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CHAPTER 1 GENERAL INTRODUCTION

1.1 Introduction

From the standpoint of production efficiency, the most desirable production
type for manufacturing industries is that of mass production. However, quite
a few manufacturing plants have adopted the small and medium lot size type ofr
production. So far, efficient methods have been developed to increase
pfoductivity in small and medium lot size production. Group Technology (GT),
which was developed by Mitrofanov, is one such ﬁseful method.

The concept of gréup technology has recently been introduced in the
manﬁfacturing areas of many forward lookigg-companies.~ Group techriology has
been investigated from the standpoint of product design, commonality of tooling,
and reduction of setup time. Intensive efforts have been made to establish’
effective ciassification and coding systems, which are fundamentals for group
technology. 1In order to achieve additidnal benefits from group technology,
this philosophy should be applied to other management areas, such as
production scheduling. From this point of view, this thesis deals wifh the

production scheduling problems associated with the concept of group technology,

which will be referred to as "group production scheduling" or "group

scheduling".

1.2 Group Technology

Group technology (often called "part—family manufacturing"), which was
put forward by Mitrofanov}) is one of the effective methods which aims at
increasing the productivity of small and medium lot size'manufaéturing.
Group technology is a technique to increase productivity by classifying a
" broad variety of parts having similarities as to shape, dimensionms, and/or
process route into several groups. By applying this technique to the small

and medium lot size manufacturing, several advantages, such as mass production
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effect, possibility of flow-shop pattern on procgssing route, reduction‘of
setup time and cost, and simplification of the material flow and handling,
can be expected. | |

Group technology was first iﬁtrbduced into West Germany, then into
Europe, 1ater into U.S.A. and Japan. Now, gfoup technology as a manuﬁap;gring
concept has gained steady interest within the manufacturing industry all over
the world. |

The basis‘of group technology is a classification and coding'system
with which parts to be progesséd can ﬁe classified. Up to>date, various
classification and coding systems, most of which are based on. the geometrical
shape and/or proceSsiﬁg routing, have been developed. The most fepreséntative

2)

one is the Aachen system in West Germany by Opitz. Others are the.
Mitrofanov system (USSR), the VUOSO system (Czechoslovakia), the Brisch
system (England), the TEKLA system (Norway), and the KK-1, 2 systems‘(Japanf?
These systems have produced not a little effect in improving production‘
efficiency, although they are not complete and universal. Furthérmore, an
additional significant saving from group technology is expected to be
realized by applying the concept of group technology to other management areas.
However, there still have been very few studies on this subject?~7)'
1.3 Production scheduling

Scheduling is the allocation of jobs to be processed to a specific
position on the time scale of arspecified machine (or facility) in a
workshop coﬁsisting of several machines. A job is a product or part to be
processed and consists of a given sequence of operationms. . The processing of
an operation requires the use of a particular machine for a given duration,
the processing time of the operation. If attention is directed to a machine,

there are several operations waiting for processing in a certain time span

on that machine. Therefore, scheduling can be regarded as the problem of

(2)



ordering the operations associated with each machine. In this sense, the term
"sequencing" happens to be used synonymously with "scheduiiné." In general,
it 1is defined that sequencing is concerned only with the ordering of operations
on a single machine, while scheduling is a simultaneous and synchronized
sequence on several machines. However, the two terms will be used inter-
changeably in this thesis, since such a usage of them seems to arouse no
confusion.
Scheduling problems arise in a variety of situations. Within the range
- of scheduling problems, for example, there are problems of sequencing programs
to be run at a computer center, and problems of sequencing paeients at a
'hospitel. The scheduling defined at the outset of this;section is called

"production scheduling,”

since it occurs in industrial production.

In general, there may be a number of schedules (sequences)iin scheduling
a given set of jobs on machines. Therefore, it is necessary to select one
or several schedules from among them by a certain performance measure. This
measure of performance is usually celled "scheduling criterion" or simply
"ecriterion", and many kinds of scheduling criteria are employed in production
scheduling. The most representative ones include: total elapsed time (make-
span), mean flow time, total tardiness, and facility utilization in the
workshep.

A basic production-scheduling problem is characterized by the following
conditions:aﬁ&o)
(i) Jobs to be processed are available simultaneously for processing at eime

zero.

(i) Each machine is continuously available for processing jobs.

(i) Jobs consist of strictly-ordered sequences of operatioms.
.(iﬂ The time required to complete a job consists of setup time and processing

time, and is deterministic and known in advance.

(v) Each operation can be performed by only one machine.

(3)



(v) There is only one machine of each type in‘the workshop.

(vii) Preemption is not allowed,(Once processing begins on a job, it is

processed to completion without interfuption.)- |

(viti) No overlépping_(The processing times of successive operations of a

particular job may not be overlapped.)

(ix) Each machine can handle at most one operation at a time.

(x) Intermachine transportation times are ignored or included in processing

times. |
Several of these aséupptions,,of course, can frequently be relaxed

and other assumptions can be added to these, which results in a different

scheduling problem.

7 One of the most bésic production scheduling problems is a single-stage (or
single-machine) scheduling-one, in which jobs, each of wﬁich consistsofaasingle
operation, are processed on a single machine. 1In the case of processing n
jobs on a single machine, the total number of distinct schedules (sequences)
to be evaluated is n!, which is the number of different permutations of n
elements. In this senée, this problem is often called "job sequencing."

- For this problem, several useful scheduliﬁg rules for determining optimal: ..
schedules have been developed under various kinds of scheduling criteria?glz)

When the workshop consists 6f several machines, the shop is called a
"flow shop" or "job shopf according to the type of flow patfern of jobs to
‘be processed. A flow shop is one in which all the jobs>pass identically
from one machiﬁé to another. This type of flow pattern is typical for mass
production. On the other hand, a job shop is one in which the flow of jobs
is not unidirectional. This type of flow pattern occurs in small and medium
lot size production.

Flow-shop scheduling problems are complicated és compared with single-
machine scheduling ones, and hence only a few theoretical results have been

13)

reported. A well-known and practical one is Johnson's theorem for the
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two-machine flow-shop scheduling problem. For a more thgn two-machine floﬁ-
shop scheduling problem, in general, no theorem which gives easily an optimal
schedule has been developed. It may be necessary to resort to general
purpose methodologies, such as a dynamic programming approach, a branch-and-
bound method, or a heuristic procedure, all of which can be applied to solve
complicated combinatorial problems including scheduling problems.

Job-shop scheduling problems are much more complicated and not yet
cdmpletely solved. The only case which is theoretically solved is the two-

14)

job, m-machine job-shop SCheduling problem. In principle, it may be possible
th;t there are (n!)m alternatives whenn jobs are to be processed on m machines
in a job shop. It is possible theoretically to obtain an optimal schedule

by enumerating all possible schedules and selecting a schedule according ﬁo

a certain measure of performance. This, however, is not practical, because it
requires substantial computational efforts, pérticularly when the number of
jobs is large. For example, there exist approximately’1.4dC107 possible
schedules even in the case of m=n=6.. Several attempés have been made to
solve the job-shop scheduling problems by applying the general -purpose
methodologies; Regrettably, no successful . result has been reported.

The scﬁeduling models mentioned above are static onés, since jobs are
available simultaneously for processing. On the other hand, in a dynamic
job-shop scheduling model where jobs arrive at random over a certain time,

- it is almost impossible to analytically determine an optimal schedule. For
this type of model, an effective approach is a scheduling simulation. In fhe
jéb shop, jobs to be processed on a specified machine make a queue in front

of that machine, so that the shop behaves like a network of queues. 1In this
case, the processing order of jobs is determined by means of dispatching
decisions. The study of scheduling in a dynamic job shop has made considerable

progress with the use of computer simulation models. With the aid of these

models, a large number of scheduling rules (or dispatching rules) for giving

(5)



priorities to j@bs in the queue in front of each of the machines have been

developed, and broad conjectures about scheduling procedures have been
8,9) |

obtained.”’
1.4 Group prbduction scheduling

,AS statedfhlthe prey%ogslsegtioqs, itis expéc}ed that, hn;ddition to the
- benefits from the pure-production technological viewpoints attained by group:
technology, an additional benefit is achieved by applying this philosophy to
the production scheduling. 1In processing a large variety of.jobs, several
results,sdch as reduction of setup time, learning effects, and reduction of
fraction defective, will be obtained by processing the jobs with the same or
similar operations in succession.

Based on the above consideration, produétion scheduling models of a new
type have been developed for the purpose of improving the productivity in
small and mediuﬁ lot size manufacturing. In the scheduling models, jobs
haviﬁg the same or similar operations are assumed to be classified into'the
same group and processed in succession.. In this thesis, the production
scheduling which is associated with the concept of group technology is
referred to as "group production scheduling" or "group scheduling" for short.

‘First, group scheduling models under static conditions are considered.
The fundamental assumptions of the models are as follows:

(i) Jobs to be processed are classified into séveral groups and jobs within
the same group are processed in succession. |

(#) Group processing time required for completion of a group consists of
group setup time and the sum of job proceséing times contained in each‘group.
(di) Grbup setup time necessary to process a group is independent of the
sequence of groups.

(ir) Job setup time needed to process a jobxis independent of the sequences

of groups and jobs, and is included in the job processing time.

(6)



(v) In the case of multiple production stages, all jobs and groups are
processed in a flow-shop paﬁtern,(Allvjobs and groups follow the séme path
from one stage to another,) Furthermore, the ordering of groups and jobs is
assumed td be the same on each machine, (No passing of groups and jobs is

allowed.)

Table 1.1 shows the group scheduling where jobs are classified into N

groups, each of which consists of n, jobs (i=1, 2, ..., N).

Table 1.1 Group scheduling under static conditions

- Group G1 7 G2 cee GN
ces cee Jgn le--
gob [T Pz | et Pang | T2a P22 00 [Pong Ini w2 Nny
N
In the group scheduling models defined above, there are N!fnini! feasible
1=

schedules on each machine. On the other hand, in maﬁy conventional scheduling
problems where there exists no precedehce relation among jobs, the number of
sequences to be evaluated is n! dn each machine in the case of n jobs:
‘Therefore, the conventional scheduling can be regarded as a kind of gfoup
scheduling in which only one group consisting of'n.jobs is involved.

In the group scheduling problem, optimal décisions are to be made as to
the sequence of grdups classified and the sequence ofbjobs in each group. In
this thesis, they are ;alled "oroup sequence" and "job sequence," respectively.
Furthermore, a schedule in which both group and job sequences are specified
is called a "group schedule;“

There is a string problem which seems to be similar to the grouﬁ
scheduling problem. However, significant differences exist between both
problems in that the string problem has no background of group technology,
considers only the sequence of groups classified excluding the sequence of

jobs in each group, and does not include group setup times in its model.

(7)



In the string problem, theoretical analyses have been made as to the

single-stage problems of.minimizing certain measures of performance15’16)

and the two-stage problems of minimizing the total elapsed time}7’18)
However, there have been only a few studies treating both sequences of groups

and jobs simultaneously}g?zo)

In the first part of this thesis, analyses
of the group scheduling problems under static conditions are pefformed and
several effective theorems and algorithms for determining the optimal group
séhedules are developed.

in real situations in manufacturing plants, jobs arrive at the shop
randomly over time. Hence; it is important to consider the scheduling
prdblem under‘dynamic conditions. TIn the latter pért of thé thesis, the
group scheduling Problem under dynamic conditions is also considered under
the following fundamental conditions:
(i). Jobs to be processed are classified into several setup groups.

(ii) Group setup times are dependent on the sequence of the groups to which

jobs belong.

1.5 Outline of thesis

In Chapters 2 to 6, group scheduling models under static conditions are
dealt with. Chapter 2 introduces a basic single-stage group scheduling model.
First, theorems are offered to obtain: the-optimal group schedules under two
kinds of criteria — the minimum mean flow time and the minimum weighted
mean flow time. Second, én algorithm for determining a group schedule
minimizing the total tardiness is developed.

In Chapter 3, a group scheduling model with sequence—defendent setup
times is developed. Iﬁ this ﬁodel, group setup times are assﬁmed to be
dependent on the sequence of grouﬁs. It is éhown that the group scheduling
problem of minimiiing the total elapsed. time can be reduced to a traveling

salesman problem. Under the criteria of the minimum mean flow time and the

(8)



minimum total tardiness, optimizing algorithms are developed to determine
optimal grouprschedules, respectively.

In Chapter 4, a theoretical analysis is made to the group scheduling on
the multiple production stages under the criterion of the minimum total
elapsed time. First, the well-known Johnson's theorem is extended to the
two-stage scheduling problem with setup times separated. Second, the optimal
grouﬁ scﬁedulgs on the multiple production stages are determined for those
special cases where group setup times and job processing times have well-
defined relationships to one another.

In Chapter 5, a branch-and-bound method is applied to solve multistage
group scheduling . problemé. . The branching procedure for group scheduling
is clarified, and.lower bounds for the total elapsed .time and the weighted
mean flow time are developed. Optimizing algorithms are presented to find
optimal group schedules, and the effectivenesses of the algorithms are examined
with numerical experiments.

Chaptef 6 develops a multistage group écheduling model with variable
processing times and costs depending on machining conditions. The optimal
group schedule minimizing the totai elapsed time with the minimum number of
tardy jobs is determined, and.then the optimai machining speeds minimizing the
total production cost are decided under the deterﬁined optimal group schedule.

Chapter 7 deals with a dynamic group scheduling model where jobs arrive
at the workshop randomly over time. Scheduling simulations are run to
investigate the effect of types of flow patterns -— job-shop, near-flow-shop,
and flow-shop patterns on the flow time performances. In addition, the effect
of the setup time ratio, defined as the ratio of the mean setup.time to the
mean processing time, on the performances for sevéral scheduling rules is

studied in the experiments.

(9)



CHAPTER 2 GROUP SCHEDULING ON A SINGLE PRODUCTION STAGE

2.1 Introduction

A single-stége (or single-machine) scheduling problem is the most basic
one in producfion scheduling. In this problem the number of schedules to be
evaluated is n! when n jobs are to be proceésed on a singlermachine. Hence,
one can find an optimal schedule by paying attention to the permutations of
job indices. Thus, this problem is called "job'sequencing." fhis problem
has been studied by many researchers and lots of theorems and algorithms which
give optimal schedules havé been proposed and developed under various_kidds
of criteria}NA)

Even for group schedﬁling, a single-stage scheduling problem is a
fundamental in the study of seﬁueqcing and scheduling. This chapter deals
with the gfoup scheduling on a'single production stage and develops the

optimal group scheduling under three kinds of criteria?’ )

The scheduling criteria employed in this chapter are the folloﬁing:
(i) The minimum mean flow time:
(i) The minimum weighted mean flow time
(iﬁ) The minimum total tardiness

The problem is to determine the optimal group schedule (optimal sequences
of groups and jobs) minimizing each of the above performance measures.

It is supposed tﬁat jobs to be processed are classified into N groups,
each of which consists of n, jobs (i=1, 2;..., N). Let Jig(i==l’ 2,..., N,
_ £E=1, 2,..., ni) denote the Eth job in group Gi (i=1, 2,..., N) and pig and
di& (i=1, 2,..., N, £=1, 2,..., ni) denote the job processing time including
job setup time and the due date of job JiE’ respectively. Furthermore, let
Si (i=1, 2,..., N) denote the group setup time of group Gi. The symbol (i)

is used to signify a job or a group sequenced in the ith position for a group

schedule.

(10)



Ip the scheduling problem defined, the total elapsed time, which is a
fundamental and important criterion in produCtion‘scheduling, is no longer a
suitable one. The total elapsed time is given by

N N i e

Fmax =izls(i) +i£1g§1 P(1)(®)

(2.1)

Hence, the total elapsed time is not dependent on the order of groups and

jobs for a single-stage problem.

2.2 Minimizing mean flow time and weighted mean flow time

The criteria of the minimum mean flow time and the minimum weighted nean
flow time are tractable even in the group scheduling. 1In this section, a-
theorem which gives the optimal group schedule minimizing the mean flow time
is offered, and then it is extended to the critefion of the minimum weighted
mean flow time.

The completion time of J,_, the &£th job in the ith group is

ig
i-1 £

C(i)(a) L6 T T w L Pwmm (2.2)

where P(j)( Z p(J)(E))IS the total processing time of G( )

Since the ready times of all jobs are to be zero, the flow time of J(i)(g)

is sémply
Fare T Swe (2.3)
~ Thus, the mean flow time is obtained by
N
lzlgg Faoye /LN
1 ¥ L1 o
--—-Zl (D), Z Uy L rwsw Zlgzlvg Py

' = + i i i =
where Q(i) ( S(i) P(i)) is the group processing time of G(i) and M ( izlni)
is the number of all jobs.

In the above equation, the second term is a constant. The first term

(11)



is concerned with the group sequence and is independent of the job sequences
because Q(j) is a constant. The last term is concerned with the job sequgncev
in each group, and is not influenced by the group sequence. Hence, the group
sequence and the job éequences can be determined independently of each other.

The first term is minimized by ordering the groups in nondecreasing order

of Qi/ni.. The last one is minimized by ordering the jobs in nondecreasing
order of job processing times for each group. Sequencing the jobs in non-
deéreasing order of processing times is usually called "éhortest—processing—
time (SPT) sequencing" agd is the most important concept in fhe entire
subject of-scheduling. It performs with surprising efficacy even in dynémic
job shop scheduling, as will be shown in the last chapter of this thesis;

Thus the results are stated formally as a theorem in the following way.

Theorem 2.1 1In a single-stage group scheduling problem, the mean flow time
is minimized by ordering the jobs in each group and the groups, respectively,

such that

PO Pw@ S fP@amy ETh B
and '

S + P

(1) + P

S

w . fetfe ... (2T Tm

R¢)) ST ¢ )

+ P

In some cases, jobs do not have equaliimportance. A value or weighting
factar, Wig(i==1’ 2,..., N, £=1, 2, ..., n;) is assumed to be given for each
job to describe its relative importance.

The weighted mean flow time is given by the following equation, similar
td equation (2.4).

| N T i1 nj

N
S 1 + L
i Mlzlgzl " © Ltk Lo e

1N Big :
Z gzlv21“<1)(v>P(i)(v) -9
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In the case of minimizing the weighted mean flow time, the following

theorem, which is an extension of Theorem 2.1, holds.

Theorem 2.2  In a single-stage group scheduling problem, the weighted
mean flow time is minimized by ordering the jobs in each group and the groups,

- respectively, such that

oo Poe . ... | Poaey

(i=1, 2,..., N)

| @ Y@@ - (@) (ny)
and .
.ﬁn+9a);-ﬂm+Pa)< o Sy * Py
———————— n2 > < nN
Z Fanm X REYG Ezl Yan @)

The proof of this theorem is omitted since it is proved in much the

same way as in the case of minimizing the mean flow time.

2.3 Minimizing total tardiness
The criterioﬁ concerning jobs' due dates, espécially the minimum total

tardiness, is important in production scheduling. Not a few efforts have been _
made to solve the conventional scheduling problem of minimizing the total
tardiness. However, none of the complete solution procedures was presented
because of the complexities of the problem. A heuristic algorithm for
determining a suboptimal schedule has been propoéed fy Wilkerson and Irwin?)
For determining an optimal schedule, Emmons8) gave several theorems which
establish the relative order of pairs of jobs and proposed an efficient
imblicit enumeration algorithm.

" In this section, an extension of Emmonsﬂ theory to the group scheduling
is made. Several conditions under which certain groups precede others in én
optimal . group schedule are offered to find the optimal sequences of groups

and jobs. As to the job sequence, two cases are considered: (i) job

sequences are predetermined, (i) job sequences are not predetermined. Then,'

(13)



efficient algorithms for determining the optimal group schedule or the
near optimal group schedule under both conditions are proposed. An optimal
group schedule can be obtained by evéluating a few schedules for moderate

size problems. The algorithms eliminate most sequences from consideration.

2.3.1 Total tardiness
Since the completion time of J(i)(g)’ the £th job in the ith group, is

given by equation (2.2), the tardiness of the job is

Ty =™ Cuye Y@ ? ' (2.6)

Then, the total tardiness of all jobs included in G(i) is

nj
z max (C
£=1

0) 2.7

Ty ~ E T(m)(g) @@ ~ 4w @’
£=1

Hence, from equations (2.2) and (2.7) the total tardiness of all jobs in all

groups is
E

12152 max { Z 2ot Pt vZ]}’(i)(v) ENSIGK

0) (2.8)

Hereafter, groups will be indexed in order of nondecreasing group
processing ;ime Qj including group setup time Sj.

Let Ai and B, (i=1, 2,..., N) be the sets of indices of groups that, at
any point, have been shown to come after and before Gi in an optimal group
schedule, respectively. Furthermore, let Zi i=1, 2,..., N) be the set of

indices of all jobs in Gi'

2.3.2 'Scheduling algorithm I (In the case of predetermined job sequence)
As to group scheduling for the minimum-total-tardiness criterion, we

obtain the following theorems and corollaries that establish the relative

order of pairs of groups in an optimal group schedule. These are

_ extensions of Emmons' theorems and corollaries.
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Theorem 2.3 For any two groups Gy and G with Q = Q , if the following
conditions are satisfied, then Gi precedes Gj in an optimal group schedule.
(I) 1In the case of n, b3 nj, nj inequalities (2.9) hold for nj sets of two

jobs Jig and Jjn (te Zi,r1er).

d, +7) -p.Smax(2Q+Q, d + P..) (2.9)
N keBy k v2n+1 v

(I) In the case of n, < nj, in addition to the above n, inequalities,

(hj-ni) inequalities (2.10) hold for the remaining_(nj-ni) jobs Jjn (ne Zj)'
. +X 2Q-1 Q (2.10)
J vn+1J ke,

N
where Q = z Q..
i=1 *

Proof. Let S be any schedule in which‘Gj precedes Gi' Consider a schedule
S' that differs from S only in that Gj and Gi are interchanged. We shall
show that interchanging the two groups must decrease, or possibly leave
unchanged,>thg total tardiness. Denote by X and Y the times at which Gj

begins and Gi ends, respectively, in S (see Fig.2.1). Clearly, all groups

6 P

Schedule S 7///]}7 % §%5§
i Gy ' Gj |

Schedule S' %%7 %

Tz
$$4
w,

Time ——s Y

"Fig. 2.1 The effect of interchanging two groups

that precede Gj or follow G; in S are unaffected. Hence, the tardinesses of

those groups remain unchanged. All groups between Gj and Gi are advanced in

(15)



time by the amount of (Q 5~ Qi) 20, .w.hich can only decrease or leave unchanged

their tardiness. Let AT; and AT+ be the decrease of tardiness of Gi and

k|

the increase of tardiness of G,, respectivély. Hence, for the proof of

-3

Theorem 2.3, it is sufficient to show AT izAT;- under condition (I) or (II).
Let ATig and ATjn be the decrease of tardiness of J and the increase

i
of tardiness of Jjn’ respectively, for which inequalitj (2.9) holds. Then,

AT 2 AT is shown as follows.

ig jn _
' 3
Inequallt:y (2.9) implies that either d + z ~+1P4y < ZkéBJQk + Qj or

4
J
dig + Loy, < din * zv=n+1p' (ox b°th)'
Case (a). Suppose d X\:—g +1P4 zkeB._Qk +. QJ From the meaning of
ng . -
Bj’ X 2 Zk'e-Bij’ sq that di«E + Z §+1piv X + Qj £ Y. Hence, ATiE =Y -

- max(3 + 5 -y - ng
Digupy, - e + s, + Loe1Pgys 43 = ¥ - max(X + Qq, dpp + [T, ).

