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             ABSTRACT

 Graduate Sehool of Osaka University,

Scheme Based on Gra h Theor Model:

     The research deseribed in this thesis deals with

of a building-block LSr. The principal aim has been
        '
routing scheme superior to human designers. The algorithrn

features which sharp!y define it from previous techniques.
           '
wirability is the most noteworthy one among them.

design a layout pattern without any human supports.

     This method realizes orthogonal wiring patterns

for vertical routes called "trunks" and the other for

called "branches". It first assigns each net to the

pattern with the minimum number of through-holes. The

of exactly one trunk and some branches. If these asszgnments

achieve an optimal pattern then it is necessary to break

than one trunk. The author ealls this operation a division

A trunk is divided for one purpose of guaranteeing perfect

and for another purpose of reducing a wiring area.

     The scheme with this divided-trunk style accomplishes

layout pattern, and has proven successful by experimental
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                                CHAPTER 1

                              INTRODUCTION

     Computer has enjoyed a steady growth since its first appearance in

the mid-1940's. The remarkable development into the modern high--speed

computer, however, had to wait until the introduction of integrated

circuits (TC) or large-scale integration (LSI).

     The recent trend in LSI technologies toward higher cornponent density

has drastically increased the complexity of designing a chip layout.

From this point of view, development of a computer-aided design (CAD)

system is urgently needed.

     A design system for LS! may be divided into several parts ---

partitioning a given network [ll - [4], placement of individual elements

[5] - [7] and wire routing [8] - [18]. Among them, the most important is

the last wire routing technique, sinee the time necessary for determining

wiring routes takes more than half of the total design time.

     It was in 1957 that R. C. Prim [8] and H. Loberman [9] suggested the

methods of connecting terminals for the first time. In 1959, E. F. Moore

[10] reported an algorithm for finding the shortest path through a maze.

In the above works, the goal was laid on minimization of total wire

length. rn 1961, the most noticeable algorithm was presented by C. Y. Lee

[11] (this algorithm is usually referred to as "Lee's algorithm"). rt ean

find whatever sophisticated routes if any. Unfortunately, some serious

disadvantages are also contained in this algorithm, i.e., too much storage

required and too much time consumed.

     For the last deeade several rnodified versions of Lee's algorithrn have

been introduced: the algorithm for multi-layer boards of S. Heiss [12],
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the line seareh technique of D. W. Hightower [13] or K. Mikami [14], the

cellular routing method of Hitchcock [15], the stepping aperture technique

of S. E. Lass [16], the ehannel routing technique of A. Hashimoto [17]

and the method of S. B. Akers, Jr. [l8].

     rn a layout design of LSI mask patterns, the first objective is the

highest possible component density. The only way to accomplish this is

to reduce an area for routing wires, since that for circuit cells is

fixed. A building-block LSI is suitable for this purpose. It consists

of several "blocks"; each block is composed of two parallel rows of

circuit cells with an interconnection area between them. Such an LSr

admits an approach in which a wiring pattern for an individual block is

independently optimized. Then, what is an "optimal" wiring pattern? At

the present state of the art, the optimality requires the following

three: (1) Perfect wirability -•- all of given nets are routed. (2)

Minimum possible width - nets in ablock are routed within an area of

minimum possible width. (3) Minimum possible number of through-holes ---

a net is routed in the simplest style if possible.

     Perfect wirab""y ' is indispensable for a design automation system,

because its lack of the ability implies inevitability of human supports.

Unfortunately, none of the wire routing techniques introduced above

possesses it. Also, they may continue to make vain efforts to search for

wiring routes even in the case where insufficient wiring area will not

                                                                'allow realization of required nets.

     Optimal patterns rnay be found for a small-sized problem. But on the

other hand in a practical, large-sized problem, the opttmality is rather

less practical. The author believes that a "good" wire routing program

should be one of high costlperformance. This thesis directs the seareh
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for a near optirnal scheme for wire routing. The author takes an approach

of iterative improvement; first assign each net to the simplest routing

pattern, second guarantee perfect wireability with minimum possible

modifications of routing patterns and last reduce the wiring area as much

as possible. The improvement processes are based upon a channel routing

style which is substantially rnore versatile than those previously analyzed.

Speeificially, previous papers [17] and [19] dealt with a style in which

each net had a single, straight trunk with feeders to eell terminals; this

thesis expands the style with methods of dividing a trunk, at any grid

position, permitting the resulting subtrunks to overlap in the direction

parallel to the terminal rows. The advantages of this expanded style are

substantial: 1) trunks may be divided to eliminate cyelic horizontal

constraints and 2) trunks may be divided to break up long constraint

chains which cause the track count W to be larger than the maximum trunk-

crossing count Wo (sometirnes W = 2.Wo for the single trunk style).

     Chapter 2 presents a mathematical model and proves that the divided-

trunk style can eliminate all of eyclic horizontal constraints except in

some conditions which are expected to be extremely rare.

     Chapter 3 is concerned with comparison between three dividing

methods proposed and the conclusion is reached that the methods r and I'

should be applied in preference to the other methods if possible. Then,

extension of cycle elimination capability of these methods is intended.

Also, an algorithm for e!iminating all of cyclic horizontal constraints

is presented.

                                                                         '     Chapter 4 discusses a width reduction process. The algorithm proposed

there takes a heuristie search method to achieve near optimal width.

The main feature of the algorithrn is that it can take advantage of a more



versatile routing style than those

this is an exhaustive process, so

to limit the search space.

 previously analyzed.

that it ernploys some

                4

  In practice,

heuristic functions
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                                 CHAPTER 2

                      REAL!ZABILITY OF A SET OF NETS

2.1 Introduction

     This chapter constructs a mathematical model for a wiring area, not

far from a physical LSr mask pattern. On the model it is discussed

whether a given set of nets is realizable.

     A net is represented initially by the simplest routing pattern that

consists of one trunk and some branches connecting it to appropriate

terminals. Then, wire routing problem is equivalent to determining a

layout pattern of trunks without overlapping branches of different nets.

Tn order to avoid overlapping branches at any y-coordinate within the

wiring area, a trunk with a branch contacting the left-side terrninal must

be located to the left of the other trunk with a branch contacting the

right-side terminal. This thesis expresses such constraints between

trunks by a direeted graph. The author calls it a horizontal constraint

graph, in short, an HC-graph.

     A set of trunks should be realized by laying them out in the order

determined by the corresponding HC-graph. Then, if the HC-graph contains

any cycle, all of them must be eliminated. To accomplish this, the

author devises only three simple methods of dividing a trunk and defines

them formally. These forTnal definitions make it possible to prove that

the divided-trunk style can eliminate cyclie constraints except in sorne

conditions which are expected to be extremely rare.

pm22Drt fLSrModel
     Fig. 2.1 illustrates a model for a mask pattern of a building-block
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LSI. In order to describe the model used in this thesis, the following

terms are presented.

     (1) Element row: Row of fundamental circuit elernents such as gates

               or flip-flops.

     (2) Internal terminal row: Set of terminals in each element row.

               Each such set is assumed to form a straight line.

     (3) Internal wiring area: Area between a pair of element rows.

     (4) Block: Pair of elernent rows and an internal wiring area between

               them.

     (5) External wiring area: Area for interconnection of different

               blocks.

     (6) Upper and lower terminal rows: Rows of imaginary terminals at

               the upper and lower bounds, respectively, of a wiring area.

     (7) Track: Straight line on which vertical wire segrnents run.

     (8) Channel: General term for internal and external wiring areas.

     As is seen in Fig. 2.1, the maskpattern of a building-block LSI

consists of several blocks, external wiring areas and bonding pads. Wire

routings are performed in internal and external wiring areas. Terminals

of elements and through-holes are placed only at the quantized mesh points

(grid points) on the maskpattern. Also, two layer wiring is permitted:

one layer for vertical routes called trunks and the other for horizontal

routes called branches. Trunks and branches are connected by through-

holes.
       '
     In a building-block LSr, wire routings are performed first in internal

wiring areas and then in external areas. This thesis assumes a model for

a wiring area with terrninal rows arranged in the y-direction, since such

a model is valid for both an internal wiring area and external one. It
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is also assumed that the length of the left-side terminal row is equal to

that of the right-side terminal row and that wire routings should be

perforrned within the area.

     Width W of a wiring area is defined by

     W = (x-coordinate of the right terminal row) - 1,

where the coordinate is represented by the pitch number of meshes and the

x-coordinate of the left terminal row is assumed to be zero.

2.3 Prelimina Definitions

     In a layout design of a building-block LSr, the following design

criteria are considered:

     (1) Perfect wirab.Ukity'--- all of given nets are routed.

     (2) Minimum possible width --- nets in a block are routed within an

area of minimum possible width.

     (3) Fewest possible through-holes --- a net is routed in the simplest

possible style.

     At the state of the art, total wire length is less significant.

     A routed pattern is said to be "optimal" if it satisfies all the

above criteria. Optimal patterns may be found for a small-sized problem.

But on the other hand in a practical, large-sized problem, it seems

impossible to find an optimal pattern. Moreover, even if one can

construct a wire routing algorithm that always achieves an optimal

pattern, it may not be valid to say that the algorithm is optimal. A

practical wire routing algorithm should be evaluated by its costlperfor-

mance.

     The wire routing scheme proposed in this thesis has a structure of

iterative improvernent. Tn this sense the process should start from the
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simplest routing style. Fig. 2.2 shows the simplest routing pattern of a

net i on a quantized wiring area. This wiring route consists of one

vertical line segment called a trunk, and some horizontal line segments

called branches which conneet it to appropriate terminals. Here it should

be noted that exactly one trunk is assigned to the net. The net may be

identified with the trunk assoeiated with the net. This implies that

input data are specifications of trunks. Hereafter, let ti denote the

trunk for the ith net.

     [lhe

tation of

and L(ti)

U(ti) "

u(ti) +

L(t.)
   1
1(ti)

•-- e),

             Y

       Fig. 2-2.

first formalization

 required nets.

, and two sets T                L
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              -

              -
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      I
      I
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i
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coordinates of left-side terminals related to the ith net, and TR(ti) fOr

right-side terminals. U(ti) and L(ti) are the upper end and the lower

end of the trunk ti, respectively. Formally, they are designated as

follows:

     u(ti) =(g(t.) if tg:hglil'Jl.i.ri gOes through upwards,

                 1-
     L(ti) = I:(t.) if tg:hgr..'l.li.if gOeS through downwards,

                 i
where u(ti) = min( TL(ti) U TR(ti) ) and 2(ti) = max( TL(ti) U TR(ti) )•

     The second formalization step is a directed-graph representation of

constraints between trunks. A wire routing program specifies positions

of trunks in order. These specifications must be done so that they do

not overlap branches of different nets. In order to avoid overlapping

branches at any y-coordinate, a trunk ti with a branch contacting the

left-side terminal must be located to the left of the other trunk t. with
                                                                    J
a branch contacting the right-side terrninal. This thesis expresses such

a horizontal constraint between these two trunks t. and t. as t. e rt.
                                                   1J]1
(see Fig. 2.3). Formally, the set rt. contains t. if and only if the
                                      1J
intersection TL(ti) A TR(tj) is not empty. r may be considered as a

multiple-valued function or mapping from the set of trunks R into itself.

                                                        -1     It is convenient to consider the inverse mapping r                                                           of Y as given

by

     r'iti = { tj l ti e rtj }•

                                    -1     For a set of trunks A, rA and r                                      A are defined by

     rA = Ut. e Arti, and
            i
     r-iA = Ut. e Ar-iti•

              i



by

where

                   ATransitive closures r

"rt. . rt.u r2t.u .•

  Zl1Ar'iti = r-itiu r-2ti

 for each k, k21
rk+iti = r(rkti), and

r-k-it. = r-i(T-'kt.).

      11
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     A horizontal constraint graph, in short, an HC-graph, Gh = ( R, T )

is formed as follows: Each vertex of Gh corresponds to a trunk and a

directed arc is drawn from a vertex t. to a vertex t. if and only if
                                    1J
tj e rti holds. An HC-graph does not contain a self-loop (an arc with

the same vertex at its start and end point) or a parallel arc.

     Throughout this thesis a cycle in an HC-graph is represented as a

set of vertices (trunks). This representation should cause no confusion,

since an HC-graph has no parallel arcs in it.

!ElÅ}lsg!nR,!g-E:.!,1 2 1 A set of nets is given in a tabular form as Table 2.1.

     As is seen from the table, the scheme introduced in this thesis

identifies a set of nets with the corresponding set of trunks. Various

kinds of optimization which may be required in the course of the process

can be achieved by altering the way of assigning trunks to nets.

     As for the set of trunks R                                   horizontal relations between trunks                              2,1'

are

     Ttl = {t2}, Vt2 = {t4}, rt3 = {tl, ts}, rt4 = {ts} and rts = Åë.

     The above relations are mapped into the HC-graph shown in Fig. 2.4.

Fig. 2.4 indicates that the set of trunks can be realized by placing the

trunk t3 on the leftmost track, tl on the next track and so on.

     On the other hand, the HC-graph for the set of trunks given in

Table 2.2 contains a cycle {tl, t2}, as is seen in Fig. 2.5. This

implies that the trunk tl must be laid to the left of t2 and also t2 must

be laid to the left of tl, whieh is impossible.

     The above suggests the following theorem, which is the most funda-

mentai theorem on realizability of a set of trunks.

Theorem 2.1 The necessary and sufficient condition that a set of trunks

R can be arranged without any overlap of branches is that the HC--graph



                                                                      14

corresponding to R does not contain any cycles.

     (Proof ornitted)

     This theorem states that if any cycles are contained in the HC-graph

then all of them must be eliminated by dividing trunks in suitable ways.

This should be done by representing a net by two or more trunks. The

author calls such an operation "a division of a trunk". Methods of

dividing a trunk are proposed in the next section.

TL(ti) TR(ti) U(t.)1 L(ti)

tl {1} {2} o 4

t2 {4} {1} 1 4

t3 {2,5} Åë 2 oo

t4 {3} {4} o 3

t5 Åë {3,5} 3 co

Table 2.1. A set of nets R2,1'

tl t2

t3

Fig. 2-4

  t5

. HC-graph for the

t4

set of trunks R2,1•
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t'1 TL(ti) TR(ti) U(t.)1 L(t.)1

tl {1} {4} o 4

t2 {4} {1} 1 4

t3 {2,5} Åë 2 co

t4 {3} {2} o 3

t5 Åë {3,5} 3 oo

Tab le 2.2. A set of nets R2,2'

tl
t2

t3

Fig. 2-5

t5

.
HC-graph for

 t4

the set of trunks R 2,2'
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2.4 Trunk Division Methods

     This section describes trunk-division methods. This seheme limits

them to only three kinds shown in Fig. 2.6. These three kinds of methods

are enough for achieving perfect wirability, which is shown in Seetion

2.6.

     These methods perform trunk-division operations as follows:

Method I divides a trunk into two trunks, one above the dividing point

and the other below it. The upper trunk is arranged to the left of the

lower trunk. Method I' is the dual form of Method I.

     The other methods produce two trunks, one for connections to the

left-side terminals and the other for connections to the right-side

terminals. The.e,e two trunks are connected by a branch at a dividing

point. The point of Method IZ is above or below all of the terrninals

associated with the trunk to be divided. Method rll divides a trunk at

one of its own right-side terminals, and Method III' at one of its own

left-side terminals.

     The three trunk-division methods are forrnally expressed as follows.

In Fig. 2.6-(2), for instance, the divided trunk t? connects with two
                                                 i
branehes. Notice that one connects to the right-side terminal while the

other, i.e., the branch with the y-coordinate being yD, does not. Tn

the expressions below the existence of such a branch at a dividing point

(yD) is reflected by the overscored y-coordinate, such as ' y' D. For the
trunk t;., YD is added to the right set TR(ti2.). Such a representation

leads to the following formal expressions of the three methods. In the

expressions below, a trunk ti is divided at y = yD by each of the methods

                                21                         1into two distinct trunks ti and ti, and the left and right sets of ti

     2and t. are speeified.
     i
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Method r

     TL(t.1.) = { y l y E TL(ti) and y > yD } U { YD

     TR(t .i.) = { y l y e TR(ti) and y ;l yD },

     TL(ti•) = { y l y e TL(ti) and y ;S yD },

     TR (ti•) = { y l y e TR(ti) and y < yD } U { g7D

     The condition for its application is that U(t

Method I'

     TL(t.i.) = {y Iy e TL(ti) and y ;l yD },

     TR(tl.) = { y l y e TR(ti) and y > yD } U { YD

     TL (t;•) = { y l y e TL(ti) and y < yD } U { 37D

     TR(ti.) = { y 1 y e TR(ti) and y ;! yD }.

