γt)∂tv)}

= (v,−∂t{(n − 2 − 2γt)(γ2t2 − γ − (n − 2)γt)}v)

−
n∑

j=1

{(Ωj∂tv, (n − 2 − 2γt)Ωjv) + (Ωjv, (n − 2 − 2γt)Ωj∂tv)}

= 1/2
∫

f2|v|2dtdω − 2γ
n∑

j=1

∫
|Ωjv|2dtdω,
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∥t−1a3∥2 =
∫

|(γ2t − γt−1 − (n − 2)γ + t−1△ω)v|2dtdω

=
∫

|(γ2t − γt−1 − (n − 2)γ)v|2dtdω +
∫

|t−1△ωv|2dtdω

+ 2Re((γ2t − γt−1 − (n − 2)γ)v, t−1△ωv) (1.3.17)

2Re((γ2t − γt−1 − (n − 2)γ)v, t−1△ωv)

= −
n∑

j=1

((γ2t − γt−1 − (n − 2)γ)v, t−1Ω∗
jΩjv)

−
n∑

j=1

(t−1Ω∗
jΩjv, (γ2t − γt−1 − (n − 2)γ)v)

= −
n∑

j=1

((γ2t − γt−1 − (n − 2)γ)Ωjv, t−1Ωjv)

−
n∑

j=1

(t−1Ωjv, (γ2t − γt−1 − (n − 2)γ)Ωjv)

= −2
n∑

j=1

∫
(γ2 − γt−2 − (n − 2)γt−1)|Ωjv|2dtdω (1.3.18)

and

2Re(t−1a1, t
−1a3)

= (∂2
t v, (γ2 − γt−2 − (n − 2)γt−1)v) + ((γ2 − γt−2 − (n − 2)γt−1)v, ∂2

t v)

−
n∑

j=1

(Ωj∂
2
t v, t−2Ωjv) −

n∑
j=1

(t−2Ωjv, Ωj∂
2
t v)

=
∫

(−2γ2 + 2γt−2 + 2(n − 2)γt−1)|∂tv|2dtdω

+ (∂tv, (−2γt−3 − (n − 2)γt−2)v)

+ ((−2γt−3 − (n − 2)γt−2)v, ∂tv) + 2
n∑

j=1

∫
t−2|Ωj∂tv|2dtdω

−
n∑

j=1

(Ωj∂tv, 2t−3Ωjv) −
n∑

j=1

(2t−3Ωjv, Ωj∂tv)

=
∫

(−2γ2 + 2γt−2 + 2(n − 2)γt−1)|∂tv|2dtdω

+
∫

(−6γt−4 − 2(n − 2)γt−3)|v|2dtdω

+ 2
n∑

j=1

∫
t−2|Ωj∂tv|2dtdω − 6

n∑
j=1

∫
t−4|Ωjv|2dtdω (1.3.19)
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where
f2 = 12γ3t2 − 12(n − 2)γ2t − 4γ2 + 2(n − 2)2γ.

Combining (1.3.17), (1.3.18) and (1.3.19) it follows that

∥t−1a1∥2+∥t−1a2∥2 + ∥t−1a3∥2 + 2Re(t−1a1, t
−1a3)

=
∫

t−2|∂2
t v|2dtdω +

∫
((n − 2)t−1 − 2γ)2|∂tv|2dtdω

+
∫

|(γ2t − γt−1 − (n − 2)γ)v|2dtdω +
∫

|t−1△ωv|2dtdω

− 2
n∑

j=1

∫
(γ2 − γt−2 − (n − 2)γt−1)|Ωjv|2dtdω

+
∫

(−2γ2 + 2γt−2 + 2(n − 2)γt−1)|∂tv|2dtdω

+
∫

(−6γt−4 − 2(n − 2)γt−3)|v|2dtdω

+ 2
n∑

j=1

∫
t−2|Ωj∂tv|2dtdω − 6

n∑
j=1

∫
t−4|Ωjv|2dtdω

=
∫

t−2|∂2
t v|2dtdω +

∫
t−2|△ωv|2dtdω + 2

n∑
j=1

∫
t−2|∂tΩjv|2dtdω

+
∫

h2|v|2dtdω +
∫

g2|∂tv|2dtdω −
n∑

j=1

∫
l2|Ωjv|2dtdω

where

g2 = (−2γ + (n − 2)t−1)2 − 2γ2 + 2(n − 2)γt−1 + 2γt−2,

h2 = (γ2t − (n − 2)γ − γt−1)2 − 2(n − 2)γt−3 − 6γt−4

and

l2 = 2(γ2 − (n − 2)γt−1 − γt−2) + 6t−4.

On the other hand, by the definition of a4 and a5 it follows that

∥t−1a4∥ + ∥t−1a5∥ ≤
∑
|α|≤2

γ4−2|α|
∫

|B1D
αv|2dtdω

where B1 = B1(t, ω) satisfies B1(t, ω) = O(tet) as t tends to −∞.
To prove Proposition 1.3.3 we need the following similar result as [10] (see

Lemma 2.3 in [10]).

Lemma 1.3.4. Let D̃0 = ∂t − γt and D̃j = Ωj for j = 1, . . . , n, and let A(t, ω)
be an N × N matrix valued function such that A = O(et) as t tends to −∞,
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and DkA = O(et) as t tends to −∞. Then there exists B(t, ω) such that for any
v ∈ C∞

0 (I × Sn−1), and for any α, β ∈ Nn+1, with |α|, |β| ≤ 2 we have

(A(t, ω)D̃αv, D̃βv) − (A(t, ω)(D̃∗)βv, (D̃∗)αv) ≤
∑
|α|≤2

γ3−2|α|
∫

|BDαv|2dtdω

and B = O(t2et/2) as t tends to −∞.

Now, we proceed to the proof of Proposition 1.3.3. By Lemma 1.3.4 and
(1.3.14) there exists a function B2(t, ω) such that B2(t, ω) = O(t2et/2) as t
tends to −∞ and

2Re{(a4, a1 + a2 + a3) − (a1 − a2 + a3, a5)} + ∥a4∥2 − ∥a5∥2

≤
∑
|α|≤2

γ3−2|α|
∫

|B2D
αv|2dtdω.

Thus we have

D(γ, v) ≥ 4γ

∫
|∂tv|2dtdω +

∫
f2|v|2dtdω − 4γ

n∑
j=1

∫
|Ωjv|2dtdωω

−
∑
|α|≤2

γ3−2|α|
∫

|B2D
αv|2dtdω

and

S(γ, v) ≥
∫

t−2|∂2
t v|2dtdω +

∫
t−2|△ωv|2dtdω + 2

n∑
j=1

∫
t−2|∂tΩjv|2dtdω

+
∫

h2|v|2dtdω +
∫

g2|∂tv|2dtdω −
n∑

j=1

∫
l2|Ωjv|2dtdω

−
∑
|α|≤2

γ4−2|α|
∫

|B1D
αv|2dtdω.

Therefore we have

γD(γ, v) + S(γ, v) ≥
∫

t−2|∂2
t v|2dtdω +

∫
t−2|△ωv|2dtdω

+ 2
n∑

j=1

∫
t−2|∂tΩjv|2dtdω + 4γ2

∫
|∂tv|2dtdω

+
∫

g2|∂tv|2dtdω +
∫

h2|v|2dtdω + γ

∫
f2|v|2dtdω

−
n∑

j=1

∫
l2|Ωjv|2dtdω − 4γ2

n∑
j=1

∫
|Ωjv|2dtdω

−
∑
|α|≤2

γ4−2|α|
∫

|BDαv|2dtdω
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where B = O(t2et/2) as t tends to −∞.
From (1.3.16) we have

n∑
j=1

∫
l2|Ωjv|2dtdω + 4γ2

n∑
j=1

∫
|Ωjv|2dtdω

= 2((l2 + 4γ2)v,△ωv)

≤ ϵ−1

∫
(l2/2 + 2γ2)2t2|v|2dtdω + ϵ

∫
t−2|△ωv|2dtdω (1.3.20)

for any positive ϵ. If |T0| and γ are large enough we have

γf2 + h2 − ϵ−1(l2/2 + 2γ2)2t2 ≥ (12 − 9ϵ−1)γ4t2 (1.3.21)

for any t ∈ (−∞, T0). Fixing ϵ such that 12 − 9ϵ−1 > 0 and 0 < ϵ < 1, we have

γD(γ, v) + S(γ, v) ≥
∫

t−2|∂2
t v|2dtdω + (1 − ϵ)