On the other hand, for AT;],

: . n:
+ {0, 1£d, 2 Ldns Psy

AT, =
Jn v _ n .
Y - max(X + Q., dj + zv;r&l pj\))’ otherwise
1 . -
- hen AT, - ATt = AT, 20
1fd, 27 Zv;nﬂpjv then AT in i
Ifd, <Y- an . , then AT,, - AT, = max(X +Q,, d, + 5 p.)
jn fv=n+l jv ig jn 3i° in v=n+l-jv
z

- max(X + Qi’ 0, since X + Qj > max(X + Qi’ d

gt z\>—E+1 Py Tt zv=£+lpi\’)'

Case (b). Suppose d + z i We consider three

. -
=g+1Piv S dj-n + Zv;n+1pjv'

cases.
. 1 "~ = -
(1) If dg, + Z e41Piy < 94n Zv_nﬂp <Y, then AT, =Y - max(X + Q,
+2 ATY =Y - max(X + Q +Zn P.,).
v-£+1p1v jn 7 3 jn v=n+1-jv
- + n
- = j -
Hence, ATig ATjn max(X + Qj’ djn + zv—n+1p ) - max(X + Qi’ ig +
Zni 20, since X+ Q, 2 X + da, +13 + 1ot P
v=€+1pig)_- s Since Qj 2 Qi an jn V=ﬂ+lpjv £+1 1v
n, n.
s 1 = - +
(i) If di, + zv_g+lpiv_Y < djn + ngnﬂpjv, then ATLE Y - max(X + Q,
+ 14 ) ATY =0
die t Lyzga1Piy) jn
e +
Hence, ATiE ATJ, = ATiEj > 0.
i <d o+ R then AT, = AT =0
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Thus in all cases, AT, 2 AT+ for two jobs J.,_ and J, satisfying

ig jn ig 3n

inequality (2.9). Then T;, P AT;-V is shown as follows.

(a) n, 2 nJ. From condition (I), ATiE T-; (EeZi, ner) for ny sets of
two jobs Ji‘c; and Jjn (Eez, i neZ ) and AT, ig 2 20 (cez ) for the remaining

. ot

(nij-nj) jobs Jig (EeZi). Hence, ATi Z'TJ_‘ | |

(B) n, < n,: From condition (W), AT., > ATT (£e€Z,, neZ.) for n, sets

' i3 ig jn i h| h
of two jobs Jig and Jjn (gezi, ner) and AT-:;-n 20 (n er) for the remaining
. . . - +
(n‘_j —ni) jobs Jjn (nezj). Hence, ATi 2 -ATj,

(Q. E. D.)

Corollary 2.1 1If Theorem 2.3 is satisfied for G, and G, (vi > 1), where
Gl has the least group processing time, then Gy is the first group in an

optimal group schedule.

Corollary 2.2 1f Theorem 2.3 is satisfied for Gy and G, (¥i < N), where Gy

has the largest group processing time, then GN is the last group in an

optimal group schedule.

Theorem 2.4 For any two groups G, ,and Gj with Q, < Qj’ if the following
conditions are satisfied, then Gj precedes Gy in an optimal group schedule.
(I) 1In the case of ni > nj, nj sets of inequalities (2.11) and (2.12) hold
for n, sets of two jobs J,_ and J, (E€Z,, nez, d (n,-n,) i liti
or nJ sets of two jobs an jn ¢ 42 0 J), and ( 5 nJ) inequalities

ig
(2.13) hold for the remaining jobs A (te zi);

dpt 1 py > max(]Q +Q 4 +Z p,.) (2.11)
18 v=£+1 Y ke Bj k J v=n+1 k¢
. n{ )
dip v 1 P vQ20-] @ (2.12)
v=g41 V1 keA, A
I' pyyza-)
.. + P.,2Q-) Q (2.13)
g WY Kea, '

(@) In the case of n, < nj, nj sets of inequalities (2.11) and (2,12) are

satisfied for n, sets of two jobs Jig and Jjn (te Zi’ néZj).

(17)



Since this theorem can be proved in much the same way as the proof of
Theorem 2.3, we shall only give a brief outline of the proof.

Let S be any schedule in which G, precedes G, and S' be a schedule in o

i 3

whic_hvGi is immediately after Gj’ as shown in Fig. 2.2, It ¢an be shown in

Gy

Schedule S

WD
Schedule S’ . ' | | %%77// _

Time ——

)

Tz

T

wde

Az

3( deaw an ws am

Fig. 2.2 The effect of postponing a group

the same way as before that ATgn > ATT for a set of two jobs Jjn and J,

ig
satisfying (2.11) and (2.12) and then AT; 2 ATIr

g

Corollary 2.3 1If Theorem 2.3 is satisfied for G_ having the least number
“of jobs and G, such that Q, < Q_ (V1 <'s) and Theorem 2.4 holds for G_ and
Gj such that Q < Qj (vj > s), then GS is the last group in an optimal

group schedule.

Theorem 2.5 For any two groups Gi and Gj with Qi < Qj’ if'nj inequalities
(2.14) hold for Jjn (n=1, 2,..., nj), then Gi precedes Gj in an optimal

group schedule.
Ns

d, +) p.. 2Q-) Q : (2.14)
Jn v=n+1 Jv i keAi k

‘Proof. Let us consider schedules S and S' similar to ones shown in Fig.2.1l.

Select Jjn which satisfies (2,14), then let AT;n be the increase of tardiness

(18)



ns
; : o4+ V3 -
of this job. ' Then djn Z 1pjv 2Q Xke!iql 2 Y. Hence, the due date

v=nt
: n.
of J, isd, 2Y-)3J .p. . Therefore,. ATY = 0. If the conditions of
in jn = 7 Bv=ntltjv jn
Theorem 2.5 hold, then AT:_;'n = 0 for all jobs in Gj' Hence, AT; = 0. On

the other hand, AT; 2 0 for Gi. Therefore, the total tardiness under S' is

less than the total tardiness under S.

(Q. E. D.)

The above theorems and corollaries are effective to determine the
optimal group sequence because we can eliminate most sequences from
consideration by using the sufficient conditions.

By ﬁsing the above theorems and corollaries and branching whenever
necessary, the following algorithm is proposed to find an optimal group
sequence. For large problems where a good deal of branching can be expected,
the standard branch-and-bound technique which will be explained in later

chapters should be incorporated into this algorithm.

< Algorithm I for determining an optimal grqub schedule>

Step 1. If the due dates of all jobs in a group are later than the total
processing time of thehremaining giﬁups, then place this group last. Repeét
as often as possible. If the se£ of the remaining groups, G, is empty, then
terminate. Otherwise, go to Step 2.

Step 2. If Corollary 2.2 can be used for the group having the largest
group processing time, place this group last. Repeat as often és possible,
and go back to Stép 1. If G = ¢, then terminate. Otherwise, go to Step 3.

Step 3. If Corollary 2.3 can be used for the group having the least number
of jobs, ﬁlace this group last. Repeat as often as possible, and go back to
Step 1. If G = ¢, then éerminate. Otherwise; go to Step 4.

Step 4. I1f G = ¢, then compute the total tardiness for the relevant node

and go to Step 9. Otherwise, go to Step 5.
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Step 5. Generate D, the set of éandidates of groups “that can be first in

an optimal schedule in the following way:
(1) Let D=6 and E = G.

(i) Let the firstigrouvp in E be G-

(i) Eliminate from D all groups G, (k>:“<) which are shown to come. after G4
by using Theorem 2.3 or Theorem 2.5 and remove GJ'{ from E. |

(v) If E ¥ ¢, then go back to (ii).

Step 6. If D contains only one group> G,, place Gy first and subtract the
group processing time Qy from all due dates in the remaining groﬁps and go
back to Step 4. Otherwise,bgo to .Step 7..

Step 7. 1If Theorem 2.4 holds for the last group G in D and any other
group Gy (i<m), then plaée Gy first and subtract the group processing time
Qp from all due dates in the remaining groups and go back to Step 4.
Otherwise, go to Step 8.
| Step 8. Brénch cr»ni the assumptions that (i) G,_j precedes Gy aﬁd that (i)
Gy precedes Gp_j. For case (i), remove G, from D, and for case (ﬁ) Temove
Gp-j from D. Go back to Step 6.

Stép 9. Select a node and denote the remaining group$ for this node by G
and go back to Step 5. 1If t:,hére is no remaining node,. then go to Step 10.

Step 10. Find a schedule having the minimum total tardiness émong'the

schedules for the nodes derived. This is the optimal group sequence.

2.3.3 Scheduling algorithm II (In the case that job sequenées are not
predetermined)

Since group sequence and job sequénces depend on each other, determining
the optimal group schedule is more difficult thén in the previops case, In

this case the following theorem holds.

Theorem 2.6 For any two jobs Jig and J with Pyg (g=1,2,...,

1E41 2Pien
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), then the optimal job sequence of G, is

E+1° dixE+'1 i

the SPT schedule regardless of the group start time t (‘:20), the time when

n-1), if dig sg.maX(Pi

the group begins to be processed.

Proof. Let the group start time of Gi be time zero. Then the revised due
dates are diE -—t (=1, 2,..., ni).
By hypothesis, (1) diE -t < d'g < Pirs1 (dig < pi&+1)

1
(2) diE -»t < digﬂ -t (dig < digﬂ)?

‘Hence, diE -t = max(pi£+1, di£+l -t) (=1, 2,..., ni-l).

Supposing ni==nj==1 and replacing Gi and Gj by JiE and Ji£+l’ respectively,

£+l in an optimal group

ig

in Theorem 2.3, it is clear that J,_ precedes J

schedule.

(Q. E. D.)

‘Corollary 2.4 For all jobs in a group, if the SPT schedule is coincident
with the earliest-due~date (EDD) schedule, the optimal job sequence of this

group is always the SPT schedule regardless of the group start time.

Considering that the optimai job sequences of the groups for which
Theorem 2.6 does not hold are dependent on the gfoup start time of each

group, Algorithm I for determining the near optimal group sequence and job

sequences that minimize the total tardiness is developed as follows.

<Algorithm I for determfnirng a near»optima1 group schedule >

Step 1. Make the SPT schedules for job sequences for all groups. Go to
Step 2.

Step 2. Determine a group sequence by using Algorithm I. Go to Step 3.

Step 3. Rearrange job sequences for the groups for which Theorem 2.6 does not
hold; that is, compute tﬁe group start times in the group sequence derived
and the revised due dates, then detérmihe a job sequence in eaéh~group using

an algorithm for a single job scheduling, such as Emmons' algorithm. Go to
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Step 4.

Stép 4. Calculate the total tardiness of this group schedule. Go to
Step 5. | |

Step 5. If this schedule is the first one, then let this schedule be a
temporary opfimal group schedule, and go back to Step 2. Otherwise; go to.
Step 6. |

Step‘6. 1f this schedulé is better than the temporary optimal group
VSCheduie, let this schedule bé'thé new temporary optimal.group schedule and
go back to Step 2. Otherwise, terminate. The temporary optimal group

schedule is a near optimal one.

2.3.4 Numerical examples
For production data shown in Table 2.1, the optimal group schedules can

be determined by using Algorithms I and W. We shall demonstrate each case.

Table 2.1 Production data

(units: min) -

Group Gi G1 G2 G3 Gl. G5 G6
Job Tie 1913 T12] %3] 21 | I31] T32f a1 T2 | Is1fs2 | T53] Te1l Y 62
Job processing 1Py | 1)l 2|49 | 5|6] 78|35 ]| 8|8}
Due date diel 46| 20| 38] 85 |40 |32 ] s0)57]70 |26 |27 | 39| 51
Group setup time| S 1] 1 1) 2 1 1 2
Group processing Q 8 10 13‘ 16 12 12
time i

Example 1. (In the case of predetermined job sequence)

Step 1. G, is last, since d21 (=85) > Q (=83). Remove G,.

2 2

.Step 2. No result.

Step 3. G4 is last, since G1 and G, precede G4, and G5 and FG precede G4.

precedesﬁGA. First, compute

3

For example, it is shown as follows that G1

nj .
dig + LoZgygPy, for € and G, then
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djg ¥ Pyy ¥ Py = 52 { dyg * Pyy = 58
- 24

[~
[y
N

o+

o
P
w
[

42
d =38
ASiéce n, (=3)>-n4“‘f2)f by Theorem 2.3.:two.inequalit;es (dl2 + p13 > d42,
d13 > Py + d42) imply tﬁat 6, preceqﬁé G4.v Remove G,, then we have o
now reduced the problem to a four-group problem {Gl’ G3, GS’ G6}.
Step 4. G % ¢, go to Step 5.

" Step 5. D = {G,, GS}, since it is shown by using Theorem 2.3 that G1

precedes G3 and G6.

Step 6. D contains two groups, so go to Step 7.

Step 7. No result. .

Step 8. Branch on the assumptions that (i) G1 Precedes G5 and that

(i) G_. precedes G..

5 1
Step 9. ‘Select case (i) (node 1), then go back to Step 5.

Step 5. D =V{Gl}.

Step 6. G1 is first. Remove Gl’ get (d3l, d32, dSl’ d52, d53, d61’ d62)
to (32, 24, 62, 18, 19, 31, 43) and go back to Step 4.
Step 4. G = {G;, Gy, Gg}.

Step 5. D = {G3,>G5} since G3 precedes G6°

b 4
Step 6. D contains two groups, so go to Step 7.

Step 7. Gg is first, since it is shown by using Theorem 2.4 that GS

precedes G Remove GS’ set (d31, d32, d61’ d62) to (15, 9, 14, 28), and

3
go back to Step 4.

Step 4. G = {G3, G6}.

Step 5. D {GB} since G_ precedes G-

3
The optimal group sequence (given that G1 precedes G5) is Gl—GS-G3—G6-

G,~G,, with T = 52 min. Go to Step 9 and select case (i) (node 2). Then

 we have another optimal group sequence (given that G5 precedes Gl), GS—Gl—G3
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6 4
optimal group sequence is determined as Gl—GS—G3-G6—G4—G2, with T = 52 min.

-G —G'-GZ, with T = 53 min.  Thus, evaluating only two schedules, the

For large problems, determination of optimal group sequences may
require a good deal of branching-and.evaluation of the schedules. The
success of the algorithm will dgpend on the power of the theorems, and the
degree to which branching is minimized.A Whéther the theorems hoid or not
depends on the structure of the data — job processing times, due‘détes,
and thé number of jobs in each group. If we set the due dates éooner,
then the optimal group séquence can be obtained easily because Theorem 2.3
‘is more useful. When the due dates of jobs in groups tend to be 1onger
relative to the.total processing time Q, we anticipate greater difficulty
with the_problems. In such prbblems; however, Theorems 2.4 and 2.5 tend to

be more useful.

Example 2. (In the case that job sequences are not predetermined)
Step 1. The job sequence in each group in Table 2.1 is already the SPT

rschedule.

Step 2. The optimal group sequence is Gl—GS—G3—G6—G4-G2 as shown in

example 1.

» .

Step 3. The groups in which job sequences depend on their group start . -

_times are Gl’ G3, and GS' The group start times of these groups are t1=50,

=25, and t_=8.

t3 5

(i) The job sequence of G1 is arbitrary, with T1~= 0. Suppose Jll-J12_J13

(iil) The job sequence of G, is J32—J31, with T, = 1.

3 3

(ifi) The job sequence of G5 is arbitrary, with(T = 0, Suppqse J5l_352‘J53'

5
Step 4. This group schedule is given as shown in Table 2.2 and T = 47

min.

Step 5. Go back to Step 2 and determine a new group schedule in the same
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way;
Since this new schedule is coincident with the schedule obtained

before, then the near optimal group schedule is shown in Table 2.2.

Table 2.2 A near optimal group schedule

- » Total
Group sequence ’Gl* - Gg* G4 G G4 €2 tgrdiness
Job sequence |J1313:913131355 1355 19531 3519311961 62| Ja1|Ta2| 21| 47 min

* Job sequences in these groups are arbitrary.

.To test the effeétiveness of this algorithm, ten examples were
investiéated, each cohsis;ing of six to eight groups with one to threé 5oBs in
each group. For these problems, all thé group schédﬁles determined;by using
. this algorithm were-optimal'and the number of repetitions of Step 2 through

Step 5 was one in all cases.

2.4 Conclusions

(1) The single-stage group scheduling model ﬁhich is fundamental in group
production scheduling was constructed.

(2) The group scheduling model was analyied under two kinds of criteria —
the minimum mean flow time and the minimum weighted mean flow time; énd two
theorems ﬁhich givérthe optimal gioup schedules (optimal sequences of groups
and jobs) were proved.

(3) Under the criterion of minimizing the total tardiness, several theorems
were given for determining the relati&e order of pairs of groups. With the
use of them, the algorithms for determining the optimal and the near optimal

group schedules were proposed and numerical examples were shown.
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CHAPTER 3 GROUP SCHEDULING WITH SEQUENCE-DEPENDENT SETUP TIMES ON A
SINGLE PRODUCTION STAGE:

3.1 Introdqction

When a job (éart) is processed on a machine, time is required fo»setuﬁ
the machine for the nekt job before the actual machining of the joﬁ.

Usually, setup times are assumed to be independent of the sequence of jobs
and are included in»fhe prbcessihg times. In many realistic problems,
however, setup times depend on the type of job just completed as well as on
the job to be processed on a machiﬁe.‘

In the conventional scheduliﬁg problem where only one group_is'inVOIVed,
the problem with sequence-dependent setup times is a formidable one even for
the simple criterion of minimizing the total elapsed time. It is.wéll known'
that the-problem corresponds to the so-called "traveling‘salesman problem."
Although no'simplé algorithm for soiving the traveling salesman problem is
known, several solugion prpcédures that will obtain optimal solutions to
problems of modest size and approximate solutions td larger problems have
recently been éeveloped. The optimizing procedures involve dynamic

programmingl’z)and the branch-and-bound method?)

4,5)

both being general pufpose
methodologies. A heuristic procedure - is one of the methods which give
near optimal solutions.

A probleﬁ involving more compiex meésures, such'as'minimizing the
mean flow time, becomes a more formidaBle one. This problem can be shown .to
correspond to a quadratic assignment problem which can iny be solved for
problems of small size by resorting to the general purpése methodologies
éuch as dynamic programming and the branch-and-bound method.

The provious chapter‘deals with the group schéduling proﬁlems with
sequence-independent setup fimes; In this chapter, an attemps'isAmade to

‘solve groué scheduling problems in which group setup times are dependent

(26)



on the sequence of groups§’7) ‘In the model, job setup times are assumed to

be sequence-independent and are included in jéb processing times.

In the nekt section; the problem for the criterion of minimization of the
total elapsed time is»also shown to be reduced to the traveling salesman
problem. For the problem of minimizing the mean flow time, two kinds of
solution approaches are offered in Section 3.3. First, with the use of
dynamic programming, the optimal group schedule is détermined. Second, a
éimple_branch—and—bound algorithm is developed for solving the proﬁlem. In
the last secﬁion, an analysis of the optimal group scheduling for the
ﬁinimum total tardiness is made and an efficient algorithm using a branch-
and-bound method is proposed to find the optimal groﬁp schedule.. The

effectiveness of the algorithm proposed is verified by numerical examples.

3.2 Mihimizing total elapsed time

In the basic single-stage problem, the totél elapsed time, the time to
_complete all jobs within all groups, is a constant as shown in equation (2.1).
With sequence-dependent setup times, the. total elapsed time, however,
depends on which sequences of groups and jobs are chdsen.

Let Sij (i, j=1, 2,..., N) denote the group setup time required fo;

grbup Gj after Gi is completed and let pig and dig (i=1, 2,..., N, £=1,
240eey ni) denote the job processing time including the job setup time and
the due date of job J,. (i=1, 2,..., N, £=1, 2, ..., Vni),.as before.
The total elapsed fime is given by
N N n; : _

Faax = LS YL L@@ | 3.1)
where S(O)(l) is the set?p time required to bring the machine from idleness
to a state ready to process the first group in sequence.

Since the second summation is a constant, the problem of minimizing

the total elapsed time is equivalent to minimizing the first summation.
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This sum inaicates the total group setup time in éhe full sequence of
groups, beginning and ending in the idle state.

The problem of minimizing the sum of the groﬁp setup times corresponds
to the so-célledr"traveling‘salesﬁan problem.”"” In the original formulation,
a salesman QGSt visit each of n cities once and only once aﬁd feturn to his
point of 6rigin, and do so such that the total travel distance is minimized:

In the scheduling probiem, a job corresponds to each city, and the group

ISetup time S,. corresponds to the distancé between cities i and j. By

ij
defining a hypothetical group Gy such that

PO =0, SOi = Si’ and Sio =0 | - (3.2)
where Si is the group setup time when Gi'is processed first in sequence, and
letting G0 be thé-starting point, the scheduliﬁg problem stated above actually

‘becomes a (n+1)-city problem. In the original traveling salesman problem,
of course, the distance matrix [Sij] is symmetric,-that is, Sij?=sji' This
is not always the case in the scheduliﬁg.problem. However, the nonsymmet-
ricity of the matrix does not appear to make the problem significantiy more
“difficult to solve.
From the above analysis, the single-stage group scheduling with

sequence—~dependent setup times aﬁd af minimizing the total elapsed time can
be solved by several solution procedures which have been developed for the

traveling salesman problem.

3.3 Minimizing mean flow time
In the case of sequence-dependent group setup times, the problem of
minimizing the mean flow time is a more challenging one to solve. The mean

flow time is obtained in much the same way as equation (2.4), as. follows:

ot} *f
F == n (s,. + P )4+ ) n,..S
W ilrw L Senet P’ Yo e-nw
11} ) -
+ P (3.3)
1=1g=1v=1 3 |
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_ _ N
where gy = LgdiP () ey 24 M 7 Ly

Minimizing the above equation corresponds to minimizing the following one,

which represents the total flow time.

N i~1 N
Felrok Cona T Pay *Le@Su-n @
N T4
+ 11 E (3.4)

The firse and second summations of the above equation .are concerned ..
with the group sequence, and the third one is concerned with the joB sequence.
Since P(j),~the total érocessing time of all jobe.in each group is a constant,
independent of the job sequence, the groub sequenee and the job sequences can
be handled independently in minimizing equation (3.4)_ The third summation is
ninimized by ordering the jobs in each group in order of nondecreasing job
processing time. Thus{ the optimal job sequence is determined to be SPT
sequencing for each group.vThe,problem of minimizing the sum of the first and
second terms is a formidable one. For determination of the oftimal group
seqeeece, two geﬁeral purpose methodologies, such as dynamic programming

and the branch-and-bound method, are employed.

'3.3.1 Dynamic programming approach

Dynamic programming is‘a technique for solving a special class of
optimization problems called multistage decision processes. It has evolved
primarily on the basis of R. Bellman's works whicﬁ‘date back to the early
1950's§) Unlike other optimization methods, such as linear programming,
a specific mathematical form for the class of optimization problems which .
, dynaﬁic programming canisolﬁe cannot be presented. The possibility of

applying the dynamic programming method depends on e successful formulation

of the problem in terms of a multistage decision process.
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Applications of the dynamic programming method to ihe.écheduling :

problem have been made by Bellman}) and by Held and Karp?)