     The condition for its application is the same

Method lr

     TL(tl•) = TL(ti), TR(tl•) = { YD },

     TL(t2i) = { YD }, TR(ti.) = TR(ti)•

     The condition for its application ts

     (1) TL(ti) l Åë and TR(ti) l Åë, and

     (2) L) yD > 2(ti) or U ;! yD < u(ti),

where L is the lower end and U is the upper end of

Method rZI

     TL(til) = TL(ti), TR(til) = { YD },

     TL(t;•) ={ YD }, TR(ti•) = TR(ti) •

     The condition for its application is

     (1) TL(ti) \ Åë, (2) yD e TR(ti) and (3) ISTR(t

 })

 }.

i) <

 }s

 })

 as

 the

 ))i

YD < L(ti)•

that of Method I.

 wiring area.

 2.
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Method ZIrt

     TL (t .1. ) = TL (ti) , TR(t l. ) =' { YD },

     TL(ti•) = { YD }, TR(ti•) = TR(ti)•

     The condition for its application is

     (1) TR(ti) l Åë, (2) yD e TL(ti) and (3) ISTL(ti) l 2•

    Here, for a set A, /tA denotes the number of elements of A.

    The following is the definition of r modified so that r should be

able to represent newly generated arcs.

Definition 2.1 For a set Tx(ti) = {yl, y2, •.. , y., YD} (X = L Or R),

let Tll(ti) ='{yl, y2, ... , y.} and let Tll(ti) ={ yD }. Then, for two

trunks ti and tj the relation R(ti, tj) is defined by

     R(t" tJ) = (? T2(tl; rlliTIt(IJJ )' ) v ( T2(tz) A Tk(tJ) )

                 U( Tt(ti) A TR(tj) ) U ( Tft(ti) A TLI(tj) ) otherwise,

and r is defined by

     rti = { tj l R(ti, tj) i Åë }•

     In order to illustrate the effects of dividing a trunk upon an HC-

graph, a situation shown in Fig. 2.7 is assurned, where the set of trunks

R is {tL(1), tL(3), tL(4), tL(6), ti, tR(1), tR(2), tR(4), tR(5)}.

     rn the situation the trunk t. is divided by each of the methods.
                                i
Then, the HC-graph is altered as shown in Fig. 2.8, where R(ti, yD, M) is

the set of trunks after the trunk ti is divided at y = yD by the method M.
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2.5 Elimination of C elic Horizontal Constraints

     This section examines eonditions under which

can be eliminated by dividing a trunk by each kind

proposed in the previous section.

2.5.1 Methods I and I'

Definition 2.2 Let R be a set of trunks. Then,

tx(yj) (X = L or R) is defined as

     tx(Yj) " (i:d.fi.ig ther:tiliik'll.lk e R such

where "undefined" means that the terminal at y =

side is not associated with any nets. Such -a terminal

terminal.

     zn general, dividing a trunk ti at y = yD bY
the arcs (tl., tR(yD)), (tL(yD), ti.) and (tZ., tl.)

defined and not identical with the trunk t.. If
                                           i
undefined or equal to t., the arcs including them
                       i
the other hand, for the method I', generated arcs
(tL(yD), tl•) and (t.i., ti.).

Definition 2.3 ln an HC-graph G                                    three consecutive                                h'

ti.1, ti, ti+1 such that rti-19 ti and rti9 ti+1

separable at y = yD if they satisfy

     (sc-A) min R(ti-1, ti) > yD > max R(ti, ti+1

or

     (sc--B) min R(ti, ti+1) > yD > max R(ti-1, ti

     Throughout this section the following assumptions

loss of generality.

     (Al) A cycle C is of the forM {tl, t2, ... ,

                      22

 a cycle in an HC-graph

  of the methods

for every point yj,

 that Tx(tk) ) Yj'

y. on the corresponding
]

      is called an empty

 the method r generates

if tL(yD) and tR(yD) are

tL(yD) and!or tR(yD) are

 are not generated. On

       2 are (ti, tR(YD))'

' vertices (trunks)

  are said to be

)s

).

 ' are made without

 tn = tl}, where nZ3
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and rt j ) tj+1 for j = 1, 2, ... ,n -- 1.

     (A2) Tl(ti) = Til(ti) = Åë for each trunk ti e c, that is, c contains

no divided trunks.

Lemma 2.1 A cycle C ts eliminated by dividing a trunk ti e C at Y = YD

by the method r or 1' if and only if ti-1, ti, ti+1 are separable at

Y = YD'

     (Proof) Suppose that ti..1, ti and ti+1 satisfy the separability

condition (SC-A) of Definition 2.3: Divide the trunk ti at y = yD by the

method T. Then, from (SC-A) and (A2), we have

     R(ti-1, ti) = TL(ti-!) A TR(ti) S- TR(tl.)

and

     R(ti, ti+1) = TL(ti) A TR(ti+1) S- TL(t;•)•

     Hence, we have

     tii. e rti-i, t;. Åë rti-i, tl. Åë T-iti+i and tll. e r-iti+i.

     This indicates that the cycle C has been eliminated. Further, in

this case it is easily shown that any division of ti by the method I'

does not succeed in eliminating the cycle C.

     In case where ti-1, ti and ti+1 satisfy the separability condition

(SC-B), dividing ti at y = yD by the method r' leads to

     t.i. Åë Tti-i, tZ. s rti-i, t.i. e r-iti+i and t;. Åë r-iti+i,

which mean that the cyele C has been opened.

     The necessary part is straightforward from the above discussion.

                                                             Q. E. D.

Theorem 2.2 A cycle C is eliminated without generating any new cycles

by dividing a trunk ti eC at y= yD by the method I or r' if and only if

     (1) ti-1, ti and ti+1 are separable at y = yD
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and

     (2) one of the following holds:

       (i) yD e TL(ti) U TR(ti),

       (ii) neither tL(yD) nor tR(yD) is defined,

                                                  A       (iii) tL(yD) only is defined and tL(yD) t rti holds,

       (iv) tR(yD) only is defined and tR(yD) Åë f-lti holds, or

                                                            A       (v) both tL(yD) and tR(yD) are defined and tL(yD) Åë rti,

                    AA           tR(yD) Åë r-lti, tL(yD) di rtR(yD) and tL(yD) \ tR(yD) hold.

     (Proof) The proof proceeds by eontradiction. !t must be shown that

if ti-1, ti and ti+1 are separable or if none of the conditions (i) - (v)

of the theorem is satisfied then the division either leaves the eycle C

or produces some new cyeles. It has been known in the previous lemma

that if the separability condition is not the case then the cycle C ean

not be eliminated. Thus it is sufficient to show that if ti-1, ti and

ti+1 are separable at y = yD but if none of the conditions from (i) to

(v) holds then the division produces some new cycles. Here, one may

assume (SC-A) of the separability condition, since the other condition

(SC-B) is the dual form of (SC-A) and hence the proof is similar. In

this case the method I must be selected as mentioned in the proof of

Lemma 2.1.

     The negation of the condition (iii) means that there exists at

least one of the trunks tL(yD) and tR(yD). Also, it is known by negating

(i) that those trunks differ from the trunk t. to be divided. Thus, it
                                              i
is enough to consider the following eases:
                                        A     (a) tL(yD) is defined and tL(yD) E rti,

                                        A-1     (b) tR(yD) is defined and tR(yD) e r ti,
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                                                          A     (c) both tL(yD) and tR(yD) are defined and tL(yD) e rtR(yD), and

     (d) both tL(yD) and tR(yD) are defined and tL(yD) " tR(YD)•

     lt is shown in the below that if one of the above eonditions holds

then the division produees a new cycle. First, the case (a) is considered.

Since the method 1 was adopted, the are (tL(yD), ti) has been generated.

After the division of the trunk ti, at least one of the relations tL(yD)
e r" tl. and tL(yD) e fti. holds because tL(yD) e "rti in the original HC-

graph. rf tL(yD) e Ftl. holds then this division generates a cycle til. )

"'
 '> tL(yD) ) t;• ) til• and if tL(yD) e ft;. does then a cycle ti . ... ->

          2tL(YD) " ti, both of whieh are new cycles since the original HC-graph

                                           2eontains no arc corresponding to (tL(yD), ti) (see Fig. 2.9(a)).

     The case (b) can be proved in a similar manner.

                                                             21     Next, in the case (c), the division generates a cycle ti ÅÄ ti ÅÄ

                         2tR(YD) '> "' ÅÄ tL(YD) ) ti, WhiCh is new for the sarne reason as in the

case (a) (see Fig. 2.9(b))•

     Finally, the case (d) rnay be regarded as a special case of (c).

     The sufficient part is obvious from the above.

                                                              Q. E. D.

     As an example, consider the set of trunks given in Table 2.2. The

HC-graph shown in Fig. 2.5 contains a cycle {tl, t2}. Divide, for

instance, the trunk tl at y = 2 by the method r, and the resulting HC-

graph contains no cycle. Zn this case the trunk tL(2) is t3 and the

trunk tR(2) is t4, both of which satisfy the condition (2) stated in

Theorem 2.2.

2.5.2 Method II

Theorem 2.3 A cycle C is eliminated without generating any new cyeles

by dividing a trunk ti eC at y= yD by the method II if and only if
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     (1) Ll yD > 2(ti) or U5 yD < u(ti)

and

     (2) one of the following holds:

       (i) neither tL(yD) nor tR(yD) is defined,

                                               A       (ii) tL(yD) only is defined and tL(yD) Åë rti,

       (iii) tR(yD) only is defined and tR(yD) Åë Ar-lti,

       (iv) both tL(yD) and tR(yD) are defined and tL(yD) Åë "r-lti,

            tR(yD) Åë Fiti, tL(yD) Åë ftR(yD) and tL(yD) f tR(yD)•

     (Proof ornitted)

2.5.3 Methods rlT and Zrr'

     The following theorem states that the rnethods Irr and TU' proposed

have the most powerful ability to elininate cycles. So those trunks to

which the method Irl or rrl' is applicable should be distinguished from

others, and they are called "mighty trunks".

Theorem 2.4 A cycle C is eliminated without generating any new cycles

by dividing some trunks in C by the method ITr or III' if and only if C

contains any mighty trunks.

     (Proof) The proof follows from the following two lemmas.

Lernma 2.2 !f a cycle C eontains two eonsecutive trunks ti and ti+1 such

that ISTL(ti) t ISTR(ti+1), it can be eliminated by dividing ti or ti+1 by

the method II! or Il!'.

     (Proof) Suppose IITL(ti) > lfTR(ti+1). There is an element yD such

that yD e TL(ti) and yD Åë TR(ti+1). Dividing the trunk ti at y = yD by

the method rlr', we have

     r-itii = { tj I R(tj, tl.) i Åë }

           ={ tj l T2(tj)A Tk(t.i.) sÅë and tj l tl. }=Åë
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and ti+1 Åë rt;., since R(t;, ti+1) = Åë•

     The above shows that the cycle C has been elintnated.

     In case IETL(ti) < ltTR(ti+1), dividing the trunk ti+1 at y = yD by

the method rll where yD E TR(ti+1) - TL(ti) eliminates the cycle C.

                                                           Q. E. D.

     (Remark) Division by either of the methods III and III' generates

no new cycles since it is always true for such divisions that

     rt.i. u rti. E rtiU {tl, ti.}

and
     r- it l. u r- it 2i c. r-iti U {t l. , ti. }•

Lemma 2.3 Zf a cycle C contains two consecutive trunks ti and ti+1 such

that ltTL(ti) 2! 2 and IITR(ti+1) l; 2, it can be eliminated by dividing ti

and/or ti+1 by the methods III and/or III'.

     (Proof) rf TL(ti) Sg TR(ti+1), there exists an element yD such that

YD e TL(ti) - TR(ti+1). Then, dividing the trunk ti at y = yD by the

method !IT' eliminates the cycle C as mentioned in the preceding lemma.

Also, if TR(ti+1) Sl TL(ti), dividing the trunk ti+1 by the method Il!

leads to the desired results.

     Next, suppose TL(ti) = TR(ti+1) = S; it follows from the assumption

of this lemma that S contains at least two distinct elements yl and y2.

Divide the trunk ti at y = yl by the method IIr' and ti+1 at y = y2 by

the method IZr. Then it should be noted that the trunks tl and t2
                                                               i+1                                                        i
should not be contained in any cycles in the resulting HC-graph since

r-lti = Åë and rti.+1 = Åë. Also, one can easily see that rti. ) tl.+1

because T2(t;.) = TR(tl.+i) =Åë and Tll(ti.) = Tl(tl.+i) = Åë. Thus, an the

above shows that the cycle C has been eliminated.

                                                           Q. E. D.
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26 R 1i abilt ofaSt fNt
     The preceding sections were concerned with the problem of how to

eliminate a given cycle by applications of the proposed methods. This

section considers whether a given set of nets can be realized, in other

words, all of cycles in a given HC-graph can be eliminated, under the

constraints listed below:

     (1) Two-layer wiring is permitted. One layer is used for horizontal

wiring routes and the other for vertical routes.

     (2) Wire routing is always performed in a meshwise way and no half-

rnesh wiring is permitted.

     (3) All of wiring routes must be within a wiring area whose vertical

length is fixed.

     The eonstraints above are commonly applicable to LSI fabrication.

There is no restriction on the width W of the wiring area, which will be

considered in the following ehapters.

     Theorems 2.2, 2.3 and 2.4 are used below to find the eondition to

be satisfied by a given HC-graph in order for all cycles to be

eliminated.

Definition 2.4 Let G be a directed graph. (i) A pair of vertices v.
                                                                     i
and v. of G are connected if rv. ) v. or rv.) v.. (ii) Let V be a set

of vertices of G which are connected and let vk be a vertex of G such

that vk Åë V. Then, the union VU{ vk } is connected if there exists

some vertex vi in V such that rvi) vk or rvk) vi.

Definition 2.5 A component of a graph is a subgraph whose set of

vertiees is maximally connected.

Definition 2.6 Let Cl and C2 be cycles. If there exists ti e Cl and

                       AAtj e C2 such that tj s rti and ti e rtj, then Cl and C2 are said to be
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connected, and if Cl and C2 do not have such a pair of trunks, they are

said to be independent.

     Components of an HC-graph are classified into the following three.

     (1) Cycle-free component: Component containtng no cycle.

     (2) Loop component: Component eontaining cyeles but no nighty

                                       '         trunks.

     (3) Compound component: Cornponent containing cycles and at least

         one mighty trunk.

Lemma 2.4 A loop component consists of only one eycle.

     (Proof) By the definition of a loop component, it has at least one

cycle in it. Let it be C= {tl, t2, ... , tn = tl}, where nl3 and

rt j ) tj+1, j = 1, 2, ... ,n- 1. Since no mighty trunks are contained,
IITL(ti) = ltTR(ti) = 1 for any trunk ti e c. Thus, rti = {ti+1} and r-lti

= {ti-1} hold, so that this component is composed only of the cycle C.

                                                              Q. E. D.

Lemma 2.5 All of cycles in a compound component can be eliminated.

     (Proof) First, note those eycles in a compound cornponent whieh are

mutually independent. Each of these cycles contains at least one mighty

trunk, since otherwise the component will be a loop component. Hence,

it is known from Theorem 2.4 that all of these cycles can be eliminated

by applications of the methods IIZ and rll'.

     The above states that it is enough to deal with mutually connected

                              Acyeles in the component. Let C be union of cycles which are conneeted

                                                    Awith one another and independent of others. Since C is composed of more

than one eycle, each cycle contains mighty trunks. Consider a mighty

trunk ti to which the method IIT is applicable. Divide ti by the method

ZTr at y = yD such that yD e TR(ti), and we have
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     #r-ltil = #{ tp 1 R(tp, til') f Åë }

            = #{ tp l TLO(tp) A Tk(t.i.) lÅë and tp \ tl. }

            = fS{ tp I yD e T2(tp) and tp l t.1. }

           S 1,

and

     fSrti' = IS{ tq l R(t;•, tq) iÅë}

          " IS{ tq l Tl(t;')A TR(tq) lÅë and tq f tZ' }

          = IS{ tq l yD e TII(tq) and tq f tZ• }

          = o.

                                                      A     The above rneans that if there exists a trunk t. in C such that
                                                 i
ISr-lti 4 2 then it can be replaced with the trunks til. and ti. such that

#r-ltl. s1 and #rti. =o. Here t;. does not belong to any cycle. if this

                                               Aoperation failed to eliminate all the cycles in C, those cycles which

remained to be eliminated would be rnutually independent since #r-lt s 1
                                                                 p-
for any trunk t of such any cycle. If any cycles should be left in the
              P.
resulting set of C, all of them can be eliminated, for each of them still

contains those trunks to whieh the method III' is applicable. An example

is t q such that IATR(tq) "1 and #TL(tq) l2 which remains undivided by

                                           1the above operation and another is a trunk ti for some divided trunk ti.

So the lemma has been proved.

                                                           Q. E. D.

     From the results obtained we can derive the most important theorem

in this thesis.

Theorem 2.5 A set of nets is unrealizable if and only if it has all the

following properties:
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     (1) No terminal is empty. !n other words, every terminal is

associated with some net.

