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CHAPTER 1 GENERAL INTRODUCTION 

1.1 Introduction 

     From the standpoint of production efficiency, the most desirable production 

type for manufacturing industries is that of mass production. However, quite 

a few manufacturing plants have adopted the small and medium lot size type of 

production. So far, efficient methods have been developed to increase 

productivity in small and medium lot size production. Group Technology (GT), 

which was developed by Mitrofanov, is one such useful method. 

     The concept of group technology has recently been introduced in the 

manufacturing areas of many forward looking  companies.- Group technology has 

been investigated from the standpoint of product design, commonality of tooling, 

and reduction of setup time. Intensive efforts have been made to establish 

effective classification and coding  systems,  whithare fundamentals for group 

technology. In order to achieve additional benefits from group technology, 

this philosophy should be applied to other  managment areas, such as 

production scheduling. From this point of view, this thesis deals with the 

production scheduling problems associated with the concept of group technology, 

which will be referred to as "group production scheduling" or "group 

scheduling". 

1.2 Group Technology 

     Group technology (often called "part-family manufacturing"), which was 

put forward by Mitrofanov is one of the effective methods which aims at 

increasing the productivity of small and medium lot size manufacturing. 

Group technology is a technique to increase productivity by classifying a 

broad variety of parts having similarities as to shape, dimensions, and/or 

process route into several groups. By applying this technique to the small 

and medium lot size manufacturing, several advantages, such as mass production 
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    effect, possibility of flow-shop pattern on processing route, reduction of 

   setup time and cost, and simplification of the material flow and handling, 

    can be expected. 

         Group technology was first introduced into West Germany, then into 

    Europe, later into U.S.A. and Japan. Now, group technology as a manufacturing 

    concept has gained steady interest within the manufacturing industry all over 

    the world. 

        The basis of group technology is a classification and coding system 

    with which parts to be processed can be classified. Up to date, various 

    classification and coding systems, most of which are based on. the geometrical 

    shape and/or processing routing, have been developed. The most representative 

    one is the  Aachen system in West Germany by Opitz2). Others are the 

    Mitrofanov system (USSR), the  VUOSO system (Czechoslovakia), the Brisch 

    system (England), the  TEMA system  (Norway), and the KK-1, 2 systems  (Japan) 

    These systems have produced not a little effect in improving production 

    efficiency, although they are not complete and universal. Furthermore, an 

    additional significant saving from group technology is expected to be 

    realized by applying the concept of group technology to other management areas. 

 4-'7) 
    However, there still have been very few studies on this subject. 

   1.3 Production scheduling 

         Scheduling is the allocation of jobs to be processed to a specific 

    position on the time scale of a specified machine (or facility) in a 

    workshop consisting of several machines. A job is a product or part to be 

    processed and consists of a given sequence of operations. The processing of 

    an operation requires the use of a particular machine for a given duration, 

    the processing time of the operation. If attention is directed to a machine, 

    there are several operations waiting for processing in a certain time span 

    on that machine. Therefore, scheduling can be regarded as the problem of 
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 ordering the operations associated with each machine. In this sense, the term 

 "sequencing" happens to be used synonymously with "scheduling ." In general, 

 it is defined that sequencing is concerned only with the ordering of operations 

 on a single machine, while scheduling is a simultaneous and synchronized 

 sequence on several machines. However, the two terms will be used inter-

 changeably in this thesis, since such a usage of them seems to arouse no 

  confusion. 

      Scheduling problems arise in a variety of situations. Within the range 

 of scheduling problems, for example, there are problems of sequencing programs 

  to be run at a computer center, and problems of sequencing patients at a 

 hospital. The scheduling defined at the outset of  thissection is called 

 "production scheduling
," since it occurs in industrial production. 

      In general, there may be a number of schedules (sequences)  in  schdduling 

 a given set of jobs on machines. Therefore, it is necessary to select one 

 or several schedules from among them by a certain performance measure. This 

 measure of performance is usually called "scheduling criterion" or simply 

 "criterion"
,  and many kinds of scheduling criteria are employed in production 

 scheduling. The most representative ones include: total elapsed time (make-

 span), mean flow time, total tardiness, and facility utilization in the 

 workshop. 

      A basic production scheduling problem is characterized by the following 

 conditions:8140) 

  (i) Jobs to be processed are available simultaneously for processing at time 

  zero. 

 (10 Each machine is continuously available for processing jobs. 

 (a) Jobs consist of strictly-ordered sequences of operations. 

 (iv) The time required to complete a job consists of setup time and processing 

 time, and is deterministic and known in advance. 

  (v) Each operation can be performed by only one machine. 
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 (id.) There  is only one machine of each type in the workshop. 

 (vii) Preemption is not  allowed.(Once processing begins on a job, it is 

processed to completion without interruption.) 

 (viii) No  overlapping.(The processing times of successive operations of a 

particular job may not be overlapped.) 

 (ix) Each machine can handle at most one operation at a time. 

(x) Intermachine transportation times are ignored or included in processing 

times. 

     Several of these assumptions, of course, can frequently be relaxed 

and other assumptions can be added to these, which results in a different 

scheduling problem. 

    One of the most basic production scheduling problems is a single-stage (or 

single-machine) scheduling one, in which jobs, each of which consists of  asingle 

operation, are processed on a single machine. In the case of processing n 

jobs on a single machine, the total number of distinct schedules (sequences) 

to be evaluated is n!, which is the number of different permutations of n 

elements. In this sense, this problem is often called "job sequencing." 

For this problem, several useful scheduling rules for determining  optimal  ._ 

schedules  havebeeb. developed under various kinds of scheduling criteria. 

     When the workshop consists of several machines, the shop is called a 

"flow shop" or "job shop" according to the type of flow pattern of jobs to 

be processed. A flow shop is one in which all the jobs pass identically 

from one machine to another. This type of flow pattern is typical for mass 

production. On the other hand, a job shop is one in which the flow of jobs 

is not unidirectional. This type of flow pattern occurs in small and medium 

lot size production. 

     Flow-shop scheduling problems are complicated as compared with  single-

machine scheduling ones, and hence only a few theoretical results have been 

reported. A well-known and practical one is Johnson's  theorem13) for the 
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 two-machine flow-shop scheduling problem. For a more than two-machine  flow-

 shop scheduling problem, in general, no theorem which gives easily an optimal 

 schedule has been developed. It may be necessary to resort to general 

 purpose methodologies, such as a dynamic programming approach, a branch-and-

 bound method, or a heuristic procedure, all of which can be applied to solve 

 complicated combinatorial problems including scheduling problems. 

      Job-shop scheduling problems are much more complicated and not yet 

 completely solved. The only case which is theoretically solved is the two-

 job,  m-machine job-shop scheduling problem14) In principle, it may be possible 

 that there are  (n!)m alternatives  when:n  jobs are to be processed on m machines 

 in a job shop. It is possible theoretically to obtain an optimal schedule 

 by enumerating all possible schedules and selecting a schedule according to 

 a certain measure of performance. This, however, is not practical, because it 

 requires substantial computational efforts, particularly when the number of 

 jobs is large. For example, there exist approximately  1.4  X:107 possible 

 schedules even in the case of  m=n=  6. Several attempts have been made to 

 solve the job-shop scheduling problems by applying the  general-purpose 

 methodologies. Regrettably, no  successful result has been reported. 

      The scheduling models mentioned above are static ones, since jobs are 

 available simultaneously for processing. On the other hand, in a dynamic 

 job-shop scheduling model where jobs arrive at random over a certain time, 

 it is almost impossible to analytically determine an optimal schedule. For 

 this type of model, an effective approach is a scheduling simulation. In the 

 job shop, jobs to be processed on a specified machine make a queue in front 

 of that machine, so that the shop behaves like a network of queues. In this 

 case, the processing order of jobs is determined by means of dispatching 

 decisions. The study of scheduling in a dynamic job shop has made considerable 

 progress with the use of computer simulation models. With the aid of these 

 models, a large number of scheduling rules (or dispatching rules) for giving 
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priorities to jobs in the queue in front of each of the machines have been 

developed, and broad conjectures about scheduling procedures have been 

      8,9) 
obtained. 

1.4  Group production scheduling 

     As stated in the previous sections,  it  is expected that,  in  addition to the 

benefits from the pure-production technological viewpoints attained by group 

technology, an additional benefit is achieved by applying this philosophy to 

the production scheduling. In processing a large variety of jobs, several 

 resultsIsuch as reduction of setup time, learning effects, and reduction of 

fraction defective, will be obtained by processing the jobs with the same or 

similar operations in succession. 

     Based on the above consideration, production scheduling models of a new 

type have been developed for the purpose of improving the productivity in 

small and medium lot size manufacturing. In the scheduling models, jobs 

having the same or similar operations are assumed to be  classified into the 

same group and processed in  succession.. In this thesis, the production 

scheduling which is associated with the concept of group technology is 

referred to as "group production  scheduling" or "group scheduling" for short. 

     First, group scheduling models under static conditions are considered. 

The fundamental assumptions  of the models are as follows: 

(i) Jobs to be processed are classified into several groups and jobs within 

the same group are processed in succession. 

 (ii) Group processing time required for completion of a group consists of 

group setup time and the sum of job processing times contained in each group. 

 (iii) Group setup time necessary to process a group is independent of the 

sequence of groups. 

 (1) Job setup time needed to process a job is independent of the sequences 

 of groups and jobs, and is included in the job processing time. 
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       (v) In the case of multiple production stages, all jobs and groups are 

       processed in a flow-shop  pattern•(All jobs and groups follow the same path 

       from one stage to  another.) Furthermore, the ordering of groups and jobs is 

       assumed to be the same on each  machine,(No passing of groups and jobs is 

       allowed.) 

            Table 1.1 shows the group scheduling where jobs are classified into N 

       groups, each of which consists of  ni jobs  (1=1, 2, ..., N). 

                  Table 1.1 Group scheduling under static conditions 

  Group G1 G2 GN 

         Job  jll  j12131n1  j21 j22 2n2 JN1  JN2 JNnN 

                                                          N 

            In the group  scheduling  models  defined above, there are  N!x11  ni! feasible 
 i=1 

       schedules on each machine. On the other hand, in many conventional scheduling 

       problems where there exists no precedence relation among jobs, the number of 

       sequences to be evaluated is n! on each machine in the case of n jobs. 

       Therefore, the conventional scheduling can be regarded as a kind of group 

       scheduling in which only one group consisting  of  n jobs is involved. 

            In the group scheduling problem, optimal decisions are to be made as to 

       the sequence of groups classified and the sequence of jobs in each group. In 

        this thesis, they are called "group sequence" and "job sequence," respectively. 

     - Furthermore , a schedule in which both group and job sequences are specified 

       is called a "group  schedule." 

            There is a string problem which seems to be similar to the group 

       scheduling problem. However, significant differences exist between both 

       problems in that the string problem has no background of group technology, 

       considers only the sequence of groups classified excluding the sequence of 

       jobs in each group, and does not include group setup times in its model. 
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 J11 J12  Jl
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J21 J22  J2
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 JN1 JN2  JNn

N



            In the string problem, theoretical analyses have been made as to the 

       single-stage problems of minimizing certain measures of  performance15,16) 

       and the two-stage problems  of  minimizing the total elapsed time17,18). 

       However, there have been only a few studies treating both sequences of groups 

       and jobs simultaneously19,20)In the first part of this thesis, analyses 

       of the group scheduling problems under static conditions are performed and 

       several effective theorems and algorithms for determining the optimal group 

       schedules are developed. 

            In real situations in manufacturing plants, jobs arrive at the shop 

       randomly over time. Hence, it is important to consider the scheduling 

       problem under dynamic conditions. In the latter part of the thesis, the 

       group scheduling problem under dynamic conditions is also considered under 

       the following fundamental conditions: 

       (i) Jobs to be processed are classified into several setup groups. 

       (ii) Group setup times are dependent on the sequence of the groups to which 

       jobs belong. 

      1.5 Outline of thesis 

            In Chapters 2 to 6, group scheduling models under static conditions are 

       dealt with. Chapter 2 introduces a basic single-stage group scheduling model. 

       First, theorems are offered to  obtain:  the  optimal group schedules under two 

       kinds of criteria  -- the minimum mean flow time and the minimum weighted 

       mean flow time. Second, an algorithm for determining a group schedule 

       minimizing the total tardiness  is developed. 

            In Chapter 3, a group scheduling model with sequence-dependent setup 

       times is developed. In this model, group setup times are assumed to be 

       dependent on the sequence of groups. It is shown that the group scheduling 

       problem of minimizing the total  elapsed time can be reduced to a traveling 

       salesman problem. Under the criteria of the minimum mean flow time and the 
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   minimum total tardiness, optimizing algorithms are developed to determine 

   optimal group schedules, respectively. 

       In Chapter 4, a theoretical analysis is made to the group scheduling on 

   the multiple production stages under the criterion of the minimum total 

   elapsed time. First, the well-known Johnson's theorem is extended to the 

   two-stage scheduling problem with setup times separated. Second, the optimal 

   group schedules on the multiple production stages are determined for those 

   special cases where group setup times and job processing times have well-

   defined relationships to one another. 

        In Chapter 5, a branch-and-bound method is applied to solve multistage 

  group  scheduling_ problems. The branching procedure for group  scheduling 

   is clarified, and lower bounds for the total  elapsed  time and the weighted 

  mean flow time are developed. Optimizing algorithms are presented to find 

   optimal group schedules, and the effectivenesses of the algorithms are examined 

   with numerical experiments. 

       Chapter 6 develops a multistage group scheduling model with variable 

  processing times and costs depending on machining conditions. The optimal 

  group schedule minimizing the total elapsed time with the minimum number of 

  tardy jobs is determined, and then the optimal machining speeds minimizing the 

  total production cost are decided under the determined optimal group schedule. 

       Chapter 7 deals with a dynamic group scheduling model where jobs arrive 

  at the workshop randomly over time. Scheduling simulations are run to 

  investigate the effect of types of flow patterns  -- job-shop, near-flow-shop, 

  and flow-shop patterns on the flow time performances. In addition, the effect 

  of the setup time ratio, defined as the ratio of the mean  setup  time to the 

  mean processing time, on the performances for several scheduling rules is 

   studied in the experiments. 
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 CHAPTER 2 GROUP SCHEDULING ON A SINGLE PRODUCTION STAGE 

 2.1 Introduction 

       A single-stage (or single-machine) scheduling problem is the most basic 

  one in production scheduling. In this problem the number of schedules to be 

  evaluated is n! when n jobs are to be processed on a single machine. Hence, 

 one can find an optimal schedule by paying attention to the permutations of 

 job indices. Thus, this problem is called "job sequencing." This problem 

 has been studied by many researchers and lots of theorems  and  algorithms which 

 give optimal schedules have been proposed and developed under various  kinds 

           1^4) 
 of criteria. 

      Even for group scheduling, a single-stage scheduling problem is a 

 fundamental in the study of sequencing and scheduling. This chapter deals 

 with the group scheduling on a single production stage and develops the 

 optimal group scheduling under three kinds of criteria5,6) 

      The scheduling criteria employed in this chapter are the following: 

 (i) The minimum mean  flow  time 

 (ii) The minimum weighted mean flow time 

 (iii) The minimum total tardiness 

      The problem is to determine the optimal group schedule (optimal sequences 

 of groups and jobs) minimizing each of the above performance measures. 

      It is supposed that jobs to be processed are classified into N groups, 

 each  of  which  consists  of  n.  jobs  (i=1, N). Let J.
1.(i=1,N, 

 E  =1, 2,...,  n.) denote the  Eth job in group  G.  (i=1, N) and  p. and 

 did(i=1,2,...,N,E=1,2,...,n.)denote the job processing time including 

 job setup time and the due date of job Jib,respectively. Furthermore, let 

 Si  (1=1, N) denote the group setup time of group  Gi. The symbol (i) 

 is used to signify a job or a group sequenced in the ith position for a group 

 schedule. 
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         In the scheduling problem defined, the total elapsed time, which is a 

     fundamental and important criterion in production scheduling, is no longer a 

     suitable one. The total elapsed time is given by 

          N  N  ni 
        F= 

      max(1)(1)(E)(2.1)                      i1S+i =1113 

    Hence, the total elapsed time is not dependent on the order of groups and 

    jobs for a single-stage problem. 

   2.2 Minimizing mean flow time and weighted mean flow time 

         The criteria of the minimum mean flow time and the minimum weighted  mean 

    flow time are tractable even in the group scheduling. In this section, a 

    theorem which gives the optimal group schedule minimizing the mean flow time 

    is offered, and then it is extended to the criterion of the minimum weighted 

    mean flow time. 

         The completion time of Jthe Eth job in the ith group is                                       i, 

                              i-1 
 C(i)(E) = y(i) P(j)) +  S(i) +cc  (2.2) 

       j=1 v=1 
              nj 

    where Pyp.)is the totalprocessingtime of G). 
   (j)=1(J)(E)(j 

    Since the ready times of all jobs are to be zero, the flow time of J                                                 (i)() 

    is simply 

 F(i)(E) =  G(i) (E)(2.3) 

    Thus, the mean flow time is obtained by 

                      n-               N 

        i 

           F=y 
i=11F(i)(E) /1=11n.     E= 

                                                                                            n. 
 i-1,N1E          1

nQ+-1nsyp(i)( v) (2.4)             M.(i)(i)M(i)(i)M 
         1=1j=1 1=1i=1E=1v=1 

   where  Q(i)  (=S(i)+  P(i)) is the group processing time of G(i) and  M (
iy1n.)                                                                                = 1 

    is the number of all jobs. 

         In the above equation, the second term is a constant. The first term 
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 is concerned with the group sequence and is independent of the job sequences 

because  Q(.) is a constant. The last term is concerned with the job sequence 

in each group, and is not influenced by the group sequence. Hence, the group 

sequence and the job sequences can be determined independently of each other. 

     The first term is minimized by ordering the groups in nondecreasing order 

of  Q./n.. The last one is minimized by ordering the jobs in nondecreasing 

order of job processing times for each group. Sequencing the jobs in non-

decreasing order of processing times is usually called  "shortest-processing-

time (SPT) sequencing" and is the most important concept in the entire 

subject of scheduling. It performs with surprising efficacy even in dynamic 

job shop scheduling, as will be shown in the last chapter of this thesis. 

     Thus the results are stated formally as a theorem in the following way. 

  Theorem 2.1 In a single-stage group scheduling problem, the mean  flow time 

is minimized by ordering the jobs in each group and the groups, respectively, 

such that 

      P(i)(1) P(i)(2) " P(i)•(i=1,N)                                      (n
i) 

and 

       S(1) + P(1)  S(2) + P(2)S(N)+ P (N)  
                               <••• 

 n(1) n(2)n(2) 

     In some cases, jobs do not have equal importance. A value or weighting 

factor, wiE(i= 1,N,  =  1, 2, ...,  ni) is assumed to be given for each 

job to describe its relative importance. 

     The weighted mean flow time is given by the following equation, similar 

to equation (2.4). 

                      n.     Ni-1  N  ni 
                            1r    F

w=             w(i) coQ(J)TO,L w (i)(i) 
                j=1i.=U=1 

N                                     rni                                                r 
                          L LLw (i) (v)P (i) (v)(2.5) 

                                   i=1E=1v=1 
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       In the case of minimizing the weighted mean flow time, the following 

  theorem, which is an extension of Theorem 2.1, holds. 

    Theorem 2.2 In a single-stage group scheduling problem, the weighted 

  mean flow time is minimized by ordering the jobs in each group and the groups, 

  respectively, such that 

           (i) (1)P(i)(2)< • •  • < P(i)(n.1) 
          W(i)  (1)w(i) (2)w(i)(

ni) 

 and 

 S(1)             + p(1)
5S(2)+ P(2)S(N) + P(N)   n

1 -n2                                                        nN 

       1wclyto I w(2)(E) 1w(N)(E) 

       The proof of this theorem is omitted since it is proved in much the 

  same way as in the case of minimizing the mean flow time. 

 2.3 Minimizing total tardiness 

       The criterion concerning jobs' due dates, especially the minimum 'total 

 tardiness,is important in production scheduling. Not a few efforts have been 

  made to solve the conventional scheduling problem of minimizing the total 

  tardiness. However, none of the complete solution procedures was presented 

  because of the complexities of the problem. A heuristic algorithm for 

                                                      7)   d
etermining a suboptimal schedule has been proposed by Wilkerson and Irwin. 

  For determining an optimal schedule,  Emmons8) gave several theorems which 

  establish the relative order of pairs of jobs and proposed an efficient 

  implicit enumeration algorithm. 

       In this section, an extension of  Emmons`_ theory to the group scheduling 

  is made. Several conditions under which certain groups precede others in an 

 optimal  group schedule are offered to find the optimal sequences of groups 

  and jobs. As to the job sequence, two cases are considered: (i) job 

  sequences are predetermined,  (W  job sequences are not predetermined. Then , 
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efficient algorithms for determining the optimal group schedule or the 

near optimal group schedule under both conditions are proposed. An optimal 

group schedule can be obtained by evaluating a few schedules for moderate 

size problems. The algorithms eliminate most sequences from consideration. 

2.3.1 Total tardiness 

    Since the completion time  of(i)(E), the  Eth job in the ith group, is 

given by equation (2.2), the tardiness of the job is 

            (i)(E)0) (2.6)  T(i)()= max (C- d(MO' 

Then, the total tardiness of all jobs included in  G(i) is 

      ni ni 

         TT=y T(i)(E)=ymax (C(i)()d(i)()'0) (2.7)       .
=1 t=1 

Hence, from equations (2.2) and  (2.7) the total tardiness of all jobs in all 

groups is 

         N  ni i-1 
        T =XImax (XQ(j)+S(i)+Ip.                                        (1)(v)-  d(i)(), 0) (2.8)       i =1=1 j=1 v=1 

     Hereafter, groups will be indexed  in  order  of nondecreasing group 

processing time Q. including group setup time S.. 

     Let  A. and  B.  (i=1, N) be the sets of indices of groups  that,  at 

any point, have been shown to come after and before  Gi in an optimal group 

schedule, respectively. Furthermore, let  Zi  (1=1, N) be the set of 

indices of all jobs in  Gi. 

2.3.2 Scheduling algorithm I (In the case of predetermined  jop sequence) 

     As to group scheduling for the minimum-total-tardiness criterion, we 

obtain the following theorems and corollaries that establish the  relative 

order of pairs of groups in an optimal group schedule. These are 

extensions of Emmons' theorems and corollaries. 
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 Theor0112.3ForanYmogrotipsCiandG.with Qi3,                                                           <Q. if the following 

                                                                 conditions are satisfied, then  Gi precedes  G. in an optimal group schedule. 

        mimulecaseari.>ri.n.inecrualities(2.9)holdforn.sets of two                       J , 

       jobs  JiE and J.  (CC  Z.,  n  €                      J11 

                           ni 

                      p. max ( Qt. + Q., d. + y . (2.9)       iv p3v)              v=E+l kEBj J1  v=n+1 

   (H)Inthecaseofn.11                                  <n.,inadditiontotheaboven.inequalities, 

                                                               (n. -n.) inequalities (2.10) hold for the remaining (n. -n.) jobs J.(rZ.).                   71 

                                   n
j               c1.4"/ p, Q / Qk(2.10) 

                     J11v=n+1kEA . 
                                                          1                N 

       where Q = y Q.. 
 i=1 1 

 ProOf.LetSbeanyscheduleinwhichG.precedes  C.. Consider a schedule 

       S' that differs from S only in that  Gj and  Gi are interchanged. We shall 

        show that interchanging the two groups must decrease, or possibly leave 

        unchanged, the total tardiness. Denote by X and Y the times at which  G. 

        begins and  Gi ends, respectively, in S (see  Fig.2.1). Clearly, all groups 

    Gj G; 

          Schedule S 

   Gi  Gi 

                                                                                                 . 

 Schedule S' 
                                                                                                                           d.r 

                  X 

                                                 Time 

                           Fig. 2.1 The effect of interchanging two groups 

         that precede  G. or follow  Gi in S are unaffected. Hence, the tardinesses of 

        those groups remain unchanged. All groups between  Gj and  Gi are advanced in 
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 time by the amount of (Q3- Q1)20, which can only decrease or leave unchanged 

 their tardiness. Let  AT and  AT. be the decrease of tardiness of  G and 

 the increase of tardiness of Gj,respectively. Hence, for the proof of 

 Theorem 2.3, it  is sufficient to show AT-i> ATI under condition (I) or (II). 
     Let ATiE

Jand AT.T1be the decrease of tardiness of Jiband the increase 

 of tardiness ofJ.'respectively, for which  inequality (2.9) holds. Then , 

 AT.  2 AT+ is shown as follows. 
 lE in 

     Inequality (2.9) implies that either d + Ini  p 5 E  Q +Q or 
                                iE  v=t+1  iv  kEB„  k j 

            n. 

d. -Fyl p s.d + Ini p (or both). 
 it v=t+1 iv jr1 imn+1 jv 

                               ,ni    Cas
e (a). Suppose d.+Lp.Q + Q. From the meaning of        g

v=t+1j                             kEB. k 

BX. 2 Q , so that d + Ini p 5 X + Q. s Y. Hence,  AT = Y - 
3, kEBj k iE v=E41 iv  iE 

 ,n. 

1 1 p - max(X + S.  + 1E p die) = - max(X + Q1, + Ini P v=E+1 iv 1 v=1 iv it did v=+1 iv 

On the other hand, for  AT+  i
n' 

     .{0, if dinYYnvi+1pn. 

                                          v 

                                J AT = 

      311 Y - max(X + Q,,d
jn+ Invi1p. ), otherwise                                n+jv 

If d.
JT1 2 Y - Xnjn+1p.,i3nithen AT:-  ATt= AT- 2 0     v=jvE 

                  ,n. Ifd.<Y-42 .1.0.1piv,thenATT-AT+=max(X + Q., d. + Ini p ) 
 3n iE 3n j jn v=n+i jv 

   pn. ,

v.,                                                          t+1 -  max(X 1 (X + Q.,diE+11+1ivp) > 0,since X + Q> max(X +Qi'dit+Lpiv). 

      v 

        n.r. 
 Case (b). Suppose d. +,1pmJ                                   d. +Lp.  . We consider three 

                                        i 

                iE v=E+1v jn v=n+1jv 

cases. 

      rn.,i 
                                   n+1jv  (i) If did+1v=141pivjnd+1v=Jp< Y, then ATi. =  Y  - max(X +  Q 

                                                                               ,. d+p. ), AT =.Y -(X +Qd. +J imax  E v=E+1 iv  inj'Lnpjn v=n+ijv 

                                                     ,n. Hence, ATit- -  AT+,= max(X +Qd•4-1J p ) -  max(X +Q,d+  i
njjn  v=n41 jv iiE 

,n. ,n. 

4.1-0.g1.020,sinceX+Q..2X+Qiand d  + J p. d + Ini P. .                                jn v=n41 jv  iE v=E+1 iv 
                        ,n. 

