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Using the density scaling theorem by O’Connor, we have derived two basic equations which make a
calculation of scatter in an inhomogeneous phantom. One is the equation of differential scatter-air ratio
for calculation of front scatter, and the other is the one of differential backscatter factor for calculation of
back scatter. Each contains an average density along the line between a point of calculation and a
scattering element, by which attenuation of scatter between them is considered. Let S (X, R) be the
scatter-air ratio in water for depth X and field radius R; and B (Y, R) be the backscatter factor for a water
phantom thickness of ¥ and a field radius of R, which is defined by the “half-immersion technique,” then
scatter dose to an arbitrary point of ¢ in a heterogeneous phantom irradiated by photons emanating from
the source is calculated by

sq:ﬁ]k. (g%, « P(&n,8) - p(&n,8) dv, +fm le(q—y,1)5 + &n,8) + pl&n,8)dv,

o Am— 2 EXD(— udn) (a*s(ﬁx,zr) _as(,ax,,ar))
kle—xnp=p—5 2 aXaR MR

ka3, =3 SZ I (e () T 2020 )

where P (£, n, {) is the primary dose to (¢, n, {); p (&, 1, {) is the relative electron density at (&, n, &); pis the
average electron density along the line between ¢ and (&, #, ¢); 1 is the linear attenuation coefficient of
water for the primary radiation; and d,, is the reference depth in water for the primary. k; (g<=x, p
expresses the amount of front scatter to ¢ arising from a scattering element (x, 7) above ¢ per unit
primary dose, per unit relative electron density, per unit voulme at (x, #), and ks (g<y, )5 the amount of
back scatter to ¢ arising from a scattering element (y, 7) below ¢ per unit primary dose, per unit relative
electron density, per unit volume at (y, 7). Primary dose to (¢, 1, {) is given by
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f+dn

f+¢
where { is the effective length between the source and (¢, #, {); { is the depth of (&, 1, {) from the nominal
surface (SSD=f); and RPD (¢, #, {) is the relative primary dose to (£, #, ¢) in case of no phantom.

Daose calculations were performed for Co-60 gamma fields using soft-tissue phantoms and composite
ones with cork or aluminum. The results obtained were compared with published or experimental data
with respect to the peak scatter factor for water, the beam-axis dose distribution, and the dose profile.
The accuracy of our calculation method was satisfactory usually except inhomogeneity boundaries and

P n=exp [t~ ) L2 ) RPD (6,7, 0)

near them.
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CT A%+ vEBIZLVELRS 3 RITENE
HNEFEBESMCESCT, ERj=2r¥-X,
y BEBHIC R 1T 5 NGB NGRS OFRAE
FETbhTW5, KPTHRLAK E— adul g
E{H, TAREX L SAR fEXFIH LT 5 RYE
MEHBCIRDO OB ETF LR S,

(a) TAR ¥ (tissue-air ratio method)V?

(b) 5 %h W 88 ¥: (effective attenuation
method)"?

(c) S EBEYE (isodose shift method)V~®

(d) ¥% TAR ¥ (power law tissue-air ratio
method)V27)~9

(e) %% SSD ¥ (effective SSD method)?

(f) %{fi TAR # (equivalent tissue-air ratio
method)#19

(g) #% SAR i (differential scatter-air ratio
method)#1h~14

(h) fn¥ SAR # (additive scatter-air ratio
method)!91®
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FHEACTELT O EXRELTWS, 20K
EALFHELS D B BRI IR 3 2 Wik 2 6
OISR OE VI HEELO ALY ERONGEE LT
w5,
REATHNDE ~ OBMEFIEE HE I, FEE
EREHEA L SR LR 5 FIHHENET
#E % O'Connor DFEERERH (density scal-
ing theorem)" R &85 Z &I Xk h fEBiFE X
DRTHEEROBFBRE L TULELTHE, R
ORI HBE DO LI bTHITBEZ b BEFORR L
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Fig. 1(2) WiRTHNETEE p (KOBFHE
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2 o BUk(g—y ok koON EHT
5,

hge—x ), HNEFTEBEEp OBE 77 v
PAERWT, HgnrbExo b (x ) 220
HEhic sV D HAL 1 KRB Y D, BATHENE
FHEYLDY, RUBMEE LYY S g5 3hs
BELSE RIHRED.

