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                                 Abstract 

           This paper presents the performance of the vector 

      quantization with the difference distortion measures. 

           In Chapter 1, the outline of this work is described 

      after introducing the basic concept of the quantization. 

           In Chapter 2, the asymptotic bounds to the optimal 

      performance of vector quantizers with finite block length 

      are derived for the general distortion measures that are 

      increasing functions of the seminorm of their argument, 

      where any seminorm is allowed. When the distortion measure 

      is a power of a seminorm the bounds are shown to be strictly 

      better than the corresponding bounds provided by the k-th 

      order rate distortion functions. 

           In Chapter 3, the asymptotic performance of variance-

      mismatched vector quantizers is investigated. It is demon-

      strated by both asymptotic analysis and computer simulations 

      that  well-designed vector quantizers are inherently more 

      invulnerable to variance mismatch than conventional scalar 

      quantizers. 

           In Chapter 4, the vector quantization is then applied 

      to video signals. Based on the asymptotic analysis in 

      Chapter 2, the vector quantization with maximum error dis-

      tortion measure is discussed. Computer simulations are 

      also performed to demonstrate the effectiveness of the 

      vector quantization for real video signals. 

           In Chapter 5, the principal results of this work are 

       summarized. 
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 Chapter 1 

                        Introduction 

1.1 Vector and Scalar Quantizations 

     Quantization is a deterministic mapping from an analog 

or continuous information source with infinite information 

contents ( entropy ) to a digital or discrete information 

source with finite information contents. By quantizing the 

analog source, we can produce the digital counterpart which 

approximately simulates the corresponding analog source. In 

other words, the approximated digital source can be encoded, 

transmitted over a digital channel, decoded, and reproduced 

at the destination yielding the quantized version of the 

original analog source. The goal of the quantization is the 

data compression which minimizes information rate while 

maintaining the necessary fidelity of such reproduction at 

the destination, or conversely, maximizes the fidelity of 

the reproduction within a given restriction on the 

information rate. 

     Because of their simplicity, the scalar quantizers have 

been used in the various signal processing and data 

compression systems [1]. For example, the Pulse Code 

Modulation ( PCM ) is the most common and well established 

digital communication technique [2]. However, from the 

information-theoretical point of view, the scalar quantizers 

provide rather poor performance for relatively low 
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information rate, approximately one bit per symbol ( or 

sample ) or less, whereas they provide good performance when 

large information rate is allowed [3]. 

     The rate distortion theory shows us that the optimal 

analog-to-digital conversion can be achieved by quantizing a 

block of symbols at once instead of quantizing a individual 

source output symbol [4]. Such a block source coding or 

multi-dimensional quantization can provide optimal per-

formance given by the rate distortion bound in the limit 

when the block length tends to infinity. It is these class 

of quantizers, which are referred to as the vector 

quantizers, that we investigate in the following Chapters. 

1.2 Scope of This Work 

     Although the vector quantization technique is promised 

to success by the rate distortion theory, we have two 

problems to be solved so as to apply it with good success in 

practical communication systems, namely: 

     Problem 1. How good performance over the scalar 

     quantizers can be achieved by the vector quantizers 

    with finite block length? 

    Problem 2. How to construct or design the optimal 

     or suboptimal vector quantizers? 

This work is devoted to Problem 1. 

     In Chapter 2, the asymptotic bounds on the optimal 

performance of the vector quantizers are derived for the 

general difference distortion measures that are increasing 
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functions of the seminorm of the error vector. When the 

distortion measure is a power of a seminorm the bounds are 

shown to be strictly better than the corresponding bounds 

provided by the k-th order rate distortion functions. 

     In Chapter 3, the asymptotic bound on the optimal 

performance obtainable by the mismatched vector quantizers 

is derived for the distortion measures that are powers of a 

seminorm of the error vector. It is demonstrated by both 

asymptotic analysis and computer simulations that  well-

designed vector quantizers are inherently more invulnerable 

to the variance mismatch than conventional scalar 

quantizers. 

     In Chapter 4, the vector quantization is then applied 

to video signals. Based on the asymptotic analysis in 

Chapter 2, the vector quantization with the maximum error 

distortion measure is discussed under the mean-squared-error 

fidelity criterion. Computer simulations are also performed 

to demonstrate the effectiveness of the vector quantization 

for real video signals. 

     In Chapter 5, the principal results of this work are 

summarized. 
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 Chapter 2 

        Asymptotic Performance of Vector Quantizers 

           with Difference Distortion Measures  [5]-[7] 

2.1 Introduction 

     In a recent paper Gersho [8] provided a heuristic 

derivation of the tradeoffs between the rate and the average 

distortion for block or vector quantizers in the limit of 

large rate or small distortion. His work provides a 

unified and general development of many existing results for 

the asymptotic performance of scalar and block quantizers. 

In particular, he developed a k-dimensional analog to 

Bennett's [9] integral giving an approximation to the 

average distortion and used a simple technique of Gray and 

Gray [10] to obtain the performance of optimal quantizers 

minimum average distortion ) for a fixed rate. Gersho used 

as a vector distortion measure the r-th power of the 

Euclidean or  the  Z2 norm. To be precise, if a vector x  e 

Rk is reproduced by a vector y  e Rk, then the resulting 

distortion is given by 

                            r   d(x,y) = II x-Y1I2=I x.JJ_y.12r2 
 j=1 

where  II II2is a  Euclidean or Z2 norm on Rk. Gersho's 

approximation is a function of a "quantization coefficient" 

C(k,r) depending only on the dimension k and the power r. 

This coefficient is known only for the cases k = 1 and 2, 

and hence Gersho provides bounds to C(k,r) for general k. In 
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particular, he finds a lower bound to C(k,r) in terms of the 

known volume of a unit sphere in Rk, and this provides 

general tractable lower bounds to the asymptotic distortion 

and the optimal trade-off between the average distortion and 

rate. It is these lower bounds that we generalize here. 

     In their classic paper on scalar quantizers  (k  = 1 ), 

Gish and Pierce  [11] allowed more general difference 

distortion measures of the form 

               d(x,y) = L(x-y), 

where L is a function such that 

     a) L(0) = 0, 

     b) L(x) is an increasing function of x, 

     c) the function M(V) defined by 

                        1 
            M(V)L(aV/2) da (2.1)                  2
-1 

         is such that  VW(V) is monotone for V 0 ( the 

         prime denotes a derivative ). 

Gish and Pierce characterized the optimum trade-off between 

the average distortion and quantizer output entropy for this 

general distortion measure. For the special case of L(x) = 

lx1r, the r-th power distortion, Algazi  [12] characterized 
the trade-off between the average distortion and the 

quantizer alphabet size. Gray and Gray [10] made the 

slightly stronger assumption that  M(V) is convex U and 

used Gish and Pierce's Bennett-style approximation for the 

asymptotic distortion to obtain a simple proof of the Gish-

Pierce result via  HOlder's and  Jensen's  inequalities instead 

of variational techniques. Gray and Gray [10] also provided 
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a similar simple proof for Algazi's result. 

     In this Chapter we combine Gersho's Euclidean norm 

approach with an adaptation of  a technique of Yamada and 

 Tazaki  [13] for  Iv norms to obtain a k-dimensional general-

ization of the one-dimensional bounds of Gish and Pierce 

[11] and Algazi [12]. The distortion measures considered 

here have the general form  d(x,y) = L(x-y), where  L(0) = 0 

and L(u) L(x) if and only if  114  11  x  11 , where  II  • II  •  is 

an arbitrary seminorm on Rk. For some of the results a k-

dimensional generalization of the Gish-Pierce function M(V) 

of (2.1) is required to be convex. Our asymptotic bounds on 

distortion and on the optimal distortion-rate trade-off are 

natural generalizations of the bounds of Gersho, Gish-

Pierce, and Algazi  and take essentially the same form. For 

example, it is shown that for the general case considered 

uniform vector quantization asymptotically yields the mini-

mum distortion quantizer subject to a quantizer output 

entropy constraint. The various bounds developed here are 

simplified for several specific special cases such as d(x,y) 

 =
v , powers of the  Iv norms. 

     These asymptotic bounds are useful since they provide 

insight into the optimal distortion-rate  trade-offs for 

vector quantizers with many output levels. For example, they 

provide an asymptotic reproduction vector distribution for 

quantizers minimizing the average distortion for a 

constrained number of reproduction vectors or a constrained 

quantizer output entropy. In addition, such performance 

bounds are often tighter than the general lower bounds 

provided by the rate-distortion theory [4] ( as  will be seen 
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in Section 2.5). Furthermore, it is often the case experi-

mentally that these bounds are fairly accurate when the 

number of allowed reproduction vectors is only moderate 

 [14]. 

     Our development and notation parallel those of Gersho 

[8] and Gray and Gray [10] to ease the comparison of 

assumptions and results. 

2.2 Preliminaries 

  2.2.1 Vector Quantization and Distortion Measures 

     Let X be a k-dimensional random vector taking sample 

values x as described by a joint probability density 

function p(x), where x = (xl,x2,...,xk)  e  Rk, k-

dimensional Euclidean space. A k-dimensional ( or block or 

vector ) quantizer Q is described by a collection of N 

reproduction vectors  y1,y2,...,yN  e Rk, called the 

reproduction alphabet or quantizer output alphabet, and a 

partitionS1,S2,...,SN) of  Rk( the atoms  Si are disjoint 

and exhaust Rk ). The quantizer Q is defined by 

               Q(x) =  yi, if x  e  Si. 

    Let  114 be a seminorm on  Rk, that is, 

 x  II  0, 

 II  ax  II =  lal  •  11x11 for all a  e R1, 
and 

          II x+Y II II x II + II Y II • 
Common examples are  Iv or  Wilder norms defined by 
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      11 x 11 =IxjIv}1/v• 
 j=1 

which for v = 2 is the usual Euclidean norm, the supremum or 

/co norm, 

 11  x110) =  lim  II  x  Ilv = sup  Ix.' 
 v+J 

and the inner product or quadratic norms of the form 

 11  x112 = (x,x), 
where  (•,•) is an inner product on Rk. An example of an 

inner product norm is 

           t1/2 k k}1/2       11 x 11xBiyx.x.B.1. 