     (2) For any trunk ti, ISTL(ti) " #TR(ti) = 1•

     (3) There exists a trunk ti such that TL(ti) l TR(ti).

     (Proof) ("if" part) Consider the ith net: Property (1) and
property (2) guarantee that lfrti = IS(TL(ti) - TR(ti)) and IIr-lti =

IR(TR(ti) - TL(ti)) in the HC-graph, since every terminal is associated

with some net. Therefore, if TL(ti) \ TR(ti) then ncti = IET'lti = 1

and otherwise fErt. = lpr-'lt. = o, i.e., the trunk t. corresponds to an

                 11 1
isolated vertex in the HC-graph. Property (3) guarantees that the HC-

graph contains vertices that are not isolated. It follows that the HC--

graph corresponding to a set of nets having the properties of this

theorem is composed of several loop components, maybe together with some

isolated vertices. In order to eliminate a cycle comprising a loop

eomponent, a trunk of the cycle must be divided by one of the methods I,

r' and rl, whereas it is evident that, wherever divided, the conditions

of Theorem 2.2 or 2.3 should not be satisfied.

     ("only if" part) The proof proceeds by contradiction. First,

consider the case where the left terminal at y = yo is empty and the

right terminal at y = yo is not. Then the trunk to containing yo in its

right set does not belong to a loop cornponent but some other. Since

eompound eornponents which may be contained in the HC-graph can be

reduced to a cycle-free component, as verified in Lemma 2.5, it is enough

to deal with the case where the HC-graph contains loop components Cl, C2,

...  , Cn and a cycle-free component Co containing the trunk to. It is

shown below that the cycles Cl, C2, ... , Cn aan be eliminated successive-

ly. Consider a trunk ti of the component Cl such that max TL(ti) <
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min TR(ti). Since yo t TL(ti) U TR(ti) from the assumption, there are

three cases to consider:

     (1) max TL(ti) < yo < rnin TR(ti),

     (2) yo < max TL(ti) < min TR(ti), and

     (3) max TL(ti) < min TR(ti) < Yo•

     In the case of (1) the method r can be applied to the trunk ti at

y = yo. Here, the conditions of Theorern 2.2 are satisfied since tL(yo)

                               Ais undefined and tR(yo) = to t r-'lti. Therefore, the division of ti

                          On the other hand, in the cases (2) and (3)eliminates the cycle C                      r

the method II can be applied to the trunk ti at y = yo. Hence, the

cycle Cl is eliminated by the division of ti. Here it should be noted

that a new cycle-free component including C                                                     has resulted from                                             and C                                           OI
this division. In other words, we have come back to the starting point

of the proof. Therefore, C2, C3, ... , Cn can be successively eliminated.

     Easier is the proof in ease that both of the terminals at y = yo

are empty.

     secondly, if each trunk ti has the property that TL(ti) = TR(ti),

the set of trunks is evidently realizable.

     Lastly, consider the case where the condition (3) of this theorem

does not hold. Here it may be further assumed that there exist no ernpty

terminals. There are three cases to consider. In either case it is

sufficient to show, as mentioned above, that all of those loop components

ean be eliminated which may be contained in the HC-graph.

     Case 1: Let ti be a trunk such that IETL(ti) = O, i.e., rti 'Åë

(its dual case can be proved in an entirely similar manner). Since

TR(ti) l Åë and there are no empty terminals, we have r-lti f Åë. Thus,
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the trunk ti can not belong to a loop component, that is, there is a

non-loop component containing at least two trunks. Further, it may be

assumed that this component is cycle-free since Lemma 2.5 guarantees

that any eompound component can be reduced to a cycle-free eomponent.

Consequently, as mentioned earlier, even if the HC-graph contains any

loop components, their cycles can be successively eliminated.

     case 2: Suppose that there is a trunk ti such that ISTL(ti) l2

and TL(ti) 7L TR(ti)• Then, the trunk ti belongs to a non-loop component,

which has at least two vertices since

      lfrti = O if and only if /S(TL(ti) - TR(ti)) = O•

     Therefore the remaining proof proceeds similarly to the case 1.

     Case 3: Suppose that the HC-graph contains a trunk t. sueh that
                                                        i
IPTL(ti) ;l 2 and TL(ti) = TR(ti)• Divide the trunk ti by the rnethod IZI

as follows:

      TL(tl.) = TL(ti), TR(t.1.) = { YD },

      TL(t;) = { YD }, TR(ti•) = TR(ti),

where yD e TL(ti) = TR(ti). Then, we have

     rtl = { t? } and r-itl = Åë,

       11                         1
     rt? =Åë and T-it? ={ tl }.

       1 11     This shows that the component {tl., ti} is cycle-free, as required.

This terminates the proof of this theorem.

                                                           Q. E. D.

     In a practical problern, a set of nets satisfying all of the

conditions of Theorem 2.5 is expected to be extremely rare. It follows

that we can derive the conelusion that any set of nets is realizable by

using the methods proposed in this thesis.



usE a le 22 Consider a set of nets given in Table

ti TL(ti) TR(ti) U(t.)1 L(t.)1

tl {3,9} {1,8} 1 9

t2 {13} {9} 9 13

t3 {2,15} {313}'
2 15

t4
{416}' {615}' 4 16

t5 {8} {216}' 2 16

t6
{111}' {4} 1 11

t7 {6} {11} 6 11

t8 {5} {12} 5 12

t9 {14} {5} 5 14

t10 {12} {14} 12 14

t11 {7} {10} 7 10

t12 {10} {7} 7 10

            Table 2.3. A set of netS R2,3.

     The HC-graph corresponding to the above set

Fig. 2.10, which is eomposed of three components:

component and the other two are loop components.

Hc-graph contains nine cyCleS {tl, t3, ts}, {tl,

t3, t4, t5}, {tl, t3, t4, t5}, {tl, t2, t3, t4, t

{t4, t6, t7}, {ts, tg, tlo} and {tll, t12}•

     First of all, three trunks t3, t4 and ts are

eliminate all cycles in the compound component: t

2.3.
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of nets is shown in

  one is a compound

 As is easily seen, the

t2, t3, t5}, {tl, t2,

6}' {tl' t3' t4' t6}'

 divided in order to

  at y = 2 by the3

,
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tl
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               Fi g.
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Then all the cycles

2.11. There still

Divide the trunk t                  8
12 by the method IT

   t    11

 2.10. 0riginal

y= 15 and ts at

 of this cornponent

remain two cycles

 at y= 11 by the

, and the

           t            12

       HC-graph.

       y = 16 both by the method IIr.

         are eliminated as shown in Fig.

        {ts, tg, tlo} and {tll, t12}•

       method I and the trunk tn at y=

HC-graph results as shown in Fig. 2.12.
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2.7 Conclusions

     This chapter is characterized as the definition of the three types

of the trunk-division methods. The success of the scheme developed in

this thesis is entirely based upon the divided-trunk style. Zt is shown

in Theorem 2.5 that the style can achieve one-hundred pereent wirability.

Zn this sense the approach of this thesis that restricts trunk-division

methods to only three types may be said to be valid. There still remains

the problem of how to realize a given set of nets in the minimum

possible width, whieh is discussed in later chapters.
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                                CHAPTER 3

                         (]YCLE ELrlVC[NATrNC PROCESS

3.1 Introduction

     The previous chapter concentrates on the problem whether a given set

of nets is realizable by using the three methods and gives no attention

to the width of the resulting layout pattern. This chapter analyzes the

effects of dividing trunks over the width of the wiring area. Some

concepts are introduced for this purpose. Also, the chapter aims to

extend the applicable range of the methods I and Z', and considers a pair

of cycles for which any dividing patterns do not satisfy the conditions

of Theorem 2.2, but which can be eliminated without producing any new

cycles if two trunks are simultaneously divided.

     The section 3.3 presents an algorithm for eliminating all of cyclic

constraints in a given HC--graph with minimum increase of the trunk-crossing

count.

pmt2Otl fthWh1Al th
     This section describes the outline of the wire routing algorithm

presented in this and the following chapters. The algorithm consists of

three functional blocks. The author calls them Algorithm A, Algorithrn B

and Algorithm C, respectively. Each of thern is base.d upon a heuristic

seareh method.

     Outline of the whole algorithm:

Ml: (input) Give a set of nets.

M2: Represent eaeh net by a trunk. Let R be a set of trunks. Then,

     construct an HC--graph.

M3: If the HC-graph contains no cycle then go to M5.
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M4: Eliminate all of cycles in the HC-graph (Algorithm A).

M5: Lay out the set of trunks R in the minimum possible width

     (Algorithm C).

M6: lf VJ(R) = Wo(R) then stop.

M7: Divide some trunk in a suitable way so that the track count

     reduced, and then return to M5 (Algorithm B).

END;

pt33HonzontalOrde dTkG

W(R) be

     This section introduces sorne basic quantities which may be considered

to be titely associated with the second criterion mentioned earlier.

Definition 3.1 Let R be a set of trunks. Let n(y.) denote the number of
                                                 i
trunks which cross the line y = yi. The maximum value of {n(yi)} is

denoted as Wo(R). If n(yi) = Wo(R) then the point yi is said to be

critical.

     (Remark) Consider a trunk ti such that U(ti) = L(ti). For such a

trunk ti it must be true that lfTL(ti) " ffTR(ti) = 1 and TL(ti) = TR(ti)•

In other words, there exists no vertical line segment corresponding to ti.

Such a net, which can always be wired without any influence on the wiring

width, can be removed from a set of nets. In this and the following

chapters it is assumed that a set of nets does not contain such nets.

     Width of a wiring area is determined by the number of tracks to be

prepared in the area on which trunks run. In general, it may be required

to place several trunks on one track.

Definition 3.2 Let R be a set of trunks. The track count W(R) is the

minimum possible number of tracks for arranging the trunks.

     (Remark) Wo(R) and W(R) are referred to as the trunk-crossing count
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and the track eount, respectively.

Definition 3.3 Horizontal-ordering functions from the left side and from

the right side, denoted as "xL and {IR, respectively, are defined as follows.

                                                  -1                                                    t' = Åë'               1 ifT     "XL(ti) = i...{".L(tj) + if tj e r-iti} if r-itl. I Åë,

and

     gR(ti) = (llax{AR(tj) + il tj e rti} i.'•ff rrtt'l l ÅëÅël -

!P:!!g2gl!!!z-ro rt 3 1 Horizontal-ordering functions "xL and "xR are defined for all

trunks in R if and only if the HC-graph is aeyclic.

     (Proof omitted)

!P:!!g12suul>!-,2:-Ero ert 32 For any set of trunks R,

     w(R) g max{"xL(ti) + StR(ti) - 1 1 tj e R}.

     (Proof omitted)

!Pt!!2Ils!!-!-2-:.Er !oert33Letx(ti)bethex-coordinateofthetrackonwhichthe

trunk t. can be placed. Then,
       i
     "xL(ti) 5 x(ti) 5 W(R) - "xR(ti) + 1.

     (Proof omitted)

     The diseussions so far concentrate on the horizontal constraint

aspect. Vertical relations between trunks are represented by trunk

groups defined below.

Definition 3.4 Trunk groups are sets of trunks Gl, G2, ... , obtained

from the following algorithm.

                          '     [ Algorithm for determining trunk groups ]

   lt!2ggl,u yo := mtn{u(ti) I ti e R};

          y., := max{L(ti) l ti e R};

          k := 1; Gl := Åë;
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      for y:= yo, y+1 while y5y. sLt
        [t!2gs!g A := { ti 1 U(ti) 5y5 L(ti) };

               Lf GkSA then Gk :=A

                else Lf Gk2A then

                  !bsglg k := k+ 1; Gk := A end

         end

   end;

     The above algorithm is used only for the purpose of determining

trunk groups. Trunk groups themselves can be obtained in a rnore

efficient way mentioned later.

     Max groups are trunk groups with the maximum cardinality. Evidently,

for a max group Gk, flGk = Wo(R). This means that if minimum-width wiring

should be possible then the layout pattern must be one such that each

track contains one by one from every max group.

     Combination of trunk groups and horizontal-ordering functions leads

to more accurate horizontal-ordering functions defined below.

Definition 3.5 For a trunk ti, xL(ti) and xR(ti) are defined as follows:

     xL(ti) . {i if f'iti = Åë,

              'Mgi. [ M21 e Gj A f-lti ( XL(tk) + flAL(tk, Gj, ti) ) ]

                        A-1                           t' l Åë'                        r                     if
                            1
and

                        A     XR(ti) = (igl. [ lill[',] ,lil f,, ( XR(tk) ' ISAR(tk' Gj' ti) ) ]

                        A                     if rt. I Åë,
                          1

where
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     AL(tk, Gj, ti) ='{ tp l tp e Gj A F-lti and xL(tp) l xL(tk) },

and

                                      A     AR(tk, Gj, ti) ={ tq l tq e Gj A rti and xR(tq) l xR(tk) }•

     As is evident from the above definition, xR is the dual function of

xL. In the following it is considered what is meant by xL(ti). Through-
out the following discussion a trunk group Gj is fixed. The set Gj A r"-lt

is the set of those trunks which belong to G. and which must be placed to
                                           J
the ieft of t.. within the extent of the set G.A F-lt., the set of the

             1J                                                      1
trunks which must be laid to the right of the track x = xL(tk) and to the

left of ti is AL(tk, Gj, ti). Here note that AL(tk, Gj, ti) S Gj.

Hence, the number of tracks to be prepared to the left of t. is not less
                                                          i
than xL(tk) + ISAL(tk, Gj, ti)•

     The horizontal-ordering functions xL and xR also satisfy the prop-

erties 3.1, 3.2 and 3.3. In particular, for every trunk ti, xL(ti) and

xR(ti) are greater than or equal to "xL(ti) and 2R(ti), respectively.

This means that xL and xR estimate the x-coordinate x(ti) of the trunk ti

                    AArnore accurately than xL and xR.

-23.=12!I!,gg!:El,!!ulLA4AlrthA

     --- Algorithm for eliminattng all of cycles in an HC-graph --

     Algorithm A eliminates all of cyclic constraints in a given HC•-graph

with minimum possible increase of the trunk-crossing count. When a trunk

is divided in order to eliminate cycles, the following three are required:

     (1) Minimize the number of trunks to be divided.

     (2) Minimize the inerease of the trunk-crossing count.

     (3) Minimize the following value when all cycles are eliminated;

         rnax{ xL(ti) + xR(ti) - i 1 ti e R }•

i
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     These requirements are reflected on the heuristic function F                                                                 used                                                               A
in the algorithm. The function FA is defined for every combination (ti,

yD, M) of a trunk ti to be divided, a dividing point yD and a dividing

method M, as follows. Here, the set of trunks after dividing a trunk ti

at y = yD by a method M is denoted as R(ti, yD, M) or simply as R'.

     (1) FA(ti, yD, M) = to (undefined) if it is irnpossible to divide the

trunk ti at y= yD by the method M.

     (2) FA(ti, yD, M.) = ck) if the division generates any new cycles.

     (3) FA(ti, YD, M) = co if Wo( (ti, yD, M)) > Wo, where Wo is deter--

mined in the algorithm.

     (4) FA(ti, yD, M) = al if there is no cycle containing ti.

     (5) Otherwise, FA(ti, yD, M) = Zi4.1 ci'fi(ti, yD, M), where cl rV c4

are positive constants and fl N f4 are defined as follows:

     fl(ti, YD, M) = (the number of cycles in the HC--graph Gh(R', r)).

     f2(ti• yD• M) = ( :.'S .,,,]1: :hX7:]irfP: 7h[i'g Åí', iO"tai::.;:'3;l.e?'

     f3(ti, YD, M) = (the number of terminals) - (the number of those

                     points for the set R' for which n(y) ;; Wo(R))•

     f4(ti, yD, M) is deterrnined by the number of arcs generated by the

division.

     f4(ti, YD, rYf) = O if i) neither tL(yD) nor tR(yD) is defined, or

                       if it) yD e TL(ti) U TR(ti)•

                                                        A     f4(ti, yD, M) = 1 if i) tL(yD) only is defined and rti l7b tL(yD), or

                       if iO tR(yD) only is defined and r"-lti $ tR(yD).

     f4(ti, YD, "() = 2 if both tL(yD) and tR(yD) are defined and both

                       differ from the trunk t..
                                              i
     !n the above, tL(yD) and tR(yD) represent the trunks which connect
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to the left and right terminals at y = yD, respectively. rf none of the

conditions is satisfied, new cycles are produced and hence FA(ti, yD, M)

is undefined. Tf ti is divided by the method III or IZr', f4(ti, YD, M)

= O since yD e TR(ti) or yD e TL(ti), respectively.

     [ Algorithm A ]

Al: If the HC-graph Gh(R, r) contains no cycle, then stop.

A2: Wo := Wo(R)•

A3: Compute FA(ti, yD, M) for all dividing patterns.

A4: If FA(ti, yD, M) is undefined for all dividing patterns then go to A7

A5: Choose a dividing pattern (ti, yD, M) to give the minimum value of

     FA, and divide the trunk ti at y = yD by the method M.