This procedure is
perhaps more general than the branchéand—bound method which will be used to
solve the current problem in later sections:

With so-nié slight modifications, the dynamic 'programmi,ng approach éan
be adapted to determine an optimal group sequence for the pxoblem?) Suppose
G0 is a hypothetical groﬁp having the properties of»equation (3.2) and is thé
first group in sequence. Let Gi dgnofe onétof tﬁe groups, not eﬁual to Go,

and K denote a set consisting of k groups, not Gi and G Furthermore, let

00

G denote the set of all groups, exéluding G Now define the foliowing

0’
function:
f(Gi’ K) = the minimum tétal flow time from the beginning ,of -group-
Gi to the end of Go, with intermediate processing of k
groups in K

Then, the total processing time of the optimal group sequence is given by

f(GO, G). Introduce the following notations:

.. =S, +P, = - n,
QlJ ij i’ R kZKék nJ
Ry E (3.5)
E,. =n,S.. +mi L P,
E I A ngzlvzlpJv

£

n .
where min;zgii Zv=1Pjv

is achieved when the jobs in each group are ordered -
by SPT sequencing. *
A dynamic programming formulation is made by the principle of

optimality, as follows: (See Fig. 3.1.)

f(Gi, K) = ?i; {Eij + Qink + f(Gj, K- {ihH} |
J (3.6)
£(G;, ¢) = Si9= 0

. By using this recursive relation, the optimal grouﬁ sequence is determined
by first considering sets K of size 1, then sets K of size 2, and.so on

until f(GO, G) at the final stage is obtained.
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f(J,y
/ ' >

Time

N , ,
Fig. 3.1 The total flow time from the beginnlng of Gi to the end

of GO’ with intermediate processing of k groups in K

In general, at each stage, there are N ways of selecting group Gi’ and
for each of these, there are 6‘;17 ways of selecting the groups of K.
Therefbre, the total number of computations of equation (3.6) required to

determine an optimal group sequence is given by

N-1
21 N(N.; Ly+n ' 3.7)

3.3.2 Branch-and-bound approach

VThe branch-and-bound method is one useful method for.solving many
combinatorial problems?) and is particularly éﬁited to well-structured
p;oblems with integer consfraints on the variables. Like dynamic programming
it does not deal with a specific mathematical framework nor does it.follow
. the conventional iterative idea of an optimization process. 1Its aim is to
conducﬁ a reduced search over all possible solutions, the reduction being

dependent on how well the problem structure can be exploited.
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As its name implies, the branchﬂand;bound method consists of two
fundamental procedures —— branching and bounding procedures. Branching is
the process of partitioning a large problem into two or more subpréblems by
a specifiedgmle,and bounding is the process of calculating a lowér,bound
(in the case<;f minimization) fo; the solution to each subproblem generated

in the branching procedure. After each partitioning, those subprobléms .

with bounds that exceed the performance measure of a known feasible solutiom

3

ﬁre ekplﬁagd fromfurtherpartitioningf ‘The partitioning is repeafed until
a feasible solution is found such that its performance measure is no greater-
than the bﬁund for any subproblem.

With some success, thé branch~and-bound methéd has been employed to
solve sevéral séheduling problems%o) The apﬁlication of this method to the
tra&eling salesman problem was successfully made by Little et al?)

Now apply this method to fhe problem of determining the optimal group
sequence. The total flow»time represented by equation (3.4) can be
transfo;med into the following one:

N

N
Lol Z Q(J-l) (3 Z RICORNED +1§1§1VZ P(1) (v)

(3.8)

) is the group processing time of G( in

where Qg 1y () S g-n @t T 1

is ssed after the completi £fG,. ...
™) processed after the c mp etion o G-1)

The first summation is dependent on the sequence of groups, while the

the case that G

~ second and third ones are indepep&ent of thch group sequence is decided.
That is, the secoﬁd and third summations are nbt.concerned with the grouﬁ
sequence. Hence, the problem of finding the optiﬁal group sequence corre- -
sponds to determining the sequence of groups so as to minimize the first
summation of equation (3.8). In a sense, this sum represents tﬁtai group
flow timeAweighted by the number qf jobs in each grouﬁ.

The branching and bounding procedures for this problem are as follows:
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Branching procedure: The set of permutations of group indices is
partitioned into several subsets. By this procedure, nodes, each of which
represents a subset of the group sequence, are repeatedly created. Let N,
be a node at which the sequence of r groupS‘is determined: Nr=5{G(1), G(Z)’
cees G(r)}' Branching from this node consists of taking each of (N-r)
unallocated groups and placing it next in the sequence determined. Then,

new (N-r)-nodes, Nr+l’ which have the sequence,

CnC@ " Gty

are created.
Bounding procedure: The lower bound on the first summation of equation

(3.8) at N_ is estimated by
F(N) = F (N) + Fp(N) - (3.9)

where Fl(Nr) and FZ(Nr) are the total weighted flow times for the groups
sequenced and for the groups not yet sequenced, respectively.

Cleariy, Fl(Nr),is given by
T, i
¥ = .
1 (%) izln(i)jzlq(j—l)(j) (3-109

In order to calculate Fz(Nr)’ construct a square matrix of order

(N+1) which is defined as

~

09 QO].’ QOZ’ LA ] QON
0’ w0 9 Q12$ ¢ QlN

[Qij] = |o, Qs =5 oves Qp ' o (3.11)
0: Qle QNZ’ esey _°°

From this matrix, select the (N-71) smallest values from among the elements
in each of the (N-r) columns, excluding ones in the first row and the rows
corresponding to the first (r-1) groups already séquenced. Compute the
ratios of the group processing time selected to the number of the jobs in

‘the group, then order them in nondecreasing order. Denoting the group
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processing time selected and the number of jobs in the group by in) and

(i) (i=r+l, r+2,..., N), respectively, we have the following order:

Ur+t)y  Urt2) %
< <

#Er+l) ? nEr+2) , nEN)

Thus, F2(Nr) is given by :
F,(N) = Z n}.\ (t + Z Q! - (3.12)
2 1—r+1(i) (r+1) _r+1(j)

where £(.1y= 1 1Q¢-1) @

The total weighted group flow tlme is a nondecreasnlg function of the
completion time of each group, and is minimized by ordering the groups in
nondecreasing order of the ratios of the group processing time .to the number
of jobs in the group. Therefore, equation (3.12) gives a lower bound on the
total weighted flow time for (N-r) gfoups not yet sequenced.

The previous analysis leads to the following branch-and-bound algorithm

for determining an optimal group schedule.

< Opfimizing algorithm for the minimqm_mean-f]ow'time_é

-.Step 1. Order the jobs in each group by SPT sequencing. Go to Step 2.

Step 2. Let the level ef the node r =0 and the least feasible total flow
time F* =, Go to Step 3.

Step 3. Branch the node into (N-r) nodes by placing each of the ‘not
yet allocated groups next in the sequence determined. Set r=r+1, and go to
Step 4. |

Step 4. Celculate‘the lower bound F(N r) vf»or each of the new nodes. Go to
Step 5. | |

Step 5. Select the node having the minimum lower _bdund froﬁ among those
newly created in Siep 3 when F* =, or from among all nodes being active

when F* X o (In the case of a tie, choose the node with the largest value
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of r. Break the tie arbltrarlly for the same r.) Let the level of the node
selected be r and F*(N,) = F(N ). Go tO'Step 6.

Step 6. If r‘éN, then go back to Step 3. Otherwise, go to Step 7.

Step 7. If F*(N.) <F*, then F* = F*(N_.), so go back to Step 5. Otherwise,

the group sequence associated with the node having F* is optimal. Stop.

. As a simple illustration, consider the 6-group, 15-job group scheduling

problem of minimizing the mean flow time, as shown in Tables 3.1 and 3.2.

Table 3.1 Group setup times
(units: min)

Group

No. 0 1 2 3 4 5 6
0 - 7 9 11 8 6 10
1 0 - 8§ 10 13 1 9
2 0 7 - 9 12 8 7
3 0 11 14 - 10 9 8 -
4 0 13 11 10 - 7 9
5 0 12 8 9 10 - 11
6 0 14 9 9 8 7 -

Table 3.2 Job processing times and due dates

(un:lts : min)

_ Group Gl G2 Gj G 4 G5 G6

NP RO R0 OO 0 U RO KO KO R R

Job J31)912{7 131921 P22 731 P32 |Ta1 P a2 P51 P52 | I53 {61 | V62| Y63

Job process=1 , | 51 71 5 |10fl11f23|8|10]6|20]15]7 ]9 ]12
ing time

Due date 25| 72| 32| 65 |110}122} 72 |57 | 93 |140] 98 | 52 | 47 | 88| 52

In Table 3.2, the job sequences are already ordered by SPT sequencing.
Hence, an optimal decision as to the group sequence is to be ﬁade. The
square matrix [Qij] of the group processing times iﬁcluding the setup times,
is given in Table 3.3. By using the optimizing algorithm proposed, an

optimal group schedule is determined as G;(J,,- Ji0m 13)--G (J21 Jy9)-6G (J
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Table 3.3 Matrix [Qij]

Growp| 6 3 2 3 & 5 6

No. _
0 |- 23 24 35 26 37 38
1 o - 23 3% 31 42 37
2 o 23 - 33 30 39 35

3 o 27 29 - 28 40 36
4 o 20 27 3% - 38 37
5 |o 28 23 33 28 - 39
6 1o 30 26 33 26 38 -

62 63) -G (J41—J42) GS(J51 5~ 53) -G (J31 32) with the mean flow time of

85.6% min.  The branching tree of this problem is shown in Fig. 3.2.
b 2 3
1407 1445 i 1576 @

1455 TT1453 1489

HOMOMO @
1407 1505

1483 1471 1432

& @ G @w

1481 1465 1433

1428 1409

1443 1409
21 Number of nodes: 21

1409
(Optimal Schedule)

Fig. 3.2 The branching tree for the m1n1mum—mean—flow—t1me problem

% This is calculated as follows:

N Din
= _ 1409 -339 %214
2 n =339, ) J Ivp = 214. Hence, F= = 85.6.
®F @) 1=1n=1v=1 DG ) 15
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The figures just below the nodes indicate the lower bounds on the total
weighted group flow time. The CPU time required to determine the optimal

group schedule is within 1 second with the TOSBAC model 140 computer.

3.4 Minimizing total tardiness

In the group scheduling problem of minimizing the total tardiness, two
deCisionsas to the sequences giigfoups/and jobs i; each group cannot be pade
independently of each other unlike‘the case of minimizing the mean floﬁ time.
For determining an optimal group schedule, the branch-and-bound method is
employed in the same wéy as in .the previous section. In order to increase
the efficiency of the branch-and-bound algorithm, two theorems which specify
“the relative order of pairs of jobs within the same group in an optimal
scﬁedule are offered. Then, based on the branch-and-bound method, the
optimizing algorithm which incorporates the two theorems is developed for
the optimal group scheduling, aﬁd abnumericai example is shownm.

The total tardiness of all jobs in all groups is expressed by the
following equation, similar to equation (2.8) in Chapter 2.

N nj i-1

z ) max'[X (S

T A a-u®» o Pl

E .
*IPamom T @

0} (3.13)
3.4.1 Theorems for job sequence

The following theorems that establish the relative order in which pairs
of jobs are processed in an optimal group schedule are of use for the reduction

of the number of subproblems generated in the process of branching procedure.

Theorem 3.1 For any two jobs Jig and J:,m with Pig § Pyq if dig d o’
then Jig precedes Jin in an optimal group schedule, irrespective of the
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schedule time at which scheduling is done for groﬁps and jobs not yet .-

sequenced.

Proof. 1If the schedule time is set at t, then the revised due dates of J 1E

T _ | | oy
and Jiﬂ are di‘?,‘ t and din’ t, respectively. Since dig < din’ then dig t...,

din-t. Supposing ni=nj=1, and replacing Gi and Gj by J iE and J n’

respectively, in Theorem 2.3, it follows that J iE precedes J iﬁ'
(Q. E. D.)

Theorem 3.2 TFor any two jobs JiE and’ Ji_ﬂ with Pir < piﬁ, if the schedule

time t 2 d,,. -p then J:’LE precedes J, 1in an optimal group schedule.

ig “in’ in
Proof. Let S be any schedule in which for two jobs in Gi’ Jii‘l precedés J;‘;g‘
Consider a schedule S' that differs from S only in that JiE and Jin are
interchanged. All jobs in Gi between J inand J iE are advanced in time by the
amount of (p‘in —pig) 20, which does pot in the least increase the total
tardiness. Denote by X and Y the times at which J in begins and J iE ends,

respectively, in S (see Fig. 3.3). Then, from the condition, X 2 t. It can be

Schedule S /1,,7//4 | %:;/A
Schedule §' ///';/ % /”/7//

\

PRY P,
POS I
< .L--.....

Time ————

Fig. 3.3 The effect of interchanging two jobs

shown that interchanging the two jobs must decrease, or possibly leave

unchanged, the total tardiness. The decrease of the tardiness of J iE is

AT, =Y -max(X + P

. A <Y
i€ . iE? diF,_)’ sipce di&;(-t + pin <X+ Pin < Y.
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The increase of tardiness of Jj

nis given by

Y - _ .
-~ max(X + Pin? din)’ otherwise

- L o -
H .. A . ) < - -— A =
ence,. if dinE:Y,_clearly TiE ZATin. If din Y, then ATig Tin

- i >
nax(X + Piy din) max (X + Pig dig)' This gives ATig 2 ATin’ since

-+

.
X+ pin 2 éi and X + pin > X+ piE'

3
(Q. E. D.) .

3.4.2 Application of branch-and-bound method to group scheduling

Since, in éroup scheduling, both pptimal group and job sequences must
be determined simultaneously, a branch-and-bound procedure of a new type is
required. The first application of the method was made to the group
scheduling with sequence-independeht setup times by Nakamura and Hitomi?l)
They offered the basic idea of branching the scheduling problem into sub- -
problems. In this subsection, an improved branching procedure.using the two
theorems proved before is deveiopgd and an efficient formula for the lower
bound on the total tardiness is offered. |

The basic bfanching procedure for the gréup scheduling is as follows:
In group schéduling, branching of groups and branchingcﬁfjobsare.both reqﬁired
since optimal decisions are made as fo fﬁé sequences of groups and jobs
in each group. Eventually, there occur two kinds of nodes —"group node"”
and "job node." Basically, the brancﬁing of groups is made firstly by taking
each of the unsequenced groups in turn, énd placiﬁg it next in fhe perﬁutétion
of groups determined. Then, in the same way, jobs are branched from each of
the group nodes created. The procedure of branching jobs in the current
group is repeated until the positions of all jobs in the group are determingd.
After that, new group nodes are created by branching unallocated groups at

each of the nodes. The process of branching groups and jobs is shown in

Fig. 3.4,
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Branching of groups

- . -
.
H : @: Group node

. @: Job node

Fig. 3.4 The Branching process for group scheduling problem

The bounding procedure is a process of calculating the lower bound on
_the solution of the subproblem represented by each’'job node. The formula

for the lower bound depends' on the scheduling criterion employed.

3.4.3 Optimizing algorithm based on branch-and-bound method

The ‘branching and bounding procedures for determining the optimal group

schedule minimizing the total tardiness are as follows:

(1). Branching procedure

Basically, the branching procedure for the problem of minimizing the
total tardiness is similar to the basic one for group scheduling, but differs
ffom itrin that branching of jobs is made acédfding to each job's precedence
relafions which are specified by Theoi:ems 3.1 and 3.2. Let Nr be a group
~ mnode at which the sequence of r groups is specified: Nr={G(1), G(2)"';’
G(r)} and Npg be a jdb node at which s jobs in group (,;(r) are allocated:

N g = {J(r) 1’ J&) (2)7° J(r) (s)}' Then Ny and N g are called r group-
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level node and s-level node, respectively. The branching of jobs at Nrs

" - is made by the following procedure.

< The branching procedure for jobs >
(i) Select a job; J(r)a? from among jobs not yet sequenced in G(r) at
N__, and go to Step (ii). 1If all jobs in Gy 2re allocated, then stop.
(i) Wwith the‘use of Theorem 3.1 select the jobs which precede J(r)a'
When none of the jobs precedes J(r)a’ go to Step (iii). If all jobs which
precede J(r)a-aré already sequenced, then go to Step (iii).. Otherwise, go
backto Step 1.
(i) Search the jobs which precede J( Yo by letting the start time of
( ) be the schedule time and applying Theorem 3 2 to J( Yo and others.
If no jobs preceding J(r)a exist, then go to Step (). Otherwise, go to

Step (), or go back to Step (i) according to whether or not all the jobs

are already sequenced, respectively.'

() Create a job node Nrs+1=;{J(r)(1)’-U(r)(zj""5 J(r)u} of job IEVélt

next in the permutation already sequenced and

of (s+1) by placing J(r)a

go back to Step (i).

By using this procedure, a large amount of reduction of branches
generated can be expected; hence, the time needed to determine an optiméi
group schedule will be reduced. |

(2) Bounding procedure
The computation of the lower bound on the total tardiness is performed

on each of the job nodes generated by the branching procedure, The lower

bound at Nrs is estimated by
T(Npg) = Fj(Npg) + T,(Npo) + T4(Nrg) | (3.14)
where Tl(Nrs)’ T,(N_), and TB(Nrs) are the total tardinesses for groups and

jobs already sequencéd, for jobs not yet allocated in G(r)’ and for groups
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not yet assigned, respectively. They are calcuiated_in the following way:
The first term of the above equation is obvious, as follows:

-1 M i-1 &

T - L B enm e’ T lan RO

diy ey 02 + 2 dax ): (s(:I v@ FEG T Se-n @
¥ 2 LOm " doyeey’ %t (3.15)

The second term for (n(r)-;s) jobs.not yet sequenced in G(r) is given'byf;

ne : £
T 0) = L mxC o) *LPom T imer 639

. 4 . g ' '
where C( ) (s) is the completion time of J(r)(s)’ and p(r)(v) and d(r)(v)
(v=st+l,. s+2,..., nr) are, respectlvely, the processing times and the due

dates of jobs not yet sequenced in G(r) which are ordered independéntly of »

each other, such that’

' t
Plry(stl) S Py (s#2) 5 777 2 P ()

v P
Ay sty S S st <77 2 @)

The third term of equation (3.14) is calculated by the following-steps:
(1) Constrqct a square matrix [Sij].of ;group setup times, which is
similar to the matrix [Qij] in the'previous subsection. For this matrix,
let Szr)( +1) be the smallest value émong the elements in rth row excluding
ones in the columns corresponding to the groups already sequenced.
Furtﬁefmore, select the (N-r) smallest values from among the elements in

each of the (N~-r) columns excluding ones in the first row and the rows

corresponding to groups already sequenced, and then order them such that

szr+1)(r+2) < S2r+2)(r+3) < o < SZN—I)(N)s-S'(N)(N+1)
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_'.(ﬁ) Order the numbers of jobs for (N-r) groups not yet sequenced such that

? ]
o) 2 P(es2) 2000

(i) Order the processing times and the due dates for jobs not yet
sequenced in nondecreaéing order, respectively, irrespective of the groups
to which the jobs belong.'

(&) Make (N~-71) hypotheﬁical groups by grouping the processing time; and

the due dates by nZi) items (i=r+l, r+2,..., N), respectively, as shown in

Table 3.4.
Table 3.4 ‘Hypothetical groups
A . ' . ,
qroup G(r+1) G(r+2) s G(N)
Number of v v .
jobs n(r+1) n(r+2) ses n(N)

Proiisiing p(r+1)(1)"" p(r+2)(1),... . piN)(l),...

. Due date d2r+1)(1)"°' d2r+1)(2)"" S dEN)(l)""

Group. S(r) (x+1) Stery(r42) | | St-ny an
setup time

Then T3(Nrs) is given by

, N nj
T3(Nrs) = )} ) max{C
i=r+1f=1

i-1
+ ) (s

@@ * L, Sunot Fe)

£
*Sunw Y LPomm T Y@

, 0} (3.17)
v=1 .

nc
h P! .. = J ' .
VhEre Fy T Le=mP () ()
The value of equation (3.14), thé sum of the job tardinesses calculated
by equations (3.15),»(3,16),.and (3.17), is a lower bound, since the total

tardiness is a nondecreasing function of the completion time of each job.
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Based on the previous analysis, the following algorithm is developed

to find an optimal group schedule.

< Obtimizing algorithm for the minimum total tardiness >

Step -1. I‘.gt; the group level r=0 an.d the least feasible total tardiness
T*=, Go to Step 2.

Step 2; Create (N-r) new gfoup nodes Nr+1' Set r=r+1, and go to Step 3. .

Step 3. Let the job level s=1 aﬁd by using the branching procedure for
jobs, create new job nodes Nrs from eéch of the groupinodes made. Go>to Sféﬁ 4.

Step 4, Calgulate the lower bound T(Nrs) for each of'the new job nddés.by
equation (3.14). Go to Steﬁ 5.

Step 5. Find the job node having miﬁ T(N.g) from among the job nodes
derived in Step S, or 8 in the case of T* ==, or from among all job nodes
being active in the case of T*ﬁsw.(In the case of a tie, select the node
wiﬁh the largest value of, first, r, and then s.) Let the group level and
job level of :the node be r 'and s; :respectively, and T*(Nrs)==T(Nrs). Go
to Step 6.

Step 65 If T*(Nrs) < T*, then go go Step 7. Otherwise, the group schedule
associated with the node having T* is optimal. (T* is the minimum total
tardiness.) Stop.

Step 7. 1If s < n(r), then go tq Step 8. O;herwisé, go fo Step 9.>
‘ Step 8. Set s=s+1, and by using the branching procedure for jobs, create
new job nddes Ng frpm the current job node. Go back to Step 4.

Step 9. If r < N, then go béck to Step 2. Otherwise, T*=T%(N..), so go

back to Step 5.

3.4.4 Numerical example
For production data shown in the previous section, determine an optimal
group schedule minimizing the total tardiness. Fig. 3.5 shows the branching

tree which was obtained with the use of the optimizing algorithm proposed.
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Fig. 3.5 The branching tree for the minimum-total-tardiness problem

The figures just below the job nodes indicate the lower bounds on the total
tardiness. The order of branching is indicated by the number that appears
just above the corresponding node. From this branching tree, an optimal

group schedule is determined as Gl(Jll 12 J13) -G (J61 63 J62) -G (J41—J42)
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)- G @) )-G3(J ) with the total tardiness of 350

Gy (Jp1737 5279517753 317932
min, which is given by the starred node. 1In this example, a complete
enumeration for finding an optimal schedule will require 10368 times the.
comparlsons of the feasible schedules, while the optimizing algorithm

generated onIy 274 job nodes and required 10 seconds of CPU time with the

TOSBAC model 140 computer to find an optimal one.

3.5 Conclusions

(1) The,single—stége group scheduling model with sequencg—depeﬁdent group
setup times was developed'and analyzed_under three kinds of criteria —
thé minimum total elapsed'time, the minimum mean flow time, and the minimum -
total tardiness:

(2). The minimum-total-elapsed-time problem was'shown to.be reduced to the
traveling salesman problem. |

(3) For the problem of minimizing the mean flow time, the optimal job
sequence for each group was shown to be the SPT (shortest-processing-time)
schedule, and the optimal group sequencé was determined by applying the
dynamic programming approach or the branch-and-bound method.

(3) The branch~and-bound method wés applied to solve the pfoblem with the
objeétive of minimizing the total tardiness. Two theorems which specify
the relative order of ﬁairs of jobs in the same group ‘were given. The

optimizing algorithm which incorporated them as a part of the branching

process was developed, and a numerical example was shown,
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CHAPTER 4 GROUP SCHEDULING ON MULTIPLE PRODUCTION STAGES — THEORETICAL
ANALYSIS |

4.1 Introduction

The first step of development for scheduling theory oﬁ ;he multiple -
proﬂuction stages dates back to Johnson's work for the two-stage (or two-
machine) écheduling problem of minimizing the total elapsed time in 1954})
Johnson gave a theorem that establishes the relative order in which pairs
of jobs are processed in an optimal schedule, ahd developed a working rule
with which an optimél scheduie can be easily cogstructed.

In general, for more than>two—stage scheduling Lroblems, no simple ruies
have been offered for determining the optimal schedule. However, Johnson
Showed in his original represgntation that a generalization of his theorem to
the three-machine case is possible when the secoﬁd machine is dominated.