∫
t−2|△ωv|2dtdω

+ 2
n∑

j=1

∫
t−2|∂tΩjv|2dtdω + 4γ2

∫
|∂tv|2dtdω

+
∫

g2|∂tv|2dtdω + (12 − 9ϵ−1)γ4

∫
t2|v|2dtdω

−
∑
|α|≤2

γ4−2|α|
∫

|BDαv|2dtdω

By ellipticity of △ω there exists a positive constant C such that∫
t−2|△ωv|2dtdω ≥ C

∑
|α|=2

∫
t−2|Ωαv|2dtdω. (1.3.22)

From (1.3.16) we have

γ2
n∑

j=1

∫
|Ωjv|2dtdω = −γ2(v,△ωv)

≤ γ4/2
∫

t2|v|2dtdω + 1/2
∫

t−2|△ωv|2dtdω. (1.3.23)

By (1.3.22) and (1.3.23) there exists a positive constant such that

(1 − ϵ)
∫

t−2|△ωv|2dtdω + (12 − 9ϵ−1)γ4

∫
t2|v|2dtdω

≥ C
∑
|α|≤2

γ4−2|α|
∫

t2−2|α||Ωαv|2dtdω.
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Therefore we obtain

γD(γ, v) + S(γ, v) ≥ C
∑
|α|≤2

γ4−2|α|
∫

t2−2|α||Dαv|2dtdω

−
∑
|α|≤2

γ4−2|α|
∫

|BDαv|2dtdω

Since B = O(t2et/2) as t tends to −∞ if |T0| is sufficiently large, we get

γD(γ, v) + S(γ, v) ≥ C
∑
|α|≤2

γ4−2|α|
∫

t2−2|α||Dαv|2dtdω

for any v ∈ C∞
0 ((−∞, T0) × Sn−1)).

On the other hand, by definitions of D(γ, v) and S(γ, v)

γD(γ, v) + S(γ, v) ≤ γ

∫
|e2tPγv|2dtdω − γ

∫
|e2tP−

γ v|2dtdω

+
∫

|e2tt−1Pγv|2dtdω +
∫

|e2tt−1P−
γ v|2dtdω

≤ (γ + 1)
∫

|e2tPγv|2dtdω.

Therefore we get∫
|e2tPγv|2dtdω ≥ C

∑
|α|≤2

γ3−2|α|
∫

t2−2|α||Dαv|2dtdω

for any v ∈ C∞
0 ((−∞, T0) × Sn−1), which is a better estimate than the desired

one (1.3.15).

By Proposition 1.3.2 and Proposition 1.3.3 we can see Theorem 1.2.1 in the
standard manner. In the rest of this section we prove Theorem 1.2.1.

Proof. Let 0 < R1 < R0 where R0 is sufficiently small so that Proposition 1.3.3
holds for Ω̃ = B(R0), and let χ(r) ∈ C∞([0,∞)) be a cut-off function such that
χ(r) = 1 if 0 ≤ r ≤ R1, χ(r) = 0 if R0 ≤ r and |χ′| ≤ C.

Applying Proposition 1.3.3 with ũ(x) = χ(|x|)u(x), we have

γ

∫
B(R0)

|x|2φ2
γ |∇ũ|2|x|−ndx + γ3

∫
B(R0)

φ2
γ |ũ|2|x|−ndx

≤ C

∫
B(R0)

|x|4φ2
γ |P (x, ∂)ũ|2|x|−ndx
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From (1.2.4) we have∫
B(R0)

|x|4φ2
γ |P (x, ∂)ũ|2|x|−ndx

≤ C

∫
B(R0)

|x|4φ2
γ |χP (x, ∂)u|2|x|−ndx

+ C

∫
B(R0)\B(R1)

|x|4φ2
γ(|x|−1|u| + |∇u|)2|x|−ndx

≤ C

∫
B(R0)

|x|4φ2
γ |χ|2(C0|x|−2|u| + C1|x|−1|∇u|)2|x|−ndx

+ C

∫
B(R0)\B(R1)

|x|4φ2
γ(|x|−1|u| + |∇u|)2|x|−ndx.

≤ C

∫
B(R0)

|x|4φ2
γ(|x|−4|ũ|2 + |x|−2|∇ũ|2)|x|−ndx

+ C

∫
B(R0)\B(R1)

|x|4φ2
γ(|x|−1|u| + |∇u|)2|x|−ndx.

Therefore it follows that

(γ − C)
∫

B(R0)

|x|2φ2
γ |∇ũ|2|x|−ndx + (γ3 − C)

∫
B(R0)

φ2
γ |ũ|2|x|−ndx

≤ C

∫
B(R0)\B(R1)

|x|4φ2
γ(|x|−2|u|2 + |∇u|2)|x|−ndx.

Thus we have

eγ(log R1)
2
R2−n

1 (γ − C)
∫

B(R1)

|∇u|2dx + eγ(log R1)
2
R−n

1 (γ3 − C)
∫

B(R1)

|u|2dx

≤ (γ − C)
∫

B(R1)

|x|2φ2
γ |∇u|2|x|−ndx + (γ3 − C)

∫
B(R1)

φ2
γ |u|2|x|−ndx

≤ (γ − C)
∫

B(R0)

|x|2φ2
γ |∇ũ|2|x|−ndx + (γ3 − C)

∫
B(R0)

φ2
γ |ũ|2|x|−ndx

≤ C

∫
B(R0)\B(R1)

|x|4φ2
γ(|x|−2|u|2 + |∇u|2)|x|−ndx

≤ Ceγ(log R1)
2
R2−n

1

∫
B(R0)\B(R1)

(|u|2 + |∇u|2)dx

Thus it follows that

(γ − C)
∫

B(R1)

|∇u|2dx + (γ3 − C)
∫

B(R1)

|u|2dx

≤ C

∫
B(R0)\B(R1)

(|u|2 + |∇u|2)dx < ∞.

Therefore letting γ tend to ∞, we conclude that u = 0 in B(R1).





Chapter 2

Strong unique continuation
property for some second
order elliptic systems with
two independent variables

2.1 Introduction

In this chapter we prove the strong unique continuation property for some second
order systems with two independent variables. As far as we know, there are few
results for second order systems. On the other hand, there are many results for
first order systems (for example [3], [7], [8] and [9]). In [7], Hile and Protter
obtained an interesting result. They considered a system of the form

|∂xu + N(x, y)∂yu| ≤ M |u| for all (x, y) ∈ Ω (2.1.1)

where Ω is a nonempty open connected subset of R2 containing the origin and
N(x, y) is an n×n matrix with complex entries of the class C1(Ω). They proved,
roughly speaking, that if N is a normal elliptic matrix, any u satisfying (2.1.1)
and

lim
r→0

exp (x2 + y2)−β/2u(x, y) = 0 for all β ≥ 0 (2.1.2)

vanishes in Ω where r =
√

x2 + y2.
Okaji improved (2.1.2) in [9]. He proved that: Suppose that all the eigen-

values of N(0, 0) are ζ or ζ̄ with a non-real complex number ζ. Then there is a
positive constant M0 such that if u ∈ C1 satisfies the inequality

|∂xu + N(x, y)∂yu| ≤ M |u|/r for all (x, y) ∈ Ω (2.1.3)

with M < M0 and vanishes of infinite order at the origin, then u is identically
zero.

17
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Assuming that u verifies (2.1.3) and vanishes of infinite order at the origin
he derives a stronger vanishing of u at the origin. Therefore he could use a
stronger weight function than the usual weight r−β .

We study the strong unique continuation property of solutions to some sec-
ond order elliptic systems verifying (2.1.2) or vanishing of infinite order at the
origin. In both cases we reduce our system to a first order system. In particular,
in the case that u vanishes of infinite order at the origin we use a similar method
as [9]. Then we shall apply Grammatico’s result in [4].