                                            3 

                                   i=1 j=1 

 where  t  denotes transpose  and  B  is  a  k  x  k  symmetric 

nonnegative definite matrix. 

     The distortion resulting from reproducing a vector x as 

y is defined as a difference distortion measure by 

         d(x,y) = L(x-y), (2.2) 

where 

 a)  L(0) = 0 (2.3) 

    b)  L(u) <  L(x) if and only if11.u11..xII, (2.4) 

that is, L is an  increasing function of the seminorm of its 

argument. These are exactly the k-dimensional counterparts 

of the assumptions a) and b) of Gish and Pierce [11] and 

Gray and Gray  [10] where k = 1 and  II  x  II =  I  x  I  , the 

absolute value. Unlike Gersho [8], we do not normalize d by 

1/k and this clutters the initial development. 
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     Given a set G  c  Rk, define its volume V(G) by 

 V(G)  = dx. 
                 G 

This is simply the Lebesgue measure of G in Rk --- we 

assume that G is a Borel set so that V(G) is defined. In 

particular, we define the volume of the unit sphere in k-

dimensional space by 

       Vk =  V(  u  :II  u  II  1)  ). (2.5) 

We assume that Vk <  co. For example, from Gradshteyn and 

Ryzhik  [15,p.620] for  /v norms 

                    2k(r(1/v))k 
     Vk = Vk(v)  =                 k -1(2.6a)                     kr(k/

v)v 

For the  Z, norm 

     Vk =  Vk (c)=  I du = 1, 
 u:uie[0,1],i=1,2,...,k 

   (2.6b) 

that is, here Vk is the "unit cube" in Rk. For the quad-

ratic norm  1142 = xBxt from standard matrix theory and a 

linear change of variables, 

         Vk =  fdetB)-1/2Vk(2) 

                         2r (1/2)k 
 =  (detB)-1/2 (2.6c) 

 kr(k/2) 

where  r  (1/2)  = . Our bounds will depend on Vk, which is 

computable for most interesting norms. 

     Observe also that the volume of a sphere of radius a 

centered at y is given by 
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 Vk  =  V(  x  II  x-Y  II  6  a)) =  V(  Or  :  II  x  II  -1-  a  )  ) 

                               x : II x II '6 a  dx 

       = dx 

                            x  I  I  xla  II  6  1 

 akdu 

 = akVk' (2.7) 

since volume is invariant to translation. 

  2.2.2 Generalization of Gish-Pierce Function 

     The appropriate generalization of the Gish-Pierce 

function M(V) to the case considered is given by 

       1-1/k.-          M(V) =  vkfu:oul,,,L(vkvu)au 

k 

                   k                  -VL(x)dx . (2.8) 

                      xx II 6 "k-ilk 

This form of Mk(V) is chosen for mathematical convenience. 

By way of interpretation, however, observe that if we define 

the sphere F =  (x:  11x116  vvk-1/1(), where the  Vk-1/k can be 

viewed as a fixed scaling of the radius variable  V. then 

 VkMk(V) = S "l/k/Vk             "k  L(x)dx 

               1   L(
x)dx.  V(F)fF 

The latter integral is the average distortion resulting if a 
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random vector uniformly distributed on F is represented by a 

single reproduction vector 0 at the center of the sphere F . 

Thus , for fixed k, Mk(V) is a suitably scaled measure of 

the average distortion resulting when a random vector 

uniformly distributed on a sphere of radius proportional to 

V is reproduced as the center of the sphere . 

     For k = 1 and  Hull  =  lul,  V1  = 2 and hence M1(V) 

reduces to  M(V) of (2.1). We shall later require that 

     c) Mk(V) is convex U, 

the k-dimensional analog of the assumption in [10] . We next 

consider some important special cases. 

      In some cases the function L depends on its argument 

only through the norm of the argument. This is analogous to 

the one-dimensional case where L(a) =  L(Ial), that is , L is 
symmetric or depends on its argument only through its magni-

tude. If  II  u  11  =  II  x  ll implies L(u) = L(x), then there is a 

function  p:  [0,c0)  4  [0,0D) such that L(u) =  p(llull) and the 

distortion takes the form 

 d  (x,y) =  p(  x-y  II  )  , 

where  p(0) = 0 and  p(a) is increasing with  a . We will  call 

such a distortion measure a norm based distortion measure . 

     The integral of (2.8) can be simplified in the case of 

a norm-based distortion measure as follows . We can rewrite 

(2.8) as 

      Mk(V) =  P  (Vk-1/kV  II  u  II)  dm  (u) (2.9) 
              11:11 u II =1 1 

where  m is the Lebesgue measure on Rk ( see, for example , 

Rudin  [16,p.50] ). Given any integral of the form 
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        J  II  u  II  eG f (11 u 11 ) dm (u) 

where  f:Rl  R1 is measurable and G  c: R1 is a Borel set, 

since the mapping T:Rk R1 defined by  T(u) =  Hull is 

continuous and hence measurable, we can change variables as 

in Ash  [17,p.50] to write the above integral as 

    J-1 
                          dm                 f(T(u))(u) =f(0)dmT(0) 

    ueTJ-G  0eG 

                  -1 
The measure mT(0) is a Lebesgue-Stieltjes measure on  R1; 

hence the above integral can be written using a distribution 

function ( e.g., Ash  [17,sec.1.4] ) as 

            f(0)dF(a)      f0eG 
where 

 F(0)=  mT-1((-02,0)) =  m(u:Ilull  13) =  13kVk 

yielding 

 fu eG f ( u ) dm (u) 
         =  Vkf(a)d(ok) 

                 EG 

          = Vk  f  (a1/k) da 
                           a-`111'eG 

     = kVkfo"k-10(2.10) 

               0eG 

where the only  dependence  on the particular norm chosen is 

through Vk. Using (2.10) to evaluate (2.9) yields 

             r  Mk(v) = JP(V(a/Vk)1/k )da 

  o 

                    1 
             = kp(VVk-i/k0)0k-id0 (2.11) 

                     0 
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In the further special case of a norm-based distortion 

measure with  p(a) =  ar, r  a 1, (2.11) becomes 

           ""= ,rwk-r/kfl   Mk(v) 
                         O 

 kVr                          V
k-r/k  (2.12)                    k+r 

which is indeed convex U. 

     Note that in the above special cases Mk(V) depends on 

the actual norm chosen only though the volume Vk of the unit 

sphere. Observe also that the special case d(x,y)  = 

IIx-Y Iirallows one to place an r-th low distortion on the 
individual symbols ( unlike Gersho's distortion  Ikx-Y1112.  ). 

  2.2.3 Average Distortion and Rate 

     The performance of a quantizer Q is measured by the 

average distortion 

         D =  Efd(X,Q(X))) 

           =  EIL(X-Q(X))) 

 = dx p(x) L(x-Q(x)) 

              N 
 = dx p(x)  L(x-yi) (2.13) 

             i=1 Si 

We assume that  ECL(X)} <  co. The rate of a quantizer Q is 

measured either by the quantizer output entropy  HQ defined 

by 

          HQ =  -  pi log  pi, 
                 i=1 

             pi = p(x) dx =  Pr(xeSi), (2.14) 
 Si 

or by log N ( logarithms are base  e ). 
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2.3 Asymptotic Distortion 

  2.3.1 Assumptions for Asymptotic Analysis 

     In this section we obtain a lower bound to the asymp-

totic average distortion D for the distortion measures 

d(x,y) of (2.2) satisfying properties a) and b). 

     The initial fundamental assumption in all studies of 

asymptotic quantization is that the probability density p(x) 

is sufficiently "smooth" to ensure that p(x) is effectively 

constant over small bounded atoms. In particular, for N 

large enough we have for all bounded atoms ( decision 

regions ) p(x)  =  bi for x e  Si, and hence from (2.14) 

        pli.fp(2)chczbifxd=  b.V(S.) 
    SiS. 

or 

 p(x)  =  pi/V(Si),  xeSi. (2.15) 

Assume as in Gersho that for N large most of the atoms  Si 

will be bounded and the "overload" region will correspond to 

the tail region of the density p(x). Assuming that the 

partition is appropriately chosen so that the overload 

region is negligible, taking N as the number of bounded 

atoms ( this is possible since E(L(X)) <  = ), and then 

combining (2.15) and (2.13) yields 

             N 
        D =  (pi/V(Si)) J dx  L(x-yi). (2.16) 

 i=1 Si 
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  2.3.2 Effective Radius and Effective Region 

For a bounded set S  e Rk, we define the effective radius  

R(S) of S by 

      R(S)  =  fV(S)/V01/k (2.17) 

where 

        Vk =  V(fu:  II  ull5_  1  ))  . 

From (2.7) R(S) is the radius of a sphere having the same 

volume as S. Fix S  e Rk and y e Rk and define the 

effective region T(S) of S centered at y by 

         T(S)  =  fx:d(x,y);SL(R(S)•e)) (2.18a) 

where e  e Rk is any vector with the unit norm (  II  e II = 1 ). 

