|

) <

The University of Osaka
Institutional Knowledge Archive

Title WIRE ROUTING SCHEME BASED ON GRAPH THEORY MODEL

Author(s) |%F, BX

Citation |KFRKZ, 1977, HIXHmX

Version Type|VoR

URL https://hdl. handle.net/11094/185

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir. library. osaka-u. ac. jp/

The University of Osaka

WIRE ROUTING SCHEME

BASED ON

GRAPH THEORY MODEL

FEBRUARY 1977

TETSUO ASANO

WIRE ROUTING SCHEME
BASED ON

GRAPH THEORY MODEL

by

TETSUO ASANO

Submitted in partial fulfillment of

the requirement for the degree of

DOCTOR OF ENGINEERING
(Electrical engineering)
at
OSAKA UNIVERSITY

TOYONAKA, OSAKA, JAPAN

February 1977

iii

ACKNOWLEDGEMENTS

The author would like to express his sincerest gratitude to
Professor K. Tanaka, thesis supervisor. Prof. Tanaka is a constant
source of invaluable advice and encouragement throughout the course of
the research for this thesis. Special thanks are also due to Prof.
T. Fujisawa, Prof. T. Kasami, and Prof. M. Kizawa of Department of
Information and Computer Sciences through the course of author's
undergraduate and graduate studies.

He wishes to thank Associate Prof. J. Toyoda, Associate Prof.

S. Tamura, Dr. T. Kitahashi, Dr. M. Mizumoto, and the colleagues of
Prof. Tanaka's laboratory for their several relevant suggestions and
useful discussions.

He is also grateful to Mr. H. Horino and Mr. T. Amano of Central

Research Laboratory, Hitachi Ltd., for their invaluable suggestions.

iv

ABSTRACT

Tetsuo Asano, Graduate School of Osaka University, February 1977.

Wire Routing Scheme Based on Graph Theory Model: Doctoral Thesis.

The research described in this thesis deals with design automation
of a building-block LSI. The principal aim has been to establish a wire-
routing scheme superior to human designers. The algorithm has several
features which sharply define it from previous techniques. Perfect
wirability 1is the most noteworthy one among them. This enables it to
design a layout pattern without any human supports.

This method realizes orthogonal wiring patterns on two layers; one
for vertical routes called "trunks'" and the other for horizontal routes
called "branches". It first assigns each net to the simplest routing
pattern with the minimum number of through~holes. The pattern consists
of exactly one trunk and some branches. If these assignments fail to
achieve an optimal pattern then it is necessary to break a net into more
than one trunk. The author calls this operation a division of a trunk.
A trunk is divided for one purpose of guaranteeing perfect wireability
and for another purpose of reducing a wiring area.

The scheme with this divided-trunk style accomplishes a near optimal

layout pattern, and has proven successful by experimental results.

#A:
U(ti):
L(ti):

TL(ti):

TR(ti)

WO(R):

§L(ti):

§R(ti):

LIST OF SYMBOLS

number of elements of a set A

trunk for ith net

y-coordinate of the upper end of the trunk ty
y—coordinate of the lower end of the trunk ti
set of y-coordinates of left-side terminals associated

with the trunk t,

set of y-coordinates of right-side terminals associated
with the trunk ti

whole set of given nets or trunks

TL(ti)(\ TR(tj), horizontal relation between two trunks
{ tj | R(ti’ tj) = @ }, set of those trunks which must

be placed to the right of ti

set of trunks (vertices in HC-graph) reachable from t,
horizontal constraint graph, or HC-graph

trunk which connects with the left-side terminal at

y =79y

trunk which connects with the right-side terminal at

y = ¥p

minimum width necessary for arranging the trunks of R,

or track count of R

maximum trunk-crossing count

length of the longest constraint chain that terminates

at ti in HC-graph

length of the longest constraint chain that starts from

t, in HC-graph

vi

Gi: ith trunk group
xL(ti): number of tracks which must be placed to the left of ti
xR(ti): number of tracks which must be placed to the right of ty
(ti, Ype M): dividing pattern to divide a trunk ti at y =y, by a
method M
R(ti’ Ype M): set of trunks after dividing a trunk ti at y = AN by a
method M
DR : decomposition of R
Gv(R, Av): vertical relation graph, or VR-graph
A, { (ti’ tj) | L(ti) < U(tj) }, set of directed arcs of
VR-graph
dx(R): size of the optimum x-decomposition of R (x = a, ¢, w, r)
dx(R; S): size of the optimum x-decomposition of a subset S of R
§L(ti): number of tracks necessary for arranging those trunks
which must be placed to the left of ti
iR(ti): number of tracks necessary for arranging those trunks

which must be placed to the right of ti
P(ti, tj): set of those trunks (vertices in HC-graph) which are on

a directed path from ti to tj

Pa(ti, tj): set of those trunks (vertices in HC-graph) through
which every directed path from t; to tj must pass

GS(Vl’ V2, AS): simplified VR-graph

AU B: union of mutually disjoint sets A and B

CHAPTER 1

CHAPTER 2
2.1
2.2
2.3
2.4
2.5
2.5.1
2.5,2

2.5.3
2.6

2.7
CHAPTER 3
3.1
3.2
3.3

3.4

3.5

3.6
CHAPTER 4
4.1

4.2

TABLE OF CONTENTS

INTRODUCTION © 00000000000 0000000000CCRIOIOROIOROESISIOROIROTOS
REALIZABILITY OF A SET OF NETS Csensessseesssssssos
Introduction

Description of LSI Model

Preliminary Definitions

Trunk Division Methods

Elimination of Cyclic Horizontal Constraints

Methods I and I'
Method II

Methods III and III'

Realizability of a Set of Nets

Conclusions

CYCLE ELIMINATING PROCESS 9000000000000 s000OR S

Introduction

Outline of the Whole Algorithm

Horizontal Ordering and Trunk Groups

Algorithm A

——- Algorithm for eliminating all of cycles in an
HC-graph ---

Extension of the Applicable Range of the Methods

I and I'

Conclusions

WIDTH REDUCTION PROCESS G000 es 0000000000000 00RO S

Introduction

Formulation of Minimum-Width Problem

vii

Page

16
22
22
25
27
29
38
39
39
39

40

43

48
63
65
65

65

4.2.1
4.2.,2
4.2.3
4.2.4
4.3

4.3.1
4.3.2
4.3.3
4.4

4.5

4.5.1
4.5.2

4.6

4.7

4.8

4.9

CHAPTER 5

LIST OF REFERENCES

a-decomposition of R

c-decomposition of R

w-decomposition of R

r-decomposition of R

Procedure for Reducing Width

Procedure for the Case of dC(R) > da(R)
Procedure for the Case of dW(R) > da(R)
Procedure for the Case of dr(R) > dw(R)
Outline of Width Reduction Process
Matching Condition

Property of Trunk Groups

Matching Condition

Algorithm B

—-—— Width Reduction Algorithm ——-
Algorithm C

——— Algorithm for Arranging Trunks -—-
Computational Results

Conclusions

CONCLUSIONS 90000200000 00000G0e000s0ROCOOIRRROORTCOGDOES

viii

Page
69
69
70
72
73
73
79
84
84
85
85

88

93

99
101
113
114

115

CHAPTER 1

INTRODUCTION

Computer has enjoyed a steady growth since its first appearance in
the mid-1940's. The remarkable development into the modern high-speed
computer, however, had to wait until the introduction of integrated
circuits (IC) or large-scale integration (LSI).

The recent trend in LSI technologies toward higher component density
has drastically increased the complexity of designing a chip layout.

From this point of view, development of a computer-aided design (CAD)
system is urgently needed.

A design system for LSI may be divided into several parts —--
partitioning a given network [1] - [4], placement of individual elements
[5] - [7] and wire routing [8] - [18]. Among them, the most important is
the last wire routing technique, since the time necessary for determining
wiring routes takes more than half of the total design time.

It was in 1957 that R. C. Prim [8] and H. Loberman [9] suggested the
methods of connecting terminals for the first time. In 1959, E. F. Moore
[10] reported an aigorithm for finding the shortest path through a maze.
In the above works, the goal was laid on minimization of total wire
length. In 1961, the most noticeable algorithm was presented by C. Y. Lee
[11] (this algorithm is usually referred to as "Lee's algorithm"). It can
find whatever sophisticated routes if any. Unfortunately, some serious
disadvantages are also contained in this algorithm, i.e., too much storage
required and too much time consumed.

For the last decade several modified versions of Lee's algorithm have

been introduced: the algorithm for multi-layer boards of S. Heiss [12],

the line search technique of D. W. Hightower [13] or K. Mikami [14], the
cellular routing method of Hitchcock [15], the stepping aperture technique
of S. E. Lass [16], the channel routing technique of A. Hashimoto [17]

and the method of S. B. Akers, Jr. [18].

In a layout design of LSI mask patterns, the first objective is the
highest possible component density. The only way to accomplish this is
to reduce an area for routing wires, since that for circuit cells is
fixed. A building-block LSI is suitable for this purpose. It consists
of several "blocks'"; each block is composed of two parallel rows of
circuit cells with an interconnection area between them. Such an LSIT
admits an approach in which a wiring pattern for an individual block is
independently optimized. Then, what is an "optimal' wiring pattern? At
the present state of the art, the optimality requires the following
three: (1) Perfect wirability -—— all of given nets are routed. (2)
Minimum possible width --—- nets in a block are routed within an area of
minimum possible width. (3) Minimum possible number of through-holes ---
a net is routed in the simpiest style if possible.

Perfect wirabilaty is indispensable for a design automation system,
because its lack of the ability implies inevitability of human supports.
Unfortunately, none of the wire routing techniques introduced above
possesses it. Also, they may continue to make vain efforts to search for
wiring routes even in the case where insufficient wiring area will not
allow realization of required nets.

Optimal patterns may be found for a small-sized problem. But on the
other hand in a practical, large-sized problem, the optimality is rather
less practical. The author believes that a ''good" wire routing program

should be one of high cost/performance. This thesis directs the search

for a near optimal scheme for wire routing. The author takes an approach
of iterative improvement; first assign each net to the simplest routing
pattern, second guarantee perfect wireability with minimum possible
modifications of routing patterns and last reduce the wiring area as much
as possible. The improvement processes are based upon a channel routing
style which is substantially more versatile than those previously analyzed.
Specificially, previous papers [17] and [19] dealt with a style in which
each net had a single, straight trunk with feeders to cell terminals; this
thesis expands the style with methods of dividing a trunk, at any grid
position, permitting the resulting subtrunks to overlap in the direction
parallel to the terminal rows. The advantages of this expanded style are
substantial: 1) trunks may be divided to eliminate cyclic horizontal
constraints and 2) trunks may be divided to break up long constraint
chains which cause the track count W to be larger than the maximum trunk-

crossing count WO (sometimes W = 2+W_ for the single trunk style).

0
Chapter 2 presents a mathematical model and proves that the divided-
trunk style can eliminate all of cyclic horizontal constraints except in
some conditions which are expected to be extremely rare.
Chapter 3 is concerned with comparison between three dividing
methods proposed and the conclusion is reached that the methods I and I'
should be applied in preference to the other methods if possible. Then,
extension of cycle elimination capability of these methods is intended.
Also, an algorithm for eliminating all of cyclic horizontal constraints
is presented.
Chapter 4 discusses a width reduction process. The algorithm proposed

there takes a heuristic search method to achieve near optimal width.

The main feature of the algorithm is that it can take advantage of a more

versatile routing style than those previously analyzed. In practice,
this is an exhaustive process, so that it employs some heuristic functions

to limit the search space.

CHAPTER 2

REALIZABILITY OF A SET OF NETS

2.1 Introduction

This chapter constructs a mathematical model for a wiring area, not
far from a physical LSI mask pattern. On the model it is discussed
whether a given set of nets is realizable.

A net is represented initially by the simplest routing pattern that
consists of one trunk and some branches connecting it to appropriate
terminals. Then, wire routing problem is equivalent to determining a
layout pattern of trunks without overlapping branches of different nets.
In order to avoid overlapping branches at any y-coordinate within the
wiring area, a trunk with a branch contacting the left-side terminal must
be located to the left of the other trunk with a branch contacting the
right-side terminal. This thesis expresses such constraints between
trunks by a directed graph. The author calls it a horizontal constraint
graph, in short, an HC-graph.

A set of trunks should be realized by laying them out in the order
determined by the corresponding HC-graph. Then, if the HC-graph contains
any cycle, all of them must be eliminated. To accomplish this, the
author devises only three simple methods of dividing a trunk and defines
them formally. These formal definitions make it possible to prove that
the divided-trunk style can eliminate cyclic constraints except in some

conditions which are expected to be extremely rare.

2.2 Description of LSI Model

Fig. 2.1 illustrates a model for a mask pattern of a building-block

LSI. 1In order to describe the model used in this thesis, the following
terms are presented.

(1) Element row: Row of fundamental circuit elements such as gates

or flip-flops.

(2) Internal terminal row: Set of terminals in each element row.

Each such set is assumed to form a straight line.

(3) Internal wiring area: Area between a pair of element rows.

(4) Block: Pair of element rows and an internal wiring area between

them.

(5) External wiring area: Area for interconnection of different

blocks.

(6) Upper and lower terminal rows: Rows of imaginary terminals at

the upper and lower bounds, respectively, of a wiring area.

(7) Track: Straight line on which vertical wire segments run.

(8) Channel: General term for internal and external wiring areas.

As is seen in Fig. 2.1, the maskpattern of a building-block LSI
consists of several blocks, external wiring areas and bonding pads. Wire
routings are performed in internal and external wiring areas. Terminals
of elements and through-holes are placed only at the quantized mesh points
(grid points) on the maskpattern. Also, two layer wiring is permitted:
one layer for vertical routes called trunks and the other for horizontal
routes called branches. Trunks and branches are connected by through-
holes.

In a building-block LSI, wire routings are performed first in internal
wiring areas and then in external areas. This thesis assumes a model for
a wiring area with terminal rows arranged in the y-direction, since such

a model is valid for both an internal wiring area and external one. It

- o e -

Bonding pad

- w wwww — -

FEomS oS ee = o-—- I“

]
1| Element row "

)
i
I Internal |
! wiring !
x| region]
a! I
= “ Element row I
!
bommcmmmeo o2 J

External wiring area

-y o -

-y o -

Fig. 2-1a. Whole structure of building-block LSI.

Left
terminal
row

‘L Upper terminal row

Right
terminal
row

}

Element
row —— - ——

Element

row

- ow o W e =
B
- - - o o -
- = m—— o -
- een W e ws wm e

Lower terminal row

Fig. 2-1b. Block model.

is also assumed that the length of the left-side terminal row is equal to
that of the right-side terminal row and that wire routings should be
performed within the area.

Width W of a wiring area is defined by

W = (x-coordinate of the right terminal row) - 1,
where the coordinate is represented by the pitch number of meshes and the

x-coordinate of the left terminal row is assumed to be zero.

2.3 Preliminary Definitions

In a layout design of a building-block LSI, the following design
criteria are considered:

(1) Perfect wirability -—- all of given nets are routed.

(2) Minimum possible width —--- nets in a block are routed within an
area of minimum possible width.

(3) Fewest possible through-holes -—-— a net is routed in the simplest
possible style.

At the state of the art, total wire length is less significant.

A routed pattern is said to be "optimal' if it satisfies all the
above criteria. Optimal patterns may be found for a small-sized problem.
But on the other hand in a practical, large-sized problem, it seems
impossible to find an optimal pattern. Moreover, even if one can
construct a wire routing algorithm that always achieves an optimal
pattern, it may not be valid to say that the algorithm is optimal. A
practical wire routing algorithm should be evaluated by its cost/perfor-
mance,

The wire routing scheme proposed in this thesis has a structure of

iterative improvement. In this sense the process should start from the

10

simplest routing style. Fig. 2.2 shows the simplest routing pattern of a
net i on a quantized wiring area. This wiring route consists of one
vertical line segment called a trunk, and some horizontal line segments
called branches which connect it to appropriate terminals. Here it should
be noted that exactly one trunk is assigned to the net. The net may be
identified with the trunk associated with the net. This implies that
input data are specifications of trunks. Hereafter, let ti denote the

trunk for the ith net.

u(t,) —® S
) 2
L(ti) —p k---_
1(t'i) ' t. 0
: 1 E
4
Y

Fig. 2-2. Simplest wiring pattern for net 1.

The first formalization step in this wiring scheme is a set represen-
tation of required nets. The trunk t; is specified by two values U(ti)

and L(ti)’ and two sets TL(ti) and TR(ti), where TL(ti) is the set of y-

11

coordinates of left-side terminals related to the ith net, and TR(ti) for
right-side terminals. U(ti) and L(ti) are the upper end and the lower

end of the trumnk t,, respectively. Formally, they are designated as

i
follows:
0 if the trunk t, goes through upwards,
i

U(ti) =

u(ti) otherwise.

S if the trunk t, goes through downwards,
L(t,) ={ *

Q(ti) otherwise.,

= mi V) = .

where u(ti) min(TL(ti) TR(ti)) and Z(ti) max(TL(ti)lJ TR(ti))

The second formalization step is a directed-graph representation of
constraints between trunks. A wire routing program specifies positions
of trunks in order. These specifications must be done so that they do
not overlap branches of different nets. In order to avoid overlapping
branches at any y-coordinate, a trunk ti with a branch contacting the
left-side terminal must be located to the left of the other trunk tj with
a branch contacting the right-side terminal. This thesis expresses such
a horizontal constraint between these two trunks ti and tj as tj € 1"ti
(see Fig. 2.3). Formally, the set Fti contains tj if and only if the
intersection TL(ti)f\ TR(tj) is not empty. I may be considered as a
multiple-valued function or mapping from the set of trunks R into itself.

It is convenient to consider the inverse mapping T_l of T as given
by

-1
e, ={¢t, | t,elt, }.
J 1]
For a set of trunks A, T'A and T_lA are defined by

TA = Ut Arti’ and

€

A A

Transitive closures I' and T—l

by

T't, =T,V th.LJ ese+, and
i i i

-1

rie, =t
1

U —2 U L]
ti T ti s

where for each k, k > 1

e~ r®el), and
1 1

-k-1

S I
r ti =T “(T ti).

u(t;)

L(t) =

12

of T and F_l, respectively, are defined

U(tj)

Fig. 2. Horizontal constraint between two trunks.

TL(ti) = {2, 5}, TR(ti) = {6}, U(ti) =2, L(ti) = @

R(ti, tj) = {5}, tj

{5}, U(tj) =0, L(tj) =5,

Pti.