We emphasize that there is no regularity assumptions on the eigenvalues of
N as well as in [7] and [9].
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2.2 Main Results 2

Let Ω be a nonempty open connected subset of R2 containing the origin. We
denote by r the distance between (x, y) and the origin. X1(Ω) denotes the
class of functions f defined on Ω satisfying the following properties (2.2.1) and
(2.2.2):

f(x, y) ∈ C0(Ω̄) ∩ C1(Ω \ {0}) (2.2.1)

where Ω̄ is the closure of Ω and

|∇f(x, y)| = O(r−1) (2.2.2)

where we shall use the notation g(x, y) = O(h(x, y)) if

lim
ρ→0

sup
0≤r≤ρ

|g(x, y)/h(x, y)| < ∞.

X1,κ(Ω) denotes the class of functions f ∈ X1(Ω) satisfying the following prop-
erties (2.2.3) and (2.2.4): f(x, y) is Hölder continuous of order κ, that is, there
exists a positive C such that

|f(x, y) − f(x′, y′)| ≤ C|(x, y) − (x′, y′)|κ (2.2.3)

for all (x, y), (x′, y′) ∈ Ω and

|∇f(x, y)| = o(r−1) (2.2.4)

where we shall use the notation g(x, y) = o(h(x, y)) if

lim
ρ→0

sup
0≤r≤ρ

|g(x, y)/h(x, y)| = 0.

Put L(k) = ∂x + Nk(x, y)∂y, k = 1, 2 where Nk(x, y) is an n × n normal matrix
with complex entries of the class X1(Ω). Moreover we shall assume that there
exists a positive number δ such that

|Imλ
(k)
j (x, y)| ≥ δ j = 1, 2, . . . , n

for all (x, y) ∈ Ω where λ
(k)
j (x, y), j = 1, 2, . . . , n, are the eigenvalues of Nk(x, y).

Theorem 2.2.1. Let L = L(1)L(2). Let u ∈ H1
loc(Ω; Cn) satisfy

|Lu| ≤ C0r
−β0 |u| + C1r

−1|∇u| (2.2.5)

with some C0, C1 ≥ 0 and β0 ∈ R. If u satisfies

lim
r→0

exp(r−β)
∫

B(r)

(|u|2 + |∇u|2)dxdy = 0 for all β > 0, (2.2.6)

then u is identically zero in Ω, where B(ρ) = {(x, y);x2 + y2 ≤ ρ2}.
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Corollary 2.2.2. Let L = ∂2
x + A(x, y)∂2

y where A(x, y) is an n × n normal
matrix with complex entries of the class X1(Ω). Let µj(x, y), j = 1, 2, . . . , n, be
the eigenvalues of A(x, y) and suppose that there exists a positive number δ such
that

dist(µj(x, y), (−∞, 0]) ≥ δ j = 1, 2, . . . , n

for all (x, y) ∈ Ω. Let u ∈ H1
loc(Ω; Cn) satisfy (2.2.5) with some C0, C1 ≥ 0 and

β0 ∈ R. If u satisfies (2.2.6), then u is identically zero in Ω.

Corollary 2.2.3. Let L = ∂2
x + 2B(x, y)∂2

xy + A(x, y)∂2
y where A(x, y) and

B(x, y) are n × n Hermitian matrices with complex entries of the class X1(Ω)
and satisfy AB = BA. Suppose that L is elliptic, that is, there exists a positive
δ such that

((ξ2 + 2B(x, y)ξη + A(x, y)η2)v, v) ≥ δ(ξ2 + η2)1/2|v|2 (2.2.7)

for any (ξ, η) ∈ R2 \{(0, 0)} and any v ∈ Cn. Let u ∈ H1
loc(Ω; Cn) satisfy (2.2.5)

with some C0, C1 ≥ 0 and β0 ∈ R. If u satisfies (2.2.6), then u is identically
zero in Ω.

Remark 2.2.1. For L = L(1)L(2) · · ·L(m), we obtain a similar result as Theo-
rem 2.2.1 if Nk(x, y), k = 1, 2, . . . ,m, belong to the class Cm(Ω).

Next we relax the assumption (2.2.6). In this case, we consider the system
of differential operators L = ∂2

x + N(x, y)2∂2
y where N(x, y) is an n × n normal

matrix with complex entries of the class X1,κ(Ω). Let λj(x, y), j = 1, 2, . . . , n,
be eigenvalues of N(x, y). We suppose that there exists a positive number δ such
that

|Reλj(x, y)| ≥ δ j = 1, 2, . . . , n

for all (x, y) ∈ Ω. Moreover we suppose that there exists a ∈ R such that

λj(0, 0) = a or − a j = 1, 2, . . . , n.

Theorem 2.2.4. Let u ∈ H1
loc(Ω; Cn) satisfy

|Lu| ≤ C0r
−2|u| + C1r

−1|∇u| (2.2.8)

with C0 ≥ 0 and 0 ≤ C1 < min{1, |a|}/
√

2. If u satisfies

lim
r→0

r−β

∫
B(r)

(|u|2 + |∇u|2)dxdy = 0 for all β > 0, (2.2.9)

then u is identically zero in Ω.

Corollary 2.2.5. Let L = ∂2
x + A(x, y)∂2

y , where A(x, y) is an n × n normal
matrix with complex entries of the class X1,κ(Ω). Let µj(x, y) be eigenvalues of
A(x, y) and suppose that there exists a positive number δ such that

dist(µj(x, y), (−∞, 0]) ≥ δ j = 1, 2, . . . , n
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for all (x, y) ∈ Ω. Moreover we suppose that there exists a positive number a
such that

µj(0, 0) = a j = 1, 2, . . . , n.

Let u ∈ H1
loc(Ω; Cn) satisfy (2.2.8) with C0 ≥ 0 and 0 ≤ C1 < min{1,

√
a}/

√
2.

If u satisfies (2.2.9), then u is identically zero in Ω.
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2.3 Proof of Theorem 2.2.1

In this section, we shall prove Theorem 2.2.1. The letter C stands for a generic
constant whose value may vary from line to line.

Let P = ∂x + M(x, y)∂y where M(x, y) is an n × n normal matrix with
complex entries of the class C0(Ω̄) ∩ C1(Ω) and

|Im(eigenvalues of M(x, y))| ≥ δ.

Then in [7], they proved the following estimate.

Proposition 2.3.1. (Hile and Protter [7]) There exists a positive C such that

C

∫∫
Ω

e2φ|Pu|2r−1dxdy ≥ β2

∫∫
Ω

e2φr−β−2|u|2r−1dxdy (2.3.1)

for any u ∈ C1
0 (Ω) and any large β where φ = r−β .

Remark 2.3.1. In [7], they assume M(x, y) ∈ C0(Ω̄) ∩ C1(Ω). We obtain the
same result if M(x, y) ∈ X1(Ω).

In order to prove Proposition 2.3.1, we require the following elliptic estimate.

Lemma 2.3.2. There exists a positive C such that∫∫
|∇u|2dxdy ≤ C

∫∫
(|L(2)u|2 + |u|2)dxdy

for any u ∈ C1
0 (Ω \ {(0, 0)}).

Proof. Using a partition of unity, we reduce the problem to the case of finite
number of constant matrices {N2(xj , yj)}N

j=1. Then the assertion can be easily
verified in the standard manner.

Applying Lemma 2.3.2 with u = rγu, we have the following elliptic estimate
with weight function.

Lemma 2.3.3. There exists a positive C such that∫∫
r2γ |∇u|2dxdy ≤ C

∫∫
(r2γ |L(2)u|2 + γ2r2γ−2|u|2)dxdy

for any u ∈ C1
0 (Ω \ {(0, 0)}) and any γ ∈ R.
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Proof. Applying Lemma 2.3.2 with u = rγu, we have∫∫
|∇(rγu)|2dxdy ≤ C

∫∫
(|L(2)(rγu)|2 + |rγu|2)dxdy

≤ C

∫∫
r2γ |L(2)u|2dxdy

+ C

∫∫
(γ2r2γ−2|xr−1u|2 + γ2r2γ−2|yr−1u|2)dxdy

+ C

∫∫
r2γ |u|2dxdyv

≤ C

∫∫
(r2γ |L(2)u|2 + γ2r2γ−2|u|2)dxdy.