From (2.4) 

          d(x,y) = L(x-y)  L(R(S)•e) 

if and only if 

 II  x-y  Il  6  R(S)  •  II  e  II = R(S) 
and therefore, 

         T(S) =  {x:  II  x-y  II  6R(S)). (2.18b) 

That is, T(S) is a sphere of radius R(S) about y, and hence 

from (2.7) 

        V(T(S)) =  R(S)kVk =  V(S). (19) 

Fix S  e Rk and let G = S U T(S). We then have 

         S U (G-S) = T(S) U (G-T(S)) = G 

( where G-S = G Sc ) , 

     J d(x-y)dx = J d(x,y)dx + J d(x,y)dx                                            G-S 

                    =d(x ,y)dx, 
                   T(S)                           d(x,y)dx                            G-T(S) 

and, therefore, 
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        d(x,y)dx 
      s 

    = 1d(x,y)dx + I d(x,y)dx -d(x,y)dx. 
   T(S) G-T(S)G-S 

  (2.20) 

 2.3.3 Lower Bounds 

 From (2.18) and (2.19), (2.20) yields the lower bound 

 d(x,y)dx 

           d(x,y)dx + 1 L(R(S)e)dx - J L(R(S)e)dx. 
   T(S) G-T(S) G-S 

     = 

 d(x,y)dx +  L(R(S)e)(V(G-T(S))-V(G-S)) 
 T(S) 

    = d(x,y)dx + L(R(S)e)(V(G)-V(T(S))-V(G)+V(S)) 

 T(S) 

 =  d  (x,y)  dx (2.21) 

 T(S) 

This is a generalized version of Gersho's observation that a 

convex polytope has a greater moment of inertia with respect 

to its centroid than does a k-dimensional sphere with the 

same volume. Here, however, S need not be a polytope nor 

convex and the sphere can be defined via any seminorm on Rk. 

Equality will hold in (2.21) if and only if T(S) = S, that 

is, S is a sphere. 

     Next observe that 

            d(x,y)dx 
      T(S) 
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    = L(x-y)dx 

          x: 11 x-y II _<_R(S) 

    =  L(x)dx 

 x:II  x115..R(S) 

    =  L  (x)  dx 

 x:  II  x/R(S)  II 

         = R(S)k                        L(R(S)u)du (2 .22) 
 u:llull=1 

where u = x/R(S). Thus from  (2.17)  ,  (2.21),  (2.22)  , and (2.8) 

        J d(x,y)dxV(S),L(S) /Vk) 1/ku) du                 vkfudiull:61 
              =  v(s)  mk(v(s)l/k) (2 .23) 

Applying (2.23) to  Si,  yi,  i=1,2,...,N, and using (2.16) 

yields the asymptotic ( large N ) lower bound 

       D  >  1  pi  Mk(V(Si)1/k). (2.24) 
               i=1 

     Following Gersho [8], define the k-dimensional repro-

duction vector density by 

 gN(x) =  (NV(Si))-1 if  xeSi,  i=1,2,...,N, 

and assume that as N  00 there is a limiting density  A(x) 

having unit integral and hence 

 V  (Si)  'A'  (NA  (yi)  )-1 (2.25) 

for every bounded atom  Si. In other words,  A(x)•AV(x) is 

the fraction of reproduction vectors in an incremental 

volume containing x. Using this approximation in (2.24) 

yields 
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        D  >  Pi  Mk(  (NX  (yi)  )  -1/k) (2.26) 

               i=1 

which we approximate by 

        D  dyp  (y)  Mk  (  (NA  (y)  )  -1/k) 

         =  E04
k  (  (NA  (x)  )  -1/k)) A  DL. (2.27) 

                                = As an example, if L(x) =  II  x  Ilr , then from (2.12) 

  (Nyk)-r/kEf(X)-r/k),(2.28)          D                 k + r 

which generalizes Gersho's lower bound  [8,eq.  (18) and  (10)] 

from an  Z2 norm to any seminorm. The only difference is the 

actual value of  Vk. 

     For the case of k = 1, (2.27) is known to hold with 

equality as N +  a' and is a form of Gish and Pierce 

 [11,eq.(16)]. This is true since in one dimension the atoms 

Sicobecome spheres ( intervals ) as N +and hence in 

(2.23)-(2.27) they become asymptotic equalities. In higher 

dimensions one generally cannot partition the space with 

spheres and only the bound results. For the case  L  (x-y) = 

 II  x-y  il2 Gersho [8] provides a heuristic development of a 
similar expression to (2.27) which provides an actual 

approximation to D which is then used to obtain the bound 

(2.27). Gersho's approximation is obtained by using non-

spherical effective regions, that is, replacing T(S) by 

convex polytopes that actually approximate S for large N. 

His approach can be adapted to the special case L(x) = 

 Ilx  11r , but it seems to be of limited use when norms other 
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than  Z2 norms are used since his coefficient of quantization  

cannot be evaluated in general. Hence we confine ourselves 

to the lower bounds. We shall later provide an example of 

the asymptotic difference between the bound and the approxi-

mation in the case k = 2 where the approximation can be 

evaluated. 

2.4 Bounds on Asymptotic Optimal Performance 

  2.4.1 Bound for Entropy Rate 

     We now assume that the distortion measure also satis-

fies the condition c). As in Gersho  [8], combining (2.14) 

with its approximations (2.15) and (2.25) yields 

                      1   HQ  =  h(P) - E {log[NA(2.29) 
where 

 h(p)  = - dx  p(x) log  p(x) (2.30) 

is the differential entropy. Using Jensen's inequality we 

find 

                             1    HQ=  h(p) - k Ellog                      NA(X))1/k1 
                                1/k            h(p) -k log Efi 1  I. (2.31) 

                            NA(X) 

Since Mk is assumed to be convex, application of Jensen's 

inequality to (2.27) yields 

      D > DL> Mk(Ef   (X))1/k)] (2.32) 
or 
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                     J -1>-1E1 
            Mk(D)-Mk(DL)                       NA(X)(2.33) 

   where the inverse is well-defined since Mk is convex. Com-

   bining (2.31) and (2.33) yields 

             HQ h(p) - k • log  Mk-1(DL) 

              h(p) - k • log  Mk  1(D) (2.34) 

   which provides a lower bound to the asymptotically achieva-

   ble quantizer output entropy for fixed D.  Assuming natural 

    logarithms we can rewrite (2.34) as 

           exp (-(H-h(p))/k)5  Mkt (DL)5  M;1 (D) , (2.35) 
    so 

          D DL-Mk (exp  (-(HQ-h(p))/k)) ,  (2.36) 
   which provides a lower bound to the asymptotically achieva-

    ble average distortion for fixed quantizer entropy. 

         For k = 1, (2.34) reduces to  [10,eq.(7)]. When  L(x) = 

 lixlir, (2.36) becomes 

                      kVk                         r/k            DDL  exp 1-(r/k)(11Q-h(P)))(2.37) 
 k  +  r 

   which generalizes the bound of [8,eq.(23) and (10)] to 

    arbitrary seminorms. 

         In the above applications of Jensen's inequality, 

    equality holds in the right-hand inequalities of (2.32), 

    (2.36), and (2.37) if and only if A(x) is constant on a set 

    G such that 
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 dx  p(x)  =  1. 

Since A has a unit integral, G must be bounded. Thus DL 

equals its lower bound if and only if all the source measure 

is on a bounded set and  A(x) is uniform on that set. If 

 p(x) has  we tails, then approximate equality can 

be achieved if A(x) is constant on a set G such that 

 Pr(xeG)  =4 1. 

  2.4.2 Bound for Codebook Rate 

     Next consider the case where the rate is measured by 

log N. As in [10] we consider only the case L(x) =  lixhir. 

Apply  Holder's inequality to (2.28) exactly as in 

 [10,eq.(8)] with k-dimensional integrals or as in [8,sec.VI] 

to obtain 

                        (VkN)-r/k       D DL = k+r E{  X(X)-r/k 

             k+r  (VkN)-r/k  II  P  II  k/  (k+r) (2.38) 

where here the norm denotes the Lk/(k+
r) norm on real 

functions defined on Rk. The right-hand inequality in 

(2.38) is an equality if and only if  X(x) is proportional to 

p(x)k/(k+r).              This generalizes Gersho's bound [8,eq.(19) and 

(10)] to arbitrary seminorms. Again the only difference is 

the value of  Vk. Note in particular that the condition for 

equality is independent of the particular norm chosen. 
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  2.4.3 Examples 

     Denote the k-dimensional probability p(x) by  pk and 

define the per-symbol differential entropy hk =  k-lh(pk) and 

per-symbol quantizer output entropy  Hk = HQ/k. We special-

ize the previous results to several examples of norm-based 

distortion measures. 

     For an arbitrary norm we have from (2.36) and (2.11) 

that 

 d  (x,y) =  p(  x-y  II  ) : 

              1 

                            -1/k )k-1     D >  DL> kp(exp(-(Hk-hk))Vkf3di3.  (2.39) 

               0 

 d(x,Y) = 

     For  Iv norms we have from (2.6) that 

   • DL k 

krk v )     k1p(exp(-(Hk-hk))kr (k/v)(vv)F-• 

       0 

  (2.40) 

 d(x,y)  = p(  II  x-Y1103) 

               1 

    •DLkkjp(exp(-(Hk-hk))13)13k-10. (2.41) 

               0 

  d(x,y) = P(f (x-y)B(x-y)t)1/2) 

 DkD  k  L 

    k          ->-:        1         pexp(-(Hk-hk))2                         kr (k/2) (detB) 1/2/k 

  l        0 

                  /Tr    (2.42) 
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     We next use  (2.37),  (2.38), and (2.6) to further 

specialize these results to the case  p(a) =  ar, r 1 . 

 d  (x,  y) =  II  x-y  Iry : 

        k v  jr     D  DL k+r 21"  (1/
V) 

             (  kr  (civ)r/k exp(-r (Hk-hk) ) , (2.43) 

  D> D > k  v  rN L k+
r  2T  (1/v) 

 kr  (k/v) r/kIIpII 
       v•k/(k+r) (2.44) 

 d(x,y) = 11x-Y 1103r 

   D DL k+r   exp(-r  (H
k-hk)  )  , (2.45) 

   D DLr/k kII       Lk+r II kkIIk/(k+
r) (2.46) 

 d  (x,y)  =f  (x-y)B(x-y)t}r/2 

    DDkirr/2kr (k/2) (detB) 1/2 }r/k 
   L k+r 2 

                              •  exp(-r  (H
k-hk)  )  , (2.47) 

 D> DNr/k•mr-r/2{ kr (k/2) (detB) 1/2}r/k 
              k+r2 

                       • 11 Pk  IIki  (k+r) (2.48) 

     Equality holds on the right in  (2.39)-  (2.43),  (2.45), 

and (2.47) if and only if  A  (x) =  1/V  (G) on a bounded set G 
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of probability one. Equality holds on the right of 

 (2.44),(2.46), and (2.48) if and only if  A  (x) is proportion-

al to  p(x)k/(k+r)  . Equality holds on the left in  (2.39)-

(2.48) if and only if the decision regions are approximately 

spheres in the given norm. This is possible, for example, 

in (2.41), (2.45) and (2.46) since the unit spheres are unit 

cubes which tessellate Rk. This is not possible in general, 

although it may be approximately true in some cases. 

