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ABSTRACT

The transient wave propagation in laminated composites parallel
to the layers is treated, and the wave shape modification is
investigated by using the diffusing continuum theory. Concerning
the transient waves in laminated materials, the far-field
solutions were obtained for the elastic laminates by using the
head-of-the-pulse approximation. But, the near-field behavior of
wave where the wave front changes its shape as it travels has not
been investigated. Especially concerning the viscoelastic
laminates, no analytical method for the transient waves has been
proposed up to the present. In the present analysis, the
transient waves in the elastic or viscoelastic laminates are
considered, and behaviors of stress waves in the near-field are
investigated. In order to obtain an analytical solution in the
near-field, the multi-wave-fronts expansion method is proposed
which is useful to treat the transient waves with two wave fronts
like as the wave in a laminated medium. The near-field solutions
for the transient waves in the elastic or viscoelastic laminates
are obtained for the cases of the two kinds of compressive
boundary conditions. The experimental studies on the transient
waves in laminated media are performed, and the comparison
between experimental and theoretical results is described. The
results show that the theoretical treatment used in the present
work can predict all the important qualitative features of the
transient wave, and also the quantitative agreement is good

enough.
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CHAPTER 1

Introduction

Increasing use of composite materials in modern structural
elements has recently stimulated considerable interest in the
dynamic response of composite materials, and wave propagation
problems in those materials are a subject of interest in numerous
fields of engineering. It is well known that stress wave 1in a
composite material shows geometric dispersion as a result of
scattering induced by the inhomogeneities, and its shape is
modified as it propagates through such a medium.

The investigations on stress waves in composite materials
can be classified into two kinds of studies, one on a dispersion
relation for harmonic waves and the other on a modification of
transient wave. In the study on a harmonic wave propagation
parallel to the layers in an elastic laminated composite, the
exact dispersion relaticns were obtained by Rytov{l), and by Sun,
Achenbach and Herrman(2). Those exact theories, however, are
very complicated in mathematical treatment, and so approximate
models (2-6) which exhibit geometric dispersion, and are less
complex than exact formulations, were proposed by several
authors. One analytical model satisfying this criteria is the
"diffusing continuum" theory proposed by Bedford and Stern(3).
Other models, for example, the "effective stiffness" theory and
the "continuum mixture" theory were proposed by Sun, Achenbach
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and Herrman(2) and by Hegemier, Gurtman and Nayfeh (4},
respectively. The dispersion relations for harmonic waves
derived from these approximate models were compared with the
exact theory and many arguments have been made on the accuracy of
the assumption used in these theories.

An analytical study on the transient wave propagation
parallel to the layers of a linearly elastic laminated composite
was made first by Peck and Gurtman(?7) by using the elastic
theory, and then Scott(8) developed this approach to a three
layered plate, In those studies, they derived the formal
solutions by superposition of the infinite series of harmonic
waves, and gave the far-field solutions by using the
head-of-the-pulse approximation. Their results are valid for
waves far from the loaded end where the shape of the wave front
becomes. stational. The approximate theories mentioned above were
also used by Sve and Whittier(9), by Hegemier, Gurtman and
Nayfeh(4) and by Hegemier and Bache (10} to solve the transient
waye propagation problems in the laminated materials, Dbut they
also used the head-of-the-pulse approximation and presented the
far-field solusions. Accordingly, the behaviors of the stress
waves near the loaded end where the wave front changes its shape
as it travels were not discussed in these analyses.

Real composite materials of interest in engineering exhibit
marked viscoelastic property, Wave shape modification can also
occur as a result of spatial attenuation owing to the viscosity
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of the material and so in the study on a wave propagation in a
viscoelastic composite material, it is necessary to consider not
only a geometric dispersion but also a spatial attenuation.
Concerning the waves propagting parallel to the 1layers of the
viscoelastic laminates, the dispersion relations for harmonic
waves were investigated by Stern, Bedford and Yew(ll) and by
Tanaka and Imano (12). For the transient waves, however, no
analytical method has been reported up to the present.

In this paper, transient wave propagation in an elstic and
a viscoelastic laminated composite is treated. These laminated
media are composed of an infinite pericdic array of two
alternating layers which differ in material properties and in
thickness. Waves propagating parallel to the layers in
semi-infinite laminates loaded by impulsive forces at the end
face are analyzed and wave shape modifications near "the loaded
end are considered.

In order to describe the fundamental equations of motion for
the transient wave problem of a laminated medium approximately,
the diffusing continuum theory is employed in the present work
which was proposed by Bedford and Stern(3) to determine
dispersion relations for harmonic waves traveling parallel to the
laminates. According to this theory, the propagation process can
be described approximately by a set of two-coupled partial
differential equations. This approximate theory is reasonably
simple and, at the same time, is known to be able to predict
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fairly accurately the response of harmonic waves in the elastic
laminates, and is also applicable to the waves in the
viscoelastic laminates.

As an analytical technique to find solutions for transient
waves in media, there has been an integral “transform method such
as Fourier-~ILaplace transform method. For example, using this
method, Payton{(l3) investigated the dynamic bond stress in a
composite structure subjected to a sudden pressure rise. In his
analysis, however, the numerical calculations were used because
of the complexity of the inverse transformation for the integral
solution. Hence, it seems to be difficult to treat the transient
waves in viscoelasic laminates by the method. In the present
paper, a new approach to the analytical study on transient waves
in laminated media is proposed which is based on the wave front
expansion technique.