On the other hand, since∫∫
|∇(rγu)|2dxdy =

∫∫
(|rγ∂xu + γrγ−2xu|2 + |rγ∂yu + γrγ−2yu|2)dxdy

≥ 1/2
∫∫

r2γ |∇u|2dxdy −
∫∫

γ2r2γ−2|u|2dxdy

we have a desire estimate.

We shall show the proof of Proposition 2.3.1 with M(x, y) ∈ X1(Ω).

Proof. Introduce the polar coordinates (x, y) = (r cos θ, r sin θ). Then the oper-
ator P (x, ∂) takes the form

P = T1∂r + r−1M1∂θ

where
T1 = cos θ + sin θM(r cos θ, r cos θ)

and
M1 = − sin θ + cos θM(r cos θ, r sin θ). (2.3.2)

Since M(x, y) is a normal matrix, there exists a unitary matrix U suth that

U∗MU = diag

µ1

. . .
µn

 (2.3.3)

and

U∗T1U = diag

cos θ + sin θµ1

. . .
cos θ + sin θµn

 . (2.3.4)

Since |Imµj | is positive, |det T1| = |detU∗T1U | is positive. Here we set P2u =
T−1

1 Pu and M̃ = T−1M1.
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Lemma 2.3.4. M̃ = (m̃j,k) is also a normal matrix with eigenvalues κj satis-
fying

|Imκj | ≥ δ′ > 0.

th entries satisfies m̃j,k ∈ C0(Ω̄) ∩ C1(Ω \ {(0, 0)}) and |r∂rm̃j,k|, |∂θm̃j,k| =
O(r−1).

Proof. By (2.3.3) and (2.3.4) we have

U∗M̃U = U∗T−1
1 UU∗M1U

= (U∗T1U)−1U∗M1U

= diag

(cos θ + sin θµ1)−1

. . .
(cos θ + sin θµn)−1


× diag

− sin θ + cos θµ1

. . .
− sin θ + cos θµn

 . (2.3.5)

Therefore

|Imκj | = |Im(− sin θ + cos θµj)(cos θ + sin θµj)−1|
= |Imµj{(cos θ + (Reµj) sin θ)2 + (Imµj)2 sin2 θ}−1|
≥ δ{(cos θ + (Reµj) sin θ)2 + (Imµj)2 sin2 θ}−1.

Since

U∗M̃∗U = diag

(cos θ + sin θµ̄1)−1

. . .
(cos θ + sin θµ̄n)−1


× diag

− sin θ + cos θµ̄1

. . .
− sin θ + cos θµ̄n


and (2.3.5), M̃ is a normal matrix. Using the relation

|∇x,yf |2 = |∂rf |2 + |r−1∂θf |2 (2.3.6)

we can easily see m̃j,k ∈ C0(Ω̄) ∩ C1(Ω \ {(0, 0)}) and |r∂rm̃j,k|, |∂θm̃j,k| =
O(r−1).

Setting v = eφu and P̃ v = eφP2e
−φv we have

P̃ v = ∂rv + r−1M̃∂θv − φ′v

= ∂rv + r−1(M̃ + M̃∗)∂θv/2 + r−1(M̃ − M̃∗)∂θv/2 − φ′v

= ∂rv + r−1S∂θv + r−1Sθv/2 + r−1Q∂θv − φ′v − r−1Sθv/2



2.3. Proof of Theorem 2.2.1 25

where S = (M̃ + M̃∗)/2 and Q = (M̃ − M̃)/2. Then S and Q satisfy |rSr|,
|rQr|, |Sθ|, |Qθ| = O(1). Therefore we have∫

|P̃ v|2drdθ =
∫

|∂rv + r−1S∂θv + r−1Sθv/2|2drdθ

+
∫

|r−1Q∂θv − φ′v − r−1Sθv/2|2drdθ

+ 2Re(∂rv + r−1S∂θv + r−1Sθv/2, r−1Q∂θv − φ′v − r−1Sθv/2)L2

≥ 2Re(∂rv + r−1S∂θv + r−1Sθv/2, r−1Q∂θv − φ′v − r−1Sθv/2)L2

= 2Re(∂rv + r−1S∂θv + r−1Sθv/2,−φ′v)L2

+ 2Re(∂rv, r−1Q∂θv)L2 + 2Re(r−1S∂θv, r−1Q∂θv)L2

+ 2Re(∂rv + r−1S∂θv + r−1Sθv/2,−r−1Sθv/2)L2

+ 2Re(r−1Sθv/2, r−1Q∂θv)L2

≥ 2Re(∂rv + r−1S∂θv + r−1Sθv/2,−φ′v)L2

+ 2Re(∂rv, r−1Q∂θv)L2 + 2Re(r−1S∂θv, r−1Q∂θv)L2

− C

∫
(|∂rv| + |r−1∂θv| + |r−1v|)|r−1v|drdθ (2.3.7)

Using integration by parts, S = S∗, Q = −Q∗ and SQ = QS we have

2Re(∂rv + r−1S∂θv + r−1Sθv/2,−φ′v)L2

= (v, φ′′v + φ′∂rv) + (∂θv,−φ′r−1Sv) + (v,−φ′r−1Sθv/2)

+ (−φ′v, ∂rv + r−1S∂θv + r−1Sθv/2)
= (v, φ′′v), (2.3.8)

2Re(∂rv, r−1Q∂θv)L2 = (v,−r−1Qr∂θv + r−2Q∂θv) + (v, r−1Qθ∂rv)

≥ −C

∫
|r−1v|(|r−1∂θv| + |∂rv|)drdθ (2.3.9)

and

2Re(r−1S∂θv, r−1Q∂θv)L2 = (−r−2QS∂θv, ∂θv) + (r−2SQ∂θv, ∂θv)
= 0. (2.3.10)

Combining (2.3.7), (2.3.8), (2.3.9) and (2.3.10) we have∫
|P̃ v|2drdθ ≥

∫
φ′′|v|2drdθ − C

∫
(|∂rv| + |r−1∂θv| + |r−1v|)|r−1v|drdθ

≥
∫

φ′′|v|2drdθ − C

∫
r−2|v|2drdθ

− C

∫
β−1rβ(|∂rv|2 + |r−1∂θv|2)drdθ − C

∫
βr−β |r−1v|2drdθ
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From φ′′(r) = β(β + 1)r−β−2 we obtain∫
|P̃ v|2drdθ ≥

∫
(β(β + 1)r−β−2 − Cr−2 − Cβr−β−2))|v|2drdθ

− C

∫
β−1rβ(|∂rv|2 + |r−1∂θv|2)drdθ.

Since β is a large parameter and r ≤ 1, we may assume

β(β + 1)r−β−2 − Cr−2 − Cβr−β−2 ≥ β2/2.

By (2.3.6) it follows that∫
|P̃ v|2drdθ ≥ β2/2

∫
r−β−2|v|2drdθ − C

∫
β−1rβ |∇v|2r−1dxdy.

Applying Lemma 2.3.3 with L(2)v = P̃ v + φ′v and γ = (β − 1)/2 we have∫
β−1rβ |∇v|2r−1dxdy ≤ Cβ−1

∫
(rβ |P̃ v + φ′v|2 + β2|v|2rβ−2)r−1dxdy

= Cβ−1

∫
(rβ |P̃ v − βr−β−1v|2 + β2|v|2rβ−2)r−1dxdy

≤ Cβ−1

∫
rβ |Pv|2r−1dxdy + Cβ

∫
r−β−2|v|2r−1dxdy

Thus it follows that∫
|P̃ v|2drdθ ≥ β2/2

∫
r−β−2|v|2drdθ − Cβ−1

∫
rβ |Pv|2r−1dxdy

− Cβ

∫
r−β−2|v|2r−1dxdy

Since β is a large parameter and r ≤ 1, we have

C

∫
|P̃ v|2r−1dxdy ≥ β2

∫
r−β−2|v|2r−1dxdy

Since

C

∫
e2φ|Pu|2r−1dxdy ≥

∫
e2φ|P2u|2r−1dxdy

=
∫

|P̃ v|2r−1dxdy,

we have

C

∫
e2φ|Pu|2r−1dxdy ≥ β2

∫
r−β−2|v|2r−1dxdy

= β2

∫
e2φr−β−2|u|2r−1dxdy,

which is the desire estimate in Proposition 2.3.1.
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By Proposition 2.3.1 we have the following Carleman estimate.

