<table>
<thead>
<tr>
<th>Title</th>
<th>無菌マウスの急性X線死 第2報 生存率</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>松沢, 大樹</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 24(2) P.170-P.173</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1964-05-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/18693</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
無菌マウスの急性X線死
第2報 生存率

Noordwijk大学, 大阪医科大学
松沢大樹

昭和39年4月6日受付

Acute X-Radiation Death in Germfree Mice.
II Survival Ratio

Taiju Matsuzawa, M.D.
Lobund Laboratory, University of Notre Dame.

1) In these studies germfree and conventional Swiss-Webster and CFW (Carwarth Farmer Webster) mice were exposed to single doses of X-radiation from 500 r to 850 r.

2) In general the survival ratio of germfree mice is higher than that of conventional mice in both strains.

3) The differences in the survival ratio between germfree and conventional mice are large at the small X-ray dose range, and decrease with increasing X-ray dose.

4) LD₉₀ X-ray dose is 690 r for germfree mice and 510 r for conventional counterpart in Swiss strain, whereas the LD₉₀ for germfree mice is 685 r for conventional counterpart in CFW strain.

The difference in the LD₉₀ between germfree and conventional mice is 80 r in Swiss strain as compared to 55 r for CFW strain.

5) LD₉₀ X-ray dose is 720 r for germfree mice and 650 r for conventional counterpart in Swiss strain, as compared to 720 r for germfree mice and 640 r for conventional counterpart in CFW strain. The difference in the LD₉₀ in Swiss-Webster strain between germfree and conventional mice is 60 r, whereas the difference in CFW strain is 60 r.

6) The LD₉₀ X-ray dose is 890 r for germfree mice and 770 r for conventional counterpart in Swiss strain, as compared to 900 r for germfree mice and 870 r for conventional counterpart in CFW strain.

The difference in the LD₉₀ between germfree and conventional mice is 20 r in Swiss strain as compared to 30 r in CFW strain.

7) As above, the survival curves in germfree and conventional Swiss mice are approximately equal to the respective curves in germfree and conventional CFW mice.

8) It is reasonable to presume that the differences in survival ratio between germfree and conventional mice after lethal X-radiation are due to the differences in body structure and function between germfree and conventional mice.
第1報1に於ては無菌マウスと普通マウスに500rから500r迄の線量範囲でX線の全身照射が行なわれ、その生存時間が比較されたが、この実験では両群に於て生存率が比較検討された。

前報の如くSwiss-Webster系マウスが用いられた他にCFW(Carworth Farmer Webster)系のマウスが新たに使用された。これは無菌マウス（以下無菌群と云う）と普通マウス（以下有菌群と云う）との比較の他に、動物の系による差異の比較が重要であると考えられたからである。

両群ともに照射時に於て先に10～11週に達した若い成熟マウスが用いられた。無菌群、有菌群とも夫々雌雄略々同数のマウスを用い、照射時に体重27±2gのものを選んだ為に、両群とも無菌群の体重に関しては照射時に照計学的に有意の差は認められない。Swiss系では無菌群190匹、有菌群240匹が用いられ、CFW系では無菌群155匹、有菌群240匹のマウスが使用された。両群を合わせると無菌群が325匹、有菌群が480匹で総計が805匹である。Swiss系では無菌群と有菌群が12～16代前の両親を同一とするのに比して、CFW系では3代前の両親を同一とする。

無菌群、有菌群の飼育方法、照射方法は前報に記載した通りである。X線の線源としてはPickerのX線線源治療器が用いられた。照射条件は、管電圧230KVp、管電流15mAフィルター1.0mmAl+0.25mmCu、線量率每分48rである。線量測定はVictoreenのr-meterを用い、マウスの体中心部に於て行なわれた。各マウスの夫々の膿器の受ける線量を出来るだけ同一にするように照射箱を工夫したことは前報の如くである。照射方法は500rから850r迄の線量範囲内での1回全身照射が行なわれた。観察期間は30日間である。

実験結果及び考察

実験結果の統括をTable1に示す。Swiss系では第1報に於ける生存時間を求めた同一結果がこの生存率の測定に用いられた。一般に両系に於て無菌群の生存率是有菌群に比較して高く、Fig.1及びFig.2は夫々Swiss系、CFW系のマウスの生存率を縦軸の確立纸上に線量を横軸にとり、プロットした結果を生生存曲線である。

LD₅₀はSwiss系では無菌群のそれを690r、有菌群のそれを610rでLD₅₀の差は80rである。CFW系では無菌群のLD₅₀が685rで無菌群のそれが590rでその差は95rである。LD₅₀はSwiss系のマウスでは無菌群720rに対し有菌群660rでその差は60rである。CFW系では無菌群では640rで両群のLD₅₀の差は80rであって、Swiss系に於ける差を20r高い。

Table I Survival ratio of X-irradiated germfree and conventional Swiss-Webster and CFW mice (30 days post irradiation)