Moreover, Nabeshimag’B) Smithf) Guptaf)'aﬁd Szwarc6)

solved the m-stage special
structure flow-shop scheduling problems, where the processing times were
not completely random but bore a well-defined relationship to one another.

On the other hand, Mittenz) Johnson§)

and Nabeshimag) considered the
tﬁo—stage_scheduling problems with time lags between the production of a job
on the first machine and its production on ﬁhe second one, and gave decision
rules which are.extensions of Johnson's theorem.
For the criteria except the minimization of the total elapsed time,
 the multistage scheduling problems have not been solved theoretically. As
stated above, theories of scheduliﬁg on the multiple production stages are
mainly concerned with the criterion of the minimum total eiapsed time, and
they have Been developed based upon Johnson's theorem.
| In general, when woikpieées (parts) afe processed on machines, setup
times are needed to setup the machineé'for the processing of their operations.

In the problems of a Johnson type, however, no attention has been directed

to the setup times; that is, the setup times are assumed to be independent of
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the sequence and to be included in tﬁe processing times. 1In many actual
problems, setup for a job and its processing happen to be independent of
each other. Hence, setup for an opefation of a job on a preceding machine
can be done‘Pefore compietion of the operation of the job on the succeeding
machine. In such a situation, it is not valid to absorb the setup time inr
the processing time. Therefore, from the standpoint of produétion scheduling,
decisions as to the scheduling of jobs to be proces;ed on more than two
stages should be made by separating the éetup times from the processing
times. |

Based on the above conside;a;ion;ithis chapter-deaiéiwith the conven-
tional scheduling énd thé group scheduling on the-multiple production stages

when the setup times are separated from the processing times%ohlz)

First,
Johnson's theorem for the two-stage scheduling‘problem is introduced, énd S
then it is extended to the scheduling'problem with setup times separated.

In addition to the setup time consideration, the scheduling problems:with
time lags are dealt with in the latter part of Section 4.2%3) Iii Section 4.3,
the group scheduling problem with consideration of the setup times, which is
the main objective in this chapter, is taken.up for the two production stages.

In the last section, this is extended to the group scheduling on the multiple

production stages.

4.2 Two-stage scheduling problem with setup times séparatedrand time lags

4.2.1 Two-stage scheduling problem of minimizing total elapsed time
.Consider the scheduling problem which cén be defined as follows:

n jobs are given, each to be processed on two machines M1 and M.2 in the same

order. Given the processing time of each job on each.machine, the'problem

is to find an operation schedule (job sequence) fof each machine so as to

minimize the total elapsed time.

For this problem, Johnson showed that it was sufficient to consider
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only schedules in which the same job sequence occurred on machines Ml and M,,
and then proved the following well-known theorem. Let p% and pi (i=1, 2,...,

n) denote the processing times of job Ji (i=1, 2,..., n) on machines Ml and

. M2 » respectively.

Johnson's theoremA An optimal ordering is given by the following rule:
Job Ji precedes jOI;. Jj if |
minp), p) < min(py, py) | (4.1)
If there is eqt_lality, either ordering is optimal.
Based on this theorem, Johnson 4constructed a working rule foi‘ determin-
ing an optimal schedule.
In general, for the m-machine (m 23) flo(w-sl'mp scheduling problem of
minimizing the total elapsed time, omne needs to considgr only schedules in
which the same order is prescribed on the first two machinesA, and the same

14)

order is prescribed on the last two machines,

4.2.2 Schedd]ing problem with setup times separated
| It is the purpose of this subsection to describe a scheduling model with
setup times separated. For constructing a scheduling model of a new type, -
it is assumed that setup for an operation of a job on machine M2 can be done
before completion of the operation of the job om rmachine Ml if there exist

some idle times on machine M2 (see Fig. 4.1), 1In the model, the time

s

7 / Setup time

Machine M 7/ Processing time

1 7.

:Job'l

‘Mach iné M2 7///

Fig. 4.1 1Independence of setup and processing

Time -
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required to complete each job on each méchine consists of job setup time
and job processing time, each,of which is a scheduling unit. |
First, examine whether the property that the same order on thé first
two machines and tﬁe last two machines will be sure to give an optimal
~ schedule foéﬁthe m-machine flow-shop scheduling is applicable to theAproblem
with setup times separated. Even fbr the scheduling problem with setup times

separated, the following tﬁeorem holds.

Theorem 4.1 For the flow-shop scheduling problem with setup times
separated, it is sufficiefnt to consider only schedules in which the same
order occurs on the first two machines when the objective is to minimize

the total elapsed time.

The proof of this theorem is omitted, since it can be easily proved
with an argument which resembles that given for the proof for the problem
with setup times included. It is worth noting that the separation of setup
times from processing times makes it unnecessary for an optimal schedule to .
have the same order on the last two machineé. A simple example will
illustrate this. Suppose that two jobs are to be scheduled on a three-
machine flow-shop to minimize the total elapséd time. The production data of

the two jobs are shown in Table 4.1. There are two schedules S, and -S, that

1 2

Table 4.1 Production data for three-machine scheduling

(units: hours)

Job I Ip
Setup time.} k k -k k
processing time| S3 Py Sy Py
Machine My 1 3 1 '1
Machine M2 1 1 2 5
Machine M3 | 5 1 1 4
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have the same order on machines M2 and M3. The total elapsed times of the

two schedules are 16 and 17 hours, respectively. However, there is a

;

schedule S3 with different ofderings on machines M2 and M3 wiﬁh the total

elapsed time of 15 hours (see Fig. 4,2).

/A Setup j:ime

Processing time

' Machine Ml 1 7 J
Machine M, VA 1 V/// 3
Machine M3 7//////////// 1 //A p
o s '1'0' — llslT'imf
(a) _schedule s, ' ' . (Hours)

Machine M %7K
Machine M, /] ‘TR ZE
Machine M3. . //A ._J 7/////////// I

1 | -

0 5 10 15 Time.
(b) Schedule S, (Hours) .

' . 7,
Machine M, 2B 7K

Machine M, /7] 7
Machine M, A,

1
N1V J

| SN W DU W | S NN S DA G S DR RN T
S

0 . 5 10 15 Time
{c) Schedule sS4

Fig. 4.2 Schedules on three machines

In the case of the two-machine flow-shop scheduling problem with setup
times separated, the optimal schedule minimizing the total elapsed time can

be characterized by the following rule for ordering pairs of jobs.
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Theorem 4.2 For the two-stage flow-shop scheduling problem with setup
times separated, an optimal schedule under the criterion of the minimum total
elapsed time is given by the following rulé:

Job Jy precedes job J, if

b

. 1 2 1l 2 . 1 2 1 2
m1n(si -8 + pi, pj) < mln(sj - sj + pj’ pi) (472)

1f there is equality, either ordering is optimal.

Proof. The completion time of J(i) to be processed in the ith order on
machine M2 is given by the following recursive relation:

_ 2 2 2
Clay = max(Cgys Chigy * Spy) PGy (43

2
h C + dcC =0.
where Cy)= 11 (s(yy + P(5)) @d Clg
By repeated use of relation (4.3), the total elapsed time is obtained

as follows:

2

F oax % C(n) = ozzzn{lgl(s(i) + p( )) + p( )-+1—§+{s(i) + p(i))}
= pax { Z (s, - 82+ Bl - 192
O<ugn i=1 (1) (i). 1) i=1 1)

+ 7 (2, 02 (4.4)
2@ TP B

where p%o) = 0.
The problem is to find a sequence minimizing the above equation. Since

the second summation is a constant, an equivalent problem is to minimize the

first summation which indicates the idle times, I, on.machine‘Mz. FHence,
the objective function to be minimized is
I = max { z (st +pl.0) - z p? (4.5)
ocnen 11 ® " * P @’

1_ 1 2 1 2 _
By letting r,=s; -8 + P, and r, =

2
i i = Py equation (4.5) is
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u u~1 .
I=max () ! -y r(i)) , (4.6)

O<u<n i=1 1 i=1
Equation (4.6) is equivalent to the following:

u-1

@ " LT

I = max{0,  max ( z rl (4.7)

15u<n i=1

In general, it holds that max(0, A) < max(O, B) when A < B. Hence, the

sequence whlch minimizes the value:r of max ( 1 ? -1,2 ) also
i=1" (1) T Li=1" (D)

, 1<usn 1 1.2
minimizes equation (4.7). Since the form of max (Z zu—
1<u<n 1-1 (i) i=1 (4

the same one as that of Johnson's, an optimal ordering can be given by the

)) has

" following inequality:

2 ., 1 2 ’ '
j) < mln(rj, ri) (4.8)

min(ri, T

(Q. E. D.)

This theorem is an extension of Johnsdn's, since by letting setup times
be zero, inequality (4.2) becomes exactly the one Johnson gave in his paper.
With a1 adaptation of this theorem, an optimal schedule is directly constructed:

by the following algorithm which is similar to Johmson's working rule.

< Optimizing algorithm for scheduling with setup times separated >
Step 1. Find the minimum value ambng the values¢xf(si - si + p;) and pi
(i=1, 2,..., n). (In the case of a tie, select arbitrarily.)
U R T | e 2
Step 2. If it is (sa -8, + pa), place Ja first, and if it is P> place Ja
last.

Step 3. Remove the assigned job from consideration and go back to Step 1.

Consider a 4-job scheduling problem which has production data as shown
in Table 4.2. By ﬁsing,the algorithm proposed, an optimal schedule is . ...

determined as I, J4 J1 J3 with the total elapsed time of 41 hours. Table 4.3

shows the list of ri and r% for each job.
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Table 4.2 Production data for two-machine scheduling

(uhits: hours)

Job Jq J, I3 9,
Setup time: k| k} k| k |k k | k| k
processing time| °1 | P1 | %2 {P2 [|%3 |P3 |5 |Ps

Machine M; 2 ]10 1] 5 2 7 31| 8

-Machine M, 3 8 2 7 1 3 1 9

Table 4.3 List of r% and r2

i
Job 5 J1 J2 J3 J4
1
ry 8 10
r2 8 7 3 9
1

In order to clarify the effect of the setup time consideration on tﬁe
reduction of the total elapsed time, find an optimal schedule with setup
times included. In this case, the processing times including the setup times
are given by Table 4.4 and the o?timal schedule is JZ_JI—JA-J3 with the total

elapsed time of 43 hours. Hence, the amount of the time reduction due to the

setup time consideration is 2 hours for this example.

Table 4.4 List of processing times including setup times

Job 41 Iy I3 I
sl+pl 12 6 9 11
i¥Pi
s{+p2 11 9 4 1
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4.2.3 Two-stage scheduling prob]em with setup times separated and time lags

In the analysis of the previous subsection, no consideration was given
to 'the transportation times between successive stages and the lap-phasing
which may occur in lot production. In order to describe these situations,

a model bf‘another type is necessary.

| Based on this consideration, a twq—stage scheduling model with time lags
has been constructed. In the model, two kinds of tiﬁe lags (a start lag and
a stop lag) are incorporated. The start lag (stop lag) prescribes that a
job may not bg sfarted (completed) on the succéédiﬁg machine ﬁntil at least
a certain time has elapsed éince stérting (completing) the job on the
preceding machine. |

This problem is also an extension of Johnson's.two-stage flow-shop
problem, since Johnson's problem is one where the start lag and the stop
lag for eagh job are set exactly'equal to the job processing’time§ on the
preceding and succeeding machines, respectively. 1In the preéented model,
the use of differént.sequences on the two machines will yield a shorter
elapsed time in éome cases, In order to simplify the problem, it is assumed
that the same order is to be used on both machines in the quel.

In this subsection a further generalization is made to include the
setup time consideration in the problem with time lags. The problem ;s to
determine a schedule so as to minimize the total elapsed time when the éetup_
times are sepa:ated from the processing times and jdbs have their start lags
and stop lags, respectively.

Let-ai and bi be the start lag and the stop lag of job Ji, resbectively
(see Fig 4.3). 1In order to express the total elapsed time as a function of
the processing time, the setup time, and the time lags of each job, develop
the recursive function éf the completion time of job J(i) to be processed in

the ith order.
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] | - . 2 ]
| ps Vo Py
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> ' —>

1

a) a; +ps 2 b
(@) 2395 2 b+

(b) ai."'P% < b; *’Pg

- Fig. 4.3 Start lag a; and stop lag bi of Iy

In the case of start 1agvai and stop lag bi; no job may be started
on machine M2 until at least a certain number of time units, Ti, which is
given by the following equation, has elapsed since completion of the

processing for the job on machine M, .

2

o 1 |
T, max(ai, ?i p; + bi) (4.9)

Hence, the completion time of J(i) on machine M, is given by the

2

following recursive relation (see Fig. 4.4):

2

2 1 1 2 2
Sy T m=Cy) ~ Pyt Ty, G Y@ tPwy 410

1 _yi o1 1 2 _
where C(i) Zj=l(s(j)+ P(j)) and C(O) 0.

1
—. L) P(i)
“Machine M, /A J(i) ] J(4) :
*=Tei) C(4) T CGy
. / Jrs KT
Machine M ( (1) /l
achine M, //j i) @\ _ l
i iy efi) N (1) ") IR
2 2 2 2
C(i-1) ) C(i-1) C(4)

. 1 1 2 . ,c2 1 1 2 2
(a) C(4)P()*T(4)% Ci-1)"S(1) ) €y P Tir< “a-n*3)
Fig. 4.4 Recursive relation of completion times of jobs
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By repeatedly using the above relation, the total elapsed time is obtained by

= - {u-z-l( + )+§1 +T, | +p
Faax ™ Sy gmex L) P * fw * Tw * P

+ Z 2.+ 2 0}
jeg D 7@

2 el 1
“o%a%! Z Gl =5 * Ty’ =L P " Pyt T

T2 2
o+ ] (S(i) + p(i))_

i=1

(4.11)

1
where S(O) (0) p(o) _ |
The f1rst expression of the above equation can be also obtained by considering

the job J( ) to be critical in a schedule as shown in Fig. 4.5.
u

h u-1 1 1 _
R LN

Machine M, . 7;45555553 1

sji")* T(%:' Jtu)

n

2
P (s2.y+p%
(1 SH)*))

Machine M, | |

Time

Fig. 4.5 Computation of the total elapsed time by assuming J(u)

to be critical in a schedule -

Since the second summation of equation (4.11) is a constant, the problem
of minimizing the total elapsed time is equivalent to minimizing the first

summation. This sum represents the total idle time I on machine M Hence,

2.
the problem becomes one of.finding a schedule so as to minimize the following

equation:

u
I =max { ) (st (4.12)

2 » v,2 1
Ocucn 1=1 (1) @’ T(i))v '151‘%) “Pay Ty}

(57)



11 2., . 2 2 1 . :
By letting r, =s; - si + Ti and ri = pi pi + Ti’ the above equation
u—l 2 , : '

takes the form of max - ‘21 =1 (i) Zi -1 (i)) This is the same form as the

0O<uzn
one in equation (4.6). Hence, with the same argument as in the case of the

proof of Theorem 4.2, the following theorem can be derived for optimally

sequencing the Jobs.

Theorem 4.3 For the two-stage flow-shop scheduling problem with setup
times separated and time lags, an optimal schedule under the criterion of
the minimum total elapsed time is given by the following rule:

Job Iy precedes job Jj.if

.12 2 1
m1n(si -85 + Ti’ Pj - pj + Tj)
- 12 21
] < mln(sj sj + Tj’ P; - P + Ti) | (4.13)

If there is equality, either ordering is optimal,

With the help of this theorem, an optimal schedule is directly determined
by a similar algorithm to-fhe one for the problem with setup times separated.
As a numerical example, consider a 4-job scheduling problem which has
the same data as shown in Table 4.2, and which has other data of start and

stop lags for each job as shown in Table 4.5.

Table 4.5 Start lags and stop lags

(units: hours)

Job Jl J2 J3 J4
Start lag a; 8 5 7 6
Stop lag bi 5 4 8 4

The values of Ti for each job are computed as (Tl, TZ’ T3, 14) = (8, 5,

12, 6). For example, Tl =max(8, 10-8+5) =8. Then the values of ri (= si
2 2, 2 1 1 2
-8 + Ti) and r, (-—pi - Py + Ti) for each job are calculated as {(rl, rl),

(3, £2), (5, 1), (5, tH}={0, 6), (4, 1), (13, 8), (8, 7D}, Hence,
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the optimal schedule is determined as JZ-J4-J3-J1.

4.3 Extension ofAtwo-stage scheduling to group scheduling

An analysis of the previous section is made to the conveﬁiional
scheduling problem in which there. is only one group consisting of n jobs to
be procgssed. In this section, the two-stage fiow—shop group scheduling.
‘problem will be theoretically treated. In the group scheduling to be
anaiyzed, hereafter, no attention wili be paid to the time lags of‘jobs.
‘However, it is possible to incorporéte.the time lag consideration into the
group scheduling model;

| Thé two-stage striﬁg problem, which is aﬂkind of group schéduling, has

been studied by Kurisu}s’ 16) In the string problem, it is assumed that the
order of jobs within each group (string) is fixed. That is, an optimal
decision is made only as to the sequence of groups classified. In the model,
group setup times which will play an iﬁportant role in grouping jobs are not
considered. |

In the two-stage'flow—shop group scheduling for the minimum total

elapsed time, the following theorem can be proved in the same manner as in _

the lemma by Johnson.

Theorem 4.4  For the two-stage flow-shop group scheduling problem of
minimizing the total elapsed time, it is sufficient to consider only group

schedules in which the same orders of groups and jobs occur on both machines.

.s k=1, 2,..., K) denote the

k s
I.etpig (1=l,2,...,N,£=1,2,...,nl

job processing time including the job setup time on stage (machine) Mk (k=1,
2,005 K) of job I, (i=1, 2,..., N, £=1, 2,..., n,) of group 6, (i=1, 2,
eees N) and SE (i==1,,2,..;, N, k=1, 2,..., K) denote the group setup time
on stage }k of group Gi' For the sake of convenience, the job proceséing

time and the group setup time are defined on stage Mk (k=1, 2,..., K),
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respectively.

First, develop the recursive relation of the completiohvtime on machine

Mk of job J(i)(E)’ which indicatesbthe gth job in the ith group in a group

‘schedule, The coqpletion time of J(i)(E) on Mk is given by

k | k-1 ck ) . '
Cw@ = "2=Cuye)y C@e-1? *P(mz)’ e 1
' (4.14)

k _ k-1 k k K e ro
W@ - =y @ Ca-1) ;Y5 Py 1 E7E
0 Ck ) '
where sy (e) “C(0) (ng) = °

By using these recursive relations repeatedly, the total elapsed time

for the two-stage flow-shop problem, the.completion time on M2 of J(N)(n )?

is expressed as -

u-1
F - 2

max = C(w) () =0‘3§N 1’;‘;‘;‘;} o) gz Py * St

Ny
1 .2
+Zp +1p + X(s Zp )}
£=1 (W (@) "2, @ @) [y ) g (1) (£)
u—-1

1 RIS 2
'oT§N{1§1(8<1> P@) * S tom P © RISICY

+ Z (s 2.))}

(4.15)
i=ut+l (i) A - :

where P%i) =

n; k ok _ - | 1 _ R
LediP(ay ey Proyey =0 (k= 1s )5 and Sy =0, and mgy 2 1.

The problem is to determine a group schedule so as to minimize the above

equation. The following theorem holds for this problem.

Theorem 4.5 For the two-stage flow-shop group scheduling problem for the -

minimum total elapsed time, an optlmal group schedule is obtained by the

following rules; the job sequence is by Rule 1, and the group sequence by
Rule 2.
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" Rule 1: Job J,. precedes job Jin if

ig
min(pig, pin) < mm(pi > p ) (4.16)
. Rule 2: Group Gi precedes group Gj if
2 1
min {S - 8% + max ( Z Py X P, E)’ max ( Z Pig Z
1<v<n E=1 E E=1l 1<v<n g=v & g v+1
9 1 v—l
< min {S - S, + max ( Z P, - X P )
1<v<n g=1 J j& £=1 j&
nj nj
max (] p%g"- X P%g)} . (4.17)
lcvsngE=v *°  E=v+l 1 _

If there is equality in inequality (4.16) or (4.17), either ordering is

optimal for group and job sequences, respectively.

Proof: The optimal schedule under the criterion of the minimum total
elapsed time can be obtained by minimizing the total idle time at the. second

stage. From equation "(4.15), the total idlé time at this stage is given by

I - 52
t= 1§1( @ * P
u-1 | , ’
1 2 1 2
= { (S - S, ) +'S - S
OzziN lfifnu 121 @ ) (1) (1) - (1) (w) (v
v-1
1 2
" Z F@E e’ (4.18)
This is equivalent to the following:

I = max { X (S

O<usN i=1 @ @ S~ (1)) * S(u) % (w)

+1fﬁfnu(gzlp<u> (&) gZ P 0}
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u-1 . : 2

= . 1 _
‘oiizu{iE (Q(1> %) * Sw ~ St
. v 1 v=1 2 .
+max (] -1lp )}
where Ql((i) = l((i)+ lZi) (k=1, 2).

(4.19)

Hence, for any group sequence, the total 1d1e time at the second stage is

minimized by determlnlng the job sequence within each group G(u) so as to

V- 1 2

minimize max ( -7 ).
ol Teer® (u)(z) 1w @)
the jobs using Rule 1.
: . -ql _a2
Intreduc1ng R(u) S(u). S(u)vand V( )

. 1<\,\<I'1u
equation (4.19) is presented by

- u=1

max { § (Q}
O<usgN i=1 1

1= }

2
" Q) TRy TV

"This is accomplished by ordering

v=~1 2

’mdm%m)%ﬁmw’

(4.20)

Rule 2 as to the determination ofvén optimal group sequence is proved in the

following way.
at stage MZ'

two comsecutive groups G(i) and G

(i+1)

Develop a sufficient condition such that I(w) < I(w').

I(w) < I(w') is equivalent to the following:

Let w be any group sequence and I(w) be its total idle time
Consider a group sequence w' that differs from w only in that

are interchanged in w.

Inequality

max{ Z QT Q(a)’ Ry YV, Z (Q(J) ) * Regaay ¥ aany?
< max{ Z (Q(J) Q(;)’ Ry T Vs
il 1 2 :
Z (Q(J) Uy * Usazy ™ anny * By * V! @20
By subtracting 21 i(Q%j) Q(J))i-R( ) V(i)i.R(i+l).+v(i+i)'erm'eaCh term

of inequality (4.21), the following one is obtained:
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-vV,..)

1 2.
mx (R g1y “ Y’ Yo "% TR TV

1 2
< max(-Riyy = V590 Q(i+l) = Q41 “ Ry V) (4'22)
Since max(x, y) =-min(-x, -y), this is equivalent to the following:
min(R +V R,. +V -Q1 -Q2 )
(1#1) * (i+1)’ T@E) (@) TE) @)
. _ 1 2 :
< mInR Gy Y0y Ry YV Qs T Qs (4.23)

upon this, each term in.the parentheses of the above inequality is

transformed into the following one:

R +V =Sl -‘SZ + ) ( \Z) 1 -Vil 2 ) ) (4 24)
CORCH RGO R A BRI RO .
-t . —o2 . = 2 1

From these expressions (4.23), (4.24), and (4.25), and the fact that the
ordering of the two consecutive groups given by inequality (4.23) is -
transitive, it f6llows that Rule 2 characterizes an optimal group sequence.

(Q. E. D.)

This theorem is an extension of Johnson's to group scheduling. With
the use of this théorem, a simple algorithm for determining an optimal group

schedule is developed as follows:

< Optimizing algorithm for the two-stage flow-shop group scheduling >

Step 1. Determine an optimal job sequence in. each group by using Johnson's
working rule.