A6: Go to Al with R := R(ti, YD, M).

A7: If Wo > Wo(R) then stop, else go to A3 with Wo := Wo + 1.

     End Algorithm A;

     The performance of Algorithm A is outlined below. First of all,

cycles are searched in a given HC-graph. rf no cycle is found then it

terminates since no more process is needed. rf any cycles are found

then it finds a set of all those dividing patterns which can eliminate a

cycle(s) without any increase of the trunk--crossing count Wo(R). This

is aehieved by setting Wo :-- VJo(R) at the step A2. If the above-mentioned

set of dividing patterns is not null then one of them is chosen so that

the most cycles are to be eliminated (estirnation by fl). On the other

hand, if that set is null then the similar process follows with Wo :=

Wo(R) + 1, which means that those dividing patterns are admitted which

increase the trunk-crossing count. When it gets to the stage where all

cyeles can be eliminated, the algorithm, in this turn, chooses a dividing

pattern to give the minimum value of max{ xL(tj) + xR(tj) + 1 1 tj s R'}

.
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(estimation by f2)•

     Algorithm A has two exits Al and A7. !f it terninates at the step

A7, then there still rernain cycles in the HC-graph. For example, when

the set of trunks eharaeterized in Theorem 2.5 is inputted, it terminates

at the step A7 without going through the step A5. In this case an

additiona! proeedure is needed in order to guarantee perfect wireability.

The first step is to find a trunk tj such that TL(tj) --- TR(tj) and ItTL(tj)

2 2. Second, divide the trunk t. by the method II!. This process creates

a pair of terminals at the same column, analogous to that of empty

terminals. Then the control returns to the step A2 of Algorithm A. If

there exists no sueh trunk t., then divide an appropriate trunk at y =
                             j
U - 1 or at y = L + 1 by the method Tr where U and L represent the y-

coordinates of the upper and lower bounds of the wiring area, respectively,

and then the control returns to A2. This additional procedure is rarely

demanded for actual sets of nets, so it may be said that the procedure is

needed only for theoretical assurance of perfect wireability.

     The step A3 of Algorithm A takes the most time in the algorithm.

                values must be cornputed for all dividing patterns. TheAt the step, F              A
following discusses the way to reduce the time necessary for computing

FA(ti, yD, M)•

     (1) computation of fl(ti, YD, M)

     Given a dividing pattern (ti, yD, M), fl(ti, yD, M) is computed only

when this division generates no new cycle. Hence, fl(ti, yD, M) is equal

to Nc(R) minus the number of cyeles eliminated by this division, where

Nc(R) is the number of all cycles in the HC-graph.

     The followings are the equations for computing fl(ti, YD, M).

                                              .} and rdit.n c. = {t. .}.     For each cyele C., let rt. A C. = {t
                               1 j OUt,J - j ln,1                     J



                                                                         47

     fl(ti, yD, I) = Nc(R) - IS{ cj 1 cj ) ti and

                     min R(tin,j, ti) > yD > max R(ti, tout,j) },

     fl(ti, YD, 1') = Nc(R) - lt{ Cj 1 Cj ) ti and

                      min R(ti, tout,j) > yD > max R(tin,j, ti) },

     fi(ti, yD, ri) = Nc(R) - IS{ cj l cj ) ti },

     fl(ti, yD, Tii) = Nc(R) - #{ Cj 1 Cj ii) ti and TL(ti.,j) 7S yD },

     fl(ti, yD, III') = Nc(R) - #{ Cj l Cj D ti and TR(t..t,j) j6 yD }•

     (2) computation of f2(ti, YD, M)

     Given a dividing pattern (ti, yD, M), f2(ti, yD, M) is computed only

when the division eliminates all of cycles in the HC-graph. Here it

should be noted that if there exist dividing patterns which eliminate

all of cycles then.one of thern is always chosen at the step A5 because

of the coefficient of ISR in the definition of f2. In this case only it

is needed to divide the trunk ti practically and then to eompute the f2

value in the resulting HC-graph.
                                              A     On the other hand the approximate value f2 of f2 can be easily

           Acomputed. f2(ti, yD, lv[) is determined as follows:

                             (tj) + xR(tj) - 11 tj e R(ti, yD, M) }•     f2(ti, yD, M) = max{ xL

               A     Note that xL(ti) eorresponds to the length of the longest constraint
                                                      Achain that terminates at ti in the HC-graph. Hence, f2(ti, yD, M) iS

computed by finding the longest constraint chain in the HC-graph Gh(R', r) .
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3.5 Extension of the A licable Ran e of the Methods r and I'

     In Algorithm A presented in the previous section, those dividing

patterns are preferred that cause no increase of the trunk-crossing count.

Frorn such a standpoint the methods I and I' are used most frequently.

This section investigates the extent to which eycles can be eliminated
                    '
using only type I trunk divisions.

     Theorem 2.2 presented in Chapter 2 coneentrates on one cycle to

give the eondition for cyele to be eliminated by dividing a trunk without

generating any new cycle. The following discussion aims to extend the

applicable range of the methods I and I'.

     The eases where the eondition (v) of Theorern 2.2 is not satisfied

are considered. They are classified into following three types:

     (1) Forward type:
           tL(yD) e rAti, tR(yD) Åë f-iti, and tL(yD) t ftR(yD)•

     (2) Backward type:
           tL(yD) Åë fti, tR(yD) E "r'lti, and tL(yD) Åë ftR(yD).

     (3) Cyclic type:
           tL(yD) Åë r"ti, tR(yD) Åë "r-iti, and tL(yD) e ftR(yD)•

     In all the above cases it is assumed that tL(yD) differS frOM tR(YD).

     Since the backward type can be considered as a dual situation to the

forward type, any assertion which is dual to that of the foruard type

applies to the backward type. Consequently, no discussion is given for

the backward type in the following. Fig. 3.1 illustrates the three types.

     rn order to make the condition (v) of Theorem 2.2 valid in the

forward type, another trunk must be divided so that all of directed paths

(horizontal constraint chains) from ti to tL(yD) are eliminated. The

following considers only the ease in which a division of one trunk is
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t 1
                 tL(YD)

d-- --- --- ---- nve- -- -
                      tR(YD)

(1) Forward type
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 1

    tL(YD)

---- )o+-------            tR(YD)

             (2) Backward type

     t      i tR(YD)
                               tL(Y D)

             (3) Cyclic type

 Fig. 3.1. Three cases in which the condition

            in Theorem 2.2 is not satisfied.

enough to

Definition

cut

 3.

(trunks) on

P(t., t.) is defined
   lj

     P(ti, tj)

Definition 3.7

  the path from t                i
 6 ln an HC-graph

a directed path (or

        by

   -( ef, .zidll

          IJ
    In an HC-graph

tO tL(YD)'

Gh, let P(ti, tj) be

 paths) from ti to tj

  AÅë rt.,
    1

)U{t., t.} if t
      i3
             A
Gh, let tj erti. A

the

.

 set of vertices

Formally,

    A
.e rt

vertex

.

(other than



                                                                         50

t. or t.) which is contained in all of directed paths from t. to t. is

ca!led an articulation point of P(t., t.). The set of artieulation
                                    IJ
points of P(ti, tj) is denoted by Pa(ti, tj).

     rn a forward-type HC-graph, directed paths from ti tO tL(YD) are

called foward paths. The following two situations are considered

concerning such a foward path:

     (i) The forward path contains a trunk t belonging to a cycle C'
                                             m
which does not have a common portion with the cycle C (refer to Theorem

3. 1) .

     (ii) The forward path contains a trunk trn other than tL(yD) whieh is

not contained in any cycles (refer to Theorem 3.2).

     In order to simplify the discussion the following consideration

assumes that no terrninal is ernpty, i.e., every terminal is associated

with some net.

Theorem 3.1 Let C and C' be two cycles in an HC-graph which are mutually

disjoint. For a trunk ti on the cycle C and a dividing point yD, let

the HC-graph be of the forward type in which
     tL(yD) e "rti, tR(yD) t f-iti, tL(yD) t FtR(yD), and tL(yD) i tR(yD),

and let tm be an artieulation point of P(ti, tL(yD)) which is on the cycle

C' (the condition so far is referred to as (PC-3.1)).

     When the trunk tm is divided at y = yd by the method 1 or 1', the

necessary and sufficient eondition for both the cyeles C and C' to be

eliminated sirnultaneously without producing any new cycle, is that one of

the following conditions (A) and (B) is valid:

     (A) Both ti and tm are artieulation points of P(tR(Yd), tL(YD)),

               AWhere tL(Yd) Åë rtR(yd) and tL(yd) \ tR(yd) are satisfied, and one of the

following (1), (1') and one of (2), (2') are valid:
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     (1) min R(Tl, ti) > yD > max R(ti, T2),

     (1') min R(ti, T2) > yD > max R(Tl, ti),

     (2) min R(T3, t.) > yd > max R(tm, T4),

     (2') min R(tm, T4) > yd > max R(T3, trn),

          Ti = [P(tR(yd), tL(yD)) U c] r) r-iti,

          T2 = [P(tR(yd) , tL(yD)) U C] A rti,

                                          -1          T3 = [P(tR(yd), tL(yD)) U C']A T t.,

          T4 = [P(tR(Yd) , tL (yD) ) V C' ] A Tt.•

                 AA                                               A                                -1     (B) tL(Yd) e rti, tR(Yd) Åë r t., tL(Yd) Åë rtR(Yd), tL(Yd) i tR(Yd)

and one of the following (3), (3') and one of (4), (4') are valid:

     (3) min R(Ts, ti) > yD > max R(ti, T6),

     (3') min R(ti, T6) > yD > max R(Ts, ti),

     (4) min R(T7, tm) > yd > max R(tm, Ts),

     (4') min R(tm, Ts) > yd > max R(T7, tm),

          Ts =cArnylti, T6 =CArti,

                                      -1          T7 = [P (ti, tL (yD)) U C' ] A r t.,

          Ts = [P(ti, tL(yD)) U C'] Art.•

     (Proof) The trunks t. and t must be divided by the method r or by
                         IM
the method I', aceording to whether the unprimed conditions are satisfied

or the primed ones are satisfied. In order to simplify the proof, it is

shown that the divisions of t. and t by the method r eliminate the cycles

C and C' without producing any new cycle if and only if the unprimed

conditions are satisfied.

     Consider an example to clarify the proof. Fig. 3.2 shows the HC-

graph for the set of trunks which is given in Table 3.1. The HC-graph



t6

ti TL(ti) TR(ti) U(t.)1

tl {11} {3} 3 11

t2 {6,5} {8,11} 5 11

t3 {13,16} {6} 6 16

t4 {3} {13lo}' 3 13

t5 {10,12} Åë 10 12

t6 {8} {12} 8 12

t7 {15} {5} 5 15

t8 {14} {4,16} 4 16

t9 {9} {1415}' 9 15

t10 {1,7} {9} 1 9

t11 {2,4} {1} 1 4

t12 Åë {2,7} 2 7

Table 3.1.

  t2

A set of nets R .              3,1

     t7 t9

tl t3 t8 tl

Fi g. 3

t4

t5

.2.

t
 11

trunks R

t
 12

HC-graph for the set oi' 3 1'
 '
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contains two cycles Cl = {tl, t2, t3, t4} and C2 = {ts, tg, tlo, tn}'

Suppose that the trunk t2 is to be divided at y = 7 by the method I.

Then, the trunks tL(7) = tlo and tR(7) = t12 SatiSfY

     tL(7) e "rt2, tR(7) Åë "r-lt2, tL(7) Åë ftR(7), and tL(7) \ tR(7),

and the situation proves to be of the forward type. Here note that the

forward paths from t2 to tL(7) = tlo contain only one articulation point

tg. Divide the trunk tg at y= 10 by the method I, and the trunks tL(10)

= ts and tR(10) = t4 satisfy

     P.(t4, tlo) 2 {t2, tg}, and

              A     tL(10) Åë rtR(10).

     The remaining conditions of (A) are also verified in the below:

t> tl

t tl

t;

t3

t7

t8

,3

t4

                                    tl1

    t5

Fig. 3.3. Resulting acyclic HC--graph.

t
 10

t
 12
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                               -1     Tl = [P(t4, tlo) U CI]Ar t2 ={ tl },

     T2 = [P(t4, tlo) U CI] A rt2 = {t3, t7},

     R(Tl, t2) = R(tl, t2) ={ 11 },

     R(t2, T2) = R(t2, t3) U R(t2, t7) = {5, 6},

         min R(Tl, t2) > 7 > max R(t2, T2),

and

     T3 = [p(t4, tlo) U c2] A r-ltg = {t7, ts},

     T4 = [P(t4, tlo) U C2] A rtg ={ tlo },

     R(T3, tg) ut R(t7, tg) U R(ts, tg) = {14, 15},

     R(tg, T4) = R(tg, tlo) = { 9 },

         min R(T3, tg) > 10 > max R(tg, T4)•

     Fig 3.3 shows the acyclic HC-graph after dividing t2 and tg at y = 7

and at y = 10 respectively, both by the method I.

     Before proceeding to the proof of Theorem 3.1, some definitions and

lemmas are needed.

Definition 3.8 For an HC-graph Gh = (R, E) and a subset A of E where E

is the set of arcs of Gh, an A-reduced HC-graph GhlA is a directed graph

obtained by deleting from Gh all arcs belonging to A.

Definition 3.9 For an HC-graph Gh = (R, E), let Gh(Td) be the HC-graph

resulting from dividing trunks belonging to the set Td by the method I.

Also, let A(Td) be the set of those arcs which are newly created by

divisions of these trunks. Then, the A(Td)-reduced HC-graph Gh(Td)IA(Td)

is the graph obtained by deleting all of those newly created arcs from the

HC-graph after dividing the trunks of Td•

                                          let d(t.) = {tl, t?} if t. E TDefinition 3.10 For a set of trunks T                                      d' 1 11 1                                                                        d
where til. and ti. are trunks resulting from dividing ti by the method I,
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and let d(ti) ={ ti } if ti Åë Td•

                                                                 ALernma 3.1 For an HC-graph Gh and any set of trunks Td, if tj Åë rti in
          A
Gh then (rd(ti)) A d(tj) = Åë in the A(Td)-reduced HC-graph Gh(Td)IA(Td)•

      (Proof omitted)

Definition 3.11 For an HC-graph Gh(R, E) and a set of trunks Td, the

conneetion graph Grk = (A(Td), EA) for Td is defined as follows:

                             *      (1) The vertex set of G corresponds to the set A(Td) of the arcs

which are newly created by dividing the trunks of Td.

                                                         rk      (2) Let ei and ej be two arcs in A(Td). Then, in G , a directed

arc  is drawn from the vertex ei to the vertex e j in G if and only if

there exists any directed path from the final point of e. to the starting
                                                         i
point of e j in the A(Td)-reduced HC-graph Gh(Td)IA(Td)•

Lemrna 3.3 Let Gh(R, E) be an HC-graph and Td be a subset of R. Then,

divisions of the trunks belonging to Td by the method r produce no new

                                             rkcycles if and only if the connection graph G = (A(Td), EA) does not

contain any cycles or self-loops.

     (Proof omitted)

                              *     For a connection graph G , the incidence matrix P = ( p.. ) is
                                                             IJ
defined by

    p,,-[g .i[,g:l.il.,:1)eE,•

                                  *Lemma 3.3 The connection graph G = (A(Td), EA) does not contain any

                                                                     rkeycles or any self-loops if and only if the incidence matrix P for G

satisfies

     Per(P + I) = 1,

where 1 is the unit matrix and Per represents the permanent expansion of

a matrix [22]. (Proof omitted)
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     Now continue with the proof of Theorem 3.1.

     Let
          ei = (t.i., tR(yD)), e2 " (tL(yD), t;•),

          e3 = (t l, tR(Yd)), e4 = (tL(Yd), tii),

          Td = {ti, t.}, A(Td) = {el, e2, e3, e4}.

     Then it suffices to show that the unprimed condition of the theorem

is the necessary and sufficient condition that the cycles C and C' are

                                           *eliminated and that the connection graph G = (A(Td), EA) does not contain

any cycles or any self-loops.

     The necessary and sufficient condition for the cycles C and C' to

be eliminated by dividing t. and t , is that
                           IM
     min R(Ti, ti) > yD > max R(ti, T>),

and

     min R(T5, tm) > yd > max R(tm, Ta),

where

               -1     Ti =CAr ti, TS =CA rti,
     Ts = c'A r-it., Ta = c'n rt..

                                                                       *     The necessary and sufficient condition for the connection graph G

= (A(Td), EA) not to contain a cycle or a self-loop is, from Lemma 3.3,

                                                           *that Per(P + !) = 1 holds for the incidence matrix P for G .

     Note the incidence matrix P. Since obviously tl• Åë ftR(YD), tL(YD)

Åë ftR(yD), til. e fti., and till e "rti: hold in Gh(Td)!A(Td), it follows that

Pll = P12 =O and p21 = p43 = 1. It is shown below that p13 = p41 =O

and P23 = p42 = 1 follow from the condition (pc-3.1).