   (ii) If d. + 1 1 p  5 d  + Ini p. then AT- = Y - max(X +  Q1,          it v= t+1 iv jn v=n+1 then iE 

             , didLp),Alt=  O. 
iEv=+1ivjn 

        +

n- 
Hence, Nri-c-ATiE >  O. 

             3 

  (iii) If Y < d+ps d+pthen AT=AT+ =  O.           it
v=t+1ivjnv=n+1jv'itin 
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     Thus in all cases, ATiEAT+ for two jobs  JiE and  Ji
n satisfying  in 

inequality (2.9). Then  Ti.  a ATIis shown as follows. 

                                        _ 

  (A)  ni  2  ni: From condition  (I), ATi.C.  ATI9  (EE Z1,j n  € Z) for  ni sets of 
two jobs  JiE and J

J.naia E  Z.,n 6  Z.) and AT0  (EE Zi) for the remaining  2.- 

 (ni-ni) jobsJib(aE.Z.).Hence,ATi> T+.     j 

 (B) niTiEi< n.: From condition (II),A a AT÷rl(EE Zi,n &Z.) fornisets 

        of two no jobs Jib and J (EeZ.,  eZ.) and ATE  2 0 (n  z  .) for the remaining 
     in i  in  

 (n. - nin) jobs J. (E Z.) . Hence, ATIATE• 
                                                               (Q. E. D.) 

 Corollary 2.1 If Theorem 2.3 is satisfied for G1 and  Gi  (  Vi > 1), where 

G1 has the least group processing time, then G1 is the first group in an 

optimal group schedule. 

 Corollary 2.2 If Theorem 2.3 is satisfied for  GN and  Gi  (ei < N), where  GN 

has the largest group processing time, then GN is the last group in an 

optimal group schedule. 

  Theorem 2.4  ForanytwogroupsG.and G. with Qi5 Q.,if the following 
 1.Jj 

conditions are satisfied, then  G1 precedes  Gi in an optimal group schedule. 

(I) In the case of ni a n.'n. sets of inequalities (2.11) and (2.12) hold 

for -n.) inequalities n  e  Z.), and (n
i  n.JEsets of two jobs Jiband J.J11(ezi,E  

(2.13) hold for the remaining jobs Jib1(EE Z.). 

  n-1n3 
                                                                                                                                                               . ,        d+2 ,p. >  max( 1 Qiv

Jk+ Qj' djn+  L  p.  ) (2.11) 
        iE        v=E+1k E B. v=n+1  Jv 

               ni 

     diE +  / Piv1+ Q.k Q - 1'1k (2.12)          v=E+1 kFitt.. 
  n.J 

                  ra  did+LPk Q - /  Qk (2.13) 
                        iv 

         v=E+1  k‘A.                           J 

 (II) In the case of n.1< n.'n. sets of inequalities (2.11) and (2,12) are                      3 J 

satisfied for and J.  (Ee  zi' n  6  Z.)  .n
isets of two jobs JibT1 
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     Since this theorem can be proved in much the same way as the proof of 

Theorem 2.3, we shall only give a brief outline of the proof. 

    Let S be any schedule in which  Gi precedes Giand  S' be a schedule in 

whichG.isimmediatelyafterG.as shown in Fig. 2.2. It can be shown in 
 1J, 

  Gi  G.  J 

 Schedule S 4N'' 

     

' ,1i4,' wilii 2             
                      Gi Gi 1 

                                                                  0„....-- „.. --....„4„... . 4......4 

                                  jr/ //////,.. '\  Schedule S' . 

                         /3:11 7///"\\\"it 
 i.1 

                    1 

 i 1                                                              1                                                     
i  
   )( Time — Y 

                       Fig. 2.2 The effect of postponing a group 

 the same way as before that ATinkATi+  for a set of two jobs J. and J'ic 

satisfying (2.11) and (2.12) and then  ATT  . ATI: 

                             v 

 Corollary 2.3 If Theorem 2.3 is  satisfied for Gshaving the least number 

of jobs and  Gi such that  Qi  5  Qs  (Nei < s) and Theorem 2.4 holds for  Gs and 

 G.  such that Qs5Q.  (Vj > s), then  Gs is the last group in an optimal 

                    group schedule. 

 Theorem 2.5 ,                 ForanytwogroupsG.1and C. with Q.1 < Q.jif n.  inequalities 

  (2.14)holdfor3J71.013=1,2,...,n.),then G.precedes G.in an optimal 

                                                           group schedule. 
 n. 

              LdinL p  k  Q - 1 Qk (2.14)                  jn v=i+1  Jv  kcA 
 i 

  Proof. Let us consider schedules S and  S' similar to ones shown in Fig.2.1. 

SelectJ.JT1which satisfies (2,14), then let AT+nbe the increase of tardiness                              i 
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                                           k                                      n;       ofthisjob.Thend.+2,'pz(1-iQZY. Hence, the due date                    3n v=n+1 jvlcktk 

                                               ,. 

 ofn              is  2Y-2,Jp.Therefore,AT4.-= 0. If the conditions of 
 3n  in v=n+1 jv3n 

      Theorem2.5hold,then4=OforanjobsinGJ..Hence, AT+ =  O. On 
      theotherhand,AT:1>0 for G.. Therefore, the total tardiness under S'  is 

                                        1 

      less than the total tardiness under S. 

                                                                     (Q. E. D.) 

           The above theorems and corollaries are effective to determine the 

       optimal group sequence because we can eliminate most sequences  from 

       consideration by using the sufficient conditions. 

           By using the above theorems and corollaries and branching whenever 

      necessary, the following algorithm is proposed to find an optimal group 

       sequence. For large problems where a good deal of branching can be expected, 

       the standard branch-and-bound technique which will be explained in later 

       chapters should be incorporated into this algorithm. 

 <Algorithm I for determining an optimal group  schedule> 

        Step 1. If the due dates of all jobs in a group are later than the total 

       processing time of the remaining  gioups, then place this group last. Repeat 

       as often as possible. If the set of the remaining groups, G, is empty, then 

       terminate. Otherwise, go to Step 2. 

         Step 2. If Corollary 2.2 can be used for the group having the largest 

       group processing  time, place this group last. Repeat as often as possible, 

       and go back to Step 1. If G =  4), then terminate. Otherwise, go to Step 3. 

         Step 3. If Corollary 2.3 can be used  for the group having the least number 

       of jobs, place this group last. Repeat as often as possible, and go back to 

       Step 1. If G =  4), then terminate. Otherwise, go to Step 4. 

         Step 4. If G =  4, then compute the total tardiness for the relevant node 

       and go to Step 9. Otherwise, go to Step 5. 
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  Step 5. Generate D, the set of candidates of groups that can be first in 

an optimal schedule in the following way: 

  (i)  Let  D  =  G  and  E  =  G. 

 (ii) Let the first group in E be  Gx. 

 (iii) Eliminate from D all groups Gk  (k>x) which are  shown  to come after  Gx 

by using Theorem 2.3 or Theorem 2.5 and remove  Gx from E. 

 (iv) If E k  0, then go back to  M. 

  Step 6. If D contains only one group GY'place  G
yfirst and subtract the 

group processing time Qy from all due dates in the remaining groups and go 

back to Step 4. Otherwise, go to Step 7. 

  Step 7. If Theorem 2.4 holds for the last group Gm in D and any other 

group  Gi  (i<  m),-then place Gm first and subtract the group processing time 

Qm from all due dates in the remaining groups and go back to Step 4. 

Otherwise, go to Step 8. 

  Step 8. Branch on the assumptions that (i)  Gm_l precedes  Gm and that  (ii.) 

 Gm precedes  Gm_i. For case (i), remove Gm from D, and for case  (B) remove 

 Gm_i from D. Go back to Step 6. 

  Step 9. Select a node and denote the remaining groups for this node by G 

and go back to Step 5. If there  is no remaining node, then go to Step 10. 

  Step 10. Find a schedule having the minimum total tardiness among the 

schedules for the nodes derived. This is the optimal group sequence. 

2.3.3 Scheduling algorithm II (In the case that job sequences are not 

predetermined) 

     Since group sequence and job sequences depend on each other, determining 

the optimal group schedule is more difficult than  in the previous case. In 

this case the following theorem holds. 

 Theorem 2.6 For any  two  jobs  JiE and  JiE+1 with  p1  piE+1  ( g  =  1,  2,  ...  , 
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     ni-1)1 if did
1E+1'5max(p.diE+1), then the optimal job sequence of  Gi  is 

     the SPT schedule regardless of the group start time t  OM,  the time when 

      the group begins to be processed. 

 Proof. Let the group start time of  Gi be time zero. Then the revised due 

      dates are  diE t  (E = 1, 2,.,.,  ni). 

     By  hypothesis, (1)  diE t  5  diE  5  piEfl  (diE  K PiE41) 

             (2) diE t 5 - t (d5 d).                                      (didiE+1 

 Hence, d
m.t5max(p.,dg- t) (E = 1, ni-1).     E+1+1 

     Supposing  ni=ni  =1 and replacing  Gi and  Gj by  J. and  Ji
E+1, respectively, 

     in Theorem 2.3, it is clear that  JiE precedesjiC+1in an optimal group 

      schedule. 

 (Q.  E. D.) 

       Corollary 2.4 For all jobs in a group, if the SPT schedule is coincident 

     with the earliest-due-date (EDD) schedule, the optimal job sequence of this 

     group  is always the SPT schedule regardless of the group start time. 

          Considering that the optimal job sequences of the groups for which 

     Theorem 2.6 does not hold are dependent on the group start time of each 

     group, Algorithm  11 for determining the near optimal group sequence and job 

      sequences that minimize the total tardiness is developed as follows. 

 <  Algorithm II for determining a near optimal group schedule > 

       Step 1. Make the SPT  schedules for job sequences for all groups. Go to 

     Step 2. 

       Step 2. Determine a group sequence by using Algorithm I. Go to Step 3. 

       Step 3. Rearrange  job sequences for the groups for  whichTheorem2.6 does not 

     hold; that is, compute the group start times in the group sequence derived 

     and the revised due dates, then determine a job sequence in each group using 

     an algorithm for a single job scheduling, such as  Emmons' algorithm. Go to 
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      Step 4. 

        Step 4. Calculate the total tardiness of this group schedule. Go to 

      Step 5. 

        Step 5. If this schedule is the first one, then let this schedule be a 

      temporary optimal group schedule, and go back to Step 2. Otherwise, go to 

      Step 6. 

        Step 6. If this schedule is better than the temporary optimal group 

      schedule, let this schedule  be the new temporary optimal group schedule and 

      go back to Step 2.  Otherwise, terminate. The temporary optimal group 

      schedule is a near optimal one. 

     2.3.4 Numerical examples 

           For production data shown in Table 2.1, the optimal group schedules can 

      be determined by using Algorithms I and  71. We shall demonstrate each case. 

                          Table 2.1 Production data 

                                                     (units:  min) 

        GroupGi1 G2 G3  G4 G5 G6 

               Job JJJJJJJJJJJ353iE11'121321313241425152536162 

              Job processing  p  iE 1 2 4 9 5 6 7 8 3 5 8 8 9 
                    time 

             Due date  d1 46 20 38 85 40 32 50 57 70 26 27 39 51 

      Group setup time  Si' 1 1 2 1 1 2 

              Group processing                8  10 13 16 12 12 
 time  

      Example 1. (In the case of predetermined job sequence) 

        Step 1. G2 is last, since d21  (=85)>Q (=83). Remove  G2. 

        Step 2. No result. 

        Step 3. G4 is  last, since G1 and G3 precede  G4, and G5 and G6 precede G4. 

      For example,  it  is shown as follows that  G1 precedes G4. First, compute 

 d. + Iv=iE+1pivfor  G1 and Git, then 
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Group  Gi  G1  G2 G3  G4  G5 G6

Job  JiE J11 J12  J13  J21  J31  J32  J41 J42  J51  J52  J53  J61  J62

Job processing
time

 pig 1 2 4 9 5 6 7 8 3 5 8 8 9

Due date  d1
46 20 38 85 40 32 50 57 70 26 27 39 51

Group setup time  Si. 1 1 2 1 1 2

Group processing

time
Qi 8 10 13 16 12 12



 d11 + p12 + p13  = 52 

 { 

           d13  =  38 d41 +  p42 = 58  d12 + p13= 24  d42 = 57 

    Since n (=3)>n4 (=2), by Theorem 2.3 :two inequalities (d
12 + p > d   1 12 13 42' 

    d13 > p41 + d42) imply that G
1precedes G4.Remove G4, then we have 

                                                                                                                   __. 

     now reduced the problem to a four-group problem {G
1,  G3,  G5,  G6}. 

      Step 4. G k  4), go to Step 5. 

      Step 5. D = {G1,  G5}, since it is shown by using Theorem 2 .3 that  G1 

    precedes G3 and  G6. 

      Step 6. D contains two groups, so go to Step 7. 

       Step 7. No result. 

      Step 8. Branch on the assumptions that  (i)  Gi precedes  G
5 and that 

 (ii) G5 precedes  G1. 

      Step 9. Select case (i) (node 1), then go back to Step 5. 

      Step 5. D  =  01). 

      Step 6. G1 is first. Remove  Gl, set (d31, d32, d51, d52, d53, d61, d62) 

    to (32, 24, 62, 18, 19, 31, 43) and go back to Step 4. 

      Step 4. G =  {G3, G5,  G6}. 

      Step 5. D =  {G3, G5} since G3 precedes  G6. 
                                                                      ..,

, 

      Step 6. D contains two groups, so go  to Step 7. 

      Step 7.  G5 is first, since it is shown by using Theorem 2.4 that G5 

    precedes G3. Remove G5, set (d31, d32, d61, d62) to (15, 9, 14, 28), and 

    go back to Step 4. 

      Step 4. G =  {G3,  G6}. 

      Step 5. D =  {G3} since  G3 precedes  G6. 

        The optimal group sequence (given that G1 precedes  G5) is  Gl-G5-G3-G6- 

   G4-G2' with T = 52  min. Go to Step 9 and select case  (ii) (node 2). Then 

   we have another optimal group sequence (given that  G5 precedes  G1),  G5-G1-G3 
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      -G6-G4--G2,-G2'with T = 53 min.Thus, evaluating only two schedules, the 

      optimal group sequence  is determined as  G1-G5-G3-06-G4-02, with T = 52  min. 

           For large problems, determination of optimal group sequences may 

      require a good deal of branching and evaluation of the schedules. The 

      success of the algorithm will depend on the power of the theorems, and the 

      degree to which branching is minimized. Whether the theorems hold or not 

       depends on the structure of the data  --- job processing times, due dates, 

      and the number of jobs in each group. If we set the due dates sooner, 

      then the optimal group sequence can be obtained easily because Theorem 2.3 

      is more useful. When the due dates of jobs in groups tend to be longer 

      relative to the total processing time Q, we anticipate greater difficulty 

       with the problems. In such problems, however, Theorems 2.4 and 2.5 tend to 

       be more useful. 

       Example 2. (In the case that job sequences are not predetermined) 

        Step 1. The job sequence in each group  in Table 2.1 is already the SPT 

       schedule. 

        Step 2. The optimal group sequence is  G1-G5-G3-06-04-02 as shown in 

       example 1. 

        Step 3. The groups in which job sequences depend on their group  start 

       times are  G1,  G3, and G5. The group start times of these groups are  ti=  0, 

 t3=25, and  t5=8. 

         (i) The job sequence of G1 is arbitrary, with  T1  = 0. Suppose J_11_-  j12-j13.. 

 (B.) The job sequence of  G3 is J32-J31, with T3 = 1. 

 (Bi) The job sequence of G5 is arbitrary, with T5 = 0. Suppose  J51-J52-J53. 

        Step 4. This group schedule is given as shown in Table 2.2 and T = 47 

 min. 

         Step 5. Go back to Step  2  and determine a new group schedule in the same 
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 way. 

      Since this new schedule is coincident with the schedule obtained 

 before, then the near optimal group schedule is shown in Table 2.2. 

                Table 2.2 A near optimal group schedule 

•  

    Group sequence Gi*  G5*  G3 G6 G4 G2Total                                                                              tardiness 

        Job sequence  J.-I  j121  j13  j511j52Ij53  j321j31  j611j62  j411j42  j21  47  sin 
        * Job sequences in these groups are arbitrary. 

      To test the effectiveness of this algorithm, ten examples were 

 investigated, each consisting of six to eight groups with one to three jobs in 

 each group. For these problems, all the group schedules determined by using 

 this algorithm were optimal and the number of repetitions of Step 2 through 

 Step 5 was one in all cases. 

 2.4 Conclusions 

 (1) The single-stage group scheduling model which is fundamental in group 

 production scheduling was constructed. 

 (2) The group scheduling model was analyzed under two kinds of criteria  --- 

 the minimum mean flow time and the minimum weighted mean flow time, and two 

 theorems which give the optimal group schedules (optimal sequences of groups 

 and jobs) were proved. 

 (3) Under the criterion of minimizing the total tardiness, several theorems 

 were given for determining the relative order of pairs of groups. With the 

 use of them, the algorithms for determining the optimal and the near optimal 

 group schedules were proposed and numerical examples were shown. 
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CHAPTER 3 GROUP SCHEDULING WITH SEQUENCE-DEPENDENT SETUP TIMES ON A 

       SINGLE PRODUCTION  STAGE: 

3.1 Introduction 

    When a job (part) is processed on a machine, time is required to setup 

the machine for the next job before the actual machining of the job. 

Usually, setup times are assumed to be independent of the sequence of jobs 

and are included in the processing times. In many realistic problems, 

however, setup times depend on the type of job just completed as well as on 

the job to be processed on a machine. 

     In the conventional scheduling problem where only one group is involved, 

the problem  with sequence-dependent setup times is a formidable one even for 

the simple criterion of minimizing the total elapsed time. It is well known 

that the problem corresponds to the so-called "traveling salesman  problem." 

Although no simple algorithm for solving the traveling salesman problem is 

known, several solution procedures that will obtain optimal solutions to 

problems of modest size and approximate solutions to larger problems have 

recently been developed. The optimizing procedures involve dynamic 

programming1,2)and the branch-and-bound  method, both being general purpose 

methodologies. A heuristic  procedure4,5)  is one of the methods which give 

near optimal solutions. 

      A problem involving more complex measures, such as minimizing the 

mean flow time, becomes a more formidable one. This problem can be  shown  to 

correspond to a quadratic assignment problem which can only be solved for 

problems of small size by resorting to the general purpose methodologies 

such as dynamic programming and the branch-and-bound method. 

    The provious chapter deals with the group scheduling problems with 

sequence-independent setup times. In this chapter, an attempt is made to 

solve group scheduling problems in which group setup times are dependent 
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  on the sequence of groups6,7)In the model, job setup times are assumed to 

  be sequence-independent and are included in job processing times. 

       In the next section, the problem for the criterion of minimization of the 

  total elapsed time is also shown to be reduced to the traveling salesman 

  problem. For the problem of minimizing the mean flow time, two kinds of 

  solution approaches are offered in Section 3.3. First, with the use of 

  dynamic programming, the optimal group schedule is determined. Second, a 

  simple branch-and-bound algorithm is developed for solving the problem. In 

  the last section, an analysis of the optimal group scheduling for the 

  minimum total tardiness is made and an efficient algorithm using a  branch  - 

  and -bound method is proposed to find the optimal group schedule. The 

  effectiveness of the algorithm proposed is verified by numerical examples. 

  3.2 Minimizing total elapsed time 

       In the basic single-stage problem, the total elapsed time, the time to 

  complete all jobs within all groups, is a constant as shown in equation  (2.1). 

  With sequence-dependent setup times,  the total elapsed time, however, 

  depends on which sequences of groups and jobs are chosen. 

       LetSij (1,  j  =  1,N) denote the group setup time required for 

 group  G.  after G. is completed and let  piE and  diE  (1=1, N,  E=  1, 

  2,...,  ni) denote the job processing time including the job setup time and 

, the due date of jobJiE (i=  1,N, E= 1, 2, ..., ni), as before. 

       The total elapsed time is given by 

        N  N  ni 

                        =  

  F
max11Si11                (1-1){1)P(i)(E) (3.1) 

                            === 

  where  S(0)(1) is the setup time required to bring the machine from idleness 

  to a state ready to process the first group in sequence. 

       Since the second summation is a constant, the problem of minimizing 

  the total elapsed time is equivalent to minimizing the first summation. 
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This sum indicates the total group setup time in the full sequence of 

groups, beginning and ending in the idle state. 

     The problem of minimizing the sum of the group setup times corresponds 

to the so-called "traveling salesman problem." In the original formulation, 

a salesman  must visit each of n cities once and only once and return to his 

point of origin, and do so such that the total travel distance is  minimized. 

In the scheduling problem, a job corresponds to each city, and the group 

setup time  Sij corresponds to the distance between cities i and j. By 

defining a hypothetical group  Go such that 

       P0= 0,  SOi =  Si' and  Si0 = 0 (3.2) 

where  Si is the group setup time when  G  .  is processed first in sequence, and 

letting  Go be the starting point, the scheduling problem stated above actually 

becomes a  (nA-1)-city problem. In the original traveling salesman problem, 

of course, the distance matrix [S..
3.3] is symmetric, that is,  S =S . This 

 is not always the case in the scheduling problem. However, the nonsymmet-

ricity of the  matrix  does not appear to make the problem significantly more 

difficult to solve. 

     From the above analysis, the single-stage group scheduling with 

sequence-dependent setup times and of minimizing the total elapsed time can 

be solved by several solution procedures which have been developed for the 

traveling salesman problem. 

 3.3 Minimizing mean flow time 

     In the case of sequence-dependent group setup times, the problem of 

minimizing the mean flow time is a more challenging one to solve. The mean 

flow time is obtained in much the same way as equation (2.4), as follows: 

                       i-1 
        - rr 

     F =-11. n y cs . +P ) + n S          M (I)j =1 0-1)(J) 0) (i) (i-1)(1)    i=1 i=1 
                            N ni 

                 + X / P (i) (v)(3.3) 
 i=1E=1v=1 
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                                       rN 
    where  P(j)=1p(J)()Liand M =.ini.        `C = 

     Minimizing the above equation corresponds to minimizing  the  folloVing one, 

     which represents the total flow time. 

                          i-1 
          FX(S                  (I)

j=l0-1)(j) +  P(1))X n(i)S(i-1)(1)     i=1i=1 

                                    N niE 

 P(1)(v) (3.4) 
 i=1C=lv=1 

          The first and second summations  of_the above  equation  are concerned 

     with the group sequence, and the third one is concerned with the job sequence. 

     Since  P(j)' the total processing time of all  jobs in each group is a constant, 

     independent of the job sequence, the group sequence and the job sequences can 

 be handled independently in minimizing equation (3.4) The third summation is 

     minimized by ordering the jobs in each group in order of nondecreasing job 

     processing time. Thus, the optimal job sequence is determined to be SPT 

     sequencing  for  each group.  The.problem of minimizing  the  sum of the first and 

     second terms is a formidable one. For determination of the optimal group 

     sequence, two general purpose methodologies, such as dynamic programming 

     and the branch-and-bound method, are employed. 

    3.3.1 Dynamic programming approach 

          Dynamic programming is a technique for solving a special class of 

     optimization problems  called  multistage decision processes. It has evolved 

     primarily on the basis of R. Bellman's works which date back to the early 

 1950's. Unlike  other optimization methods, such as linear programming, 

     a specific mathematical form for the class of optimization  problems  which 

      dynamic programming can-solve cannot be presented. The possibility of 

     applying the dynamic programming method depends on a successful formulation 

     of the problem in terms of  a multistage decision process. 
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      Applications of the dynamic programming method to the scheduling 

                                       2)  probl
em have been made by Bellman,1) and by Held and Karp, This  procedure  is 

 perhaps more general than the branch-and-bound method which will be used to 

 solve the current problem in later sections. 

     With  some slight modifications, the dynamic programming approach can 

 be adapted to determine an optimal group sequence for the problem.7) Suppose 

 G0is a hypothetical group having the properties of equation (3.2) and is the 

 first group in sequence. Let  G. denote one of the groups, not equal to  G0, 

 and K denote a set consisting of k groups, not  Gi and  Go. Furthermore, let 

 G denote the set of all groups, excluding  Go. Now define the  following 

 function: 

 f(Gi,  K)- = the minimum total flow time from the  beginning)of  'group 

 G. to the end of G0,with intermediate processing of k 

                   groups in K 

Then, the total processing time of the optimal group sequence is given by 

f(G0'  G). Introduce the following notations: 

                      + P., Rk =X nk- n 

                            j 

       gij=Sij
keK 
 nj  t  . (3 .5) 

           Eij = niSij + min  X X p. 
 =1v=1 Jv 

where  min ynip is  achieved  whenthejobs in each group are ordered 
            C=1 v=1 jv 

by SPT sequencing. • 

     A dynamic programming formulation is made by the principle  of 

optimality, as follows: (See Fig. 3.1.) 

            f(Gi,K)=minfEij+gijRk+f(G.,K - {j})} 

                    jeK                                                           (3 .6) 

 f(G  (p) =  Si0 = 0 

By using this recursive relation, the optimal group sequence is determined 

by first considering sets K of size 1, then sets K of size 2, and so on 

until  f(G0,  G) at the final stage is obtained. 
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       Number 
        of 

       jobs 

    n.- 

        4411„, 

        Rk  QijRk                          f(j
, 

  11111111k Jr 
   Q..Time 

     Fig. 3.1 The total flow time from the beginning of  Gi to the end 

               of  G0' with intermediate processing of k groups  in K 

          In general, at each stage, there are N ways of selecting group  G
i, and 

     for each of these,there aree-1) ways of selecting the groups of K. 

     Therefore, the total number of computations of equation (3.6) required to 

     determine an optimal group sequence is given by 

                     N?WIT-k1\  + N                                                               (3.7) 
                           k=1 

    3.3.2 Branch-and-bound approach 

          The branch-and-bound method is one useful method for solving many 

                 )      combinatorial problems
,9 and is particularly suited to well-structured 

    problems with integer constraints on the variables. Like  dynamic  programMing 

    it does  not deal with  a'specific mathematical framework nor does it follow 

     the conventional iterative idea of an optimization process. Its aim is to 

    conduct a reduced search over all possible solutions, the reduction being 

    dependent on how well the problem structure can be exploited. 
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     As its name implies, the  branch-and-bound method consists of two 

fundamental procedures  ----branching and bounding procedures. Branching is 

the process of partitioning a large problem into two or more subproblems by 

a  specifiedrule,and bounding is the process of calculating a lower bound 

(in the case of minimization) for the solution to each subproblem generated 

in the branching  procedure. After each partitioning, those  subproblems 

with bounds that exceed the performance measure of a known feasible solution 

are excluded  from  further  partitioning. The partitioning is repeated until 

a feasible solution is found such that its performance measure is no greater 

than the bound for any  subproblem. 