gy ) HNBEFHEpOBE 77 v
FARKWT, HghbFOTE (y, ) FUHE
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I
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B =
§ seam A set i Vi p¥dve
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" [ 1 ’ Y=py i
v l / Dz-pdz dVe*p’dw:
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|
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(a) (b)

Fig. 1 In diagram (a) the body material has a
relative electron density of p, and in diagram (b)
the body material is water equivalent. According
to the density scaling theorem, the scatter reach-
ing point ¢ from a volume element dy, or du, is
the same with the one reaching point @ from a
volume element dV, or dV,, respectively, for a
given incident primary dose when the linear
dimensions of (b) are p times those of (a) as
illustrated.
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=K (Q « X, R)eexpl—u(D,—X—d,))
av,
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piedy,
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fREC L Y, kR
S(D,A)=2x - exp(— p(D—dy)) -

[ j; : fo K(Q—X.R) - exp(uX) - RARAX

Lieh,

(4R tT, aSD, A)/aA R a*S(D,
A)/ODA #EHZ itk b,
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Fig. 2 Diagram which is used for obtaining K, (@
+« D,A) expressed by an equation of differential
scatter-air ratio using a semi-infinite water
phantom.
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Fig. 3 Diagrams illustrating how the backscatter
factor for water phantom thickness L and field
radius A, B (L, A), is defined by the “half-
immersion technique” and how to obtain K, (@
« L, A) expressad by an equation of differential
backscatter factor.
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Fig. 4 Schematic diagram to illustrate how to
calculate the scatter to point ¢ in an in-
homogeneous phantom. % (g <= x,7) & is used for
calculation of the front scatter arising from a
volume element dv, and % (g« v, ») 5 for cal-
culation of the backscatter from a volume ele-
ment dv,. Here p is the relative electron density
averaged along the line between ¢ and the vol-
ume element dv, or duw.

E
p gLl (& g &) EXESEHR KT
BN EFRE
P n & R (&g & KEIH1KBE.
gXER (& 7, 8 BT B 1 KREMMEL, 1
YA BT 2 KRR B (R o, ZERAENY 13K
HIEMERPD), ROEE T2 BERANC LD
WESNhD, CoRCET 5B REEREkE
b b,
KRB UER
EBNT Co-60y % B\ TfTo7c, Co-60y &
REZEBLLTRIERER AL BHER
(RTGS-2) #H\ 7z, Go-60y B EHEEL,
(12) Rk 2 HEESFHE eI T, (13) Ric
AoT\ 5 2 a4 {Ex, The Physics of
Radiology I§R%E L TH 5202 30 + 60y 2 [HH
JBSFEF SAR B aRMEEXESTHHEIC X D H
HL, ZoRE»HEECEShRVAX R
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Fig. 5 OSchematic diagram showing irradiation
conditions for determination of the primary dose
to point A (£,7,€). Here the filed is rectangular
and its size is w, X [, on the nominal surface and
w X[ at the calculation level. When A is in air,
tissue attenuation along the line between the
source and A is ignored.
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Fig. 6 Off-axis dose distributions in air for 5%
5cm?, 10X 10cm?, and 15X15cm® Co-60 fields at
SSD 65cm. The ones for each field are (a) along
the line parallel to one of the field sides and
through the central axis point, and (b) along one
of the diagonals, both being at a distance of 5 cm
from the nominal surface. The solid lines are
calculated. For each field, the dots measured by a
silicone probe are normalized to 1 at the beam
axis point.

A0 & FBETEFS X 5cm?, 10 X 10cm? % 0815 X 15¢m?
(SSD65cm)IcR L TR Lich DTH B, ERIX
ERoHERKI hRpi-boThh, XEHIZ
- AR ST S5 {EY 1 & LcBEolE
fETH5, Fig. 6(a) RV (b) RFNFh, v —
AL R AR D ESTURETE O B B — LI EAT
R ER OCEFERHTO—HEE Licki) 52
FAEN 1 KRR FEH T, Fig. 6(a) BV (b) X
b, WTFhof FiekuvTd, B X5em?2Rk ot
15X 15cm*ic®f LTk, EfREEC S CHER
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Table 1 Calculated and published values of depth dose and peak scatter factor in
water for 5 x 5cm?, 10 x 10 cm?, and 15 x 15 cm* fields at SSD 65 cm. The phantom
used for calculation is 30 cm thick. Percentage deviations of the calculated ones

from the published data are also given.