13

A horizontal constraint graph, in short, an HC~graph, Gh = (R, T)
is formed as follows: Each vertex of Gh corresponds to a trunk and a
directed arc is drawn from a vertex ti to a vertex tj if and only if
tj € Fti holds. An HC-graph does not contain a self-loop (an arc with
the same vertex at its start and end point) or a parallel arc.

Throughout this thesis a cycle in an HC-graph is represented as a
set of vertices (trunks). This representation should cause no confusion,
since an HC-graph has no parallel arcs in it.

Example 2.1 A set of nets is given in a tabular form as Table 2.1.

As is seen from the table, the scheme introduced in this thesis
identifies a set of nets with the corresponding set of trunks., Various
kinds of optimization which may be required in the course of the process
can be achieved by altering the way of assigning trunks to nets.

As for the set of trunks R2,l’ horizontal relations between trunks
are

I‘tl = {tz}, I‘t2 = {ta}, I't3 = {tl, t5}, Pta = {ts} and I‘t5 = (,

The above relations are mapped into the HC-graph shown in Fig. 2.4.
Fig. 2.4 indicates that the set of trunks can be realized by placing the
trunk t3 on the leftmost track, tl on the next track and so on.

On the other hand, the HC-graph for the set of trunks given in

Table 2.2 contains a cycle {tl’ tz}, as is seen in Fig. 2.5. This

must be laid to the left of t. and also t. must

implies that the trunk t 2 2

1
be laid to the left of tl’ which is impossible.

The above suggests the following theorem, which is the most funda-
mental theorem on realizability of a set of trunks.

Theorem 2.1 The necessary and sufficient condition that a set of trunks

R can be arranged without any overlap of branches is that the HC-graph

14

corresponding to R does not contain any cycles.

(Proof omitted)

This theorem states that if any cycles are contained in the HC-graph
then all of them must be eliminated by dividing trunks in suitable ways.
This should be done by representing a net by two or more trunks. The
author calls such an operation "a division of a trunk'. Methods of

dividing a trunk are proposed in the next section.

to | T (e | Tp(e)) [UCe) | Lt
ty | {1} {2} 0 4
t, | {4} {1} 1 4
ty {2, 5| ¢ 2 o
e, |3} |14} 0 3
ts | # {3, 5} 3 o

Table 2.1. A set of nets R2 1

2

Fig. 2-4. HC-graph for the set of trunks R2 1

15

T (e [Te(t) [UCe) |L(E))
{1} {4} 0 4
{4} {1} 1 4
{2, 5} | ¢ 2 o0
{3} {2} 0 3
¢ {3, 5} 3 o
Table 2.2. A set of nets R

Fig. 2-5. HC-graph for the set of trunks R

2,2°

+

2,2°

16

2.4 Trunk Division Methods

This section describes trunk-division methods. This scheme limits
them to only three kinds shown in Fig. 2.6. These three kinds of methods
are enough for achieving perfect wirability, which is shown in Section
2.6.

These methods perform trunk-division operations as follows:

Method I divides a trunk into two trunks, one above the dividing point
and the other below it. The upper trunk is arranged to the left of the
lower trunk. Method I' is the dual form of Method I.

The other methods produce two trunks, one for connections to the
left-side terminals and the other for connections to the right-side
terminals. These two trunks are connected by a branch at a dividing
point. The point of Method II is above or below all of the terminals
associated with the trunk to be divided. Method III divides a trunk at
one of its own right-side terminals, and Method III' at one of its own
left-side terminals.

The three trunk-division methods are formally expressed as follows.
In Fig. 2.6-(2), for instance, the divided trunk ti connects with two
branches. Notice that one connects to the right-side terminal while the
other, i.e., the branch with the y-coordinate being Yp» does not. In
the expressions below the existence of such a branch at a dividing point
(yD) is reflected by the overscored y-coordinate, such as §D' For the
trunk ti, §D is added to the right set TR(ti)' Such a representation
leads to the following formal expressions of the three methods. 1In the
expressions below, a trunk t, is divided at y = Y by each of the methods
into two distinct trunks ti and ti, and the left and right sets of ti

and ti are specified.

y e -
D R
i

-- 2

t;

(5) Method III

(3) Method I'

(6) Method III'

Fig. 2-6. Three methods of dividing a trunk.

17

Method I
TL(ti) ={y | y € TL(ti) and y > Y }u{ §D 1,
Tt = {y | ye (e andy 2y),
TL(ti) ={y | y € TL(ti) and y £ Yp },
T (t) = {y | yeT(t) amdy<y }UL{F 1}

The condition for its application is that U(ti) < Yp < L(ti)'

Method I'
TL(ti) ={y|ye T (t;) and y >y },
T(e) = {y | yer(t) andy>y } ULy },
TL(ti) ={ylye TL(ti) and y < Y }u{ §D },
TR(ti) ={y | y € TR(ti) and y < Yp }.

The condition for its application is the same as that of Method I.

Method II
Tt = T (t)) T (thy = { 3.}
L' i A T RV Yp >
T (t2) ={y_} T (tz) =T (t,)
L i Yp 7> R i RVCi7°

The condition for its application is
(1) TL(ti) # ¢ and TR(ti) # @, and

> > < <
(2) L > Yp Q(ti) or U < Yp u(ti),

where L is the lower end and U is the upper end of the wiring area.

Method III
T (t)) = T (t,) T (¢h = {5 }
L i L 1i7°? R Y1 D °
2 - 2
TL(ti) = { Y 1, TR(ti) = TR(ti)

The condition for its application is

(1D TL(ti) £ 0, (2) Yp £ TR(ti) and (3) #TR(ti):; 2.

18

19

Method IIT'

1. .-

TL(ti) = TL(ti), TR(ti) = { p 1,
(2 = {5} T_(t2) = T.(t.)
L i D 7? R i RYi’°

The condition for its application is

(D TR(ti) # @, (2) yp € TL(ti) and (3) #TL(ti) > 2.

Here, for a set A, #A denotes the number of elements of A.
The following is the definition of T modified so that I' should be

able to represent newly generated arcs.

Definition 2.1 For a set TX(ti) = {yl, Yos cee s Vs yD} (X =1L or R),
0 _ 1 -
let TX(ti) = {yl, Yoo e s ym} and let TX(ti) = { Yp }. Then, for two

trunks ti and tj the relation R(ti’ tj) is defined by

@ if £y = tj,
R(ti, tj) = {

CT(e) n To(e)) Y CTR(E) A Tele))
U(Ti(ti)lﬂ Tg(tj)) U (T;(ti)(\ T%(tj)) otherwise,

and I' is defined by

Te, = { £ | Rty t) # 0 }.

In order to illustrate the effects of dividing a trunk upon an HC-
graph, a situation shown in Fig. 2.7 is assumed, where the set of trunks

R is {tL(l), tL(3), tL(4), tL(6), tos ta (1), tR(Z), t (4, tR(S)}.

In the situation the trunk ti is divided by each of the methods.
Then, the HC-graph is altered as shown in Fig. 2.8, where R(ti, Yp» M) is

the set of trunks after the trunk ti is divided at y = Yp by the method M.

t, (1)
------------)Ei
t, (3)
- -
--F--X
%(6)1
t,(4)

(a) Wiring pattern

t (1) o— >0 tp(1)
tL(3) tR(Z)
¢, (6) >ﬂ< ta(5)
t (4) © >0 tp(4)

(b) HC-graph

Fig. 2-7. Surroundings of the trunk ti‘

20

+ o+
— —
Camn) ——
=N o
N e
Y
A 4
\ 4
o+ +
o) o)
—— P
~ o
h—"g g

t,(4) O >0 tp(4)

(3) HC-graph for R(ts 1, IT)

tL(l) o, O tR(l)
t2
t, (4) O- 1 >0 to(4)

(4) HC-graph for R(ti’ 3, II1)

Fig. 2-8. The effect of each trunk-division method.

t, (1)

t,(3)
t, (6)

£, (4)

Y
)
5
+
=0
&

1

(2) HC-graph for R(tos 4, 1')

o >0 t(1)
2
to(5)
¢! R

(5) HC-graph for R(ti’ 5, III')

1¢

22

2.5 Elimination of Cyclic Horizontal Constraints

This section examines conditions under which a cycle in an HC-graph
can be eliminated by dividing a trunk by each kind of the methods
proposed in the previous sectionm.

2.5.1 Methods I and I'

Definition 2.2 Let R be a set of trunks. Then, for every point yj,

tX(yj) (X =L or R) is defined as

k k X

{t if there exists t, € R such that T (tk) 3 yj,
undefined otherwise,

tX(yj) =

where "undefined" means that the terminal at y = yj on the corresponding
side is not associated with any nets. Such -a terminal is called an empty
terminal,
In general, dividing a trunk ti at y = Yp by the method I generates
1 2 2 1, .
the arcs (ti’ tR(yD)), (tL(yD)’ ti) and (ti’ ti) if tL(yD) and tR(yD) are
defined and not identical with the trunk ti' If tL(yD) and/or tR(yD) are
undefined or equal to ti’ the arcs including them are not generated. On
the other hand, for the method I', generated arcs are (ti, tR(yD)),
1 1 2
(e (yp)s t;) and (&), t)).

Definition 2.3 In an HC-graph G,_, three consecutive vertices (trunks)

h

2 t, and Tt, 2 t, are said to be
i i i

t +1

such that Tt,
i-1

separable at y = Yo if they satisfy

i-17 %1 fin1

(SC-A) min R(ti—l’ ti) > Yp > max R(ti’ t, . .),

i+l
or

-1’ ti).

- i > >
(SC~B) min R(ti’ ti+l) Yy > max R(ti
Throughout this section the following assumptions are made without
loss of generality.

(Al) A cycle C is of the form {tl, t = tl}, where n > 3

2% e s tn

23

and th > t, for =1, 2, ... , n - 1.

j+1
(A2) Ti(ti) = T;(ti) = ¢ for each trunk t; € C, that is, C contains

no divided trunks.
Lemma 2.1 A cycle C is eliminated by dividing a trunk ti € Caty-= Yp

by the method I or I' if and only if ti—l’ ti’ t are separable at

i+l
y=yD’

(Proof) Suppose that ti— ti and ti satisfy the separability

1,
condition (SC-A) of Definition 2.3: Divide the trunk ti at y = Yp by the

+1

method I. Then, from (SC-A) and (A2), we have

1
= =
R(t, 1> €)= Tp(e,) N Tp(t) & To(e))

and

R(t;s £, = T (6) N Tp(t,,) € T ().

t,
i+l
Hence, we have

1

t, € Tt, 1
1 1-

2 1 - 2 -1
10 & ¢ Fti_l, t; ¢ T i1 and £ € T tige

This indicates that the cycle C has been eliminated. Further, in
this case it is easily shown that any division of ti by the method I'
does not succeed in eliminating the cycle C.
satisfy the separability condition

In case where t, t, and t,
i- i i

1,
(SC-B), dividing t; at y =y, by the method I' leads to

+1

tle rlt and ti ¢ r 1

1
t; # Tty 1 Yy 141

1’ i+1’

ti eT
which mean that the cycle C has been opened.
The necessary part is straightforward from the above discussion.
Q. E. D.
Theorem 2.2 A cycle C is eliminated without generating any new cycles

by dividing a trunk t; € Caty= Yp by the method I or I' if and only if

(1) ti 10ty and t 4 are separable at y = Y5

24

and
(2) one of the following holds:
(1) yp e T (r) VT (e,
(ii) neither tL(yD) nor tR(yD) is defined,
(iid) tL(yD) only is defined and tL(yD) ¢ §ti holds,
(iv) tR(yD) only is defined and tR(yD) ¢ §_lti holds, or
(v) both tL(yD) and tR(yD) are defined and tL(yD) a fti,
tR(yD) ¢ ;_lti, tL(yD) ¢ ?tR(yD) and tL(yD) # tR(yD) hold.
(Proof) The proof proceeds by contradiction. It must be shown that
if ti—l’ ti and ti+1 are separable or if none of the conditions (i) - (v)

of the theorem is satisfied then the division either leaves the cycle C

or produces some new cycles. It has been known in the previous lemma

that if the separability condition is not the case then the cycle C can

not be eliminated. Thus it is sufficient to show that if t, and

i-1° %
ti+1 are separable at y = Yp but if none of the conditions from (i) to
(v) holds then the division produces some new cycles. Here, one may
assume (SC-A) of the separability condition, since the other condition
(SC-B) is the dual form of (SC-A) and hence the proof is similar. 1In
this case the method I must be selected as mentioned in the proof of

Lemma 2.1.

The negation of the condition (iii) means that there exists at

least one of the trunks tL(yD) and tR(yD). Also, it is known by negating

(i) that those trunks differ from the trunk ti to be divided. Thus, it
is enough to consider the following cases:
(a) tL(yD) is defined and tL(yD) € Fti,

. . °=-1
(b) tR(yD) is defined and tR(yD) e T ti’

25

(¢) both tL(yD) and tR(yD) are defined and tL(yD) € FtR(yD)’ and

(d) both tL(yD) and tR(yD) are defined and tL(yD) = tR(yD).

It is shown in the below that if one of the above conditions holds
then the division produces a new cycle. First, the case (a) is considered.
Since the method I was adopted, the arc (tL(yD), ti) has been generated.
After the division of the trunk ti’ at least one of the relations tL(yD)

| 2.2 2 . . .
£ I‘ti and tL(yD) £ Pti holds because tL(yD) € Fti in the original HC
graph. If tL(yD) € Tti holds then this division generates a cycle ti >
2 1 X 5.2 2 e
> tL(yD) >t and if tL(yD) € Fti does then a cycle ty >
tL(yD) > ti, both of which are new cycles since the original HC-graph
contains no arc corresponding to (tL(yD), ti) (see Fig. 2.9(a)).

The case (b) can be proved in a similar manner.

1

i-)

Next, in the case (c¢), the division generates a cycle ti >t
tR(yD) > e tL(yD) > ti, which is new for the same reason as in the
case (a) (see Fig. 2.9(b)).

Finally, the case (d) may be regarded as a special case of (c).

The sufficient part is obvious from the above.

Q. E. D.

As an example, consider the set of trunks given in Table 2.2. The
HC-graph shown in Fig. 2.5 contains a cycle {tl, t2}° Divide, for
instance, the trunk t1 at y = 2 by the method I, and the resulting HC-

graph contains no cycle. 1In this case the trunk tL(2) is t, and the

3
trunk tR(Z) is tys both of which satisfy the condition (2) stated in
Theorem 2.2.

2.5.2 Method II

Theorem 2.3 A cycle C is eliminated without generating any new cycles

by dividing a trunk ti € Caty= Yp by the method II if and only if

(c) Case (c)

Fig. 2.9.

Generation of a new cycle.

— -

t (yp) = tplyp)

(d) Case (d)

26

27

> <
(L L > yp > Z(ti) or UL yp < u(ti)
and
(2) one of the following holds:
(i) neither tL(yD) nor tR(yD) is defined,
(ii) tL(yD) only is defined and tL(yD) ¢ Tti,
. . -1
(iii) tR(yD) only is defined and tR(yD) ¢ T ti’

-1
(iv) both tL(yD) and tR(yD) are defined and tL(yD) ¢rT ts

gy € T7le,, £ (y) ¢ Te(yp) and £ (yp) # to(y)).
(Proof omitted)

2.5.3 Methods III and III'

Thé following theorem states that the methods IIT and III' proposed
have the most powerful ability to eliminate cycles. So those trunks to
which the method IIT or III' is applicable should be distinguished from
others, énd they are called "mighty trunks'.

Theorem 2.4 A cycle C is eliminated without generating any new cycles
by dividing some trunks in C by the method III or III' if and only if C
contains any mighty trunks.

(Proof) The proof follows from the following two lemmas.

Lemma 2.2 1If a cycle C contains two consecutive trunks ti and ti+1 such
that #TL(ti) # #TR(ti+l)’ it can be eliminated by dividing t, or t; 4 by
the method III or III'.

(Proof) Suppose #TL(ti) > #TR(ti+l)' There is an element Yp such

that ¥p € TL(ti) and Yp ¢ TR(ti+ Dividing the trunk t, aty =yp by

l)'
the method III', we have

=
ot
]

1
{tj | R(t,, t)) # 0}

0 1,.1 14 _
{tj | TL(tj)nTR(ti) # ¢ and £ $t; 1 =90

28
and t ¢ th since R(t2 t) =0
i+l i’ i’ Ti+l -

The above shows that the cycle C has been eliminated.
< R -
In case #TL(ti) #TR(ti+l)’ dividing the trunk tiy 3t Y =Y by

the method III where p € TR(ti+) - TL(ti) eliminates the cycle C.

1
Q. E. D.

(Remark) Division by either of the methods III and III' generates

no new cycles since it is always true for such divisions that

relu e ¢ Te, VU (el 2
i i i i i
and

rrlelurt? et Ul 2,
i i i i i

Lemma 2.3 If a cycle C contains two consecutive trunks t, and ti such

i +1

that #TL(ti) > 2 and #TR(ti+l)

by the methods IIT and/or III'.

> 2, it can be eliminated by dividing ti

and/or ti+1

(Proof) If TL(ti) g TR(ti-(-l)’ there exists an element Y such that

Yp € TL(ti) - TR(ti+1)' Then, dividing the trunk t,aty =y, by the

method III' eliminates the cycle C as mentioned in the preceding lemma.
Also, if TR(ti+l) g_ TL(ti)’ dividing the trunk ti+l by the method III
leads to the desired results.

Next, suppose TL(ti) = TR(ti+1) = S; it follows from the assumption
of this lemma that S contains at least two distinct elements vy and Yye

. =] =

Divide the trunk ti at y vy by the method III' and ti+1 at y Y, by
the method III. Then it should be noted that the trunks ti and ti+l
should not be contained in any cycles in the resulting HC-graph since
2 2 . 2 1
i1 = @#. Also, one can easily see that Fti ¢ ti+1
0,2, _,0,1 _ 1,2, _ 1,1 _
because TL(ti) = TR(ti+l) =@ and TR(ti) = TL(ti+l) = @¢. Thus, all the

I‘-lti =@ and Tt

above shows that the cycle C has been eliminated.

Q. E. D.

29

2.6 Realizability of a Set of Nets

The preceding sections were concerned with the problem of how to
eliminate a given cycle by applications of the proposed methods. This
section considers whether a given set of nets can be realized, in other
words, all of cycles in a given HC-graph can be eliminated, under the
constraints listed below:

(1) Two-layer wiring is permitted. One layer is used for horizontal
wiring routes and the other for vertical routes.