<table>
<thead>
<tr>
<th>Dose (r)</th>
<th>Swiss-Webster</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th>CFW</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Germfree</td>
<td>Conventional</td>
<td></td>
<td>Germfree</td>
<td>Conventional</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>No. Survivors</td>
<td>% Survival</td>
</tr>
<tr>
<td>100</td>
<td></td>
<td>21/30</td>
<td>100.0</td>
<td>20/25</td>
<td>100.0</td>
<td>26/30</td>
<td>83.1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>150</td>
<td></td>
<td>21/30</td>
<td>90.0</td>
<td>22/25</td>
<td>90.0</td>
<td>26/30</td>
<td>86.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>200</td>
<td>21/25</td>
<td>100.0</td>
<td>21/30</td>
<td>93.3</td>
<td>23/30</td>
<td>92.0</td>
<td>21/30</td>
<td>70.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>21/30</td>
<td>93.3</td>
<td>22/30</td>
<td>90.0</td>
<td>24/30</td>
<td>86.8</td>
<td>14/30</td>
<td>46.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>11/30</td>
<td>55.6</td>
<td>3/30</td>
<td>26.7</td>
<td>11/17</td>
<td>64.7</td>
<td>7/30</td>
<td>23.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>350</td>
<td>4/30</td>
<td>13.3</td>
<td>2/30</td>
<td>6.7</td>
<td>8/22</td>
<td>36.3</td>
<td>3/30</td>
<td>10.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>400</td>
<td>10/30</td>
<td>33.3</td>
<td>4/30</td>
<td>16.7</td>
<td>4/24</td>
<td>16.7</td>
<td>1/30</td>
<td>3.3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>450</td>
<td>2/35</td>
<td>5.7</td>
<td>6/30</td>
<td>20.0</td>
<td>1/30</td>
<td>3.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- 81 -
Fig. 1 Probability of survival in X-irradiated germfree and conventional CFW mice. (30 days post irradiation)

Fig. 1. Probability of survival in X-irradiated germfree and conventional CFW mice. (30 days post irradiation)

Reed and Muench の方法で LD₅₀ を求めてみやすくこれらの値と近似する。LD₅₀ は Swiss 系では無菌群 880r に対して、有菌群は 870r でその差は僅かに 20r である。CFW 系では無菌群のそれが 900r であるのに対して、有菌群では 870r でその差は 30r となる。一般に上述の如く Swiss 系、CFW 系ともに無菌群と有菌群の生存率の差異は線量の増加と共に減少する傾向を示し、LD₉₀ に於ては無菌群と有菌群の生存率は差が見られず、又、両系に於ける無菌群と有菌群の生存曲線は極めて近似している。この原因に関しては両系が同じ Wister 系のマウスで近縁関係にある為かと考えられる。Wilson は Swiss 系のマウスで得られた無菌群と有菌群の生存曲線を平行線で示しているが、その根拠として彼の得た二つのスロープの間に 95% の信頼度で差の差異が認められないとしているが、スロープの間に充分な差異が認められないことは直接的に平行線となることを意味しないし、使用しているマウスの数も少なくこの解釈は信頼度に乏しい。500r から 850r 近の適量範囲内ではこれらのマウスの生死は造血系統の障害による死と考えられるが、これらの無菌群と有菌群に於ける差異は如何なる原因によって生じたものであろうか、菌群に於ける生存率の差異を菌群又は Virus の直接の影響による差異と考えることは困難で、細胞細胞の有無によって二次的に造血系統に生じた変化の差異がこの生存率の差異に影響を及ぼしているものと考えられる。冗長にれば、無菌動物では普通動物に比してその新陳代謝が低く、細胞新生系の個々の細胞の寿命も短く、従って照射時に於ける分裂細胞数、DNA 合成期にある細胞数も少ないので、これ等の要因に無菌マウスの放射線感受性を普遍マウスに比べて低下させる。線量の増加に伴い両群の生存率の差の差異が減少することは両群に於ける造血系統の放射線感受性の差異を示唆している。

結 論

1. Swiss 系と CFW 系の両系の成熟した無菌マウスと普通マウスに 500r から 850r 近の X 線の全身照射を行い、夫々の系に於て無菌マウスと普通マウスの生存率の差異が比較検討された。
2. 一般に無菌マウスの生存率は普通マウスのそれに比して高い。
3. 両系に於て無菌マウスと普通マウスの生存
率の差は菌量が少ない側的に菌量が増加するに従って減少する。
4. LD₉₀はSwiss系の無菌マウスが690r普通マウスが610rでその差は80rであり、CFW系では無菌マウスの683rに対し普通マウスのそれは590rでその差は93rである。
5. LD₃₀はSwiss系の無菌マウスのそれが720rであるのに比し普通マウスでは660rでその差は60rであり、CFW系では無菌マウスの720rに対し普通マウスは640rでその差は80rである。
6. LD₉₉はSwiss系では無菌マウスの890rに対し普通マウスが870rでその差は20rであり、CFW系では無菌マウスが900rであるのに比して普通マウスのそれが870rでその差は30rである。
7. 無菌マウスと普通マウスとの生存率の差異は細菌の有無により直接に生じた差異でなく、いかえれば感染によって生じた差異でなく、細菌の有無によって二次的に生じた造血系統の放射線感受性と密接な関連があるものと考えられる。

参考文献