     With some success, the branch-and-bound method has been employed to 

                        10) 
solve several  scheduling problems. The application of this method to the 

traveling salesman problem was successfully made by Little et al3) 

    Now apply this method to the problem of determining the optimal group 

sequence. The total flow time represented by equation (3.4) can be 

transformed into the following one: 

                                   N ni E 
 F =InIQ0-/nP+MP(3.8) 

        (i)j=1-1)(j)(i)(I)(i)(v)   i=1i=1=1v=1 

where  Q(J -1)(j)(=S(J-1)(J)+  P(j)) is the group processing  time of  G(j) in 

the case that  G(J)  is processed after the completion of G(j -1). 

     The first summation is dependent on the sequence of groups, while the 

second and third ones are independent of which group sequence is decided. 

That is, the second and third summations are not concerned with the group 

sequence. Hence, the problem of finding the optimal group sequence  corre-

sponds to determining the sequence of groups so as to minimize the first 

summation of equation (3.8). In a sense, this sum represents total group 

flow time weighted by the number of jobs in each group. 

     The branching and bounding procedures for this problem are as follows: 
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  Branching procedure: The set of permutations of group indices is 

partitioned into several subsets. By this procedure, nodes, each of which 

represents a subset of the group sequence, are repeatedly created. Let Nr 

be a node at which the sequence of r groups is determined:  Nr=  {G(1)  '  G(2), 

 ...,  G(01. Branching from this node consists of taking each of  (N-r) 

unallocated groups and placing it next  in the sequence determined. Then, 

new  (N-r) nodes,  Nil, which have the sequence,  G(1)-G(2)- -G •                                                      (1) ' 

are created. 

   Bounding procedure: The lower bound on  the first summation of equation 

(3.8) at  Nr is estimated by 

 'F(N
r) = F1(Nr) +  F2(Nr)  (3.9) 

where F1(Nr) and F2(N
r) are the total weighted flow times for the groups 

sequenced and for the groups not yet sequenced, respectively. 

    Clearly, Fi(Nr)  is given by 

                                           r, 

                 14r            F) = i =1n(i)j1Q(j-1)(j) (3.10) 

                                     = 

     In order to calculate F2(Nr), construct a square matrix of order 

 (NT-1-1) which is defined as 
                         -

0''-01'  Q02'  "" %N-

                    O,'q12'  Q1N 

                = 0 , Q21'c°' Q2N                                                          (3.11) 

                 • • 

                         `0'olyi'  QN2' '"' 

From this matrix, select the  (N-r) smallest values from among the elements 

in each of the  (N-r)  columnslexcluding ones in the first row and the rows 

corresponding to the first  (r-  1) groups already sequenced. Compute the 

ratios of the group processing time selected to the number of the  jobs in 

the group, then order them in nondecreasing order. Denoting the group 
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processing time selected and the number of jobs in the group by Q(and                                              1) 

n(1) (i=r+1, r+2,..., N), respectively, we have the  following order: 

               Q?               (r+1) Q1             (r+2) 0/                                         'CN) 

      n1n               A, .!. <--1---          (
r+1)(r+2)n(N) 

Thus,  F2(Nr) is given by 

      F(N)=n'(t+) (3.12)             2r
i=r+1(i)(r+1)j=r+1(j) 

               vr where  t(r1)Li =1Q(i-1)(1). 

     The total weighted group flow time is a nondecreasing function of the 

completion time of each group, and is minimized by ordering the groups in 

nondecreasing order of the ratios of the group processing  time  to  the  number 

of jobs in the group. Therefore, equation (3.12) gives a lower bound on the 

total weighted flow time for  (N-r) groups not yet sequenced. 

     The previous analysis leads to the following branch-and-bound algorithm 

for determining an optimal group schedule. 

 < Optimizing algorithm for the minimum mean flow time > 

  Step 1. Order the jobs in each group by SPT sequencing. Go to Step 2. 

  Step 2. Let the level of the node  r  =  0 and the least feasible total flow 

time  F*=  op. Go to Step  3. 

  Step 3. Branch the node into  (N-r) nodes by placing each of the not 

yet allocated groups next in the sequence determined. Set  r=  r+1, and go to 

Step 4. 

  Step 4. Calculate the lower bound F(Nr) for each of the new nodes. Go to 

Step 5. 

  Step 5. Select the node having the minimum lower bound from among those 

newly created  in Step 3 when  F*==, or from among all nodes being active 

when  F*k=.(In the case of a tie, choose the node with the largest value 
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of r. Break the tie arbitrarily for the same r.) Let the level of the node 

selected be r  and  F*(Nr)  =F(Nr), Go to  Step  6, 

  Step 6. If  r<N, then go back to Step 3. Otherwise, go to Step 7. 

  Step 7. If F*(Nr)  <F*, then  F*  =  F*(Nr), so go back to Step  5. Otherwise, 

the group sequence associated with the node having F* is optimal. Stop. 

     As a simple illustration, consider the 6-group, 15-job group scheduling 

problem of minimizing the mean flow time, as shown in Tables 3.1 and 3.2. 

                     Table 3.1 Group setup times 
                                     (units:  min) 

 Group  0 1 2 3 4 5 6 
 No. 

        0  - 7 9 11 8 6 10 
         1 0  - 8 10 13 11 9 

        2 0 7 - 9 12 8 7 
         3 0 11 14 - 10 9 8 
         4 0 13 11 10 - 7 9 
         5 0 12 8 9 10 - 11 

        6 0 14 9 9 8 7 - 

              Table 3.2 Job processing times and due dates 

                                                             (units:  min) 

     Group G1  G2  G3  G4  G5  G6 

            Job JJJJJJJJJJJJJJJ                     1112132122313241425152353616263 

          Job  process-                4 5 7 5 10 11 13 8 10 6 10 15 7 9 12 
         ing time 

          Due date 25 72 32 65 110 122 72 57 93 140 98 52 47 88 52 

In Table 3.2, the job sequences are already ordered by SPT sequencing. 

Hence, an optimal decision as to the group sequence is to be made. The 

square matrix[Q..]of the group processing times including the setup times,                 ij 

is given in Table 3.3. By using the optimizing algorithm proposed, an 

optimal group  schedule  is determined as G.(                                      1-311-j12-j13)-C2(j21-j22)-G6(j6f-
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Group
No.

0 1 2 3 4 5 6

0 "FM 7 9 11 8 6 10
1 0 8 10 13 11 9
2 0 7 9 12 8 7
3 0 11 14 10 9 8
4 0 13 11 10 7 9
5 0 12 8 9 10 11
6 0 14 9 9 8 7

Group G1  G2  G3  G4  G5  G6

Job J11 J12  J13 J21  J22 J31 J32 J41 J42  J51 J52 J53 J61 J62 J63

Job process-

ing time
4 5 7 5 10 11 13 8 10 6 10 15 7 9 12

Due date 25 72 32 65 110 122 72 57 93 140 98 52 47 88 52



                 Table 3.3 Matrix [Q..]                            Qij 

      Group 0  1 2 3 4 5 6 
                 No. 

       =  0 - 23 24 35 26  37 38 

         1 0 - 23 34 31 42 37 
         2 0 23  - 33 30 39 35 
         3 0 27 29 - 28 40 36 
         4 0 29 27 34 - 38 37 
         5 0 28 23 33 28 - 39 
         6  .0 30 24 33 26 38 - 

J62J63)-G441-J42)-G5(J51-J52-J53)-G331-J32) with the mean flow time of 

85.6*  min. The branching tree of this problem is shown in Fig. 3.2. 

        12
01576 14 5 6        1407 0.014450                                    455 1453  1489 

      7 89 

    1407 001505010001                   ,50,1483 14711432 

                       1 

    41114531214 15          40 is                            Iw 1407 

        1481 1465 1433 
           16 1718 

      (1)0• 
                               14091415                      1448 

 020 
                     1443 1409 

                           41a21                            41j,Number of nodes: 21 

                                1409 

                          (Optimal Schedule) 

   Fig. 3.2 The branching tree for the minimum-mean-flow-time problem 

 * This is calculated as follows: 

      N niF
=1

585.6.                                                 1409-3391-214 = 

                                    = 

    n(I)P(I) = 339,/ p(1)( v).214.  Bence, 
 i=1 i=1n=lv=1 
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Group
0 1 2 3 4 5 6

 No.

0 23 24 35 26 37 38

1 0 23 34 31 42 37

2 0 23 33 30 39 35

3 0 27 29 28 40 36

4 0 29 27 34 38 37
5 0 28 23 33 28 39

6 0 30 24 33 26 38 ^•^



The figures just below the nodes indicate the lower bounds on the total 

weighted group flow time. The CPU time required to determine the optimal 

group schedule is within 1 second with the TOSBAC model 140 computer. 

 3.4 Minimizing total tardiness 

     In the group scheduling problem of minimizing the total tardiness, two 

decisions as to the sequences of groups and jobs in each group cannot be made 

independently of each other unlike the case of minimizing the mean flow time. 

For determining an optimal group schedule, the  branch-and-bound method is 

employed in the same way as  in  the previous section. In order to increase 

the efficiency of the branch-and-bound algorithm, two theorems which specify 

the relative order of pairs of jobs within the same group in an optimal 

schedule are offered. Then, based on the branch-and-bound method, the 

optimizing algorithm which incorporates the two theorems is developed for 

the optimal group scheduling, and a numerical example is shown. 

    The total tardiness of all jobs in all groups is expressed by the 

following equation, similar to equation (2.8) in Chapter 2. 

               N ni i-1 
       T.1=max(j -1))P) +  S(i-1)  (i)            i =1`1'i=1E=1 j=1 

                        +
vI.p (i) (v) -  d  (i)  (E)  '  0} (3.13) 

                                    1 3.4.1 Theorems for job sequence 

    The following theorems that establish the relative order in which pairs 

of jobs are processed in an optimal group schedule are of use for the reduction 

of the number of subproblems generated in the process of branching procedure. 

 Theorem 3.1 For any two jobs  JiE and J iwith$pin,ifd < dnpigitin, 

then Jibprecedes J. in an optimal group schedule, irrespective of the  in 
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schedule time at which scheduling is done for groups and jobs not yet 

sequenced. 

  Proof. If the schedule time is set at t, then the revised due dates of Jic 

and Ji
nare a1-t and din-t,respectively. Since didI-din'then diE -t S. 

 di
n-t. Supposing  ni=nj  =  1, and replacing  Gi and Giby  JiE and Jin' 

respectively, in Theorem 2.3, it follows that Jibprecedes Jin. 

 (Q. E. D.) 

 Theorem 3.2 For any two jobs  JiE and  Jin with  pit  .5-  pi
n' if the schedule 

time t  > did-pin
l,then Jibprecedes  Jin in an optimal group schedule. 

  Proof. Let S be any schedule in which for two jobs in C.,Jprecedes Jib. 

Consider a schedule  S' that differs from S only in that Jiband J. are 

interchanged. All jobs in  Gi between  Jinand  Jic are advanced in time by the 

amount of (pi
npig)10, which does not in the least increase the total 

tardiness. Denote by X and Y the times at which Jinbegins and  JiE ends, 

respectively, in S (see Fig. 3.3). Then, from the condition,  X z t. It can be 

  V j// wj  Schedule S l/ ,15 /4,      ././.1n ,  
 1 1 1 

 i i a 
 I 1 i 
 1 t I 

 Schedule  S' 7/j,./'^f,                                                J' 
               .1/4.1,W0in                                      ..•i  

 1 1 1 
  1 1 1 . 

 1 1 1 
 11 i 
 11 

    t X Time ---a^ Y 

                  Fig. 3.3 The effect of interchanging two jobs 

shown that interchanging the two jobs must decrease, or possibly leave 

unchanged, the total  tardiness. The decrease of the tardiness of  Jic  is 

ATiC= Y - max(X + Pik,die),since did< t + pins X +  pin5,Y. 
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   The increase of tardiness of Jt
nis given by 

                        0, if  di
nY                  AT

in=                            Y max(X + p
in'din)' otherwise 

 Hence,  if  di
nZY, clearly ATiCin*kATIf diniC< Y,then AT-AT+                                                           in 

  max(X + pi
n'din)max(X +pit,ld.Ei).Thisgives ATaAT+n'since 

 X + pi
n?diCand X +pin                             ?.)C+  p 

                                                              (Q. E.  D.) 

  3.4.2 Application of branch-and-bound method to group scheduling 

        Since, in group scheduling, both optimal group and job sequences must 

   be determined simultaneously, a branch-and-bound procedure of a new type is 

   required. The first application of the method was made to the group 
                                                       11) 

   scheduling with sequence-independent setup times by Nakamura and Hitomi. 

   They offered the basic idea of branching the scheduling problem into  sub-

   problems. In this subsection, an improved branching procedure using the two 

   theorems proved before is developed and an efficient formula for the lower 

   bound on the total tardiness is offered. 

        The basic branching procedure for the group scheduling is as follows: 

   In group scheduling, branching of groups and branching  of  jobs are both required 

  since optimal decisions are made as to the sequences of groups and jobs 

   in each group. Eventually, there occur two kinds of nodes  —"group node" 

  and "job node." Basically, the branching of groups is made firstly by taking 

   each of the unsequenced groups in turn, and placing it next in the permutation 

   of groups determined. Then, in the same way, jobs are branched from each of 

   the group nodes created. The procedure of branching jobs in the current 

   group is repeated until the positions of all jobs in the group are determined. 

  After that, new group nodes are created by branching unallocated groups at 

  each of the nodes. The process of branching groups and jobs is shown in 

 Fig. 3.4, 
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                                          Branching of groups 

                    41101111.-          Branching of jobs ,o01116°,0.. 

 •  •  • 

                                                                           0011 

                                  0: Group node                      411) 
0: Job node 

                                          • • • 

 ... 41114 0 fe • • • elk 
                                                               *O. 

       Fig. 3.4 The branching process for group scheduling problem 

    The bounding procedure is a process of calculating the lower bound on 

the solution of the subproblem represented by  each`job node. The formula 

for the lower bound depends on the scheduling criterion employed. 

3.4.3 Optimizing algorithm based on branch-and-bound method 

     The branching and bounding procedures for determining the optimal group 

schedule minimizing the total tardiness are as follows: 

 (1). Branching procedure 

    Basically, the branching procedure for the problem of minimizing the 

total tardiness is similar to the basic one for group scheduling, but differs 

from it in that branching of jobs is made according to each job's precedence 

relations which are specified by Theorems 3.1 and 3.2. Let N
r be a group 

node at which the sequence of r groups is specified:  Nr=  {Goy G(2),..., 

 G(r)} and Nrs be a job node at which s jobs in group G(
r) are allocated: 

Nr J }. Then Nr and Nrs are called r group- s (
r)(1)' (r)(2)' (r)(s) 
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   level node and s-level node,  respectively. The branching of jobs at  N  rs 

   is made by the following procedure. 

    < The branching procedure for jobs > 

     (i) Select a job,  J(r)a, from among jobs not yet sequenced in  G(0 at 

   N, and go to Step00. If all jobs in  G(r)are allocated, then stop. 
    TS 

 (ii) With the use of Theorem 3.1 select the jobs which precede J(r)a' 

  When none of the jobs precedes  J(0a, go to Step  (iii). If all jobs which 

   precede  J(r)a  are already sequenced, then go to Step  (±i). Otherwise, go 

 back  to Step  (i). 

 (iii) Search the jobs which precede  Jwa by letting the start time of 

   J( r)abe the schedule time and applying Theorem 3.2 to  J(r)a and others. 

   If no jobs preceding  J(r)a exist, then go to Step  (11). Otherwise, go to 

   Step  (ir), or go back to Step (i) according to whether or not all the jobs 

    are already sequenced, respectively. 

 (1,0 Create a job node  Nrs+i=  {J  (r)(1)  j(r)(2)"'"  j(r)a1 of job level. 

   of  (s+1) by placing  J(r)a next in the permutation already sequenced and 

   go back to Step (i). 

        By using this procedure, a large amount of reduction of branches 

   generated can be expected; hence, the time needed to determine an optimal 

   group schedule will be reduced. 

   (2) Bounding procedure 

        The computation of the lower bound on the total tardiness is performed 

   on each of the job nodes generated by the branching procedure. The lower 

   bound at Nrsis estimated by 

               T(Nrs) = T1(Nrs) + T2(Nrs) + T3(RTS) (3.14) 

   where  Ti(Nrs),  T2(Nrs), and T3(Nrs) are the total tardinesses for groups and 

   jobs already sequenced, for jobs not yet allocated in  G(r)' and for groups 
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not yet assigned, respectively. They are calculated in the following way: 

     The first term of the above equation is obvious, as follows: 

             r-1 ni  i-1 

      T1(Nrs)  =XX max{ X(S(J-1)(i)  +) +  s(i_1)(i) + p(i)(v)      i=1E=1 j=1 v=1 

                  s r-1 
 d(i)(t),  0}  +  niaxl  (S(J -1)(i) + P (i)) + S(r-1)(r) 

                        E=1 j=1 

         +Xp(r)(v)-d(r)(Y-0}(3.15) 
                  v=1 

    The second term for  (n(
r)-s)  jobs not yet sequenced in  Gwis  given by 

                   nr 

     T ) = X max(C(r)(s) 4 y P(r) d(                    r) rs (r)()' 0) (3.16) 
        E=s+1 v=s+1 

where  C(r)(s) is the completion time of  J(r)(s)' and p'r)(v)and d'                            ((r)(v) 

 (v  =  s+l, s+2,...,  nr) are, respectively, the processing times and the due 

dates of jobs not yet sequenced in  G(r), which are ordered independently of 

each other, such that 

    TO„I          '(
r)(s+1)r(r)(s+2) ".  '(r)(nr) 

 d' <d's<d'  (r)(s+1)(r)(s+2) (r)(nr) 

    The third term of  equation  (3.14) is calculated by the following steps: 

  (i) Construct a square matrix [Sij]of group setup times, which is 

similar to the matrix  [Qij] in the previous subsection. For this matrix, 

let S'r)(r+1)be the smallest value among the elements in rth row excluding  ( 

ones in the columns corresponding to the groups already sequenced. 

Furthermore, select the  (N-r) smallest values from among the elements in 

each of the  (N-r) columns excluding ones in the first row and the rows 

corresponding to groups already sequenced, and then order them such that 

     S1<  S' <  <  S'  <  S'           (r+1)(r+2)(r+2)(r+3)(N-1)(141)  (N)(N+1) 
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 .(t0 Order the numbers of jobs for  (N-r) groups not yet sequenced such that 

         nt > n'n'            (r+1)  -(r+2)(N) 

 (iii) Order the processing times and the due dates for jobs not yet 

sequenced in nondecreasing order, respectively, irrespective of the groups 

to which the jobs belong. 

 (A)  Make  (N-r) hypothetical groups by grouping the processing times and 

the due dates by  n' items  (i=r+1, r+2,..., N),  respectively, as shown in 

Table 3.4. 

                 Table 3.4 Hypothetical groups 

  GroupG'GIG'           (r+1)(r+2)(N) 

   Number of n'n'            (r+1)(r+2) -(N)         jobs 

   Processing pTO..YTO                   (r+1)(1)"..r(r+2)(1)"(N)(1)"..           time 

      d/..d'd'       Due date(r+1)(1)'(r+1)(2)"..Mar— 

    S'SS'       Group( r) (r+1)(r+1) (r+2)(N-1) (N) 
       setup time 

    Then  T3(Nrs) is given by 
        N

Cni i-1 

  T 

           3rs           (N) =+ (S                       max{C(r)(n )(J-1) (j)+ P(j))              i =r+1E=1r j=r+1 

          + S +pd'MO0) (3.17) 
                                      v=1                     (i-1)(i)(i)(v) (' 

where P'=,nip'      (j)E=1(j)(E)* 

    The value of  equation (3.14), the sum of the job tardinesses calculated 

by equations (3.15),  (3,16), and (3.17), is a lower bound, since the total 

tardiness is a nondecreasing function of the completion time of each job. 
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     Based on the previous analysis, the following algorithm is developed 

to find an optimal group schedule. 

 < Optimizing algorithm for the minimum total tardiness > 

  Step 1.  Let the group level  r=  0 and the least feasible total tardiness 

 T*  =e0. Go to Step 2. 

  Step 2. Create  (N-r) new group nodes  N
r41. Set  r=  r+1, and go to Step 3. 

  Step 3. Let the job level  s=1 and by using the branching procedure for 

jobs, create new  job nodes Nrs from each of the  group,nodes made. Go to Step 4. 

  Step 4. Calculate the lower bound T(Nrs) for each of the new job  nodes by 

equation (3.14). Go to Step 5. 

  Step 5. Find the job node having  min T(Nrs) from among the job nodes 

derived in Step 3, or 8 in the case of  T*  =0*, or from among all job nodes 

being active in the case of  T*0*.  (In the case of a tie, select the node 

with the largest value of, first, r, and then s.) Let the group level  and 

job  level of  the node be  r  and s,  respectively, and  T*(Nrs)=T(Nrs). Go 

to Step 6. 

  Step 6. If  T*  (Nrs) <  T*, then go to Step 7. Otherwise, the group schedule 

associated with the node having T* is optimal. (T* is the minimum total 

tardiness.) Stop. 

  Step 7. If s <  n(
r), then go to Step 8. Otherwise, go to Step 9. 

  Step 8. Set  s=  s+1, and by using the branching procedure for jobs, create 

new job nodes Nrs from the current job node. Go back to Step 4. 

  Step 9. If r < N, then go back to Step 2.  Otherwise,  T*  =  T*  (Nrs)  * so go 

back to Step 5. 

3.4.4 Numerical example 

     For production data shown in the previous section, determine an optimal 

group schedule minimizing the total tardiness. Fig. 3.5 shows the branching 

tree which was obtained with the use of the optimizing algorithm proposed. 
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      Fig. 3.5 The branching tree for the minimum-total-tardiness problem 

The figures just below the job nodes indicate the  lower  bounds on the total 

tardiness. The order of branching is indicated by the number that appears 

just above the corresponding node. From this branching tree, an optimal 

group schedule is determined as G-J-J)-G(JJ63)-GJ42)                         1111213661636244142 

                       (45)



-G
2(J21-J22) -G5(J52-J51-J53)-G331J32) with the total tardiness of 350 

 min, which is given by the starred node. In this example, a complete 

enumeration for finding an optimal schedule will require 10368 times the 

comparisons of the feasible schedules, while the optimizing algorithm 

generated  only 274 job nodes and required 10 seconds of CPU time with the 

TOSBAC model 140 computer to find an optimal one. 

3.5 Conclusions 

(1) The single-stage group scheduling model with sequence-dependent group 

setup times was developed and analyzed under three kinds of criteria  --- 

the minimum total elapsed time, the minimum mean flow time, and the minimum 

total tardiness. 

(2) The minimum-total-elapsed-time problem was shown to be reduced to the 

traveling salesman problem. 

(3) For the problem of minimizing the mean flow time, the optimal job 

sequence for each group was shown to be the SPT (shortest-processing-time) 

schedule, and the optimal group sequence was determined by applying the 

dynamic programming approach or the branch-and-bound method. 

(3) The branch-and-bound method was applied to solve the problem with the 

objective of minimizing the total tardiness. Two theorems which specify 

the relative order of pairs of jobs in the same  group'were given. The 

optimizing algorithm which incorporated them as a part of the branching 

process was developed, and a numerical example was shown. 
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   CHAPTER 4 GROUP SCHEDULING ON MULTIPLE  PRODUCTjON  STAGES  --- THEORETICAL 

           ANALYSIS 

     4.1 Introduction 

          The first step of development for scheduling theory on the multiple - 

      production stages dates back to Johnson's work for the two-stage (or two-

     machine) scheduling problem of minimizing the total elapsed time in 19541) 

      Johnson gave a theorem that establishes the relative order in which pairs 

      of jobs are processed in an optimal schedule, and developed a working rule 

     with which an optimal schedule can be easily constructed. 

           In general, for more than two-stage scheduling problems, no simple rules 

     have been offered for determining the optimal schedule. However, Johnson 

     showed in his original representation that a generalization of his theorem to 

      the three-machine case is possible when the second machine is dominated. 

                       4)  Moreover
, Nabeshims,2,3)Smith}) and  Szwarc6) solved the  m-stage special 

      structure flow-shop scheduling problems, where the processing times were 

     not completely random but bore a well-defined relationship to one another. 

       7           On th
e other hand, Mitten,)  Johnson,  and  Nabeshima9) considered the 

 two-stage scheduling problems with time lags between the production of a job 

     on the first machine and its production on the second one, and gave decision 

     rules which are extensions of Johnson's theorem. 

          For the criteria except the minimization of the total elapsed time, 

     the multistage scheduling problems have not been solved theoretically. As 

     stated above, theories of scheduling on the multiple production stages are 

     mainly concerned with the criterion of the minimum total elapsed time, and 

     they have been developed based upon Johnson's theorem. 

          In general, when workpieces (parts) are processed on machines, setup 

     times are needed to setup the machines for the processing of their operations. 

     In the problems of a Johnson type, however, no attention has been directed 

     to the setup times; that is, the setup times are assumed to be independent of 

 (47)



the sequence and to be included in the processing times. In many actual 

problems, setup for a job and its processing happen to be  independent of 

each other. Hence, setup for an operation of a job on a preceding machine 

can be done before completion of the operation of the job on the succeeding 

machine. In such a situation, it is not valid to absorb the setup time in 

the processing time. Therefore,  fTom the standpoint of production scheduling, 

decisions as to the scheduling of jobs to be processed on more than two 

stages should be made by separating the setup times from the processing 

times. 

     Based on the above  consideration,  this chapter  deals with the conven-

tional scheduling and the group scheduling on the multiple production stages 

when the setup  times are separated from the processing times.10.42) First, 

Johnson's theorem for the two-stage scheduling problem is introduced, and _ 

then it is extended to the scheduling problem with setup times separated. 

In addition to the setup time consideration, the scheduling  problems  with 

time lags are dealt with in the latter part of Section 4.2.13) In Section 4.3, 

the group scheduling problem with consideration of the setup times, which is 

the main objective in this chapter, is  taken up for the two production stages. 

In the last section, this is extended to the group scheduling on the multiple 

production stages. 

4.2 Two-stage scheduling problem with setup times separated and time lags 

4.2.1 Two-stage scheduling problem of minimizing total elapsed time 

    Consider the scheduling problem which can be defined as follows: 

n jobs are given, each to be processed on two machines  M1 and  M2 in the same 

order. Given the processing time of each job on each machine, the problem 

is to find an operation schedule (job sequence) for each machine so as to 

minimize the total elapsed time. 

    For this problem, Johnson showed that  it was sufficient to consider 
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only schedules in which the same job sequence occurred on machines  M1 and  M2' 

and  then  proved the following well-known theorem. Let  pi and  p2  (1=1, 2,..., 
n) denote the processing times of job  Ji  (i=1, n) on machines  M1 and 

 M2' respectively. 