     We can also write these examples as follows. Let  R = 

 k-flog N denote the per-symbol codebook rate of the 

quantizer. 

 d(x,y) = II x-Ylly 

                               - 

     Hkahk -  r-flog D +rllog(k/(k+r)) 

                              1/k                 v  kr (k/v) 
   + log{ (2.49)                21. (1/

v) v 

 log II kil(k+r)-1-1                        - rlogD + rlog(k/(k+r)) 

                              1/k    + log  }                        k(k/v)            l
og{(2.50)                2r(l/

v)r 

 2.5 Comparison with Rate Distortion Theory 

  2.5.1 k-th Order Rate Distortion Function 

     Consider now distortion measures of the form d(x,y)  = 

(Ix-ylir where the seminorm is arbitrary. An alternative 
lower bound to the rate of a k-dimensional quantizer 

yielding expected distortion D is given by the k-th order 

rate distortion function  R(k)(D) defined by 
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 R(k) (D) = inf  I(X,Y) 

where the  infimum is over all conditional densities  p(y1x) 

yielding  Efd(X,Y)) < D. For difference distortion measures 

the rate distortion function is further bounded by the 

Shannon lower bound  RSLB(k)(D) defined ( if it exists ) by 

 RSLB(k) (D) =  h(pk) + log  a(D) -  Db(D) 

where a(D) and b(D) are the solution of 

 a(D) Rk exp1-b(D)L(x)) dx = 1. 
 a(D)  L(x) exp  -b(D)L(x)dx = D. 

             iR 

This is the k-dimensional version of Berger [4,  sec.4.3.1]. 

Furthermore, Lin'kov [18] shows that for sufficiently "nice" 

densities,  R(k)  (D)=RSLB(k) (D) as D 0. Hence  RsLB(k)(D) 

and the previous results both provide lower bounds to the 

performance of k-dimensional quantizers for D small, and it 

is of interest to compare these bounds both for k fixed and 

as k co. 

     First observe that we can use (2.10) to rewrite the 

above condition where L(x) =  x  II ) in one-dimensional 

form as 

                                          co 

          1 = a(D)exp-b(D) p (3)Ok-ld13,                       A" 0 

                                           co          D = a(D) k17.6.p(8) exp 1-b(D)p(13)I8.1(-1d8. 

                     0 For the case  p(8) =  Sr we have from  [15,p.317] that 
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    1 =  a  (D)  kVk 0exp-b (D) Or)f3k-ld13 
          co 

a(k/r) -1      =  a  (D) kVk0exp-b (D) a)  rda 
         k(k/r)        =  a  (D) — V 

             r k  b  (D)k/r 

and similarly 

      co ,k/r     D = a (D)exp -b (D) a) - da 

                 0 

                   ( (k/r1+1)        =  a  (D)—kV 
             rk  b  (D) (k/r)  +1 ' 

yielding 

            r  b (D)k/r  a  (D) - kV
k  (k/r) 

 b  (D)  = r (iCkdcr/11-1)1 

                       D 

                               rD 

whence 

 (k)  k  k/r     R
SLB (D) =  h(Pk)  -  +  log  rD  J  T(k/r) 

or normalizing rate to nats per dimension 

 SLB         (D) k1 RSLB(k)(D) 

                 1             = h
k --7- log  (D/k) -1log Vk 

                - —1  log  {  err  (l+k/r)r/k . (2.51) 
For example, for  Zv norms we have from the above and (2.6a) 

that 
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     —(k)   R

SLB(D) = hk1-log(D/k) 

                       r 

        - log                            2T(1/v)rr(k/r)vr/k               {er                           vkr (k/v) 

  (2.52) 

We observe that the above development points out that 

Lin'kov's corollary 2 [18] is valid for the distortion 

measure  II x-y  III and not  n-1311x-ye as claimed ( this can 
also be verified by direct substitution into Lin'kov's 

Theorem 1 ). Equation (2.51) provides the most general 

evaluation of the Shannon lower bound known to the author, 

and it is interesting that again the only dependence on the 

particular seminorm chosen is through Vk. As an alternative 

expression, let  Dsiz(k)(R) denote the Shannon lower bound to 

the distortion-rate function. Rewriting (2.51) then yields 

    5(R)      SLB 

    =  k-1 D
SLB(k)(R) 

                        l    = fer(Vkr(14-k/r)rkYexp(-r(R--hk)) (2.53) 
where  R  = R/k. 

  2.5.2 Comparison 

     To compare the lower bounds of (2.51) and (2.53) with 

those previously developed we define the code book rate per 

dimension of a quantizer by  rt. = N and observe that 

        - sincekIHQ= Hkg we have from (2.37) that for fixed1i. 
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              Vr/k          D 
>  k  exp(-r(R-h

k) ) A=i5(k) (R) , (2.54)  Q  k  +  r 

where the right-hand term will be referred to as the k-

dimensional asymptotic quantizer bound. Equivalently, for 

fixed D we have 

    12khkr---log(D/k) -4-log Vk 

          1 

                         log(k+r)  AT(k)(D). (2.55) 

                                       = Comparing the bounds of  (2.51),(2.52) and  (2.54),(2.55) we 

have 

 rt  >  ',E(k)(D) 

      =  ; i,B) (D)  ±  log  1+6  r(l+k/r)r/k  , (2.56a) 

 D  (k) (R) 

      =  1-Fic  r r  (l+k/r)r/k} 17(k)  (R)  .  (2.56b)                              SLB 

It is shown in the Appendix that the bracketed correction 

term above satisfies 

 1717T  r(l+k/r)r/k  k 1, (2.57) 

and hence for the asymptotic case where N or R is large or D 

is small, the quantizer bounds are better than those  pro 

vided by the rate-distortion theory. Note that the  cor-

rection term depends on the dimension and power of the 

seminorm  but not on the particular seminorm chosen. 

Equations (2.56) and (2.57) generalize Gish and Pierce's 

 [11,eq.(31)] to k dimensions and the general powers of a 
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seminorm. 

      In the special case where we use an  I
v norm with  v = r 

and hence 
                 k 

        d(x,y) = /  lxIv 
 j=1 

a single letter v-th low distortion, if  (X07 =0 is a 
stationary random process, then the rate-distortion function 

of the process is given by ( Berger [4,ch.7] ) 

 R(D) =  lim  17(k)(0) 
                        k÷co 

 We have from Stirling's approximation that for large k 

     ( )k/r           er(l+k/r) 
           l+k/r 

          e  k/rl+k/r2gl+k/r)1/2        l+k/r)-7114-] 
          ITW   (l

+k/r)1/2, 

and hence from (2.56) 

        lim117.(k) (k)) -  R  (k) (kD) 
              k+co 

         = Um 1(2k)-1 log ( l+k/r))= 0,                  k÷oc 

 Or 

 lim  'T(k)(i5) =  R(D) 
 k÷oo 

and hence our lower bound asymptotically coincides with the 

rate-distortion function. This is not surprising since as k 

 co the performance of the optimal k-dimensional quantizers 

must approach the rate-distortion function if the source is 

stationary and ergodic ( this is simply the positive source 

coding theorem as in Berger [4,ch.7] ). This generalizes an 

observation of Gersho  [8,eq.(31)] for the case v = 2. 
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 2.5.3 Examples 

     As final examples we consider some specific source 

densities in order to make some numerical comparisons. 

Memoryless Gaussian source 

     If the source is a memoryless independent identically 

distributed ( ) Gaussian source with marginal density 

                            2              1   p  (x) = exp1-), 
                       a then the differential entropy is 

         hk = log(iTEre  a). 

and for a squared-error distortion measure d(x,y)  =  11x-5'113  ' 
(2.43) becomes 

          =  k1D  k-1DL 

 1  1  (  kr (k/2)   1 2/k 
        k+2 w 2 JI  

             • exp {-(H/k-log(rfErea)1}(2.58) 
or equivalently, 

    HQ g_17a2/k}                        1il2e (k/2)log—2 +logk+22 
                 T5 

                      krop))2/k1, (2.59)             =Rx(f) + log{— 
where Rx(D) is the rate-distortion function of the memory-

less Gaussian source. In two dimensions this becomes 

       HQ 1 
               Rx(D) +log(e/2) 

            =  Rx(D) + 0.221 [bits] (2.60) 

 We can consider the right-hand term the two-dimensional 
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quantization loss since it represents how far away from the 

rate-distortion bound we must be since we are restricted to 

two-dimensional block codes. In this case, however, 

Gersho's coefficient of quantization [8] is known exactly ( 

the optimal decision regions are known to be hexagonal ), 

and in this case it is known from  [6],[8] that for large N 

one has for the optimal quantizer 

         D =  5 exp(-2(HQ/2-h2)) 
            361/T 

 Or 

       15 

             2'n 
 _ Rx(D) + log{(36/5_ )27re} 

              = R
X(D) + 0.227 [bits] 

and hence the bound (2.60) for the optimal quantizer is off 

from the actual asymptotic value of quantization loss by 

about 2.5 percent. In  defense of our bound, however, the 

case k = 2 and r = v = 2 is the only case for k > 1 where 

the coefficient of quantization is known exactly and wherein 

the approximation can be used. The bound, however, seems 

tractable in quite general situations. Note also that the 

per-symbol entropy achievable by optimal two-dimensional 

quantization yields an improvement over Gish-Pierce formula 

[11] for one-dimensional quantization  (1/2)log(u2/D) 