(2) Wire routing is always performed in a meshwise way and no half-
mesh wiring is permitted.

(3) All of wiring routes must be within a wiring area whose vertical
length is fixed.

The constraints above are commonly applicable to LSI fabrication.
There is no restriction on the width W of the wiring area, which will be
considered in the following chapters.

Theorems 2.2, 2.3 and 2.4 are used below to find the condition to
be satisfied by a given HC-graph in order for all cycles to be

eliminated.

Definition 2.4 Let G be a directed graph. (i) A pair of vertices \
and vj of G are connected if Fvi > vj or ij =) v, (ii) Let V be a set

of vertices of G which are connected and let vk be a vertex of G such

that Vi ¢ V. Then, the union V U ¢ Vi } is connected if there exists

some vertex v, in V such that I'v, ® v, or Tv, @ v,.
i i k k i

Definition 2.5 A component of a graph is a subgraph whose set of

vertices is maximally connected.

Definition 2.6 Let C1 and C2 be cycles. If there exists t, € C1 and

t. € C, such that t, € T't, and t, € Tt,, then C, and C, are said to be
3 2 i i i i 1 2

30

connected, and if C1 and C2 do not have such a pair of trunks, they are
said to be independent.
Components of an HC-graph are classified into the following three.
(1) Cycle-free component: Component containing no cycle.
(2) Loop component: Component containing cycles but no mighty
trunks.
(3) Compound component: Component containing cycles and at least
one mighty trunk.
Lemma 2.4 A loop component consists of only one cycle.
(Proof) By the definition of a loop component, it has at least one

cycle in it. Let it be C = {tl, t cee tn = tl}, where n > 3 and

20
th =] tj+1’ i=1, 2, ... ,n -1, Since no mighty trunks are contained,
#TL(ti) = #TR(ti) = 1 for any trunk t, € C. Thus, Te, = {ti+1} and P_lti
= {ti—l} hold, so that this component is composed only of the cycle C.

Q. E. D.
Lemma 2.5 All of cycles in a compound component can be eliminated.

(Proof) First, note those cycles in a compound component which are
mutually independent. Each of these cycles contains at least one mighty
trunk, since otherwise the component will be a loop component. Hence,
it is known from Theorem 2.4 that all of these cycles can be eliminated
by applications of the methods III and III'.

The above states that it is enough to deal with mutually connected
cycles in the component. Let € be union of cycles which are connected
with one another and independent of others. Since E is composed of more
than one cycle, each cycle contains mighty trunks. Consider a mighty
trunk ti to which the method IIT is applicable. Divide ti by the method

III at y = y_ such that Yy € TR(ti)’ and we have

D

31

1
H £ | R(tp, t) #0}

-1.1
T =
t]
_ 0 1,1 1
#H £ | TL(tp) N Tp(t)) # 0 and £ £t }
_ 0 1
= #{ £ l Vp € TL(tp) and t_ At}
21
and
#re2 = e | RCEZ, t) £ 0)
1 q 1 q
_ 1,.2 0 2
= #{ tq | T (t) N TR(tq) # @ and tq #t;)
_ 0 2
= # ty | yp € TR(tq) and £ #tg }
= 0.

The above means that if there exists a trunk ti in E such that
#F—lti:; 2 then it can be replaced with the trunks ty and ti such that
#T_lt%:i 1 and #Fti = 0. Here ty does not belong to any cycle. If this

operation failed to eliminate all the cycles in E, those cycles which
remained to be eliminated would be mutually independent since #F_ltp:i 1
of such any cycle. If any cycles should be left in the

for any trunk tp
resulting set of C, all of them can be eliminated, for each of them still
An example

contains those trunks to which the method III' is applicable.

is t_ such that #TR(tq) = 1 and #TL(tq) > 2 which remains undivided by
for some divided trunk t,.

Q. E. D.

q
the above operation and another is a trunk ti

So the lemma has been proved.

From the results obtained we can derive the most important theorem

in this thesis.
Theorem 2.5 A set of nets is unrealizable if and only if it has all the

following properties:

32

(1) No terminal is empty. In other words, every terminal is
associated with some net.

(2) For any trunk ti’ #TL(ti) = #TR(ti) = 1.

(3) There exists a trunk t, such that TL(ti) # TR(ti).

(Proof) ("if" part) Consider the ith net: Property (1) and
property (2) guarantee that #I't, = #(T,(t,) - To(t,)) and #1" ¢, =
#(TR(ti) - TL(ti)) in the HC-graph, since every terminal is associated
with some net. Therefore, if TL(ti) # TR(ti) then #Fti = #F—lti =1
and otherwise #I‘ti = #1"~1ti = 0, i.e., the trunk ti corresponds to an
isolated vertex in the HC-graph. Property (3) guarantees that the HC-
graph contains vertices that are not isolated. It follows that the HC-
graph corresponding to a set of nets having the properties of this
theorem is composed of several loop components, maybe together with some
isolated vertices. In order to eliminate a cycle comprising a loop
component, a trunk'of the cycle must be divided by one of the methods I,
I' and II, whereas it is evident that, wherever divided, the conditions
of Theorem 2.2 or 2.3 should not be satisfied.

("only if" part) The proof proceeds by contradiction. First,

consider the case where the left terminal at y = y. is empty and the

0

right terminal at y = Yo is not. Then the trunk tO containing yO in its

right set does not belong to a loop component but some other. Since
compound components which may be contained in the HC-graph can be

reduced to a cycle~free component, as verified in Lemma 2.5, it is enough
to deal with the case where the HC-graph contains loop components Cl’ C2,

containing the trunk t.. It is

oo s Cn and a cycle-free component C 0

0

shown below that the cycles C CZ’ ces s Cn can be eliminated successive-

19
ly. Consider a trunk ti of the component C1 such that max TL(ti) <

33

. . U .
min TR(ti)° Since Yo ¢ TL(ti) TR(ti) from the assumption, there are
three cases to consider:

(1) max TL(ti) < Yo < min TR(ti)’
(2) Yo < max TL(ti) < min TR(ti)’ and
(3) max TL(ti) < min TR(ti) < Yo

In the case of (1) the method I can be applied to the trunk ti at
Y = Yo- Here, the conditions of Theorem 2.2 are satisfied since tL(yO)
is undefined and tR(yO) = to ¢ T-lti. Therefore, the division of ti

eliminates the cycle C On the other hand, in the cases (2) and (3)

1°
the method II can be applied to the trunk ti at y = Yo- Hence, the
cycle Cl is eliminated by the division of t,. Here it should be noted
that a new cycle-free component including C0 and C1 has resulted from
this division. In other words, we have come back to the starting point
of the proof. Therefore, C2, C3, cee s Cn can be successively eliminated.
Easier is the proof in case that both of the terminals at y = Yo
are empty.

Secondly, if each trunk ty has the property that TL(ti) = TR(ti)’
the set of trunks is evidently realizable.

Lastly, consider the case where the condition (3) of this theorem
does not hold. Here it may be further assumed that there exist no empty
terminals. There are three cases to consider. In either case it is
sufficient to show, as mentioned above, that all of those loop components
can be eliminated which may be contained in the HC-graph.

Case 1: Let t; be a trunk such that #TL(ti) =0, i.e., Fti =@

(its dual case can be proved in an entirely similar manner). Since

TR(ti) # @ and there are no empty terminals, we have F_lti # . Thus,

34

the trunk ti can not belong to a loop component, that is, there is a
non-loop component containing at least two trunks. Further, it may be
assumed that this component is cycle-free since Lemma 2.5 guarantees
that any compound component can be reduced to a cycle-free component.
Consequently, as mentioned earlier, even if the HC-graph contains any
loop components, their cycles can be successively eliminated.

Case 2: Suppose that there is a trunk ty such that #TL(ti):; 2
and TL(ti) # TR(ti). Then, the trunk ti belongs to a non-loop component,
which has at least two vertices since

#I’ti = 0 if and only if #(TL(ti) - TR(ti)) = 0.

Therefore the remaining proof proceeds similarly to the case 1.

Case 3: Suppose that the HC-graph contains a trunk ti such that
#TL(ti):i 2 and TL(ti) = TR(ti). Divide the trunk t, by the method III

as follows:

=t
—

T, () = T (), Tt = Ty by
2 - 2
where Yp € TL(ti) = TR(ti). Then, we have
Tt:!“ = { t% } and I"lt? =@,
i i i
th =@ and T—lt? = { t% }.
i i i

This shows that the component {ti, ti} is cycle-free, as required.
This terminates the proof of this theorem.
Q. E. D.
In a practical problem, a set of nets satisfying all of the
conditions of Theorem 2.5 is expected to be extremely rare. It follows
that we can derive the conclusion that any set of nets is realizable by

using the methods proposed in this thesis.

Example 2.2 Consider a set of nets given in Table 2.3.

ty TL(ti) TR(ti) U(ti) L(ti)
t {3, 9} | {1, 8} 1 9
e, | {13} {9} 9 13
t, | {2, 15} | {3, 13} 2 15
t, {4, 16} | {6, 15} 4 16
ts {8} {2, 16} 2 16
te {1, 11} | {a} 1 11
t, {6} {11} 6 11
tg {5} {12} 5 12
ty {14} {5} 5 14
t10 {12} {14} 12 14
tyq {7} {10} 7 10
t1o {10} {7} 7 10
Table 2.3. A set of nets R

The HC-graph corresponding to the above set of nets is shown in

2,3°

Fig. 2.10, which is composed of three components:

component and the other two are loop components.

HC-graph contains nine cycles {tl, tas tS}’ {tl, tys ta, tS}’ {tl, t,s
tys t,s teds {tg, tg, £, t3, {e), t,, tq, £, £}, {t;, g, £, £,

{t4, tes t7}, {t8, tys tlo} and {t }.

11’ t12
First of all, three trunks t3, t

and t. are divided in order to

4 5

eliminate all cycles in the compound component: t3 at y = 2 by the

one is a compound

35

As is easily seen, the

10

tnO b2

Fig. 2.10. Original HC-graph.

method III', t, aty = 15 and tg at y = 16 both by the method III.

Then all the cycles of this component are eliminated as shown in Fig.

2.11. There still remain two cycles {t8, tys tlo} and {tll’ tlz}.

Divide the trunk t8 at y = 11 by the method I and the trunk t at y =

11
12 by the method II, and the HC-graph results as shown in Fig. 2.12.

36

Fig. 2.11.

Reduction of a compound component

into a cycle-free component.

Fig. 2.12.

Resulting acyclic HC-graph.

Lg

38

2.7 Conclusions

This chapter is characterized as the definition of the three types
of the trunk-division methods. The success of the scheme developed in
this thesis is entirely based upon the divided-trunk style. It is shown
in Theorem 2.5 that the style can achieve one-hundred percent Wwirability.
In this sense the approach of this thesis that restricts trunk-division
methods to only three types may be said to be valid. There still remains
the problem of how to realize a given set of nets in the minimum

possible width, which is discussed in later chapters.

39

CHAPTER 3

CYCLE ELIMINATING PROCESS

3.1 Introduction

The previous chapter concentrates on the problem whether a given set
of nets is realizable by using the three methods and gives no attention
to the width of the resulting layout pattern. This chapter analyzes the
effects of dividing trunks over the width of the wiring area. Some
concepts are introduced for this purpose. Also, the chapter aims to
extend the applicable range of the methods I and I', and considers a pair
of cycles for which any dividing patterns do not satisfy the conditions
of Theorem 2.2, but which can be eliminated without producing any new
cycles if two trunks are simultaneously divided.

The section 3.3 presents an algorithm for eliminating all of cyclic
constraints in a given HC-graph with minimum increase of the trunk-crossing

count.

3.2 OQutline of the Whole Algorithm

This section describes the outline of the wire routing algorithm
presented in this and the following chapters. The algorithm consists of
three functional blocks. The author calls them Algorithm A, Algorithm B
and Algorithm C, respectively. Each of them is based upon a heuristic
search method.

Outline of the whole algorithm:

M1l: (input) Give a set of nets.
M2: Represent each net by a trunk. Let R be a set of trunks. Then,
construct an HC-graph.

M3: 1If the HC-graph contains no cycle then go to M5.

40
M4: Eliminate all of cycles in the HC-graph (Algorithm A).
M5: Lay out the set of trunks R in the minimum possible width
(Algorithm C).
M6: If W(R) = WO(R) then stop.
M7: Divide some trunk in a suitable way so that the track count W(R) be
reduced, and then return to M5 (Algorithm B).

END;

3.3 Horizontal Ordering and Trunk Groups

This section introduces some basic quantities which may be considered
to be titely associated with the second criterion mentioned earlier.

Definition 3.1 Let R be a set of trunks. Let n(yi) denote the number of

trunks which cross the line y = Y- The maximum value of {n(yi)} is
denoted as WO(R). If n(yi) = WO(R) then the point i is said to be
critical.

(Remark) Consider a trunk ti such that U(ti) = L(ti). For such a
trunk t, it must be true that #TL(ti) = #TR(ti) = 1 and TL(ti) = Tp(t,).
In other words, there exists no vertical line segment corresponding to ti'
Such a net, which can always be wired without any influence on the wiring
width, can be removed from a set of nets. In this and the following
chapters it is assumed that a set of nets does not contain such nets.

Width of a wiring area is determined by the number of tracks to be
prepared in the area on which trunks run. In general, it may be required

to place several trunks on one track.

Definition 3.2 Let R be a set of trunks. The track count W(R) is the

minimum possible number of tracks for arranging the trunks.

(Remark) WO(R) and W(R) are referred to as the trunk-crossing count

41

and the track count, respectively.

Definition 3.3 Horizontal-ordering functions from the left side and from

the right side, denoted as §L and §R’ respectively, are defined as follows.

1 if r'lci - ¢,
% (t)) ={ " -1 -1

max{xL(tj) + 1] £y € I el 1f T e, # 4,

and

1 if Fti =g,
x_(t,) ={
R 1 A .

max{xR(tj) + 1} tj € Tti} if Te, # 0.

Property 3.1 Horizontal-ordering functions %L and %R are defined for all

trunks in R if and only if the HC-graph is acyclic.
(Proof omitted)

Property 3.2 For any set of trunks R,

W(R) > max{X () + X (t;) - 1 | ey € R}.

(Proof omitted)

Property 3.3 Let x(ti) be the x-coordinate of the track on which the
trunk ti can be placed. fhen,

&L(ti) < x(t) S WER) - %R(ti) + 1.

(Proof omitted)

The discussions so far concentrate on the horizontal constraint
aspect. Vertical relations between trunks are represented by trunk
groups defined below.

Definition 3.4 Trunk groups are sets of trunks G G2, .+« 5 Obtained

1’
from the following algorithm.

[Algorithm for determining trunk groups]
begin y, := min{U(ti) | t; € R};
y, i= max{L(ti) [£, € R};

k :

I
[
D]
]
=
e

42

for y =y, y+ 1 while y <y, do
begin A :={ t, [U(t)) <y < L(t) ks
if Gk S A then Gk = A
else if G 2 A then
begin k :=k+ 1; G :=A end
end
end;

The above algorithm is used only for the purpose of determining
trunk groups. Trunk groups themselves can be obtained in a more
efficient way mentioned later.

Max groups are trunk groups with the maximum cardinality. Evidently,

for a max group G, , #G, = WO(R). This means that if minimum-width wiring

k? k
should be possible then the layout pattern must be one such that each
track contains one by one from every max group.

Combination of trunk groups and horizontal-~ordering functions leads

to more accurate horizontal-ordering functions defined below.

Definition 3.5 For a trunk ti’ XL(ti) and xR(ti) are defined as follows:

1 if T £, = a8,
XL(ti) = {
max [max ~ (x (t,) +# (£, G,, t,)) 1]
c. t €G.A F_lt, L "k Lk i i
h| k h| i
a1
if T t; + 0,
and
1 if I‘ti =@
XR(ti) =
max [max ~ (x_(t) + #_(t,, G,, t,)) 1]
G. t, e G, NnTt, Rk Rk J 1
] k N i
if Tt, # @,
1

where

43

o-1
A (ty s Gy t) = { t | t, €650 I"“t, and xL(tp) 2 x () 1,

and

Apltys G55 ty) { ty | tq € Gy N Tey and xp(e) > xp(ey) }.

As is evident from the above definition, Xp is the dual function of

Xp . In the following it is considered what is meant by xL(ti). Through-

out the following discussion a trunk group Gj is fixed. The set Gjr\ l"_lti

is the set of those trunks which belong to Gj and which must be placed to
the left of ti' Within the extent of the set ij\ F_lti, the set of the
trunks which must be laid to the right of the track x = xL(tk) and to the
c

left of ti is AL(tk, Gj’ ti)' Here note that AL(tk, Gj’ ti) c Gj'
Hence, the number of tracks to be prepared to the left of ts is not less
than xL(tk) + #AL(tk, Gj’ ti).

The horizontal-ordering functions X and Xp also satisfy the prop-
erties 3.1, 3.2 and 3.3. 1In particular, for every trunk ti’ XL(ti) and

A n

XR(ti) are greater than or equal to xL(ti) and xR(ti), respectively.
This means that X and Xa estimate the x-coordinate x(ti) of the trunk ti

N Ia)
more accurately than X and Xp-

3.4 Algorithm A

——- Algorithm for eliminating all of cycles in an HC-graph -—-

Algorithm A eliminates all of cyclic constraints in a given HC-graph
with minimum possible increase of the trunk-crossing count. When a trunk
is divided in order to eliminate cycles, the following three are required:

(1) Minimize the number of trunks to be divided.

(2) Minimize the increase of the trunk-crossing count.

(3) Minimize the following value when all cycles are eliminated;

max{ XL(ti) + XR(ti) -1 I t, € R }.

44

These requirements are reflected on the heuristic function FA used

in the algorithm. The function FA is defined for every combination (ti’
Yo M) of a trunk ti to be divided, a dividing point Yp and a dividing
method M, as follows. Here, the set of trunks after dividing a trunk ti
at y = Yp by a method M is denoted as R(ti, Yps M) or simply as R'.

(1) FA(ti’ Yp M) = w (undefined) if it is impossible to divide the
trunk ti at y = Yp by the method M.

(2) FA(ti’ Yo M) = w if the division generates any new cycles.

(3) FA(ti’ Y M) = w if WO((ti, Ypo M) > WO’ where WO is deter-

mined in the algorithm.

(4) FA(ti, Yp M) = w if there is no cycle containing ty-
4
1 = . N
(5) Otherwise, FA(ti’ Y M) Zi=1 ¢y fi(ti’ Yps M), where cq <,

are positive constants and f1 % f4 are defined as follows:

(the number of cycles in the HC-graph Gh(R', ™).