Step 2, Détermine an optimal group sequence in the following way:

(1) Calculate the following values for each group under the job sequences
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determined by Step 1.

. 1 2 Z \)il

X, = st - 8% + max ( p -} p
i 4 Lsveny E-1 it 12
hiYi~=' max - ( Z p Z p

- 1svn, E=v ig g—

(i) Find the minimum value among the Xi's and the Yifs. (In the case of a
tie, select arbitrarily.)
(i) If it is Xa’ place Ga first, and if it is Yé’ place Ga last.

(r) Remove the assigned group from consideration and go back to (ii).

4.4 Optimal group scheduling on multiple production stages

The recent advances in scheduling technique have shown that it is rather
difficult to develop simple optimizing algoritﬁms forrsolving the general
flow-shop sgheduling préblem with the simple criterion of minimizing the
total elapsed time, much 1¢ss the problems with more complex measures, such
as minimizing thé mean flow time. As a result of this éw;reness, a direction
of recent research iﬁ multistage scheduling problems has been turned to the
ASPecial structure scheduling problems which can be easily solved
theoretically. Thus, several cases in which the job processing times bear
well-defined relationships,have been considered, and efficient optimizing
algorithms for determining the optimal sghedules have been developedr.'

In this section, these special cases in the conventional scheduling are
generalized to the group scheduling. A theoretical determination of the
optimal group schedule under the criterion of the minimum total elapsed time
can be made to the special structure flow-shop schéduling problems where
there exist some well-defined relationshipsvamong the group processing times
and the job processing times.

For the K-stage (K23) flow-shop group scheduling problem, the schedules
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having the same order of groups and jobs. on the first two machines include
an optimal schedule under the criterion of minimizing the total elapsed time,
while the optimal schedule does not alﬁays have the same order on the last
two machines. The latter property does not occur because of the grouping
of jobs into several groups but because of the feature of the-group setup
time. |

In the K-stage flow-shop group scheduling problem which will be treated
hereafter, it 'is assumed that the processing order of groups and jobs is the
same on each machine. (No passing of groups and jobs is allowed.)

‘With the aid of equation (4.14), the total elapsed time for the K-stage

flow-shop problem is given by

K K

F = C = max : max R
e (N) (nN) osuliuQS- . -SUK_1<N ) \)k € I'k kZl (uk 1’ uk) (4 y 26)
(k=1,2,... ,K—l)

where
-1 v

i) for k=1 =
(1) for > R(ug, u ) 1EIQ(l) (ul)-*g_

(i) for 1< k<Kk-1

Pop-1 Yl v
| -é p<“k.1>(£) R @ e P(uk) @ “x1 W
R(ue_» u) = k-1 -1 |
Vi -
) p%u YeE) @ =u)
g="k—1 k k-1 k
(i) for k=K,
| MUR-1 K
R( > ) + Q..
Ug-17" =Z p(uK D® imz 4D
K-1
a st =0, o =0, and T, i £ h th
an (O)-_ ’ p(O)(E)._ s, an Kk 1s a set o vk such that
(1) 12y < fu (er < )
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) 1o s v,y Gy <m Ty
() vy sy sy (o, =Y <uy)
) Vg SV Vg (g T 9 T Yyg)

where u, =0, uK=N, vo=1, Vg =1y and '_‘021'

4.4.1 Optimal group scheduling for three special cases

It is obvious from equation (4.26) that the task of determining a
schedule so as to minimize it is more formidable. However, if each of the
following well-defined relationships holds among the gl;oup setup times and
-the job processiﬁg'times .at each of the stages_, the problem éan be feduced .

to a two-stage one, and hence solved theoretically.

Case 1: For a fixed hg (K-1), the group setup times and the job

processing times satisfy the following conditions:

(i) min (SI; - Sl,d-l + min pl.(g) > max max pl.&l
1<igN 1 1s£snil 1<j<N 1$n5nj‘]n
vk < h-1 Z K-2 \
min pli(‘E < max pli(:l (i=1, 2,..., N) . -
1sgsn, 1<nzn, | } (4.27)
(i) max (S.l,c_ - Sl,d-l + maxpl.cg) < min nmin pl.(:l
1<ish Y 1<en ' 1<j<N 1snsn,? R
- 1 3 ‘htl < Vk < K-1 7
. 5 + '
max pX. < mif pl;nl (i=1, 2,e.., N)

1<Esn, i€ j1<nen

Case 2: The group setup times and the job processing times satisfy the

following conditions:

kL k+l k . . k+1
max (Si - Si +.max p Ej) s min  min p_°
1<isN 1<E<ng 1<j<N lgngn, 3 ‘
3 vk < K=-2 (4.28)
max pY, <min PNl (i=1, 2,..., W)
l<gsn, * lzngng in
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Case 3:. The group setup times and the job processing times satisfy the

following conditions::

+
nin (Sg - S§+1 +. min p, E) 2 max max ktl

P,
1cigN  1sEsng 1sj<N Txnsn, n
2 <vk s K-1 (4.29) -
k+1

min plfgz,max Pin i=1, 2,..., N) .
1sg<n, 1 1sngn -

Note that none of the conditions above is required when K=2., The

following theorem holds for Case 1.

Theorem 4.6

If the group setup times and. the job processing times satisfy
conditions (4.27), then an optimal group schedule is obtained by determining

the job sequence for each group.using Rule 1, and the group sequence using
- Rule 2,
Rule 1: Job J,_  precedes job J, if
ig ) in
K-1 K | K-1 K
k k . "~ k k
min( } pl&’kzzpi“) < min( Z Pine ) Pig)

(4.30)
k= k=1 7 k=2

Rule 2: Group Gi pPrecedes group Gj if

K—l K

k
min{ } S -7 S + max ( Z X P z Lr..)
k=1 & =2 1 1svgn; E=lk=1 18 plyp=g 18

max(zz E—Z Zpg)}
1<vsny E=vk=2 38 roviike1
K1, K v K-1 v-1 K

<min{ J S¢ - 7 ¥+ max <z zp -1 1o
k=139 k=2 J 1<v<nj g=1k=1 3% g=1k=2 J

nl K X N X ’
max () J Pip - D) pig)} (4.31)
1gveng g=vk=2 E=v+lk=1 '

If there is equality in inequality (4.30) or (4.31), either ordering is

optimal for group and job sequences, respectively.
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Proof: The problem is to find a group schedule such that the total elapsed
time given by equation (4. 26) is minimized. By subtracting Z I:i) Iéi))
from the equation and arranging it “the total idle time at the last stage is

obtained as f'ollows:

K-1 Ug-1l

I= max : max. [ ) { (Q Qk+1)
Oujsupg...sup <N VKETE §1 i-}; (i) (1)
(k=1,2,...,K-1)
\’k-l o
+ 5 (4.32)

() ™ (uk) Z (uk)(g) . gz p(u )(E)

Since the value of X;Ll (SI((i) +PI§i)) is a constant,- the problem of minimizing

equation (4.26) is equivalent to minimizing the above equation.

Introduce

_“El( gty 4 gk | gk E | v§-1 kil -
G- u u g_lpui E=1 Pug

< (4.33)

From the obvious identities

k _ LK k ic+1
Hu\)+1 - Hu,\) + Puv+l puv ’ (4.34)

k k- ko k. k k+l
= + - + — X
Hul I‘Iu--lnu__l Su Su Pu1 pu—lnu_l

and conditions (4.27), the following inequalities hold

B <H° . and Hk < HE

uv — “uv4l -1n, 3 ul (k=1, 2,..., h-1)

| ) (4.35)
> g¥ and HX s BS.  (k=h+l, b2 K-1)
Hu.v = Muv+l u—lnu__ ul ’ 20

Hence, equation (4.32) can be presented in the following form:
-1

) kzln(“h)(“h) (4.36)

I = max max
0$uh.<.N l.<_vh.<..n

Denote u, and 2 by u and v, respectively.
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Then

K-1 u-1
I = max
0<usN 1gven,; k=1 i=1

v
+7) k
E= 1p(u)(E) gzl

k+1
(u)(E)

u-1 K—l Krl

=max { ] (] ok Z Q%) + Z S
O<usN i=1 k=1 ()~ @7

Krl

+ max ( z Z p
1gvsn, £=1k=1 (w) (&)~

K-1 k
Z"k—l ig?

11 Zg’ then Ul ZK -1 k + Z

W

Let rl ' igézk—ZPiE’ i

2

and U =W, +z€

~ Hence, the total idle time at stage M

W%U)

K

-

I=max { Z (vl ()

20+
Osush i=1 D) A(l) ,

v o3 ' v—l
+max ()T
15v5nu E=1

This expression has the same form as equation (4.19).

Wk and r (k 1, 2) by Sk and Pkg

max [ ) L) (Q(l) Q(i))+s(u)

1_pRelgk 2 gK kol
k=1"1’

k-1 k ZKlkandU -;k-ZQ

g= lzk*l 1€

@@ "L T (&

k+1 :
(v)

Z S(u)

P P(u)(s)’ (4-37)

E=1k=2

S W. S U

n
=2 w '*Zg~1 iE?

kle

can be denoted by '

))} (4.38)

Therefore, replacing

(k=1, 2), respectively, in conditions

(4.16) and (4.17) of Theorem 4.5, we get conditions (4.30) and (4.31).

(Q. E. D.)

With the help of this theorem, an optimal group schedule can be

determined easily by the following algorithm similar to the one for the two-

stage problem, since Rules 1 and 2 have the same forms as the rules of

Theorem 4,5.

< Optimizing algorithm for case 1 >

Step 1. (Determining the optimal job sequences)
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(1) Calculate the fictitious processing times, the values of Zi iptg G=xi€)

aqd zk=2?1g G=yig) for each job.
(ii) Determine an optimal job sequence for each group by applying Johnson's
working rule to these values.
Step 2. (Determining the optimal group seqﬁence) '

(i) Calculate the following values for each group under the job sequences
determined by Step 1.

k-1 k \ K-l 1K

Xi = Z i Z Si + max ( Z z piE Z
k—l k“Z 1<y<n £=1k=1 g=1k=2
0y K i K-1

k
Y, =max ()] Jp I I o5
Y ocusng Eovike2 1 gmvhike1

(i) Find the minimum value among the Xi's and the Yi's. (In the case of a
tie, select arbitrarily.)
(i) If it is X,, place G, first, and if it is Y, place G, last.

() Remove the assigned group from consideration and go back to (ii).

When the group setup times and the job processing times satisfy

conditions (4.28) of Case 2, it follows from equation (4.33) that

kL gk k k _ ~
Then
e > uk (k=1, 2,..., K=2) |  (4.40)

1@ = T@E

Hence, the total idle time at the last stage given by equation (4.32) can

be denoted as follows:

K—Z
A k-1
1= max max ( H + H
O<u, <u,< ...SUK 251 V=1 X (u )(vk) (“ )(
<. <N (k=1,2,...,K—2)
K—2 K-l 1 SVK- lsnuK—

)
V-1
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k-2 . g+l

= max - [ Z (s p )
05u15u25...<u _251 k=1 (“ (U ) (u )(1)
ug1L
K K-1 K
+ max {. X (Q -Q,.\) +58 -3
u_,su SN =1 (1) (1) (up 1) " ;)
\)K—l K“l \)K_l 1
+1.<\, ma}((n (€=1P(UK_1-) (E) Z p(uK l) (E))}] (4.41)
—K-17 ug 4
Setting uK,2==1 and uK~2==0’ this is equivalent to the following:
K-2
' ' k k+l k
I = max [O, max PE +p )
. Ogulguzs...suK_z_lkf (uk) (uk) (uk)(l)
: ug_3~t
ok _ K K-1 K
+ max { } @T-qh) +s -s
1w, N gm1 D @ Tlag ) (uK_l)
VK&.KJ K,% )
+ oomax (P P )} (4.42).
B S e )@ g5y o PO -
Hence, the objective function to be minimized becomes
k+l k-
I' = max z (s +p )
0<ulsu2_...5uK_ =1k=1 ) ( ) (“k)(l)
1
K-1 K
+ma"‘{Z(Q ~X o+ st s
lva—]_(N i=1 (1) (1) (uK_l) ) (uK_l)
V l
+isvméxSn ( Z P(uK 1)(5) Z P _1)(€))} (4.43)
R-1 uK__l

In the above equation, the first term is concerned with the job
occupying the first place in a group schedule, and the second one‘with the
jobs being processed on the last two stages Mk—l and Mk. The group schedule,
S, determined by applying Theorem 4.5 on the two-stage problem (stages MK__1
and Mk) minimizes the second term. Hence, the optimal group schedule can be

obtained by evaluating the total elapsed times of the schedules, SiE’
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.containing the job J, (i=1,

i ig
2,000, Ny £ =1, 2,..;;ni) ta the first'position of schedule S, and then

generated by assigning, first, each group G

placing each job J, first in the job sequence of Gi,'and maintaining the

iz
other group and job poéitions.. Let Jaa be the first job of schedule S.

Since schedule S minimizes the second term of equation (4.43), the optimal

group schedule is determined by only examining the schedules Sig for which
K-2 Yk | ‘ i u
max z Z (S? - S§+1 + pig)
OSulsuzs...suK_2=1 k=14i=1 |
K-2 Y . .
< max I L sk-sfae k) (4.44)
Oguysu <...gu, =lk=1i=1 2 2 .

=2 K~-2

Thus, for Case 2, the optimizing algorithm for determining an optimalf

group schedule is proposed as follows:

< Optimizing algorithm for Case 2 >
Step 1. Determine an optimal group schédule, S, for the two-stage problem
(stages MKfl and MK).v Let Jaa be the first job of schedule S.

 Step 2, Let H==(Ji ) be a set of jobs such that

181° J1252’"" T128;

K-2 Yk
: K+l . k :
max _.Z ) (sﬁ. =S5 *tpg )
OSulsuzs...guK_2=1'k=11jfl J J 373
k=2 Tk 0 k41l k
< max } LS -8""+p. )

Generate I new group schedules by assigning, first, each group.containing
ﬁhe jobs Jijgj (€N) to the first pésition, and then placing each job Jijgj
first in the job sequence of Gij ;nd maintaining the scheduie S order for _
the remaining groups and jobs.

Step 3. Among the (Z+1) schedules obtained abqyé, find the group schedule

minimizing the total elapsed time. This schedule is optimal.
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For Case 3, the following relations hold.

k k k k _ ‘ :
Thus
Kil
I-= max max (H + H )
- (uy) (vy) N) (n,))
05u1<u2—:f-—uK 1 =N 1<u1<n 1 1 nN
ul—l

2

0<u1_<_N 1<vl<n 11—1

-+ 4.46
zp(ulua Zp(ul)(a} Z"(N)() Z‘ch) Q(x)) (4.46)

In the above equation, the first term is concerned with the jobs being
processed on the first two stages Ml and MZ’ and the second one with the,jdb
occupying the last .place in a group schedule. The third term is a constant.

For Case 3, the following algorithm is developed in much the same way

‘as for Case 2.

< Optimizing algorithm for Case 3 >
Step 1. Determine an optiﬁal group-schedule, S, for the two-stage problem

(stages M1 and MZ). Let JZB be the last job of schedule S.

Step 2, Let I=(J . Jizgz,..., JiZEZ) be a set of jobs suéh that

i85
K
k
Z p < Jp
k=3 1 k=3 B

Generate 1 new group schedules by assigning, first, each group Gij containing
the jobs Jijgj (€1) to the 1a$t position, and tﬁen placing eaéﬁ—jéb Jijgj
last in the jo§ sequence °f_Gij and maintaining Fhe schedule S order for the
remaining groups and jobs;

Step 3. Among the (7 +1) schedules obtained above, find the group schedule

minimizing the total elapsed time. This schedule is optimal.
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4.4.2 Numerical examples
To illustrate thé optimizing algorithms presented, consider two

special structure flow-shop group scheduling problems.

Example 15 The production data for a 10-job, 4-group, 4-stage problem are

given in Table 4.6. This is an example of Case 1, since the group setup times

Table 4.6 Production data for Example 1 |

(unit: hours)

Group Gl G2 G3 G 4
Job | PalP2zf2s]  PaPs2| e a2 Pus
Setup time. . kf k [k x|l kol xlx Ik | x[k |k |x
processing time | Sy [Pyq]P12{52 |P21{P22|P23] 53 {P31 [P32| 54 (P41 [Pa2 [Py
Stage M; 51 16| 183 | 18] 19) 15) 4 | 15| 19} 4 | 17} 16] 20
Stage M, 41 15{ 13| 3 | 12| 14| 12} 3| 10{ 15} 5 | 10} 13] 15
Stage M3 31 6/10/4)10] 8 712 6] 83| s|10f 9f
Stage M, 4| 13} 20| 4 )15 6] 17/ 5| 18} 200 4 | 12] 9] 17

and the job processing times satify conditions (4.27) for h=3 as follows:

min (s% - s? + min p% Y)(=15) 2 max max p? (=15)

1ci<s Istsn, £ 1<js4 1snsn,
. 1 . 2 ’
min plE (=16) 2 max plﬂ (=15)
1<g<2 ~ 1<n<?2
. 1 o 2
min p, (=15) > max Py (=14)
163 % 1<n<3

min pig (=15) 2 max p§ (=15)
1<£<2 1gn<2 =N

2
min pi'g (=16) > max plm (=15)

1<£<3 1sn<3
min (Sz, - s:f’ + min p?g)(=11) > max max P:? (=10)
1gi<4 lstsng 1 13N lsnsn, J
min p2 (=13) > max p3 (=.10)
1£ = In

1<£<2 " 1z<ng2
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min pgg (=11) > max pgn (=10)

1<£<3 - 1<n<3

min pgg (=10) 2 max pgn (=8)

1<E<2 1<n<2
min pZE (=10) 2 max pz (=10)
1<£<3 1<ng3 *M

Thus the optimal group schedule is determined by using the optimizing

algorithm for Case 1.

Step 1. The values of xig and yig for each job are computed as in Table

4.7. By applying Johnson's working rule to this table, the optimal job

Table 4.7 List of Xig and_yis
Group Gl G2 ' G3 _ G4
Job T 1219211220923 31 P32 a1 42| 43
Xip 37| 41 40| 41f 33| 31| 42| 32| 39 43|
Vi 34| 43} 37| 28] 35| 34 43| 27] 32} a1

- sequences for four groups are decided as J12-J11, J23—J21—J22, J31-332, and

J43—J42-J4l, respectively. |

| Step 2. The values of Xi and Yi forkeach group are calculated as {(Xl, Yl),

(X5 Y0, (Xg5 Y3)u (X, Y} = {(42, 40), (41, 28), (38, 39), (44, 29)}.

For example, X, =5 -4 +max(41, 41+37-43) =42 and x2=max(43+34-37, 34)

=40, Hence, from this 1ist, the optimal group sequencé is G3—G1—G4—G2.
Consequently, the optimal group schedule is determined as G3(J31—J32)-

Gl(JIZ—Jll)-GA(J43_J42-J4l)_G2(J23—J21-322) with the total elapsed time of

217 hours,

Example 2. The production data for a 10-job, 4-group, 4-stage problem are
given in Table 4.8 The group setup times and the job processing times

satisfy condition (4.28) of Case 2 as follows:
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Table 4.8 Production data for Example 2

(units: hours)

Job « 31 T2] P9 |322|d23]  [Iaa|Is2]  |Ja1|Te2fta3
Setup time- olk |k |kl k| k| k]ck] k| klek|l k] K]k
processing time |51 [P11|P12| 57 [Pa1|P2a|P23| 53|P31{P32 S4 | Pa1{Pa2|Ps3 ;

Stage My 2] 6lw0|3|ofs]elr}]7|s|2]9)e6}7
Stage My 3 | 14| 12} 2 |10 f1a | 1s] 2|13 f21 | 2 {13 ] 5|10
Stage My 4 | 18| 16| 3 |17 {19 | 18] 2|16 |15 | 4 {18 [20 |19
Stage M, 2 | o] 19] 4 |22 |12 ] 25| 3|20 )23 | 3| 9|13 |10

max (S].' - S% + max ‘p].'

: 2
Y(=10) £ min min p,_(=10)
1<i<t 1 i lSESni ig n

1<js4 lsnsng J

max pig(=10) < min p]2_ (=12)
1<e<2 . 1sn<2 M0

max P;g (=9) < nin pz (=10)
1<E<3 1<n<3 n

1 X 2
max P, (=8) £ min p3n(=1l)

112 1<ns2

max pig (=9) £ min pz (=10)

12£<3 1gng3 M
max (Si - Si + max pgg)(=14) < min min p:? (=15)
1cigh 1sg<n, 1 1jg4 lsnsng

2 . 3
max plg( =14) < min pln( =16)
1<E<2 1<ng2

max pgg( =15) < min pgn( = 17.)
1<E<3 1<n<3

max pgg( =]33) < min pin( =15)
1<E<2 1nsg2

max ng(=15) < min pz (=18)
1<£<3 1gng3 0

Hence, the optimal group schedule is obtained by using the optimizing
algorithm for Case 2,

Step 1. The optimal group schedule for the two-stage problém (stages Mgy
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and M ) is determined as G (J32 31) -G (J21 23~ 22) -G (le 11) -G (J42 43
2 Y% .k k1, k
- + =
Step 2. The values of max Zk=lzi=l(si Sig piE)( ziE) for each

0$u1$n2=1
job are computed as {(z,;, 212)’ (2515 2995 253)s (2315 235)5 (2,05 Z,9s

z43)}=={(18, 20), (19, 16, 23), (19, 18), (20, 19, 15)}. For example, 249"

2 3, 2 1 2 1 2 3, 2 _
ma.x(Sl Sl+pi1, sl-sl+ 11+sl-sl+pll)--18. I {Jzz’ J43

=18, Thus it is necessary to evaluate the following three schedules to

}, since

232

determine the optimal group schedule.

Schedule §: 3( 3279310785 (3735373550 =6 (3 )=311)-C, (3, =3, 5=3,1)
Schedule S,,2 G, (Jy,=J);=J)3)=CG4(J5,=J49)=G1(J;5=317)C, (J;5=T;3=T,7)
Schedule 8,33 6, (J,373497341)703(3397337)=65 (3135379990 =6; U1 7919)

Step 3. Since the total elapsed times for the above three schedules are
216, 212, and 229 hours, respectively, the optimal group schedule is the

schedule 822.

4.5 Conclusions

(1) The two-stage flow-shop scheduling model with setup times separafed and
time lags was developed, and the well-known Johnson's theorem for the two—'
stage problem of minimizing the total elapsed time was extended to the
presented model, | |

(2) The two-stage flow-shop group scheduling problem was treated under the
minimum total-elapsed-time criterion, and a theorem was given for determining
the optimal group schedule.

(3) The multistage flow-shop group scheduling problem was cqhsidered under
the same criterion, and a theoretical analysis was made into the special
cases where there exist some well-defined relatlonshlps between the group
setup times and the job processing times, For each case, a theorem or an

algorithm was given to determine the optimal group schedule.
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CHAPTER 5 GROUP SCHEDULING ON MULTIPLE PRODUCTION STAGES —— BRANCH-AND-
BOUND APPROACH

5.1 Introduction

As stated in the previous chapter, a successful analysis of
multistage sche&uling problems is limited to the case of the two-stage
flow—shop problem with the objective of minimizing the total elapsed time.
For more than three-stage scheduling problems, é universal theoretical
analysis cannot be made even under the simpie criterion of the minimum
total elapsed time. In order to generally solve the problems, therefore,
it is necessary.to resort to general purposé methodologies, such as a
dynamic programming approach, a branch-and-bound method, etc., or a
_ heuristic procedure. |

Among these; the branch-and-bound method has been employed wifh some
success}) The basic branch-and-bound procedure for solving the three-
stage flow-shop scheduling problem of minimizing the total elapsed time
w;s developed by Ignall and Schrageg) and independently by Lomnicki?)
ASince then, a variety of extensions and refinements have been developed
for_the branch-and-bound procedure?;S)

An attempt to solve the flow-shop group scheduling problem using

the branch—an&—bqund method was made by Nakamura and Hitomi?)
The main purpose of this study is to find an optimél group schedule and
no attention is directed to the effectiveness of the lower bounds
proposed and the optimizing algorithm developed.