0.255. The reduction in quantization loss resulting from 

two-dimensional rather than one-dimensional quantization is 

about 11 percent for the memoryless Gaussian source. 
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Memoryless Laplacian Source 

     Next consider the case of a memoryless source with a 

Laplacian marginal density, 

         (   

        )        p(x) =1—expa              /7
a 

( also called a double-sided exponential density ). In this 

case 
         hk =  log(i-f  ea) 

and hence, when v = r = 1, (2.43) becomes 

 a  klpi j 

               1•
2                  (kr(k))1/k          k1 

            •  exp{-(  H  /k-log(if  ea)  J} 
        11l/k                 •(k!) 

 k+1 2 

             • exp{-( HQ/k-log(1-2-ea))}(2.61) 
or 

 H, (k01/k 

          k  log(Ifae)log + log2(k+1) 

              ae•(m)1/k 

                 T5          = log+ logk                if 

                          (m)1/k            = R
x(D) + loge.k+1 (2.62) 

In two dimension this becomes

DL 
         D- 6exp(-2(H/2-log(12-ae)) 

    2 

        2 RX(D) +  log(eii/3). (2.63) 
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Here we have a case where a sphere of radius r takes the 

form 

 (u:  1ui1+1u21  6 r) 

and such rhomboids are rotated squares which tessellate the 

plane [7]. Hence we can use Gersho's heuristic arguments to 

conjecture that for large N we can take Si  =  T(Si) in (2.21) 

and hence D  = DL/2 for large N. In  Gersho's terms, his 

coefficient of quantization for this distortion measure and 

k = 2 is given by  1226. Thus by letting  X(x) be uniform 

over a large bounded subset including all but the tails of 

the density [7], we have asymptotically that 

         HQ 

         2   RX(D) +  log(eI/3) 

              =  RX(D) + 0.358 [bits] 

This compares with the one-dimensional asymptotically 

optimal quantizer result of 

        HQ  =  RX(D) + log(e/2) 

            =  RX(D) + 0.443, [bits] 

a reduction in quantization loss of about 19 percent. 

2.6 Conclusion 

 Gersho's bound on the asymptotic performance of vector 

quantizers have  betn genelalized to the difference  dis-

tortion measures that are increasing functions of seminorm 

of their argument. This provides a k-dimensional generali-
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zation of Gish and  Pierce's results for scalar quantizers. 

     When the distortion measure is a power of a seminorm, 

the bounds were shown to be strictly better than the corre-

sponding bounds provided by k-th order rate distortion 

functions. 

                                                                  • 
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                         Chapter 3 

           Variance Mismatch of Vector Quantizers  [19],[20] 

3.1 Introduction 

     An actual source sometimes varies its statistical 

properties and this causes a quantizer mismatch between a 

source and a quantizer. Gray and Davisson  [21] derived a 

simple but general upper bound to the performance degra-

dation resulting from such a quantizer mismatch. 

Mauersberger [22] investigated various types of quantizer 

mismatch by computer simulations. However, both results are 

limited to the scalar quantizer. 

     We have been discussed the optimal performance asymp-

totically attainable by the vector quantizer. It is not 

only theoretically interesting but also practically 

important to investigate whether the bounds derived in the 

previous Chapter can also be applied to evaluating the 

performance of mismatched vector quantizers, because the 

quantizer mismatch is unavoidable in practice. 

     In this Chapter, we derive the formula for the asymp-

totic performance of variance-mismatched vector quantizers. 

Here, the variance mismatch means the situation where a 

quantizer is applied to a source whose joint probability 

density function has the same shape but a different variance 

than that assumed in the design of the quantizer. We 

consider a generalized exponential density function, which 

is a multidimensional version of Miller and Thomas' density 

function [23], as a statistical model of  sources. Our 
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density function includes the Gaussian density function with 

memory as well as the memoryless Laplacian and the memory-

less Gaussian density functions as special cases. 

     As an example, we apply the derived asymptotic formula 

to the memoryless Laplacian source with the squared-error 

distortion measure. Computer simulations are performed to 

confirm the theoretical result. 

     Throughout this chapter we use norm-based distortion 

measures which are powers of an arbitrary  seminorm of the 

error vector an in Chapter 2. 

3.2 Preliminaries 

      In this section we  summarize the fundamental concept of 

vector  quantization, which is introduced in Chapter 2, for 

the convenience of our discussion. 

     Let  X be a k-dimensional random vector described by a 

joint probability density function p(x), where x = 

xi,x2,.-,xk )  e  Rk, and Rk is k-dimensional Euclidean 

space. A vector quantizer with block length k and codebook 

rate R is defined by a collection of N = 2R reproduction 

vectors  yl,y2,...,yN  e Rk, called the reproduction alphabet, 

and by a partition (S1,S2,...SN) of Rk. 

     The vector quantizer Q is defined by 

       Q(x) =  yi, if x  e Si. (3.1) 

Given a reproduction alphabet  fyi), the corresponding par-

tition  (Si) can be defined by the nearest neighbor ( or 

minimum distortion ) rule such that, for any vector x  e  Si, 
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the distance ( distortion ) between x and  yi is less than or 

equal to the distances ( distortions ) between x and y, 

 jai;  i,j=1,2,.—,N ). Ties can be broken in any arbitrary 

prescribed manner without increasing distortion. Roughly 

speaking, each quantizer input vector will be quantized and 

reproduced as the nearest reproduction vector. 

     The distortion resulting from reproducing a vector x as 

y is measured throughout this Chapter by the following norm-

based distortion measure, 

        d(x,y) =  ilx-yllr , r  a 1, (3.2) 

where  II •  11 denotes an arbitrary seminorm on  Rk. The 

distortion must be based on the seminorm of the error vector 

x - y in order to apply the lower bound, which has been 

developed in Chapter 2. 

     Figure 3.1 demonstrates examples of the waveforms of 

the source output, the waveform produced by the optimal 

scalar quantizer, and the waveforms produced by the locally 

optimal vector quantizers with k = 2 and 4. In Fig. 3.1, 

the memoryless Laplacian source and the squared-error  dis-

tortion measure are assumed. It is seen that the details of 

the waveforms produced by the vector quantizers with longer 

block lengths resemble more closely the detail of the origi-

nal waveform, although all the quantizers used in Fig. 3.1 

 (b)-(d) have the same per-symbol codebook rate,  R= R/k = 2 

 [bits]. More  precisely, for k = 1, 2, and 4, we have R = 

2,4, and 8 [bits] respectively, and thus  T: = R/k = 2/1 =4/2 

= 8/4 = 2 [bits] . 
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Fig. 3.1 Examples of the waveforms quantized by 

           the optimal quantizers with k = 1,2, and 4  

(  R  =  2  ). 

                       38



     We now consider the vector quantizer described by the 

reproduction alphabet in which N reproduction vectors are 

produced randomly with a reproduction vector density A(x), 

which can be related to the k-dimensional volume 

 V(Si) =  f dx 
 Si 

of the atomSias follows: 

                  1 
       A(x) =   ,  x  e Si. 

                   N•V(S.) 

                             1 For N large, most of the atom  Si will be bounded and the 

overload region will correspond to the tail of the density 

p(x). Hence, we can replace N by the number of bounded 

atoms. 

     As seen in Chapter 2, the average distortion D = 

 ECd(X,Q(X))} obtainable by the vector quantization with the 

reproduction vector density A(x) can be bounded asymp-

totically as follows: 

        D  a DL k+r=kvkr/k2-rHE{A(x)-r/k}  (3.3) 

where 

  Vk = dx (3.4) 

            IIx115-1 

is the k-dimensional volume of the sphere of unit radius as 

measured by the given seminorm  II  II  • We assume that Vk 

is finite. 

    Applying  Holder's inequality to (3.3), we have obtained 
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       Dkvr/k 2-rR                   II                                 ip      Lk+rk k/(kT) ' 

where here the norm denotes the Lk/(k+r) norm on real 

function defined on Rk. The equation above holds in 

equality if and only if the reproduction vector density  A(x) 

is proportional to p(x)k/(k+r).Consequently, the optimal 

reproduction vector density  A  (x), which minimizes DL,is 

given by 

                  p(x)k/(k+r) 
 A  (x) 

              jp(x)k/(k+r)  dx 

     Using (3.3) we shall evaluate the average distortion 

obtainable by variance-mismatched vector quantizers. 

3.3 Statistical Model of Sources 

  3.3.1 Generalized Exponential Density 

     We consider a generalized exponential density function, 

which is a multidimensional version of Miller and Thomas' 

density function [23] and is given by 

                  k/s 

      p(x)  exp{-E ixis(3.5) 
               W•r(l+k/s) 

where  I  •  I denotes an arbitrary seminorm on Rk, and Wk 

denotes the k-dimensional volume defined by 

     Wk =  dx.6                                                (3-) 

 I  x  I  51 

The volume  Wk is also assumed to be finite. We see that the 

parameter  E ( >0 ) is inversely proportional to the s-th 
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power of the standard deviation of the random variable  111. 

More precisely, we have 

       E{IX12}=   (  (k+2)/s) _2/8 
 r(k/s) 

The parameter s  ( > 0 ) will be referred to as the shape 

parameter. 

     The new notation for the seminorm,  I  •  I used to avoid 

confusion between the possibly different norms in (3.2) and 

 (3.5). The seminorm  I  •  I specifies the shape of the proba-

bility density function of the source output vector and is 

not neccessarily same as the seminorm which specifies 

the distortion measure. 

  3.3.2 Examples 

     To make our discussion more understandable, we shall 

give some examples of the density function defined in (3.5). 

Memoryless Laplacian source 

       p(x) =  (E/2)k  exp{-E  IIxIIl }  • (3.7) 
where  II  °  Ill is the  Z1 norm. The shape parameter  s is set 

equal to unity. 