2x4R if the HC-graph Gh(R', I') contains cycles,
Foltys ypo W =

_ '
max{ xL(tj) + xR(tj) 1 [tj e R'" } otherwise.

]

f (ti’ Yo M) (the number of terminals) - (the number of those

3
points for the set R' for which n(y) 2 WO(R)).
f4(ti’ Yp M) is determined by the number of arcs generated by the
division.
f4(ti’ Ve M) = 0 if i) neither tL(yD) nor tR(yD) is defined, or
if ii) Yp € TL(ti) U TR(ti).
f4(ti’ v, M =1 4if i) tL(yD) only is defined and ftii$ tL(yD), or
if ii) tR(yD) only is defined and §-ltii$ tR(yD).
f4(ti’ Yo M) = 2 if both tL(yD) and tR(yD) are defined and both
differ from the trunk ts-

In the above, tL(yD) and tR(yD) represent the trunks which connect

45

to the left and right terminals at y = y_, respectively. If none of the

D
conditions is satisfied, new cycles are produced and hence FA(ti’ Yp? M)
is undefined. 1If ti is divided by the method III or III', f4(ti’ Yy M)
= 0 since Yp € TR(ti) or y, € TL(ti)’ respectively.
[Algorithm A]
Al: TIf the HC-graph Gh(R, ') contains no cycle, then stop.
A2: wo := WO(R).
A3: Compute FA(ti’ Vo M) for all dividing patterns.
Ab: If FA(ti’ Ypo M) is undefined for all dividing patterns then go to A7.

A5: Choose a dividing pattern (t M) to give the minimum value of

i’ yD’

FA, and divide the trunk ti at y =y, by the method M.

A6: Go to Al with R := R(ti, Y M.
A7: If W, > WO(R) then stop, else go to A3 with W, := Wy + 1.

End Algorithm Aj;

The performance of Algorithm A is outlined below. First of all,
cycles are searched in a given HC-graph. If no cycle is found then it
terminates since no more process is needed. If any cycles are found
then it finds a set of all those dividing patterns which can eliminate a
cycle(s) without any increase of the trunk-crossing count WO(R). This

is achieved by setting W, := WO(R) at the step A2, TIf the above-mentioned

0
set of dividing patterns is not null then one of them is chosen so that
the most cycles are to be eliminated (estimation by fl). On the other
hand, if that set is null then the similar process follows with WO :=
WO(R) + 1, which means that those dividing patterns are admitted which
increase the trunk-crossing count. When it gets to the stage where all

cycles can be eliminated, the algorithm, in this turn, chooses a dividing

pattern to give the minimum value of max{ xL(tj) + XR(tj) +1] tj e R'}

46

(estimation by f2)°

Algorithm A has two exits Al and A7. If it terminates at the step
A7, then there still remain cycles in the HC-graph. For example, when
the set of trunks characterized in Theorem 2.5 is inputted, it terminates
at the step A7 without going through the step A5. In this case an
additional procedure is needed in order to guarantee perfect wireability.
The first step is to find a trunk tj such that TL(tj) = TR(tj) and #TL(tj)
> 2. Second, divide the trunk tj by the method IIT. This process creates
a pair of terminals at the same column, analogous to that of empty
terminals. Then the control returns to the step A2 of Algorithm A. If
there exists no such trunk tj’ then divide an appropriate trunk at y =
U-1o0r at y = L + 1 by the method II where U and L represent the y-
coordinates of the upper and lower bounds of the wiring area, respectively,
and then the control returns to A2. This additional procedure is rarely
demanded for actual sets of nets, so it may be said that the procedure is
needed only for theoretical assurance of perfect wireability.

The step A3 of Algorithm A takes the most time in the algorithm.

At the step, F, values must be computed for all dividing patterns. The

A
following discusses the way to reduce the time necessary for computing
FA(ti’ Ype M.

(1) Computation of fl(ti, Yy M)

Given a dividing pattern (ti, Yps M, fl(ti, Yy M) is computed only
when this division generates no new cycle. Hence, fl(ti, Yp> M) is equal
to NC(R) minus the number of cycles eliminated by this division, where
NC(R) is the number of all cycles in the HC-graph.

The followings are the equations for computing fl(ti’ Yp? M).

Yand T Ye. nc. = {t. .}.
s] 1

For each cycle Cj’ let Tt, O Cj = {to J in, i

ut

47

£,(t, yp, 1) = N(R) - #H cj | cy>ty and

. > > s
min R(tin,j’ ti) yp > max R(ti’ tout,J) },

£,(t s vy I = N.(R) - #{ C; | C;> t; and

i

min R(ti, t) >

>
out, § yp > max R(ti . t)),

n,j i

},

£1(t,s vy, I = N.(R) - #{ c | cy>t

i

£,(ts, yp, IID) = N, (R) - # C; | Cy>ty and TL(tin’j) ? Y 3,

£,(t,s yps III') = N, (R) - #{ c l Cs >ty and TR(tout,j) 3y }.

(2) Computation of f2(ti’ Yo M)

Given a dividing pattern (ti’ Vs M, f2(ti’ Yo M) is computed only
when the division eliminates all of cycles in the HC-graph. Here it
should be noted that if there exist dividing patterns which eliminate
all of cycles thenlone of them is always chosen at the step A5 because
of the coefficient of #R in the definition of f2. In this case only it
is needed to divide the trunk ti practically and then to compute the f2
value in the resulting HC-graph.

~

On the other hand the approximate value f2 of f2 can be easily

~

computed. f2(ti’ Y M) is determined as follows:

~ A A
fZ(ti’ Yp» M) = max{ xL(tj) + xR(tj) -1 I tj > R(ti, Yp M) .
Note that §L(ti) corresponds to the length of the longest constraint

chain that terminates at ty in the HC-graph. Hence, fZ(ti’ Yoo M) is

computed by finding the longest constraint chain in the HC-graph Gh(R', M.

48

3.5 Extension of the Applicable Range of the Methods I and I’

In Algorithm A presented in the previous section, those dividing
patterns are preferred that cause no increase of the trunk-crossing count.
From such a standpoint the methods I and I' are used most frequently.

This section investigates the extent to which cycles can be eliminated
using only type I trunk divisions.

Theorem 2.2 presented in Chapter 2 concentrates on one cycle to
give the condition for cycle to be eliminated by dividing a trunk without
generating any new cycle. The following discussion aims to extend the
applicable range of the methods I and I'.

The cases where the condition (v) of Theorem 2.2 is not satisfied
are considered. They are classified into following three types:

(1) Forward type:

e (yp) € Fti, to) ¢ lﬁ—lti, and t (y;) ¢ ftR(yD).

(2) Backward type:

t, (yp) ¢ ?ti, tlyy) € ’I\‘_lti, and t; (y,) ¢ §tR(yD)'

(3) Cyclic type:

tL(yD) ¢ fti’ tR(yD) ¢ ,I:—lti, and tL(yD) € ftR(yD)-

In all the above cases it is assumed that tL(yD) differs from tR(yD).

Since the backward type can be considered as a dual situation to the
forward type, any assertion which is dual to that of the forward type
applies to the backward type. Consequently, no discussion is given for
the backward type in the following. Fig. 3.1 illustrates the three types.

In order to make the condition (v) of Theorem 2.2 valid in the
forward type, another trunk must be divided so that all of directed paths
(horizontal constraint chains) from t, to tL(yD) are eliminated. The

following considers only the case in which a division of one trunk is

t.
;
t, (¥p)
--------- —0—>0—>----
talyp)
(1) Forward type
£
t (yp)
-———0—>>0—> - —-=-=-=-=-
tp(¥p)
(2) Backward type
talyp)
t (yp)

(3) Cyclic type

Fig. 3.1. Three cases in which the condition

in Theorem 2.2 is not satisfied.

enough to cut the path from t, to tL(yD).

i

Definition 3.6 In an HC-graph G,, let P(ti’ tj) be the set of vertices

h’

(trunks) on a directed path (or paths) from t, to tj. Formally,
P(ti’ tj) is defined by
) if ts £ Tty

P(t-’ t-) =
i’ 7j ~ ~_q ~
Te,Vrt)VU{e, t.} if t, € I't,.
i j 1] J i

Definition 3.7 In an HC-graph Gh’ let tj £ Fti. A vertex (other than

49

50

t, or tj) which is contained in all of directed paths from t; to tj is
called an articulation point of P(ti’ tj). The set of articulation
points of P(ti, tj) is denoted by Pa(ti, tj).

In a forward-type HC-graph, directed paths from t, to tL(yD) are
called foward paths. The following two situations are considered
concerning such a foward path:

(1) The forward path contains a trunk tm belonging to a cycle C'
which does not have a common portion with the cycle C (refer to Theorem
3.1).

(ii) The forward path contains a trunk t other than tL(yD) which is
not contained in any cycles (refer to Theorem 3.2).

In order to simplify the discussion the following consideration
assumes that no terminal is empty, i.e., every terminal is associated
with some net.

Theorem 3.1 Let C and C' be two cycles in an HC-graph which are mutually
disjoint. For a trunk ti on the cycle C and a dividing point Ypo let
the HC-graph be of the forward type in which

£ (rp) € Teys £ (y)) € T, & (v) ¢ Te(y), and € (yp) # £ (y)),
and let t be an articulation point of P(ti, tL(yD)) which is on the cycle
C' (the condition so far is referred to as (PC-3.1)).

When the trunk t is divided at y = Y4 by the method I or I', the
necessary and sufficient condition for both the cycles C and C' to be
eliminated simultaneously without producing any new cycle, is that one of
the following conditions (A) and (B) is valid:

(A) Both t, and t_ are articulation points of P(tR(yd), tL(yD)),

where tL(yd) ¢ FtR(yd) and tL(yd) # tR(yd) are satisfied, and one of the

following (1), (1') and one of (2), (2') are valid:

51

{ >
(1) min R(Tl, ti) Yp > max R(ti’ Tz),

(1') min R(ti, T.) > > max R(Tl, ti),

9

(2) min R(T3, tm) > Y4 > max R(tm, T4),

1] .
(2') min R(tm, T4) > Y4 > max R(T3, tm),

L= PGy s) Vel n T,

|
|

&)
|

5 = [P(tR(yd), tL(yD)) Ucln l‘ti,

' -1
3 = [P(tR(Yd), tL(YD)) U C]f\ F tm’

=]
[

o]
t

s = Py s £ G vce'ln e .

1

(B) £, (v €Ty, £ .(yy) ¢ r t ot (yy) & Te(y), t (v # tr ()

and one of the following (3), (3') and one of (4), (4') are valid:
(3) min R(TS’ ti) > Yp > max R(ti, T6),
1 .
(3'") min R(ti’ T6) > Yp > max R(TS’ ti)’
i > >
(4) min R(T tm) vgq > max R(tm, T

7, 8)’

(4') min R(tm, T8) > Y4 > max R(T7, tm),

=
]

-1 _
cnT ti, T6—Cf\rti,

-1
\]
7 = [Py, £ (yp)) uc'inT L

3
]

=)
I

g = [P(ty, ey V' InTe.

(Proof) The trunks ti and tm must be divided by the method I or by
the method I', according to whether the unprimed conditions are satisfied
or the primed ones are satisfied. In order to simplify the proof, it is
shown that the divisions of ti and tm by the method I eliminate the cycles
C and C' without producing any new cycle if and only if the unprimed
conditions are satisfied.

Consider an example to clarify the proof. Fig. 3.2 shows the HC-

graph for the set of trunks which is given in Table 3.1. The HC-graph

ty TL(ti) TR(ti) U(ti) L(ti)
£, | {11} {3} 3 11
t, |16, 5} {8, 11} 5 11
ty [113, 16} | {6} 6 16
t, |13} {13, 10} 3 13
t | {10, 12} | ¢ 10 | 12
te |18} {12} 8 12
t, |{15} {5} 5 15
tg {14} {4, 16} 4 16
tyg |19} {14, 15} 9 15
tio | {1, 73 {9} 1 9
tyy |12, 4} {1} 1 4
t, | @ {2, 7} 2 7
Table 3.1. A set of nets Ry .
- s

Y

Fig. 3.2. HC-graph for the set of trunks R3 1°

52

53

contains two cycles Cl = {tl, t2’ t3, t4} and C2 = {t8, t9, th’ tll}'

Suppose that the trunk t, is to be divided at y = 7 by the method I.

2

satisfy

Then, the trunks tL(7) and tR(7) =t

t10 12
1

£ (D e Ty, (D ¢ T 0y, £ (D) ¢ §tR(7), and £ (7) # £,(7),

and the situation proves to be of the forward type. Here note that the

forward paths from t, to tL(7) =t contain only one articulation point

2 10

ty: Divide the trunk ty at y = 10 by the method I, and the trunks tL(lO)

= t_ and tR(lo) =t

5 satisfy

4
P(t,, t;)) 2 {tz, t9}, and
t, (10) ¢ Tt (10).

The remaining conditions of (A) are also verified in the below:

Fig. 3.3. Resulting acyclic HC-graph.

54

T, = [B(t,, g,V e InT e, = (e b,
T, = [P(t,, t;,)V CInTt, = {t3, t7},
R(Tys t,) = R(ty, t)) = { 11 },
R(t,, T,) = R(t,, ty) Y R(t,, t) = {5, 6},
min R(Tl, t2) > 7 > max R(t2, TZ)’

and
T, = [P(t,, t;) Y G0N F_ltg = {t7, t8},
T, = [P(t,, tlo) U ¢, n I‘t9 = { o 1,
R(T4, tg) = R(t,, tg) UR(tg, ty) = {14, 15},
R(ty, T,) = R(ty, ty)) = {91,

min R(TB’ t9) > 10 > max R(t9, T4).
Fig 3.3 shows the acyclic HC-graph after dividing t2 and t9 aty =7
and at y = 10 respectively, both by the method I.
Before proceeding to the proof of Theorem 3.1, some definitions and
lemmas are needed.

Definition 3.8 For an HC-graph G, = (R, E) and a subset A of E where E

h
is the set of arcs of Gh’ an A-reduced HC-graph Gh/A is a directed graph

obtained by deleting from G, all arcs belonging to A.

h

Definition 3.9 For an HC-graph G. = (R, E), let Gh(Td) be the HC-graph

h

resulting from dividing trunks belonging to the set T, by the method I.

d
Also, let A(Td) be the set of those arcs which are newly created by
divisions of these trunks. Then, the A(Td)—reduced HC-graph Gh(Td)/A(Td)
is the graph obtained by deleting all of those newly created arcs from the
HC-graph after dividing the trunks of Td.

Definition 3.10 For a set of trunks T

let d(t.) = {tl, t2} if t, e T
1 1 1 1

a’ d

where ti and ti are trunks resulting from dividing ti by the method I,

55

and let d(ti) = { t; }if ty ¢ Td.

Lemma 3.1 For an HC-graph G, and any set of trunks Td’ if tj ¢ Fti in

h

G, then (Td(ti))I\ d(tj) = ¢ in the A(Td)—reduced HC-graph Gh(Td)/A(Td).

(Proof omitted)

Definition 3.11 For an HC-graph Gh(R, E) and a set of trunks T,, the

d’

connection graph G* = (A(Td), EA) for Td is defined as follows:
(1) The vertex set of G* corresponds to the set A(Td) of the arcs
which are newly created by dividing the trunks of Td.
(2) Let ey and ej be two arcs in A(Td). Then, in G*, a directed
arc is drawn from the vertex e, to the vertex ej in G* if and only if
there exists any directed path from the final point of e to the starting
point of e, in the A(Td)—reduced HC-graph Gh(Td)/A(Td).
Lemma 3.3 Let Gh(R, E) be an HC-graph and Td be a subset of R. Then,
divisions of the trunks belonging to Td by the method I produce no new
cycles if and only if the connection graph G* = (A(Td), EA) does not
contain any cycles or self-loops.

(Proof omitted)

For a connection graph G*, the incidence matrix P = (p..) is

1]
defined by

P.. T

1 if (ei, ej) € EA,
ij

0 otherwise.
Lemma 3.3 The connection graph G* = (A(Td), EA) does not contain any
cycles or any self-loops if and only if the incidence matrix P for G*
satisfies

Per(P + 1) =1,
where I is the unit matrix and Per represents the permanent expansion of

a matrix [22]. (Proof omitted)

56

Now continue with the proof of Theorem 3.1.

Let
= (t], e = (& (y), t2
ep = (&g, ¥yl e, = (5, (s £,
ey = (th, £.(7)), e, = (5,(5p, £,
Ty = {ti, tm}, A(Td) = {el, ey €g, e4}.

Then it suffices to show that the unprimed condition of the theorem
is the necessary and sufficient condition that the cycles C and C' are
eliminated and that the connection graph G* = (A(Td), EA) does not contain
any cycles or any self-loops.

The necessary and sufficient condition for the cycles C and C' to
be eliminated by dividing ti and t is that

min R(Ti, ti) > Yp > max R(ti, T!),

2
and
. [1
min R(T3, tm) > Y4 > max R(tm, T4),
where
T = CAT 1t T! =C ATt
1 i’ 2 i’
v 1 -1 ' 1
T) =C'nT "t , T, =C'n Tt .
3 m 4 m

The necessary and sufficient condition for the connection graph G*
= (A(Td), EA) not to contain a cycle or a self-loop is, from Lemma 3.3,
that Per(P + I) = 1 holds for the incidence matrix P for G*.

Note the incidence matrix P. Since obviously ti ¢ gtR(yD)’ tL(yD)
¢ §tR(yD)’ ti £ ;ti, and ti € %ti hold in Gh(Td)/A(Td), it follows that
P11 = Pyp = 0 and Py = P43 = 1. It is shown below that Pyy = Pyy = 0

and Py3 = Pyy = 1 follow from the condition (PC-3.1).

(1) Proof of pj, =0 (ti ¢ ftR(yD) in G (T /A(TY).

i r
Assume that t € FtR(yD) in Gh’ and we can see that tL(yD) el ,

57

from the condition (PC-3.1), and thus tL(yD) £ PtR(yD) in Gh’ which is a

contradiction. It follows that t ¢ FtR(yD) holds in G, . Consequently,

h

. . 1,4 _
it must be valid from Lemma 3.1 that tm ¢ FtR(yD), i.e., P13~ 0.

(2) Proof of Pyy =0 (ti ¢ fti in Gh(Td)/A(Td))-

Since ti ¢ th follows from the condition (PC-3.1), ti £ Tti in

Gh(Td)/A(Td) follows from Lemma 3.1.

(3) Proof of p,, = 1 (ti € Tti in G, (T)/A(T).