     (1) Proof of p13 = O ( ti: Åë ftR(yD) in Gh(Td)IA(Td))•
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                     AA     Assume that tm e rtR(yD) in Gh, and we can see that tL(yD) e rtm,

                                              Afrom the condition (PC-3.1), and thus tL(yD) s rtR(yD) in Gh, whiCh is a

                                    Acontradiction. It follows that tm Åë rtR(yD) holds in Gh. Consequently,

it must be valid from Lemma 3.1 that ti: Åë r"tR(yD), i.e•, p13 = O.

     (2) Proof of p41 = O (t,1. Åë ft:i in Gh(Td)IA(Td))•

     since t. Åë "rt fonows from the condition (pc-3.i), tl Åë ft2 in
                                                        IM            IM
Gh(Td)/A(Td) follows from Lemma 3.1.

     (3) Proof of p23 = 1 (tth e iti in Gh(Td)IA(Td))•

     since tm e fti in Gh and til e ftj: and til. e iti in Gh(Td)IA(Td),

it follows that tl e r" t?.

                rn1
     (4) Proof of p42 = 1 (tL(yD) e r"tk in Gh(Td)IA(Td)).

     Since tL(yD) e r"t. in Gh and ti: s r"tii in Gh(Td)IA(Td), it follows

              A2that tL(yD) e rt.•

     Consequently, the incidence matrix P i,s of the following forrn:

               1, O, O, P14
               1, 1+p22, 1, P24
     P+1=
              P31, P32, 1+P33, P34

               o, 1, 1, 1+p44
     Calculating Per(P + r),

     Per(P + i) = (i + p22) (1 + P33) (1 + P44) + P32(1 + P44 + P24)

               + P34(2 + P22) + P24(1 + P33)

               + P14[1 + P32 + P33 + P31(2 + P22)]•

     It follows that the necessary and sufficient eondition for Per(P + 1)
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= 1 can be expressed as fol!ows:

     (5) Requirement for Per(P + r) = 1:

         P22 = P33 = P44 " P14 = P24 = P34 = P32 = O'

     rn the following, it is shown that the condition for (5) to hold is

the condition given in the theorem. The case then divides into that of
                    '
t. e rtR(yd) and that of t. t rtR(yd)•

                          A     (A) The case of t. e rtR(yd)•

     !n order for p33 = O to hold, i.e., tik Åë r"tR(yd) in Gh(Td)IA(Td),

the directed path from tR(yd) to tm must be cut. If there exists a

directed path from tR(yd) to tm without going through ti, then any

divisions of ti and tm leave a directed path from tR(yd) to tiL in

Gh(Td)IA(Td) since ti e ftk.

     Consequently, p33 = O requires that the vertex ti is an articulation

                                         'point of P(tR(yd), tm), that is,

     (6) Pa(tR(Yd)' tm) ) ti'

     Then the condition for all of the directed paths from tR(Yd) tO tm

to be cut is that

     min R(T'i, ti) > yD > max R(ti, T>'),

where

     TI = P(tR(yd), t.) A r-iti,

     T'2' = P(tR(yd), ti) A rti•

     Next to consider is the condition for p22 = O. Frorn the condition
                   A(PC-3.1), tL(yD) e rti and Pa(ti, tL(yD)) p t. in Gh• In order to get

the situation that tL(yD) Åë iti. in Gh(Td)!A(Td), it is necessary that the

direeted path from t;. to tL(yD) rnust be cut off by dividing tm, i.e.,

                                                                '     min R(T'3', tm) > yd > max R(tm, TZ),
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where

     T'3' " P(ti, tL(yD))A r'it.,

     TZ = P(ti, tL(yD))A rt.•

                                                  '
                                                           = O, i.e.,     Now consider what conditions are further needed for p                                                         32
         AtL(YD) Åë rtR(Yd) in Gh(Td)/A(Td)• From the condition (pC-3.1) and (6)

above, it is seen that Pa(ti, tL(yD))) tm and Pa(tR(Yd), tm) ) ti'
                AHenCe, tL(yD) e rtR(yd) in Gh. Then, only the following two cases need

consideration:

     (7) Both ti and tm are articulation points Of P(tR(YD), tL(YD)).

                               '
     (8) There exists a directed path from tR(yd) to tL(yD) without gOing

through t. or t.
         zm                                    A     In case (8), obviously tL(yD) e rtR(yd) in Gh(Td)!A(Td), and p32 = 1

follows. On the other hand in case (7), in order for the directed path

frOM tR(Yd) tO tL(YD) tO be cut in Gh(Td)IA(Td), the following relations

are necessary:

     min R(Tl', ti) > yD > max R(ti, T'T)

and

     min R(T'i', tm) > yd > max R(tm, TZ'),

where

                               -1     Tti' = P(tR (yd) , tL (YD)) A r ti,

     T'it = P( tR(Yd) , tL (YD) ) A rti,

                               -1     T'3" = P(tR(Yd), tL(YD))A r t.,

     T'4" = P(tR(Yd), tL(YD))n rt.•

     Here note that T'i" = T'i' for i= 1, 2, 3, 4 since ti and tm are

artieulation points of P(tR(yd), tL(yD)), and also Tl. U T'i = Ti for any i.

                                      A     Lastly, it is shown that tL(yd) Åë TtR(yd) in Gh is sufficient for
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P44 = P14 = P24 = P34 = O•

                           A
     (9) p34 = O (tL(yd) Åë rtR(yd) in Gh(Td)!A(Td))

                          A     Assume that tL(yd) ertR(yd) in Gh. Then, in order for tL(yd) Åë
A
rtR(yd) to hold in Gh(Td)/A(Td), P(tR(yd), tL(yd)) must contain ti or t.•

                                Arf it contains tm then tL(yd) e rtm, i.e., p44 = 1, and if it contains
ti then tL(Yd) e iti•, i.e., p24 = 1, either of which contradicts other

                                         '
conditions. Consequently, the necessary and sufficient condition for

tL(yd) Åë rtR(yd) in Gh(Td)!A(Td) is that tL(yd) Åë rtR(yd) in Gh.

     (10) p24 = O (tL(yd) Åë rAt2i in Gh(Td)!A(Td))

                    AA A     Since tL(yd) Åë rtR(yd), tL(yd) Åë rti in Gh. Hence, tL(yd) Åë rti.

in Gh(Td)IA(Td)•

     (11) p44 = O (tL(yd) Åë ftll in Gh(Td)IA(Td))

                           AA     Assuming that tL(yd)e rtm in Gh, it follows that tL(yd) e rti,
which contradicts (10). Henee, tL(yd) Åë FtZ in Gh(Td)/A(Td)•

                            A
     (12) p14 = O (tL(yd) Åë rtR(yD) in Gh(Td)IA(Td))

                            AA     Assuming that tL(yd) e rtR(yD) in Gh, then tR(yd) e rtL(yd) and

         AAtL(YD) e rtR(yd) and thus tL(yD) e rtR(yD), which contradicts the
                                             Acondition (pc-3.1). Consequently, tL(yd) Åë TtR(yD) in Gh(Td)IA(Td)•

     rntegration of the above conditions gives the condition (A) of the

theorem.

                          A
     (B) The case of t. Åë rtR(Yd)

     From Lernma 3.1, tik Åë ftR(yd) in Gh(Td)IA(Td)• The condition p22

O is the same as in (A). The following is the discussion of the

condition for p32 = P34 = P24 " P44 " P14 = O'
                            A     (13) p32 " O (tL(yD) Åë rtR(yd) in Gh(Td)IA(Td))

                AAA     since ti e rtR(yd) and t. Åë rtR(yd) in Gh, tL(yD) Åë rtR(yd) in Gh



                                                                        61

                              Amust be the case for tL(yD) Åë VtR(yd) to hold in Gh(Td)/A(Td)•

                            A     (14) p34 = O (tL(yd) Åë rtR(yd) in Gh(Td)IA(Td))

     The reasoning is similar to that in ease (A).

     (l5) p24 = O (tL(yd) Åë rAt2i in Gh(Td)IA(Td))

                                         A     From the reasoning in (9), tL(yd) Åë rti must be the case in Gh in

                   A2order for tL(yd) Åë rti to hold in Gh(Td)IA(Td)•

     (16) p44 = O (tL(yd) Åë "rt: in Gh(Td)IA(Td))

     The reasoning is similar to that in case (A).
                            A     (17) p14 = O (tL(yd) Åë rtR(yD) in Gh(Td)IA(Td))

                            AA     Assuming that tL(yd) e rtR(yD) in Gh, then tL(yD) e rti and tR(yD)

e rtL(YD) and thus tL(yd) E rti in Gh, which contradicts (15).
                       AConsequently, tL(yd) Åë rtR(yD) in Gh(Td)IA(Td)•

     Integration of the above conditions gives the condition (B) of the

theorem.

                                                             Q. E. D.

Theorem 3.2 Let C be a cycle in an HC-graph. For a trunk ti on the

cycle C and a dividing point yD, let the HC-graph be of the forward type

in whieh
     tL(yD) E r"ti, tR(yD) Åë r"-iti, tL(yD) Åë ftR(yD), and tL(yD) i tR(yD)

and let tTn be an articulation point of P(ti, tL(yD)) which is not

contained in any cycle.

     Then, the cycle C is eliminated without generating any new cyele by

dividing the trunk ti at y= yD and tm at y = yd both by the method I or

r' if and only if one of the following conditions (A) and (B) holds:

     (A) Both ti and trn are articulation points of P(tR(Yd), tL(YD)),

               A
Where tL(yd) Åë rtR(yd) and tL(yd) f tR(yd) are satisfied, and one of the
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following (1), (1') and one of (2), (2') are valid:

     (1) min R(Tl, ti) > yD > max R(ti, T2),

    (1') min R(ti, T2) > yD > max R(Tl, ti),

     (2) min R(T3, trn) > yd > max R(t., T4),

    (2') min R(tm, T4) > yd > max R(T3, tm),

where
                                    -1     Tl = [P(tR(Yd), tL(YD))U C] Ar ti,

     T2 = [P(tR(Yd), tL(YD))V C] Arti,

     T3 " P(tR(yd), tL(yD))A r-it.,

     T4 = P(tR(yd), tL(yD))A rt.•

     (B) tL(yd) Åë r"ti, tR(yd) Åë "r'it., tL(yd) Åë "rtR(yd), tL(yd) i tR(yd)

and one of the following (3), (3') and one of (4), (4') are valid:

     (3) min R(Ts, ti) > yD > max R(ti, T6),

    (3') min R(ti, T6) > yD > max R(Ts, ti),

     (4) min R(T7, t.) > yd > max R(t., Ts),

    (4') min R(tm, Ts) > yd > rnax R(T7, tm),

where

     Ts =cAr-lti, T6 =cArti,
     T7 = P(ti, tL(yD)) A r-it.,

     Ts = P(ti, tL(yD)) A rt.•

     (Proof omitted)

Theorem 3.3 Let C and C' be two cycles in an HC-graph which are mutually

disjoint. For a trunk ti on the cycle C and a dividing point yD, let the

HC-graph be of the cyclic type in which
     tL(yD) Åë "rti, tR(yD) Åë r"-iti, tL(yD) e ftR(yD), and tL(yD) ; tR(yD)

and let C' be the cycle whieh contains both tL(YD) and tR(YD)•

     Then, the cycles C and C' are eliminated without generating any new
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cycle by dividing the trunk ti at y= yD and a trunk tm on C' at y= yd

both by the method I or Z' if and only if

     Pa(tR(YD)' tL(YD) ) tm'

     tL(yd) Åë r"t., tR(yd) Åë r"'it., tL(yd) Åë ftR(yd), tL(yd) i tR(yd),

     tL(yd) Åë Fti, and tR(yd) Åë "r-iti

are valid, and one of the following (1), (1') and one of (2), (2') are

satisfied:

     (1) min R(Tl, ti) > yD > max R(ti, T2),

    (1') min R(ti, T2) > yD > max R(Tl, ti),

     (2) rnin R(T3, tm) > yd > rnax R(tm, T4),

    (2') min R(trn, T4) > yd > max R(T3, tm),

where

     Tl =cA r-lti, T2 =c rN rti,

     T3 = c' A r'ltm, T4 = C' A rtm.

     (Proof ornitted)

3.6 Conclusions

     The first objective of this chapter has been laid on evaluating the

operation of dividing a trunk from the aspeet of its ability to eliminate

cyclic constraints. rf the purpose of the cycle eliminating algorithrn

was only to achieve the perfect wirability then it would have only to

choose in order dividing patterns each of which eliminates the maximum

number of eycles in an HC-graph. From a practical point of view,

however, the cycle eliminating algorithm must cooperate with a width

reduction algorithm described in the following chapter, since the first

objeetive of the whole wire routing algorithm is to realize a given set
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of nets in the minimum possible width. Considering
                                      ,
things, this chapter has presented the algorithm for

cycles in an HC-graph with as little increase of the

count as possible.

the above-mentioned

 eliminating all of

 trunk-crossing
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                                 CHAPTER 4

                         WIDTH REDUCTrON PROCESS

4.l Introduction

     The previous chapter has presented the algorithm for realizing any

set of nets in finite width with minimum possible increase of the trunk-

crossing eount. This chapter discusses a process following the cycle

eliminating algorithm, so it is assumed through this chapter that the

HC-graph does not contain any cyeles.

     The purpose of this chapter is to forrnalize the minimum-width wiring

problem and to determine which trunks to be divided and how to divide

them in order to reduce the track count (wiring width). For this

purpose several notions are introduced, such as decomposition of a trunk

set, incomplete subsets, a VR-graph and etc.

     Traditional approaches toward this minimum-width wiring problem

have no ability to reveal the effects of dividing a trunk on the wiring

width in an explicit form. This thesis evaluates such effects by rnaking

use of the two directed graphs, the HC-graph which expresses the

horizontal constraints between the trunks, and the VR-graph (vertical

relation graph) to express the vertical relations.

4.2 Formulation of Minimum-Width Wirin Problem

     For a set of trunks R, the previous chapter defined the trunk-

crossing count Vlo(R) and the track count VJ(R), for which it is aZways

valid that Wo(R) :l W(R)•

     !n case of Wo(R) = W(R) no more irnprovement is possible, but the

case of W(R) > Wo(R) needs a process to reduee the track count W(R).

The process must find a trunk an appropriate division of which makes the
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the resultant track count VJ(R') less than the original track eount VJ(R).

Here, it should be noted that the division may also cause the increase

of the trunk-crossing count, which prohibits further improvements.

Accordingly, those divisions are desirable that leave the trunk-crossing

count as it is, and they are called "safe" divisions. The width reduction

process is iterated until no more improvement is possible.

     As mentioned in the previous chapter, the wiring width W(R) is

determined as the number of tracks on which trunks to be placed. Zn

general, each track should contain as many trunks as possible. This

means that the trunk set R should be decomposed into mutually disjoint

subsets under eertain constraints.

Definition 4.1 P(R) = (Dl, D2, ... , Dd) is a decomposition of R whose

size is d if

     (1) DlU D2U ... UDd = R,

and

     (2) D.A D. =Åë for any i and j, ilj.
          IJ
     Zn order to deseribe the constraints a decomposition of R must

satisfy, a VR-graph is defined which expresses vertical relations

between trunks.

Definition 4.2 A VR-graph Gv = (R, Av) is a directed graph with the

vertex set R and the arc set Av ={ (ti, tj) l L(ti) < U(tj) }• In

other words, an arc from ti to tj means that the trunk ti can be placed

above the trunk t..
                 J
     When we want to plaee two trunks ti and tj on the same track, first,

we check the VR-graph for the existence of an arc connecting ti and t j,

and then check the HC-graph for the existence of any path between ti and

t.. If we find such an arc in the VR-graph and no paths in the HC-graph,
 ]
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the two trunks rnay be laid on the same track. If, however, there should

be such a path in the HC-graph, then one of these trunks must be placed

to the left of the other. The above-mentioned process is intricated, so

some essential informations should be transferred from the HC--graph onto

arcs of the VR-graph, defining two weights e and w for every arc. rn

the following, four kinds of decompositions of R are defined by making

use of these weights, and a procedure is presented to reduce the size of

the optimurn deeomposition of R at each step.

usE a 1 4 1 Consider a set of nets given in Table 4.1. These nets ean

be realized as shown in Fig. 4.1, for example. This pattern must be

improved, since it contains five tracks but the trunk-crossing count is

four. Therefore, some trunk must be divided to reduce the track count.

     The HC-graph and VR-graph are shown in Fig. 4.2 and Fig. 4.3,

respectively.