 Johnson's theorem An optimal ordering is given by the following rule: 

 JobJiprecedesjobJ.if 

      21 
       min(p1p.) < min(p., p2) (4.1)       j 

J 

If there is equality, either ordering is optimal. 

     Based on this theorem, Johnson constructed a working rule for determin-

ing an optimal schedule. 

     In general, for the  m-machine  >3) flow-shop scheduling problem of 

minimizing the total elapsed time, one needs to consider only schedules in 

which the same order is prescribed on the first two machines, and the same 

order is prescribed on the last two machines14) 

4.2.2 Scheduling problem with setup times separated 

     It is the purpose of this subsection to describe a scheduling model with 

setup times separated. For constructing a scheduling model of a new type, 

it is assumed that setup for an operation of a job on machine  M2 can be done 

before completion of the operation of the job on machine  Ml if there exist 

some idle times on machine  M2 (see  Fig. 4.1). In the model, the time 

 Setup time 

                            Job  i 

     Machine M1                                                       Processing time 

 • 

 Job  i 

 'Machine  M21  
                                                         Time 

              Fig. 4.1 Independence of setup and processing 
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required to complete each job on each machine consists of job setup time 

and job processing time,  each  of which is a scheduling unit. 

     First, examine whether the property that the same order on the first 

two machines and the last two machines will be sure to give an optimal 

schedule  for  The  m-machine flow-shop scheduling is applicable to  the problem 

with setup times separated. Even for the scheduling problem  with setup times 

separated, the following theorem holds. 

  Theorem 4.1 For the flow-shop scheduling problem with setup times 

separated, it is sufficient to consider only schedules in which the same 

order occurs on the first two machines when the objective is to minimize 

the total elapsed time. 

     The proof of this theorem is omitted, since it can be easily proved 

with an argument which resembles that given for the proof for the problem 

with setup times included. It is worth noting that the separation of setup 

times from processing times  Makes  it unnecessary for an optimal schedule to 

have the same order on the last two machines. A simple example will 

illustrate this. Suppose that two jobs are to be scheduled on a  three-

machine flow-shop to minimize the total elapsed time. The production data of 

the two jobs are shown in Table 4.1. There are two schedules S1 and  S2 that 

         Table 4.1 Production data for three-machine scheduling 

                                     (units: hours) 

       Job J1 J2 

            Setup time. k k k 
            processing time sipls2P2 

 Machine  M1 1 3 1 1 

          Machine M2 1 1  .2 5 

 Machine  M3 5 1 1 4 

                          (50)

Job
 'Ti J2

Setup  time.

processing time
s1  P1 s2 P2

Machine  M1 1 3 1 1

Machine M2 1 1  2 5

Machine  M3 5 1 1 4



have the same order on machines  M2 and  M3. The total elapsed times of the 

two schedules are 16 and 17 hours, respectively. However, there is a 

schedule S3 with different orderings on machines  M2 and  M3 with the total 

elapsed time of 15 hours (see Fig. 4.2). 

                                 pqSetup time 

• 

                                                    Processing time 
    Machine  M1 

 Machine  M2  I 7/A 
 Machine  M3  V I I J 

    0 5 , 10 15 Time 

               (a)  Schedule  Si (Hours) 

   Machine  M1   J1 I 
 Machine  M2   I 

    Machine  M3 

                           A 

       • I 1 . 1 • , t l „ „ 1 •  
   0 5 10 15                                                                Time 

               (b) Schedule S2 (Hours) 

 • Machine  11
1  J I 

  Machine M2   J  rA  I 
 Machine  M3  r  /ff, I  rA  

            22222 I 1 I I 1 l I l  1 1  

    0 5 10 15 Time 

 (c) Schedule S3 (hours) 

                 Fig. 4.2 Schedules on three machines 

     In the case of the two-machine flow-shop scheduling problem with setup 

times separated, the optimal schedule minimizing the total elapsed time can 

be characterized by the following rule for ordering pairs of jobs. 
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       Theorem 4.2 For the two-stage flow-shop scheduling problem with setup 

     times separated, an optimal schedule under the criterion of the minimum total 

     elapsed time is given by the following rule: 

         Job  Ji precedes job  J if 

                              2                 min(s.1- si+p1pj) < min(s3 - s2 + p1p2) (4.2) 
     If there is equality, either ordering is optimal. 

 Proof. The completion time of  J(i) to be processed in the ith order on 

    machine  M2 is given by  the following recursive relation: 

                           2              Chi) = max(C1C-+ s2) + p(i)'(1-1)(i)h                 i) (4.3) 

    where C11)= yi(s1(i)pl(i)() and C20) =  0. 

( 

         By repeated use of relation (4.3), the total elapsed time is obtained 

     as follows: 

             r1
I)(r2 

 Fmax =  C(n) = maxL(s+ phi))() + p2+(s+ phi))}.                                               )) 
                           0<<n i=1                               (u)Li=u+1(1)( 

                          u 

                         1  u-1                                            2              = max { ( s(i)-s2(i)+p(i))-Lp(1)) 
       0<u<n i=1 i=1 

                  r2          +L(s + 
p2 ) (4.4)                        (i) (i) 

    where p20)= 0.        ( 

          The problem is to find a sequence minimizing the above equation. Since 

     the second summation is a constant, an equivalent problem is to minimize the 

     first summation which indicates the idle times, I,  on  machine  M2. Hence, 

     the objective function to be minimized is 

                    ski)(            I = max  { X (s1i)(— s+ phi))() -u-1p2i)1 (4.5) 

  ( 

       ()Susn 1=1 i=1 

    By letting r1= s1-s.2+ p.1and ri= pi' equation  (4.5) is 
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              ru-1 

                                             r 

               I = max (Lr(1i)Lr(2            i)) (4.6)  0
<u<n 1=1 1=1 

  Equation (4.6) is equivalent to the following: 

                                             r 

          I = max{0,,max (r1i)-Lu-1r(2               i))).(4.7)                      (                              ,max 
 1=1 i=1 

  In general, it  holds that  max(0, A)  S  max(0, B) when A  < B. Hence, the 

               rur 
  sequence which minimizes the value-of max (Lr1 -Lu-1r2(i)) also 

                                   1<usnl=1 (i)i=1 
                                                                       ru-1 

 minimizes equation (4.7). Since the form of max (LrU=r1Li=1  r(i)) has 
 1<u<ni4"(1) 

  the same one as that of Johnson's, an optimal ordering can be given by the 

  following inequality: 

           21
'          min(r.1r) < min(r.r2) (4.8)        jj 

                                                                  (Q. E. D.) 

       This theorem is an extension of Johnson's, since by letting setup times 

  be zero, inequality (4.2) becomes exactly the one Johnson gave in his paper. 

 With  at adaptation of this theorem, an optimal schedule is directly constructed 

  by the following algorithm which is similar to Johnson's working rule. 

  < Optimizing algorithm for scheduling with setup times separated > 

    Step 1. Find the minimum value among the values of (s.1- s.2+p.1                                                               ) and  p2                           2.as-

  (1=1, n). (In the case of  a tie, select arbitrarily.) 

                          1    St
ep 2. If it is (s1- s2+ pa),place Jafirst,and if it is p2,place J 

  aaa                                                                             a 

  last. 

    Step 3. Remove the assigned job from consideration and go back to Step 1. 

       Consider a 4-job scheduling problem which has production data as shown 

  in Table 4.2. By  using the algorithm proposed, an optimal schedule is 

  determined as  J2-J4-J1-J3 with the total elapsed time of 41 hours. Table 4.3 

 showthelistarlarldrifor each job. 
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         Table  4,2 Production data for two-machine scheduling 

                                          (units: hours) 

    Job J1  J2  J3  J4 

 Setup  time-  kkkkkkkk 

      processing time sl P1 s2 P2 s3 P3  s4 P4 

      Machine  Mi 2 10 1 5 2 7 3 8 

 Machine  M2 3 8 2 7 1 3 1 9 

                     Table 4.3 List of  rl and  r2 

        Job  J1 J2  J3 J4 

                                                          • 

 rl 9 4 8 10 

                2      r 8 7 3 9 
                        1 

    In order to clarify the effect of the setup time consideration on the 

 reduction ,  of the total elapsed time, find an optimal schedule with setup 

times included. In this case, the processing times including the setup times 

are given by Table 4.4 and the optimal schedule is  J2-J1-J.4-J3 with the total 

                                                                                        • elapsed time of 43 hours. Hence, the amount of the time reduction due to the 

setup time consideration is 2 hours for this example. 

       Table 4.4 List of processing times including setup times 

       Job  J1 J2 J3 J4 

 s1-11-pi 12 6 9 11 
       si+pi 119 4 10 
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Job  J1 J2  J3  J4

Setup  time-

processing time
Si1

k
 P1 sk2

k.
 P2

k
 s3

k
 P3

k
 s4  P4

Machine  M1 2 10 1 5 2 7 3 8

Machine  M2 3 8 2 7 1 3 1 9

Job  J1 J2 J3  J4

9 4 8 10

r2.1 8 7 3 9

Job J1 J2 J3 J4

sli 12 6 9 11

s+ p2ii 11 9 4 10



  4.2.3 Two-stage scheduling problem with setup times separated and time lags 

       In the analysis of the previous subsection, no consideration was given 

  to the transportation times between successive stages and the lap-phasing 

  which may occur in lot production. In order to describe these situations
, 

  a model of another type is necessary. 

       Based on this consideration, a two-stage scheduling model with time lags 

  has been constructed. In the model, two kinds of time lags (a start lag and 

  a stop lag) are incorporated. The start lag (stop lag) prescribes that a 

  job may not be started (completed) on the succeeding machine until at least 

  a certain time has elapsed since starting (completing) the job on the 

  preceding machine. 

       This problem is also an extension of Johnson's two-stage flow-shop 

  problem, since Johnson's problem is one where the start lag and the stop 

  lag for each job are set exactly equal to the job processing times on the 

  preceding and succeeding machines, respectively. In the presented model, 

  the use of  different sequences on the two machines will yield a shorter 

 elapsed time in some cases. In order to simplify the problem, it is assumed 

  that the same order is to be used on both machines in the model . 

      In this subsection a further generalization is made to include the 

 setup time consideration in the problem with time lags . The problem is to 

 determine a schedule so as to minimize the total elapsed time when the setup 

 times are separated from the processing times and jobs have their start lags 

 and stop  lags, respectively. 

      Let  ai and  bi be the start lag and the stop lag of job  J ., respectively 

 (see Fig 4.3). In order to express the total elapsed time as a function of 

 the processing time, the setup time, and the time lags of each job , develop 

 the recursive function of the completion time of job J
(1) to be processed in 

 the ith order. 
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                  Fig. 4.3 Start lag  ai and stop lag  bi of Ji 

    . _ 

      In the case of start lag  ai and stop lag  bi, no job may be started 

 on machine  M2 until at least a certain number of time units,  Ti, which is 

 given by the following equation, has elapsed since completion of the 

 processing for the job on machine  Ml. 

                Ti=max(a
iii, P1- P.2 

                                             i 

                            + b)  '(4.9) 

     Hence, the completion time of  J(i) on machine  M2 is given by the 

 following recursive relation (see Fig. 4.4): 

         Chi) = max(C1- phi)+ TC2                    (1)(1)(i) ,-(i-l) + ski)) + phi)(4.10) 
where C1=7(s1+ p1) and C(0) =0. 

      (i)Li=1(i)()(0) 

               1       PO) p(i) 

 Machine M1  J

.(i) I,  J(i)        1 

         1 , Chi) 1             fa-Tor/ le-To yil Co ) 
 1 , Machine M2  I A J(i) W(i)  

         

I  qi) P6) i ik) qi) 1 . 

                  

I  I,  

   C2C22  2 
        0-1)(i)'0-1)  C(i) 

         (a),1 n1 ,T r2 ,c2 (b) rl _LT r2 ,c2          (ai "qi)-"(i)"(i)k v(i-irli) kui u(i)-P(ir(i)‹ li-1).4(i) 

     Fig. 4.4 Recursive relation of completion  times.  of jobs 
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By repeatedly  using  the above relation, the total elapsed time is obtained by 

 u-1 
                    r1

1)(       max = C(2n)= max { L (s+p2.1)()+slu)+T(u)+(u) 
 0<u<n  i=1 

                         +I(s2+ p2)1 
                              (1)(1)  i=u+1 

                                              u-1                      u                                           1 
                            r 2             = max { (s -s2 +T . ) - (170 • - P .4" T•-•)}        0

<u<n (1) (1) (1) (1) a) tl) • 

                                     n 

  i=1 i=1 

                         L+L(s2.1)(+ p21)) (4.11) 

        ( 

 i=1 

where s(0)=T(0) =p(2 
                   0) = 0. 

The first expression of the above equation can be also obtained by considering 

the job J(
u) to be critical in a schedule as shown in Fig. 4.5. 

             ,  1 1 ,                L(s
(i)+13(0)       (u)  

 Machine M1   
                                                                        11                      4-- j(u)  

      Machine M2                        Vk'. n2 n                                    P(U)  I (S(044)(2                                        0) 
 1=10-1 

 JP. 
                                                                         Time- 

      Fig. 4.5 Computation of the total elapsed time by assuming  Jo
u) 
                to be critical in a schedule 

     Since the second summation of equation (4 .11) is a constant, the problem 

of minimizing the total elapsed time is equivalent to minimizing th
e first 

summation. This sum represents the total idle time I on machine M
2. Hence, 

the problem becomes one  of-finding a schedule so as to minimize the following 

equation: 

     u 1u-1 
     I = max {(s_ s2T)f,2T  )}                                                          (4 .12)  0

<u<n 1=1(i)(i)(1)ki=1‘v(i) (i)  (1)" 

 (  57  )



    By letting  rl =  sl -  s2  Tiand  r2 =  p2 -  p +  Ti, the above equation 
                               ell-1

1=1(2                            i) takes the form of max (Lell=1r(i)--Lr). This is the same form as the   i  0<u<n 
one in equation (4.6). Hence, with the same argument as in the case of the 

proof of Theorem 4.2, the following theorem can be derived for optimally 

sequencing  the  jobs. 

  Theorem 4.3 For the two-stage flow-shop scheduling problem with setup 

times separated and time lags, an optimal schedule under the criterion of 

the minimum total elapsed time is given by the following rule: 

 JobJiprecedesjobLif 

                    2       min(s.1-si+T.p-p1+  T.)             jj  
j 
                12                                         T

.,i                     < min(s.- s.+ T.p-  p1 +  Ti) (4.13)                 j
j 

If there is equality, either ordering is  optimal. 

    With the help of this theorem, an optimal schedule is directly determined 

by a similar algorithm to the  one  the'problem with setup times separated. 

    As a numerical example, consider a 4-job scheduling problem which has 

the same data as shown in Table 4.2, and which has other data of start and 

stop lags for each job as shown in Table 4.5. 

                  Table 4.5 Start lags and stop lags 

 (units:  hours) 

        Job J1 J2 J3 J4 

 Start  lag  ai 8 5 7 6 

 Stop  lag  bi 5 4 8 4 

    The values of  Ti for each job are computed as (T1,T2,T3,T4) = (8, 5, 

12,  6). For example, T1  =max(8,  10-8+5)  =  8. Then the values of ri1(=si1 

      2 2 1 - s
i+ Ti) and ri(=pi-p.+ Ti1) for each job are calculated as i(r1,r2) 

                                                                                                                    ' (r1'23r2),(r1'34r2),(r1'4r2)}={(7, 6),  (4, 7), (13, 8), (8,  7)}. Hence, 2 
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Job  J1 J2 J3 J4

Start lag  ai 8 5 7 6

Stop lag  bi 5 4 8 4



 the optimal schedule is determined as  J
2-J4-J3-J1. 

4.3 Extension of two-stage scheduling to group scheduling 

     An analysis of the previous section is made to the conventional 

 scheduling problem in which  there is only one group consisting of n jobs to 

be processed. In this section, the two-stage flow-shop group scheduling . 

problem will be theoretically treated. In  the group scheduling to be 

analyzed, hereafter, no attention will be paid to the time lags of jobs . 

However, it is possible to incorporate the time lag consideration into the 

group scheduling model. 

     The two-stage string problem, which is a kind of group scheduling , has 

                  15, 16) been studied by K
urisu. In the string problem, it is assumed that the 

order of jobs within each group (string) is fixed. That is, an  optimal 

decision is made only as to the sequence of groups classified. In the model , 

group setup times  which will play an important role in grouping jobs are not 

considered. 

     In the two-stage flow-shop group scheduling for the minimum total 

elapsed time,  the  following theorem can be proved in the same manner as in 

the lemma by Johnson. 

  Theorem 4.4 For the two-stage flow-shop group scheduling problem of 

minimizing the total elapsed time, it is sufficient to consider only group 

schedules in which the  same orders of groups and jobs occur on both  machines . 

   Let(i          pig=1,N, g  =  1, 2,..., n .,  k  =1, 2,..., K) denote the 

job processing time including the job setup time on stage (machine)  Mk  (k=  1, 

                                                            12,..., K) of job  J. (1=1,N,  =I,n1) of group  G. (=1, 2, 

    N) and  Si  (1=1, N,  k=1, K) denote the group setup time 
on stage  Mkof group  Gi. For the sake of convenience , the job processing 

time and the group setup time are defined on stage  M
k  (k=1, K), 
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    respectively. 

        First, develop the recursive relation of the completion time on machine 

   Mk of job  J(i)(E), which indicates the  Fth job in the ith group in a group 

   schedule. The completion time of  J is given by 

 k-1 

• 

 C(i)(E)  =ax(C(MO'  C(1)(E -1))  P(i)(E)' if  E  4  1 
                                                           (4.14) 

                          k-1                                     +Sk) + 
pkifE=1          (i) (1)= max (C(i) (1) ' c (i -1)(i)(i) (1)/ 

 where C0= 0.         (i)(E)=C(0)( uo) 

        By using these recursive relations repeatedly, the total elapsed time 

   for the two-stage flow-shop problem, the completion time on  M2 of J(N)(n
N)' 

    is expressed as - 

                   u-1ni 
           Lr          F= C2(N)(n

N)= max max 1L(Sf1.,N+Lpf1)+ Si             max 
                       0<u<N 1<v<nui=1E.1ki)(E) (u) 

         nu N n
y         r1r2y                 + L p(

u)(E) + L p(u)(E)+0                                         (i)+p2E. ..(i)(E))1            E=1•=v'i=u+1 

  u-1nu 
             rr              = max 1 X(Si.+) + Si                                          + max (LP                                             1                    (

1) (i) (u)(u)+Lp2(u) ())        0<u<N i=11...nj=1C=V 

                    N 

          +  y (s2i)(+ P2i))1 (4.15) 

     ( 

 i=u+1 

                                                                                                                                                                                                                                                    • 

   where  P(i) =LE.rni1p(i)(E),p(0)(E) =0  (k=  1, 2), and S(0) and  n(0)  a 1. 

        The problem is to determine a group schedule so as to minimize the above 

    equation. The following theorem holds for this problem. 

     Theorem 4.5 For the two-stage flow-shop group scheduling problem for the 

   minimum total elapsed time, an optimal group schedule is obtained by the 

   following rules; the job sequence is by Rule 1, and the group sequence by 

   Rule 2. 
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  Rule 1: Job Jibprecedes job Ji
llif 

                               2 
         min(p1'p2 ) < min(p1

n'p.24) (4.16)       1Eini 

  Rule 2: Group G.precedes group C.if 

         v  v-1 1 n- i 
  {S1 2 73 2      min {S. - S. + max ( X p' - X ), max ( L P. - ia 1:03.-)1 

   1 1  iE  1<v<n
i  E=1  E=1 1<v<n. E=v t=v+l                                          j 

 v-1 
                < min {S.-e+ max ( /133.- - 13 )' 

                          3 1<v<niE=1 JE E=1 JE 

              nini 

                   LlELl                   max (-Vpig)}                                                         (4.17) 
 1<v<niE=v  E=v+1 

If there is equality in inequality (4.16) or (4.17), either ordering is 

optimal for group and job sequences, respectively. 

  Proof: The optimal schedule under the criterion of the minimum total 

elapsed time can be obtained by minimizing the total idle time at  the second 

stage. From equation (4.15), the total idle time at this stage is given by 

                 N 
            r

12 2        I = Fmax-iL(S(i) + P(i)) 

                    = 

                          u-1 

                L= max maxL(+- S2-) + S1 -  S2 
 0<u<N1.\)nu  i=1                       S1(i)P1(I) (i)P2(i) (u)  (u) 

               1v-1 2              p
(u)(P)(u) ()1  (4.18)                                  E=1 

This is equivalent to the following: 

 u-1 

           E1i)(        I = maxL(S+ Pii)- S2(i)- P2(i)) + S(1
u) - S(2                                                  u)  (  0<u<N  i=1 

               v1 v-1 
             +  max (/_7r,2 

                  1.1vs.nuE=1p(u)(C)L(u)(E))1                                         E=1 
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 u-1 
         r 12            = 

max {.L (Q- Q) + S1-S2                 (1)(I)(
u)(u)  OsusN 1=1 

                             v v-1 

                    E 1 2                 + max (L P (
u) (E)  P  (u)  (E) (4.19)  15vsn

u  E=1  E=1 

 where QkI)= Ski)I(+Pki) (k=  1, 2). 

     ( 

 Hence, for any group sequence, the total idle time at the second stage is 

 minimized by determining the job sequence within each group G(
u)so as to 

 minimize max (ivP1). This  is accomplished by ordering 
          lsysnu               E=1 (OMq=1Y(n)(c) 

 the jobs using Rule 1. 

                            r1       Introducing R
(u) =u) - S2(u) and V=max(ivp  Cu) 1=1(u))E=1P (n))v 

            <v<nu 

 equation (4.19) is presented by 

 u-1 
                        r   I = max (L(QU)1-Q( 

                      i)) + R(u) + V(u)1 (4.20)  0<u<N  i=1 

 Rule 2 as to the determination of an optimal group sequence is proved in the 

 following way. Let w be any group sequence and  I(w) be its total idle time 

 at stage M2. Consider a group sequence w' that differs from w only in that 

 two consecutive groups G(i) and G4 .1) are interchanged in w. 

      Develop a sufficient condition such that  I(w) <  I(w'). Inequality 

 I(w) < I(w') is equivalent to the following: 

              i-1 
   r 1 2r1 

    max{  (Q(i)  -Q(i)) + R                          (i) + V(i)'(Q-Q(j)(j))+ R+V(i+1)(i+1)} 

 j=1j=1 

 i-1                           2             < max{
jli(j)-Q(j))  +R(i+1) +  V(1+1)' 

                  i-1 1 

                (Q_Q2)Qi  -Q2+ R+ V(421) 
           j=1(j)(1+1)(i+1)(i)(i)* 

                ri-1 1  By subtracting L (Q -Q2 )+R i-R -11-V from each term              j =1 (j) (j) (i) (i) (1+1) (1.+1) 

 of inequality (4.21), the following one is obtained: 
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                            2 
    max(-R-VQ1-Q-R-V)            (i+1)(i+1)'(i)(i)(i)(i) 

          <  max(-R -VQ1 _Q2 -R.-V.) (4.22)                  (i) (i)'(1+1)  (i+1) (1+1) (+1) 

  Since max(x,  y)=-min(-x, -y), this is equivalent to the following: 

                  12 
        min(R(i+1)+V(i+1)'R+V-Q                       (i)(i)(i)-Q(i)) 

 1 2 
           <  minKR(i)  +V(i),  R(i÷1)  +V(i+l) -  Q(1+1) - Q(i+1) (4.23) 

                                                                                     1 

       upon this, each term  in  the parentheses of the above inequality is 

  transformed into the following one: 

                 vv-12         i2 
+  max (pp--L) (4.24)  R(i) +V(1)=S(i)-S(i)(i)(E)(i)(E) 

                     15.v<ni E=1 E=1 

        ni 
1     1 2 r 2 (4 .25)      R(i)-FV(1)-Q(1) -Q(i) = max ( L p(ME) - L p(i)(E)) 

                    1<v<ni E=v E=                                                v+1 

       From these expressions (4.23), (4.24), and  (4.25),  and the fact that the 

  ordering of the two consecutive groups given by inequality (4.23) is 

  transitive, it follows that Rule 2 characterizes an optimal group  sequence. 

                                                                 (Q. E.  D.) 

       This theorem is an extension of  Johnson's to group scheduling. With 

  the use of this theorem, a simple algorithm for determining an optimal group 

  schedule is developed as follows: 

   < Optimizing algorithm for the two-stage flow-shop group scheduling > 

    Step 1. Determine an optimal job sequence  in each group by using Johnson's 

  working rule. 

    Step 2. Determine an optimal group sequence in the following way: 

  (i) Calculate the following values for each group under  the job sequences 
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determined by Step 1. 

                                                 -1 

                   SipigXi = Si- i max ( L p.—p2) 
                                 lEv  1Sv<n

i  E=1 E=1 

 ni
2 ni               = max  (IP .-I pliE      Pi1) 

                                       lsysn. E=v E=v+1 

 (ff)value. (In the case of a 

tie, select arbitrarily.) 

 (11i) If it is  Xa, place G
a first, and if it is Ya, place Ga last. 

 (iv)  Remove the assigned group from consideration and go back to  (ii). 

4.4 Optimal group scheduling on multiple production stages 

     The recent advances in scheduling technique have shown that it is rather 

difficult to develop simple optimizing algorithms for solving the general 

flow-shop scheduling problem with the simple criterion of minimizing the 

total elapsed time, much less the problems with more complex measures , such 

as minimizing the mean flow time. As a result of this awareness , a direction 

of recent research in multistage scheduling problems has been turned to the 

special structure scheduling problems  which can be easily  solved 

theoretically. Thus, several cases in which the job processing times bear 

well-defined relationships have been  considered, and efficient optimizing 

algorithms for determining the optimal schedules have been  developed. 

     In this section, these special cases in the conventional scheduling are 

generalized to the group scheduling. A theoretical determination of the 

optimal group schedule under the criterion of the minimum total elapsed time 

can be made to the special structure flow-shop scheduling problems where 

there exist some well-defined relationships among the group processing times 

and the job processing times. 

    For the K-stage  (KZ3) flow-shop group scheduling problem , the schedules 

 (  64  )



       having the same order of groups and  jobs on the first two machines include 

 an optimal schedule under the criterion of minimizing the total elapsed time , 

       while the optimal schedule does not always have the same order on the last 

       two machines. The latter property does not occur because of the grouping 

       of jobs into several groups but because of the feature of the group setup 

        time. 

 In the K-stage flow-shop group scheduling problem which will be treated 

       hereafter,  it'is assumed that the processing order of groups and jobs is the 

       same on each machine. (No passing of groups and jobs is allowed .) 