, s 1 3.2 1 5.2,
Since t € Fti in Gh and t € th and t; € Fti in Gh(Td)/A(Td),

~

it follows that t1 € Tt%.
m i

that

_ .2 .
(4) Proof of Pyy = 1 (tL(yD) £ Ttm in Gh(Td)/A(Td)).
. 2 . 1 5.2, .
Since tL(yD) £ Ttm in Gh and t € th in Gh(Td)/A(Td), it follows
t ()s:ft2
LD m'

Consequently, the incidence matrix P is of the following form:

)
1, o0, 0, Py |
1, l+p,,, 1, P
I 22 24
P31> P3p» L+ P33 Py,
LO, 1’ 1’ l + p44J

Calculating Per(P + I),

Per(P + I) (1 + p22)(l + p33)(l + p44) + p32(1 + Py + p24)
* P32+ Pyy) ¥ Py, (1 Pyy)
+ Pyl +pgy Py Py (2 0yl

It follows that the necessary and sufficient condition for Per (P

+ I)

58

= 1 can be expressed as follows:
(5) Requirement for Per(P + I) = 1:
P2 = P33 = Py4 = Pyy = Ppy = Py = P3p = 0-
In the following, it is shown that the condition for (5) to hold is
the condition given in the theorem. The case then divides into that of
t € TtR(yd) and that of £ ¢ FtR(yd).

(A) The case of t € FtR(yd).

- . 1,3 .
In order for Py3 = 0 to hold, i.e., t ¢ TtR(yd) in Gh(Td)/A(Td),
the directed path from tR(yd) to tm must be cut. If there exists a
directed path from tR(yd) to t_ without going through ts then any

e \ 1,
divisions of ti and tm leave a directed path from tR(yd) to tm in
2

. 17
Gh(Td)/A(Td) since tm £ Ttm.

Consequently, = 0 requires that the vertex ti is an articulation

P33
point of P(tR(yd), tm), that is,

(6) P_(tp(yy, t) 2 £

Then the condition for all of the directed paths from tR(yd) to t_
to be cut is that

. " > > 1"

min R(Tl, ti) yp > max R(ti’ T2),

where

-1
P(tp(ygs t) N T e,

1]
L5

13
Ty = P(tp(yg, t;) N Tty
Next to consider is the condition for Pyy = 0. From the condition

(PC-3.1), tL(yD) S Fti and Pa(ti’ tL(yD)) >t in Gh. In order to get
the situation that tL(yD) ¢ Fti in Gh(Td)/A(Td), it is necessary that the

directed path from ti to tL(yD) must be cut off by dividing t o i.e.,

3 1} > > "
min R(T3, tm) Yq > max R(tm, Té)’

59

where

i1}
T3

-1
P(ti’ tL(yD))n r t o

11}
'J.‘4 = P(ti, tL(yD)) N I'tm.

Now consider what conditions are further needed for P3y = 0, i.e.,
tL(yD) ¢ FtR(yd) in Gh(Td)/A(Td). From the condition (PC-3.1) and (6)
above, it is seen that Pa(ti’ tL(yD)) > tnland Pa(tR(yd), tm) e ti'

Hence, tL(yD) € FtR(yd) in G Then, only the following two cases need

n
consideration:
(7) Both ti and tm are artléulatlon points of P(tR(yD), tL(yD)).
(8) There exists a directed path from tR(yd) to tL(yD) without going
through t, or t_.
i m
In case (8), obviously tL(yD) £ FtR(yd) in Gh(Td)/A(Td), and Pyy = 1
follows. On the other hand in case (7), in order for the directed path
from tR(yd) to tL(yD) to be cut in Gh(Td)/A(Td), the following relations
are necessary:
. e > S "e
min R(Tl , ti) yp > max R(ti, T2)
and
() 111 "y
min R(T3 , tm) > Y4 > max R(tm, T4),

where

e -1
T1 = P(tR(yd), tL(yD))rw T tys

1331 -
T P(tR(yd), tL(yD>) N Fti,

1"y _1

1"y
T4 = P(tR(Yd), tL(YD))] th'

Here note that Tg' = T; for i =1, 2, 3, 4 since t, and t are
. . . ' "o .
articulation points of P(tR(yd), tL(yD)), and also TilJ Ti Ti for any i.

Lastly, it is shown that tL(yd) ¢ TtR(yd) in Gh is sufficient for

60

Puy = P14 = Pp4 = Py = 0-

(9) By, = 0 (t, (7 ¢ Teglyp) in G, (T,)/ACT))

Assume that tL(yd) £ EtR(yd) in G,- Then, in order for tL(yd) ¢
ftR(yd) to hold in Gh(Td)/A(Td), P(tR(yd), tL(yd)) must contain t; Or t .
If it contains t_ then tL(yd) € ftm, i.e., Pyy = 1, and if it contains
ty then tL(yd) € Eti, i.e., Pyy = 1, either of which contradicts other

conditions. Consequently, the necessary and sufficient condition for

tL(yd) ¢ FtR(yd) in G (Td)/A(T) is that t (yd) ¢ FtR(yd) in Gh.

(10) Py, = 0 (t (Yd) ¢ Tt in G (T)/A(T)
)

Since t (yd) ¢ Tt (yd), t (yd) ¢ Tt in G,. Hence, tL(yd) ¢ Fti

in Gh(Td)/A(Td).
~ 2 .

(11) p,, =0 (tL(yd) ¢ Tt in Gh(Td)/A(Td))

Assuming that tL(yd)E th in Gh’ it follows that tL(yd) € Fti,
which contradicts (10). Hence, t (yd) ¢ th in G (T)/A(Td).

(12) py, =0 (e (v & Ft r(¥p) in G, (T /AT D)

Assumlng that t (yd) € Ft (yD) in Gh, then t (yd) € Ft (yd) and
t (yD) € Ft (yd) and thus t (yD) £ Ft (yD), which contradicts the

condition (PC-3.1). Consequently, tL(yd) ¢ TtR(yD) in Gh(Td)/A(Td).

Integration of the above conditions gives the condition (A) of the
theorem.

(B) The case of £ 4 FtR(yd)

1,3 , e _

From Lemma 3.1, tm ¢ FtR(yd) in Gh(Td)/A(Td). The condition Py, =
0 is the same as in (A). The following is the discussion of the
condition for Pyy = P3y = p24 =Py = Py = 0.

(13) Pqyy = 0 (t (YD) ¢ I"t (yd) in G, (T4)/A(T))

Since t, ¢ Tt (yd) and €t ¢ Ft (yd) in G, , t (yD) ¢ I1t (Yd) in Gh

h!

61

must be the case for tL(yD) o FtR(yd) to hold in Gh(Td)/A(Td).

(14) Py, = 0 (tL(yd) ¢ FtR(yd) in Gh(Td)/A(Td))

The reasoning is similar to that in case (A).

Az‘
(15) p,, = 0 (£ (yp) # Tt in G (T /A(T,)
From the reasoning in (9), tL(yd) ¢ Pti must be the case in Gh in

A 2 .
order for tL(yd) ¢ Fti to hold in Gh(Td)/A(Td).

/\2.

(16) Py = 0 (tL(Yd) ¢ th in Gh(Td)/A(Td))

The reasoning is similar to that in case (A).

(17) Py =0 (tL(yd) ¢ FtR(yD) in Gh(Td)/A(Td))

Assuming that tL(yd) € TtR(yD) in Gh’ then tL(yD) € Fti and tR(yD)

€ TtL(yD) and thus tL(yd) 15 Fti in G, , which contradicts (15).

h
Consequently, tL(yd) ¢ FtR(yD) in Gh(Td)/A(Td).

Integration of the above conditions gives the condition (B) of the
theorem.

Q. E. D.
Theorem 3.2 Let C be a cycle in an HC-graph. For a trunk t, on the
cycle C and a dividing point Yp? let the HC-graph be of the forward type
in which

e, () € Ty, ey ¢ Tl , £ (y) ¢ Te(y), and ¢ (vp) # t(y))
and let t be an articulation point of P(ti, tL(yD)) which is not
contained in any cycle.

Then, the cycle C is eliminated without generating any new cycle by
dividing the trunk ty at y = Yp and t atys=) both by the method I or
I' if and only if one of the following conditions (A) and (B) holds:

(A) Both t; and t are articulation points of P(tR(yd), tL(yD)),

where tL(yd) ¢ TtR(yd) and tL(yd) # tR(yd) are satisfied, and one of the

following (1), (1') and one of (2), (2') are valid:

(1) min R(Tl, ti)

(1') min R(ti’ T,)

2
(2) min R(T3, tm)

(2') min R(tm, T4)

> Yp > max R(ti, TZ)’
> Yp > max R(Tl, ti),
> >

yq > max R(tm, T4),

> Y4 > max R(T3, tm),

where

3
|

x|
|

-1
1 = [Pleyy)s & (yp)) UclnAT ts

, = [Pt (v, £ (5pD Y Cl AT,

3
|

3 = P(tR(yd), tL(yD)) N

=3
Il

, = Pl gy t(yp)) N

(B) t (v # Tt,s (5

and one of the following (3),
(3)

(3"

@)

1 > >
min R(TS’ ti) Yp

i > >
min R(ti’ T6) Yp

i > >
min R(T7, tm) Y4

T_lt ,
m

Tt .
m
/_1 A
¢T "t , tL(yd) ¢ Teo (v tL(yd) # tp(yy)
(3') and one of (4), (4') are valid:
max R(ti’ T6),
max R(TS’ ti)’
max R(tm, T8),

max R(T7, tm),

cn Fti,

(4') min R(tm, T8) > Y4 >
where
_ -1 -
T5 =CcnT ty» T6 =
_ -1
T, = P(t;, tL(yD)) NI e,
T

(Proof omitted)

g = P(ti’ tL(yD)) 8 I‘tm.

Theorem 3.3 Let C and C' be two cycles in an HC-graph which are mutually

disjoint.

For a trunk ti on the cycle C and a dividing point Yp» let the

HC-graph be of the cyclic type in which

e (yp) # Tt £ (y) ¢T

and let C' be the cycle which

tys tL(yD) € FtR(yD), and tL(yD) # tR(yD)

contains both tL(yD) and tR(yD).

Then, the cycles C and C' are eliminated without generating any new

63

cycle by dividing the trunk ti at y = N and a trunk t on C' at y = Y4

both by the method I or I' if and only if
Pa(tR(yD), tL(yD) >t
e (v $ T, toly) ¢ T70e, € Gy ¢ Te (v, £ () # G0
e (s # Tt and £(yp) ¢ T ',

are valid, and one of the following (1), (1') and one of (2), (2') are

satisfied:

\4

i >
(1) min R(Tl, ti) Yp > max R(ti’ TZ)’

' .
(1') min R(ti’ TZ) > Yp > max R(Tl, ti)’

\4

(2) min R(TB’ tm) > max R(tm, T4),

[.
(2') min R(tm, T4) > Y4 > max R(T3, tm),

where

~1
Tl cnT ts T

cnTlt,,
1

T

C'f'\T_lt, T c'nTt..
3 m ™

(Proof omitted)

3.6 Conclusions

The first objective of this chapter has been laid on evaluating the
operation of dividing a trunk from the aspect of its ability to eliminate
cyclic constraints. If the purpose of the cycle eliminating algorithm
was only to achieve the perfect wirability then it would have only to
choose in order dividing patterns each of which eliminates the maximum
number of cycles in an HC-graph. From a practical point of view,
however, the cycle eliminating algorithm must cooperate with a width
reduction algorithm described in the following chapter, since the first

objective of the whole wire routing algorithm is to realize a given set

64

of nets in the minimum possible width. Considering the above-mentioned
things, this chapter has presented the algorithm for eliminating all of
cycles in an HC-graph with as little increase of the trunk-crossing

count as possible.

65

CHAPTER 4

WIDTH REDUCTION PROCESS

4.1 Introduction

The previous chapter has presented the algorithm for realizing any
set of nets in finite width with minimum possible increase of the trunk-
crossing count. This chapter discusses a process following the cycle
eliminating algorithm, so it is assumed through this chapter that the
HC~graph does not contain any cycles.

The purpose of this chapter is to formalize the minimum-width wiring
problem and to determine which trunks to be divided and how to divide
them in order to reduce the track count (wiring width). For this
purpose several notions are introduced, such as decomposition of a trunk
set, incomplete subsets, a VR-graph and etc.

Traditional approaches toward this minimum~width wiring problem
have no ability to reveal the effects of dividing a trunk on the wiring
width in an explicit form. This thesis evaluates such effects by making
use of the two directed graphs, the HC-graph which expresses the
horizontal constraints between the trunks, and the VR-graph (vertical

relation graph) to express the vertical relations.

4.2 Formulation of Minimum-Width Wiring Problem

For a set of trunks R, the previous chapter defined the trunk-
crossing count WO(R) and the track count W(R), for which it is always
valid that W,(R) < W(R).

In case of WO(R) = W(R) no more improvement is possible, but the
case of W(R) > WO(R) needs a process to reduce the track count W(R).

The process must find a trunk an appropriate division of which makes the

66

the resultant track count W(R') less than the original track count W(R).
Here, it should be noted that the division may also cause the increase
of the trunk-crossing count, which prohibits further improvements.
Accordingly, those divisions are desirable that leave the trunk-crossing
count as it is, and they are called "safe" divisions. The width reduction
process is iterated until no more improvement is possible.

As mentioned in the previous chapter, the wiring width W(R) is
determined as the number of tracks on which trunks to be placed. 1In
general, each track should contain as many trunks as possible. This
means that the trunk set R should be decomposed into mutually disjoint
subsets under certain constraints.

Definition 4.1 D(R) = (Dl, Dys vee Dd) is a decomposition of R whose

size is d if

(1) D,V D2U e UD, = R,

1 d

and

(2) Di/\ Dj =@ for any i and j, i # j.

In order to describe the constraints a decomposition of R must
satisfy, a VR-graph is defined which expresses vertical relations
between trunks.

Definition 4.2 A VR-graph G = (R, AV) is a directed graph with the

vertex set R and the arc set Av = { (ti’ tj) | L(ti) < U(tj) }. 1In
other words, an arc from t; to tj means that the trumnk t;, can be placed
above the trunk tj.

When we want to place two trunks ti and tj on the same track, first,
we check the VR-graph for the existence of an arc connecting t, and tj’
and then check the HC-graph for the existence of any path between ti and

tj. If we find such an arc in the VR-graph and no paths in the HC-graph,

67

the two trunks may be laid on the same track. If, however, there should
be such a path in the HC-graph, then one of these trunks must be placed
to the left of the other. The above-mentioned process is intricated, so
some essential informations should be transferred from the HC~graph onto
arcs of the VR-graph, defining two weights ¢ and w for every arc. In
the following, four kinds of decompositions of R are defined by making
use of these weights, and a procedure is presented to reduce the size of
the optimum decomposition of R at each step.
Example 4.1 Consider a set of nets given in Table 4.1. These nets can
be realized as shown in Fig. 4.1, for example. This pattern must be
improved, since it contains five tracks but the trunk-crossing count is
four. Therefore, some trunk must be divided to reduce the track count.
The HC-graph and VR-graph are shown in Fig. 4.2 and Fig. 4.3,

respectively.

ty TL(ti) TR(ti) U(ti) L(ti)
ty {1, 3} @ 1 3
t, {9} {1, 6} 1 9
ty 1) {9} 9 %
t, {6, 8} {2} 0 8
te 1] {5, 8} 5 8
te {4, 5} {7} 0 7

Table 4.1. A set of nets R .
4,1

Fig. 4.2.

HC-graph for the set of trunks R

4,1°

68

69

Fig. 4.3. VR-graph for the set of trunks R4 1°

4,2.1 a-decomposition of R

Definition 4.3 (a-set) (i) For any trunk ti’ the set { ti } is an a-set.

(ii) For an a-set P and a trunk tj such that tj ¢ P, if (ti’ tj) €A, for
any trunk ti € P, then the set P VY {tj} is also an a-set.

An a-decomposition of R is a decomposition every element of which is
an a-set. The optimum a-decomposition is one of the minimum size (written
as da(R)), and da(R; S) denotes the size of the optimum a-decomposition
of a subset of R. Here it is evident that da(R) = WO(R), since an a-
decomposition is free from horizontal constraints.

For the set of trunks R4’1 given in Example 4.1, for example, the

optimum a-decompositions are as follows:

Dl(R) ({tl, ty t5}, {té}, {t6}, {tz}),

DZ(R) ({tl, tS}, {t4, t3}, {t6}, {tz}),
03(R) = ({tl, t5}, {t4}, {t6, t3}, {tz}).

4.2.2 c-decomposition of R

As mentioned earlier, two trunks ty and tj can be placed on the
same track if and only if the VR-graph contains an arc connecting t, and

tj and the HC-graph does not contain any path from ti to tj or one from

70

ti to ti' The above-mentioned informations are represented by defining

a weight c for every pair of trunks, as follows:

1 if (t,, t.) € A and re VY I‘_lti¢ t.,
c(t,, t,) =[J * J
1 J 0 otherwise.

Definition 4.4 (c-set) (i) For amy trunk t,, the set { ty } is a c-set.

(ii) For a c-set P and a trunk tj such that tj ¢ P, if c(ti, tj) = 1 for

any t, € P, then the set P v {tj} is also a c—set.

A c-decomposition of R is a decomposition every element of which is
a c-set. The optimum c-decomposition of R and the notation dC(R) and
dc(R; S) are defined in a similar fashion.

Proposition 4.1 Let (ti’ tj) € Av' Then, the trunks ti and tj can be

placed on the same track if and only if c(ti, tj) = 1.
(Proof omitted)

Definition 4.5 An arc (ti’ tj) in a VR—graphhis called a c-arc if and

only if c(ti, tj) = (0, and is called a c-free arc if and only if c(ti,

Now, reconsider Example 4.1. As is easily seen, the arcs (tl, t3)
and (t4, t3) are c-arcs. So, the decomposition Dl(R4,l) and DZ(RA,l)
are not c-decompositions, but DB(R4 l) is still the optimum c-decomposi-

i = = R . - ,
tion. Thus, dc(Ré,l) da(R4,1) WO(while the wiring width of

4,1)’

the pattern shown in Fig. 4.1 is greater than WO(R). The following

4,1

discusses why this extra track is needed.