With the help of the branch-and-bound method, this chapter also

solves the flow-shop group scheduling problems?)

In these problems, the
ordering of groups and jobs is assumed to be the same on each machine.

- The scheduling criteria employed are the minimization of the total elapsed
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time and the minimization of the weighted mean flow time for which no
effective lower bound has been developed for the multistage scheduling
problem. In this chapter, attention is paid to the effectivenesses‘of the
lower bounds to be proposgd and the optimizing algorithms to be developed.
For the minimum-total-elapsed-time problem, three kinds of lower bounds
are developed by extending the typical ones in the conventional scheduling
to the group scheduling. Then an optimizing algorithm whiéh inéorporateS'
these bounds ié proposed. Their relative effectiveness is then investigated
with numerical experiments.

For the minimum-weighted-mean-flow-time problem, a lower bound, which
is an extension of the machine—based'bound, is developed, and numerical
experiments are run to examine the effect of randomess of weighting

factors given to jobs on the effectiveness of the algorithm.

5.2 Total elapsed time and weighted mean flow time
k
ig
£€=1,2,...,n,k=1, 2,..., K) and sli" (=1, 2,00, N, k=1, 2,...,

As is defined in the previous chapters, let P, (1 =1, 2,...,"N,
K) denote the job processing time including the job setup time of job
J, (1=1, 2,..., N, £ =1, 25000, ni) of group Gi (i=1, 2,..., N) on

ig
stage (machine)Mk (k =1, 2,..., K) and the group setup time of group G

i
on stage Mk’ respectively. Furthermbre; let wig (i=1, 2,..., N, £=1, 2,
cees ni) be a weighting factor given to job Ji&'

The total elapsed time required to complete all jobs in all groups is
denoted as in equation (4.26) in Chapter 4. Another expression of the
total elapsed time can be given by using the idle times of jobs on the last
stage.

The completion time on Mk of J(i)(g) indicating the £th job in the ith

group in a group schedule is denoted as
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where P(i) Z 1p( 1) (£) and g( ) (E) is the idle time of Mk before processing

gth job after completlon of (¢-1)th job of G(i)’ and is given as follows:
for £%1,

k—l k‘ | k k

X , if C,. >C,,

B (1) () ={ @@~ %@ - ®® 7 ‘@D
0

R otherwise

for £=1,
k—l k k k-1 k k
k ‘W anae_p i@ Y low’ tatna,_ptiw
Eayqn) T * —
0, otherwise
Hence, the total elapsed time is given by
= CK
max (N) (ny)
N %y - - - .
Ll Ewe S w W .2
.The weighted mean flow time is given by
‘N
K
lzlgl"(n ®Swe© /Lo
(11 ( Z sk } / (5.3)
= w g ) M 5.3)
i=1£=1 (1) (&) (i)(E) (i) (i)
where M= 21 =10

Equation (5.3) indicates the mean flow time in the case in which all

the weighting factors are equal to one.

5.3 Branch-and-bound method for multistage group scheduling
The branch-and-bound method, which is one of the optimizing

techniques, has been employed to solve flow-shop scheduling problems and
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has shown some success. In‘order to solve a flow-shop group scheduling
problem, this method can be applied. The branching procedure, which is
one of the fundamental procedures of the branch-and-bound method, is dong
in the same way as in the case of the single-stage group scheduling
mentioned in Chapter 3. In this section, therefore, the bounding
procedure, which is another fundamental procedure, is explained.

The calculation of the iower boﬁnd is made at each of the job nodes
creétgd by the branching procedure. Let Nrs be a job node at which s jobs
gelected among n(r) jobs in group G(r) at a group node ﬁr are allocated. |
Two kinds of lower bounds are estimated according to the criterion employed.

(1) Lower bounds on the tﬁtal elapsed time
A variety of lower bounds on the total elapsed time have been
- developed for the con&entional flow-shop scheduling problem. Representative
of these bounds are the machine-based, the Jdb—based, and the composite
bounds§) For determining the optimal ~group schedule, the lower bounds can
be deveioped by extending the above three bounds to the group scheduling,

as follows:

(a) Machine-based bound: The machine-based bowund at N . is estimated by -

L (N = max w()()*“()(s)* PRC/RER I

rs

1<k<K geJ 1eG
§
min P (5.4)
igeJ hektl (1)(5)

where-C%r)(s) is the completion time of J(r)(s) on Mk, and Er is the set
of groups not yet sequenced, and jrs and jr are the set of jobs not yet
sequenced and the set of jobs not yet sequenced in group G(r)’
respectively.

The second and third terms of the above equation are the sum of

the job processing times for jobs not yet sequenced in the current
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group G(r) and the sum of the group processing times for groups npt yet
specified in the node, respectively. The 1ast> one represents the
minimum of the sums of job processing times in the remaining stages for
each of the. jobs not yet sequenced.

(b) Job-based bound: The Job-based bound at N is given by

L2 () =12§§k,[°(r)( ) *;gix {thP<i><g>

+3 min(s¥

sk 1] (5.5)
JeG

+ ] min (P(J)<n>, Py’ W 53

jneJ j¥l
n*E

This bound expresses the facf that the total elapsed time may be
determined by the total processing- time for a job rathef than the total
proc-essing _time' on a ﬁachine. |
(¢) Composite lower bound: The composite lower bound, which is a

combination of the above two bounds, is
= ]
L3(Nrs)l max {1, (8 ), LN )} - (5.6)

where Lé (-Nrs) is obtained by eliminating the >bound on MK in equation (5.5).
(2) Lower bound on the weighted mean flow time

ﬁven for the conventional multistage scheduling problem, véry few
reports have been made on the. lower bound on the weighted mean flow timef.’)
The lower bound for the group scheduling problem is estimated by

extending the equation (5,4) to the case of the weighted mean flow time.

The lower bound at Nrs is calculated by
. 7 X, .
L) = (W )+ W, )} -/iglni 5.7)
where Wl(Nfs) and WZ(Nrs) are the weighted flow times for groups and jobs

which are already séquenced, and not sequenced, respectively, and are

given by ‘
rfl ‘Zli 2 (5.8)
W.(N_) = w .
1Y rs 1=1.&=1(i)(§) (i)(E) £=1 (r)(E) (r)(g)
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87 ) <k g§s+1 (x) (8) " (x) (s) n§s+§<r) () h-lzd-l (r) (€))
* L §=‘{(1) ® (% (o) “_Eﬂ‘s @ * 2 * St
: : K.
+-§pk + ] pt }
e W YL P@) @) . (5.9)

Equation (5.8) is obvious. In equation (5.9), the first term in the
'max’ operation is for jobs not yet sequenced in the current group G(r)’
and is introduced in the following way:

The lower bound of the completion time C( ) () of J( ) () (€ >s) is
given as follows by using the completion time C( ) (s) -on Mk of J(r) (s)’

which is the last job in the sequence already sequenced.

g€ K
k
X

h .
Ap(r)(n) + Z P(r)(g) | (5.10).

' k
C = C +
(r)(g) (r)(s) n=s+1 h=k+1

Since the total weighted flow time for (n( 3y~ s) jobs not yet sequenced

is g§s+i(r) (E) (r) &)? the firét term is obtained. The second term in
the 'max' operation for the jobs in (N- r) groups not yet sequenced is
obtained in much the same way as the first term.

The value of equation (5. 9) depends on the sequences of groups
and jobs not yet sequenced. For determining the minimum value of
equation (5. 9) Theorem 2.2 offered in Chapter 2 is useful. This
theorem gives a group schedule minimizing the weighted mean flow time
for the' single-stage group sgheduling problem. In order to give the
minimum vaiue to equation (5. 9), the equation is calculated so that
groups and jobs not yet sequenced are supposed to be ordered in each

stage according to the order determined by Theorem 2.2.

Based on the analytical results above, the optimizing branch~and-bound
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algorithm for determining the optimal group schedule under the criterion
of the minimum total elapsed time or the minimum weighted mean flow time

is proposed as follows:

< Optimizing algorithm based on the branch-and-bound method >

"Step 1. Let the group level r=0 and the least feasible value L* =,
Go to Step 2.

Step 2. Branch the group node Nr into (N-r) group nodes N 1 by
placing each of the groups not Vyet allocated next in the sequence
determined. Set r=r+], then go to Step 3.

Step 3. For egch of the group nodes Nr’ create job nodes Nrs of the
job level s=1 by placing each of the jobs in the group next in the
sequence determined. Go to Step 4.

Stgp, 4. Calculate the lower bound LB(Nrs) for each of the new jqb-nodes
Nrs by using equation \(5.4), (5.5), (5.6), or (5.7) depending on the

scheduling criterion employed,
| Step 5. Find the job node having min LB(NrS) from among the job
.nodes derived in Step 3 or 8 in the case of L* = ®, or from among all job
nodes being acﬁive in the case of L* X «», (In the case of a tie, select
the node with the 1argest‘va1ue of, first, r, and then s.) Let Vthe'group
level and job level of the node be r and s, respectively, and
LB*(N_) =LB(N ). Go to Step 6.

Step 6. If LB*(Nrs) < L*, then go to Step 7. Otherwise, stop. (The
group and job sequences of the node having L* are optimal.n)

Step 7. If s<n 0* then go to Step 8. Otherwise go to Step 9.

(

Step 8. Branch the job node Nrs into (n(r)—s) nodes N by placing

rs+l
each of the jobs not yet allocated in group G(r) next in the sequence

determined, Set s=s+1, then go back to Step 4.
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Step 9. If r<N, then go back to Step.2. Otherwise, 1.*=LB*(NrS), s0

go back to Step 5.

5.4 Numerical experiments
5.4.1 Numerical example

In an attempt to clarify the features of the multistagg group
scheduling problem, a simple numerical example will be given. The basic

data for a 10-job, 3—group; 4-stage problem are given in T;ble 5.1.

Table 5.1 Production data for group scheduling

(units: min)

Group : Gl B GZ ‘ [ 3
Job J1P12l13]  [P21|%22) 23] %24 |P31}732]733
procEssing time | ST p§1 P, A LA A p§3'p§4 S5 |P51|P52| P55
stage d; - | 10| 35| 36| s1f 25| 41| 16| 31| 32| 29| 35| 41] 17
Stage M, 26| 36| 36] 49| 17| 28| 34| 13| 34| 12| 47| 19| 30
 Stage Mj 12| 46] 34| 22| 26| 49] 13| 29] so| 18] 35| 37] 46
Stage M, 30| 48| 27| 41| 14] 22| 20| 40| 39| 15| 38| 24] 33

The optimal group schedule which minimizes the total elapsed time is }
determiﬁed by the optimizing algorithm proposed. Fig. 5.1 shows the
branching tree in the case where the machine-based bound is used in the
algorithm. The lower bound of the total elapsed time fof each job node is
given just below the corresponding node in the figure. The optimal group
schedule is GZ(J23—J24-J22-J21)-Gl(Jll—le—J13)—G3(J33-J31—J32) wifh the

total elapsed time of 518 min.

5.4.2 Numerical experiments
In order to examine the effectiveness of the optimizing algorithm
proposed, the algorithm was programmed in FORTRAN and a TOSBAC 5600 computer

was used. Numerical experiments were run for 20 group-and-job sets which

(85)



(42
O =) ©
ofclciefegonoNcfore

/506 /50 535 529 7,7/ /488 / 527 31
/ \ / 7 : ,1 511 \\ /507\\

AR & o

/s Bu o /509

@

519 509

(29

509

O ©
2S2RCE2A>RD

518N\ 31 \ SN521 532 539

Number of group nodes: 13
Number of job nodes: 98
518 ) --- : Omitted branches

&,
.
o)

&

®

518
{Optimal group schedule)

8 529

Fig. 5.1 The branching tree for the example problem

 consisted of two to four groups with two to four jobs in each group. The
number of stages is set at four. The job processing times and the group
setup times are obtained from wniform distributions rangiﬁg from 10 to 55
and 10 to 30, respectively.
(1) Resuits for the minimum total elapsed time

The computational results for the three kinds of lower bounds are
shown in Table 5.2. Fig. 5.2 shows the relative effectiveness of the
three lower bounds for various sizes of problems. It is well known that

the'cbmposite lower bound is more efficient as comparedbwith the
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Table 5.2 Computational results for the minimum-total-elapsed-time

criterion B
No. 1 . 2 3*
Problem A
' Sizex* (3) (%) _ (3) () (3) (2)(3) (3) (4)
- Machine | Job- Compo- | Machine}{ Job~. Compo- | Machine| Compo-
. Lower bound -based based site | -based based site | -based | site
A .
time (sce) 29 | 2.6 | 2.0 | 104 | 328 | 1.4 212 s0.0
Average number . ) -
of nodes 81 82 64 259 370 . 219 349 310
Maximum number
of nodes 132 199 114 719 870 598 1105 933
Minimum number
of nodes 31 31 31 62 62 62 45 45

* One problem is deleted, since more than 5000 nodes were created.
**_ For example, size (2)(3)(3)(4) shows that the number of groups is
‘4 and each group consists of 2, 3, 3, and 4 jobs, respectively.

S0

4% Machine-based lower bound

I3
L=
¥

X ! Job-based lower bound

0: éomposite Tower bound

n
S 3
1 1

-t
o
I

Average computer time (sec)

0 L 1 ]

1 2 3  problem No.
(288) (5188) (41472) Number of feasible
Schedules

Fig. 5.2 Average computer times for three kinds of lower bounds

machine-based and the job-based bounds for the conventional multistage
scheduling. In the group scheduling, however, Fig. 5.2 shows that the
machine-based bound is more effective than the others as the sizes of the

problems become large.
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(2) Results for the minimum weighted mean flow time

In this experiment, two cases concerning the weighting factors are
examined. One is the case in which équal weighting factors are assigned
to all jobs, and the other is the case in which random numbers ranging from
1 to 5 are given.to the jobs as the weighting factors. Table 5.3 shows

the computational results for both cases. Fig. 5.3 indicates the variation

Table 5.3 . Computational results for the minimum-weighted-

mean—-flow-time criterion

No. 1 : 2 ‘ 3 ' - b
-} Problem — -
Size (34 (3)(4)(3) (2) (3) ()W (3)(4) (3) (&)
Lower bound F iw F F, F F, F F,
Average CPU ‘
 Average C7U 0.9 0.7 7.5 2.8 22.0 13.8 94.6 | 32.7
Average number 43 36 165 90 " 394 238 1561 | 539
of nodes )
|Maximum number 6 | 62 268 | 189 746 ss2 | 4811 | 1661
of nodes
Minimum number 26 20 7 0 108 80 657 114
of nodes 73 >

g
T
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Average computer time (sec)

T 1

20

T 0]

0 i 1 [
1 2 . 3 . 4 Problem No.
(288) {5184) (41472) (497664) Number of feasible
: schedules

Fig. 5.3 Average computer times for lower bounds

on the weighted mean flow time
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,of CPU time required to determine the optimal group schedule for differept
sizes Qf problems.

In the case of equal weighting factors, CPU t;ime increases sharply as
the sizes of problems become large. On the other hand, the increase of
CPU time in the case of random weighting is relatively slow as compared
with that in the case of equal weighting. This can be explained by the
fact that the differencesj11thé weighted flow times for jobs may be large

due to the variation of the weighting factors.

5.5 Conclusions

(1) The branch-and-bound method was applied for solving the multistage
- group scheduling froblems under the minimum~total-elapsed-time and the
minimum-weighted-mean-flow-time criteria.

(2) The optimizing algorithm for determining the optimal group schedule
was developed.

(3) The effectiveness of the optimizing algorithm proposed was tested
with a numerical example.
'(4) The machine-based bound.was found more effective as compared with

the job-based and the composite lower béunds for the group scheduling

under the minimum—total-elapsed-time criterion. For the group scheduling
under the minimum-weighted-mean-flow-time criterion, the CPU time required
to determine the optimal group schedule was small when the variation of

the weighting factors was large.
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CHAPTER 6 OPTIMAL GROUP SCHEDULING AND MACHINING-SPEED DECISION
UNDER DUE-DATE CONSTRAINTS

6.1 Introduction
In the—fiela of production scheduling, the processing time required to
complete a specified operation of a job is set at a constant in most caseé.
- In practical situations, however, it is possible to #ary the processing
times by actively changing manufacturing conditions, especially machining
speeds. In these cases, some modifications must be made on the scheduling
model. |
. 1) .
Based on such a consideration, Hitomi has developed a production .
scheduling mod€l with variable processing times depending on machining
conditions. This model has been extended to the group scheduling model?’s)
In thisnwdel;an optimal group schedule minimizing the tofal elapsed time
was determined and then optimal machining speeds were decided so as to
minimize the total production cost under the minimum-total-elapsed-time
schedule. .
In production scheduling p;oblems, there are many kinds of
criteria by which schedules are evaluated?’S) Under the actual situation
of determining the processing order of jobs, meeting the jobs' due dates
is one of the most important factors. In this chapter, under &ue-date
constraints, a group scheduling model is developed'on the ﬁultiﬁle
production stages with variable processing times and production costs?)
Among the scheduling criteria concerning due dates, the criterion of
minimizing the number of tardy jobs is employed in the model. 1In general,
there exist a lét of schedules with the minimum number of tardy jdbs.

Therefore, it is necessary to select an optimal schedule by another

| criterion. The criterion employed as a secondary one is minimization of
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o . )
the total elapsed time. Once a group schedule minimizing the total
elapsed time with the minimum number of tardy jobs is determined, the
optimal machining conditions which minimize the total production cost

are determined by utilizing the idle times of the schedule determined.

6.2 Group scheduling model with variable processing times and costs
6.2.1 Assumptions and optimiiing criteria
In addition to the fundamental aésumptions of the group scheduling
‘model defined in Chapter 1, the following ones are made in an attempt
to construct a model with variable processing times and césts.
(1) Job processing time consists of job setup time and unit production
time multiplied by lot size.
(iL) Unit production time and cost are dependent on machining condition
(machining speed). |
In this model, two kinds of scheduling criteria are adopted for
group scheduling. The primary criterion is minimization of the number
of tardy jobs. The secondary one is minimization of the total elépsed
time. The criterion of detefmining'machining speedé is the ‘
minimization of the total production cost which is a function of the

machining speed,

6.2.2 Job processfng time and production cost

Let oli‘E (1=1, 2,..., N, E=1, 2,..., n,, k=1, 2,..., K) be kth
operation on stage Mk (k=1, 2,..., K) of job JiEf (i=1, 2,..., N, £=1, 2,
cees ni) of group Gi i=1, 2,..., N).~/Unit productiog time, uig (min/pc){
of OEE is ekpressed as a function of machining speed, vig (n/min), for this

operation as follows:

k
t.
k k k k if
= + b
Uip = 3t oty ig ok
_ ig
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k Ak bk

_ .k | ig ig ig oK 1/n ,
ig 6

‘.'~(i=1_, 2,-.., N, €=1, 2"..,. ni,k=1, 2,.0., K)

where ag is the preparation time (min/pc), bi

ig 3

(min/edge), tiE is the actual'machining'time (min/pec), T

is the tool replacement time

k . .

iE is the tool life
. k | . k k

(min/edge), Aig is the machining constant, nig and Cig are the parameters

k

ig*®

When Jig is processed in a lot size Zig s> the job processing time of

for the Taylor tool-life equation for O

Ji€ on Mk is given by

kK _ k k .
Pig = Syt LigUy (6.2)

ok, . .
where sig is the job setgp time of Jig on Mk'

Then the group processing time of Gi on Mk is

k_ k.,  k ~ '
Q =S, +P, _ _ - (6.3)

1 .
- ' o ) ' k 1k
where S? is the group setup time of‘Gi Qq ﬁk and Pi== Zgélpiﬁ'

k
Unit production cost, U ($/pc), of 0?5 is expressed as a function of

8)

the machining speed vk (m/min) as follows:’

ig
_ | ok
kK _ k k K, k. ok k k| k. i
g = %gyg T (g B It F (o by + “1) &
ig
k
- .k k k. 15
L TG it B )v :
- ig PO .
: k .
X l/n :
k .k k it~ 6
'+ (aigbig ZEE“;I7;-(V ) ; ( .4)
(i=1,2,u;,N,§=l,2,n.,ni,k=1,2,".,K)

where a?i is the direct labor cost and overhead ($/min), BiE is the

machining overhead ($/min), and eié is the tool cost_($/edge) for 0:5.
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In&roduce the ﬁaximum—productipn-rate- machining spee& and the miniﬁum—
production-cost machining speed, which will play impoftant rolesvin
determining the optimal group schedule and the optimal machining speeds.

The maximum—production—rate machining speed for Ogg is determined by setting

the derivative of equation (6.1) in regard to vig equal to zero:

K
k(t)
Vie /{(—— 1)b g | (6.5)
n.
ig
(i=1, 2,..., N, £=1, 2,..., n,, k=1, 2,..., K)

With this machining speed the minimum job processing time of JiE on Mk is

obtained by

‘ k
A k
k
e g) i My

(i=1, 2,..., N, £=1, 2,..., n;, k=1, 2,..., K)

The minimum-production-cost machining speed is obtained by setting the

derivative of equatioﬁ (6.4) in regard to v?t equal to zero:

k k k k

k(e) _ ko "E “ig P | Py
if E ig ig
(i=l, 23-.-, N’ g=1’ 2""3 ni’ k=1’ 2’ bR 4 K)
6.2.3 Total elapsed time, number of tardy jobs, and total production
cost |
The total elapsed time is given by equation (5.2) in Chapter 5 as
follows:
N ny K
-Z(Zg +P ) (5.3)
2155 (@ * S 7
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where g%i)(g) is the idle time of MK'before processing Eth job.after

completion of (£-1)th job of G(i)"

The number of tardy jobs is given by

N, = ] X G(T( ey (6.8)

where T( ) (E) is the tardiness of J( ) () and

1, x >0
8(x) ='{

0, otherwise

In addition to the unit production cost given by equation (6.4), the
cost required for group setup isrinvolved.in the total production cost.
However, the group setup cost is independent of the machining speed which
is a decision‘variable, Therefore, it méy be excluded in the total
production cost which is a performance ﬁeasure in determining the optimal
machining speeds.