IField size 5 x 5em? 10 % 10cme 15 x 15¢cm?

Cal. (Pub.) % devi. Cal. (Pub.) % devi. Cal (Pub.) % devi.

PSF 1.025(0.018) 0.7 1.046(1.035) 1.1 1.062(1.051) 1.0
Depth in cm

0.5 100. (100.) 0.0 100. (100.) 0.0 100. (100.) 0.0
2 90.6 (90.9) -0.3 92.3 (92.8) -0.5 92.9 (93.3) —0.4
4 78.3 (79.0) -0.9 81.2 (82.2) -1.2 825 (83.3) -1.0
6 67.1 (67.9) -1.2 70.8 (71.9) -1.5 72.6 (73.6) —-1.4
8 57.2 (57.7) -0.9 61.4 (62.1) -1.1 63.7 (64.4) -1.1
10 48.4 (48.8) -0.8 52.9 (53.4) -0.9 55.6 (56.1) --0.9
12 41.0 (41.1) -0.2 45.6 (45.9) -0.7 48.5 (48.6) --0.2
14 34.9 (34.9) 0.0 39.4 (39.5) -0.3 42.5 (42.3) 0.5
16 29.8 (29.6) 0.7 34.1 (3400 0.3 37.2 (37.0) 0.5
18 25.4 (25.2) 0.8 29.6 (29.3) 1.0 32.7 (32.3) 1.2
20 21.7 (21.5) 0.9 25.7 (25.4) 1.2 28.7 (28.2) 1.8
22 18.4 (18.2) 1.1 22.2 (21.8) 1.8 25.2 (24.6) 24
24 15.7 (154) 1.9 19.2 (189) 1.5 22,1 (214) 3.3
26 13.5 (13.2) 2.3 16.7 (16.4) 1.8 19.4 (18.7) 3.7
28 11.6 (11.3) 2.7 145 (14.2) 2.1 17.1 (16.4) 4.3
30 99 (96 3.1 125 (12.2) 25 14.9 (14.3) 4.2
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Fig. 7 Central-axis scatter dose distributions in
water for a primary dose of 100 at depth 0.5cm
for 5x5cm?, 10 10cm?, and 15X 15cm? cobalt-60
fields at SSD 65cm. The solid lines are from
published data and the broken ones are calculat-
ed using a water phantom 30cm thick.
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Fig. 8 Dose profiles at depth 4.6cm in a water

phantom for 5X5cm?, 10X10cm?, and 15X 15¢cm?
cobalt-60 fields at SSD 65cm. The solid lines are
calculated and the black squares, circles, and
triangles are measured by TLD. For each field the
measured profile is made to coincide with the
calculated one near the middle of the field.
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Fig. 9 Dose profiles at depth 11.5cm in phantoms

with and without a cork inhomogeneity (.=
0.226) for a 10x10cm?® cobalt-60 field at SSD
65cm. The measured profile by TLD is made to
coincide with the calculated one near the middle
of the field.
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Fig. 10 Dose profiles at depth 7.6cm in phantoms
with and without an aluminum inhomogeneity
(pe=2.361) for a 10X 10cm?® cobalt-60 field at SSD
65cm. The measured profile by TLD is made to
coincide with the calculated one near the middle
of the field.
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"able 2 Calculated and measured values of depth dose within a phantom with a
cork inhomogeneity (p,=0.226) for 5 x 5cm2, 10 x 10cm2, and 15 » 15cm? Co-60
fields at SSD) 65 cm, the inhomogeneity structure being in Fig. 9. Percentage devia-
tions of the calculated ones from the data measured by chamber are also given. The
calculated and measured ones for each field are normalized to 100% which is ob-
tained using that field as a value of dose at depth of 0.5cm in a 30 ¢cm thick water