4.2.3 w-decomposition of R

For every pair of trunks (ti’ tj)’ the weight w(ti, tj) is defined
as follows:
1 if C(ti’ tj) = 1 and W(ti, tj) é:WO(R),

W(t., t:) ={
= J 0 otherwise,

71

where

W(ti, tj) = max(§L(ti) + ?cR(tj) + 1, ?{R(ti) + :‘éL(tj) + 1),

and for every trunk tk

~ A_l ~ A
xL(tk) = dc(R; r tk) and xR(tk) = dc(R; Ftk).
From the definitions above, it is easily recognized that the width

required for arranging those trunks which must be placed to the left of

the trunk t that is, those belonging to the set F_ltk, can not be less

k’
than % (t,), and the width for the set I't, whose elements must be to the
L k

right of the trunk t. can not be less than §R(tk).

k

Proposition 4.2 Let W be a wiring width and let x(ti) be an x-coordinate

of a track on which the trunk ti can be placed. Then,
X < <W- % .
xL(ti) + 1< x(ti)_= W XR(ti)
(Proof omitted)

Proposition 4.3 Let W(ti, tj) > WO(R). Then, there are no such wiring

patterns with the width WO(R) as placing ty and tj on the same track.

(Proof omitted)

A w-set and a w-decomposition are similarly defined. Here it should
be noted that a w-decomposition of R is not always realizable. The
statement may be restated as follows: A wire routing process correspond-
ing to a w-decomposition D(R) is performed in such a way as to place each
element of D(R) on one track. However, this operation may happen to
cause a cycle in the order of arranging those tracks.

Again, for Example 4.1, §L and §R values are as follows.

The arcs (tl, t5) and (t6, t3) are w-arcs (an arc (ti’ tj) of a VR-
graph is called a w-arc if w(ti, tj) = 0) and the decomposition 03(R4’1)

given in 4.2.1 is not a w-decomposition of R4 Consequently, it is

»1°

72

known that there is no w-decomposition of R4 1 whose size is equal to
b

Wo(Ry,)

t:1 tl t2 t3 t4 t5 t6
;L(t yl o 2 3 o 2 o
V]

XR(ti) 2 1 0 2 0 1

n n
Table 4.2. Xp and Xp values.

4.2.4 r-decomposition of R

Realizability of a c—(or w-)decomposition D(R) = (Dl’ Dys een s Dd)
can be checked as follows: First, a decomposed graph GD(D(R), Y) is
constructed, where a directed arc is drawn from a vertex Di to Dj if and
only if TDi N Dj # @, that is,

YD; 2 Dj if and only if FDi(W Dj # d.
Next, the decomposed graph is examined for the existence of any cycle.
Then, the necessary and sufficient condition for the decomposition D(R)
to be realizable is that the corresponding decomposed graph does not
contain any cycle. And a realizable c-(or w-)decomposition of R is
called an r-decomposition. An example of a decomposed graph is shown in
Fig. 4.4, which indicates that the c-decomposition 93(R4’1) = ({tl, t5},

{t4}’ {t6, t3}, {tZ}) is not realizable.

73

D] = {tl’IFS} D3 = {t3, t6}

D, = {t;} Dy = {t,}

Fig. 4.4. Decomposed graph GD = (D3(R4’1), Y).

4,3 Procedures for Reducing Width

From the definitions in the previous chapter, it follows that in
general
> > > = .
4R >4 (R >d (R) 24 (R =W,R)

Hence, the following cases are to be considered:

(1) d (R =d (R) =d (R) =d (R =Ww,(R),
(2) d_ (R) 2 d (R) >d (R) >d (R) =W (R),
(3) dr(R) > dw(R) > dc(R) = da(R) = wO(R),
(4) dr(R) > dW(R) = dc(R) = da(R) = WO(R).

The following discussion deals with the cases of (2), (3), and (4),
since the case (1) needs no more improvement.

4.3.1 Procedure for the case dc(R) > da(Bl

In this case it will be required to reduce the dc value by dividing
some trunks. It seems, however, to be difficult to obtain the sufficient
condition under which dividing a trunk causes the dC value to decrease,
in other words, to determine global effects of dividing a trunk. So

this thesis takes an approach toward this problem from a standpoint of

74

evaluating local effects of dividing a trunk.

Consider a subset S of R such that dc(R; s) > da(R; S) but that a
division of a certain trunk may lead to the result dc(R'; s') = da(R';
S'). Since for any subset S the value dC(R'; S') is always greater than
or equal to 2, a minimal subset having the above-mentioned property is a
c- incomplete subset S as defined by

#S = 3 and dc(R; S) = 3> da(R; S) = 2.

Theorem 4.1 1If dc(R) > da(R), then there exists a c-incomplete subset S

of R.
(Proof) Since dc(R) > da(R), there exists a c-arc (ti’ tj)’ i.e.,
c(t,, t.) = 0. From the definition of ¢, t, € Tt, or t, € Tt,. Here
i 73 j i i j

~

tj € Tti may be assumed without loss of generality. Since (ti’ tj) € AV,

that is, U(ti) < L(ti) < U(tj) < L(tj), tj can not belong to the set Fti.

It follows that there exists a trunk t, € Ftit\ P—ltj and therefore

(ti, tk) g Av, (tk, ti) ¢ Av and c(tj, tk) = C(tk’ tj) = 0. Consequently,
the set S = {ti, tj’ tk} is c—-incomplete.

Q. E. D.

The converse of the above theorem is not valid in general.

L

(a) (b) (c)

Fig. 4.5. c-incomplete subsets.

75

2 o
i
ot, .
t)|
J tj
(a) Subgraph (b) Position of trunks

Fig. 4.6. Situation considered in Theorem 4.2.

2
, t tp
1
G |4

(a) Subgraph (b) Position of trunks

Fig. 4.7. Effect of dividing the trunk tD'

Fig. 4.5 shows subgraphs of a VR-graph concerning c-incomplete
subsets, forms of which are restricted to those three kinds. TFor each
case (a), (b), and (c¢) in Fig. 4.5, the conditions for a division of a
trunk in a c-incomplete subset to cause dC(R'; S') = 2 may take different
forms, according to which trunk in S should be divided. The following
considers the situation deemed to be the most effective, as shown in

Fig. 4.6, where t_ represents the trunk to be divided. Since the

D

76

arrangement of the trunks in S is such one as shown in Fig. 4.6-(b), it
appears to be the most desirable to get the situation as shown in Fig.

4.7 by dividing the trunk t) by the method I or I'. Then it must be

noted that either t, € Tt, or t, € T't, holds, since (t,, t.,) € A_ and
j i i j R v

i then tD must be divided by the method I,

must be divided by the method I'.

c(ti, tj) = (0. If tj e T't

and if t, € Tt, then t
i j D

A

Theorem 4.2 Assume the situation as shown in Fig. 4.6 and that tj £ Tti.
Then, dividing the trunk tyaty = Yp by the method I causes the relation
c(ti, té) = c(tg, tj) = 1 if the following conditions from (1) to (8) are
satisfied:

(D vy € &I (5, £, £i(e, £)1 A EL(E), 01

(2) t, ¢ (/I\‘tin ftj) Y (IA‘_ltin ,l:—ltj),

(3 ¢ (v ¢ Te, (@) tp(y) ¢ Il
() £ () ¢ Te,, (6) tglry) ¢ T le,,
(Dt ¢ Tl (8 ¢,y € Te..

Here, if tL(yD) or tR(yD) is undefined or equal to tys then the

conditions which include it can be omitted.

(*)
{m+1, m+2, ... , n-1} ifn-m> 2,
g[m, n] = {

1) otherwise.

-1 . 2
{max R(P(ti, tD) nT ths tD) if tD € l"ti,

f(t,, t) =
Ly
i D L(ti) otherwise.
i P , t. Tt , if £, € Tt_,
£t b - { min R((tD tJ)f\ tD tD) i tJ D
Uu"D” 7j U(tj) otherwise.

_ A o1
P(ti, tj) = (Ttiu {ti}) N (T tjU {tj})

77

(Proof) First, the necessity of the conditions from (2) to (8) is
verified.

if not (2), at least one of t; and tg is not in the set (Ttir\ th)

u(I‘_ltir\ F-ltj) wherever t_ is divided. Hence, either c(ti, té) =0

D
2
or c(tD, tj) = 0 holds.

.. . S1
If not (3), for a similar reason, either tL(yD) € FtD or tR(yD) €

2
tD is valid. Hence, a cycle arises in the HC-graph resulting from the

division of tD. The case of (4) is similar to this.
1
D? tD’ D
follows that if not (5) or if not (7) then C(ti’ t;) = 0 holds, and that

A 1 2 - 1 2

> >

In general, FtL(yD) 2 {t tD} and T tR(yD) 2 { t }. It
if not (6) or if not (8) then c(tg, tj) = 0 holds.

Next to consider is the condition (1). It may be assumed that yD
€ E[L(ti), U(tj)], since the dividing point Yp must be chosen between
L(ti) + 1 and U(tj) - 1. Now, we have only to deal with the following
case:

‘E[fL(ti, tD)’ fU(tD’ tj)] = ¢’
that is,

£,(tp tj) - £ (e, t)) < 1. (4-1)

Then, since U(tj) - L(ti):; 2 from the assumption, either fU(tD, tj)

U(tj) or fL(ti’ tD) # L(ti) must hold, that is, t_ € Tt, or tj € FtD

D i
must hold.
(a) The case of t_ € Tt, and t. ¢ Tt
D i 3j D
Evidently,
_ -1
fL(ti, tD) = max R(P(ti, tD) NnT to tD) (4-2)
and
= 4-3
fU(tD, tj) U(tj). (4-3)

Combining the above equations yields

78

- <
U(tj) fL(ti’ tD) < 1.

Hence, yD:i fL(ti’ tD) holds since yD < U(tj). Consider any trunk

tp £ P(ti’ tD)l\ F_ltD; from the above relation and the definition of

fL(ti’ tD), it must be valid that

min(Ty () n Tp(ep)) 2 vy

Consequently, it is seen that there still remains the relation

t1 € Ftp after dividing t

D D

at y = Yp by the method I. Therefore,
c(t,, tl) = 0 holds since t_ € T't,.
i D P i

AN

(b) The case of tD ¢ Pti and tj € PtD
This is a dual situation of the above, and c(tg, tj) = (0 is obtained.

(c) The case t_ € Fti and tj e Tt

D D

The proof is obvious from the above (a) and (b).

Q. E. D.

A

Theorem 4.3 Assume the situation as shown in Fig. 4.6 and that tj € Fti.

Then, dividing the trunk t_ at y = Yp by the method I' causes the

D

relation c(ti, t

%) = c(tg, tj) = 1 if the following conditions from (1)

to (8) are satisfied:

1 L (*)
(D yp € E[fL(ti, tD), fU(tD, tj)],
(2) tD ¢ (Ftir\ th) (T tin r tj),
e /_l
(3) tL(YD) ¢ PtD’ (4) tR(yD) ¢ r tD,
N /\—1
(5) tL(yD) ¢ th, (6) tR(yD) ¢T ts
*) max R(P(t tInTt t) if t, ¢ i:t
£1(t.. t) = { D’ i D> D i D’
L1i° D L(ti) otherwise.
, -1 . 2
£ (e - {1n1n R(P(tj, tD)(W T tD’ tD) if tD £ th,
U D’

U(tj) otherwise.

79

A—l ~
(7 ey ¢ Tt (8) ¢ (yp) ¢ Tt,.

Here, tL(yD) or tR(yD) is undefined or equal to ths then the
conditions which include it can be omitted.

(Proof omitted)

Fig. 4.8 illustrates trunk-division effects for various forms of

c-incomplete subsets.

4,3,2 Procedure for the case d (R) > d (R)
W a—*

In this case a similar procedure can be considered. A w-incomplete
'subset S of R is defined by

#s = 3 and dw(R; Sy = 3 > da(R; S) = 2,

Here it should be noted that a theorem similar to Theorem 4.1 is
not valid for the case dW(R) > da(R). In fact, there is an example such
that dW(R) > da(R) but there is no w-incomplete subset. Such a set of
trunks, however, has a strictly restricted VR-graph.

Theorem 4.4 Let dw(R) > da(R). If there are no w-incomplete subsets
in the VR-graph corresponding to a set of nets R, then the following
statements are valid:

(1) For every arc (ti’ tj) in the VR-graph, C(ti’ tj) = 1.

(2) For every trunk ty §L(ti) < WO(R) and §R(ti) < WO(R).

(3) 1If XL(ti) + xR(tj) + 1> WO(R) for an arc (ti’ tj), then, Fti

=T "¢, =@ and w(t , t,) =w(t,, t) =1for anyt €T "t, and t € Tt,.
j wlty, £ = wlty, £) Y 'p i q j
~ ~ -1
>
(4) 1f xR(ti) + xL(tj) +1 WO(R) for an arc (ti’ tj), then T ty
~N /_l
- I‘ = = = P .« ®
tj @ and w(tp, tj) W(ti, tq) 1 for any tp £ I‘ti and tq > tJ

(Proof) The proof proceeds by contradiction.
(1) If there exists an arc (ti’ tj) such that C(ti’ tj) = 0, there

is a c-incomplete subset by Theorem 4.1. Hence, we can conclude that

tD t t]
(1) I 0 tJ 1 l) tJ i 0ty
t_i tD tJ
2 1 2
2 1]
t1. tj tD tD tj tD
- 2y_ Ty_
(3) c(tD,tj)—l c(t1,tD)—1 c(ti’tD)'1
- Ty_ 2 -
c(tD,t1)—1 c(tJ,tD)—l c(tD,tj) 1
(a-T) (a-2) (a-3)
t t.
ool [N
t1. tj tj tD
2 1 2
(2) tD tD t1. g tD
I> i 1
t1. tj tj tD
2
. = t.,t =
1) c(tD tJ) 1 c(; ?) 1
c p-t)=1 c(tj,tD)=1
(b-1) (b-2)
t. t. t t
(-I) 1 V J D I/ 1
tD tj
2 1
t. t. t t
@by [N
2 1
tD tD t1. tj
clto,th=1 | c(t?,t.)=1
24 _ 1 -
C(t.,tD)—.I C(tD’t)".I
(c-1) (c-2)
Fig. 4.8. Trunk-division effects for various forms of

c-incomplete subsets, (1) before division,

(2) after division and (3) result.

80

81

there is a w~incomplete subset, since any c-incomplete subset is also
w-incomplete.

(2) Assume the condition (1). Then, it must be true that if (ti’ tj)
£ Av then Tti\J F_lti 4 tj. Accordingly, if there exists a trunk t,
such that §i(ti) i=w0(R)’ we have

R N - . pl -
dc(R, T ty {ti}) dc(R, r ti) + 1 XL(ti) + 1

> wO(R)

a_(R,

which is a contradiction. Similar matters are true in case of §R(ti) >
(3) Assume the conditions (1) and (2) and that there is an arc (ti’

tj) such that

§L(ti) + §R(tj) + 1> wO(R) and Fti # 0.

Then, for any trunk ty in Fti,

(ti, tk) a AV and (t ti) ¢ A.V

k’
. ~ > ~

and since xL(tk) XL(ti)’
W(tk’ tj) = w(tj’ tk) = 0.

Consequently, the subset {ti, tj’ tk} is w-incomplete.

Next to consider is the latter half of the condition (3). Consider
lt

A

arbitrary trunks t_and t such that t € I' "t, and t_ € Tt,: It follows
P q P 1 q]

from the condition (1) that tp is detached from ti and that tq is

detached from tj in the VR-graph. We can easily see that (tj, tp) ¢ A.V

and (tq, ti) ¢ Av' Suppose (tj, tp) € Av’ and the two arcs (ti’ tj) and

(tj, tp) of the VR-graph guarantees the existence of an arc (ti’ tp).

This contradicts the condition (1) mentioned above. Similar matters

are true for the pair of tq and ty. Thus, if w(tp, tj) =0 or W(ti’ tq)

= 0 holds, then {ti, tj’ tp} or {ti, tj, tq} is w-incomplete, respectively.

82

The remaining part of the proof is similar to the above.

Q. E. D.
Example 4.2 A set of nets R4,2’ given in Table 4.3, has the properties
stated in the above theorem.

HC-graph and VR-graph are shown in Fig. 4.9 and Fig. 4.10,

respectively. For clarity, transitive arcs are omitted in the VR-graph.

t:i TL(ti) TR(ti) U(ti) L(ti)
ty {12}) 0 12
t, {13} @ 13 &
t, {2, 11}) 2 11
t, @ {12} 12 0
ts {3, 7} ¢ 3 7
te {1} {2, 3} 1 3
tg {9} {4} 4 9
tg @ {6, 14} 6 14
t10 {15, 17}) 15 o
t1q {10} {17} 10 17
t15) {8, 10} 8 o

Table 4.3. A set of nets R4 9

b

83

O———30
t t
1 4
ot,
ts tg ty
tg
C3t8 @) tg
O————30——30
tio t ty

Fig. 4.9. The HC-graph Gh(R4,2’ r).

Fig. 4.10. The VR-graph G (R, ,, A,).

84

For the set of nets R WO(R) =5 and (t tlo) is the only

4,2° 4,2 7°
w-arc of the VR-graph (of course, there are no c-arcs). Also, we can
see that a decomposition

D(R4’2) = ({e),), {eg, £}, (e, t,0, {eg, tg, £ 1,
fes, tg b

is the only one optimum c-decomposition of R , and dc(R4,2) = da(R4,2)

4,2
= WO(R4,2) = 5 and dr(R4,2) = dw(RA,Z) = 6.

Procedures for w-incomplete subsets are similar for the most part
to the ones for c-incomplete subsets and will be implemented while any
w-incomplete subset remains to be processed.

4.3.3 Procedure for the case d_(R) > d (R)
T W

The relation dr(R) > dw(R) means that when wire routing is performed
accordingly to an optimum w-decomposition of R a cycle arises in the
order of arranging tracks. Hence, a procedure is necessary which elimi-
nates such a cycle without increasing the value of dw(R), but the author

could not present such a procedure.

4,4 Outline of Width Reduction Process

From the results obtained thus far, the following algorithm may be
considered.

[Outline of width reduction process]

begin

START:

if W(R) = W, (R) then stop;

Dp t= a set of possible dividing patterns;

for every dividing pattern (ti’ Ve M € Dp do

if this division does not produce any cycles in the HC-graph

85

L := a set of incomplete subsets;
for every incomplete subset S do
if W(S(ti, Ype M)) < W(S) and
WR(t,, vy, M) < W(R) then
begin
divide the trunk ti at y = Yp by the method M;
R := R(ti, Yo M);
g0 to START
end

end
end;

In the above algorithm, S(ti’ Yoo M) and R(ti, Yp» M) represent
those sets of trunks which result from the division of the trunk ti
at y = Yp by the method M.