Memoryless Gaussian source 

                                             112 
 p  (x) = (Eh-) k/2 exp-Ex112, (3.8) 

where  II  .112 is the  Z2 norm. The shape parameter is  s = 2. 

                          41



Gaussian source with memory 

                                                 12        p(x)  =1/(E/w)k detB exp {-Ellx11 II}, (3.9) 
where det B denotes the determinant of the k x k symmetric 

nonnegative matrix B =  [Bij], and  11'  lig is the quadratic 

norm of the form, 

 II  xlIB =^xr1;it  = x.x.3Bij                                                  . (3.10) 
                                i=1 j=1 

The shape parameter is s = 2. In (3.10),  xt denotes the 

transpose of x. 

3.4 Bounds on Asymptotic Performance 

  3.4.1 Variance Mismatch 

     Observe that if we assume the generalized exponential 

density as the source density then the optimal reproduction 

vector density  Ao(x) is given by the scaled version of the 

source density p(x) as follows: 

        A(x)  ti  p(x)k/(k+r)  iv exp{-k+rk•Elx18} 

Note that again the optimal reproduction vector density 

Ao(x) has the same shape as the source density p(x), (3.5), 

but differs in variance. This means that, in this case, the 

variance mismatch can be modeled mathematically as the 

mismatch in variance between the source density p(x) and the 

reproduction density X(x), which is given by 
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 k/s 
    A(x)  =   exp (3.11) 

              wkr(l+k/s) 

From (3.5) and  (3.11), we obtain 

        E
fA(X)r/k} 

        ={161kr(l+k/s)}r/k.n-r/Sr-V                           .als                                  k E 

                          ; 1 -  rn/kE > 0. (3.12) 

Substituting (3.12) into (3.3), and multiplying both sides 

of the equation by  Er/k, we have the following lower bound 

for the  average distortion obtainable by mismatched vector 

quantizers. 

 rr/sk,-ITWkr/kD
L=k+rT(l+k/s)} 

            •f:"±IjSin-r/s 

                 - 

                Er,  1-rn/kE > 0, (3.13) 

where 

         f(t,a) =  t•(1-t/a)a ; t < a (3.14) 

is the degradation factor, which represents the performance 

degradation due to the variance mismatch, and 

          lim f(t,a) =  t•exp(-t) f(t,a). 
              a+c0 

     For a given a, the degradation factor f(t,a) has maxi-

mum value  [a/(a+1)]  al-1 at t =  a/(a+1). Consequently, 

 f(n/E,k/r)-r/s has its miminum value  [k/(k+r)]-(k+r)/8 when 

11/E = k/(k+r). This is the natural result of the fact that 

a X(x) proportional to  p(x)k/(k+r) is the optimal repro-

duction vector density function. 
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 3.4.2 Example of Bound 

     Consider the squared-error distortion measure, 

 d(x,y)  _II x-Y1I2 (3.15) 

For this distortion measure, we have  [15,p.620] 

 7k/2   V
k = (3.16)  r(l+k/2) 

where the unit length is measured by the  I2 norm. 

     For the memoryless Laplacian source (3.7), we have [15] 

                  2k     W
k=r(l+k)(3.17) 

where the unit length is measured by Z1 norm. 

 Substituting (3.16) and (3.17) into (3.13), we obtain 

                   k 2-IR      DL   •{2/k                                        r ( 1 +k/ 2 )2/ 
           2       a

t7(1+k/2) fff 

            r (TEk)}-2             • {f; k/2 >  aE/an' (3.18) 
where I/Fcrs,-and an =  5/fl are the standard deviations of 

         - the marginal density functions of p(x) and  X00, respective-

ly. We shall refer to13•and an2  as the variances of the 

source output and the reproduction alphabet, respectively. 

      In the asymptotic situation where k  co, we have from 

(3.18), 

 D2-4K  Ta 

              ka k 

  =)-2exp  { 2 -1} 
         27IIa                                                4-co,  an 

                       2.  2-2 =  ifisuil(E)/a2 (3.19) 

Equality holds in the right-hand inequality of  (3.19) when 
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a = an'In  (3.19)'  DSLB(R) denotes the Shannon Lower Bound 

        for the memoryless Laplacian source with the squared-error 

distortion measure and can be easily obtained, for example, 

from (4.3.1) of [4]. 

    The relationships between  DL/k6 and  (aV6n)2 is calcu-
lated from (3.18) with k = 1, 2, 4, 8, and  03, and shown in 

Fig. 3.2. The minima of the distortions become broader as k 

increases. This means that well-designed vector quantizers

Fig. 3.2 Average distortion resulting from variance-

            mismatched vector quantizers. 
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are inherently invulnerable to variance mismatch compared 

with conventional scalar quantizers. It is interesting to 

note that the value of  aE/an that gives the minimum depends 

on the block length k, and approaches unity as k increases. 

That is, the reproduction alphabet with variance  6n2  opti-

mally matches with the source with the variance 

       2 y={kk+ra2n' 
In the asymptotic case where k is sufficiently large, the 

reproduction alphabet whose variance is equal to that of the 

source output ( quantizer input ) gives a nearly optimal 

vector quantizer. 

  3.4.3  Comparison with Simulations 

     Computer simulations were performed using the locally 

optimal quantizers with block lengths k = 1,2, and 4. The 

iterative optimization methods  [24] are used for obtaining 

the quantizers assuming that the variance of the source 

output is unity. The codebook rate per block R of all 

quantizers equals 8 [bits], and therefore  Tr= 8, 4, and 2 

bits per sample for k = 1, 2, and 4-dimensional quantizers, 

respectively. The  results,DL/kq versus  (a/8n)2, are shown 
in Fig. 3.3, where 

        12  82=k+r 

is the variance of the optimal reproduction vector density 

                            46



for the source with unit variance. In Fig. 3.3, the theo-

retical bounds are also shown. It seems that approximately 

kR = 6 to 8 bits per block are required to ensure the 

tightness of the lower bound. From Fig. 3.3, we can con-

clude that the asymptotic bounds (3.13) and (3.18) for 

sufficiently large N =  2R give good bounds of the per-

formance of variance-mismatched vector quantizers provided 

that the overload is negligible.

Fig. 3.3 Results of simulations. 
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3.5 Conclusion 

     The asymptotic performance of variance-mismatched 

vector quantizers was derived for distortion measures that 

are r-th powers of a seminorm of the error vector. It was 

shown that the performance degradation due to the variance 

mismatch can be expressed by the simple degradation factor. 

This asymptotic bound was then applied to the memoryless 

Laplacian source with the squared-error distortion measure. 

As a result, through both asymptotic analysis and computer 

simulations, we have found the interesting fact that well-

designed vector quantizers are more invulnerable to the 

mismatch than are conventional scalar quantizers. 
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                         Chapter 4 

            Vector Quantization of Video Signals [25]-[27] 

4.1 Introduction 

     Video signals as well as speech signals have been 

acting the leading role in man-to-man and man-to-machine 

interfaces. Since the information contents of the video 

signals are approximately one thousand times that of the 

speech signals, the data compression is essential in the 

future information network systems. 

     In the past two decades, a number of approaches and 

techniques are proposed and developed for efficient data 

compression of video signals [28]. For example, the  trans-

form coding and the predictive coding are well known as 

standard data compression techniques in the textbook of this 

field [1]. 

     These data compression systems are employing one or 

more scalar quantizers for analog-to-digital conversion. 

From the information-theoretical point of view, the scalar 

quantizers provide rather poor performance for relatively 

low information rate, approximately one bit per symbol or 

less, whereas they provide good performance when large in-

formation rate is allowed. As we discussed in the previous 

Chapters, the vector quantizers can provide nearly optimal 

performance when the block length is sufficiently large. 

     In this Chapter, we discuss the  vector quantization of 

video signals. Based on the asymptotic analysis in Chapter 

2, the vector quantizers with several norm-based distortion 
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measures are investigated. Computer simulations are per-

formed to demonstrate the effectiveness of the vector 

quantization for real video signals. 

4.2 Preliminaries 

     The asymptotic performance of vector quantizers with 

difference distortion measures has been studied in the 

previous Chapters. One of the principal results in Chapter 

2, Eq.(2.38), states that the optimal reproduction vector 

density  X0(x) is proportional to  p(x)k/(k+r), where  p(x)  is 

the source density. Here the norm-based distortion measure 

 d(x,y)  = , r  a 1 

and the codebook rate R = log N, where N is the number of 

the vectors in the reproduction alphabet, are assumed. As 

seen in Chapter 3,  Ao(x) can be expressed as 

                  p(x)k/(k+r) 
 71o(x) =   

 fp(x)k/(k+r)                                 dx 

In the asymptotic situation, where k is sufficiently large, 

the source density  p(x) is the optimal reproduction vector 

density itself. 

     Here, we shall give some interpretation of this 

statement. An optimistic interpretation may be as follows: 

 "If the source is sufficiently stationary, a set of sample 

vectors, extracted from the source output, will provide the 

nearly optimal reproduction alphabet." 
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This intuitive interpretation is the case when k and N = 2R 

are sufficiently large. However, it is too optimistic to 

apply this method to the real video signals, since the real 

video signals are far from stationary. In a word, it is 

very suggestive but not feasible. 

     We must note the fact that the optimal reproduction 

vector density does not depend on the norm selected to 

define the corresponding distortion measures. This sug-

gests that "the difference between the distribution of the 

reproduction alphabets which are optimized assuming the 

different distortion measures, e.g. dA or dB, diminishes as 

k increases." In other words, these two reproduction 

alphabets are equivalent in the sense that they provide very 

near performance ( average distortion ). This allows us to 

use an alternative distortion measure  dA' which is easy to 

implement or less complex, instead of the distortion measure 

dB which is, for some reason, suitable for the combination 

of the source and the destination but more complex. 