The total production cost to be minimized is given by

6.9)

6.3 Determining optimal group schedule
6.3.1 Initial machining speeds and job processing times
In order to minimize the total elapsed time with the minimum number

of tardy jobs, it is reasonable to set machining speeds at the maximum

production rate initially, since both performance measures are nondecreasing
functions of the completion time of each job. In determining the optimal
group schedule, therefore, the time given by equation (6.6) is used as the

processing time for each job.
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6.3.2 Branch-and-bound method for group scheduling

A branch-and-bound method is applied to determine the schedule
minimizing the total elapsed time with the minimum number of tardy jobs
in the same way as in the previous chapters. Two fundamental procedures
for solving the current problem are és.followéz
1) Bfanching procedure

The branching procedure for the current group scheduling problem wifh
the‘dual scheduling criteria is fundamentally the same as the one for the
problem with a single criterion in Chapter 5. However, there exists a
difference between the two in the branching policy’ by which a node is chosen
to branch from next. In the case of a single perfbrmancé measure, branching
is made at the job node having the least lower bound for the performance
measure. In the current pfobleng two performance measures are eﬁployed;
In order to decrease the computational efforts, thé following policy is
used here. We choose to branch the job node having the least lower bound
for the primal performance measure (the number of tardy jobs) until the
first feasible solution is obtained. After that, first the job nodes
having fhe least lower bound for the number of tardy jobs are selected,
:and then, from these; the job node with the least lower bound for the total
elapsed time is chosen for branching.
(2) Bounding procedure

| In order to determine an optimal group schedule under the multiple

objectives of minimizing the total elapsed time with the minimum number of
tardy jobs, two kinds of lower bounds are introduced.
(a) Lower bound of the number of tardy jobs

The lower bound of the number of tardy jobs at job node Nrs is

estimated as follows:

NN Q) = NN ) + No(N ) + Na(N ) (6.10)
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where Nl(Nrs)’ NZ(Nrs),and N3(Nrs) are the numbers of tardy jobs for groups
and jobs already sequenced, for jobS'(jr) not yet sequenced in G(r)’ and
for groups (Er) not yet sequenced, respectively. They are calculated in
the following way:

Obviously, N (N s) is given by

r—l

N ) =] Xa(c

3 (oK (6.11)
Ll oo twe R Coo o e’

)
For the computation of N (N ) and N (N ) Hodgson's algorithm )whlch
gives the opt1mal schedule minimizing the number of tardy jobs for a
single-stage scheduling, can be effectively employed To make use of this

algorithm for each stage, the hypothetical due date for operation Olzi) &)

is defined as
K

|k _ h )
w® " w® L oo (6.12)

Then, Nlé(Nrs), the number of tardy operations of the jobs in jr on Mk’ is
estimated by applying Hodgson's algorithm.

Hence,

N_.(N ) = max N N ) (6.13)
27 rs 1<k<K 2% rs
k ' o . . & ;

.N3(Nrs)’ the number of tardy operat;ons of the jobs in Gr on M'k’ is
calculated by the following procedure, which is an extension of Hodgson's
algorithm to group scheduling.
- (1) Sequence the operations of jobs in ér for each of the stages,
respectively, in order of nondecreasing hypothetical due date,
irrespective of the groups to which the operations belong.
(i) Order the group setup times and the numbers of jobs for groups not yet
'k 'k < |k
(r+1) € S(ri-z) € ... ¢ S(N) and such that

n'(ﬁl) >n' (x42) > e 2'n'(N), resgecti_vely. Insert each ~of ‘the. (N-r) group

sequenced such that S
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setup times, 1

) (i=r+l, rt2,..., N) into the operation order every nZi)

operations (i=rtl, r+2,.., N).

k

” . k T
(iil) Set the start time of the operation order at C(r)(s) + £=s+lp(r)(£),

and identify the first tardy operation. Suppose this to turn out to be
_1th operation>in the order and then identify the operation with the maximum
processing time among the first 1 operations., Remove it from the order and
set Ng(NrS) = Ng(Nrs) + 1. If no operations are late, then stop.

(iv) Interchange each of the group setups which are positioned after the
removed operation and the operation which immediately follows the setup.

Go to step (ii).

Then,

Ny(N, ) = max NI;(NrS) : | (6.14)

(b) Lower bound of the total elapsed time

Many kinds of lower bouﬁds of the total ela?sed time have been
developed in conventional scheduling. It is well known that the
composite and the revised lower bounds are effective as compared with the
machine-based or the job-based lower bound. However, it is reported fhat'
the con@osite lower bound is not so effective in group scheduling as
mentioned in Chépter 5. Hence, the revised lower bound is used here.
In order to compute the revised lower bound on the total elapsed time,

Theorem 4,5, which is developed for the two-stage group scheduling problem

in Chapter 4, is used.

With the help of Theorem 4.5, the revised lower bound at Nrs is

estimated as follows:
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OION Lot ) Qg * min Z"(i)(g) \

E=st+l i=r+l igéJrsh'
= max . iC Zr (gF + ok Z {S (6 1
Hhe) = mfx 2cksk (D) (®) g=s+1 Bry<e> T Payep) i=r+l } ) é)
. o | ]
k k )} + min Z h_

\ + )(g_, +p . P

T <i><E> <i><g> igeJrsh=k+l (1) (&)
where Ers is the set of jobs not yet sequenced at Nfs and the symbol < >
designates the order of groups and jobs determined by applying Theorem 4.5

to each of all the two consecutive stages Mk and Mk+l (k=1, 2, ..., K-1).

6.4 Determining optimal machining speeds

Once the oétimal group schedule is determined, the machining speeds can
be changed to reduce the total production cost if there occur slack times of
some operations in the schedule.

With a decrease in machining SPeed the unit production time increases
and the wnit productlon cost decreases in the hlgh—efflciency sPeed range
[ iéC)’ két)] All the machining speeds are 1n1tlally set at the
maximum-production-rate speeds in order to s;tisfy the minimum-total-
elapsed-time constraint with the minimum number of tardy jobs. Hence, by
decreasing the machining speeds froﬁ the maximum-production-rate speeds,
and aﬁproaching their minimum-cost machining speeds as far as possible by
utilizing the slack times, the production cost can be decreased. The
problem is how to select the operation 0k

i

following function, called an "efficiency-sensitivity function,” can be

£ for cost reduction. The

employed as a measure in selecting the operations}o)

K q /dv iE

Yo = - -
ig duig/dviE
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) (Vlg 1g + a?g (6.16)
1 1 k 1/n k 1/n
-—7* (—k—l)b £ i) i~ /(Clg) _

~v..) n,

ig ig

(i=1, 2,..., N, £=1, 2,..., ng, k=1, 2,..., K)

This function gives an index of the amount of cost reduction over the

increase of production time by decreasing the machining speed of operation

k
OiE'

reduction is for a certain amount of production time increase.

The larger the value of equation (6.16), the larger the cost

6.5 Optimizing algorithms
Based on the results of the previous analysis, the optimizing
algorithms for determining an optimal group schedule and optimal machining

speeds are proposed as follows:

< Optimizing algorithms for determining an optimal group schedule and
optimal-machining speeds >
[Stage 1] Branch-and-bound algorithm for determining an optimal group

schedule.

Step.1l. Set the machining speeds on all stages for all jobs at the
maximum-production-rate machining speeds, v?ét). Go to Step 2.

Step 2. Let the group level r=0 and the least feasible number of
tardy jobs N*= and the least feasible total elapsed time L¥*=o,
Go to Step 3. ' |

Step 3. Branch the group node into (N-r) group node Nr+l by placing each
of the groups not yet allocated next in the sequence determined. Set r=r+1,

and go to Step 4.

Step 4. For each of the group nodes Nr’ create job nodes Nrs of the job
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level s=1 by placing each of the jobs in the group next in the sequence
determined.v Go to Step’S..

Step 5. Calcula.te ;he lower bound N(Nrs) for ‘each of »t;he new job
nodes. Go to .Step 6.

Step 6. Find the job node having min N(Nrs) from among the job nodes
derived in Step 4, or 9 in the case of N*=», or from among all job nodes
being active in the case of N*¥x», If N*x=o and more than two nodes
having min N(Nrs) exist, then compute L(Nrs) .of these nodes, and select
a job node having min L(Nrs). (In the case of a tie, select the node
with the largest val;.te of, first, r, and then s.) Let the group level
and job level of the node be r and s, respectively, and N*(Nrs) =N(Nr$)
and L*(Nrs) =L(1\frs). Go to Step 7.

Step 7. If N*(Nrs) >N*, or N*(Nrs) =N* and L*(Nrs) 2L*  then the group
schedule of the node having N* énd/or L* is optimal. Go to Stage 2,
Otherwise, go to Step 8. |

Step 8. If s<n(r), then go to Step 9. Otherwise go to Step 10.

Step 9. Branch the job node N_¢ into (n(r)—s) nodes N by placing

rs+1
each of the jobs not yet allocated in G (1) next in the sequence determined.
Set s=s+l, and go back to Step 5.

Step 10. If r<N, then go back to Step 3. Ctherwise, N*=N*(Nrs) and
L*=L*(Nrs), so go back to Step 6.
[Stage 2] Algorithm for determining optimal machining speeds

Step 1. Let D denote the set of subscripts, i, £, and k such that

operations are not critical under the optimal group schedule determined.

Compute the efficiency-sensitivity functions for OI;E (i&k €D) as follows:

~k k

Yig = Yig V58 py

viF,
where Av (>0) is a small speed value. Go to Step 2.
Step 2. Y =max ’Y\k . Let U denote the set of subscripts i, £, and k such

itkep 16
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that y =max /y\llc y=vY-Ay, where Ay ( >0) is a small value. Go to Step 3.

g
Step 3. U=U+{io£oko}, where {ioéjoko} is the set of subscripts such that
Ak

YSYiE' Go to Step 4.

k
i

job processing times 311(5 such that Y:’Y‘l:;

Step 4. (i) For O £ (itk € U), compute the machining speeds Qk and the

ig

£

(i#i) Calculate the slack times tls-fi for Oli(‘E (itk€U) as follows:

3

kK _ .k _ .k Ak
tsig T t7ig T Yeir T Pie

where tlgi and t are the earliest starting time and the latest finishing

k
g lig
time, respectively, under the minimum~total-elapsed-time schedule with the

minimum number of tardy jobs.

k

sif <0, then

(iii) If there exists any operation Oljfg (itk € U) such that t

1 . .
Y=Y+Ay' (for example Ay'=—— Ay) and go back to Step 3. Otherwise, for
2

~k kg : *k

0.,9_ such that t Y =0, the optimal machining speeds v, ¢ are given by
iOEO Slogo ’ 1050

/\ko - . — :

viogo. U-U—{logoko}, D=D-{i &k}

(w) 1If D¥¢, go to Step 5. Otherwise, Stop.

' %
Step 5, If y=0, the optimal machining speeds vilg for Olic‘E (itk €U) are

k{c)
it °

given by v Stop. If Yy%0, then y=y =~ Ay, so go back to Step 3.

6.6 Numerical examples

In order to verify the effeciveness of the proposed optimizing
algorithms for determining fhe optimal group schedule and the optimal
machining speeds, a hypothetical example is presented below.

Eight kinds of shafts are to be processed in a lot size of five on a
flow-type, four-stage manufacturing system (rough machining, finishing
machining,grooving, and threading). These shafts are classified into three
groups according to their dimensions. Fig. 6.1 shows sketches of represent-
ative parts for each of the three groups. Production data for each job

 (shaft) of the three groups are given in Tables 6.1, 6.2, and 6.3.
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Fig. 6.1 Sketches of representative parts for each

of three groups

Table 6.1 Group: setup times

(units:min)
S;;;ggggy G, G, Gy
M, 10.00 9.00 7.00
H, 12.00 | 10.00 9.00
M, 8.00 7.00 | 11.00
M, 11.00 | 12.00 8.00

Table 6.2 Jobs'due dates

(units: min)

Group G 5 Gl G2 G3
Job Jge | i | Yi2 I I22 J23 I31 | 32 | Ja3
Due date | d,, 930 | 450 | 1080 450 830 | 650 | 860 | 510
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Table 6.3 Production data for jobs to be machined

Processing parameter Tool parameter Time parameter Cost paraceter
1-min" Direct
Depth Job Prepa- Tool Hachining
Group) Job Jscage] of Feed Work Work tool Slope secup rat:on exchange labor“d overnead] 7001
cut | Rate Diameter Length ::: 4 |constent] time time time 2:::;e | cost cost
k k X ' k X k k k k k
© P M |5t |t e | Phe | M| Mg| <t | i | ok | ok big °1g Big 1¢
{min}(mm/rev)| (mm) | (om) | (mm) | (em) | (@/min) {min) [(min/pc) {{min/edge} ($/min) | ($/min) | (§/min)
Mp [1.50 ] o0.25 f 320 | 120 | 200 | 320 | 340 0.20 2,00 2.50 2,50 0.35 0.15 9.00
3,,| 2 lo0.50} 0.35 | 320 | 120 | 200 | 320 | 250 0.25 1.50 3.00 3.00 0.45 0.30  {12.50
1My J100] o020 | 260 | — 150 - 300 0.33 1.50 5.00 | 1.50 0.35 0.15  [10.00
My J1.00 § 0.25 160 —_ 100 —_ 350 0.20 3.00 4.00 3.50 0.35 0.15 9.50
6 M) [1.007§ 0.25 | 280 | 120 | 360 | 280 | 350 0.25 0.60 3.00 4.00 0.35 0.20 9.50
3o M2 fo.50 } o0.22 | -280 - 360 —_ 200 0.20 0.70 2.50 4.50 0.45 0.25 12.00
12} M3 {1.00 § o0.15 200 — 120 -— 320 0.33 0.80 3.50 3.50 0.35 0.10 13.00
My —_— — —_ — — — — —_ — —_ — -— — —
M3 11,50 0.30 | 200 [ 120 | 640 [ 480 | 400 0.20 1.40 3.00 5.00 0.35 0.40 11.50
I ¥ lo.so | o0.12 ] 200 - 640 - 300 0.28 0.90 3.50 3.50 0.45 0.35 12.50
M - — — — — —_— —_— — — — — — p— -—
)‘IZ 1.50 | 0.3s 120 — 320 —_ 350 0.20 2.00 5.00 4.00 0.35 0.25 14.00
Hy” {130 | 0.25 | 280 | 200 | 630 | 400 | 300 0.23 2.00 4.00 5.00 0.35 | 0.35 9.00
G l3,.] M2 0-50 | 0.15 280 - 680 - 250 0.33 0.70 3.50 2.00 0.45 0.25 14.00
2 22 My —_— — — —_— — — — — — — — —_ -— —_—
Mz J1.00 | 0.30 ] 200 —_ 200 - 270 0.23 2.00 2.00 3.00 0.35 0.25 15.00
By (150 [ 0.25 | 320 | 120 | 560 | 520 350 0.20 3.00 3.50 5.00 0.35 0.20 12.00
Joa) M2 J0.50 } 0.15 | 320 —_ 560 -— 200 0.25 2.20 4.00 3.00 0.45 0.25 13.50
231wy f1.00 | 0.20 | 240 - 160 - 200 0.20 0.00 2.00 3.00 0.35 0.25  {14.50
M; Ji.00 | 0.25 120 — 200 — 250 0.22 5.00 3.00 4.00 0.35 0.10 9.00
Hy—{2.00°f 0.25 160 | 120 | 3206 [1160 | 400 0.25 1.00 4.00 3.50 0.35 0.12 6.50
3. 1 H2 Jo.so | o.15 160 - 320 — 250 0.20 0.60 3.00 4.00 0.45 0.30 13.50
31 My j1.00 | o0.20 120 — 120 — 300 0.33 1.00 3.50 2.00 0.35 0.20° |12.s0
M, Jr.00 | 0.30 120 —_ 129 - 320 0.20 1.50 2.50 3.00 0.35 0.25 14.00
My |1.50 | 0.25 200 | 120 320 (1320 | 500 0.25 1.00 5.00 2.50 0.35 0.15 7.50
6y |32 M; |0.50 | 0.12 200 —_ 320 - 400 0.20 0.80 4.50 4.00 0.45 ‘| 0.25 12.50
M3 - -— —_ —_— -_— f— — -— — — P — J— —
M, (1.00 | ©0.30 | 120 - 120 — 280 0.33 2.30 5.00 2.00 0.35 0.40 13.00
My~ [2.00 | 0.20 | 240 | 200 | 500 | 900 | 300 0.20 1.30 5.00 2.50 0.35 0.15 7.50
I M2 10.50 | 6.15 | 240 | 200 {so0 | s00 ] 30 0.25 1.00 3.50 3.00 0.45 0.32 9.50
¥3 ]1.00 | 0.20 | 200 - 150 -] 250 0.33 1.20 4.50 4.00 0.35° 0,20 12.00
M; J1.50 |} 0.30 | 200 — 150 -— 400 0.20 3.00 3.00 3.50 0.35 0.35 10.00

Table 6.4 Job processing times at the maximum-production-

rate machining speeds

(units: min)

Group Gy Gy . G3

Job Ji1 J12 I J22 J23 J31 J32 J33

Stage Mj| 51.99 | 75.47 | 71.69 | 150.88 |119.20 | 92.78 | 87.67 |181.90

Stage Myl 115.56 |160.21 |[161.91 | 207.22 {238.89 | 62.28 | 68.88 |231.89

Stage M4 62.61 | 40.69 _ —_ 40.98 | 27.43 _ 51.78

Stage M4 27.35 — 37.72 1 29.13 | 33.86 | 18.84 | 33.68 | 26.88

_ k .
The machining constant, Ai » is calculated as a function of the diameter,
1)

length, and feed rate%

Job proceséing times used for group scheduling are determined by
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Fig. 6.2 The branching tree for the example problem

setting machining speeds at the maximum-production-rate machining speeds
as shown in Table 6.4. The_optimal group schedule is determined by the
optimizing algorithm based on the branch-and-bound method. The branéhing
tree for this problém is displayed in Fig. 6.2. The lower bound of the
number of tardy jobs for each subproblem is given just below the

corresponding node in the figure. The order of branching is indicated by
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the number that appears just above the corresponding node. The first
feasible solution is obtained at node 24, which gives the group schedule
Gl(Jll—le)-G3(J31-J32—J33)-G2(JZl-JZZ—J23). Then,»the lower bound of the
total elapsed time, which is indicated just below the number of tardy jobs,
is calculated. The optimal solution is Ql(Jll—le)—G3(J31-J33-J32)—
G2(J21—J23-J22), which has 3 as the number of tardy jobs and the total
elapsed time of 1367.06 min (see Table 6.5).

In tﬁis schedule, there are slack times available to reduce the total
production cost as shown in Table 6.5. Then, the optimal machining speed
for each operation is determined by the optimizing algorithm as shown in
Table 6.6. The job processing fimes and costs at the machining speeds are

also given in Table 6.6. The total production cost is reduced to

$2949.20 from $3191.25.

Table 6.5 Job completion times, job tardinesses, and slack

times for operations under the optimal group schedule

(units: min)

Optimal group . . 1 -
sequence 61 . 63 Gy
Optimal job ’
sequence Ju | Ji2 | s | Ja3 | Ja2 f Jaa | 23| J22
Job completi :
e o T ST | 267.51 | 378.45 | 455.31 |729.69 |763.37 | 929.54 {1205.55 [1367.06
_ i
Job tardiness | 0 o |29.69] o o | 375.55] 917.06
iE :
Slack S;;‘ge 0 0 o | o [is.22|132.41| 185.12] 273.13
time }
Stag® | 10.10| 10.10| 10.10| o 0 0 0 0
for M) .
Stage
operation Mzg 394.53 | 71.55|194.69 | © — — 0 —
bk
tsig Stage :
W, |463.36 | — [194.69 | 0 96.63 {150.46| © 0
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- Table 6.6 Optimal machining speeds, job processing

times and costs

. Optimal Job Job
Group Job Stage machining production production
- speed time cost
. o prk q*kx1
ks J1e % (m/' m%fl) (miﬁ) iES) 1
M | st . 51.99 £9.00
n My 118° 120.74 76.09
M3 87¢ 86.38 . 51.90
.°1 M, 144¢ 28.20 10.10
¥ 188t 75.47 70.75
i ¥z 100° " 163.56 156.10
) ¥y 81 51.00 26.95
Mi‘ —— — . —
‘M. e 77.36 58.60
In My 162t 161.91 252.15 -
M3 - - -
. M, 139¢ 39.92 18.10
- M . 128¢ 164.37 106.80
¢, 392 :: 1fz‘ 203;22 §§Z;55
M, 159t 29.13 37.90°
M 139¢ 134.89 81.00
35 o 115t 238.89 390.90
. My 122* 40.98 50.50
M, 139t 33.86 18.05
Mi 222t 92.78 71.90
33 ¥ 126° 63.74 59.65
M3 83¢ 31.65 17.30
M - 127¢ 20.10 8.80
M | | 188° 104.11 58.35
&3 | 5, :f 230 68.88 68.25
3 — — —
M 8s¢ 36.65 18.70
My 189¢ 181.90 175.25
Ia3 M 196% 231 89 324.05
M3 125t - 50.58 49.25
1. 236t "26.88 15.90

Note: The symbols t, ¢, and e above the machining speeds indicate
the maximum-production-rate machining speeds, the minimum-cost
machining speeds, and the machining speeds in the high-efficiency

speed range, respectively.

6.7 Conclusions
(1) The group scheduling model was constructed on the multiple prbduction

stages with variable processing times and costs depending on machining
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conditions.

(2) The optimal group schedule for the minimum total elapsed time with the
minimum number of tardy jobs was determined by the branch-and-bound
algorithm,

(3) The optimal machining speeds minimizing the total production cost were
'determined by utilizing the slack times under the optimal schedule.

(4) The effectiveness of the optimizing algorithms for defermining the
optimal group-schedule and the optimal machining speeds were tested with

numerical examples.
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CHAPTER 7 EXPERIMENTAL INVESTIGATION OF GROUP PRODUCTION SCHEDULING

7.1 Introduction

In the previous chapters, group scheduling models have been developed
under stati:"con&itions where jobs are available simultaneously for |
processing. In real situations, however, jobs to be processed often arrive
at the shop randomly over time. Jobs are assigned to each of the machines
according to their processing routes. In this case, scheduling is
generally carried out by means of dispatching decisions. This chapter deals
with group scheduling under these dynamic conditioms.

Group scheduling that differs from conventional scheduling has some
specific features as follows:
(1) Jobs to be processed are to belong to one of the setup groups which
are classified according to a classification and coding system by GT.
(2) Since the setup time and the setup group play a critical role in group
scheduling, scheduling rules, including the setup time and the setup group
of the job in the queue, are to be investigated in a simulation run.
(3) With group technology, the job flow is expected to be a flow-shop
pattern or a near-flow-shop pattern; hence, in order to investigate Fhe
group scheduling under dynamic conditions, simulation experiments are
to be run for the flow-shop pattern or the near-flow-shop pattern rather
than the job-shop pattern.'

So far; much research on conventional schéduling has been done
to study a large variety of scheduling (dispatching‘or priority) rules by
which the jobs in the queue are assigned to the idle machines in the job
shop}~5) and over 100 such rules have been reported?) However .there have
been very few studies on the scheduling rules in the near flow shop and
the flow shopz) In group scheduling, setup times play an important role

as mentioned above. Therefore, the influences of setup times on shop
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performances should be invéstigated in order to clarify the feature of the
group scheduling under dynamic conditions. However, only few studies
have been made on this subject?’g)

In this chapter, the effect of the types of flow patterns — Jjob-shop,
near-flow-shop, and flow-shop patterné on the measures of perférmaﬁce and
the scheduling rules is firstly invéstigated for group scheduling}o)

It is well known that the shop load greatly influences the comparative
performance of the scheduling rules for conventional scheduling. In the
case of group scheduling, it can be expected that the ?elative size of the
setﬁp time to the processiﬁg time and the variance of the setup time also
influence the shop performances. In order to study the effects of each of
these three factors on each individual scheduling rule, analysis of
variance is performed on each of the measures of performance in the flow
shop.

Then the effect of the relative size of the setup time to the
processing time on the goodness of the four scheduling rules is
investigated for the three flow patterms.

In comparing scheduling.rules through scheduling simulation, usually
the processing times of jobs are assumed to be random variables generated
from an exponential distribution. In addition, the processing times areA
obtained from a normal distribution in aﬁ attempt to investigate the effect
of the differences in the.distributions%l)

7.2 Simulation model for group 'scheduh’ng,
7.2.1 Group scheduling model under dynamic conditions

In an attempt to construct a simulation model of group écheduling
under dynamic conditions the following precondifions are set:

(1) Jobs to be processed are classified into several setup groups.

(). Job processing times requiring completion of jobs consist of setup
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times and production times (machining times)
(iiL) Setup times are dependent on the sequence of the groups to which

jobs belong.