This process is, as is obvious, too inefficient and too tedious,
for we may find, in a practical problem; too many dividing patterns to
examine their effects, and also too many incomplete subsets. The

following section tries to put restrictions on dividing patterns and

incomplete subsets in order to improve efficiency.

4.5 Matching Condition

This section considers what restrictions are to be put on dividing
patterns and incomplete subsets in the algorithm proposed in the previous
section. For this purpose trunk groups are redefined more formally and
their interrelations are investigated.

4.5.1 Property of trunk groups

86

Trunk groups are redefined in a different manner in order to
investigate their interrelations in more detail.

It is easily known from the definition of trunk groups given
earlier that for two trunks ti and tj there exists no trunk group which
contains both of them if and only if ti and tj do not have any common
part in the direction of the y-axis, in other words, if and only if the

VR-graph contains an arc (ti’ tj) or (tj, ti)'

Proposition 4.4 A trunk group Gi is a maximal subset of R which has the

following property:
max{ U(t, t, € G,} < min{ L(t, t, € G, }.
(c) [e5ec) s (e) | £5e6;

(Proof omitted)

The above property suggests an effective method of determining
trunk groups by use of a third directed graph. This method should be
distinguished for its capability to express, in a brief form, essential
information which is necessary to examine the possibility of reducing
wiring width.

Definjtion 4.6 (Simplified VR-graph)

A simplified VR-graph GS = (Vl’ V2, AS) is defined as follows:

(1) The vertex set of G is V, VY V_, where V, and V_, are both equal
s 1 2 1 2

to a set of trunks R, but elements of V, are ordered by their lower ends

1

and those of V2 are ordered by their upper ends. Hereafter, Vl and V2

are denoted as

vy = {til), tgl), vee tél)},

and

_ (2 (2 (2)
= {t1 P },

where

and

| A
L]
*
.

| A

L) < nes?) <

A
A

(2) (2)
U™ 2 (e,) £ U(

(2) AS denotes the (directed-) arc set of GS, and (t

if and only if

and sets of trunks V1 \Y

@ ey <ue?y,

R

87

L L(tlgl)),

(ii) L(til)):; U(t§2)) for any k, k > i, and

(iii) L(til)) > U(tl(cz)) for any k, k < §.

Hereafter, AS is denoted as

A = (W, 2y 1<k <)

Tr Ik

1
l’ 2’ ¢ *

as follows:

).
fl), t§2)) € A
i 3 s
and V2, V2, oo s V2 are defined
0 1 n

vi = {til) +1° til) 490 e s til)} for any k, 1 < k < nt+l,
k-1 k-1 k
and
V2 = {tgzz fz) s eee s tgz) for any k, 0 £ k £ n,
k I’ Rt it -
where iO = 0, in+l = N, Jg = 1 and jn+1 =N+ 1.
Then the following sets of trunks Gl’ Gz, cee Gm_1 are trunk
groups:
2
€1 = Vo>
2 2 1
= U -
G2 (VO Vl) Vl’

k-1 2 k-1 1
G, = (L)__ v - v,
i=0 i=1

88

n 1
Gy = R = (Ujeq V-
From the above relations, the cardinality of each trunk group is

caluculated as follows:

#G1 =3
#G2 = j2 - il -1,

_l’

4.5.2 Matching condition

The following examines interrelations between trunk groups, in

particular, between a max group G, and its neighboring trunk groups G

k k-1

and Gk+1'

Lemma 4.1 Vi,q Vl

b= ¢ for any a and b where a > b.

(Proof) It follows from the definition of the simplified VR-graph

that if a > b then

U(t§2)) > L(til)) > L(til)),

a a b
U(t§j)) = minf{ u(t,)] t, € Vi },
U(tii)) = max{ L(tk) | t € V; 1.

Consequently, it follows from the above that
min{ UCt) | £ € V% } > max{ L(t,) | t, € v}
k k a k k b

This terminates the proof of this lemma.

1 2
= - v < < n.
Lemma 4.2 Gk+l (Gk Vk) Vk for any k where 1 < k < n

(Proof) From the equation defining trunk groups,

_(Uklz (Ukll

and

Gk+1 = (LJl' (LJI‘

[V U(Uk'1 2y - (Uli:i Vi)] - vi.

Here, since by Lemma 4.1

k-1 l
(U = ,
the above representation of Gk+1 is replaced as
_ k-1 2 k- l l 1
Gk+l - V U [(U) - (U - Vk

1
k'

2
(VkU Gk) -V

Further, using the relation Vi:\ Vi = @ derived from Lemma 4.1, we

have
_ 1 2
Gy = G = VPV Ve
Q. E. D.
Lemma 4.2' G = (G, - V2 y v Vl for any k where 2 < k < n+l
— k-1 k k-1 k-1 = = ‘
(Proof) It follows from the definition of Gk that
k-1 2
UlO (Uik
and
k-1 vl n+1 1
i=1 i i=k 1
Applying the above relations to
_ k-1 2 k—l l
6 = (Ui V9 - (WUss
we have

6 = R- (Ui, VD1 - IR - <u“”l)

(Un+l l (Ul_

90

The remaining part of the proof proceeds in a similar manmner to

Lemma 4.2.

Q. E. D
Theorem 4.5 For any k where 2 < k < n,
a_(R; 6 U ¢) = max(hG,, #G,,,)
+a_(R; VLU VD) - max(hvy, #V0)
and
d_(R; 6 U) = max(#G,, #G,_,)
+d_ Ry v U Vo) - max(#V_, #Ve_).

(Proof) From Lemma 4.2 and the relation Gkr\ Vﬁ = (J, we obtain the

following three representations:

G, M Gy = G A (G = V) U V2]
=GN (G - Vlb =Gy - Vi’

G = Gq = G — LGy - Vli) v V12<]
=G - (G - Vllc) = Vlt’

()]
t
]
|

1 2
= [(Gk - Vk) v vk] - G,

1 2 2
[, - V) - GIUV, =V.

Combining the above three representations yields

_ [KRR)
G Y Gyq = (6 - V) UV UV,

k k+1 k

where the symbol {J represents union of mutually disjoint sets.

1

Similarly, from Lemma 4.2' and the relation leﬁ Vk—l = @, we have
U - 2 o 2 o ol
Gk~ Gkt = G ™ Vi) Y Vi1 Y Vi

Setting k = k -— 1 in the above representation yields

91

G, VG

— 2 L4 2 . 1
kY Cpp1 = (Gpq ~ VIV VUYL

Now, consider two arbitrary trunks ti and tj in the set Gk V) Gk+l

such that (ti’ tj) € AV. Then, it is easily seen that t, must belong to

i
the set Vl]; and tj to V12<. Hence, the above two representations imply that
d.(Rs G U Gpyp)
- . — l . 1 2
= dC(R, G vk) + dc(R, ka Vk)
2 1 2
= dC(R, Gk+l - Vk) + dc(R, Vk U Vk).
Here, since G, 2 V1 and G 2 V2 we have
? = 'k k+l = 'k’
d (R; G, - VY =d (R; 6.) - d (R; VD)
¢’ 'k k ¢ "k ¢’ 'k
1
= #Gk - #Vk
and
2 2
dC(R, Gk - Vk) = #Gk - #Vk.

2

then #V, > #v2,

ce s . . N
In the above, it is easily seen that if #Gk > #Gk+l

and if #Gk < #Gk+l then #Vi < #Vi since

i S ol
G = (G NG VUV

and

2

= V]
G (Gkn G) Vk'

k+1 k+1

As a result, we obtain

dC(R; G, U Gk+l) = max(#Gk, #G

k k+l)

S R 1,2
+ dc(R, Vk U Vk) - max(#Vk, #Vk).

The other representation of this theorem can be obtained by setting

k = k - 1 in the above.

92

This theorem suggests that it should be examined at the very first

whether, for any max group Gk’ the following equations are valid:

1., .2 1,2
dc(R, Vk U Vk) = max(#V_, #Vk)
and
1 2 1 2
dc(R, Vk—].u Vk—l) = max(#Vk_l, #Vk_l) (k 2).

The above condition is called a "matching condition'" for the weight
c. Similarly, the matching condition for the weight w is stated as
follows:

[Matching condition]

For any max group Gk’

ol 2 1,2
dw(R’ Vk\J Vk) = max(#Vk, #Vk)

and

1
k-1

2 . 1 2
V) Vk—l) = max(#Vk_l, #Vk_l).

d (R; v
W
This matching condition is used to limit a set of those trunks which

are to be divided. This is done in the following manner: First, for

1

every max group, the matching condition is examined. Then, if dW(R; Vk

LJVi) > max(#Vi, #Vi), a trunk is needed to be divided so that the
condition is satisfied. 1If such a division is successful then its overall
effect is examined, in other words, it is seen whether the track count

is reduced.

[The second version of width reduction process]
begin
START:
if W(R) = WO(R) then stop;

construct a simplified VR-graph GS(Vl’ Y, AS);

93

ARC := @;
for k :=1 step 1 until n do

£ #6, +d R vl
- w

k\J Vi) - max(#Vi, #Vi) > WO(R) then

ARC := ARC U { (tys tj) I t; € v, €. e v? and w(t,, t)) 0};

k*> 73 k
for every (t,, tj) € ARC do

begin TD 1= tD l {tD, ti’ tj} = S is w-incomplete };

D_ := a set of all possible dividing patterns of t

p D’

for every dividing pattern (t M) € Dp do

D’ st
if this division does not produce any cycles in the HC-graph
and W(S(t

M) = 2 and W(R(t M) < W(R)

D’ YD, D, yD’
then begin

divide the trunk tD at y = Yp by the method M;

end

end;

4.6 Algorithm B

—-—— Width Reduction Algorithm ---

Based upon the results obtained thus far, this section presents an
algorithm for achieving a near-minimum width layout for a given set of
trunks. Here it should be noted that the algorithm deals with a set of
trunks to which the corresponding HC-graph does not contain any cycles,

for Algorithm A, which was presented in the preceding chapter, has

94

eliminated all cycles in the original HC-graph.

In a manual design, it may be rather easy in a small-scale problem
to find a dividing pattern of a trunk which reduces wiring width, if an
appropriate layout pattern is present. The reason may be considered to
be its easiness to evaluate an effect of a division by means of partial
amendment of the layout pattern. There arise many difficulties, however,
in expressing the above-mentioned process in a procedural form. First
to do is to evaluate a division of a trunk in a suitable way. Algorithm
A evaluated a dividing pattern from the aspect of eliminating cyclic
constraints, so local evaluation is quite enough. On the other hand in
the width reduction process, a dividing pattern is effective only if it
really reduces wiring width. Thus, evaluation of a dividing pattern
requires the following process: First, divide a trunk. Second, lay out
the resulting set of trunks in the minimum possible width. Last, check
whether the width is reduced. And then, if the division fails in reducing
the width, the divided trunks and the HC-graph must be restored to the
pre-division condition.

Evidently, this is a quite tedious procedure. Thus, some suitable
local evaluation is needed in order to increase the efficiency of the
width reduction process so that trunks are less frequently divided. For
this purpose the final version of the width reduction process presented
below takes a heuristic search method. A heuristic function F, is

B

determined for every tuple (ti’ t.,

3 ths Ypo M) where (ti’ tj) is a w-arec,

{ti, tj’ tD} is a w-incomplete subset and the trunk ty is divided at y =

Yp by the method M.
(1 FB(ti’ tj’ tD’ Yoo M) = w (undefined) if at least one of the

followings is the case:

95

(i) It is impossible to divide the trunk t_ at y = Yp by the method

D

(ii) The division generates cycles in the HC-graph.

(iii) The resulting trunk-crossing count WO(R(t M)) is

D’ st

greater than WO’ where W, is a parameter determined in the algorithm.

0
(iv) W(R - {tD}) is equal to W(R). TIf W(R - {tD}) = W(R) then any
dividing pattern of t

(t

D is of no effect, since for any dividing pattern

p* Ypr MW WR(t,, vy, M) 2 W(R - {tD}) holds.

(v) The division cuts off no directed paths of the HC-graph.
(vi) There exist both tL(yD) and tR(yD), and

x, (£ (7)) + % (tp (7)) + 2 > W(R).

. 1 .2)
(vii) W({tD, tD’ ti’ tj}) is greater than or equal to W({tD, ti’

tj}).

. — 9 *
(2) Otherwise, FB(ti’ tj’ tD’ Yp M) = Zk=5 Cr fk(tD, Y M), where

Cgs o s c9 are positive constants.

(the length of the longest directed path of the

original HC-graph)

(the length of the longest directed path of the

HC~graph after the division),

f6(tD, Y M) (the sum of the length of those directed paths that

are cut off by the division),

f7(tD, Yo M) min(xL(tD), xR(tD)),

f8(tD, Ype M) = f3(tD, Ype M),

£q(tys yps W .= £,(ty, ypo M,
where f3 and f4 are defined in the preceding chapter.

[Algorithm B -~-- width reduction algorithm]

begin

START:
EXITl: if W(R) = W,(R) then stop;

construct a simplified VR-graph GS(Vl, VZ’ AS);

ARC := §;

comment :
This block examines the matching condition for every trunk
group. If the matching condition is not the case for a trunk

2
X’ then those w-arcs between Vi and Vk are stored into

group G
ARC;
for k :=1 step 1 until n do

1

Ly vi) - max(ffvi, #vi) > W,(R) then

if #Gk + dw(R; v

begin
ARC := ARC Y {(t., £.) | t, € vl ¢, e v? and w(t,, t.) = 0};
i> 73 i k> 7j k i’ 73 i
for every w-arc (ti’ tj) € ARC do

' .z .ol 2_ 12_
FB(ti, tj) : #Gk + dw(R, v, V Vk) max(#Vk, #Vk) wO(R)

end;

DPAT := @;

comment :
The following block chooses a third trunk tD to be divided
for every w-arc (ti, tj) contained in ARC. Here it should
be noted that if c(ti, tj) = 0 then the trunk tD must be an
articulation point of directed paths connecting ti and tj’
and otherwise th must be divided so as to reduce the value

XL(ti) + xR(tj) -1 or XR(ti) + XL(tj) - 1.

for every (ti’ tj) € ARC do

96

97

begin

if c(ti, tj) = 0 then
T(t, tj) = {(ti’ ts tp) | {ti, tys tD} is c-incomplete

|V
and t € Pa(ti, tj) Pa(tj, ti)}

else

T(t, tj) {(ti, tys ty) | {ti, £ tD} is w-incomplete

”~ U /_1 .
and (Tt VU T 7e)) N (e, tj} + 0};
for every (ti’ tj’ tD) € T(ti’ tj) do
DPAT := DPAT {(ti’ tj’ tD’ Yp M) I (tD, Y M) is a dividing

pattern of the trunk tD}

end;
WO := WO(R);
TEST := §;

LOOP:

compute FB(ti’ tj’ tD’ Y M) for every (ti, tj, t M) € DPAT;

D’ yD’

while D, # ¢ do

begin
choose an element (ti’ tj’ tD’ Yp M) from Dp to give the maximum

value for Fé + FB;

if (tD, Yp M) € TEST then
begin

divide the trunk t, at 'y =y, by the method M;

98

if W(R(t M) < W(R) then

D’ st

begin R := R(t M); go to START end

p’ p’
restore the divided trunk to the pre-division condition;
TEST := TEST Y {(tD, Yp> M} end

end;

comment :

TEST remembers those dividing patterns that have ever been

tried in vain. Thus, if (t M) € TEST then the dividing

D’ yD,
pattern does not have to be tried;

Dp 1= Dp - {(ti, tys Eps Yy M}

EXIT2: if W, > WO(R) then stop;

EXIT3: if wo = WO(R) and W(R) = WO(R) + 1 then stop;

wo = WO + 1;

go to LOOP

end Algorithm B;

Algorithm B contains three exits. If the algorithm terminates at
EXIT1, then the track count W(R) is equal to the trunk-crossing count
WO(R) and thus no more procedure is needed. On the other hand if it
terminates at the other exits then W(R) > WO(R). Also, in these cases
it is easily seen that the track count W(R) can not be reduced by any
dividing patterns of trunks which do not increase the trunk-crossing
count WO(R). Hence, if W(R) = WO(R) + 1 then any more search is insignifi-

cant, and thus the algorithm terminates at EXIT3. If W(R) > WO(R) + 1

99

then the algorithm must continue to search for a dividing pattern which
reduces the track count W(R). 1In this case, all of such dividing
patterns increase the trunk-crossing count WO(R). If the algorithm finds

no such patterns then it terminates at EXIT2,

4.7 Algorithm C

——=— Algorithm for Arranging Trunks ---

Algorithms A and B determine which trunks to be divided and how to
divide them, but they do not show the way to arrange those trunks.
Algorithm C to be presented in this section achieves the fewest possible
tracks, in other words, it arranges trunks in the minimum possible width.
Note that this algorithm also estimates the track count W(R) for a given
set of trunks R if the HC-graph is acyclic.

[Algorithm C]
begin
while R#¢ do
begin
construct the HC-graph Gh(R, M;

— —1 —3 .
R, .—-{tiltieRandF t, =0}

if there exists a c-set such that S 2 RL then

begin

place those trunks belonging to RL on the leftmost track;

R :=R - RL
end
else begin

enumerate those c-sets that are subsets of RL;

evaluate FC values for all those c-sets;

100

let SL be a c-set for which the FC value is the maximum;

RR:={tjltjeRand1“tj=¢};

if there exists a c-set S such that S 2 RR then

begin

place those trunks belonging to RR on the rightmost track;

R :=R - RR
end
else begin

enumerate those c-sets that are subsets of RR;

evaluate FC values for all those c-sets;

let SR be a c-set for which the FC value is the maximum;

i >

if FC(SL)== FC(SR) then

begin
place those trunks belonging to SL on the leftmost track;
R :=R - SL

end

else begin
place those trunks belonging to SR on the rightmost track;

R :=R - SR

end

end
end
end
end Algorithm C;
comment

RL (or RR) is a set of those trunks which can be placed on the

leftmost (or rightmost) track.

101

The heuristic function FC is determined as follows:

Fo(8) = cypo£14(8) - ey £1,(8),

where S is a c—set and 10 and ¢y, are positive constants.

£10(8) = K, *max{ xL(tj) + XR(tj) -1 | t; €S b+ R,efs,

where Kl and K2 are positive constants.

fll(S) = #S - s,

where S is the maximum c-set such that SE R and S 2 S.