4.3 Quantization with Several  /v Norms 

   4.3.1 Distortion Measures and Norms 

     We now consider the computational complexity in evalu-

ating the distortion or distance between two vectors. In 

this Chapter, we confine ourselves to the norm-based dis-

tortion measures that are powers of  Iv norms. That is, 

reproducing a vector x as a vector y is assumed to yield the 

distortion 

 d(x,y) =  II  x-y  Ilr r 1 
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where II  •  II  v is an  arbitraryv norm. 

        From the practical point of view, there are three 

important norm-based distortion measures: 

                           kk 

 di  (x,y)  =  II  x-y  111=  x -y.I(4.1) 
                             j=1 

  d2  (x'y) =x-Y II23x•Y3)                                          2  (  4  .  2) 

 j=1 

 d.(x,y)  =  II  x-Y  11,.= maxx. -y.I(4.3) 
                        15_jk3 

We shall refer to  d1, d2, and  d. as the absolute, squared 

and maximum error distortion measures in the rest of this 

Chapter. Other norm-based distortion measures require more 

complicated computation/operation than that these three 

distortion measures do. 

      The absolute error distortion measure uses  Z1 norm, 

which requires the subtraction, taking an absolute value, 

and summation ( accumulation ). The squared error dis-

tortion measure uses  Z2 norm, which requires the sub-

traction, multiplication, and summation. The maximum error 

distortion measure uses  Z. norm, which requires the sub-

traction, taking an absolute value, and taking a maximum 

value. From the observation above, it is easy to conclude 

that the squared error distortion measure d2 is the most 

complex of these three distortion measures. Moreover the 

multiplication needs longer precision than other operations, 

e.g. subtraction and addition. The maximum error dis-

tortion measure  d. is the least complex of the three since 

the intermediate precision is the same as that of operands 
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and less than that of  dl' although both distortion measures 

need no multiplications. 

     We employ in the rest of this Chapter, the mean-

squared-error ( MSE ) fidelity criterion to evaluate the 

performance of the vector quantizers, where the average 

distortion D means the average of the squared error dis-

tortion  d2, that is D =  E(d2(x,Q(x))), although the dis-

tortion measure used in the quantization operation may 

possibly be  dl,  d2, or  dw. 

   4.3.2 Comparison under the MSE Fidelity Criterion 

     We shall give two examples to demonstrate the validity 

of the statement as discussed in the previous section. 

     Consider the memoryless Laplacian source with zero mean 

and unit variance as an example of the source to be 

            Let Q,(k)and Q2(k) quantized.denote the k-dimensional 

vector quantizers which are optimized assuming the absolute 

error distortion measure d1 and the squared error distortion 

measure  d2, respectively. The subscripts "1" and "2" are 

from the norms on which the distortion measures are based, 

i.e. d1 and d2 are based on  I1 and  /2 norms, respectively. 

Note that, when k = 1,  Q1  (k) and Q2(k)are scalar 

quantizers. The performance of  Q2(1) was discussed by Paez 

et al. [29]. Table 1 shows the performance ( MSE ) of the 

quantizers  Q1(k)and Q2(k)when the per-symbol codebook 

rate R = 2 [bits]. These quantizers are obtained by using 

the iterative optimization method  [24]. Since the mean-

squared-error fidelity criterion is employed, the quantizer 
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Q(k)  2 are the optimal quantizers for each block length k. 

The quantizers  Q1(k) are not optimal since they are opti-

mized employing mean-absolute-error fidelity criterion. It 

is seen that the average distortion obtained by the 

quantizer  Q1(k) approaches to that is obtained by the 

quantizer  Q2(k) as k increases This proves that the 

statement as discussed in the Pleliminaries are valid for k 

small. 

                              (    Table 4 .1 MSE obtained by Qik)and Q2k) (  R = 2 ). 

  k 1 2 3 4 

     MSE obtained 
                        0.210 0.155 0.113 0.111         (k) 

    by Q1 

     MSE obtained 
                        0.178 0.135 0.115 0.106         (k) 

    by Q2 

     The second example is on the special case of Q2(k) when 

k = 2. Figure 4.1 shows the reproduction alphabet, which 

contains 2kR= _  16 vectors, of the two-dimensional vector 

quantizer Q2(2). Figure 4.2 illustrates the corresponding 

optimal or minimum distortion partitions when the distortion 

measures  dl, d2, and  dm are employed, respectively. Of 

course, the partition based on d2 is optimal since MSE 

fidelity criterion is assumed. Although these partitions 

seem to be very different, the average distortion obtained 

by these  quantizers,  the combinations of the reproduction 
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                               (      Fig . 4.1 Reproduction alphabet of Q22)(  11- = 2 ). 

In the figure above and also in the figures in page 56-58, 

Figs. 4.1 - 4.4, the reproduction vectors are represented by 

the symbol  "•". 
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                       (a) d1 

       Fig. 4.2 Partitions based on d1, d2, and  do.. 

In Figs. 4.2-4.4, the same reproduction alphabet is used, as 

shown in Fig. 4.1, but the partitions are different since 

they are determined by the different distortion measures, 

namely d1, d2, and  dc,,, respectively. 

                           56



                (b) d2 

Fig. 4.2 Partitions based on  dl, d2, and  d
.. 
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                  (c)  dm 

Fig. 4.2 Partitions based on  dl, d2, and  dm. 
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alphabet and the partitions, are quite similar as shown in 

Table 4.2. The average distortions, when the partitions in 

Fig. 4.2 (a) and  (c) are used, are atmost 2 percent greater 

than that given by the partition in Fig. 4.2 (b). 

       Table 4.2 MSE obtained by the partitions 

                 based on dl,d2,and d1,2'am. 

    distortion d1 d2 
         measures 

   Partitions (a) (b) (c) 

      MSE 0.1374 0.1352 0.1377 

     It can be concluded, from these examples, that the 

statement that the optimal reproduction density does not 

depend on the norm selected to define the distortion measure 

is true even if the block length k is relatively small. It 

seems that k = 4 is sufficient to make this true. 

  4.3.3 Centroids 

     The locally optimal vector quantizers can be designed 

by the iterative optimization method [24], which is 

summarized as follows: 

(1) Guess an initial reproduction alphabet. Set Dold 

      infinity. Set  (S positive nonzero value for terminating 

      the iteration when the average distortion converges. 
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(2) Obtain the optimal partition which minimizes the 

      average distortion for given reproduction alphabet. 

(3) Obtain the optimal reproduction alphabet which 

      minimizes the average distortion for given partition. 

(4) Calculate the average distortion  Dnew. If 

          1 -  Dnew/Dold  < 

      then stop, else substituting Dnew into  Dold' 

      go to (2). 

Note that the average distortion Dnew converges monotonously 

provided that the partition in the step (2) and the repro-

duction alphabet in the step (3) are the optimal for given 

reproduction alphabet and partition, respectively [24]. 

     The optimization is done, in general, by using 

"training sequence" , which is a sample sequence produced by 

the source to be quantized or a pseudo-random sequence when 

the source is a random source, e.g. Gaussian source. One 

of the reasons why the calculation is based on the training 

sequence instead of the statistical model of the source is 

from the difficulty of the multi-dimensional integrations to 

be performed for obtaining the centroids in the step (3). 

Another reason is from the difficulty in modeling the video 

signals. 

     In the step (2), the partition is determined equiva-

lently by searching the nearest reproduction vector to a 

given training vector, since it is too difficult to de-

termine the optimal partition explicitly in the multi-

dimensional space. The operation to be performed in this 

step is "vector quantization" itself. In the step (3), the 

optimal reproduction alphabet is obtained by calculating the 
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centroid in each atom. 

     Here we compare the computational complexity for calcu-

lating the centroids in the step (3). 

     For the absolute error distortion measure, the centroid 

can be represented in the continuous ( or integral ) form by 

the set of solutions of the following equations. 

 p(x)dx =  p(x)dx 
 xeSi  xeSi 

                                 x  3- 133.>y..13 

 j=1,2,...,k.   (4.4) 

Equation (4.4) shows that the j-th component of the repro-

duction vector  yi is given by the median in the atom  Si. 

     For the squared-error distortion measure, the centroid 

in the atom  Si can be given explicitly by 

                      xp(x)dx             LEESj. 

   

. =  (4.5) 

           fp(x)dx                    xeSi 

In this case, the centroid  yi is only the mean vector in the 

atom  Si. 

     For the maximum-error distortion measure, the centroid 

can be represented by the solutions of the following simul-

taneous nonlinear equations, however it cannot be solved 

explicitly and it seems far from tractable. 

 3 f  x- .                        P()                        xdx = 0 . (4.6) 
           Y1           .xeSi 
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      Comparing Eqs. (4.4)-(4.6), it is easily seen that the 

 centroid for d2 is least complex, the centroid for d1 is 

 more complex than that for d2 but computable, and the 

 centroid for  d. is the most complex of these examples. 

 Thus, in the step (3), d2 is preferable, whereas in the step 

  (2)  d. is preferable as discussed in 4.3.1. 

       Here we have the following question: 

 "When we use  d
. in the step (2) and d2 in the step  (3), does 

 the average distortion calculated in the step (4)  converge?" 

 Figure 4.3 illustrates the answer by an example of this 

 question, wherein the block length k = 2 and the per-symbol 

 codebook rate is R = 2. This Figure compares the con-

  vergence of the average distortion Dnew in each iteration, 

 when  d. or d2 is used in the step (2). In the step (3), d2 

  is always used. It is found from the Figure that, even if 

 d. is used in the step (2), the average distortion converges 

  to that of approximately 3 percent greater than that ob-

  tained by using d2. 

       Thus, from these examples, we can conclude that the 

  maximum error distortion measure can be used for relaxing 

  the computational complexity of the vector quantization even 

  when the fidelity criterion is based on the mean-squared-

  error. 
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 Number of iterations 

   Fig. 4.3 Convergence of the average distortion  Dnew. 