           With the aid of equation (4.14), the total elapsed time for the K-stage 

      flow-shop problem is given by 

                max max ,max= C(N)(nN)I R(uk-1'uk) (4.26)                           05u/<u2<... .<uK_iN • ykE rkk=1 
 (k=1,2,...,K-1) 

        where 
                                                        -

' 

       (1) for  k  =1, R(u0,u) =u11Q+ S1+ LP-p 

                                            1 

                     0' 1 i =1 (i) (u1)(u1)(E) 

      (ii) for  1  <  k  <  K-1 

 nuk -1 k  uk-1 vk 
                                          _k  + -k . r 

pk (u k-1 uk) 

        R u ) = P(uk )(E)+ i-1+1 :41(i) s(uk)I.=L1 (uk) (E) k-1 k                          E=vk_i -1                                                  k-1 
            k-1' k 

                                   vk_ 

                   1 pk  (uk)(E)  (uk-1  =  uk) 

     (iii) for  k  =K, 

 nuK-1 

                 R(uic_i,uK)=Ip11rE+Q(i) 
                                   K-1`K-11‘i=uK-1+1 

 =0, and r
k is a set of  vk such that      and  S(0)=0,  p(0)() 

 (1) 1  <  vk <  nu
k  (uk-1 < uk <  uk+i) 
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 (ii) 1  5  vk  vk+1 (u<uu               k-1kk+1 

 (&)  vk_i1 vk1 nuk  (uk -1  =  uk  <  uk+1) 

 Ow) v<vv(= u= uk+)    k-1kk+1k-1k1 

 where  uo=  0,  iiK=N,  v0=1,  vic=nN, and  nol  1. 

4.4.1 Optimal group scheduling for three special cases 

     It is obvious from equation (4.26) that the task of determining a 

 schedule so as to minimize it is more formidable. However, if each of the 

 following well-defined  relationships holds among the group setup times and 

 the job processing times at each of the stages, the problem can be reduced 

 to a two-stage one, and hence solved theoretically. 

  Case 1: For a fixed  h<  (K-1), the group setup times and the job 

 processing times satisfy the following conditions: 

   (i) min (Sk- Sk+1+ min pk. ) > max maxk+1    i1
11Pin  1<i<N 15j5N 1559 

 Ilk  h-1  5  K-2 

       minpig< max pi
nk+1 (i=1,N)                        1<n<n .  (4 .27) 

 k  k+1 k  k+1  (ii) max (S. - 
1 S.S+ max<min min p.  1<i<N1<c<npiC)15 .j5N•J                                         1531"Cn.3  ,h+1  <  Vk  <  K-1 

     k k+1       max p
, min P.fl (i=  1,N) 

        l<E<11.1<n<111" 

  Case 2: The group setup times and the job processing times satisfy the 

following conditions: 

   kk+1 k+1        max (S- S.  +.max pk ) < min  min  p. 
     1<i<Ni 115C5ni iC 15j015n5n3n 

          V  k  <  K  -  2 (4.28) 

         max5min pk+1  =  1,N) 
      l<5.n.pitin                     1<n<n 
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   Case  3:. The group setup times and the job processing times satisfy the 

 following conditions: 

    kk+1kk+1 
       min (S- S+ min p.r)kmax  max 

 N i i  l<E<n  1<j.sN  1<n<n 

                                                 2  <Yk  <  K-1 (4.29) 

        min P. >.nax Pk+1  (i  =1, N)             E 
        15.Esl         n1.<n. 

   1 1 

      Note that none of the conditions above is required  when  K=2. The 

 following theorem holds for Case 1. 

   Theorem 4.6 If the group setup times  and the job processing times satisfy 

 conditions (4.27), then an optimal group schedule is obtained by det
ermining 

 the job sequence for each group using Rule 1 , and the group sequence using 

 Rule 2. 

  Rule 1: Job J.precedes job J . if 

 K-1 K1 K-1 k K 
k         min( I,1:0) < min( /P .r) (4.30) 

 k=1pig,k=2Pin)                k=1 k=2 

  Rule 2: Group G.precedes group G. if 

 K-1v K-1v-1 K 

      LS1-Si+ max (iPk kkr    minfL.L.L-/L iEPik),  k=1 k=2 15.v<ni E=1k=1  E=1k=2 

                         n;/c

L7.1k 
            rr3                 max ( LL

pk.LP.)/ 
                  1<v<ni  E=vk=2 E=v+lk=1 

 K-1  k  K  k  v  K-1  v-1  K 
      < min( -  + max  ( /  I -I  1 ) , 

 k=1  3 k=2  1<v<n  E=1k=1  JE  E=1k=2 JE 

                    ni K 
k  ni  K-1      ma

x ( / (4 .31) 
                         E                  15.v<niE=vk=2=v+lk=1 

If there is equality in inequality (4 .30) or (4.31), either ordering is 

optimal for group and job sequences , respectively. 
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     Proof: The problem is to  find a group schedule such that the total elapsed 

                        TNI1    time given by equation (4.26) is minimized . By subtracting                                                       Li =1‘(sKi)(+pi(i)/ 

   from the equation and arranging it, the total idle time at the last stage is 

   obtained as follows: 

 p_i  uk-1                                 k k+1 
 I= max  maxI  1  { I(Q(i)-Q(i)) 

               0:surlu2<...<u.K .4.11^1vk erk  k=1  i=1 
 (k=1,2,...,K-1) 

                vk vk-1 
                                              +1              4.St_ s(1+vJ.i Pkli (4.32) 

                 (uk)pk)ti.l'Olik:gg)4.1(uk)() 

                            r 

   Since the value ofLi =1(SKa)-FpK(1)) is a constant, the problem of minimizing 

   equation (4.26) is equivalent to minimizing the above equation. 

         Introduce 

                            vuvu-1 

        Hku-1.1ok -el)  + Su - Su+v_1(-VJ+1  (4.33)      uv11uuLpubL Yt1.     i =1 E=1 =.1 

   From the obvious identities 

                                                                    (4.34)  _                             k+1 

      1 

         Hk= Hk+ pk                               ,- P         uv+1uvuv+J.uv 

    Hkkkk+1k k+1 
        ul= H+S-S+u_inu-1 u up- pulu-lnu_l 

   and conditions (4.27), the following inequalities hold 

      Hk <Hk and Hk                                     s Hk (k = 1, 2,..., h-1)       uvuv+1 
u-lnu ..1 ul 

 (4.35) 
    k k         B

uy  2 Huv+1 and Hk                              u-lnu _i > Hit(11  (k  =  h+1, h+2,...,  K-1) 

   Hence, equation (4.32) can be presented in the following form: 

                                     K-1 
      I=max max y H(k(4.36) 

                              uh)(vh)                    ft
uhsN 15.vhinuh  k=1 

   Denote  uh and  vh by u and v, respectively. 
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       Then 

 K-1  u-1 

               Lk  k+1 k  k+1        I=max max [DLO(i)-Q(i))+S(u)  -S(u) 
            05.u0  1<_v<-nu  k=1  i=1 

                                 v1 
            +yk/k+1                   P1] 

                   1P(u)(E)g.i(u)() 

 u-1  K-1  K  K-1 

       Lrr         = max (Q(
i)-LQ(kLi)) +S(ku) -LS(k                                             u)         0

.Su:SN i=1  k=1  k=2  k=1 k=2- 

 v  K-1  v-1  K 
             rkrk                  + max  (LP

(u)(E)-L P(u)(E))  (4.37)  1<v<n
u  C=1k=1  E=1k=2 

 Let rl = r2 rK wl.rK-lsk w2 lK sk wl rl 
        3.E Lk=1YiE 9 iE Lk=2r iE Lk=1 Lk=2 LE=1 

     2 2 rni 1 _ rK-l_k rni vIC-1  k rK-lnk and u2 rK k   and Ui=Wi+LE .iriE, then Ui -Lk.isi                                E=1Lk=1 .13ig  i Lk= Vi • 

  Hence, the total idle time at stage  MK can be denoted by 

                  u-1 
      I = max 1 y (0,4, -u2,4,) 141 -w2 

         0<u<N 1=1 `-/ ‘-' (u) Cu) 

                          ^1  v-1 
     ^ 2             + 

max ( L (
u)( )  r(u)(E))1 (4.38)              1 .v<n E=1  g=1 

  This expression has the same form as equation (4.19). Therefore, replacing 

  W. and  r.(k=1, 2) by S.kand p .k   (k=1, 2), respectively, in conditions 

  (4.16) and  (4.17) of Theorem 4.5, we get conditions (4.30) and (4.31). 

                                                                 (Q. E. D.) 

       With the help of this theorem, an optimal group schedule can be 

  determined easily by the following algorithm similar to the one for the two-

  stage problem, since Rules 1 and 2 have the same forms as the rules of 

  Theorem  4.5. 

   < Optimizing algorithm for case 1 > 

    Step 1. (Determining the optimal job sequences) 
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 (i) Calculate the fictitious processing times, the values of  Ipi4 

and IK2i
Epk(=yig) for each job.  k= 

 (M) Determine an optimal job sequence for each group by applying Johnson's 

working rule to these values. 

  Step 2. (Determining the optimal group sequence) 

 (i) Calculate the following values for each group under the job sequences 

determined by Step 1. 

    K-1 K  v  K-1  , v-1 K 

       1 
    X.VSi-KSK+ max (  I  I-I 1 Pik).L          k=1-k=211<p<ri.E.1k=1  E=1k=2IC 

       nini 
 rk     Y= max (I p4r - 1KGl                                   p.r) 

             E=vk=2 E=v+lk=11' 

 (ii) Find the minimum value among the  Xi's and the  Yi's. (In the case of a 

tie, select arbitrarily.) 

 (iii) If it is  Xa, place Ga first, and if it is  Ya, place Ga last. 

 (iv)  Remove the assigned group from consideration and go back to  (i1). 

     When the group setup times and the job processing times satisfy 

conditions (4.28) of Case 2, it follows from equation (4.33) that 

         Hk  > Hk                     and HkHk(k(k=  1, 2,..., K-2) (4.39) 
        uv  uv+l 

Then 

                      >   H(1)(1)HkM              () (k=1, 2,..., K-2) (4.40) 

Hence, the total idle time at the last stage given by equation (4.32) can 

be denoted as follows: 

                                                 K-2 
  I = max max (k 

 0<u <u <...<u<1 vk=1 k=1H+HK-1(uk)(vk)(uK-1)(vK-1))            - 1- 2--K -2- 
                                   (k=1,2,...,K-2)                  u

K-2"C'uN  1<v <nu 
                                      K-1- 
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                                 K-2 
         max(sk-Sk+1+pk) 

          0<u1-<u2-<...<uK2<1k=1(uk)(uk) (uk) (1)                  -
- 

                        ti-                                  -K-11 
                 K-1 K  K-1 K 

                  u 

             +max
<Nf 1=1(i) - Q(1)) + S(uK-1)-SuK-1)                                                                              K-2- K-1- 

 vK-1-1
K      + max (/ p(4.41) 

        1<v<nE.1(P 
                           uK-1)(C)cIl(uK_1)())1] 

                     K-1uK -1 

Setting  ux ...2=1 and  ux_2=0, this is equivalent to the following: 

                                      K-2 
     I = max [0, maxvG .fsk(u )_s(uk+1+_k 

                                     k)F(uk) (1))                   0.supu25...sux ..2=1k-1 k 

 uK-1-1 

 IK-1KK1            +
1..SmuKax1bl.( i=1(Q(1)- Q(i)) + S(uK-1) - S(uK-1) 

             vK-"K-11                                   1 
K-1            r 

 + max ( L p                                        L P(
u )())11 (4.42)                    1.1vK1Sic

K-1                       ,E=1011K-1)()E=1 K-1 

                               Hence, the objective function to be minimized becomes 

                        K-2 k  k+1 k 
 I' = max(s(

u) —s(uk) + p  (uk)  (1) )             0<u
15u2s....sux_2=1k=1k 

 UK-1-1 

          + max { I (Q-1-QK) + SK-1-SK 
           1<vK-1-<N 1=1(i)(i)(uK-1)(uK-1) 

              vK-1 vK-11 
       rvK  +

? max (Lp 
              1.-SvE=1K-1(uK-1E=1 K-1)()-"P(11)())1 (4.43)                     K-1uK
-1 

     In the above equation, the first term is concerned with the job 

occupying the first place in a group schedule, and the second one with the 

jobs being processed on the last two stages  MK-1 and  Mx. The group schedule, 

S, determined by applying Theorem  4.  5 on the two-stage problem (stages  M
x ...1 

and  Mx) minimizes the second term. Hence, the optimal group schedule can be 

obtained by evaluating the total elapsed times of the schedules,  SW 
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generated by assigning, first, each group  Gi  containing the job  Jic  (i=  1, 

2,..., N,  =  1,  2,...,ni) to the first position of schedule S, and then 

placing each job  J first in the job sequence of  Gi, and maintaining the  iE 

other group and job positions. Let  J4 a be the first job of schedule S. 

Since schedule S minimizes the second term of equation (4.43), the optimal 

group schedule is determined by only examining the schedules  SiE for which 

                      X-2 uk                 kk+1k 
     maxX(Si- Si+ P

iE)    0<u1<u2...uK -21  k=li=1 

 K-2  uk 

                max  X  X (Sk- Sk1 + pka) (4.44)                  aaa                        10$
111-<u2-<...<uK -2=1k=li=1 

     Thus, for Case 2, the optimizing algorithm for determining an  optimal, 

group schedule is proposed as follows: 

 < Optimizing algorithm for Case 2 > 

  Step 1. Determine an optimal group schedule, S, for the two-stage problem 

(stages  MK ,..1 and  MI). Let  Jaa be the first job of schedule S. 
  Step 2. Let II= (J.

111, J.,1J.11c) be a set of jobs such that         122 

 K-2  uk  k+1 
         max //(511

3.-511+13k.) 

                                          K-2  uk 

                     max y y (Sk- Sk+1 + pkaa)               aa                        0<
u1-<u2<...<uK -2=1  k=li=1 

                                     Generate  Z new group schedules by assigning, first, each group containing 

the jobs  Ji .c.  (Ell) to the first position, and then placing each job J..r.  J1J                                                                      ‘J 

first in the job sequence of  G. and maintaining the schedule S order  for 

the remaining groups and jobs. 

  Step 3. Among the  (14-1) schedules obtained above, find the group schedule 

minimizing the total elapsed time. This schedule is optimal. 
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      For Case 3, the following relations hold . 

                     k 
       uv<Huv+1 andH                   u-lnu_i1ul  (k=2, K-1)(4.45) 

 Thus 

               1 K-1  I  = max max (H(
ui)(vi) +XHk(N)(n)      0<u<u=N1<v<nk=2N)         1-2K11 -u

l 
 u1-1. 

       = maxmax(Q .Q2 + S1 
        0u<N 1<v <ni=1(1)(i)-S(lid 

         1- 1- ul 

                   v1V.   1  k 
r 2          + p

(u )(E) L P(u )(01+ L P(N)(u )+ L (4(i) -Q(i)) (4.46)       t=1 1 t=1 1 k=3 N 1=1 

      In the above equation, the first term is concerned with the jobs being 

 processed on the first two stages  MI and  M
2, and the second one with  the job 

 occupying the  last place in a group schedule . The third term is a constant. 

      For Case 3, the following algorithm is developed in much the same wa
y 

 as  for  Case  2. 

  < Optimizing algorithm for Case 3 > 

  Step 1. Determine an optimal group schedule , S, for the two-stage problem 

(stages  M1 and  M2). Let Jzabe the last job of schedule S . 

  Step 2. Let II= (J . r, ,-J42sr2 Ji r  ) be a set of jobs such that 

       -                                    < 

                    Pkl
jEjL Yza           k=3k=3 

Generate  Z new group schedules by assigning , first, each group G. containing 

the jobs
3 3 (En) to the last position, and then placing each job Ji.E.                                                            J J 

last in the job sequence of  G. and maintaining the schedule S order f
or the 

remaining groups and jobs. 

  Step 3. Among the  (1+1) schedules obtained above
, find the group schedule 

minimizing the total elapsed time . This schedule is optimal. 
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 4.4.2 Numerical examples 

     To illustrate the optimizing algorithms presented, consider two 

special structure flow-shop group scheduling problems. 

  Example  1. The production data for a 10-job, 4-group, 4-stage problem are 

given in Table 4.6. This is an example of Case 1, since the group setup times 

              Table 4.6 Production data for Example 1 

 (unit: _hours) 

    Group G1  G2  G3  G
4 

          Job J11J1 .2J.21J2223J31  J32  J41  J42  J43 
 Setup  time.  k  k k  k  k k k 

S3 k kk k k                    oD           processing  time S1                           p11p12 S2  p21  p22  p23'3  P31  p32  '4  p41  p42  p43 

 Stage _14i 5 16 18 3 18 19 15 4 15 19 4 17 16 20 
         Stage  M2 4 15 13 3 12 14 11 3 10  15 5 10 13 15 

       Stage  M3 3 6 10 4 10 8 7 2  6 8 3 5 10 9 

        Stage  M4 4 13 20 4 15 6 17 5 18 20 4 12 9 17 

and the job processing times satify conditions (4.27) for  h=3 as follows: 

 min (S.1-  S. +  min p.1 )( =  15)  z max maxp2( =15) 
 1<i41 1 15.C5.n.  1 

               min pi" (  =  16) max p2
ln (  =  15)  1<  <2  1sns2 

 min p1,, (=15)  z max p22_(  =14) 
 1<E<3 15.n3" 

                 1 
             min p3C  (  =15) z max p23

n (  =15)                                      15.n.s2 

 min p4C (=16)amax  p4
n  (  =15)  15

.E5.3  1.5.n5.3 

 min (S2- S3 + min p.  )( = 11) > max max  p3 ( = 10) 
     i 11E    lsi<4 1<j<N 1<

n<n.  in 

 min pigl(  = 13)max pin(  = 10)        lscs2  1<n<2 
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Group G1  G2  G3  G4

Job J11
 12

 J21
22

 .123  J31  J32 J41 J42 J43

Setup  time.

processing  time Sk1
k
 P11

k
P12 Sk2  1321

k
 P22

k
 P23 Sk3

k P

31

k
 P32 Sk4

k P
41

kP

42

k P

43

 Stage
.M1

5 16 18 3 18 19 15 4 15 19 4 17 16 20

Stage  M2 4 15 13 3 12 14 11 3 10 15 5 10 13 15

Stage  M3 3 6 10 4 10 8 7 2 6 8 3 5 10 9

Stage 4 13 20 4 15 6 17 5 18 20 4 12 9 17



 min p22E3
n  (  =11)maxp (  =10)                                  2            1s.E.1.3  lsns3 

                                3  mi
n  p3=10)max p3n = 8) 

                                  1<n<2 

                    2  
  min pi
tE (= 10)max p3,_( =10) 

                       " 

       Thus the optimal group schedule is determined by using the optimizing 

   algorithm for Case 1. 

    Step 1. The values of xisyipand for each job are computed as in Table 

  4.7. By applying Johnson's working rule to this table, the optimal job 

                     Table 4.7 List of X.andyid 
                                             lE 

       GroupG1G2  G3 G4 

               Job JJJJJJJJJJ                      11122122233132414243 

 xis37 41 40 41 33 31 42 32 39 43 

             YiE 34 43 37 28 35 34 43  27 32 41 

   sequences for four groups are decided as J-JJ-JJ22,J32, and                                       1211'232122'3132 

   J43-J42-J41' respectively. 

    Step 2. The values of  Xi and  Yi for each group are calculated as {(X1,  Y1), 

 (X2' Y2),  (X3, Y3),  (X4'  Y4)} = {(42, 40), (41, 28), (38, 39), (44,  29)}. 

  For example,  Xi  =  5  -4  +max(41,  41  +37  -  43)  =  42 and  X2  =max(43  +34  -  37, 34) 

  =40. Hence, from this list, the optimal group sequence is G3-G1-G4-G2. 

        Consequently, the optimal group schedule is determined as G3(J31-J32)- 

  G112-J11)-G443-J42-J41)-G223-J21-J22) with the total elapsed time of 

   217 hours. 

     Example 2. The production data for a 10-job, 4-group, 4-stage problem are 

  given in Table 4.8 The group setup times and the job processing times 

  satisfy condition (4.28) of Case 2 as follows: 
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Group G1 G2  G3 G4

Job  J11 J12 J21 J22 J23 J31
32

J41 J42 J43

xis 37 41 40 41 33 31 42 32 39 43

 YiE 34 43 37 28 35 34 43 27 32 41



            Table 4.8 Production data for Example 2 

                                           (units: hours) 

   Group  G1  -G2 G3  G4 

       Job J11J12 J21  J22  J23  J31  J32  J41  J42  J43 

      Setup timeSkp
11pkSkpkpkpkSkp31p32S4p41p42p43       processing time111122212223331324414243 

 Stage  141  2  6  10  3  9  5  8  1  7  8  2  9  6  7 

      Stage  M2 3 14 12 2 10 11  15 2 13 11 2 13 5 10 

       Stage  143 4 18 16 3 17 19 18 2 16 15 4 18 20 19 

      Stage  144 2 9 19 4 22 12 25 3 20 23 3 9 13 10 

        max (S.1- S.2+ max p.1 )( = 10) 5.  min  min  p.  (  =10) 
 1<i<4 i i l<E<n• lE  lsj54 1<n<nj  Jn 

             max p.,1,( =10)5 min p2  (=  12) 
          1-<*E<2  1.-Sn2  in 

            max p21E  (  = 9)< min p22,s( 10) 
       15W 1<n.13" 

             max p3E (  =  8)5. min p2 (  =11) 
        11E5.21<r)2 

   1 2             max  p4E ( = 9)5 min p4n(= 10) 
          15.E5.3 15.1-13 

        max (S.2- S.3+ max p.2)(  =  14) 5  min  min  p3  (= 15) 
       1<i<41 11<r<n. 1.E  1<j<41.(n<n.V1 

             max p2  (  =14) 5. min p3 (-=16) 
         1<W             lE 1.s2In 

 max p22E(= 15):s min p3n(= 2 

 max p23E( =13)5 min p,2 (=15) 
            1<E<21<n<2 

             max p42                  E(= 15) 5  min p34n( = 18) 

    Hence, the optimal group schedule is obtained by using the optimizing 

algorithm for Case 2. 

 Step 1. The optimal group schedule for the two-stage problem (stages  M3 
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Group G1 -G2  G3  G4

Job  J11  J12 J21 J22  J23 J31  J32  J41  J42 J43

Setup  time-

processing time
Sk1  P k 11 P12 Sk2 P21  P22  P k 23 Sk3  P31  P32 Sk4  1)41  P42  P43

Stage Mi 2  6 10 3 9 5 8  1 7 8 2 9 6 7

Stage  M2 3 14 12 2 10 11 15 2 13 11 2 13 5 10

Stage  M3 4 18 16 3 17 19 18 2 16 15 4 18 20 19

Stage  M4 2 9 19 4 22 12 25 3 20 23 3 9 13 10



and  M4) is determined as G-J)-GJ23)-G-J)-G-J                    3323122123221121144243 

 -J41). Thus J
aa=J32' 

   Step 2. The values of max 72 7uk fsk_sk+1+J..z .                                                            ) for each                          0
u12=1Lk=1Li=1‘ i it Flti( it 

 job are computed  as {(z11,  z12), (z21, z22, z23), (z31, z32), (z41, z42, 

 z43)1=  {(18, 20), (19, 16, 23), (19, 18), (20, 19,  15)}. For example,  z11 

  (Si32121232 maxx1-S1A-p
11'S1-S1A-p11A-S1-S1A-p11) = 18. II ={J22,  J43  I, since 

 z32=18. Thus it is necessary to evaluate the following three schedules to 

determine the optimal group schedule. 

    Schedule S: G-J)-GJ-J)-G-J)-G-J-J)                3
32312212322112114424341 

    Schedule S•G-J-J)-G-J)-G0-J-J-J)             22.222212333231112114424341 

    Schedule SG(J-J-J)-G-J)-G-J-J)-G(J-J)             43.•443424133231221232211211 

  Step 3. Since the total elapsed times for the above three schedules are 

216, 212, and 229 hours, respectively, the optimal group schedule is the 

schedule  S22. 

4.5 Conclusions 

(1) The two-stage flow-shop scheduling model with setup times separated and 

time lags was developed, and the well-known Johnson's theorem for the two-

stage problem of minimizing the total elapsed time was extended to the 

presented model. 

(2) The two-stage flow-shop group scheduling problem was treated under the 

minimum total-elapsed-time criterion, and a theorem was given for determining 

the optimal group schedule. 

(3) The multistage flow-shop group scheduling problem was considered under 

the same criterion, and a theoretical analysis was made into the special 

cases where there exist some well-defined relationships between the group 

setup times and the job processing times. For each case , a theorem or an 

algorithm was given to determine the optimal group schedule. 
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CHAPTER 5 GROUP SCHEDULING ON MULTIPLE PRODUCTION STAGES  --- BRANCH-AND-

        BOUND APPROACH 

5.1  Introduction 

     As stated in the previous chapter, a successful  analysis of 

multistage scheduling problems is limited to the case of the two-stage 

flow-shop problem with the objective of minimizing the total elapsed  time. 

For more than three-stage scheduling problems, a universal theoretical 

analysis cannot be made even under the simple criterion of the minimum 

total elapsed time. In order to generally solve the problems, therefore , 

it is necessary to resort to general purpose methodologies, such as a 

 dynamic programming approach, a  branch-and-bound method, etc., or a 

 heuristic procedure. 

     Among these, the branch-and-bound method has been employed with some 

 success. The basic branch-and-bound procedure for solving the  three-

stage flow-shop scheduling problem of minimizing the total elapsed time 

     2) 3) was d
eveloped by Ignall and Schrage, and independently by Lomnicki. 

Since then, a variety of extensions and  refinements have been developed 

                           4,5) for the branch-and-bound procedure. 

      An attempt to solve the flow-shop group scheduling problem using 

the branch-and-bound method was made by Nakamura and Hitomi6) 

The main purpose of this study is to find an optimal group schedule and 

no attention is directed to the effectiveness of the lower bounds 

proposed and the optimizing algorithm developed. 

     With the help of the  branch-and-bound method, this chapter also 

solves the flow-shop group scheduling problems.7) In these problems, the 

ordering of groups and jobs is assumed to be the  same on each machine. 

The scheduling criteria employed are the  minimization of the total elapsed 
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   time and the minimization of the weighted mean flow time for which no 

    effective lower bound has been developed for the multistage  
scheduling 

    problem. In this chapter, attention is paid to the effectivenesses of the 

   lower bounds to be proposed and the optimizing  algorithms to be d
eveloped. 

    For the  minimum-total-elapsed-time problem
, three kinds of lower bounds 

   are developed by extending the typical ones in the  conventional  
scheduling 

   to the group scheduling. Then an optimizing algorithm which incorporates 

   these bounds is proposed. Their relative effectiveness is th
en investigated 

   with numerical experiments. 