Lemma 2.3.5. There exists a positive C such that

C

∫∫
e2φr−2γ |L(2)u|2dxdy ≥ β2

∫∫
e2φr−β−2−2γ |u|2dxdy

for any large β and any u ∈ C1
0 (Ω \ {(0, 0)}) where φ = r−β and γ is a linear

function of β.

Proof. Applying (2.3.1) with P = L(2) and u = r−γ+1/2u, we have

C

∫∫
e2φ|L(2)(r−γ+1/2u)|2r−1dxdy ≥ β2

∫∫
e2φr−β−2−2γ |u|2dxdy.

Since L(2) is a first order operator

|L(2)(r−γ+1/2u)|2 ≤ Cr−2γ+1|L(2)u|2 + C(γ − 1/2)2r−2γ−1|u|2.

Therefore we obtain the desired estimate in Lemma 2.3.5 if β is large enough.

In order to prove Theorem 2.2.1 we require the following elliptic estimate
with weight function.

Lemma 2.3.6. There exists a positive C such that∫∫
e2φr−2γ |∇u|2dxdy ≤ C

∫∫
e2φr−2γ(|L(2)u|2 + β2r−2β−2|u|2)dxdy

for any u ∈ C1
0 (Ω\{(0, 0)}) and any large β where γ = γ0β+γ1 with γ0, γ1 ∈ R.

Proof. Applying Lemma 2.3.2 with u = eφr−γu, we have∫∫
|∇(eφr−γu)|2dxdy ≤ C

∫∫
(|L(2)(eφr−γu)|2 + |eφr−γu|2)dxdy

≤ C

∫∫
e2φr−2γ |L(2)u|2dxdy

+ C

∫∫
γ2e2φr−2γ−2(|xr−1u|2 + |yr−1u|2)dxdy

+ C

∫∫
β2e2φr−2γ−2β−2(|xr−1u|2 + |yr−1u|2)dxdy

+ C

∫∫
e2φr−2γ |u|2dxdyv

≤ C

∫∫
(e2φr−2γ |L(2)u|2 + β2e2φr−2γ−2β−2|u|2)dxdy.
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On the other hand, since∫∫
|∇(eφr−γu)|2dxdy =

∫∫
|eφr−γ(∂xu − γr−2xu − βr−β−2xu)|2dxdy

+
∫∫

|eφr−γ(∂yu − γr−2yu − βr−β−2yu)|2dxdy

≥ 1/2
∫∫

e2φr−2γ |∇u|2dxdy

−
∫∫

γ2e2φr−2γ−2|u|2dxdy

−
∫∫

β2e2φr−2γ−2β−2|u|2dxdy

≥ 1/2
∫∫

e2φr−2γ |∇u|2dxdy

− C

∫∫
β2e2φr−2γ−2β−2|u|2dxdy

we have a desire estimate.

In order to prove Theorem 2.2.1, we prove the following Carleman estimate.

Proposition 2.3.7. There exists a positive number C such that∫
Ω

e2φ|Lu|2dxdy ≥ Cβ2

∫
Ω

e2φr−2|∇u|2dxdy

+ Cβ4

∫
Ω

e2φr−2β−4|u|2dxdy (2.3.11)

for all large β ≥ 0 and any u ∈ C2
0 (Ω \ {(0, 0)}).

Remark 2.3.2. The estimate (2.3.11) in Proposition 2.3.7 remains valid if we
assume u ∈ H2

loc(Ω) with compact support satisfies

lim
ρ→0

exp(ρ−β)
∫
|x|≤ρ

|∂α
x u|2dx = 0

for any positive β and any |α| ≤ 2.

Proof. Applying (2.3.1) with P = L(1) and u = L(2)u, we have

C

∫∫
e2φ|Lu|2dxdy ≥ β2

∫∫
e2φr−β−2|L(2)u|2dxdy. (2.3.12)

By Lemma 2.3.5 we have

β2

∫∫
e2φr−β−2|L(2)u|2dxdy ≥ β4

∫∫
e2φr−2β−4|u|2dxdy. (2.3.13)
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On the other hand, by Lemma 2.3.6 we have

β2

∫∫
e2φr−β−2|L(2)u|2dxdy ≥ β2

∫∫
e2φr−2|L(2)u|2dxdy

≥ Cβ2

∫∫
e2φr−2|∇u|2dxdy

− Cβ4

∫∫
e2φr−2β−4|u|2dxdy. (2.3.14)

Combining (2.3.12), (2.3.13) and (2.3.14), we obtain the desired estimate in
Proposition 2.3.7.

Now we can prove Theorem 2.2.1.

Proof. Let 0 < R1 < R0 < 1 and let χ(r) ∈ C∞([0,∞)) be a cut-off function
such that χ(r) = 1 if 0 ≤ r ≤ R1 and χ(r) = 0 if R0 ≤ r and |χ′| ≤ C.
Applying Proposition 2.3.7 with ũ(x) = χ(|x|)u(x), we have

Cβ2

∫
B(R0)

e2φr−2|∇ũ|2dxdy + Cβ4

∫
B(R0)

e2φr−2β−4|ũ|2dxdy

≤
∫

B(R0)

e2φ|Lũ|2dxdy

From (2.2.5) we have∫
B(R0)

e2φ|Lũ|2dxdy ≤
∫

B(R0)

e2φ|χ|2(C0r
−β0 |u| + C1r

−1|∇u|)2dxdy

+ C

∫
B(R0)\B(R1)

e2φ(r−2|u|2 + |∇u|2)dxdy

≤ 2C2
0

∫
B(R0)

e2φr−2β0 |ũ|2dxdy

+ 2C2
1

∫
B(R0)

e2φr−2|∇ũ|2dxdy

+ C

∫
B(R0)\B(R1)

e2φ(r−2|u|2 + |∇u|2)dxdy

Therefore it follows that

C

∫
B(R0)\B(R1)

e2φ(r−2|u|2 + |∇u|2)dxdy

≥ (Cβ2 − 2C2
1 )

∫
B(R0)

e2φr−2|∇ũ|2dxdy

+ Cβ4

∫
B(R0)

e2φr−2β−4|ũ|2dxdy − 2C2
0

∫
B(R0)

e2φr−2β0 |ũ|2dxdy.
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Thus for any large β ≥ 2β0 + 2 we have

C

∫
B(R0)\B(R1)

e2φ(r−2|u|2 + |∇u|2)dxdy ≥ β2

∫
B(R0)

e2φr−2|∇ũ|2dxdy

+ β4

∫
B(R0)

e2φr−2β−4|ũ|2dxdy

Thus it follows that

β2R−2
1 e2R−β

1

∫
B(R1)

|∇u|2dxdy + β4R−2β−4
1 e2R−β

1

∫
B(R1)

|u|2dxdy

≤ β2

∫
B(R1)

e2φr−2|∇u|2dxdy + β4

∫
B(R1)

e2φr−2β−4|u|2dxdy

≤ β2

∫
B(R0)

e2φr−2|∇ũ|2dxdy + β4

∫
B(R0)

e2φr−2β−4|ũ|2dxdy

≤ C

∫
B(R0)\B(R1)

e2φ(r−2|u|2 + |∇u|2)dxdy

≤ Ce2R−β
1 R−2

1

∫
B(R0)\B(R1)

(|u|2 + |∇u|2)dxdy.

From u ∈ H1
loc(Ω) we have

β2

∫
B(R1)

|∇u|2dxdy + β4

∫
B(R1)

|u|2dxdy ≤ C.

Therefore letting β tend to ∞, we conclude that u = 0 in B(R1).

Next we shall prove Corollary 2.2.2.