7.2.2 Assumptions for simulation mdde]
A simﬁi;tion model for group scheduling is constructed under the

following aséumptions: |

) Each machine is continuously available for assignment without
intermitfent unavailability.

(i) Jobs are simple sequences of operationms.

(i) Each operation can be processed by only one machine.

(iv) No preemption and no overlap scheduling.

(v) Each machine can handle at most one operation at a time.

(vi) Instantaneous transfer to next machine after completion of én
operation.

(vii) The job arrivals follow a Poisson process.

(vii)) The production times are raﬁdom variables obtained from ar;
expénential distribution or a normal distribution. The setup-time
-distribution is assumed to be a uniform form.

(ix) Information on the production times and the setup times is available

for the scheduling procedures.

7.2.3 Types of flow patterns

In order to investigate the effect of the types of flow patterns on
the measures of performance, simulation experiments are run in the
following éhops.
(1) Job shop (Flow pattern F1l) in which there is no common pattern of
novement of the jobs from one machine to another.
(2) Flow shop (Flow pattern F3) in which all the jobs flow eséentially

the same path from one machine to another.
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(3) Intermediate shop or near flow shop (Flow pattern F2) which falls
somewhere between the job shop and the flow shop. The flow patterns of
the jobs in this shop depend on their setup groups.‘

In the above three shops, all the jobs brocessed have the same number
of operation;. In addition to the above éhops, two gﬁops — job éhop
(Flow pattern F4) and flow shop (Flo& pattern F5) are set in order to
investigate'the effeét of the differeﬁce iﬁ‘the mean number of operations
of a job on the measures of performance. In these shops, the number of
operations of a job is a random variable obtained from a uniform

distribution.

7.2.4 Measures of performance

The measure of performance employed in the simulation model is the
mean flow time. This measure is-a reasonable choice, since a rule which
minimizes the mean flow time will also minimize the mean waiting time and
the mean number of the jobs in the queue.

In addition to this measure, the maximum flow time is employed as a

secondary measure.

7.2.5 Scheduling rules

Eight scheduling rules for giving priorities to the jobs in the
queue are tested in this simulation study; three of them involve setup
times.
(1) RANDOM (Random): Job is chosen from the queue on a random basis with
no consideration given to job characteristics.
(2) FCFS (First-Come, First-Served): Jobs are removed from the queue in
the same order as they entered.
(3) SMT (Shortest Machining Time): Job with the shortest machining time
has priority.

(4) SPT (Shortest Processing Time): Job with the shortest processing
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time is given priority.
(5) LWKR (Least Work Remaining): qu_with.the least sum of the mean
processing times for all operatioms not yet performed has priority.
(6) TFOPNR (Fewest Operations Remaining): Job with the fewest number of
operations f;maining to be performed on the job has priority;
(7) sstT (Shoftest Setup Time):.Job with the shortest setup time has
priority.
. (8) 1TSS (Traveling Salesman Sequence): In this rule, all the jobs of
a given group in the queue are processed and then the jobs of another
group are proéessed in a fixed sequence which minimizes the total setup
time in a full cycle. This sequence is given by the solution of the
traveling salesman problem for the setup-time matrix. If the group which
noimally follows in the sequence is not represented in the queue, it is
disregarded, and the job of the next group in the sequence is processed.
Within the group having priority, the job with the shortest machining
time is selected. |

In the simulation.model for group scheduling, the SST and TSS rules
.whiﬁh include the setup time and the setup group can be expected to play
an important role in the measures of performance.

These setup-time oriented rules are evaluated in comparison with

other well-known scheduling rules, such as SPT and IWKR in the latter part

of the simulation experiments.

7.2.6 Parameters of model

Three parameters are defined to run the simulation experiments for
group scheduling:
(1) Shop load (L); defined as the ratio of the mean processing time per
job to the product of the number of machines and the mean interarrival

interval,
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(2) Setup time ratio (R); defined as the ratio of the mean setup time to
the mean processing time.

(3) Setup time variance (V); defined aé the rétio of the range of the
setup time to the mean setup time.

In the simulation experiments, the values of the above three
parameters are specified. Then the random variables for the interarrival
intervals of the jobs, the production times and the.setup times of the4
operations are generated agcording to the parameter values of the
distributions obtained from the given values of the shop load, the setup

time ratio, and the setup time variance.

7.3 Experimental design for simulation

The conditions of the simﬁlation model for group scheduling are se;
as follows:
(1) The number of machines in each of the five shops is set at six.
(i) The number of operationé for a job is six in flow patterns, F1, F2,
and F3; and the number of opgrations for a job is uniformly distributed
from 1 to 6 operations in flow patterns, F4 and F5.
(iii) The mean processing time per job is set at 6 hours in each of the
five flow patterns.
(iv) The number of setup gfoups is set at eight. The flow pattern ofAthe
job in each setup group for the near flow shop is shown in Table 7.1. An
éxample of the setup~-time matrix of the eight groups is shown in Table 7.2.
(v) The jobs are equally likely to belong to any one group.

The experiments were run to investigate the effects of the types of

flow patterns, the parameters, the setup time ratio, and the differences

in distributions. The experimental conditions for each case were as

follows:
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Table 7.1 Flow pattern of near flow shop

Operation |3 2 3 "4 5 6
Group 1 Ml M3 M2 M4 M6 M5
Group 2 M2 M3 Ml MS Mt M4
Group 3 Ml Mz M5 M3 M4 M6
Group 4 M3 : M2 Mli .M6 M4 M5
Group 5 M2 M1 M5 _M3 M6 M4
Group 6 Ml M4 M3 . Mzr M6 MS
Group 7 M3 M4 M2 M1 M5 M6 7
Group 8 ~M2 Ml M3 M6 M5 'Ma

Note: Mk represents machine k.

Table 7.2 Setup—time matrix

N o1 2.3 & 5 6 7 8

2

1 0.00 ©0.20 ©0.17 0.17 0.15 0.25° 0.19 0.21
2 0.11 -0.00 0.19 0.24 0.19 0.20 0.17 0.12
3 0.23 0.17 0.00 0.25 0.10 0.12. 0.18 0.13
4 009 0.12 0.15 0.00 0.13 0.19 0.24 0.15
5 0.24 0.25 0.25 0.22 0.00 0.25 0.14 0.13
6 0.21 0.21 ©0.25 0.20 0.13 0.00 0.12 0.10
7 0.21 0.24 0.14 0.20 0.10 0.10 0.00 0.14
8 0.10 0.14 0.10 0.09 0.12 0.25° 0.14 0.00

Note: The (i,j) element is the setup time required for the
machine to start a group Gj job, having just processed a
group G; job. The fixed sequence which minimizes the total
setup time in a full cycle is G1-G3-G —G7-G6—G3—G4—G2-G1.
This setup-time matrix is an example ?or a machine in the
job shop F1. (L=0.95, R=0.15, V=1.00.)
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(1) Effect of types of flow patterns

The simulation experiments are run five times for each of the
scheduling rules in each of the five shops in order to inyestigate the
effect of the types of flow patterns on the measures of performance, such
as the mean flow time and the maximum flow time. In the simulation rums,
the effect of the length of operations of the jobs on the perfofmances’is
also studied. The values of the three parameters— the shop load, the
setub time ratio and the setup time variance, are set at L = 0.95, R = 0.15,

and V=1.00, respectively.

(2) Effect of parameters
In an attempt to investigate the effects pf each of the three
parameters on each of the four scheduling rules, SPT, LWKR, SST, and TSS,
for the flow pattern, F5, a 3x3x3 factorial experimeﬁtal design is used
with factor levels defined as follows:
Factor L: Level of shop load

L.: Heavy load (Ll-= 0.95)

1t
LZ: Medium load (L2-= 0.80)
L3: Light load CL3 = 0.65)

Factor R: Level of setup time ratio

Rl: Small setup time ratio (R1 = 0.05)

RZ: Medium setup time ratio (R2 = (0.15)

R;: Large setupitime ratio (R3 = 0.30)

Factor V: Level of setup time variance

Vl: Small setup time variance (V1 = 0.50)
Vé: Medium setup time variance (Vé = 1,00)
V3: Large setup time variance (V3 = 2,00)

In the experiments, the best estimtes of within-cell variance

(variance for each of the combinations of factors) for each of the
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performance measures for eéch of the four scheduling rules are computed
- by the analysis of variance tecgnique.
(3) Effect of setué time ratio

The simulation experiments are run for four different levels of the
setup time ;;tio — R=0,05, 0.15, 0.30, and 0.50, in order to investigate
the effect ot the setup time ratio on the relative goodness for the
four scheduling rules for each of the flow patterns, Fl, F2, and F3. In

the runs, other parameters are set at L = 0.95 and V = 1.00.

(4) Effect of difference in distributions

In an attempt to investigate the effect of the difference in
distributions by which production times are generated, the simulation
experiments are run for two kinds of production times obtéined from an
exponenti#l distribution and a normal distribution. These runs are done

for flow pattern F5, setting parameters L = 0.95 and V = 1.00.

7.4 Experimental results
In order to get the steady-state condition, data»on jobs numberiﬁg
- 301~1300 (on the last 1000 jobs) were collected for each run. Based on

the experimental results, the following points are noted:

(1) Effect of types of flow patterns

The experimental results of the simulation runs for the five flow
patterns are given in Tables 7.3 and 7.4.
A. Mean flow time
(i) The experimental results for the flow pattern, F4, which has been
used for the conventional scheduling simulations, are coincident with
the results in the previous studies by other researchers; that is, the
rankings éf the FCFS, SPT, FOPNR, and LWKR rulés were the same as

rankings documented in the studies over the mean flow time and its
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Table 7.3 Means and standard deviations of mean flow times

Flow pattern
Rules
F1 F2 F3 F4 F5

82.90 | 78.27 | 85.16 | 96.98 {105.56
RAMDOM | 5530 | 22.62 30.41 | 34.55{ 27.00
FCFS 87.29 | 80.25 | 86.48 }102.79 |110.59
32.60 | 22.68 | 27.46 | 33.56 | 24.22
SyT 31.33 | 31.70 | 30.92 | 28.06 | 26.57
6.50 } 6.33} 6.75] 4.92] 2.11
SPT 30.22 | 30.39 | 29.91 | 27.62 | 25.48
6.66 | 5.35 | 6.78| s5.02| 2.03
FOoPNR | 67.01 | 47.20 | 29.91 | 53.78 | 31.02
14.48 1 9.40 | 6.78 | 9.13] 1.18
LWKR 46.87 | 46.03 | 38.97 | 39.09 | 28.73
_ 6.88 ] 7.01 7.87 | s5.06 | 3.88
SST 34.02 | 35.89 | 32.43 | 43.63 | 44.71
6.32 6.82 | 5.88 | 12.05 1 9.47
1ss. | 38-09 | 40.92 | 34.46 | 50.14 | 49.04
6.84 8.75 | 6.19 | 13.30 | 11.11

Note: Upper value: mean (hours), Lower value: standard
deviation; Parameters:L=0.95, R=0.15, V=1.00.

Table 7.4 Means and standard deviations of maximum

flow times

Flow pattern
Rules
F1 F2 F3 F4 ¥5
301.5 | 289.2 | 324.0 | 664.1 | 720.4
RANDOM | “98.3 | "87.4 | 120.4 | 220.8 | 185.7
rers | 126.5 | 144.3 | 120.1 | 282.5 | 260.0
20.7 § 39.2| 30.7| 67.9| 39.5
SMT 545.9 | 552.9 1 582.5 | 667.7 | 660.3
181.3 | 264.8 | 327.5 | 203.2 | 201.3
SpT 576.8 | 543.3 | 589.9 | 634.9 | 646.5
_ 233.5 | 264.0 | 373.8 | 233.5 | 180.9
373.3 | 468.8 | 589.9 | 908.6 | 773.2
FOPNR 1 950.0 | 215.1 | 373.8 | 215.9 | 119.6
KR 748.8 | 648.6 | 824.2 | 797.6 | 741.3
132.0 | 171.4 | 180.5 | 188.4 | 286.7
ssT 124.1 | 143.5 | 140.5 | 266.4 | 262.9
28.7 | 28.5| 26.1] 8.1 ] 75.3
TSS 154.1 | 155.9 | 151.0 |-273.3 | 295.1
18.6 | 21.0 | 32.4 ) s53.1] 79.0

Note: Upper value: mean (hours), Lower value: standard
deviation; Parameters: L=0.95, R=0,15, V=1.00. -
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variance, respectively. Thus; the conventional scheduling rules

‘appear to have the same effect on the mean flow time even in growp
scheduling.

(i) There-was no statistical difference in the mean flow time for the
five flow fatterns investigated even at the 95Z confidence level for

any scheduliﬁg rule except FOPNR and LWKR. Irrespective of the types

of flow patterns, the mean flow time was minimal for the SPT rule,

and it increased in the order of SMT, SST, and then TSS. It is interesting
to note that the SPT-fuiéwfé£f6rméd best e&en in flow shops F3 and F5,
since intuitively it is expected that iWKR and FOPNR are superior to

SPT for the flow shopé.

(iil) As expect;d, the FOPNR and LWKR rules performed better in the flow-
éﬁop patterns than in the job-shop patterns because the jobs could leave
thevflow shops quickly by précessing the jobs with the least remaining
works. The differences, except in the LWKR values for Fl and F3, were
stétistically significant.

(iv) In order to investigate the effect of the length of operations,

the performances for the six-fixed length of operations flow types

(F1, F2, F3) were compared to those for the variant length of operations
flow types (mean operatioh*length is 3.5) (F4, F5). Due to unknoﬁn
reasons the mean flow time for each of the rules, RANDOM, FCFS, SST,

and TSS, showed a smaller value for the fixed-operations flow types

than that in the variant-operations flow types. While, the SMT and

SPT values were less for the variant-operations flow types than for

the fixed-operations flow types. This result indicates that the
relative effectiveness of the scheduling rules on the mean flow time

is larger for the variant-operations flow types than for the fixed-

operations flow types. However, the differences were not significant.
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B. Maximum flow time

(i) The maximum flow timé did not show any statistical difference for the
fixed-operations flow types for any rule; There was also no significant
difference in the maximum flow time for the variant-operations flow types.
i) It is interesting to note that the maximum flow times for the variant-
operations flow .types showed significantly larger values than those for the
fixed operations flow types since it is expected that there is no difference
for.the two fléw types as is the case with the mean flow time.

(iii). The FCFS and SST rules performed best and were followed by TSS for all
flow patterné.

(2) Effect of parameters

The results of analysis~of-variance computations are given in Tables

7.5 and 7.6. The numbers entered in the columns of the tables represent the

percentages of variance caused by the source factors listed in the stub column.

VTable 7.5 Results on percentage of mean flow time

Percentage variance for the rule

Source factor

. sPT LWKR SST 188
Shop load (L) 96.76 | 97.43 50.62 51;87
Setup time ratio (R) 2.70 1.06 | 26.02 25.22
Setup time variance (V) 0.08 0.10 0.15 0.00

Interaction of 0.12 0.76 23.03 22.76

L and R
I“te;a:§§°3 of 1 o006 | o0.25 | 0.06 | o0.06
1“93{323293 of 0.15 | o0.18 | o0.05 0.01
Error » 0.13 0.22 0.09 0.08
Grand mean ' 18.36 . 21.48 29.64 33.05
Standard deviation 5.20 6.17 | 21.50 | 24.58
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Table 7.6 Results on percentage of maximum flow time

_--. - Percentage variance for the rule
Source factor ; " -
SPT LWKR SST 1SS
Shop load (L) 93.52 83.06 47.19 40.68
Setup time ratio (R) 0.41 1.12 | 29.41 35.02
Setup time variance (V) 0.18 0.29 0.83 0.43
Interaction of 1.58 7.78 | 20.20 | 19.02
L and R .
Interaction of 0.46 ) 2.71 0.16 0.18
R and V -
Interaction of 1.41 1.41 1.23 2.45
- Land V
Error 2.44 | 3.63 0.98 | 2.22
Grand mean 344.07 | 578.52 197.11 204.11
Standard deviation 217.25 265.52 128.54 119.55

The results showed the following points.

A. Mean flow time

(i) As expected, the load factor was most prominent and caused about 97%
of the variance for the SPT and LWKR rules.

(i) For the SST and TSS rules, the load factor had the largest effect of
about 50%. The setup time ratio factor was next in importance and the load
and setup time ratio interaction exerted an almost equal influence on

this performance. This result indicates that the goodness of the SST and
TSS rules depends on the setup time ratio,

(iii) Against expectation, the éetup time variance had little influence on
the mean flow time for all rules. This result may Be explained by the fact

that the setup~time distribution was assumed a uniform form.
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B. Maximum flow time

In regards to within-cell variance, almost the same results as for
the mean flow time were obtained;
(3) Effect of setup time ratio

The effects of the setup time fatio on the measures of performapces are
shown in Figures 7.1 and 7.2 for the three flow patterns. The scheduling
rules employed in the experiments were SPT, LWKR, SST, and TSS.
(i) With small values of the setup time ratio, the SPT rule showed the
smallest mean flow time, LWKR and SST the next smaller ones, and TSS the
laygest one. |
(i) As the setupvtime ratio incréased, the SST and TSS values of the mean
flow times decreased and became .equal to or less than the SPT value.
(iii) The LWKR and SPT rules provided a bad performance on the maximum flow
time for ali the setup time ratios. For the larger setup time ratios, such
as 0.30 and 0.50, the SST and TSS rules performed slightly better than the
SPT rule on thé mean flow time, wﬂile the diffe;ences were not significant.
Considering that SST and TSS performed best on the maximum floﬁ time, it is
concluded that SST and TSS apppear to dominate SPT for the large setup timé.
ratios,
(4) Effect of difference in distributions

Figures 7.3 and 7.4 show the effect of the difference in the production-
time distributions. It seems from these figures that there is no large
difference in superiority of each of the scheduling rules and in performance
values for the two kinds of distributions. 1In the case in which the
production times are obtained from a normal distribution, there is a tendency
to decrease the maximum flow time for SPT when the setup time ratio is as large
as 0.50. This is explained by the fact that the standard deviation is as

small a value as half the mean, and hence the maximum flow time is dominated
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by the variation of setup times rather than that of processing times.
When the standard deviation of the production times is set double, the
value of the maximum flow time for the setup time ratio of 0.50 was over

100 hours, which was almost equal to the value for R=0.30.

7.5 Conclusions

(1) The éonventional scheduling rules, such as FCFS (First-Come, First-
Served), SPT (Shortest Processing Time), and others, showed almost the same
relative performances on.the mean flow time for group scﬁeduling.

(2) Tﬁere was no significant difference in performances on the mean flow
time and the maximum flow time for the different flow patterns for any
scheduling rule;except the FOPNR (Fewest dpérafions Remaining) and LWKR
(Least Work Remaining) rules. -

(3) The performances on the mean flow time and the maximum flow time for
the well-known SPT and LWKR rules were also greatly influenced by the shop
load for group scheduling. The ratio of the setup time to the processing
time as well as the shop load influenced the performances for the SST
(Shortest Setup Time) and TSS (Traveling Salesman Sequence) rules; however,
the ratio of the range of the setup time to the mean setup time showed no
influence on the performances for the fou# scheduling rules, SPT, LWKR, SST,
and TSS.

(4) 1In group scheduling, where the relative size of the setup time to the
processing time is large, the use of the scheduling rules, such as SST and
TSS including the setup time and the setup group, seems to be desirable.
(5) The difference in production-time distributions is not critical in

comparing scheduling rules,
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CHAPTER 8 SUMMARY

‘Group technology, which is‘a-technique to improve the productivity
in small and medium lot size production, has gained major attention in
manufacturing industries. In this thesis, group scheduling models based
on the concept of group technoiogy were developed in an attempt to achieve
the benefits of group technology applications.

In the models under static conditions, the fundamental assumptions that
jobs to be processed are classified into several gréups and jobs within the
same group are-processedAin succession, were mé&e. Scheduling models of this

new type required the determination of both the sequence of groups classified

and the sequence of jobs in each group simultaneously.

The following conclusions were reached for the static group scheduling
models.
(1) The single-stage group scheduling model was developed under three kinds
of criteria — the minimum mean flow time, the minimum weighted mean flow
time, and the minimum total tardiness. For the minimum-mean-flow-time énd
the minimum-weighted-mean-flow~time probléms, two theorems were given for
optimally determining a group schedule (group and job sequences). Several
theorems which specify the relative order of pairs of groups in an optimal
group schedule were prpved for the pfoblem of minimizing the total tardiness.
With the use of those theorems, efficient algorithms for determining the
optimal and the near optimal group schedules were developed. The effective-
nesses of the algorithms were verified with numerical examples.
(2) The single-stage group scheduling model with sequence-dependent setup
times was developed under three kinds of criteria —— the minimum total
elapsed time, the minimum mean flow time, and the minimum total tardiness.

Thg problem with the objective of minimizing the total elapsed time was

(125)



shown to be.reduced to the traveling salésman problem.. In order to solve
the minimum—mean-flow—tiﬁe problem, the dynamic programming approach and the
branch-and-bound method were'appliedf‘ For determining a group schedule
minimizing the totél tardineés, the branch-and-bound algorithm was developed
and a numerié;I example was shown.

(3) Theoretical analyses were made for the two-stage flow-shop scheduiing
problems with setup times separated and time lags when the objective was to
minimize the total elapsed time. .Thedrems; which were extensions of
Johnson's,were developed to determine the optimal schedules. They were
extended to the two—srage flow-shop group scheduling. Furthermore, the
special‘ﬁultistage flow-shop group scheduling problems, wﬁere there exist some
well-defined relationships amorg the grorp setup times and the job processing
times, were rheoretically treated and a theorem and algorithms were given to
determine the optimal group schedule for each of the cases.

- (4) 1In order to solve the multistage flow-shop group scheduling problems,
the branchfand—bound ﬁethod was applied. TFor the problem of minimizing tﬁe
total elapsed time, several lower bounds were developed and thelgffective-
ne;ses of thesé-weré examiﬁed with numerical experiments.“:Thé m;éhrnéfbaseq
lower bound was verified to be more effective than others. In addition, in
the case of minimizing the weighted mean flow time, the effect of randomness
of the weighting factors on the effectiveness of thé branch-and-bound
algorithm was tésted with numérical experiments. The results showed that
the algorithm was effectiﬁe Qheq the variation of the weighting factors was
large. |

(5) A multistage group scheduling model with variable job proceséing times
and costs was developed. 1In this scheduling model, job processing times
were assumed to be variable, depending on machining-speeds for jobs, and

hence, decisions were to‘be made as to the scheduling of groups and jobs and
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the &etermining of machining speed$.~ The minimum total elapsed time with
the minimum number of tardy jobs was employed as a scheduling criterionm,

and the minimmmtotalproductionvéost was employed as a criterion for
determining optimal machining speeds; ‘The analysis of the model presented
was maae under these crtiteria, and the optimizing algorithms for determining
the optimal group schedule and the optimal machining speeds were propqsed.
The effectivenesses of the algorithms were verified with numerical

examples.

In the last part of this thesis, the group scheduling model under
‘dynamic conditions where jobs arrive at random over time was developed. 1In
this model, it was assumed that jobs were classified into several setup
groups and group setup times were sequence-dependent. The following :
conclusion was obtained for this problem.

(6) A simulation model was constructed and the simulation experiments

were run to investigate the effegt of types of flow patterns —— job-shop,
near-flow-shop, and flow-shop patterns on flow time performances. Results
showed that there was no significant difference in performances for the
different flow patterns. In addition, the effect of the setup time on the
performances for several scheduling rules was also studied in the experiments.
Results indicated that the setup time played a critical role in group
scheduling in those cases where the relative length of the setup time to

the processing time was large.
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