In Fig. 4.3,  dm-d2 represents that  d. is used in the step 

(2) and d2 is used in the step (3). Similarly, d2-d2 repre-

sents that, in both steps (2) and  (3), only d2 is used. In 

both cases, the average distortion means the MSE. At the 

 "0"-th iteration in the Figure , Dnew shows the average 

distortion for the initial reproduction alphabet. 
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4.4 Simulations 

   4.4.1 Quantizer Design 

     In the following simulations, two image data are used 

as samples of real video signals. One of them, is referred 

to as GIRL ( Ver. 002, No. 1 ), and the other HOME ( Ver. 

003, No. 26 ) [30]. These original image data are shown in 

Fig. 4.4. 

     The locally optimal vector quantizers are designed by 

the method as described in the previous section. The 

quantizer input vector x is assumed to be composed by 4 x 4 

picture elements as shown in Fig. 4.5, where the symbol "+" 

denotes a picture element. 

     The Signal-to-Noise Ratio ( SNR ) is defined as 

follows: 

        SNR = 20  log10Sp-p[dB] 
                                              NHS 

where  Sp _p denotes the peak-to-peak of the video signals, 

and Nrmsdenotes the per-symbol root-mean-square of the 

quantization error. Here, S10-1)is assumed to be 28 - 1 = 

255 for convenience, since the original image data are of  8-

bit resolution of gray scale. The denominator Nis                                                              rms 

defined by 

 Nrms=-1               kE {d2(X'Q(X))} 
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(a)G工RL

(b)HOME

Fig。4。40riginal工mages.
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            Quantizer input vector: 

                   x = (  xl,x2,...,kk ) 

                  = (  Vll'V12'V13'V14' 

 V21'V22'V23'V24' 

 V31'V32'V33'V34' 

           VVVV)                        41'42'43'44), 

           where here k = 16. 

Fig. 4.5 Quantizer input vector 

( The symbol  "+" denotes a picture element ). 
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         4.4.2 Quantizer QG and QH 

           Let  QG and QH denote the quantizers which are optimized 

     by using, as training sequences, GIRL and HOME , 

     respectively. The codebook rate R = 8 [bits] , and 

      therefore the per-symbol codebook rate R = 0 .5 [bits]. 

      A block of picture elements, which consist a quantizer input 

      vector, is compared with all of the  2R = 256 reproduction 

      vectors, and is approximated by the reproduction vector 

      which provides the minimum distortion. 

           The signal-to-noise ratio is shown in Table 4.3. 

           Table 4.3 Results of simulations for QG and QH. 

                                     Quantizers 
             Sources 

                       QG (GIRL) QH (HOME) 

      GIRL 31.6 dB 27.6 dB 

      HOME 26.3 dB 29.3 dB 

     It is seen from the Table that the quantizer  QG, which is 

     optimized by using GIRL, provides good performance for GIRL, 

     whereas it provides rather poor performance for HOME. The 

     performance degradation is of 5.3 dB in signal-to-noise 

     ratio. Figure 4.6 demonstrates the reproduced image data 

     when the quantizer QG is applied to GIRL and HOME. It is 

     seen from Fig. 4.6 (a) that QG provides good reproduction 
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(a)GエRL

(b)HOME

Fig.4.6エmag・ ・quanti・edbygG(頁=0.5bit。).
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(a)GエRL

(b)HOME

Fig・4.7エmagesquantizedbyQx(頁 富0.5bit。) .
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from the subjective standpoint as well as the objective 

standpoint. It is also seen from Fig. 4.6 (b) that the 

edges , where the abrupt change in gray levels exists, are 

not reproduced satisfactorily by  QG. This can be explained 

in terms of the mismatch between the quantizer and the 

source as discussed in Chapter 3. In this case, HOME has 

fairly different statistical properties [30] from that of 

GIRL and the quantizer QG reflects the statistical charac-

teristics of GIRL since it is GIRL that we used for optim-

izing the quantizer. 

     Similarly to the case above, the quantizer QH does not 

give good reproduction when it is applied to GIRL. The 

degradation is of 1.7 dB in signal-to-noise ratio and this 

seems to be acceptable as compared with  that  ,of QG. 

However, the degradation is fairly visible as shown  in Fig. 

4.7, where the quantizer QH is applied to GIRL and HOME. 

   4.4.3 Quantizer 

      The quantizer mismatch, as discussed above, can be 

improved by concatenating the reproduction alphabets of the 

quantizer QG and  QH. This method, which will be referred 

to as the concatenation of reproduction alphabet, can be 

formulated as follows: 

     Consider the quantizers  Ql and Q2 which have the repro-

duction alphabets  Y1 and Y2, where 

           Y1 =yi1 ;  i=1,2,...,N1 3, 

           Y2  =  yi2  ;  i=1,2,...,N2 }. 
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The concatenated reproduction alphabet  Y+ can be constructed 

as 

    +1        Y= Y1 Y2 

 =  yi+ ;  i=1,2,...,N
+=N1+N2 3. 

Let  Q+ denote the resultant quantizer which is defined by 

both the reproduction alphabet  Y+ and the optimal partition 

which is derived from the concatenated reproduction alphabet 

Y+. The codebook rates of the quantizers Q1, Q2 and  Q+ are 

defined by 

         R1 = log2 N1, 

          R2 =  log2 N2, and 

              = log2  N
+ =  log2(N1+N2), 

respectively. 

     Table 4.4 shows that signal-to-noise ratio obtained by 

the quantizer  e. It is easily seen from the Table that 

the quantizer  Q+ provides good performance for both image 

data. Since R1 = R2 = 8 [bits], = 9 [bits]. Conse-

quently, the per-symbol codebook rate of  Q-1- is 9/16  = 0.56 

[bits] and thus the increase in per-symbol codebook rate 

over  QG and  QH is only 1/16  = 0.06 [bits]. 

     Table 4.4 Results of simulations for e. 

                               Quantizer 
       Sources 

 Q+  ( QG QH ) 

  GIRL 31.9 dB 

  HOME 29.8 dB 
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Q+  ( QG + QH

GIRL 31.9 dB

HOME 29.8 dB



(a)GエRL

灘 韃蠶蓑難爨難 覊鼕

(b)HOME
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     Figure 4.8 demonstrates the reproduced image when the 

quantizer  Q+ is applied to GIRL and HOME. It is seen from 

the Figure that the reproduction is fairly good for both 

image data. 

4.5 conclusion 

     In this Chapter the vector quantization is applied to 

the video signals, and proved to provide good performance. 

It is found that the maximum error distortion measure can be 

used even if the MSE fidelity criterion is assumed. 

     A novel design method, the concatenation of repro-

duction alphabet, offers in improving the performance when 

the quantizer mismatch occurs. 

     It is demonstrated that the signal-to-noise ratio of 

approximately 30 dB can be achieved for both image data, 

GIRL and HOME, which have fairly different statistical char-

acteristics. 
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                        Chapter 5 

                          Conclusion 

     We have been investigated the performance of the vector 

quantization with the difference distortion  measures.. In 

this Chapter, we shall summarize the principal results re-

vealed in this research. 

     In Chapter 1, the motivation of this work is given with 

the basic concept of the quantization. 

     In Chapter 2, we have derived the asymptotic bounds to 

the optimal performance of vector quantizers with finite 

block length, wherein the bounds are generalized to the 

difference distortion measures that are increasing functions 

of the seminorm of their argument. This provides a k-

dimensional generalization of the Gish and  Pierce's result 

for scalar quantizers and also a natural generalization of 

Gersho's result for the distortion measures that are powers 

of the Euclidean norm. When the distortion measure is a 

power of a seminorm the bounds are shown to be strictly 

better than the corresponding bounds provided by the k-th 

order rate distortion functions. 

     In Chapter 3, using the bound derived in Chapter 2, we 

have investigated the asymptotic performance of variance-

mismatched vector quantizers and have demonstrated that 

well-designed vector quantizers are inherently more 

invulnerable to variance mismatch than conventional scalar 

quantizers. The results of simulations confirm this 

robustness of the vector quantizers. 
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     In Chapter 4, we have applied the vector quantization 

to video signals. Based on the asymptotic analysis in 

Chapter 2, it has been shown that the vector quantization 

with maximum error distortion measure can be used for 

relaxing the computational complexity of the vector 

quantization even when the fidelity criterion is based on 

the mean-squared-error. Computer simulations demonstrate 

the effectiveness of the vector quantization for real video 

signals. 

     The mathematical structures of the reproduction alpha-

bets and/or partitions have not been discussed throughout 

this work, since we focused the performance analysis of the 

vector quantizers. This research will proceed to investi-

gate the structure of the vector quantizers for obtaining 

the fast quantizing algorithms, which allow us to implement 

the LSI chips performing the real-time vector quantization. 

     We complete the paper with hope that, in the near 

future, the LSI vector quantizers will act the leading role 

in the efficient video and speech data compression systems. 
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                          Appendix 

 Lemma: For a  a 0, 

 a + 1)a 
         r(a+1) 

 Proof: 

     Rewrite the inequality as 

 f  (a) = log  r(a+1) -  a  log(a+l) + a  a 0 

and observe that it holds with equality at a = 0. Next 

consider the derivative 

                  e(a+1) 
         f' (a)=rr(a+1)1 log  (a+l) .  (A.1) 

The function  11)($) =  r(i3)/r(f3)  ( called the "psi" or 

 "digamma" fuction ) satisfies  [15,p.664] 

         rl 
             11)($+t)dt = log 0 , 0 > 0. 

In addition,  11)(0) is nondecreasing in  0 and hence  ip($+1) 

log  O. We also have, however, that since  r($+1) = $r(0) 

and  1-(3+1) =  al-(3) +  r(0), then 

 1"(0+1)  r'($) 1 
         *0+1) =  r(04.1)  =  r(0) 

whence 

    1"(0) 1 

 r($)  a log a - . 

Choosing  13 = a + 1 we have from  (A.1) that  f'(a) 0 for a 

0, and therefore  f(a) must be increasing from 0 for a > 0 

which proves the lemma. 
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