Proof. We define

B(x, y) = (2πi)−1

∮
Γ

√
ζ (ζ − A(x, y))−1dζ

where Γ is a closed curve in C\(−∞, 0] enclosing µj(x, y) (j = 1, 2, . . . , n), sym-
metric with respect to the real axis and

√
ζ means r1/2eθ/2 when ζ = reθ. Then

applying Theorem 2.2.1 with N1(x, y) = iB(x, y) and N2(x, y) = −iB(x, y), we
can prove Corollary 2.2.2. In fact, from the first resolvent equation

(z − A)−1(ζ − A)−1 = {(z − A)−1 − (ζ − A)−1}/(ζ − z),

we have

B2 = (2πi)−2

∮
Γ

√
z (z − A)−1dz

∮
Γ−

√
ζ (ζ − A)−1dζ

= (2πi)−2

∮
Γ

√
z (z − A)−1{

∮
Γ−

√
ζ /(ζ − z)dζ}dz

+ (2πi)−2

∮
Γ−

√
ζ (ζ − A)−1{

∮
Γ

√
z /(z − ζ)dz}dζ
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where Γ− is a closed curve inside Γ and satisfies the same conditions as Γ. From∮
Γ−

√
ζ /(ζ − z)dζ = 0 and (2πi)−1

∮
Γ

√
z /(z − ζ)dz =

√
ζ,

it verifies

B(x, y)2 = (2πi)−1

∮
Γ−

ζ(ζ − A)−1dζ = A(x, y).

In what follows, we denote this B(x, y) by
√

A(x, y). Since Γ is symmetric, we
have √

A(x, y)
∗

= (2πi)−1

∮
Γ

√
ζ (ζ − A(x, y)∗)−1dζ.

Hence it easily follows that
√

A(x, y) is a normal matrix. Moreover it is easy to
see that the eigenvalues of

√
A(x, y) are √

µj and entries of
√

A(x, y) belong to
X1(Ω).

In the rest of this section, we shall prove Corollary 2.2.3.

Proof. From our hypothesis, there exists a unitary matrix U(x, y) such that

U∗AU = diag

λ1

. . .
λn

 and U∗BU = diag

µ1

. . .
µn

 .

Hence

U∗(A − B2)U = diag

λ1 − µ2
1

. . .
λn − µ2

n

 .

By (2.2.7) we see that λj(x, y)−µj(x, y)2 ≥ δ (j = 1, 2, . . . , n) for any (x, y) ∈ Ω.
Repeating the same arguments as the proof of Corollary 2.2.2 we can define√

A(x, y) − B(x, y)2. Since eigenvalues of
√

A − B2 are
√

λj − µ2
j and µj ∈ R,

we have

|Im(eigenvalues of B ± i
√

A − B2)| = |Im(µj ± i
√

λj − µ2
j )|

=
√

λj − µ2
j ≥ δ.

Applying Theorem 2.2.1 with N1(x, y) = B(x, y) + i
√

A(x, y) − B(x, y)2 and
N2(x, y) = B(x, y) − i

√
A(x, y) − B(x, y)2, we obtain the desired conclusion of

Corollary 2.2.3.
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2.4 Proof of Theorem 2.2.4

First we shall give the proof of Theorem 2.2.4 with a = 1. We consider

L0 = ∂2
xu + N(0, 0)2∂2

yu.

Then the first result we will show is the Carleman estimate of L0.

Proposition 2.4.1. For an arbitrary positive B < 1, there exists a positive
number β0(B) such that if β ≥ β0 with β ∈ N + 1/2 then

(1 + ϵ)
∫∫

r−2β+2|L0u|2dxdy

≥ B/2
∫∫

r−2β |∇u|2dxdy + ϵβ2/4
∫∫

r−2β−2|u|2dxdy.

for any u ∈ C2
0 (Ω \ {(0, 0)}) and any positive ϵ.

Proof. By our hypothesis there exists a unitary matrix U0 such that U−1
0 L0U0 =

(∂2
x +∂2

y)I. Introduce the polar coordinates (x, y) = (r cos θ, r sin θ) and making
the change of variables z = log r we see the following.

Lemma 2.4.2. For arbitrary B < 1 and B′ < 1, there exists a positive β0 =
β0(B,B′) such that if β ≥ β0 with β ∈ N + 1/2 then

(1 + ϵ)
∫∫

e−2βz|(∂2
z + ∂2

θ )u|2dzdθ ≥ αB

∫∫
e−2βz|∂θu|2dzdθ

+ (1 − α)B′
∫∫

e−2βz|∂zu|2dzdθ + ϵβ2/4
∫∫

e−2βz|u|2dzdθ

for any positive ϵ > 0, any α ∈ [0, 1] and u ∈ C2
0 (Ω \ {(0, 0)}).

Proof. We use the same method as [4]. We show it briefly (see [4] in detail).
Putting u = eβzv, we have∫∫

e−2βz|(∂2
z + ∂2

θ )u|2dzdθ =
∫∫

|∂2
zv + 2β∂zv + β2v + ∂2

θv|2dzdθ.

By integration by parts, it follows that

2Re(∂2
zv, ∂zv) = 2Re(∂zv, v) = 2Re(∂zv, ∂2

θv) = 0,

2Re(∂2
zv, v) = −2∥∂zv∥2,

2Re(∂2
zv, ∂2

θv) = 2∥∂2
z,θv∥2,

2Re(v, ∂2
θv) = −2∥∂θv∥2,

where (·, ·) is the L2 inner product, and ∥ · ∥ is the L2 norm. Therefore, we have∫∫
e−2βz|(∂2

z + ∂2
θ )u|2dzdθ ≥ 2β2∥∂zv∥2 + ∥∂2

θv∥2 − 2β2∥∂θv∥2 + β4∥v∥2.
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We use Fourier series expansion of v(z, ·) ∈ L2(S1) :

v(z, θ) =
∑
k∈Z

vk(z)eikθ,

∫ 2π

0

|v|2dθ =
∑
k∈Z

|vk(z)|2.

Note that

∂θv(z, θ) =
∑
k∈Z

ikvk(z)eikθ,

∫ 2π

0

|∂θv|2dθ =
∑
k∈Z

k2|vk(z)|2,

∂2
θv(z, θ) =

∑
k∈Z

(−k2)vk(z)eikθ,

∫ 2π

0

|∂2
θv|2dθ =

∑
k∈Z

k4|vk(z)|2.

Thus, we have∫∫
e−2βz|(∂2

z + ∂2
θ )u|2dzdθ ≥ 2β2∥∂zv∥2 +

∑
k∈Z

(β2 − k2)2
∫

|vk|2dz.

For any positive B < 1, there exists β0(B) such that if β ≥ β0(B) with β ∈
N + 1/2, we have∑

k∈Z

(β2 − k2)2
∫

|vk|2dz ≥ B
∑
k∈Z

k2

∫
|vk|2dz = B∥∂θv∥2.

Hence, we have∫∫
e−2βz|(∂2

z + ∂2
θ )u|2dzdθ ≥ B

∫∫
e−2βz|∂θu|2dzdθ. (2.4.1)

On the other hand, for any positive B′, there exists β1(B′) such that if β ≥
β1(B′) with β ∈ N + 1/2, we have∑

k∈Z

(β2 − k2)2
∫

|vk|2dz ≥ B′β2
∑
k∈Z

∫
|vk|2dz = B′β2∥v∥2.

Hence, we have∫∫
e−2βz|(∂2

z + ∂2
θ )u|2dzdθ ≥ B′(β2∥v∥2 + ∥∂zv∥2)

≥ B′∥∂zv + βv∥2

= B′
∫∫

e−2βz|∂zu|2dzdθ. (2.4.2)

Combining (2.4.1) and (2.4.2), for any positive B > 1 and B′ > 1 there exists
β0(B,B′) such that if β ≥ β0(B,B′) with β ∈ N + 1/2, we have∫∫

e−2βz|(∂2
z + ∂2

θ )u|2dzdθ

≥ αB

∫∫
e−2βz|∂θu|2dzdθ + (1 − α)B′

∫∫
e−2βz|∂zu|2dzdθ (2.4.3)
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for any α ∈ [0, 1]. We recall that the inequality∫∫
e−2βz|(∂2

z + ∂2
θ )u|2dzdθ ≥ β2/4

∫∫
e−2βz|u|2dzdθ (2.4.4)

holds (see the appendix of [4] ). (2.4.3) and (2.4.4) show the desired conclusion
of Lemma 2.4.2.