 For the  minimum-weighted-mean-flaw-time problem
, a lower bound, which 

   is an extension of the machine-based bound , is developed, and numerical 

 experiments are run to examine the effect of randomness of weighting 

   factors given to jobs on the effectiveness of the algorithm . 

  5.2 Total elapsed time and weighted mean flow time 

       As is defined in the previous chapters , let  pk (i =  1,  1.6 
     = 1, 2,... ,  ni, k = 1, 2,..., K) and Si;(i  = 1,N, k = 1, 2,... , 

  K) denote the job processing time including the job setup time of job 

  Jib  (i  = 1,N,E =1,  n .) of group  G.  (i  =  1, N) on 

  stage  (machine)  Mk  (k = 1, 2,..., K) and the group setup time of group  G
i 
  on stage Mk, respectively. Furthermore, let  w

ic  (i=  1, N,  F  =  1, 2, 

 ni) be a weighting factor given to job  J
ic. 

       The total elapsed time required to complete all jobs in all groups is 

  denoted as in equation (4.26) in Chapter 4. Another expression of the 

  total elapsed time can be given by using the idle times of jobs on the last 

   stage. 

      The completion time on  Mk of  J(
i)(t) indicating the  Eth job in the ith 

  group in a group schedule is denoted as 
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                        n4 
 k k k k  C  (i)  (E) =I 

=1(n=1-g(i)(g)"(j)+P(n)"(1) 

   j                 L  

                +L  (g(i)(
n)+p(i)(n)) (5.1)  ri=1 

   P(i)Ini where=113(i)(e)andgum) is the idle time of  Mk before processing 
 Eth job after completion of  (E-1)th job of  G(1), and is given as follows: 

for 

                 Ck-1  -Cke-                         if Ck> Ck 
    g(i)(g)(i)(E) (i)(E-1)'(i)(E)(i)(E-1) 

                 0, otherwise 

for  E  =1, 

 k-1  k  k k-1 k S

(i) 

                                        -      k 

           =  c(i)  (1) -  c(i-1) (  S(1)  if  C(i)(1)› `'(i-1)(n )' '"(i)         (ni-1) i-1  g
(i)(1)                  0

, otherwise 

Hence, the total elapsed time is given by 

 K       F
max =  C(N)(nN) 

                          n.            N 

     .y (XgKi-S
(.+PK (5.2)                (i)(E)i)(1)  i=1  E=1 

    The weighted mean flow time is given by 

          N  ni 
   Pw=XcK/Yn 
        i=1E=1w(i)(E)(i)(E)i                                   1=1 

         N  ni r
11,1.K        =I1w(

i)()(g(i) (E)+s(I) + P(1)) } /                                                            (5.3) 
     i111 

where M=LrN=1n..         i 

    Equation (5.3) indicates the mean flow time in the case in which all 

the weighting factors are equal to one. 

 5.3 Branch-and-bound method for multistage group scheduling 

     The branch-and-bound method, which is one of the optimizing 

techniques, has been employed to  solve flow-shop scheduling problems and 
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    has shown some success.  In order to solve a flow-shop group scheduling 

    problem, this method can be applied. The branching procedure, which is 

    one of the fundamental procedures of the branch-and-bound method , is done 

    in the same way as in the case of the single-stage group scheduling 

    mentioned in Chapter 3. In this section, therefore, the bounding 

    procedure, which is another fundamental procedure, is explained. 

         The calculation of the lower bound is made at each of the  job nodes 

    created by the branching  procedure. Let M
rsbe a job node at which s jobs 

 selected among  n(
r) jobs in group G(r) at a group node Nr are allocated. 

    Two kinds of lower bounds are estimated according to the criterion employed . 

    (1) Lower bounds on the total elapsed time 

         A variety of lower bounds on the total elapsed time have been 

    developed for the conventional flow-shop scheduling problem. Representative 

    of these bounds are the machine-based, the  job-based, and the composite 

 5) '  bo
unds. For determining the optimal group schedule, the lower bounds can 

   be developed by extending the above three  bouads to the group scheduling , 

    as follows: 

    (a)  Machine-based bound: The  machine-based bound at M
rsis estimated by 

    Lrk + (sk.+Pk.)         1(Nk
rs1<k<K) = max {C                       (r)(s)Cj+p(r)(E).eG(1) (1) 

             rlr 

                           hmillP
a)(01(5.4)                               iECJr1=k+1 

   where C(
r)(s)is the completion tine ofJ(r)(s)onMk,anddris the set 

   of groups not yet sequenced, and  j
rs and  jr are the set of  jobs not yet 

   sequenced and the set of jobs not yet sequenced  in group G(
r), 

    respectively. 

        The second and third  terms of the above equation are the sum of 

   the job processing times for jobs not yet sequenced in the current 
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 group G(r)and the sum of the group processing times for groups not yet 

specified in the node, respectively. The last one represents the 

minimum of the  sums  of job processing times in the remaining stages for 

each of  thejobs not yet sequenced. 

 (b) Job-based bound: The job-based bound at  N
rs is given by 

                              h  L2(Nrs) =mkax(r)(s) +41:11{hkp()(E) 
                                    rs 

                              ) +min(Skj)S(j))1] (5.5) 
        pled. + 11,16r0,p(j)01)jr,d.  j*imin (o                rs natE 

     This bound expresses the fact that the total elapsed time  may  be 

determined by the total processing time for a job rather than the total 

processing time on a machine. 

 (c) Composite lower bound: The composite lower bound, which is a 

combination of the above two bounds, is 

 L3(N
rs)  = max IL1(Nrs2),LI(Nrs)1  (5  .  6) 

where  14(Nrs) is obtained by eliminating the bound on  MK in equation (5.5). 
(2) Lower bound on the weighted mean  flow  time 

     Even for the conventional multistage scheduling problem, very few 

reports have been made on thelower bound on the weighted mean flow times) 

The lower bound for the group scheduling problem is estimated by 

extending the equation (5.4) to the case of the weighted mean flow time. 

     The lower bound at N
rsis calculated by 

                                                              N. 
      LQVrs) = PW1(Nrs) + W2(Nrs)1  /  1  ni (5.7) 

w 

 i=1 

where  W1(N
rs) and  W2(Nrs) are the weighted flow times for groups and jobs 

which are already sequenced, and not sequenced, respectively, and are 

given by 
 r  -1  ni 

 W1(Nrs) = 114 + w (5.8) 
         i=1 t=1 (i) (E)C(i) (r) (E)C(r) 
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    nr t . 
 W2(Nrs)  =  max [ y Pk + Pw Cr)  (E) (C (r)  (s) 

                                 il=s+1(r) (n) (r)(C))     1SkSK =s+1 h=k+1 

      Nn
C(r) i-1i       i=rf1E=1(iM)(r)(nr)  I=1(Sb)  +  Pk(j))  S(i) 

           „

h=k+1       kli                    r1=1              r(i)(n)PM              (i)/] (5.9) 

      Equation (5.8) is obvious. In equation (5 .9), the first term in the 

 'max' operation is for j
obs not yet sequenced in the current group  G(

r)' 

and is introduced in the following way: 

     The lower bound of the completion time C)()of J
(r)(E)( > s) is 

given as follows by using the completion time  Cdr)  N. j(r)(s)' 
which is the last job in the sequence already sequenced . 

     kCkK     C' =CP
(r)(n)     (r)(E)(r)(s)(r) () (5.10),                  n=s+1h=k+1 

Since
nthe total weighted flow  time  for  (n(r)-s) jobs not yet sequenced 

     r is (
r) (E)CT(r) ' the first term is  obtained. The second term in 

the 'max' operation for the jobs in  (N-r) groups not yet  sequenced is 

 Obtained in much the  same way as the first term . 

     The value of equation (5. 9) depends  on the sequences of groups 

and jobs not yet sequenced. For determining the minimum  value of 

equation (5. 9) Theorem 2.2 offered in Chapter 2 is useful . This 

theorem gives a group schedule minimizing the weighted mean flow time 

for the single-stage group scheduling problem . In order to give the 

minimum value to equation (5.  9), the equation is calculated so that 

groups and jobs not yet sequenced are supposed to be ordered in each 

stage according to the order determined by Theorem 2 .2. 

    Based on the analytical results above, the optimizing branch-and-bound 
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  algorithm for determining the optimal group schedule under the criterion 

  of the minimum total elapsed time or the minimum weighted mean flow time 

  is proposed as follows: 

    <  Optimizing' algorithm based on the branch-and-bound method > 

     Step 1. Let the group level  r=0 and the least feasible value  L*=0. 

   Go to Step 2. 

     Step 2. Branch the group node N
r into  (N  -  r) group nodes  Nr+1 by 

   placing each of the groups not yet allocated next in the sequence 

   determined. Set  r=r+1, then go to Step 3. 

     Step 3. For each of the group nodes  Nr, create  job nodes Nrs of the 

   job level s = 1 by placing each of the  jobs in the group next in the 

    sequence determined. Go to Step 4. 

     Step 4. Calculate the lower bound  LB(N
rs) for each of the new job nodes 

   N
rsby using equation (5.4), (5.5), (5.6), or (5.7) depending on the 

    scheduling criterion employed. 

     Step 5. Find the  job node having  min LB(N
rs) from among the job 

   nodes derived in Step 3 or 8 in the case of L* =  0, or from among all  job 

   nodes being active in the case of L*  N  (In :the case of a tie, select 

    the node with the largest value of, first, r, and then  s.) Let the group 

   level and job level of the node be r and s, respectively, and 

 LB*(N
rs)  =LB(Nrs). Go to Step 6. 

     Step 6. If  LB*(Nrs)<Lic' then go to Step 7. Otherwise, stop.  (The 

    group and  job sequences of the node having L* are optimal.) 

     Step 7. If s<n(r)'then go to Step 8. Otherwise go to Step 9. 

     Step 8. Branch the  job node Nrsinto (n(r)-s) nodes  Nrs+1 by placing 

   each of the jobs not yet allocated in group G(r)next in the sequence 

    determined. Set  s  =  s  +1, then go back to Step 4. 
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   Step  9. If  r<N,  then go  hack to  Step.2.  Otherwise,  L*=LB*(N
r.). so 

 go back to Step 5. 

5.4 Numerical experiments 

5.4.1 Numerical example 

     In an attempt to clarify the features of the multistage group 

 scheduling problem, a simple numerical example will be given. The basic 

 data for a 10-job, 3-group, 4-stage problem are given in Table 5.1. 

             Table 5.1 Production data for group scheduling 

                                                             (units:  min) 

   Group  G1  G2 G3 

             Job jll  j12  j13J21  J22  J23  J24  J31  J32  J33 

          Setup time. sk ,k nk ,k ,k pk pk pk pk sk pk pk pk 
            processing time 1 Yll '12 '13 -2 21 22 23 24 3 31 32 p33 

           Stage  MI 10 35 36 51 25 41 16 31 32 29 35 41 17 

           Stage M2 26 36 36 49 17 28 34 13 34 12 47 19 30 

 Stage  M3  12  46  34  22  26  49  13  29  50  18  35  37  46 

           Stage M4 30 48 27 41 14 22 20 49 39 15 38 24 33 

     The optimal group schedule which  minimizes the total elapsed time is 

determined by the optimizing algorithm proposed. Fig. 5.1 shows the 

branching tree in the case where the machine-based bound is used in the 

algorithm. The lower bound of the total elapsed  time for each job node is 

given just below the corresponding node in the figure. The optimal group 

schedule is G2(J23-J24-J22-J21)-G1(J11-J
12-J13)-G3(J33-J31-J32) with the 

total elapsed time of 518  min. 

5.4.2 Numerical experiments 

     In order to examine the effectiveness of the optimizing algorithm 

proposed, the algorithm was programmed in FORTRAN and a TOSBAC 5600 computer 

was used. Numerical experiments were run for 20 group-and-job sets which 
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Group  Cl  G2 G3

Job  J11 J12 J13 J21 J22 J23 J24 J31  J32 J33

Setup  time.
processing time

 sk  P11  P k 12  3
Sk2 pl;1pl;2

 3
p24  Sk 3 p31

k
2

p33

Stage  MI 10 35 36 51 25 41 16 31 32 29 35 41 17

Stage  M2 26 36 36 49 17 28 34 13 34 12 47 19 30

Stage  M3 12 46 34 22 26 49 13 29 50 18 35 37 46

Stage  My 30 48 27 41 14 22 20 49 39 15 38 24 33



         Fig. 5.1 The branching tree for the example problem 

consisted of two to four groups with two to four jobs in each group. The 

number of stages is set at four. The job processing  tines and the group 

setup  times are obtained from uniform distributions ranging from 10 to 55 

and 10 to 30, respectively. 

(1) Results for the minimum total elapsed  time 

     The computational results for the three kinds of lower bounds are 

shown in Table 5.2. Fig. 5.2 shows the relative effectiveness of the 

three lower bounds for various sizes of problems. It is well known that 

the composite lower bound is more efficient as compared with the 
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    Table 5.2 Computational results for the  minim
um-total-elapsed-time 

                criterion 
                    - - 

                   No.     1 2 
3*      P

roblem 
 Size**  (3)(4)  (3)(4)(3)  (2)(

3)(3)(4) 

       Lower bound                   Machine Job- Compo- Machine Job-Compo- Machine Compo-                -based based site -based based site -based site 

      Average CPU                2
.9 2.6  2.0 10.4 32.8 11.4 21.2 50.0  time  (sec) 

     Average number 
   of nodes 81 82 64 259 370 219 349 310 

     Maximum number 
    of nodes 132 199 114 719 870 598 1105 933 

 Minimum number 
   of nodes 31 31 31 62 62 62 45 45 

           *  One problem is deleted , since more than 5000 nodes were created. 
          ** For example , size (2)(3)(3)(4) shows that the number of groups is 

              4 and each group consists of 2, 3, 3, and 4 jobs, respectively. 

    50 - • 

• 

            40 - it^ Machine-based lower bound 

          47; X: Job-based lower bound 

                  E 30.•o:  Composite lower bound 

                           41 

                 El 20 - 

                         tU 

 I. 

 .Z  10  - 

 0  
                      2 3 problem No. 

                    (288) (5184) (41472) Number of feasible 
                                                     Schedules 

    Fig. 5.2 Average computer times for three kinds of lower bounds 

 machine  based and the  job-based bounds for the conventional multistage 

scheduling. In the group scheduling, however, Fig. 5.2 shows that the 

machine-based bound is more effective than the others as the sizes of the 

 problems  become large. 
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Problem

No.
1 2 3*

Size**  (3)(4)  (3)  (4)  (3)  (2)  (3)  (3)  (4)

Lower bound
Machine
-based

 Job-

based
Compo-

site

Machine
-based

 Job-  1 Compo-
based site

Machine
-based

Compo-

site

Average CPU
time (sec) 2.9 2.6  2.0 10.4 32.8 I 11.4  21.2 50.0

Average number

of nodes 81 82 64 259 370 I 219 349 310

Maximum number

of nodes 132 199 114 719 870 I 598 1105 933

 Minimum number

of nodes 31 31 31 62 62 I 62 45 45



(2) Results for the  minimum weighted mean flow time 

    In this experiment, two cases concerning the  weighting factors are 

examined. One is the case in which equal weighting factors are assigned 

to all  jobs, and the other is the case in which  random  numbers ranging from 

1 to 5 are given to the jobs as the weighting factors. Table 5.3 shows 

the computational results for both cases. Fig. 5.3 indicates the variation 

     Table  5.3 Computational results for the  minimum-weighted  - 

                 mean -flow -time criterion 

 . . 

  No.  1 2 3  V  4 
Problem   

        Size  -  (3)(4)  (3)(4)(3)  (2)(3)(3)(4)  (3)(4)(3)(4) 

 Lover bound I'            Fw li Pv f fw f fw 

   Average CPU 0 .9 0.7 7.5 2.8 22.0 13.8 94.6 32.7  ti me (sec) .  
 Average number 43 36 165 90 394 238 1561 539 

     of nodes 

 Maximum number 64 62 268 189 746 552 4811 1661 
of nodes ' 

   Minimum number          26 20 73 50 108 80 657 114 
    of nodes 

 -100 

            90 

                    .,.... 80 
        m  0  :  P  (w

1E=1)             70 

         N A : c  (wig=  1-5) 
          :: 60 

                    4)            4450 

       E              8 
40 

             m m . 

 r 30                   CI 
  .t 2

0 . 

            10 

             0         1 2 3 4  Problem  No. 

                (288)  (5184)  (41472) (497664) Number of feasible 
                                                              schedules 

           Fig. 5.3 Average computer times for lower bounds 

                     on the weighted mean flow time 
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Problem

No. 1 2 3 4 •

Size  (3):(4)  (3)(4)(3)  (2)(3)(3)(4)  (3)  (4)  (3)  (4)

 Lower bound F rew F Fw F Fw F Fw

Average CPU
 time (sec)

0.9 0.7 7.5 2.8 22.0 13.8 94.6 32.7

Average number

of nodes
43 36 165 90  394 238 1561 539

Maximum number
of nodes

64 62 268 189 746 552 4811 1661

Minimum number
of nodes

26 20 73 50 108 80 657 114



 of CPU time required to determine the optimal group schedule for different 

sizes of problems. 

      In the case of equal weighting factors, CPU  time increases sharply as 

 the sizes of  problems  become large.  On the other hand, the increase of 

CPU time in the case of random weighting is relatively slow as compared 

with that in the case of equal weighting. This can be explained by the 

fact that the differences in the weighted flow times for  jobs may be large 

due to the variation of the weighting factors. 

5.5 Conclusions 

 (1) The branch-and-bound method was applied for solving the multistage 

group scheduling problems under the  minimum-total-elapsed-tire and the 

 minimum-weighted-mean-flow-tine criteria. 

(2) The optimizing algorithm for determining the optimal group schedule 

was developed. 

 (3) The effectiveness of the optimizing algorithm proposed was tested 

with a numerical example. 

(4) The  machine  based bound was found more effective as compared with 

the job-based and the composite lower bounds for the group scheduling 

under the  minimum-total-elapsed-time criterion. For the group scheduling 

under the  minimum-weighted-mean-flow-tine criterion, the CPU  time required 

to determine the optimal group schedule was small when the variation of 

the weighting factors was large. 

                       (89)



CHAPTER 6 OPTIMAL GROUP SCHEDULING AND MACHINING-SPEED DECISION 

        UNDER DUE-DATE CONSTRAINTS 

6.1 Introduction 

     In the field of production scheduling, the processing time required to 

complete a specified operation of a  job is set at a constant in most cases . 

In practical situations, however, it is possible to vary the processing 

times by actively  changing manufacturing conditions, especially machining 

speeds. In these  cases, .  some  modifications must be made on the scheduling 

model. 

                            1) 
     Based on such a consideration, Hitomi has developed a  production, 

scheduling  model with variable processing times depending on machining 
 2,3) 
 conditions. This model has been extended to the group scheduling model. 

In  this  model, an optimal group schedule minimizing the total elapsed  time 

was determined and then optimal machining speeds were decided so as to 

minimize the total production cost under the  minimum-total-elapsed-time 

schedule. 

        In production scheduling problems, there are many kinds of 
                                  4,5) 

criteria by which schedules are evaluated. Under the actual situation 

of determining the processing order of  jobs, meeting the jobs' due dates 

is one of the most important factors. In this chapter, under due-date 

constraints, a group scheduling model is developed on the multiple 

                                               6) 
production stages with variable processing times and production costs. 

Among the scheduling criteria concerning due dates, the criterion of 

minimizing the number of tardy  jobs is employed in the  model. In general, 

there exist a lot of schedules with the minimum number of tardy jobs. 

Therefore, it is necessary to select an optimal schedule by another 

criterion. The criterion employed as a secondary one is minimization of 
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           the total elapsed time.7) Once a group schedule minimizing th
e total 

           elapsed time with the  minimum number of tardy jobs  is deter
mined, the 

           optimal machining conditions which minimize the total pr
oduction cost 

           are determined by utilizing the idle times of the sched
ule determined. 

         6.2 Group scheduling model with variable processing times and costs 

         6.2.1 Assumptions and optimizing criteria 

                In addition to the fundamental assumptions of the group scheduli
ng 

           model defined in Chapter 1, the following ones are made in an attem
pt 

            to construct a model with variable processing times and c
osts. 

 (i) Job processing  time consists of job  setup time and unit production 

          time multiplied by lot size. 

 (ii) Unit production  time and cost are dependent on machining condition 

 (machining speed). 

               In this model, two kinds of scheduling criteria are adopted for 

           group scheduling. The primary criterion is minimization of the number 

           of tardy  jobs. The secondary one is minimization of the total ela
psed 

 time. The criterion of determining machining speeds is the 

          minimization of the total production cost which is a function of the 

 machining speed. 

         6.2.2  Job processing time and production cost 

          Let 0k.  (i=1, N,  =1,  n .,  k=1, K) be kth 

         operation on stage  Mk  (k=1, K) of job J
it (i=1,N,  =1, 2, 

 n.) of group  G.  (i=1, N) .  Unit production time,ui (min/pc), 

          ofkis expressed as a function of machining speed,  v
it  (n/min), for this            Oit                      8) 

           operation as follows: 

                                          k 
                  k k tit  

              u.k+b 
                         lE= aiE+titiE k                                        T

ic 
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                   AkAkbk                   k
+iE+ 

C                              ()iiEiE  k l/nk -1 

           =a1 vii)1/ni(g)(6.1) 
                         iiE 

 .__(1=1, N,  E  =1, 2,...,  ni,  k=1, K) 

      where akis the preparation time  (min/pc),  b
iE is the tool replacement time           iE 

 (min/edge),tiEis the actual machining time  (min/pc), Tit is the tool life 

 (min/edge), Ait is the machining constant, nkitCifandare the parameters 

      for the Taylor tool-life equation for  0k 
 it. 

        When JibsizeZipisprocessed in a lot si, the job processing time of 

     JiE on  Mk is given by 

                    i= sit+ ZiukiE                                                                (6.2)      tt 

     where sit is the job setup time of J . on Mk. 

          Then the group processing time of G
ion  Mk  is 

                   Qk.= Si.1-P.k  (6.3) 

                                                                n 

                                                    rix  where  S
i is the group setup time of  G. on  Mk and Pki=LE.1piE. 

          Unit production cost,git($/pc), of 0
it is expressed as a function of 

                                 8)      the machining speed v
ii (m/min) as follows:                       i 

                                                                                         t.  k  k k 
, k , k k k , iE               q . = a. a + (a. + 0 )t . + ka. b. + c. )           lt lt it it iE it it it 

it k                                                 T
iE 

                                                     A.                                  k           kkkk
it               = a .a+ (a.+)               itiE

lEiE 
                                    viE 

                                      k                                                  k                                                   1/
n-1                                   kiE                    (

akbk+ e
l.) -(v)(6.4)                        IE IEEk 1/kiE                                    (C

iE)niE 

 (1=1, N,  =1, 2,...,  ni,  k=  1, K) 

    where aidiis the direct labor cost and overhead ($/min),sipis the 

i 

 machining overhead ($/min), and  cit is the tool  cost .($/edge) for  Ow 
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             Introduce the  maximum-production-rate. machining speed and the minimum-

        production-cost machining speed, which will play important roles in 

        determining the optimal group schedule and the optimal machining speeds. 

        The maximum-production-rate machining speed for  0iE is determined by setting 

       the derivative of equation (6.1) in regard to viiequal to zero: 

                                               i 

                                      k nk                    k(t) Ci
f v = / {(-- 1)bit1 iE      iE CiE (6.5)                                   n

it 

 (1=1, N,  ni,  k=1, K) 

       With this machining speed the minimum job processing time of  J . on  Mk is 

       obtained by 

                                   k 
        k(t) kkk iek nk 

          pigsib+ l                       iE[a. k k+ {(k- 1)biE}JO(6.6)     E                                    (1-n
in                                     lEEnib 

 (i  =1, N,  E=1,  ni,  k=  1, K) 

            The minimum-production-cost machining speed is obtained by setting the 

       derivative of equation (6.4) in regard toequal to zero:                                                  vi 

           k k k 
nk             k(c) k n. a. + 8. 

             v. = c. f(  lE k lE lE )1 g 
      lE lE k k k (6.7)                           1 - n d . b + e  g 1E g  iE 

 (i=1, N,  E=  1, 2,...,  ni,  k=  1, 2, ..., K) 

      6.2.3 Total elapsed time, number of tardy jobs, and total production 

 cost 

           The total elapsed time is given by equation (5.2) in Chapter  5  as 

       follows: 

                 N ni 

            maxi=X1(X g1(1)(0(i)-FP(i)) (5.3)                             ==1 
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where  41)() is the idle time of  Mx:before processing  Fth job after 
completion of  (E  -1)th job of  Gm. 

     The number of tardy jobs is given by  

ni  N 

            NT  =  y (S(T(i))                                                         (6.8)  i =1E=1 

where  T(1)() is the tardiness of JMand                       () 

               { 1,  x  >  0            6(x) 
                         0, otherwise 

     In addition to the unit production cost given by equation (6 .4), the 

cost required for group setup is involved in the total production cost . 

However, the group setup cost is independent of the machining speed which 

is a  decision'  variable. Therefore, it may be excluded in the total 

production cost which is a performance measure in determining the optimal 

machining speeds. 

     The total production cost to be minimized is given by 

                  N ni  K 
            CT=XIii.kq.k                                                           (6.9) 

 i=1E=1k=1lE  1 

6.3 Determining optimal group schedule 

6.3.1 Initial machining speeds and job processing times 

     In order to minimize the total elapsed time with the minimum number 

of tardy jobs, it is reasonable to set machining speeds at the maximum 

production rate initially, since both performance measures are nondecreasing 

functions of the completion time of each job. In determining the optimal 

group schedule, therefore, the time given by equation (6.6) is used as the 

processing time for each job. 
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    6.3.2 Branch-and-bound method for group scheduling 

          A  branch-and  -bound method is applied to determine the schedule 

     minimizing the total elapsed time with the minimum number of tardy jobs 

     in the same way as in the previous chapters. Two fundamental procedures 

     for solving the current problem are as follows: 

     (1) Branching procedure 

         The branching procedure for the current group scheduling problem with 

     the dual scheduling criteria is fundamentally the  same as the one for the 

     problem with a single criterion in Chapter 5.  However, there exists a 

    difference  between the two in the branching  policy by which a node is chosen 

     to branch from next. In the case of a single performance measure, branching 

    is made at the job node having the least lower bound for the performance 

     measure. In the current problem, two performance measures are employed. 

     In order to decrease the computational efforts, the following policy is 

    used here. We choose to branch the  job node having the least  lower bound 

    for the primal performance measure (the number of tardy jobs) until the 

    first feasible solution is obtained. After that, first the  job nodes 

    having the least lower bound for the number of tardy jobs are selected, 

    and then, from these, the job node with the least lower bound for the total 

    elapsed  time is chosen for branching. 

    (2) Bounding procedure 

         In order to determine an  optimal group schedule under the multiple 

    objectives of minimizing the total elapsed time with the minimum number of 

    tardy  jobs, two kinds of lower bounds are introduced. 