phantom.
Field size 5 % 5cm? 10 % 10cm? 15 % 15cm?
Cal. (Meas.) %odevi.  Cal. (Meas.) %o devi. Cal. (Meas.) % devi.
Depth in cm
1 97.1 (97.00 0.1 98.0 (98.5) -0.5 98.2 (98.1) 0.1
2 90.6 (91.1) -0.5 92.3 (92.2) 0.1 92.8 (92.8) 0.0
3 84.2 (84.7) 086 86.5 (86.9) -0.5 87.4 (88.0) -0.7
4 78.1 (78.6) -0.6 80.9 (81.5) -0.7 82.1 (824) -04
5 (poly/cork) 72.0 (71.9) 0.1 75.2 (75.5) =0.4 76.7 (77.6) -1.2
6 67.2 (66.9) 04 70.6 (71.4) -1.1 72.7 (73.3) -0.8
8 60.9 (60.5) 0.7 64.6 (65.6) -1.5 67.0 (67.4) -0.6
10 55.9 (55.9) 0.0 59.7 (60.5) -1.3 62.4 (63.0) -1.0
12 51.5 (51.2) 0.6 55.3 (56.4) -2.0 58.00 (53.9) -1.5
14 475 46.9) 1.3 51.0 (51.7) -1.4 53.9 (54.5) -1.1
16 44,0 (439 0.2 47.5 48.5) -2.1 50.3 (51.0) -1.4
17 (cork/poly) 426 (42.2) 09 46.0 (45.4) -0.9 48.8 (49.3) -1.0
18 40.5 (40.4) 0.2 44.0 (44.6) -1.3 46.7 (47.1) -0.8
20 35.1 (35.2) -0.3 38.4 (33.8) -1.0 41.0 (41.7) -1.7
22 30.2 (30.5) -1.0 33.3 (34.3) -29 35.8 (36.0) -0.6

24 25.8 (26.5) -2.6

28.7 (29.0) -1.0 31.2 (30.8) 1.3
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Table 3 Calculated and measured values of depth dose within a phantom with an
aluminum inhomogeneity (p,=2.361) for 5 x 5cm?, 10 x 10 cms?, and 15 x 15 cme Co-
60 fields at SSD 65 cm, the inhomogeneity structure being in Fig. 10. Percentage
deviations of the calculated ones from the data measured by chamber are also
given. The calculated and measured ones for each field are normalized to 100%
which is obtained using that field as a value of dose at depth of 0.5cm in a 50 cm

thick water phantom.

10 x 10 cm?

15 x 15¢m?

Cal. (Meas.) % devi.

Cal. (Meas.) % devi.

Field size 5x Hcm?
Cal. (Meas.) % devi.
Depth in cm
1 97.1 (96.9) 0.2
2 90.6 (91.1) =05
3 84.4 (85.6) -1.4
4 78.5 (79.2) -0.9
5 (poly/Al) 73.3 (79.4) -7.7
5.6 70.1 (71.7) -2.2
6.6 61.5 (63.5) -3.1
7.6 53.4 (55.5) -3.8
8.6 46.4 (48.3) -3.9
9.6 40.1 (41.5) -3.4
10.2 (Al/poly) 36.6 (35.1) 4.3
11.2 32.3 (32.3) 0.0
13.2 26.7 (26.4) 1.1
15.2 223 (22.00 14
17.2 18.7 (18.3) 2.2

98.1 (98.2) -0.1
92.4 (92.7) -0.3
36.8 (87.0) -0.2
81.5 (82.5) -1.2
76.7 (82.6) =7.1
73.5 (76.0) -3.3
65.5 (67.7) -3.2
57.9 (69.9) -3.3
51.2 (52.5) -2.5
45.1 (46.2) -24
41.7 (39.4) 5.8
47.5 (36.5) 2.7
a1.8 (30.6) 3.9
27.0 (26.0) 3.8
23.0 21.7) 6.0

98.3 (98.1) 0.2
93.0 (93.2) -0.2
87.7 (89.0) -1.5
82.6 (84.0) -1.7
78.0 (84.2) -7.4
75.0 (77.4) =31
67.6 (69.4) -2.6
60.2 (61.3) -1.8
53.7 (55.3) -2.9
48.0 (47.8) 0.4
44.7 (41.7) 7.2
40.6 (39.1) 3.8
35.0 (33.8) 3.6
30.3 (28.6) 5.9
26.1 (24.0) 8.8
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Fig. 11 Central-axis dose distributions covering
the inhomogeneity boundaries and near them in a
phantom with an aluminum inhomogeneity (p. =
2.361) as inserted in Fig. 10. The Co-60 field at
SSD 65cm is a 10X 10cm?. The line is calculated
and the dots are measured by chamber. Each
distribution is normalized to 100%, based on the
dose at depth 0.5¢m in a 30cm thick water
phantom.
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