TL(ti) TR(ti) L(t.)1

tl {1,3} Åë 1 3

t2 {9} {1,6} 1 9

t3 Åë {9} 9 oo

t4 {6,8} {2} o 8

t5 Åë {5,8} 5 8

t6 {4,5} {7} o 7

Table 4.1. A set of netS R4,1•
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t5

tl t4 t6

ot    2

                                  t3

             Fiq... 4.3. VR-graph for the set of trunks R4,1•

.E4:Z-:-l,21adc t fR
Definition 4.3 (a-set) (i) For any trunk ti, the set { ti } is an a-set.

(ii) For an a-set P and a trunk t. such that t. Åë P, if (t., t.) eA for
                                               J IJV                                 J
any trunk t. E P, then the set PU {t.} is also an a-set.

           1j     An a--decomposition of R is a decomposition every element of which is

an a-set. The optimum a-decomposition is one of the minimum size (written

as da(R)), and da(R; S) denotes the size of the optimum a-decomposition

of a subset of R. Here it is evident that da(R) = Wo(R), since an a-

decomposition is free from horizontal constraints.

     For the set of trunks R                                 given in Example 4.1, for example, the                             4,1

optimum a-decompositions are as foZlows:

     Ol(R) = ({tl, t3, ts}, {t4}, {t6}, {t2}),

     P2(R) " ({tl, ts}, {t4, t3}, {t6}, {t2}),

     P3(R) = ({tl, ts}, {t4},'{t6, t3},'{t2})•

.E4-!l.=ll22cdeom t fR

     As mentioned earlier, two trunks t. and t. can be placed on the
                                        IJ
same track if and only if the VR-graph contains an arc connecting ti and

tj and the HC-graph does not contain any path from ti to tj or one from
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t. to t.. The above-mentioned informations are represented by defining

 Jla weight e for every pair of trunks, as follows:

                  1 if (t., t.) eA and ft.U F-lt.It.,
     C(ti' tj)=(o other:iisel " Z 1 J

Definition 4.4 (c-set) (i) For any trunk ti, the set { ti } is a c-set.

(ii) For a c-set P and a trunk t. such that t. Åë P, if c(t., t.) = 1 for
                                                           IJ                                JJ
any t. e P, then the set PU {t.} is also a c--set.

     A c-decomposition of R is a decornposition every element of which is

a c-set. The optimum c-decomposition of R and the notation dc(R) and

d (R; S) are defined in a similar fashion.
 c
:t!llzgRgsl,!iLgg-<L!-l!,o o tio 41 Let (ti, tj) e Av. Then, the trunks ti and tj can be

placed on the sarne track if and only if c(t., t.) = 1.
                                            IJ
     (Proof omitted)

                                              LDefinition 4.5 An arc (t., t.) in a VR-graph is called a c-arc if and
                          IJ
only if c(ti, tj) = O, and is called a c-free arc if and only if c(ti,

t.) = 1.
 J
     Now, reconsider Example 4.1. As is easily seen, the arcs (tl, t3)

and (t4, t3) are c-arcs. So, the decomposition Pl(R4,1) and P2(R4,1)

are not c-decompositions, but P3(R4,1) is still the optimum c-decomposi-

tion. Thus, dc(R4,l) = da(R4,1) = Wo(R4,1), while the wiring width of

the pattern shown in Fig. 4.1 is greater than Wo(R4,1). The following

diseusses why this extra traek is needed. i

pt423d tfR
                                 ., t.), the weight w(t., t.) is defined     For every pair of trunks (t
                                 11 1]
as follows:

    W(ti, tj) =(: ifth:ilti/rl.rj) = 1 and W(ti, tj) s wo(R),
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where

     W(ti, tj) = max(gL(ti) + 'x"R(tj) + 1, 'x"R(ti) + XL(tj) + 1),

and for every trunk t                     k
     NxL(tk) - d.(R; f-ltk) and 3(R(tk) = d.(R; ftk)•

     From the definitions above, it is easily recognized that the width

required for arranging those trunks which must be placed to the left of
the trunk tk, that is, those belonging to the set f-ltk, can not be less

                                       Athan "xL(tk), and the width for the set rtk whose elements must be to the

right of the trunk tk can not be less than NxR(tk)•

lt!I!gRgsl!ELgu-k2Zro o ti n 42 Let W be a wiring width and let x(ti) be an x-coordinate

of a track on which the trunk t. can be placed. Then,
                               i
     "xL(ti) + 15 x(ti) 5W - "x'R(ti).

     (Proof omitted)

!tl]:glzgs!!iLgg-G:-2ro o ition 4 3 Let W(ti, tj) > Wo(R). Then, there are no such wiring

patterns with the width Wo(R) as placing ti and tj on the same track.

     (Proof omitted)

     A w-set and a w-decomposition are similarly defined. Here it should

be noted that a w•-decomposition of R is not always realizable. The '

statement rnay be restated as follows: A wire routing process correspond-

ing to a w-decomposition P(R) is perforrned in such a way as to place each

element of P(R) on one traek. However, this operation may happen to

cause a cycle in the order of arranging those tracks.

                             .v i-v     Again, for Example 4.1, xL and xR values are as follows.

     The arcs (tl, ts) and (t6, t3) are w--arcs (an arc (ti, tj) of a VR-

graph is called a w-arc if w(ti, tj) = O) and the decomposition P3(R4,1)

given in 4.2.1 is not a w-decornposition of R4,1. Consequently, it is
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known that there is no w-decomposition of R                                               whose size is equal to                                           4,1

Wo(R4,1)'

t'1 tl t2 t3 t4 t5 t
6

NXL(ti) o 2 3 o 2 o

NXR(ti) 2 ! o 2 o 1

                        rv N            Table 4.2. x and x values.                         LR

pm424rdecomositionofR
     Realizability of a c-(or w-)decompositlon P(R) = (Dl, D2, ••• , Dd)

ean be checked as follows: First, a decomposed graph GD(P(R), Y) is

eonstructed, where a directed arc is drawn from a vertex D. to D. if and
                                                           13
only if rDiA D j 4 Åë, that is,

     YDie Dj if and only if rDin Dj l Åë.

Next, the decomposed graph is examined for the existence of any cycle.

Then, the necessary and sufficient eondition for the deeomposition P(R)

to be realizable is that the corresponding decomposed graph does not

eontain any cycle. And a realizable c-(or w-)deeomposition of R is

ealled an r-decomposition. An example of a decomposed graph is shown in

Fig. 4.4, which indicates that the c-decompositiOn P3(R4,1) = ({tl, ts},

{t4}, {t6, t3}, {t2}) is not realizable.



D

D

4

1

2

.

{tl, t5}

                      {t4} D4

            Fig. 4 Decomposed graph

pm43Prd frRd Width
     From the definitions in the previous

general

     dr(R) l dw(R) ;l. dc(R) ll da(R) = Wo

     Hence, the following cases are to

     (1) d (R) - d (R) - d (R) = d                                    (R)
          r w c                                   a
     (2) d (R) Zd (R) )d (R) >d (R)
          r -w -c a
     (3) d (R) )d (R) >d (R) -d                                    (R)
          r-w c a
     (4) d (R) > d (R) = d (R) - d (R)
          r w c a
     The following discussion deals with

since the case (1) needs no more improvement

4.3.1 Procedure for the case d (R) > d
                                c
     Tn this case it will be required to

some trunks. Zt seems, however, to be

condition under which dividing a trunk

in other words, to determine global effeets

this thesis takes an approach toward this

.

                                   73

D3 = {t3, t6}

   . {t2}

   GD - (P3(R4,1), 'Y)•

     chapter, it follows that in

  (R) .

  be considered:

  = Wo (R) ,

  = Z,Jo(R) ,

  = Wo (R) ,

  =Wo (R)• .

    the cases of (2), (3), and (4),

       .

   (R)
  a-
    reduce the d value by dividing
                c
  difficult to obtain the sufficient

  causes the d value to decrease,
              c
       of dividing a trunk. So

     problem from a standpoint of
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evaluating local effects of dividing a trunk.

     Consider a subset S of R such that d (R; S) >d (R; S) but that a
                                         ea
division of a certain trunk may lead to the result dc(R'; S') = da(R';

S'). Since for any subset S the value d (R'; S') is always greater than
                                        c
or equal to 2, a minimal subset having the above-mentioned property is a

c- incomplete subset S as defined by

     ISS =3 and d (R; S) =3>d (R; S) = 2.
                 ca
Theorem 4.1 If d (R) > d (R), then there exists a c-incomplete subset S
                 ca
of R.

     (Proof) Since d (R) > d (R), there exists a c-arc (t., t.), i.e.,
                     ca IJ                                                AAc(t., t.) = O. From the definition of c, t. e rt. or t. E Tt.. Here
                                                              J
     Atj e rti may be assumed without loss of generality. Since (ti, tj) e Av,

that is, U(ti) < L(ti) < U(tj) < L(tj), tj can not belong to the set rti.
                                                 ATt follows that there exists a trunk tk e rtiA r-ltj and therefore

(ti, tk) Åë Av, (tk, ti) Åë Av and c(tj, tk) = c(tk, tj) = O. Consequently,

the set S = {ti, tj, tk} is e-incomplete.

                                                              Q. E. D.

     The converse of the above theorem is not valid in general.

(a)

o

             (b) (c)
Fig. 4.5. c-incomplete subsets.
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          (a) Subgraph (b) Position of trunks

          Fig. 4.7. Effect of dividing the trunk tD•

     Fig. 4.5 shows subgraphs of a VR-graph eoncerning e-incomplete

subsets, forrns of which are restricted to those three kinds. For each

case (a), (b), and (c) in Fig. 4.5, the conditions for a division of a

trunk in a c-ineomplete subset to cause dc(R'; S') = 2 may take different

forms, according to which trunk in S should be divided. The following

considers the situation deemed to be the most effective, as shown in

Fig. 4.6, where tD represents the trunk to be divided. Since the
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arrangement of the trunks in S is such one as shown in Fig. 4.6-(b), it

appears to be the most desirab!e to get the situation as shown in Fig.

4.7 by dividing the trunk tD by the method I or I'. Then it must be

                       AAnoted that either tj e rti or ti e rtj holds, since (ti, tj) e Av and
                        Ac(ti, tj) = O. Tf tj e rti then tD must be divided by the method I,
            A
and if ti e rt j then tD must be divided by the method r'.
                                                                      A
Theorem 4.2 Assurne the situation as shown in Fig. 4.6 and that tj e rti.

Then, dividing the trunk tD at y = yD by the method I causes the relation

c(ti, tB) = c(tg, tj) =i if the fonowing conditions from (1) to (s) are

satisfied:

                                                          (rk)     (1) YD E g[fL(ti, tD), fu(tD, tj)] A g[L(ti), U(tj)],

               AA A                                     A     (2) tD Åë (rtiA ptj) V (r-itiA r'itj),

                  AA                                              -1     (3) tL(yD) ÅërtD, (4) tR(yD) Åër tD,

                  AA     (5) tL(yD) Åë rti, (6) tR(yD) Åë r-ltj,

     (7) tR(yD) Åë "r'iti, (s) tL(yD) Åë Ftj.

     Here, if tL(yD) or tR(yD) is undefined or equal to tD, then the

conditions which include it can be omitted.

(*)
g[., .] . (SM+1' M+2, ••• , n-1}

fL(ti, tD) (::i.l(P(ti, tD) A r-ltD, tD)

                  1

fu(tD, tj) (:i:.l(P(tD, tj)A rtD, tD)

                  3
p(t., t.) - 6t.u {t.}) A 6-it.u {t.})
               i                     1jJ   -J

if n- m) 2,

otherwise.

        A
if tD E rti,

otherwise.

        A
if t e rt    jD'
otherwise.
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     (Proof) First, the necessity of the conditions from (2) to (8) is

verified.
                                                               AA     if not (2), at least one of tS and tg is not in the set (rtiA Ttj)

   AAU(rdltiA r-itj) wherever tD is divided. Hence, either c(ti, tB) = o

      2or c(tD, tj) = O holds.

     rf not (3), for a similar reason, either tL(yD) e ftB or tR(yD) E

 2tD is valid. Hence, a cycle arises in the HC-graph resulting from the

division of tD. The case of (4) is similar to this.
     In general, ftL(yD) 2 {ti5, tS} and f-ltR(yD) ? {tll, til}. Tt

                                                   1follows that if not (5) or if not (7) then c(ti, tD) = O holds, and that

                                  2if not (6) or if not (8) then c(t                                     t.) = O holds.                                 D' J
     Next to consider is the condition (1). It may be assumed that y
                                                                      D
e g[L(ti), U(tj)], since the dividing point yD must be chosen between

L(t.) + 1 and U(t.) - 1. Now, we have only to deal with the following

case:

     g[fL(ti' tD)' fU(tD' tj)] = Åë,

that is,

     fu(tD, tj)-fL(ti, tD)51• (4-1)
     Then, since U(tj) - L(ti) 4 2 from the assumption, either fu(tD, tj)

                                                        AA; U(tj) or fL(ti, tD) f L(ti) must hold, that is, tD e rti or tj e rtD

must hold.

                          AA     (a) The ease of tD e rti and tj Åë rtD

     Evidently,

     fL(ti, tD) =max R(P(ti, tD)A r-ltD, tD) (4-2)

and

     fu(tD, tj)=U(tj). (4-3)
Combining the above equations yields
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     U(tj) -- fL(ti, tD) 5 1•

     HenCe, yD 5 fL(ti, tD) holds since yD < U(tj). Consider any trunk

tp e P(ti, tD) A r-ltD; from the above relation and the definition of

fL(ti, tD), it MUst be valid that

     min(TL(tp) A TR(tD)) ,l YD'

     Consequently, it is seen that there still remains the relation

 IAtD E rtp after dividing tD at y = yD by the method Z.                                                        Therefore,

c(ti, tD) = O holds since tp s rti.

                          AA     (b) The case of tDtrti and tj ErtD -
                                                    2     This is a dual situation of the above, and c(tD, tj) = O is obtained.

                       AA     (c) The case tD e rti and tj e rtD

     The proof is obvious frorn the above (a) and (b).

                                                              Q. E. D.
                                                                      ATheorem 4.3 Assume the situation as shown in Fig. 4.6 and that tj e rti•

Then, dividing the trunk tD at y = yD by the method I' causes the

reiation c(ti, tB) = c(t3, tj) = i if the foiiowing conditions from (i)

to (8) are satisfted:

     (i) yD e e[fL(ti, tD), fi3(tD, tj)]S")

     (2) tD Åë (T"tiA ftj) V ("r-itin F-itj),

                  AA                                              -1     (3) tL(yD) ÅërtD, (4) tR(yD) Åër tD,

                  AA                                              -1     (5) tL(yD) Åërtj, (6) tR(yD) tr ti,

( *)
fi(ti, tD) = ( lllll.Il(P(tD, ti)ArtD, tD)

                  1
fb(tD, tj) . {:1:.l(P(tj, tD) A r'-ltD, tD)

                  J

if t e rt          D'    i-

otherwise.

        A
      e rtif t          j'    D

otherwise.
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                  AA     (7) tR(yD) Åë r-ltj, (s) tL(yD) Åë rti•

     Here, tL(yD) or tR(yD) is undefined or equal to tD, then the

eonditions which include it ean be omitted.

     (Proof omitted)

     Fig. 4.8 illustrates trunk--division effeets for various forrns of

c-incomplete subsets.

4.3.2 Procedure for the case d (R) > d (R)
                               -er'----- a--
     ln this case a similar proeedure can be considered. A w-incomplete

subset S of R is defined by

     ltS =3 and d (R; S) =3>d (R; S) = 2.
                 wa
     Here it should be noted that a theorem similar to Theorem 4.l is

not valid for the case d (R) > d (R). In fact, there is an example such
                        wa
that d (R) > d (R) but there is no w--incomplete subset. Such a set of
      wa
trunks, however, has a strictly restricted VR-graph.

Theorem 4.4 Let d (R) > d (R). rf there are no w-incomplete subsets
                  wa
in the VR-graph corresponding to a set of nets R, then the following

statements are valid:

     (1) For every arc (ti, tj) in the VR-graph, c(ti, tj) = 1.

     (2) For every trunk ti, XL(ti) < VJo(R) and "xR(ti) < Wo(R)•

            tv i-v     (3) If xL(ti) + xR(tj) + 1 > Wo(R) for an arc (ti, tj), then, rti
= r-itj = Åë and w(tp, tj) = w(ti, tq) = i for any tp e f-iti and tq e itj

                                                                    -1            lv .v     (4) rf xR(ti) + xL(tj) + 1> Wo(R) for an arc (ti, tj), then r ti

= rtj = Åë and w(tp, tj) = w(ti, tq) = i for any tp e fti and tq e rA-itj.

     (Proof) The proof proceeds by contradiction.

     (1) If there exists an arc (ti, tj) such that c(ti, tj) = O, there

is a c-incomplete subset by Theorem 4.1. Hence, we can conclude that

.
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there is a w-incomplete subset, since any c-incomplete subset is also

w-incomplete.