    (a)  Lower bound of the number of tardy jobs 

         The lower bound of the number of tardy jobs at  job node  N
rs is 

    estimated as follows: 

       N(N
rs) = N1(Nrs) + N2(Nrs) + N3(Nrs) (6.10) 
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      where  N1(Nrs),  N2(Nrs  aad N3(Nrs) are the numbers of tardy jobs for groups 

      and  jobs already sequenced, for  jobs (Jr)not yet sequenced in  G(r)' and 

      for groups  (E r) not yet sequenced, respectively. They are calculated in 

      the following way: 

           Obviously, Nl(N
rs)is given by 

                     r -1  (6  
.  11) 

                                                                - 

 N1(Nrs)=n.d(C(1)(0-d(1)(E) +  y  s(ci)(E) dam))       i=1E.1 t=1 

          For the computation of  N2(Nrs) and  N3(Nrs), Hodgson's algorithm;) which 
      gives the optimal schedule minimizing the number of tardy jobs for a 

       single-stage scheduling, can be effectively employed. To make use of this 

      algorithm for each stage, the hypothetical due date for operation 0(i)() 

      is defined as 

               lkp
M             h=k+1h (6.12)  d(i)(E)=d(i)(E)(i) 

      Then,  N2(Nrs), the number of tardy operations of the  jobs in  Jr  on  Mk, is 

      estimated by applying Hodgson's algorithm. 

        Hence, 

         N2(Nrs) = max N2(Nrs) (6.13)  1<k<K 

            Nk3(Nrs), the number of tardy operations of the jobs in  Er on  Mk, is 

       calculated by the  following procedure, which is an extension of Hodgson's 

       algorithm to group scheduling. 

 (i) Sequence the operations of  jobs in  Er for each of the stages, 

       respectively, in order of nondecreasing hypothetical due date, 

       irrespective of the groups to which the operations belong. 

 (ii) Order the group setup times and the numbers of  jobs for groups not yet 

       sequescedsuchthatST(kril .)<V(t.4.2)‹... <S'k and such that                                    (N) 

     n1> n'                        >>n'respectively. Insert each of the  (N  -r) group     (
r+1)(r+2). 
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setup times, S (i=r+1, r+2,..., N) into the operation order everyn'  (i)(
i) 

operations  (i=r+1, r+2,.., N). 

                                                        n (iii) Set the start time of the operation order at  C(r)Cs)I =r                                                   s+11)(r)(c) 

and identify the first tardy operation. Suppose this to turn out to be 

 /th operation in the order and then identify the operation with the maximum 

processing  time among the firstZoperations. Remove it from the orderand 

set Nk(N
rs)=n3(Nrs) + 1. If no operations are late, then stop. 3 

(iv) Interchange each of the group setups which are positioned after the 

removed operation and the operation which immediately follows the setup. 

Go to step  (iM). 

   Then, 

 N3(N
rs) = max N3(Nrs) (6.14) 

 (b) Lower bound of the total elapsed time 

 Many, kinds of lower bounds of the total elapsed time have been 

developed in conventional scheduling. It is well known that the 

composite and the revised lower bounds are effective as compared with the 

 machine  based or the  job  based lower bound.  However, it is reported that 

the composite lower bound is not so effective in group scheduling as 

mentioned in Chapter 5. Hence, the revised lower bound is used here. 

In order to compute the revised lower bound on the total elapsed time, 

Theorem 4.5, which is developed for the two-stage group scheduling problem 

in Chapter 4, is used. 

     With the help of Theorem 4.5, the revised lower bound at N
rsis 

estimated as follows: 
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                             nr 

    1 -I 

 C 

 (r)(s)E=s+1i=r+1p(r)(E)Q(i)+ m1h=2 

                                                    n 

                                            ..P(i)(E)                                iEE
J 

                                                              rs 

                                     nr 

                                  + pkm<c>)!ISk(6.15)  L(N
rs) = max max IC(r)(s) +(gk              (r)<><i>                                 2<k -<K E=s+1 i=r+1 

 2.(gkpk)} + min y                                             <1><E> 
                                                    rsh=k+1v(i     =1)(C) 

                                                        where J is the set of jobs not yet sequenced at Nand the symbol < > 
rsrs 

designates the order of groups and jobs determined by applying Theorem 4.5 

to each of all the two consecutive stages  Nic and  Mic+1  (k  =  1, 2,  •  •  •  ,  K-1)  • 

6.4 Determining optimal machining speeds 

     Once the optimal group schedule is determined, the machining speeds can 

be changed to reduce the total production cost if there occur slack times of 

some operations in the schedule. 

     With a decrease in machining speed, the unit production time increases 

and the unit production cost decreases in the high-efficiency speed range 

[viik(c) k(t)18)       , vgAll the machining speeds are initially set at the 

maximum-production-rate speeds in order to satisfy the  minimum-total-

elapsed-time constraint with the minimum  number of tardy jobs. Hence, by 

decreasing the machining speeds from the maximum-production-rate speeds, 

and approaching their minimum-cost machining speeds as far as possible by 

utilizing the slack times, the production cost can be decreased. The 

problem is how to select the operation  0iE for cost reduction. The 

following function, called an "efficiency-sensitivity  function," can be 

employed as a measure in selecting the operations10) 

               dq . /dv               iEig  
  Ykit 

              duk/dvk               iEiE 
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                          B.3.                         k k 1/nk-2 k l/nk         E 1e(vjEi) g 

             iE             (k2'nklE1E1J‘fclE              v)      iE  + ak
a  (6.16) 

 1  1 k k 1/n.-2 k 1/nk             -  
(vk  )2+ (-T-1)biE(vii) lE /(CiE) iE  iE iE 

 (1=1, N,  E  =  1,  2,...,  ni,  k=  1, K) 

This function gives an index of the amount of cost reduction over the 

increase of production  time by decreasing the machining speed of operation 

 Oil. The larger the value of equation (6.16), the larger the cost 
reduction is for a certain amount of production time increase. 

6.5 Optimizing algorithms 

     Based on the results of the previous analysis, the optimizing 

 algorithms for determining an optimal group schedule and optimal machining 

speeds are proposed as follows: 

< Optimizing algorithms for determining an optimal group schedule and 

  optimal machining speeds > 

[Stage 1] Branch-and-bound algorithm for determining an optimal group 

schedule. 

 Step  1. Set the machining speeds on all stages for all jobs at the 

maximum-production-rate machining speeds, k(t). Go to Step 2. 

  Step 2. Let the group level  r  =0 and the least feasible number of 

tardy jobs  N*=co  and the least feasible total elapsed  time  Lle=co. 

Go to Step 3. 

  Step 3. Branch the group node into  (N-r) group node  N
r+1 by placing each 

of the groups not yet allocated next in the sequence determined. Set  r  =  r+  1 , 

and go to Step 4. 

  Step 4. For each of the group nodes  N
r, create job nodes Nrs of the job 
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       level  s  =1 by placing each of the jobs in the group next in the sequence 

        determined. Go to Step 5. 

         Step 5. Calculate the lower bound  N(Nrs) for each of the new job 

        nodes. Go to Step 6. 

         Step 6. rind the job node having  min  N(Nrs) from  among the job nodes 

        derived in Step 4, or 9 in the case of  N*=00, or from among all job nodes 

       being active in the case of  N*  00. If  N*=co and more than two nodes 

       having  min  N(Nrs) exist, then compute  L(Nrs)  of these nodes, and select 

       a job  node having  min  L(Nrs). (In the case of a tie, select the node 

       with the largest value of, first, r, and then  s-.) Let the group level 

       and job level of the node be r and s, respectively, and  N*(Nrs)  =N(Nrs) 

       and L*(N
Ts) =L(Nrs). Go to Step 7. 

         Step 7. If  N*(N
rs) >N*, or N*(Nrs) =N* and L*(Nrs) then the group 

       schedule of the node having N* and/or L* is optimal. Go to Stage 2. 

       Otherwise, go to Step 8. 

         Step 8. If  s<n(
r)' then go to Step  9. Otherwise go to Step 10. 

         Step 9. Branch the job node Nrsinto  (n(r)-s) nodes  Nrs+1 by placing 

       each of the jobs not yet allocated in G(
r) next  in the sequence determined. 

       Set  s=s+1, and go back to Step 5. 

         Step 10. If  r  <N, then go back to Step 3. Otherwise,  N*=  N*(Nrs) and 

       L*=L*(N rs), so go back to Step 6. 

       [Stage 2] Algorithm for determining optimal machining speeds 

         Step 1. Let D denote the set of subscripts,  i,  E, and k such that 

        operations are not critical under the optimal group schedule determined. 

       Compute the efficiency-sensitivity functions for  Oil  (itk  ED) as follows: 

                    -k =yiIk(t)                  Tittv
i-Dv                 t 

       where  Av  (  >0) is a small speed value. Go to Step 2. 

         Step 2.  y  =max Let U denote the set of subscripts i,  F, and k such 
 itkEDi' 
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            Yid•that  y=maxYiy  =y-Ay, where Ay  (  >0) is a small value. Go to Step 3. 
  Step 3.  U=U+{i0E0k0}, where  fij okol is the set of subscripts such that 

 iNk 
yyit. Go to Step 4. 

  Step 4.  (i) For OilE,(iEkU),compute the machining speedsvand the                              vii 
job processing timessuch that y=         PiEYiE. 

 (ii) Calculate the slack times tkiEit                                  for O(iEkEU) as follows: 

     s 

            k -k nk               t
siE=tt-p                 ZiEeiEiE 

where and tkiEare the earliest starting time and the latest finishing 

 e time, respectively, under the minimum-total-elapsed-time schedule with the 

minimum number of tardy jobs. 

 (iii) If there exists any operation  0k  (iEkEU) such that tsiE<0, then  iE 

                                       , y=y-I-Ay' (for example Ay=-2-Ay) and go back to Step  3. Otherwise, for 
 ^lc  k *k  0

i0Esuch that tsi ° =0, the optimal machining speeds v.9 are given by o oE                                                                                                                        3-                                                                      00 

vik1,D=D-fik1.   •o0
0000   0 0 

 (iv) If  Dk4), go to Step 5. Otherwise, Stop. 

  Step 5. If  y=0, the optimal machining speedsviifor O.E(ilk EU) are 
                                                  i given byvk(c). Stop. If  y  N  0, then y=y=--Ay, so go back to Step 3.         it 

6.6 Numerical examples 

     In order to verify the  effeciveness of the proposed  optimizing 

algorithms for determining the optimal group schedule and the optimal 

machining speeds, a hypothetical example is presented below. 

     Eight kinds of shafts are to be processed in a lot size of five on a 

flow-type, four-stage manufacturing system (rough machining, finishing 

machining,grooving, and threading). These shafts are classified into three 

groups according to their dimensions. Fig. 6.1 shows sketches of represent-

ative parts for each of the three groups. Production data for each job 

(shaft) of the three groups are given in Tables 6.1, 6.2, and 6.3. 
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Fig. 6.1 Sketches of representative parts for each 

         of three groups 

           Table 6.1 Group setup times 

 (units:min) 

       Group G
1G2G3     Stage^., 

        M1 10.00 9.00 7.00 

         M2 12.00 10.00 9.00 

        M3 8.00 7.00 11.00 

 411.00 12.00 8.00 

            Table 6.2  Jobs'due dates 

                                                      (units:  min) 

tpGi1 G2  G3 

    Jib , J11  J12  J21  J22J23  J31  J32 

 to  dit 930 450 1080 450 830 650 860 
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Group
Stage

G1 G2 G3

 N1 10.00 9.00 7.00

M2 12.00 10.00 9.00

 M3 8.00 7.00 11.00

 M4 11.00 12.00 8.00

Group  Gi  G1  G2  G3

Job  JiE .  J11 J12 J21 J22 J23  J31  J32 J33

Due date diE 930 450  1080 450 830 650 860 510



                 Table 6.3 Production data for jobs to be machined 

• 

 Processing parameter Tool  parameter Time parameter  Cost parameter 

                    1-mir• Direct             Depth 
,. .A Job Preps- Tool labor Tool                              Work Work tool Slope  Cr

oup Job Stage of T. setup trial.n  exchange xabor overhead                   lif
e costand 

                                                                                                                                 eat                        cut Rate Diameter Length speed constant time time  timeoverhcost •  cost 

        C3M        11tilf                tliDk Dk Lk L'k D     tIL  IL  it  it  it  it                                   nitk81Ekakbk0k8k t  it                                                                                      it                                                                                            i$  itic  kg  IC 
 (min)(mm/rev)  (mm) (mm)  (nun)  (mm)  (a/min)  (min)  (min/pc)  (min/edge)  ($/min)  ($/min)  ($/min) 

 112 1.50 0.25  ' 320 120 200 320 340 0.20 2.00 2.50 2.50 0.35 0.15  9 .00 
             jH20.500.153201202003202500.251.503.003.000.450.3012.50               11 m3 1

.00 0.10 240 .--150- 300 0.33 1.50  5.00 1.50 0.35 0.15 10.00  8
4 1.00 0.26 160  - 100  - 350 0.20 3.00 4.00 3.50 0.35 0.15 9.50  CI  

MI 1.00 0.25 280 120 360 280 350 0.25 0.60 3.00 4.00 0.35 0.20 9.50 

             J12  Dj 1 .00 0.15 200  - 120  - 320 0.33 0.80 3.50 3.50 0.35 0.10 13 .00  8
4  - -  -  -  -  -  - - - -  - - -  -

                 1$ 1.50 0.30 200 120 640 480 400 0.20 1.40 3.00 5.00 0.35 0 .40 11.50 
            v M2  0.50 0.12 200 - 640 - 300 0.28 0.90 3.50 3.50 0.45 0.35 12.50       a21 

mj  - - - - - - - - - 
 84 1.50 0.35 120  - 320  - 350 0.20 2.00 5.00 4.00 0.35 0 .25 14.00  1-12 1.50 0.25 280 200 630 400 300 0.23 2.00  4.00. 5.00 0.35 0.35 9.00 
            7 M2 0.50 0.15 280 - 680 - 250 0.33 0.70 3.50 2.00 0.45 0.25 14.00             02 -22 •           mj-- -- -- -- -- -- -- -- -- -- -- ..- -- -
                H4 1.00 0.30 200 - 200 - 270 0.23  2.00 2.00  3.00 0.35 0.25 15 .00  M

I 1.50  0.25 320 120 560 520 350 0.20 3.00 3.50 5.00 0.35 0.20 12.00 
            J m2 0.50 0.15 320 - 560 - 200 0.25 2.20 4.00 3.00 0.45 0.25 13.50              11  82 1

.00 0.20 240  - 160  - 200 0.20  0.00 2.00 3.00 0.35 0.25 14.50 
 914 1.00 0.25 120  - 200  - 250 0.22 5.00  3.00 4.00 0.35 0.10 9 .00  H

I 2.00 0.25 160 120 320 1160 400 0.25 1.00 4.00 3.50 0.35 0.12 6.50 
             J31 8

3 1.00 0.20 120  - 120  - 300 0.33 1.00 3.50 2.00 0.35  0.20 12.50 
 84 1.00 0.30 120  - 120  - 320 0.20 1.50 2.50 3.00 0.35 0 .25 14.00  H

2 1.50 0.25  200 120 320 1320 500 0.25 1.00 5.00 2.50 0.35 0.15 7.50 
                M2 0.50 0.12 200 - 320 - 400 0.20 0.80 4.50  4.00 0.45 0 .25 12.50  03 132 m

j - - - - - -- - - - - - ..... 
 84 1.00 0.30 120  - 120  - 280 0.33 2.30 5.00 2.00 0.35 0.40 13 .00  M

1 2.00 0.20 240 200 500 900 300 0.20  1.30  5.00 2.50 0.35  0.15 7.50 
             J33H20.500.1524020

15                                  050090000.251.003.503.000.450.329.50              34M2 1.00 0.20 200-0-25340 0.33 1.20 4.50  4.00 0.35 0.20 12.00 
 84  1.50 0.30 200 - 150  --  400 0.20  

, 3.00 3.00  3.50   0.35 0.35 10.00 

                                   • 

             Table 6.4 Job processing times at the  maximum  -production  - 

                        rate machining speeds 

                                                                         (units:  min) 

   Group G1  G2  G3 

         Job  J11  J12  J21  J22  J23  J31  J32 333 

              Stage  Mi 51.99 75.47 71.69 150.88 119.20 92.78 87.67 181.90 

              Stage  M2 115.56 160 .21 161.91 207.22 238.89 62.28 68.88 231.89 

          Stage  M3 62.61 40.69  -  - 40.98 27.43  - 51.78 

             Stage  M4  27.35'  -- 37 .72 29.13 33.86 18.84 33.68 26.88 

    The machining constant, aid,is calculated as a function of the diameter, 

                                    1 

    length, and feed rate11) 

         Job processing times used for group scheduling are determined  by 

 , 

 (  103  )

Group G1  G2  G3

Job J12  J21  J22 J23  -1.31  J32  J33

Stage  M1 51.99 75.47 71.69 150.88 119.20 92.78 87.67 181.90

Stage M2  115.56 160.21 161.91 207.22 238.89 62.28 68.88 231.89

Stage  M3 62.61 40.69 40.98 27.43 51.78

Stage  M4  27.35 37.72 29.13 33.86 18.84 33.68 26.88



         Fig. 6.2 The branching tree for the example problem 

setting machining speeds at the maximum-production-rate machining speeds 

as shown in Table 6.4. The optimal group schedule is determined by the 

optimizing algorithm based on the branch-and-bound method. The branching 

tree for this problem is displayed in Fig. 6.2. The lower bound of the 

number of tardy jobs for each subproblem is given just below the 

corresponding node in the figure. The order of branching is indicated by 
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the number that appears just above the corresponding node. The first 

feasible solution is obtained at node 24, which gives the group schedule 

G1(J11-312)-G3(J31-J32-J33)-G2(J21-J22J23). Then, the lower bound of the 

total elapsed  time, which is indicated just below the number of tardy jobs, 

is calculated. The optimal  solution is G..(                                        i-j11-j12)-G3(j31-j33-j32)- 

G2(J21-J23J22), which has 3 as the number of tardy jobs and the total 

elapsed  time of 1367.06  min (see Table 6.5). 

     In this schedule, there are slack times available to reduce the total 

production cost as shown in Table 6.5. Then, the optimal machining speed 

for each operation is determined by the optimizing algorithm as shown in 

Table 6.6. The job processing times and costs at the machining speeds are 

also given in Table 6.6. The total production cost is reduced to 

$2949.20 from $3191.25. 

   Table 6.5 Job completion times, job tardinesses, and slack 

              times for operations under the optimal group schedule 

                                                                (units:  min) 

     Optimal group       G
1G3- G2      sequence 

     Optimal job 
   sequence  J11  J12  J31  J33 J32  J21  J23 J22 

     Job completion                    267
.51 378.45 455.31 729.69 763.37 929.54 1205.55 1367.06     time  C

if 
     Job tardiness             0 0 0 219.69 0 0 375.55 917.06       T

ip 
              Stage 

   Slack                0 0 0  ) 0 144.22 132.41 185.12 273.13 H
1 

. 

  time Stage 
          10.10 10.10 10.10 0 0 0 0 0 . 

for K2  

                  a             operationStage394.53 71.55 194.69 0----0-- 
 tk3 

   siE Stage 
         M4443.34--194.69 0 96.63 150.46 0 0 

• 

 (105)

Optimal group

sequence
Gl G3  G2

Optimal job
sequence -1.12  J31 J33

•

J32  J21 J23 J22

Job completion
time  C1 267.51 378.45 455.31 729.69 763.37 929.54 1205.55 1367.06

Job tardiness

TiE
 0 0 0 219.69 0 0 375.55 917.06

Slack

time

for

operation

 k t

siE

Stage
0 0 0 , 0 144.22 132.41 185.12 273.13

Stage

M2 10.10 10.10  10.10 0 0 0 0 0

Stage

 M3 394.53 71.55 194.69 0 0

Stage

 M4 443.34 194.69 0 96.63 150.46 0 0



                   Table 6.6 Optimal machining speeds, job processing 

                                times and costs 

   ... 

_ . 

                                 Optimal Job Job 
 Group Job Stage machining production production 

                                speed time cost 

                                           It P*k9*kx1•                    GiJiE                  ItiC1s)4 
                                           (n/min)  (min) 

 MI  '  -  215t . 51.99 49.00 ' 

                                   J11 

 • 

                            M2 118e 120.74 76.09 

                          M3  870  86.38  51.90 

 G1M4  144e 28.20 10.10 

 HI  1881 75.47 70.75 

• 

                .712H2 100e 163.56 156.10 

 • 

                         Ma 810 51.00 26.95 

   

. , .         

. .  M4  --  --  •  -
                              .

H1.  171e 77.36 58.60 . 

                                   J21                                M2 162t 161.91 252.15 - 

            H3  -- -  -

                           M4  1390 39.92 18.10 

                                  M1 . 128c 164.37 106.80 

                 G2322H2 157t 207.22 567.55 
                  M3------ 

 M4  159t 29.13  37.90  

.  Hi  139c 134.89 81.00 

 323M2 115t 238.89 390.90 

 . 

                            243 1221  40.98 50.50 

                           M4 1391 33.86 18.05 

 MI  2221 92.78 71.90 

                         .731 63.74 59.65                          31/(2 
                         M3 83e 31.65 17.30 

                           )14 127c 20.10 8.80 

 M1  _1880 104.11 58.35 

 G3  j32M2230t 68.88 68.25 
 Hi  --  --  -

                         H4  85c 36.65 18.70 

                              M1 189t 181.90 175.25 

                       J33 M2 196t 231 89 324.05 
 M3  125t  - 50.58 49.25 

 M4  236t  26.88 15.90 

                                   Note: The symbols t, c, and  e above the machining speeds indicate 

                                     the maximum-production-rate machining speeds, the minimum-cost 

                                 machining speeds, and the machining speeds in the high-efficiency 

                                   speed range, respectively. 

 _6.7 Conclusions 

        (1) The group scheduling model was constructed on the multiple production 

        stages with variable processing times and costs depending on machining 
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   conditions. 

  (2) The optimal group schedule for the minimum total elapsed time with the 

  minimum number of tardy jobs was determined by the branch-and-bound 

  algorithm. 

  (3) The optimal machining speeds minimizing the total production cost were 

  determined by utilizing the slack times under the optimal schedule. 

  (4) The effectiveness of the optimizing algorithms for determining the 

  optimal group schedule and the optimal machining speeds were tested with 

  numerical examples. 
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  CHAPTER 7 EXPERIMENTAL INVESTIGATION OF GROUP PRODUCTION SCHEDULING 

   7.1 Introduction 

         In the previous chapters, group scheduling models have been developed 

    under  static-conditions where jobs are available simultaneously for 

    processing. In real situations, however, jobs to be processed often arrive 

    at the shop  randomly  over  time. Jobs are assigned to each of the machines 

    according to their processing routes. In this case, scheduling is 

   generally carried out by  means of dispatching decisions. This chapter deals 

   with group scheduling under these dynamic conditions. 

         Group scheduling that differs from conventional scheduling has  some 

    specific features as follows: 

    (1) Jobs to be processed are to belong to one of the setup groups which 

   are classified according to a classification and coding system by GT. 

   (2) Since the setup  time and the setup group play a critical role in group 

   scheduling, scheduling rules, including the setup  time and the setup group 

   of the  job in the queue, are to be investigated in a simulation run. 

   (3) With group technology, the  job flow is expected to be a  flow-shop 

   pattern or a near-flow-shop pattern; hence, in order to investigate the 

    group scheduling under dynamic conditions, simulation experiments are 

   to be run for the flow-shop pattern or the near-flow-shop pattern rather 

   than the job-shop pattern. 

         So far, much research on conventional scheduling has been done 

   to study a large variety of scheduling (dispatching or priority) rules by 

   which the  jobs in the queue are assigned to the idle machines in the job 

   shop,1 and over 100 such rules have been  reported. However there have 

   been very few studies  on the scheduling rules in the near flow shop and 

   the flow shop.) In group scheduling, setup  times play an important role 

   as mentioned above. Therefore, the influences of setup  times on shop 
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   performances should be investigated  in order to clarify the feature of the 

    group scheduling under dynamic conditions.  However, only few studies 

    have been made on this subject.8,9) 

        In this chapter, the effect of the types of flow  patterms-- job-shop , 

   near-flow-shop, and flow-shop patterns on the measures of performance and 

   the scheduling rules is firstly investigated for group scheduling10) 

        It is well known that the shop load greatly influences the comparative 

   performance of the scheduling rules for conventional scheduling. In the 

   case of group scheduling, it can be expected that the relative size of the 

   setup  time to the processing  time and the variance of the setup time also 

   influence the shop performances. In order to study the effects of each of 

   these three factors on each individual scheduling rule, analysis of 

   variance is performed on each of the measures of performance in the flow 

   shop. 

        Then the effect of the relative size of the setup  time to the 

   processing  time on the goodness of the four scheduling rules is 

   investigated for the three flow patterns. 

        In comparing scheduling rules through scheduling simulation, usually 

   the processing  times of jobs are assumed to be random variables generated 

   from an exponential distribution.  In addition, the processing times are 

   obtained from a normal distribution  in an attempt to investigate the effect 

   of the differences in the distributions11) 

  7.2 Simulation model for group scheduling 

  7.2.1 Group scheduling model under dynamic conditions 

        In an attempt to construct a simulation model of group scheduling 

   under dynamic conditions the following preconditions are set: 

   (i) Jobs to be processed are classified into several setup groups. 

 MX Job processing  times requiring completion of jobs consist of setup 
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 times and production  times (machining times) 

 (iii) Setup  times are dependent  on  the sequence of the groups to which 

jobs belong. 

7.2.2  Assumptions for simulation model 

     A simulation model for group scheduling is constructed under the 

                                                                                                                                          • following assumptions: 

 (i) Each machine is continuously available for assignment without 

intermittent unavailability. 

(ii) Jobs are simple  sequences of operations. 

 (ill) Each operation can be processed by only one machine. 

(iv) No preemption and no overlap scheduling. 

(v) Each  machine can handle at  most one operation at a  time. 

(vi) Instantaneous transfer to next machine after completion of an 

operation. 

(vii) The job arrivals follow a Poisson process. 

 (viii) The production  times are random variables obtained from an 

exponential distribution or a  normal distribution. The  setup-time 

distribution is assumed to be a uniform form. 

(ix) Information on the production times and the setup times is available 

for the scheduling procedures. 

7.2.3 Types of flow patterns 

    In order to investigate the effect of the types of flow patterns on 

the measures of performance, simulation experiments are run in the 

following shops. 

(1) Job shop (Flow pattern Fl) in which there is no common pattern of 

 movement of the jobs from one machine to another. 