Now, we proceed to the proof of Proposition 2.4.1. From Lemma 2.4.2 with
B = B′ and α = 1/2, it follows

(1 + ϵ)
∫∫

r−2β+2|(∂2
x + ∂2

y)u|2dxdy

≥ B/2
∫∫

r−2β |∇u|2dxdy + ϵβ2/4
∫∫

r−2β−2|u|2dxdy,

which proves the desired result.

Proposition 2.4.1 and (2.2.3) give the following Carleman inequality with a
remainder term.

Proposition 2.4.3. For arbitrary B < 1, there exists a positive β0 = β0(B)
such that if β ≥ β0 with β ∈ N + 1/2 then

(1+ϵ)(1+δ)
∫∫

r−2β+2|Lu|2dxdy+C(1+ϵ)(1+δ−1)
∫∫

r−2β+2+2κ|∂2
yu|2dxdy

≥ B/2
∫∫

r−2β |∇u|2dxdy + ϵβ2/4
∫∫

r−2β−2|u|2dxdy (2.4.5)

for any positive ϵ, δ and any u ∈ C2
0 (Ω \ {(0, 0)}).

Proof. We can write

Lu = L0u + (N(x, y)2 − N(0, 0)2)∂2
yu,

and
|N(x, y)2 − N(0, 0)2| ≤ Crκ

because of their Hölder continuity. Using

|Lu − (N(x, y)2 − N(0, 0)2)∂2
yu|2

≤ (1 + δ)|Lu|2 + C(1 + δ−1)|(N(x, y)2 − N(0, 0)2)∂2
yu|2,

the proof is clear.

We require the following elliptic estimate.

Lemma 2.4.4. There exists a positive constant C such that∫∫
Ω

(|∂2
xu|2 + |∂2

yu|2)dxdy ≤ C

∫∫
Ω

(|Lu|2 + |∇u|2 + |u|2)dxdy

for any u ∈ C2
0 (Ω).



2.4. Proof of Theorem 2.2.4 35

Applying Lemma 2.4.4 with u = r−βu, we have

Lemma 2.4.5. There exists a positive constant C such that∫∫
Ω

r−2β(|∂2
xu|2 + |∂2

yu|2)dxdy

≤ C

∫∫
Ω

r−2β(|Lu|2 + β2r−2|∇u|2 + β4r−4|u|2)dxdy

for any u ∈ C2
0 (Ω \ {(0, 0)}).

Proposition 2.4.6. Under the assumption of Theorem 2.2.4, there exist posi-
tive constants C2 and C3 such that∫∫

0≤R(x,y)≤ρ

(|u|2 + |∇u|2 + |∂2
xu|2 + |∂2

yu|2)dxdy ≤ C2 exp(−C3ρ
−κ)

for any small positive ρ.

Proof. Let χ(r) be a nonnegative function belonging to C1
0 ([0, 2)) such that

χ(r) = 1 when 0 ≤ r < 1. We shall consider ũ(x, y) = χ(Mβ1/κr)u(x, y). Here,
M is a large positive parameter, which will be determined later. By Proposition
2.4.3 and Lemma 2.4.5, we have

(B/2 − C/K)
∫∫

r−2β |∇ũ|2dxdy + (ϵ/4 − C/K)β2

∫∫
r−2β−2|ũ|2dxdy

+ (Kβ2)−1

∫∫
r−2β+2(|∂2

xũ|2 + |∂2
y ũ|2)dxdy

≤ {(1 + ϵ)(1 + δ) + C(Kβ2)−1}
∫∫

r−2β+2|Lũ|2dxdy

+ C(1 + ϵ)(1 + δ−1)
∫∫

r−2β+2+2κ|∂2
y ũ|2dxdy (2.4.6)

where K is a large parameter which will be determined later. On the other
hand, for all positive ϵ1 we have∫∫

r−2β+2|Lũ|2dxdy ≤ (1 + ϵ1)
∫∫

r−2β+2|χLu|2dxdy + C(1 + ϵ−1
1 )×

×
∫∫

B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β+2(M2β2/κ|∇u|2 + M4β4/κ|u|2)dxdy.

(2.4.7)

because of

1 ≤ M2β2/κr2 ≤ 4 if (x, y) ∈ B(2M−1β−1/κ) \ B(M−1β−1/κ).
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From (2.2.8), we have∫∫
r−2β+2|χLu|2dxdy

≤ (1 + ϵ2)(1 + ϵ3)C2
1

∫∫
r−2β |∇ũ|2dxdy

+ C(1 + ϵ2)(1 + ϵ−1
3 )C2

1M2β2/κ

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β |u|2dxdy

+ (1 + ϵ−1
2 )C2

0

∫∫
r−2β−2|ũ|2dxdy (2.4.8)

for all positive ϵ2 and ϵ3. Combining (2.4.6), (2.4.7) and (2.4.8), we see that

T1

∫∫
r−2β |∇ũ|2dxdy + T2β

2

∫∫
r−2β−2|ũ|2dxdy

+ (Kβ2)−1

∫∫
r−2β+2(|∂2

xũ|2 + |∂2
y ũ|2)dxdy

≤ T3

∫∫
r−2β+2+2κ|∂2

y ũ|2dxdy

+ T4

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β+2(M2β2/κ|∇u|2 + M4β4/κ|u|2)dxdy

+ T5M
2β2/κ

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β |u|2dxdy,

where

T1 = B/2 − C/K − (1 + ϵ1)(1 + ϵ2)(1 + ϵ3){(1 + ϵ)(1 + δ) + C(Kβ2)−1}C2
1 ,

T2 = (ϵ/4 − C/K) − (1 + ϵ1)(1 + ϵ−1
2 ){(1 + ϵ)(1 + δ) + C(Kβ2)−1}C2

0β−2

and T3, T4, T5 are positive constants depending only on δ, ϵ1 and ϵ3. Take
ϵ, δ, ϵ1, ϵ2 and ϵ3 to be small enough. Moreover taking K to be large enough,
by our assumption, T1 and T2 are positive if β is large enough. Choose M
such that T3M

−2κ < 1/(8K). Then it holds that T3r
2κ ≤ 1/(2Kβ2) if (x, y) ∈

B(2M−1β−1/κ). Then it follows that

T1

∫∫
B(1/2M−1β−1/κ)

r−2β |∇u|2dxdy + T2β
2

∫∫
B(1/2M−1β−1/κ)

r−2β−2|u|2dxdy

+ (2Kβ2)−1

∫∫
B(1/2M−1β−1/κ)

r−2β+2(|∂2
xu|2 + |∂2

yu|2)dxdy

≤ C

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β |∇u|2dxdy

+ C

∫∫
B(2M−1β−1/κ)\B(M−1β−1/κ)

r−2β−2|u|2dxdy.
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Therefore, we conclude that∫∫
B(1/2M−1β−1/κ)

(|∇u|2 + |u|2 + |∂2
xu|2 + |∂2

yu|2)dxdy

≤ C2−2β+2(Mβ1/κ)4β2×

×
∫∫

B(2M−1β−1/κ)\B(M−1β−1/κ)

(|∇u|2 + |u|2 + |∂2
xu|2 + |∂2

yu|2)dxdy

for any large β ∈ N + 1/2. This gives the conclusion of Proposition 2.4.6.

Now we recall an estimate in the case of a first order system. Let P =
∂x + M(x, y)∂y where M(x, y) is an n × n normal matrix with complex entries
of the class X1,κ(Ω) and

|Im(eigenvalues of M(x, y))| ≥ δ.

Moreover suppose that all the eigenvalues of M(0, 0) are ζ or ζ̄ with a non-real
complex number ζ. Then in [9], he proved the following estimate.

Proposition 2.4.7. (Okaji [9]) For a sufficiently small Ω̃, there exists a positive
C independent of Ω̃ such that

C

∫∫
Ω̃

eβ(log r)2 |Pu|2r−1dxdy ≥ β

∫∫
Ω̃

r−2| log r|eβ(log r)2 |u|2r−1dxdy

for any u ∈ C1
0 (Ω \ {(0, 0)}) and any large β.

By Proposition 2.4.7 with u = r−1| log r|1/2u we have the following estimate.