     (2) Assume the condition (1). Then, it must be true that if (ti, tj)

          AAe A then rt.U r-lt. ;?S t.. Accordingly, if there exists a trunk t
                                                                    i   V 1 IJsuch that 3fL(ti) l Wo(R), we have

     d.(R; i-lti V {ti}) = d.(R; f-lti) + 1 ' 3fL(ti) + 1

                         > Wo(R) = d.(R),

which is a contradiction. Similar matters are true in case of 3fR(ti) >

VJo(R)•

     (3) Assume the conditions (1) and (2) and that there is an arc (t.,
                                                                       z
t.) such that
 J

     lv .v     xL(ti) + xR(tj) + 1 > Wo(R) and rti l Åë.

Then, for any trunk tk in Tti,

     (ti, tk) Åë A. and (tk, ti) Åë A.

          -v .vand since xL(tk) > XL(ti),

     W(tk, tj) = W(tj, tk) = O•

     Consequently, the subset {ti, tj, tk} is w-incomplete.

     Next to consider is the latter half of the condition (3). Consider
arbitrary trunks t and t such that t e f-lt. and t e ft.: lt follows
                                               -q                  pqp                                                            J
from the condition (1) that t is detached from t. and that t is
                             p 1q
detached from tj in the VR-graph. We can easily see that (tj, tp) Åë Av

and (tq, ti) Åë Av• Suppose (tj, tp) E Av, and the two arcs (ti, tj) and

(tj, tp) of the VR-graph guarantees the existence of an arc (ti, tp).

This contradicts the condition (1) rnentioned above. Similar matters

are true for the pair of t and t.. Thus, if w(t , t.) = O or w(t., t)
                                                                   lq                                 1 PJ                          q
= O holds, then {t., t., t } or {t., t., t } is w-incomplete, respectively.
                  1]P IJq



     The remaining part of the proof is

uaE a 1 42 Aset of nets R4,2, given

stated in the above theorem.

    HC-graph and VR-graph are shown in

respectively. For clarity, transitive

 similar

in Table

Fig. 4.9

arcs are
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to the above.

             Q. E. D.

4.3, has the properties

and Fig. 4,10,

omitted in the VR-graph.

ti TL(ti) TR(ti) U(t.)1 L(t.)1

tl {l2} Åë o 12

t2 {13} Åë 13 oo

t3 {2,11} Åë 2 11

t4
Åë {12} 12 oo

t5 {3,7} Åë 3 7

t6 {1} {2,3} 1 3

t7
Åë {1,5} 1 5

t8 {9} {4} 4 9

t9
Åë {6,14} 6 14

t10 {15,17} Åë 15 co

t11 {10} {17} 10 17

t12
Åë {8,10} 8 oo

Table 4.3. A set of nets R4,2'
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     For the set of nets R4,2, Wo(R4,2) = 5 and (t7, tlo) is the only

w-arc of the VR-graph (of course, there are no c-arcs). Also, we can

see that a decomposition

     P(R4,2) = ({tl, t2}, {t3, t4}, {ts, t12}, {t6, t8, tli},

                                                {t7, t9' tlO})

is the only one optimum c-decomposition of R4,2, and de(R4,2) = da(R4,2)

= Wo(R4,2) = 5 and d.(R4,2) " d.(R4,2) = 6•

     Procedures for w-incomplete subsets are similar for the most part

to the ones for c-incomplete subsets and will be implemented while any

w-ineomplete subset remains to be processed.

4.3.3 Procedure for the case d (R) > d (R)
                               - W--
     The relation dr(R) > dw(R) means that when wire routing is perforrned

accordingly to an optimum w-decomposition of R a eycle arises in the

order of arranging tracks. Hence, a procedure is necessary which elimi-

nates such a cycle without increasing the value of d (R), but the author
                                                     w
could not present such a procedure.

4.4 Outline of Width Reduction Process

     From the results obtained thus far, the following

considered.

     [Outline of width reduetion process]

   grt

START:

     Lf W(R) =Wo(R) then stop;

     D := a set of possible dividing patterns;
      p
     for every dividing pattern (ti, yD, M) e Dp SILt

       if this division does not produce any cycles in

algorithm may be

the HC--graph
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        then jtlggliE!

         Z := a set of incomplete subsets;

          for every incomplete subsetS -t

           2!fL W(S(ti, yD, M)) < W(S) and

           W(R(ti, yD, M)) < W(R) then

           !bzgEIAe

              divide the trunk ti at y= yD by the method M;

              R := R(ti, yD, M);

             ee .!IL. START

           end

         end

   end;

     rn the above algorithm, S(ti, yD, M) and R(ti, yD, M) represent

those sets of trunks whieh result from the division of the trunk t.
                                                                   i
at y = yD by the method M.

     This process is, as is obvious, too inefficient and too tedious,

for we may find, in a practical problems too many dividing patterns to

examine their effects, and also too many incornplete subsets. The

following section tries to put restrictions on dividing patterns and

incomplete subsets in order to improve effieiency.
                       '

4.5 Matchin Condition

     This section considers what restrictions are to be put on dividing

patterns and incornplete subsets in the algorithm proposed in the previous

section. For this purpose trunk groups are redefined more formally and

their interrelations are investigated.

.tt4.=2=-,!,5 1 Pro ert of tr nk ro
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     Trunk groups are redefined in a different manner in order to

investigate their interrelations in more detail.

     It is easily known from the definition of trunk groups given

earlier that for two trunks t. and t. there exists no trunk group which
                            IJ
contains both of them if and only if t. and t. do not have any comrnon
                                     IJ
part in the direction of the y-axis, in other words, if and only if the

VR-graph eontains an arc (ti, tj) or (tj, ti).

!tllzgRgsl!Elg!LIE-kro sitio 44 A trunk group Gi is a maximal subset of R which has the

following property:

     max{ u(tj) l tj E Gi} ;s min{ L(tj) I tj e Gi }•

     (Proof omitted)

     The above property suggests an effective method of determining

trunk groups by use of a third directed graph. This method should be

distinguished for its capability to express, in a brief forrn, essential

information which is necessary to examine the possibility of reducing

wiring width.

Definition 4.6 (Simplified VR-graph)

     A simplified VR-graph Gs = (Vl, V2, As) is defined as follows:

     (1) The vertex set of Gs is VlU V2, where Vl and V2 are both equal

to a set of trunks R, but elements of Vl are ordered by their lower ends

and those of V2 are ordered by their upper ends. Hereafter, Vl and V2

are denoted as

     v, - {tEi', tSi', ... , tiE')},

and

     v, - {tS2), ,S2), ... , ,fi2)},

where
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                                 (1)                  (1)        (1)                    )s e.. sL(t                                    )s           ) S L(t     L(t        1-2--                                 N

and

                                 (2)                  (2)        (2)                    ) < "' s u(t     U(tl )5U(t2 = - N )•
                                                        (1)     (2) A denotes the (directed-) arc set of G , and (t
                                                       i
if and only if

     a) L(,gl)) < u(,g2)),

            1J
     (ii) L(tÅí1)) 4 u(tJ(.2)) for any k, k > i, and

     (iii) L(t5.i)) lu(tÅí2)) for any k, k< j.

     Hereafter, A is denoted as
                 s
     A. = {(t5• :), t,(•i)) 1 i ;s k s n}

                                          22 2                    11and sets of trunks vl, V2, ... , VA+1 and Vo, Vl, ... , Vn are

as follows:

     vl = {t5. i) +i, t5. i) +2, ... , t5. i)} for any k, i < k < n+i,

             k-- 1                     k-1                                    k
and

     Vft = {tJ(' i)' tJ(' Pi' ''' , tJ(• li-i} for any k, O<ks n,

where io = O, in+1 = N, jo = 1 and jn+1 = N + 1.

     Then the following sets of trunks Gl, G2, ... , Gn+1 are trunk

groups:
           2     G =V      •1 O'
     G2 = (vg u v2i) - vl,

     eeee--
     G, -(uli.Zd: vi) - (uli.:-l v.i.),

     e--eee

, tf2)) e A

  ]s

defined
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     G..i = R- (U"i.i vl•)•

     From the above relations, the cardinality of each trunk group is

caluculated as follows:

     fSGI = jl - Z,

     VtG2 = j2 - il - 1,

     --eeee

     ltGk = jk - ik.1 - 1,

     eee---

     ltG.+1 = N - i.'

.E4:-2-:-Z2!gsg!!!igg-gg!!s!2,!iLgg52Math dt

     The fo!lowing examines interrelations between trunk groups, in

particular, between a max group Gk and its neighboring trunk groups Gk-1

and Gk+1'

Lemma 4.1 VZ A Vbl =Åë for any a and b where al b.

     (Proof) It follows from the definition of the simplified VR--graph

that if a > b then

     u(tS• Z)) > L(t5• :)) > L(tE•t))•

     u(tJ(•g)) - min{ u(tk) I tk e vZ },

     u(t5.bl)) - max{ L(tk) l tk e vbl }.

     Consequently, it follows from the above that

     min{ u(tk) l tk e vZ }> max{ L(tk) 1 tk e vbi }.

     [Ihis terminates the proof of this lemrna.

                                                            Q. E. D.
Itgtg!!AA=Zmma 4.2 Gk+1 = (Gk- Vl) V vil for any k where 1;s ks n.
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     (Proof) From the equation defining trunk groups,

     Gk = (Ul•::-5 v;•) - (u 5• :-l vl•)•

and

     Gk.1 - (U l:•.o v;•) - (U \•.1 v.1.)

          - [vft u(uS:8 vi•)- (u}•:-l vl•)] -• vl•

     Here, since by Lemma 4.1

     vft A (u5.:-S vl•) - Åë•

the above representation of Gk+1 is replaced as

     G,., - vii U[(Ul:•:-8 vi•) -- (Ul:•:-l vl•)] - v:1

          = (vil u Gk) - vill•

     Further, using the reiation v2 A vl = Åë derived from Lemma

have
     Gk+1 = (Gk - Vi!) U vil.

                                                           Q. E. D.
Lemma 4.2' Gk-1 = (Gk - Vil-1) U Vft-1 for any k where 2gk < n+1.

     (Proof) !t follows from the definition of G                                                  that                                                k
     U}•:.8 vi• -R- (U2., vi•)•

and

     U}•:-1 vl• -R- (u\:l vl•)•

     Applying the above relations to

     Gk = (Ul•:-.8 vi•) - (uli•:-1 vl•)•

we have

                  n2     Gk = [R - (u i=k vi)]- [R - (u ll:ii! vl.)]

        - (U l• :ft vl•) - (u:.k vi•)•

4. 1, we
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     The remaining part of the proof proceeds in a similar manner to

Lemrna 4.2.

                                                         Q. E. D.

Theorem 4.5 For any k where 2 S! kS n,

     d.(R; GkV Gk+1) = max(/SGk, VfGk+1)

                     + d.(R; vill u vii) - max(lsvQ, #vft)

and

     d.(R; GkU Gk-1) = max(#Gk, VSGk-1)

                     + d.(R; vki.1U vjl-i) -- rnax(ltvil-i, /tvil-1)•

     (Proof) From Lemma 4.2 and the relation GkA Vft = Åë, we obtain the

following three representations:

     Gk A Gk+1 = Gk A [(Gk - Vft) U Vft]

              = GkA (Gk - Vft) = Gk - Vft,

     Gk - Gk+1 = Gk ny- [(Gk - vill) u vil]

              = Gk - (Gk - vi!) = vl,

     Gk+1 - Gk = [(Gk - vill) U vil] - Gk

              = [(Gk - vll) - Gk] u vil = vil.

     Combining the above three representations yields

     Gk U Gk+1 = (Gk - vi!) cJ vil o vil,

where the symbol O represents union of mutually disjoint sets.

     Similarly, from Lemma 4.2' and the relation Gk A VI-1 = Åë, we have

     GkU Gk+! = (Gk - vil-1) CJ vil+1 CJ vi!+1.

     Setting k = k - 1 in the above representation yields
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     Gk V Gk+i = (Gk+i - vft) U vft e vl.

     Now, consider two arbitrary trunks ti and tj in the set Gk V Gk+1

such that (ti, tj) e Av. Then, it is easily seen that ti must belong to

         12the set Vk and t j to Vk. Henee, the above two representations imply that

     d.(R; GkU Gk+1) '
         = d.(R; Gk - vil) + d.(R; vi! U vii)

         = d.(R; Gk+i -- vj2) + d.(R; vi! u vji).

                      !2     Here, since Gk ?. Vk and Gk+1 ?. Vk, we have

     d.(R; Gk - Vjl) = d.(R; Gk) - d.(R; Vil)

                            1                   = #G -- ISV                      kk
and

     d.(R; Gk -- vil) = ISGk -- #vjl.

     In the above, it is easily seen that if /fGk l ISGk+1 then ltVft Z ltVft,

and if #Gk 5 ltGk+1 then ISvll ;s #vil since

                       1     Gk = (Gk A Gk+1) CJ Vk

and

     Gk+1 = (GkA Gk+1) CJ Vi•

    As a result, we obtain

     d.(R; GkU Gk+1) = max(lfGk, ISGk+1)

                    + d,(R; Vill U Vj?) --- max(ItVil, #Vii)•

     The other representation of this theorem can be obtained by setting

k = k - 1 in the ab ove.

                                                         Q. E. D.
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     This theorem suggests that it should be examined at the very first

whether, for any max group Gk, the following equations are valid:

     d.(R; vk u vft) = max(ltvk, #vft)

and

     d.(R; Vl-IU vft-1) =max(ISvjl:-1, IIvil-1) (k 2).

     The above condition is called a "matehing condition" for the weight

c. Similarly, the matching condition for the weight w is stated as

fo11ows:

     [Matching condition]

     For any max group Gk,

     d.(R; Vft U Vft) n max(IIvft, Itvft)

and

     d.(R; vl-IU vft-1) = max(ltvk-1, ltvft"1).

     This matching eondition is used to linit a set of those trunks which

are to be divided. This is done in the following manner: First, for
                                                                       1every max group, the matching condition is examined. Then, if d (R; V
                                                                 wk
U vft) > max(IIvk, lfvft), a trunk is needed to be divided so that the

condition is satisfied. If such a division is successful then its overall

effect is exarnined, in other words, it is seen whether the track count

is reduced.

   [The second version of width reduction process]

   !b2gglg

START:

     .Lf W(R) = Wo (R) then stop;

     construct a simplified VR-graph Gs(Vl, V2, As);
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     ARC := Åë;

     for k:=1 s!tigR 1 until n sLt
       Lf #Gk + d.(R; VkU Vft) - max(ISvft, ISvft) >wo(R) then

           ARc := ARc U{ (ti, tj) l ti e vl, tj e vft and w(ti, tj) = o};

     for every (t., t.) E ARC do
                  IJ -
       lthS!El!! TD := { tD l {tD, ti, tj} " S is w-incomplete };

         Dp := a set of all possible dividing patterns of tD;

         for every dividing pattern (tD, yD, M) e Dp -EILt

           if this division does not produce any cyeles in the HC-graph

               and W(S(tD, yD, M)) = 2 and W(R(tD, yD, M)) < W(R)

           then ibl}ggl,p

               divide the trunk tD at y = yD by the method M;

               R := R(tD, yD, M);

               ep .!EL. START

           end

       end

   end;

4.6 Algorithm B

     -- Width Reduction Algorithm ---

     Based upon the results obtained thus far, this section presents an

algorithm for achieving a near-minimum width layout for a given set of

trunks. Here it should be noted that the algorithm deals with a set of

trunks to which the corresponding HC-graph does not contain any cycles,

for Algorithrn A, which was presented in the preceding chapter, has
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eliminated all eycles in the original HC-graph.

     In a manual design, it may be rather easy in a small-scale problem

to find a dividing pattern of a trunk which reduces wiring width, if an

appropriate layout pattern is present. The reason may be considered to

be its easiness to evaluate an effect of a division by means of partial

amendrnent of the layout pattern. There arise many difficulties, however,

in expressing the above-mentioned process in a procedural form. First

to do is to evaluate a division of a trunk in a suitable way. Algorithm

A evaluated a dividing pattern from the aspect of eliminating cyclic

constraints, so local evaluation is quite enough. On the other hand in

the width reduction process, a dividing pattern is effective only if it

really reduces wiring width. Thus, evaluation of a dividing pattern

requires the following process: First, divide a trunk. Second, lay out

the resulting set of trunks in the minirnum possible width. Last, check

whether the width is reduced. And then, if the division fails in reducing

the width, the divided trunks and the HC-graph rnust be restored to the

pre-division condition.

     Evidently, this is a quite tedious procedure. Thus, some suitable

local evaluation is needed in order to increase the efficiency of the

width reduction process so that trunks are less frequently divided. For

this purpose the final version of the width reduction proeess presented

below takes a heuristic search method. A heuristic function FB is

determined for every tuple (ti, tj, tD, yD, M) where (ti, tj) is a w'arC,

{ti, tj, tD} is a w-incomplete subset and the trunk tD is divided at y =

YD by the method M.