(2) Flow shop (Flow pattern F3) in which all the jobs flow essentially 

the  same path from  'one machine to another. 
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(3) Intermediate shop or near flow  shop (Flow  pattern F2) which falls 

somewhere between the  job shop and the flow  shop. The flow patterns of 

the  jobs in this shop depend  on their setup groups. 

    In the above three shops, all the jobs processed have the  same number 

of operations. In addition to the above shops, two shops  -- job shop 

(Flow pattern F4) and flow shop (Flow pattern  F5) are set in order to 

investigate the effect of the difference in the mean number of operations 

of a job on the measures of performance. In these shops, the number of 

operations of a  job is a random variable obtained from a uniform 

distribution. 

7.2.4 Measures of performance 

    The measure of performance employed in  the simulation model is the 

mean flow time. This measure is a reasonable choice, since a rule which 

minimizes the mean flow  time will also minimize the mean waiting time and 

the mean number of the  jobs in the queue. 

     In addition to this measure, the maximum flow time is employed as a 

secondary measure. 

7.2.5 Scheduling rules 

    Eight scheduling rules for giving priorities to the jobs in the 

queue are tested in this simulation study; three of them involve setup 

times. 

(1) RANDOM (Random): Job is chosen from the queue on a  random  basis with 

no consideration given to job characteristics. 

(2) FCFS (First-Come, First-Served): Jobs are removed from the queue in 

the  same order as they entered. 

(3) SMT (Shortest Machining  Time): Job with the shortest  machining  time 

has priority. 

(4) SPT (Shortest Processing Time): Job with the shortest processing 
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time is given priority. 

(5) LWKR (Least Work Remaining):  Job with the least sum of the mean 

processing times for all operations not yet performed has priority. 

(6) FOPNR  (Fewest Operations Remaining): Job with the fewest number of 

operations remaining to be performed on the job has priority. 

(7) SST (Shortest Setup Time): Job  with the shortest setup  time has 

priority. 

(8) TSS  (Traveling Salesman Sequence): In this rule, all the jobs of 

a given group in the queue are processed and then the jobs of another 

group are processed in a fixed sequence which minimizes the total setup 

time in a full cycle. This sequence is given by the solution of the 

traveling  salesinan problem for the setup-time matrix. If the group which 

normally follows in the sequence is not represented in the queue, it is 

disregarded, and the job of the next group in the sequence is processed. 

Within the group having priority, the job with the shortest machining 

 time is selected. 

     In the simulation model for group scheduling, the SST and TSS rules 

which include the setup time and the setup group can be expected to play 

an important role in the measures of performance. 

      These  setup-time oriented rules are evaluated in comparison with 

other well-known scheduling rules, such as SPT and LWKR in the latter part 

of the  simulation experiments. 

7.2.6 Parameters of model 

     Three parameters are defined to  run the simulation experiments for 

group scheduling: 

(1) Shop load (L); defined as the ratio of the mean processing  time per 

job to  the product of the number of machines and the mean interarrival 

interval. 
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      (2) Setup time  ratio  (R); defined as the ratio of the mean setup time to 

 the  mean  processing time. 

      (3) Setup  time variance  (V); defined as the ratio of the range of the 

      setup time to the mean setup time. 

           In the simulation experiments, the values of the above three 

      parameters are specified. Then the random variables for the interarrival 

      intervals of the jobs, the production times and the setup times of the 

      operations are generated according to the parameter values of the 

      distributions obtained from the given values of the shop load , the setup 

 time ratio, and the setup  time variance. 

     7.3 Experimental design for simulation 

           The conditions of the simulation model for group scheduling are set 

      as follows: 

      (i) The number of machines in each of the five shops is set at six. 

 (ii) The number of operations for a job is six in flow patterns, Fl, F2, 

     and F3; and the number of operations for a  job is uniformly distributed 

      from 1 to 6 operations in flow patterns, F4 and F5. 

 (iii) The mean processing time per job is set at 6 hours in each of the 

      five flow patterns. 

     (iv) The number of setup groups is set at eight. The flow pattern of the 

     job in each setup group for the near flow shop is shown in Table 7.1. An 

     example of the  setup-time matrix of the eight groups is shown in Table 7.2. 

 (v) The jobs are equally likely to belong to any one group. 

          The experiments were run to investigate the effects of the types of 

      flow patterns, the parameters, the setup time ratio , and the differences 

      in distributions. The  experimental conditions for each case were as 

     follows: 
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                 Table 7.1 Flow pattern of near flow shop 

              Operation 1             2 3 4 5 6 
                        No. 

         - Group 1M1 M3  M2  M4  M6  M5 

          Group 2  M2  M3 M1145  M6  M4 

          Group 3 M1M2  M5/43  M4  M6 

          Group 4  M3  M2 M1M6M4  M5 

          Group 5 M2 MlM5  M3  M6  M4 

          Group 6 M1M4 M3  M2  M6  M5 

          Group 7  143  M4  M2 M1 M5  M6 

 Group 8  M2  Mi  M3  M6  M5  M4 

                         Note:  Mk represents machine k. 

                            Table 7.2 Setup-time matrix 

   -1:\ 1  2, 3 4 5 6 7 8 
         1 0.00 0.20 0.17 0.17 0.15 0.25 0.19 0.21 

         2 0.11  -0.00 0.19 0.24 0.19 0.20 0.17 0.12 

         3 0.23 0.17 0.00 0.25 0.10  0.12 0.18 0.13 

         4 0 09 0.12 0.15 0.00 0.13 0.19 0.24 0.15 

         5 0.24 0.25 0.25 0.22 0.00 0.25 0.14 0.13 

         6 0.21 0.21 0.25 0.20 0.13 0.00 0.12 0.10 

         7 0.21 0.24 0.14 0.20  0.10 0.10 0.00 0.14 

         8 0.10 0.14 0.10 0.09 0.12  0.25- 0.14 0.00 

           Note: The (i,j) element is the setup time required for the 
           machine to start a group Gj job, having just processed a 
            group  Gi job. The fixed sequence which minimizes the total 

            setup time in a full cycle is  G1-G3-G5-G7-4-4-G4-G2-Gi. 
            This setup-time matrix is an example  for a machine  in the 

            job shop Fl.  (L=0.95,  R=0.15,  V=1.00.) 
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 Operation

No.
1 2 3 4 5 6

Group 1 mi  143 M2  M4 M6  /45

Group 2 M2  M3  145 M6  144

Group 3 mi M2  145  /43  144 M6

Group 4  143 M2 M6  144  145

Group 5 M2  M1  /45  143 M6  144

Group 6  /41  144  143 M2 M6  /45

Group 7  143  144 M2  141 M5 M6

Group 8 M2  141  143 M6  /45  144



(1) Effect of types of flow patterns 

     The simulation  experiments are  rum five  times for each of  the 

scheduling rules in each of the five shops in order to investigate the 

effect of the types of  flow patterns  on the measures of performance, such 

as the mean flow time and the  maximum  flow time. In the simulation runs, 

the effect of the length of operations of the jobs on the performances is 

also studied. The values of the three  parameters—  the shop load, the 

setup time ratio and the setup  time variance, are set at L = 0.95, R = 0.15, 

and  V  =  1.00, respectively. 

(2) Effect of parameters 

     In an attempt to investigate the effects of each of the three 

parameters  on each of the four scheduling rules, SPT, LWKR, SST, and TSS, 

for the flow pattern, F5, a  3  x3  x3 factorial experimental design is used 

with factor levels defined as follows: 

  Factor L: Level of shop load 

 L  • Heavy load  (L1  = 0.95) 

         L2.•Medium load  (L2 = 0.80) 

        L3: Light load  (L3 = 0.65) 

 Factor R: Level of setup time ratio 

 R  • Small setup  time ratio (R1 = 0.05) 

         R2:•Medium setup time ratio (R2 = 0.15) 

         R3: Large setup  time ratio  (R3 = 0.30) 

 Factor V: Level of setup  time variance 

 V  • Small setup  time variance (V1 = 0.50) 

         V2: Medium setup  time variance (V2 = 1.00) 

         V3:•Large setup time variance (V3= 2.00) 

     In the experiments, the best estimates of within-cell variance 

(variance for each of the combinations of factors) for each of the 

                        (115)



performance measures for each of the four scheduling rules are computed 

by the analysis of variance technique. 

(3) Effect of setup time ratio 

     The  simulation experiments are run for four different levels of the 

setup time ratio  ---  R=0.05, 0.15, 0.30, and  0.50,  in order to investigate 

the effect of the setup time ratio on the relative goodness for the 

four scheduling rules for each of the flow patterns, Fl, F2, and F3. In 

the runs, other parameters  are set at L = 0.95 and V = 1 .00. • 

(4) Effect of difference in distributions 

     In an attempt to investigate the effect of the difference in 

distributions by which production times are generated, the simulation 

experiments are run for two kinds of production  times obtained from an 

exponential distribution and a normal distribution. These runs are done 

for flow pattern F5, setting parameters L = 0.95 and V = 1.00. 

7.4 Experimental results 

     In order to get the steady-state condition, data on jobs numbering 

 301-1300 (on the last 1000  jobs) were collected for each run. Based on 

the experimental results, the following points are noted: 

(1) Effect of types of flow patterns 

     The experimental results of the simulation runs for the five flow 

patterns are given in Tables 7.3 and 7.4. 

A. Mean flow time 

(i) The experimental results for  the  flow pattern,  F4, which has been 

used for the conventional scheduling simulations, are coincident with 

the results in the previous studies by other researchers; that is, the 

rankings of the FCFS, SPT, FOPNR, and LWKR rules were the same as 

rankings documented in the studies over the mean flow time and its 
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       Table 7.3 Means and standard deviations of mean flow times 
                                       - - - 

                                         Flow pattern 
                       Rules 

              Fl F2 F3  F4  F5 

 RANDOM82.90 78.27 85.16 96.98 105.56                               28
.30 22.62 30.41 34.55 27.00 

                     FCFS 87.29 80.25 86.48 102.79 110.59                               3
2.60 22.68 27.46 33.56 24.22 

 SMT31.33 31.70 30.92 28.06 26.57                          6
.50 6.33 6.75 4.92 2.11 

                     SPT30.22 30.39 29.91 27.62 26.48                          6
.66 5.35 6.78 5.02 2.03 

 FOPNR 67.01 47.20 29.91 53.78 31.02 
                         14.48 9.40 6.78 9.13 1.18 

                    LWKR 46.87 46.03 38.97 39.09 28.73 
                      6.88 7.01 7.87 5.06 3.68 • 

                      SST34.02 35.89 32.43 43.63 44.71                            6
.32 6.82 5.88 12.05 9.47 

                     TSS 38.09 40.92 34.46 50.14 49.04                             6
.84 8.75 6.19 13.30 11.11 

                                                                                                                                                                                     • 

                     Note: Upper value: mean (hours), Lower value: standard 
                      deviation;  Parameters:L=0.95,  R=0.15,  V=1.00. 

      Table 7.4 Means and standard deviations of maximum flow times 

                                          Flow pattern 
                       Rules 

              Fl F2 F3 F4 F5 

                    RANDOM301.5 289.2 324.0 664.1 720.4                              98
.3 87.4 120.4 220.8 185.7 

                     FCFS124.5 144.3 120.1 282.5 260.0                           20
.7 39.2 30.7 67.9 39.5 

                    SMT545.9 552.9 582.5 667.7 660.3                              181
.3 264.8 327.5 203.2 201.3 

                    SPT576.8 543.3 589.9 634.9 646.5                              233
.5 264.0 373.8 233.5 180.9 

                    FOPNR373.3  468.8 589.9 908.6 773.2                              250
.0 215.1 373.8 215.9 119.6 

                   LWKR748.8 648.6 824.2 797.6 741.3                              132
.0 171.4 180.5 188.4 286.7 

                    SST124.1 143.5  140.5 266.4 262.9                          28
.7 28.5 26.1 85.1  •5.3 

                    TSS154.1 155.9 151.0  273.3 295.1                          18
.6 21.0 32.4 53.1 79.0 

                    Note: Upper value: mean (hours), Lower value: standard                • 
deviation; Parameters:  L=0.95,  R=0,15,  V=1.00. - 
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Rules
Flow pattern

 Fl F2 F3  F4  F5

RAMDOM
82.90

28.30

78.27

22.62

85.16

30.41

96.98

34.55

105.56

27.00

 FOPS 87.29

32.60

80.25

22.68
86.48

27.46

102.79

33.56

110.59

24.22

SMT
31.33

6.50

31.70

6.33
30.92

6.75
28.06

4.92
26.57

2.11

SPT
30.22

6.66
30.39

5.35
29.91

6.78

27.62

5.02

26.48

2.03

 FOPNR 67.01

14.48

47.20

9.40
29.91

6.78
53.78

9.13

31.02

1.18

LWKR 46.87

6.88
46.03

7.01

38.97
7.87

39.09

5.06
28.73

3.68

SST
34.02

6.32

35.89

6.82

32.43

5.88

43.63

12.05
 44.71

9.47

TSS 38.09

6.84

40.92

8.75

34.46

6.19
50.14
13.30

49.04
11.11

Rules
Flow pattern

 Fl F2 F3 F4  F5

RANDOM
301.5

98.3

289.2

87.4

324.0

120.4

664.1

220.8

720.4

185.7

FCFS
124.5

20.7

144.3

39.2
120.1

30.7

282.5

67.9

260.0

39.5

 SMT
545.9

181.3

552.9

264.8

582.5

327.5

667.7

203.2
660.3

201.3

SPT
576.8

233.5
543.3

264.0

589.9

373.8

634.9

233.5
646.5

180.9

FOPNR
373.3

250.0

 468;8

215.1
589.9

373.8

908.6

215.9

773.2

119.6

LWKR
748.8

132.0

648.6

171.4

824.2

180.5
797.6
188.4

741.3

286.7

SST
124.1

28.7
143.5

28.5
 140.5

26.1

266.4

85.1

262.9

75.3

TSS
154.1

18.6

155.9

21.0
151.0

32.4
 273.3

53.1

295.1

79.0



variance, respectively. Thus, the conventional scheduling rules 

appear to have the same effect on the mean  flow  time even in group 

scheduling. 

(ii)  There-was no statistical difference in the mean flow time for the 

five flow patterns investigated even at the 95% confidence level for 

any scheduling rule except FOPNR and LWKR. Irrespective of the types 

of  flow patterns, the mean flow time was minimal for the SPT rule, 

and it increased in the order of SMT, SST, and then TSS. It is interesting 

to note that the SPT rule performed best even in flow shops F3 and  F5, 

since intuitively it is expected that LWKR and FOPNR are superior to 

SPT for the flow shops. 

 (iii) As expected, the FOPNR and LWKR rules performed better in the flow-

shop patterns than in the job-shop patterns because the jobs could leave 

the flow shops quickly by processing the jobs with the least remaining - 

works. The differences, except in the LWKR values for Fl and F3 , were 

statistically significant. 

(iv) In order to investigate the effect of the length of operations, 

the performances for the six-fixed length of operations flow types 

 (Fl,  F2,  F3) were compared to those for the variant length of operations 

flow types (mean  operation  length is 3.5) (F4, F5). Due to unknown 

reasons the mean flow time for each of the rules, RANDOM, FCFS, SST, 

and TSS, showed a smaller value for the fixed-operations flow types 

than that in  the  variant-operations flow types. While, the SMT and 

SPT values were less for the variant-operations flow types than for 

the fixed-operations flow types. This result indicates that the 

relative effectiveness of the scheduling rules on the mean flow  time 

is larger for the variant-operations flow types than for the fixed-

operations  flow types. However, the differences were not significant. 
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B. Maximum flow time 

(1) The maximum flow time did not show any statistical difference for the 

fixed-operations flow types for any rule . There was also no significant 

difference in the maximum flow time for the variant-operations flow types . 

 (ii) It is interesting to note that the maximum flow times for the variant-

operations flow types showed significantly larger values than those for the 

fixed operations flow types since it is expected that there is no difference 

for the two flow types as is the case with the mean flow time . 

 (iii)  The FCFS and SST rules performed best and were followed  by TSS for all 

flow patterns. 

(2) Effect of parameters 

     The results of analysis-of-variance computations are given in Tables 

7.5 and 7.6.  The numbers entered in the columns of the tables represent th
e 

percentages of variance caused by the source factors listed in the stub  column . 

          Table  7.5 Results on percentage of mean flow time 

                                         Percentage variance for the rule 
                   Source factor 

                     SPT LWKR SST TSS 

            Shop load (L) 96.76 97.43 50.62 51.87 

 Setup time ratio (R) 2.70 1.06 26.02 25.22 

          Setup time variance (V) 0.08 0.10 0.15 0.00 

                Interaction of 
                                 0.12 0.76 23.03 22.76                   L and R 

                Interaction of                             0
.06 0.25 0.04 0.06 •                   R and V 

                Interaction of                             0 .15 0.18 0.05  0-01  L  and  V 

          Error 0.13 0.22 0.09 0.08 

          Grand mean 18.36 21.48 29.64 33.05 

            Standard deviation 5.20 6.17 21.50 24.58 
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Source factor

Percentage variance for the rule

SPT  LWKR SST TSS

Shop load (L) 96.76 97.43 50.62 51.87

 Setup time ratio  (R) 2.70 1.06 26.02 25.22

Setup time variance (V) 0.08 0.10 0.15 0.00

 

. Interaction of

L and R 0.12 0.76 23.03 22.76

Interaction of

R and V
0.06 0.25 0.04 0.06

Interaction of

L and V
0.15 0.18 0.05  0_01

Error 0.13 0.22 0.09 0.08

Grand mean 18.36 21.48 29.64 33.05

Standard deviation 5.20 6.17 21.50 24.58



           Table 7.6 Results on percentage of maximum flow time 

                                           Percentage variance for the rule 

                   Source factor 
                      SPT  LWKR SST TSS 

            Shop load (L) 93.52 83.06 47.19 40.68 

            Setup time ratio (R) 0.41 1.12 29.41 35.02 

            Setup time variance (V) 0.18 0.29 0:83 0.43          

. Interaction  of 1 .58 7.78 20.20 19.02 
 L  and  R 

          Interaction of 0 .46 2.71 0.16 0.18  R  
and  V 

           Interaction of 1.41 1 .41 1.23  2.45 

                               • 

 -  L  and  V 

           Error 2.44 3.63 0.98 2.21 

            Grand mean 344.07 578.52 197.11 204.11 , 

                 Standard deviation 217.25 265.52 128.54 119.55 

The results showed the following points. 

A. Mean flow time 

(i) As expected, the load factor was most prominent and caused about 97% 

of the variance for the SPT and LWKR rules. 

(ii) For the SST and TSS rules, the load factor had the largest effect of 

about 50%. The setup time ratio factor was next in importance and the load 

and setup time ratio interaction exerted an almost equal influence on 

this performance. This result indicates that the goodness of the SST and 

TSS rules depends on the setup time ratio. 

(iii) Against expectation, the setup time variance had little influence on 

the mean flow time for all rules. This result may be explained by the fact 

that the setup-time distribution was assumed a uniform form . 
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Source factor

Percentage variance for the rule

SPT  LWICR SST TSS

Shop load (L) 93.52 83.06 47.19  40.58

Setup time ratio (R) 0.41 1.12 29.41 35.02

Setup time variance (V) 0.18 0.29 0:83 0.43

 

. Interaction  of
L and R

1.58 7.78 20.20 19.02

Interaction of

R and V
0.46 2.71 0.16 0.18

Interaction of
 -  L  and  V

1.41 1.41 1.23 2.45

Error 2.44 3.63 0.98 2.21

Grand mean  344.07 578.52 197.11 204.11

Standard deviation 217.25 265.52 128.54 119.55



B. Maximum flow  time 

      In regards to within-cell variance, almost the same results as for 

the mean flow time were obtained. 

(3) Effect of setup time ratio 

      The effects of the setup time ratio on the measures of performances are 

shown in Figures 7.1 and 7.2 for the three flow patterns. The scheduling 

rules employed in the experiments were SPT, LWKR, SST, and TSS. 

 (i) With small values of the setup time ratio, the SPT rule showed the 

smallest mean flow time, LWKR and SST the next smaller ones , and TSS the 

largest one. 

 (ii) As the setup time ratio increased, the SST and TSS values of the mean 

flow times decreased and became equal to or less than the SPT value . 

 (iE) The LWKR and SPT rules provided a bad performance on the maximum flow 

time for all the setup time ratios. For the larger setup time ratios , such 

as 0.30 and 0.50, the SST and TSS rules performed slightly better than the 

SPT rule on the mean flow time, while the differences were not significant . 

Considering that SST and TSS performed best on the maximum flow time , it is 

concluded that SST and TSS apppear to dominate SPT for the large setup time 

ratios. 

(4) Effect of difference in distributions 

     Figures 7.3 and 7.4 show the effect of the difference in the production-

time distributions. It seems from these figures that there is no large 

difference in superiority of each of the scheduling rules and in performance 

values for the two kinds of distributions. In the case in which the 

production times are obtained from a normal distribution, there is a tendency 

to decrease the maximum flow time for SPT when the setup time ratio is as large 

as 0.50. This is explained by the fact that the standard deviation is as 

small a value as half the mean, and hence the maximum flow time is dominated 
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• Fig . 7.1 Mean flow times for three flow patterns 
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                         Fig. 7.3 Mean flow times for the production times 

                                   generated from two distributions 

                                                                                                                                                                                                          • 
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by the variation of setup times rather than that of processing times. 

When the standard deviation of the production times is set double,  the, 

value of the maximum flow time for the setup time ratio of 0.50 was over 

100 hours, which was almost equal to the value for  R=0.30. 

7.5 Conclusions 

(1) The conventional scheduling rules, such as FCFS (First-Come, First-

Served), SPT (Shortest Processing Time), and others, showed almost the same 

relative performances  on  the mean flow time for group scheduling. 

(2) There was no significant difference in performances on the mean flow 

time and the maximum flow time for the different flow patterns for any 

scheduling  rule-except the FOPNR (Fewest Operations Remaining) and LWKR 

(Least Work Remaining) rules. 

(3) The performances on the mean flow time and the maximum flow time for 

the well-known SPT and LWKR rules were also greatly influenced by the shop 

load for group scheduling. The ratio of the setup time to the processing 

time as well as the shop load influenced the performances for the SST 

(Shortest Setup Time) and TSS (Traveling Salesman Sequence) rules; however, 

the ratio of the range of the setup time to the mean setup time showed no 

influence on the performances for the four scheduling rules, SPT, LWKR, SST, 

and TSS. 

(4) In group scheduling, where  the relative size of the setup time to the 

processing time is large, the use of the scheduling rules, such as SST and 

TSS including the setup time and the setup group, seems to be desirable. 

(5) The difference in production-time distributions is not critical in 

comparing scheduling rules. 
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CHAPTER 8 SUMMARY 

     Group technology, which  is a technique to improve the productivity 

in small and medium lot size production, has gained major attention in 

manufacturing industries. In this thesis, group scheduling models based 

on the concept of group technology were developed in an attempt  to  achieve 

the benefits of group technology applications. 

     In the models under static conditions, the fundamental assumptions that 

jobs to be processed are classified into several groups and jobs within the 

same group are processed in  succession  were made. Scheduling models of this 

new type required the determination of both the sequence of groups classified 

and the sequence of jobs in each group simultaneously. 

     The following conclusions were reached for the static group scheduling 

models. 

(1) The single-stage group scheduling model was developed under three kinds 

of criteria  --- the minimum mean flow time,  the  minimum weighted mean flow 

time, and the minimum total tardiness. For the minimum-mean-flow-time and 

the minimum-weighted-mean-flow-time problems, two theorems were given for 

optimally determining a group schedule (group and  job sequences). Several 

theorems which specify the relative order of pairs of groups in an optimal 

group schedule were proved  for  the problem of minimizing the total tardiness. 

With the use of those theorems, efficient algorithms for determining the 

optimal and the near optimal group schedules were developed. The effective-

nesses of the algorithms were verified with numerical examples. 

(2) The single-stage group scheduling model with sequence-dependent setup 

times was developed under three kinds of criteria  --- the minimum total 

elapsed time, the minimum mean flow time, and the minimum total tardiness. 

The problem with the objective of minimizing the total elapsed time was 

                         (125)



  shown to  be  reduced to the traveling salesman problem. In order to solve 

  the minimum-mean-flow-time  problem,  the dynamic programming approach and the 

  branch-and-bound method were applied. For determining a group schedule 

  minimizing the total tardiness, the branch-and-bound algorithm was developed 

  and a numerical example was shown. 

  (3) Theoretical analyses were made for the two-stage flow-shop scheduling 

  problems with setup times separated and time lags when the objective was to 

  minimize the total elapsed time. Theorems, which were extensions of 

 Johnson's,were developed to determine the optimal schedules. They were 

  extended to the two-stage flow-shop group scheduling. Furthermore, the 

  special multistage flow-shop group scheduling problems, where there exist some 

  well-defined  rentionships among the group setup times and the job processing 

  times, were theoretically treated and a theorem and algorithms were given to 

  determine the optimal group schedule for each of the cases. 

  (4) In order to solve the multistage flow-shop group scheduling problems, 

  the branch-and-bound method was applied. For the problem of minimizing the 

  total elapsed time, several lower bounds were developed and the effective-

  nesses of these were examined with numerical experiments. The machine-based 

  lower bound was verified to be more effective than others. In addition, in 

  the case of minimizing the weighted mean flow time, the effect of randomness 

  of the weighting factors on the effectiveness of the branch-and-bound 

  algorithm was tested with numerical experiments. The results showed that 

  the algorithm was effective when the variation of the weighting factors was 

  large. 

  (5) A multistage group scheduling model with variable job processing times 

  and costs  was developed. In this scheduling model, job processing times 

  were assumed to be variable, depending on machining speeds for jobs, and 

  hence, decisions were to be made as to the scheduling of groups and jobs and 
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          the determining of machining speeds. The minimum total elapsed time with 

          the minimum number of tardy jobs was employed as a scheduling criterion, 

          and the minimum  total  production cost was employed as a criterion for 

          determining optimal machining speeds. The analysis of the model presented 

          was made under these  criteria, and the optimizing algorithms for determining 

          the optimal group schedule and the optimal machining speeds were proposed. 

          The effectivenesses of the algorithms were verified with numerical 

            examples. 

               In the last part of this thesis, the group scheduling model under 

          dynamic conditions where jobs arrive at random over time was developed. In 

          this model, it was assumed that jobs were classified into several setup 

          groups and group setup times were sequence-dependent. The following 

          conclusion was obtained for this problem. 

           (6) A simulation model was constructed and the simulation experiments 

          were run to investigate the effect of types of flow patterns  --- job-shop, 

           near-flow-shop, and flow-shop patterns on flow time performances. Results 

          showed that there was no significant difference in performances for the 

          different flow patterns. In addition, the effect of the setup time on the 

          performances for several scheduling rules was  algo studied in the experiments. 

          Results indicated that the setup time played a critical role in group 

          scheduling in those cases where the relative length of the setup time to 

          the processing time was large. 
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