The following is the discussion on the heuristic function F For

c
a trunk ti, the larger is the value XL(ti) + xR(ti) - 1, the more

restricted are those tracks on which the trunk ti may be placed, as is

seen in Property 3.3. This is reflected on the function f Next,

10°

consider the evaluation by the function £ Now, let S be a c-set such

11°
that S & RL and let S be the largest c-set such that S € R and S 2 S.
Then, if S is much smaller than S then it is desirable that the present

cycle of the algorithm does not choose S, since some future cycle may

happen to find a larger c-set which includes S.

4.8 Computational Results

The algorithm described in this thesis has been programmed with
some modifications and run on a FACOM 230-45/S computer. This program
is written in FORTRAN IV and consists of about 3K steps. The author has
experimented with this program for several wire-routing problems. The
following examples demonstrates its usefulness and versatility. All the
examples have been artificially designed, because the author could not
obtain real designs. Real problems, however, seem to be easier than

these problems considered here.

102

Example 1

An HC-graph for Example 1 is shown in Fig. 4.11. As is easily
seen, the HC-graph contains five cycles {tl, tos t3, t4, t5, t6}, {tl,
tys tg tedy {ty, to, t,, toh {t,, £, v, £, tg, £} and {tg, €., €,
tgl

Algorithm A first enumerates all of those dividing patterns that
eliminate the most cycles, and the results are shown in Table 4.6.

It should be noted that the methods I, I' II, III, and III' are
represented simply as 1, 2, 3, 4, and 5 in Table 4.6. For example, the
first line means that the dividing pattern (tZ’ 1, III) eliminates
exactly two cycles. Here also note that the table excludes those dividing
patterns that increase the trunk-crossing count, for example, a dividing
pattern (tS’ 17, II) which eliminates four cycles.

Next, Algorithm A computes the f, + f4 value for every dividing

3
pattern and chooses the dividing pattern (t2’ 3, III), as is shown in
Table 4.7.

Fig. 4.12 shows the HC-graph resulting from the division of the trunk
t, at y = 3 by the method III, where t2 and t13 represent t; and t;,
respectively.

At the next cycle of Algorithm A the dividing pattern (tS’ 10, IIT)
is chosen. In this turn Algorithm A must compute the values for f2 + f3
+ f4 because those dividing patterns enumerated in Table 4.8 can eliminate
the only remaining cycle {t2’ t3, t4, tS}.

Table 4.8 indicates that the dividing pattern (t4, 15, II1') is the

optimum and the trunk t, is divided at y = 15 by the method III'. The

4

resulting HC-graph is shown in Fig. 4.13. As is easily seen, the HC-graph

is acyclic and hence Algorithm A terminates.

103

Then the control is transferred from Algorithm A to Algorithm B.
First, X and Xp values must be computed. Trunk groups are constructed
by the simplified VR-graph shown in Fig. 4.14.

Trunk groups are as follows:

6, = {t,,

i3 tgs tgs oo t5},

(o]
Il

o = Lty gy tys £y tos £yt ks

[}
1]

{t6, tos tys tes tygs tygs t3},

3

G = {tgs ts tygs tyys g0 £y ty5h,

Gg = {tg, .ty to, £, tio, tol,

Gg = {tygs t11s 30 4o Ey5s Tgo)

Gy = {typs tyqs T i Egs Tyy T1obs

Gg = {ty1s £y ty5s tgs tyu o ol

All except the trunk group G1 are max groups. The values for X
and xp are computed by using the above trunk groups.

Algorithm C achieves the minimum number of tracks as shown in Fig.
4.15. For this layout pattern, the trunk-crossing count is 7 and the
track count is 11. Hence, trunks must be divided in order to reduce the

width. Algorithm B first examines matching conditions for max groups.

d_(Ri; 6,V G) - W (RD =1,
dW(R'; G, U G3) - WO(Ri) =1,
dW(R'; G3 U G4) - WO(Ri) = 2,
d (R}5 6,V 65) - W,(R) =1,
dW(R'; Gy V) G6) - wO(Ri) =1,
dw(R'; G6\J G7) - wO(Ri) = 1

104

', _ Yy -
dW(R 3 G7\J G8) Wo(Rl) 1.
Hence, Algorithm B first examines those w-arcs that exist between

1

V3 and Vg. Here the w-arc (t6, t4) and (t6, t,.) are excluded because

15
E[L(t6), U(t4)] = [L(t6), U(tlS)] = @#. Selected w-arcs are (t2, t4)

and (t2, tlS)' Then, for the w-arc (t2, tA)’ the trunk t. is the only

5

trunk to be divided, and the optimum dividing pattern of t_ is (tS’ 8,

5
I). This division reduces the track count by one without increasing the
trunk-crossing count. Algorithm B proceeds in this way and finds the

layout pattern shown in Fig. 4.16. TFor this pattern, the track count is

equal to the trunk-crossing count, and hence Algorithm B terminates.

CPU times and other data for all the examples are summarized in

Table 4.10.

105

t; TL(ti) TR(ti) U(ti) L(ti)
t {1} {5} 0 5
t, | {7} {1, 3} 0 7
ty | {9, 12} {7} 7 12
t, { {10, 15} {12} 10 15
ts | {3, 6, 8} {10, 16} 3 o
te | 12, 5} {8, 9} 0 9
£, | {11} {2} 0 11
tg | {16, 18} {11} 11 o
ty ¢ {14, 18} 14 o
to {4, 13} {6} 4 13
ty| ¢ {4, 15} 4 15
tio| 9 {13, 17} 13 o

Table 4.4, Example 1.

y 12 3 4 5 6 7 8 9 1011 12 13 14 15 16 17 18

e ey B b5t tg sty E5 tg bty b0 -ty tg = g

ER(TI |ty £y €y £1g £p £ g By ot tg ty T1p tg ty1 T5 By By

n(y)l4 & 5 7 7 6 7 6 6 6 7 6 6 6 6 4 4 4

Table 4.5. Terminal conditions for Example 1.

106

Fig. 4.11. HC-graph for Example 1.

DIVIDING FATTFRNS

TRUNK D=POINT PETROD MERITT
pa 1 4 ?
2 3 4 2
3 G 5 2
5 6 1 ?
5 14 1 2
5 10 4 2
> & 5 7
6 H 4 ?
© 3 4 7
4 17 3 ?
4 15 5 ?
8 14 ? ’
) 1% % ?

MAX IMUM NUMRER CF CYCLES TO RE OPENED = 2

Table 4.6. Dividing patterns that eliminate the maximum

number of cycles.

MAXIMUM DIVIDING PATTERNS

THUNK N=RPOINT METHOD
2 1 4
2 3 4
3 9 5
5 & 1
5 14 1
] 10 4
5 I 5
6 ! 4
6] 4
4 17 3
4 15 5
£ T4 l
R 18 5
Table 4.7.

Fig. 4.12.

<
m
I.

ro B e
COIORPELEINDTC

107

f3 + f4 values for those dividing patterns

listed in Table 4.6.

Resulting HC-graph.

108

MAXIMUM DIVIOING PATTERNS

TRUNK PD=POINT METHOD MERIT
3 G 2 307
3 9 5 904
4 17 3 840
4 15 0 825
5 (& 1 907
5 R 1 907
5 R 5 904

Table 4.8. 100f2 + f3 + f4 values for those dividing patterns

which eliminate the remaining cycle.

Fig. 4.13. Resulting acyclic HC-graph.

109

N O N [a NN N ™M ANt AN WO N~
= = = N = > > =
P A -~ \\l'l\{'lj " Ny e e, P N—y ——) ——
— — CamnY ——— —_— -~ L) Lo Camn) Lann) L) Lo — L) —
N N N N (V] o~ N o N NO Nr— NN N NG AN
St pmmer (O] SN st) O P DO S SN = S S e
+ + + + + + ++ + + + + + + -+ +
1] n n I}] It]] 1} 1} [l 1 1} I]
o o — o < N
— — o] ~ [qV] Lo — r— o <t — o0 r— — ()
R IR + - + - PRI + R 2 + +
o™ o < — Lo N
r— — N o %3] ~ o - < r— — — < (22} —
L2 P + R + - PR + R +) +
" n 1l 1] 1] I 1] 1} 1l "] 1} il 1] 1
——~ _— —— o~ — ——~ — L) o~ —~ — L) L —— —
— — - — — ~— — r— — _—_0 ~r—r—QN —M e~ -0
= ANl " s <F L) O N e O~ S S S— = S—— Sre— S
R +© EE + - PR A + PR) + + 4+
~—r—r—Q —~ o™ — <t —W — O — M~ — 0
] > = = = = > =

Simplified VR-graph.

XL and XR values.

Fig. 4.14.

Table 4.9.

(t.)

*R

oot

1 Qmm=—emcemm e e e = X

110

-

,‘(__+--+-—~--k')

? Qme=——mmmemmmc—aao

Aemm et e m et mm X m)

3 Om====X

{

1
Xe—tomttmanmew=()

|

!

|
|
4 Qmm=—=mtmmtome==X
|
{

X oo oo i)

5 Queeccectmatmon=o o)

o pommpmoe fhtme o oo ()
I
|

x——+--..,—...4.-—.*-..-—..—-——_—{)

7 Omem===t==)

= Z

[} !

] [}

] t

! 1

L} 1

1 1

1 [}

L] i

i 1

1 1

[} L}
——— o = - -

1 1

! 1
O U R

! '

! i

- X - — X
'''' P - —

]

i

1

|

\
- — X - — f - -

] '

! 1

1 !

] '

[} 1

C G

x o

R i T L PO P A S

10 Q==X

X wei)

11 Om=#-meo—mcmd o fmmmmepum

|

!
Koo oo = e ()

|

!

] <

1 !

4 1

! XK -
]

1

F o e o
[J

1

4 - -
i

]

DC o o ame -
>

]

!

I

]

]

[}

]

]

]

]

H

4 o = — - -
]

1

C <

o« <

Ll —

|
|

12 Qm=4==-=-===oX
|
|

Xemtmedmmpmmta=)

15 Qm=Xmwemem—mc—emeaa)

x—--g...-.(’)

16 Qmm=—mmm—m e mm 4o

Xt o=t =)

17 ©

11

wlDTH

Layout pattern of width 11 from which

Fig. 4.15.

Algorithm B starts.

1 O==o=meccmc et mepmmm—=)

111

Xmmiamgpmm ol

2 Qm==-m=-m===X

C C

! 1

] 1

> XN -

1]

1

o e o -

]

]

)

]

1

4 e e - -

]

1

F o o o - —

1

]

I - v - - —
2 = -
]
§

N o= — = -

1]

])

C C

« <

X==4+==()

Qv b s pmamt = X = X

5

~
N

X--+'-‘-‘+--+---‘-+“’V

& O==X

oo o e 2w oo ()

T Qrmtmapm=X

< C <
1 1 1
1 i 1
-t = - -
i i {
i 1 !
i 1 Ko -
i 1 i
1 1 {
_—— - |
'
L}
""""" -
[}
i
""" D e wm f w— —
1]
1 1
K o= = = = X
1 !
L} 1
_—— = = - -
1 1
f f
- -] > -
] 1 1
! 1]
< o G
<L o)) (&
—

Xmmtmmtmm()

]l O--+—-+-_—-_+-_X

W oo e om o ()

12 O==4==to===aX

Aemmmmpmmpmmtmn ()

13 O==+t==X

C -
1 i
[1
- e X
i
L
- e e e me -
1
I
R, T T
i
i
—_— -t - -
1 1
t i
| |
1 1
] 1
1 1
1 1
X =t = -
i
U
""" >
1
]
O C
B 4 u
— -

Xomm =m0

16 O==X==t==tmommmency

L e it L)

Xmmtommmmemm e pmmmn ()

18 Q==X

wIDTH

Final layout pattern of width 8.

Fig. 4.76.

Example Numb?r Number Number W_(R) I?itial F%nal N?m§er of T?tal Execution

Number of Wires | of Gates| of Cycles 0 Width Width | Divided Trunks | Time (sec)
1 12 18 5 7 11 8 6 4.6
2 5 7 3 4 7 6 3 0.9
3 10 12 3 7 10 9 3 2.7
4 10 25 65 10 14 12 8 42.3
5 12 16 1 10 10 10 1 0.8
6 12 16 9 11 15 14 7 8.8
7 12 17 0 5 6 6 0 0.5
8 13 20 0 5 6 5 1 1.9
9 15 22 2 12 12 12 1 1.6

Table 4.10. Computational results.

It

113

4.9 Conclusions

The structure of the width reduction algorithm (Algorithm B)
described in this chapter is more complicated than that of the cycle
eliminating algorithm (Algorithm A) presented in the previous chapter.
This complexity of the structure is due to the difficulty of evaluating
dividing patterns of trunks, and the difficulty is explained by the fact
that Algorithm A checks only whether a dividing pattern eliminates
cyclic constraints in an HC-graph, but Algorithm B must examine with the
tedious work of rearranging trunks whether a division can really reduce
the track count. Thus, it is the most important in Algorithm B to limit
the search space. For this purpose various notions and conditions have
been introduced such as matching conditions, incomplete subsets and so
on. Lastly, this approach has proven successful by means of experimental

results.

114

CHAPTER 5

CONCLUSIONS

The wire-routing design problem considered in this thesis has been
studied in many parts of the world, and toward this problem various kinds
of approaches have been reported. However, none of them could be fully
successful for lack of the ability to achieve perfect wirability.
Imperfect wirability may be considered to be a serioﬁs defect because
of inevitableness of human aids in adding incompleted wiring routes. 1In
this reason it is not too much to say that the algorithm presented in
this thesis is epoch-making, which achieves perfect wirability. The
success of this approach depends greatly upon the mathematical model of
the wire-routing system and the trunk-division methods. This thesis
evaluates the operation of dividing a trunk from two viewpoints, (1) its
ability to eliminate cyclic constraints and (2) its ability to cut off
long constraint chains in an HC-graph. Then, by the effective use of
those trunk-division methods the author could have an excellent wire-
routing algorithm. Also, the experimental results have proven the
validity and the usefulness of the algorithm.

The only work left for further improvement is to achieve better
element placing. The current version of the wire-routing program is
independent of a program for placing elements in a suitable order.
However, these programs, in themselves, should work in close cooperation
with each other. The author will study such a cooperating-program

system.

115

LIST OF REFERENCES
Luccio, F., and M. Sami, On the Decomposition of Networks in
Minimally Interconnected Networks, IEEE Trans. on Circuit Theory,
Vol. CT-16, No. 3, pp. 184-188, May 1969.
Landman, B. S., and R. L. Russo, On a Pin Versus Block Relation-
ship for Partitions of Logic Graphs, IEEE Trans. on Computers,
Vol. C-20, No. 12, pp. 1469-1479, December 1971.
Russo, R. L., and P. K. Wolff, A Computer-Based-Design Approach
to Partitioning and Mapping of Computer Logic Graphs, Proc. IEEE,
Vol. 60, No. 1, pp. 28-34, January 1972.
Russo, R. L., Oden, P, H., and P. K. Wolff, A Heuristic Procedure
for the Partitioning and Mapping of Computer Logic Graphs, IEEE
Trans. on Computers, Vol. C-21, No. 12, pp. 1455-1462, December
1972,
Steinberg, L., The Backboard Wiring Problem: A Placement Algorithm,
SIAM Review, Vol. 3, No. 1, pp. 37-50, January 1961.
Rutman, R. A., An Algorithm for Placement of Interconnected
Elements Based on Minimum Wire Length, Proc. SJCC, pp. 477-491,
1964.
Fisk, C. J., Caskey, D. L., and L. E. West, ACCEL Automated Circuit
Card Etching Layout, Proc. IEEE, Vol. 55, No. 11, pp. 1971-1982,
November 1967,
Prim, R. C., Shortest Connection Networks and Some Generalizations,
Bell Syst. Tech. J., Vol. 36, No. 11, pp. 1389-1401, November 1956.
Loberman, H., and A. Weinberger, Formal Procedure for Connecting
Terminals with Minimum Total Wire Length, JACM, Vol. 4, No. 4,

pp. 428-433, October 1957.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

116

Moore, E. F., Shortest Path Through a Maze, Annals of the Computation
Laboratory of Harvard University, Vol. 30, pp. 285-292, 1959.

Lee, C. Y., An Algorithm for Path Connections and its Applications,
IRE Trans. on Electronic Computers, Vol. EC-10, No. 5, pp. 346-365,
September 1961.

Heiss, S. A., A Path Connection Algorithm for Multi—Léyer Boards,
Proc. Design Automation Workshop, pp. 1-12, 1968.

Hightower, D. W., A Solution to Line~Routing Problems on the
Continuous Plane, Proc. Design Automation Workshop, pp. 1-24, 1969,
Mikami, K., and K. Tabuchi, A Computer Program for Optimal Routing
of Printed Circuit Conductors, Proc. IFIP, Vol. 2, pp. 1475-1477,
1968.

Hitchcock, R., Cellular Wiring and the Cellular Modelling Technique,
Proc. Design Automation Workshop, pp. 25-41, 1969.

Lass, S. E., Automated Printed Circuit Routing with a Stepping
Aperture, CACM, Vol. 12, No. 5, pp. 262-265, May 1969.

Hashimoto, A., and J. Stevens, Wire Routing by Optimizing Channel
Assignment within Large Apertures, Proc. Design Automation Workshop,
pp. 155-169, 1971.

Akers, S. E., A Modification of Lee's Path Connection Algorithm,
IEEE Trans. on Electronic Computers, Vol. EC-16, No. 1, pp. 97-98,
January 1967.

Kernighan, B. W., Schweikert, D. G., and G. Persky, An Optimum
Channel-Routing Algorithm for Polycell Layouts of Integrated
Circuits, Proc. Design Automation Workshop, pp. 50-59, 1973.

Asano, T., Kitahashi, T., Tanaka, K., Horino, H., and T. Amano,

Realizability of Wiring for Building-Block Type LSI, Trans. IECE,

21.

22.

23.

24.

Vol. 56-A, No. 9, pp. 489-496, September 1973 (in Japanese).
Asano, T., Kitahashi, T., Tanaka, K., Horino, H., and T. Amano,

A Graph Theoretical Approach to the Routing Problem, Trans. IECE,
Vol. 56-A, No. 12, pp. 731-738, December 1973 (in Japanese).

Liu, C. Y., Introduction to Combinatorial Mathematics, McGraw-Hill,
1968.

Asano, T., Kitahashi, T., and K. Tanaka, On a Method of Realizing
Minimum-Width Wirings, Trans. IECE, Vol. 59-A, No. 2, pp. 115-124,
February 1976 (in Japanese).

Asano, T., Kitahashi, T., Tanaka, K., Horino, H., and T. Amano,

A Wire Routing Scheme Based on Trunk Division Methods, IEEE Trans.

on Computers (to appear).

117