     (1) FB(ti, tj, tD, yD, M) = to (undefined) if at least one of the

followings is the case:
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     (i) rt is impossible to divide the trunk tD at y = yD by the method

     (ii) The division generates cycles in the HC-graph.

     (iii) The resulting trunk-crossing count Wo(R(tD, yD, M)) iS

greater than IJo, where Wo is a parameter determined in the algorithm.

     (iv) W(R - {tD}) is equal to W(R). rf W(R -- {tD}) = VJ(R) then any

dividing pattern of tD is of no effect, since for any dividing pattern

(tD, YD, M), W(R(tD, yD, M)) 4 W(R - {tD}) holds.

     (v) The division cuts off no direeted paths of the HC-graph.

     (vi) There exist both tL(yD) and tR(yD), and

            XL(tL(YD)) + XR(tR(YD)) + 2 > W(R).

               12     (vii) IJ({tD, tD, ti, tj}) is greater than or equal to W({tD, ti,

t'})'
 j
                                              9     (2) otherwise, FB(ti, tj, tD, yD, M) = Zk.s ek'fk(tD, yD, M), where

Cs, ... , cg are positive constants.

     fs(tD, YD, M) = (the length of the longest directed path of the

                      original HC-graph)

                   - (the length of the longest directed path of the

                      HC-graph after the division),

     f6(tD, YD, M) = (the sum of the length of those directed paths that

                      are cut off by the division),

     f7(tD, YD, M) " Min(XL(tD), XR(tD)),

     fs(tD, YD, M) = f3(tD, YD, M),

     fg(tD, YD, M)•= f4(tD, yD, M),

where f3 and f4 are defined in the preceding chapter.

   [A!gorithm B --- width reduction algorithm]

   btgglg
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START:

EXITI: 2,Lt W(R) =Wo(R) then stop;

     construct a simplified VR-graph Gs(Vl, V2, As);

     ARC := Åë;

     comment:

          This block examines the matching condition for every trunk

          group. rf the matching condition is not the case for a trunk

                                              12          group Gk, then those w-arcs between Vk and Vk are stored into

                            '          ARC;

     for k:=1 E!tigg 1 unttl n gLt

       Lf /IGk+ d.(R; VftUVft) - max(ftvl, ISvft) >wo(R) then

      !b2gEL!!

         ARc := ARc U{(ti, tj) 1 ti E vill, tj e vjl and w(ti, tj) = o};

         for every w-arc (t., t.) e ARC do
                           IJ -
           Fh(ti, tj) := ISGk + d.(R; vk u vft) - max(#vl, vsvft) - wo(R)

       end;

     DPAT := Åë;

     comment:

          The following block chooses a third trunk tD to be divided

          for every w-arc (t., t.) contained in ARC. Here it should
                           IJ
          be noted that if c(ti, tj) = O then the trunk tD must be an

          articulation point of directed paths connecting t. and t.,
                                                         lj
          and otherwise t                          must be divided so as to reduee the value                        D
          XL(ti) + xR(tj) - 1 or xR(ti) + xL(tj) - 1.

     for every (t., t.) e ARC do
                 xJ '



                                                                     97

    !tlgatge

      if c(t., t.) =O then
     --- 1J
        T(ti, tj) := {(ti, tj, tD) l {ti, tj, tD} is c--incomplete

                      and tD e P.(ti, tj)V P.(tj, ti)}

       else

         T(ti, tj) := {(ti, tj, tD) I {ti, tj, tD} is w-incomplete

                            AA                       and (rtDU r-itD) A {ti, tj} f Åë};

       for every (ti, tj, tD) e T(ti, tj) SILt

         DPAT := DPAT {(ti, tj, tD, yD, M) l (tD, yD, M) is adividing

                         pattern of the trunk tD}

     end;

     Wo := Wo (R) ;

     TEST := Åë;

LOOP:

     compute FB(ti, tj, tD, yD, M) for every (ti, tj, tD, yD, M) e DPAT;

     Dp :" {(ti, tj, tD, yD, M) l FB(ti, tj, tD, yD, M) l (D};

     while D iÅë do
             p-
     btgglg

       choose an element (ti, tj, tD, yD, M) from Dp to give the maximum

       value for Fh + FB;

       Lf (tD, YD, M)eTEST then

       btggig

         divide the trunk tD at y = yD by the method M;
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         Lf W( R( tD, yD, M)) < W( R) then

           !tsg2a R:= R(tD,yD, M); es! .!iL. START end

          eiSreestltlfgilire the divided trunk to the pre-division condition;

            TEsT := TEST U{(tD, yD, M)} end

        end;

        comment:

             TEST remembers those dividing patterns that have ever been

             tried in vain. Thus, if (tD, yD, M) e TEST then the dividing

             pattern does not have to be tried;

        Dp := Dp - {(ti, tj, tD, YD, M)}

      end;

EXIT2: Lf Wo > Wo (R) then stop;

EXr T3: Lf Wo = Wo (R) and W(R) = Wo (R) +1 then stop;

     Wo := Wo + 1;

     ee S. LOOP

   end Algorithm B;

     Algorithm B contains three exits. If the algorithm terrninates at

EXITI, then the track count W(R) is equal to the trunk-crossing count

Wo(R) and thus no more procedure is needed. On the other hand if it

terrninates at the other exits then W(R) > Wo(R). Also, in these eases

it is easily seen that the track count W(R) can not be reduced by any

dividing patterns of trunks which do not increase the trunk-crossing

count Wo(R). Hence, if W(R) = Wo(R) + 1 then any more search is insignifi-

cant, and thus the algorithm terminates at EXrT3. If W(R) > Wo(R) + 1
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then the algorithm must eontinue to search for a dividing pattern which

reduces the track count W(R). ;n this case, all of such dividing

patterns increase the trunk-crossing count Wo(R). If the algorithm finds

no such patterns then it terminates at EXIT2.

A7 Al rth c
     --- Algorithm for Arranging Trunks ---

     Algorithms A and B determine which trunks to be divided and how to

divide them, but they do not show the way to arrange those trunks.

Algorithm C to be presented in this section achieves the fewest possible

tracks, in other words, it arranges trunks in the minimum possible width.

Note that this algorithm also estimates the track count W(R) for a given

set of trunks R if the HC-graph is acyclic.

    [Algorithm C]

   btgglg

     while RfÅë do

     Jt2gELgn

       construct the HC-graph Gh(R, r);

       RL :"'{ ti l ti e R and r-iti = Åë };

       if there exists a c-set such that S .) R                                                   then

       lbijgglg

         place those trunks belonging to RL on the leftmost track;

         R := R-R
                   L
       end

       else !bzggl!!

         enumerate those c-sets that are subsets of RL; .

                      vaiues for all those c--sets;         evaluate F                    c
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      let SL be a c-set for which the Fc value is the maximum;

      RR := { tj l tj eR and rtj =Åë };

      if there exists a c-set S such that S -) R then

      ent

        place those trunks belonging to RR on the rightmost track;

        R := R-R
                  R
      end

                         '      else !t}ggliEl

        enumerate those c-sets that are subsets of RR;

       ' evaluate F                    values for all those c-sets;                  c
        let SR be a c-set for which the Fc value is the maximum;

        ILf Fc(SL)4Fc(SR) then

        begin

          place those trunks belonging to SL on the leftmost track;

          R := R-s
                    L
        end
                                           '
        else begin

          place those trunks belonging to SR on the rightmost track;

          R := R-s
                    R
        end

      end

    end

  end

end Algorithm C;

  comment

       RL (or RR) is a set of those trunks which can be plaeed on the

       leftmost (or rightmost) track.
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                               is determined as follows:     The heuristic function F                             c
     Fc(S) = Clo'f!o(S) - Cll'fll(S),

where S is a c-set and clo and cn are positive constants.

     flo(S) = Kl'max{ xL(tj) + xR(tj) - 1 l tj e s } + K2.#s,

where Kl and K2 are positive constants.

        (s) = lfs - lfs,     f      ll

where S is the maximum c-set such that S S- R and S 2 S.

     The following is the discussion on the heuristic function Fc. For

a trunk ti, the larger is the value xL(ti) + xR(ti) - 1, the more

restricted are those traeks on which the trunk t. may be p!aced, as is
                                                 i
seen in Property 3.3. This is reflected on the funetion flo. Next,

consider the evaluation by the function fn. Now, letS be a c-set such

that S `-= RL and letS be the largest c-set such that SER and S;S.

Then, if S is much smaller than g then it is desirable that the present

cycle of the algorithm does not choose S, since some future cycle may

happen to find a larger c-set which includes S.

pm48CttIRlt                                    '
     The algorithm described in this thesis has been programmed with

some modifications and run on a FACOM 230-45!S computer. This program

is written in FORTRAN IV and consists of about 3K steps. The author has

experimented with this program for several wire-routing problems. The

following examples demonstrates its usefulness and versatility. A!1 the

examples have been artificially designed, because the author could not

obtain real designs. Real problems, however, seem to be easier than

these problems considered here.
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                                                   ':E-sAg!Rsgb-.t,iei

     An HC-graph for Example 1 is shown in Fig. 4.ll. As is easily

seen, the HC-graph contains five CycleS {tl, t2, t3, t4, ts, t6}, {tl,

t2, t3, t6}, {t2, t3, t4, t5}, {t2, t3, t6, t7, ts, ts} and {ts, t6, t7,

t8}'

     Algorithm A first enurnerates all of those dividing patterns that

eliminate the most cycles, and the results are shown in Table 4.6.

     rt should be noted that the methods I, r' Ir, rlr, and III' are

represented simply as 1, 2, 3, 4, and 5 in Table 4.6. For exarnple, the

first line means that the dividing pattern (t2, 1, IIr) eliminates

exactly two cycles. Here also note that the table excludes those dividing

patterns that increase the trunk-crossing count, for example, a dividing

            , 17, II) which eliminates four cycles.pattern (t          5

     Next, Algorithm A computes the f3 + f4 value for every dividing

pattern and chooses the dividing pattern (t2, 3, III), as is shown in

Table 4.7.

     Fig. 4.12 shows the HC-graph resulting from the division of the trunk

                                                            12t2 at y = 3 by the method III, where t2 and t13 represent t2 and t2,

respectively.

                                                               , 10, IZI)     At the next cycle of Algorithm A the dividing pattern (t
                                                              5

is chosen. In this turn Algorithm A must compute the values for f2 + f3

+ f4 because those dividing patterns enumerated in Table 4.8 can eliminate

the only rernaining cycle {t2, t3, t4, ts}•

     Table 4.8 indicates that the dividing pattern (t4, 15, rr!') is the

optimum and the trunk t4 is divided at y = 15 by the method rrZ'. The

resulting HC-graph is shown in Fig. 4.13. As is easily seen, the HC-graph

is acyclic and hence Algorithm A terminates. •
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     Then the control is transferred from Algorithm A to Algorithm B.

First, xL and xR values must be computed. Trunk groups are constructed

by the simplified VR-graph shown in Fig. 4.14.

     Trunk groups are as follows:

     Gl = {tl, t13, t6, t7, t2, t5},

     G2 = {tl, t6, t7, t2, ts, tlO, tll}'

     G3 = {t6, t7, t2, ts, tlo, tll, t3}'

     G4 = {t7, ts, tlo, tll, t3, t4' t15}'

     Gs = {t7' tlo' tn' t3' t4' tls' ts}'

     G6 = {tlo, tll, t3, t4, tls' t8' t14}'

     G7 = {tlo' tu' t4' tls' t8' t14' t12}'

     Gs = {tll, t4, tls, t8, tl4' t12' t9}'

     All except the trunk group Gl are max groups. The values for xL

and xR are computed by using the above trunk groups.

     Algorithm C achieves the minimum number of tracks as shown in Fig.

4.15. For this layout pattern, the trunk-crossing count is 7 and the

track count is 11. Henee, trunks must be divided in order to reduce the

width. Algorithm B first examines matching conditions for max groups.

     d.(Ri; Gl U G2) - Wo(Ri) = 1,

     d.(Ri; G2 U G3) - Wo(Ri) = 1,

     d.(Ri; G3 U G4) - ;Jo(Rl) = 2,

     d.(Ri; G4 U Gs) - IJo(Ri) = 1,

     d.(Ri; Gs U G6) - Wo(Ri) = 1,

     d.(Ri; G6 U G7) - Wo(Ri) = 1
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     d.(Ri; G7 U Gs) - Wo(Ri) = le

     Henee, Algorithrn B first examines those w-ares that exist between

 12V3 and V3. Here the w-arc (t6, t4) and (t6, tls) are excluded because

g[L(t6), U(t4)] = [L(t6), U(tls)] = Åë. Selected w-ares are (t2, t4)

and (t2, tls). Then, for the w--arc (t2, t4), the trunk ts is the only

trunk to be divided, and the optimum dividing pattern of ts is (ts, 8,

I). This division reduees the track count by one without increasing the

trunk-crossing count. Algorithm B proceeds in this way and finds the

layout pattern shown in Fig. 4.16. For this pattern, the track count is

equal to the trunk-crossing count, and hence Algorithm B terminates.

     CPU times and other data for all the examples are summarized in

Table 4.10.
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ti [PL(ti) TR(ti) U(t.)1 L(t.)1

tl {1} {5} o 5

t2 {7} {1,3} o 7

t3 {9,12} {7} 7 12

t4 {10,15} {12} 10 15

t5 {3,6,8} {10,16} 3 oo

t6 {2,5} {8,9} o 9

t7 {11} {2} o ll

t8 {16,18} {11} 11 co

t9 Åë {14,18} 14 co

t10 {4,13} {6} 4 13

t11 Åë {4,15} 4 15

t12 Åë {13,17} 13 co

Table 4.4. Example 1.

y 1 2 3 456 7 8910Zl12131415161718
tL(Y) tl t6 t5 tlOt6t5 t 2t5t3t4t7t3tlO't4t8-t8
tR(Y) t2 t7 t2 tlltltlO t 3t6t6t5t8t4t12t9tllt5t12t9
n(y) 4 4 5 776 7 66676666444

Table 4.5. Terminal conditions for Example 1.



106

tl

t2 t3

t4 t
 11

t6 t5 t 10
t
 12

t7 t8 t9

Fig. 4.11. HC-graph for Examole 1.
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t'1 tl t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12 t13 t14 t 15

(t')1 6 3 4 1 2 5 6 7 8 3 6 4 7 5 8

XR(t')1 2 7 6 9 8 5 4 3 1 3 1 1 1 2 1

Table 4.9. x and x LR values.
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Example
Number

Number
ofWires

Number
ofGates

Number
ofCycles

Wo(R) Tnitial
Width

Final
Width

Numberof
DividedTrunks

TotalExecution
Time(sec)

1 12 18 5 7 11 8 6 4.6

2 5 7 3 4 7 6 3 O.9

3 10 12 3 7 10 9 3 2.7

4 10 25 65 10 14 12 8 42.3

5 12 l6 1 10 10 10 1 O.8

6 12 16 9 11 15 14 7 8.8

7 12 17 o 5 6 6 o O.5

8 13 20 o 5 6 5 1 1.9

9 15 22 2 12 12 12 1 1.6

Tab le 4.10. Computational results.

N-N
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4.9 Conclusions

     The structure of the width reduction algorithm (Algorithm B)

described in this chapter is more complicated than that of the cycle

elininating algorithm (Algorithm A) presented in the previous chapter.

This eomplexity of the structure is due to the diffieulty of evaluating

divÅ}ding patterns of trunks, and the difficulty is explained by the fact

that Algorithm A checks only whether a dividing pattern eliminates

cyclic constraints in an HC-graph, but Algorithm B must examine with the

tedious work of rearranging trunks whether a division can really reduce

the track eount. Thus, it is the most important in AlgorÅ}thm B to limit

the search space. For this purpose various notions and conditions have

been introduced such as matching conditions, incornplete subsets and so

on. Lastly, this approach has proven successful by means of experimental

results.
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                                CHAPTER 5

                               CONCLUSIONS

     The wire-routing design problem considered in this thesis has been

studied in many parts of the world, and toward this problem various kinds

of approaches have been reported. However, none of them could be fully

successful for lack of the ability to achieve perfect wirability.
                                                      '
Zmperfect wirability may be eonsidered to be a serious defeet because

of inevitableness of human aids in adding incompleted wiring routes. In

this reason it is not too much to say that the algorithm presented in

this thesis is epoch-making, which achieves perfect wirability. The

success of this approach depends greatly upon the mathematical model of

the wire-routing system and the trunk-division methods. This thesis

evaluates the operation of dividing a trunk frorn two viewpoints, (1) its

ability to eliminate cyclic constraints and (2) its ability to cut off

long constraint ehains in an HC-graph. Then, by the effective use of

those trunk-division methods the author could have an excellent wire-

routing algorithm. Also, the experimental results have proven the

validity and the usefulness of the algorithm.

     The only work left for further improvement is to achieve better

element placing. The current version of the wire-routing program is

independent of a program for placing elements in a suitable order.

However, these programs, in themselves, should work in close cooperation

with each other. The author will study such a cooperating-program

system.
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