Lemma 2.4.8. For a sufficiently small Ω̃, there exists a positive C independent
of Ω̃ such that∫∫

Ω̃

r−2| log r|eβ(log r)2 |Pu|2r−1dxdy

≥ Cβ

∫∫
Ω̃

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

for any u ∈ C1
0 (Ω \ {(0, 0)}) and any large β.

Thus, we have the following Carleman estimate with a stronger weight func-
tion.

Proposition 2.4.9. For a sufficiently small Ω̃, there exists a positive C inde-
pendent of Ω̃ such that∫

Ω̃

eβ(log r)2 |Lu|2r−1dxdy ≥ Cβ

∫∫
Ω̃

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

+ Cβ2

∫∫
Ω̃

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

for any u ∈ C2
0 (Ω \ {(0, 0)}) and any large β.
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Proof. Putting

L̃ =
(

0 In

In 0

)
∂x +

(
N 0
0 −N

)
∂y and U =

(
u
u

)
,

it follows that

L̃U =
(

∂xu + N(x, y)∂yu
∂xu − N(x, y)∂yu

)
, L̃2U =

(
Lu + A(x, y)u
Lu + B(x, y)u

)
where A(x, y)u = −Nx∂yu + NNy∂yu and B(x, y)u = Nx∂yu + NNy∂yu. Since
|A(x, y)u|, |B(x, y)u| ≤ Cr−1|∇u| we have∫

eβ(log r)2 |Lu|2r−1dxdy ≥ C

∫
eβ(log r)2 |L̃(L̃U)|2r−1dxdy

− C

∫
eβ(log r)2r−2|∇u|2r−1dxdy.

By Proposition 2.4.7 with P = L̃ and u = L̃U we have

C

∫∫
Ω̃

eβ(log r)2 |L̃(L̃U)|2r−1dxdy ≥ β

∫∫
Ω̃

r−2| log r|eβ(log r)2 |L̃U |2r−1dxdy

for a sufficiently small Ω̃. Moreover applying Lemma 2.4.8 with P = L̃ and
u = U we have∫∫

Ω̃

r−2| log r|eβ(log r)2 |L̃U |2r−1dxdy

≥ Cβ

∫∫
Ω̃

r−4| log r|2eβ(log r)2 |U |2r−1dxdy.

On the other hand, we have∫∫
Ω̃

r−2| log r|eβ(log r)2 |L̃U |2r−1dxdy

≥ C

∫∫
Ω̃

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

from

|L̃U |2 = |∂xu + N(x, y)∂yu|2 + |∂xu − N(x, y)∂yu|2

= 2|∂xu|2 + 2|N(x, y)∂yu|2

≥ 2min{1, δ2}|∇u|2.

Thus we obtain the desired estimate in Proposition 2.4.9.

Theorem 2.2.4 with a = 1 follows from Proposition 2.4.6 and 2.4.9.
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Proof. Suppose that R0 is sufficiently small so that Proposition 2.4.9 holds
for Ω̃ = B(R0). Fix 0 < R1 < R0 and take δ > 0 and a smooth function
χδ ∈ C∞

0 (0, R0) such that

χδ(r) =

{
1 if δ ≤ r ≤ R1

0 if r ≤ δ/2
, |χ′

δ(r)| =

{
Cδ−1 if δ/2 ≤ r ≤ δ

C if R1 ≤ r ≤ R0

and

|χ′′
δ (r)| =

{
Cδ−2 if δ/2 ≤ r ≤ δ

C if R1 ≤ r ≤ R0

for a positive constant C. By Proposition 2.4.9 it follows that

Cβ

∫∫
B(R1)\B(δ)

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

+ Cβ2

∫∫
B(R1)\B(δ)

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

≤ Cβ

∫∫
B(R0)

r−2| log r|eβ(log r)2 |∇(χδu)|2r−1dxdy

+ Cβ2

∫∫
B(R0)

r−4| log r|2eβ(log r)2 |χδu|2r−1dxdy

≤
∫∫

B(R0)

eβ(log r)2 |L(χδu)|2r−1dxdy.

From (2.2.8) we have∫∫
B(R0)

eβ(log r)2 |L(χδu)|2r−1dxdy

≤ C

∫∫
B(R0)\B(R1)

eβ(log r)2(|Lu|2 + |∇u|2 + |u|2)r−1dxdy

+
∫∫

B(R1)\B(δ)

eβ(log r)2 |Lu|2r−1dxdy

+ C

∫∫
B(δ)\B(δ/2)

eβ(log r)2(|Lu|2 + δ−2|∇u|2 + δ−4|u|2)r−1dxdy

≤ C

∫∫
B(R0)\B(R1)

eβ(log r)2(r−2|∇u|2 + r−4|u|2)r−1dxdy

+ C

∫∫
B(R1)\B(δ)

eβ(log r)2(r−2|∇u|2 + r−4|u|2)r−1dxdy

+ C

∫∫
B(δ)\B(δ/2)

eβ(log r)2(δ−2r−2|∇u|2 + δ−4r−4|u|2)r−1dxdy.
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Therefore we have

(Cβ − C)
∫∫

B(R1)\B(δ)

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

+ (Cβ2 − C)
∫∫

B(R1)\B(δ)

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

≤ C

∫∫
B(R0)\B(R1)

eβ(log r)2(r−2|∇u|2 + r−4|u|2)r−1dxdy

+ C

∫∫
B(δ)\B(δ/2)

eβ(log r)2(δ−2r−2|∇u|2 + δ−4r−4|u|2)r−1dxdy.

Since

C

∫∫
B(δ)\B(δ/2)

eβ(log r)2(δ−2r−2|∇u|2 + δ−4r−4|u|2)r−1dxdy

≤ Ceβ(log δ/2)2δ−4

∫∫
B(δ)

|∇u|2dxdy + Ceβ(log δ/2)2δ−8

∫∫
B(δ)

|u|2dxdy,

this integral tend to zero if δ → 0 by Proposition 2.4.6. Hence letting δ tend to
zero it follows that

(Cβ − C)
∫∫

B(R1)

r−2| log r|eβ(log r)2 |∇u|2r−1dxdy

+ (Cβ2 − C)
∫∫

B(R1)

r−4| log r|2eβ(log r)2 |u|2r−1dxdy

≤ C

∫∫
B(R0)\B(R1)

eβ(log r)2(r−2|∇u|2 + r−4|u|2)r−1dxdy.

Thus we have

(Cβ − C)R2
1| log R1|

∫∫
B(R1)

(|∇u|2 + |u|2)dxdy

≤ C

∫∫
B(R0)\B(R1)

(|∇u|2 + |u|2)dxdy < ∞.

Letting β large enough, we have that u is identically zero in B(R1). By Theorem
2.2.1 with N1(x, y) = iN(x, y) and N2(x, y) = −iN(x, y) we have that u is
identically zero in Ω.

Next we prove Theorem 2.2.4 with a ∈ R.

Proof. Setting v(x, y) = u(x, ay) it follows that

|(∂2
x + a−2N(x, ay)2∂2

y)v(x, y)| = |L(u(x, ay))|
≤ C0r

−2|u(x, ay)| + C1r
−1|(∇u)(x, ay)|

≤ C0r
−2|v(x, y)| + C1r

−1 max{1, |a|−1}|∇v(x, y)|.
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By Theorem 2.2.4 with a = 1, v is identically zero in Ω if C1 < min{1, |a|}/
√

2.
Therefore u is identically zero in Ω.

Finally we shall prove Corollary 2.2.5.

Proof. We define
√

A(x, y) in the same way as the proof of Corollary 2.2.2. Then√
A(x, y) satisfies the assumptions of Theorem 2.2.4 because the eigenvalues of√
A(x, y) are

√
µj(x, y). Hence, by Theorem 2.2.4 with N(x, y) =

√
A(x, y) the

proof is complete.





Acknowledgements

The author would like to express his sincere gratitude to Professor Tatsuo Nishi-
tani for his valuable advice, support, constant encouragement and leading the
author for six years.

The author would like to express his hearty thanks to Professors Shin-ichi
Doi, Nakao Hayashi, Hideo Kubo, Akitaka Matsumura, Takashi Okaji for their
support and continuous encouragement.

43





45

Bibliography
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