The wave front expansion technique was first introduced by
Achenbach and Reddy(14]) to find solutions for transient wave with
single wave front propagating in a linearly viscoelastic rod.
Using this technique, C.T.Sun(15) derived the solutions for a rod
of linear Maxwell material or a standard viscoelastic solid, and
compared the results with the solutions by the Laplace transfrom
technique. In these papers, as an analytical tool, the theory of
propagating surfaces of discontinuity was used, and the stress
or prticle velocity at an arbitrary location was expressed in the
form of a Taylor expansion of time t about the arrival time of
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the wave front. But the composite materials treated here are
composed of two alternating layers which differ in material, and
so, for transient wave propagation, two wave fronts will occur in
each layer as a result of the differnt natural propagation speeds
in the two matrials. Applying the wave front expansion technique
to the present problems, the state quantities, such as stress,
strain or particle velocity at an arbitrary location of each
layer, should be expressed by a superposition of two
discontinuous functions which are caused by twc wave fronts, and
the coupling relations of the discontinuities of two wave fronts
of each layer should be determined.

In Chapter 2 and Chapter 3 of this paper, transient waves in
the elastic laminated composite are treated, and behaviors of
strain waves near the loaded end are discussed. In Chapter 2,
analytical method to apply the wave front expansion technigque to
the problem of transient wave with multi-wave-fronts is
presented. By expressing the equations of motion in terms of the
strains of two kinds of constituents, stress waves in semi-infinite
elastic laminates loaded by a surface pressure at the end are
investigated. The solutions are compared with the solutions by
conventional Fourier-Laplace transform method. In Chapter 3,
analytical treatment derived in Chapter 2 is extended to apply to
the velocity boundary condition. The equations of motion are
expressed in terms of the particle velocities. As an example, an
elastic laminated composite impacted by a rigid body is
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investigated.

Chapter 4 and Chapter 5 are concerned with the stress waves
in viscoelastic laminated composites. In Chapter 4, the
transient waves in the semi-infinite wviscoelastic laminates
loaded by a surface pressure are treated. In Chapter 5, impact
problems of viscoelastic laminates and rigid bodies are
investigated. The techniques introduced in Chapter 2 and Chapter
3 are extended to analyze the transient waves in such
viscoelastic medium which were difficult to treat by the
conventional. method. Analytical formulations are obtained for
the medium of viscoelastic layers that obey the general linear
viscoelastic relation. The solutions show a geometric dispersion
and a spatial attenuation caused. by the viscosity of the
material.

In Chapter 6, experimental work on the stress waves in a
laminated composite is described, The composite structure used
in this experiment is made of layers of aluminum and copper., The
strain waves generated bybimpact are measured by strain gages at
the differnt layers in the composite. The analytical
calculations are compared with the experimental results.
Applicability of the diffusing continuum theory for the transient

waves 1is also discussed.



CHAPTER 2

Transient Waves in Elastic Laminates

2.1 Fundamental Equations

The problem treated is a transient wave propagation along
the layers of an elastic laminated composite. The composite is
supposed to be an infinite periodic array of two alternating
elastic layers which differ in material properties and thickness

as shown in Fig.2.1l.

i

SN
/P;,EI.GJ% 2:”%//// —>X

» PZ E) Gz —-2h2—
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0o
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Fig.2.1 Laminated composite

A coordinate system is placed with the xz-plane as the
center plane of each layer, the x-axis in the direction of
propagation, and y; -axis (j=1,2) perpendicular to the xz-plane,
The composite is semi-infinite, bounded by the x=0 plane, and is
suddenly loaded by a surface pressure on the x=0 plane, Assuming
that no motion takes place in the z-direction, the problem is a
two dimensional one.

It will suffice to examine only one pair of adjacent layers
since deformations will be identical in each corresponding layer,
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We assume that the equation of motion (x-direction) in each

layer is given in the form of the following integral;

N2 hj 2 h:
{2 U e (P Vs S‘ 2 Tay i
?) So 2t d%) - EJ jo 52> dﬁé + . ——?‘3“ d‘é* , 4z1.2 (2.1)

where Jj=1,2 denotes the layers, and the j-th layer is
characterised by density §; , elastic modulus E;, and layer
thickness 2h;; U; (x,y; ,t) and Ty (x,y; ,t) are the displacement in
the x-direction and the shear stress, respectively, and t 1is
time,

The average displacement is defined as follows:

h.
— { U .
Uilx,t) = _F;S U;t X,%é,t)dg;, i=1,2 (2.2)

°

By use of Eg.(2.2), Eqg.(2.1) may be expressed as

. -;US - E; {G}
fi St ¢ TS

! h .
+ TlTixa‘o , 4=tz (2.3)
¢

According to the diffusing continuum theory ( see APPENDIX

A ), the second term of Eq.(2.3) can be expressed approximately

by

—g—'(Dz —U) (2.4)
hi

where
B =3G|Gz/(hlG'z+ th‘!)
Substitution of (2.4) into Eq.(2.3) yields the equations of

motion which can be written as follows



2 Ui s 2 U B

e £ hy (V2= 0) 2.5)
)ZUZ — 2 BZUZ B . - 1
5tz C2 > -+ o (Ur— Uz2)

where c;=(E;/$; V2, j=1,2, are the elastic-wave speeds 1in each
material. It is clear from Eq. (2.5) that each constituent motion
is coupled with a momentum transfer term which depends on the
relative displacement only. By introducing the following new
variables

W=U/h , Uz:Uz/h( , b= X/ he, T=Cit/}\1

Eq. (2.5) can be written in non-dimensional from:

2 2
gtu; = 33;; + b( Uz —Ui)
(2.6)
2 2
7 Uz 2 0 U2 2
o< = C agz‘{'—bS(U(—Uz)
where

b= hs B ’ C:Cz) gz_____?ihi.

?1(:1? Ci ?th
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2.2 Integral Solution

In this section, a solution by integral transformations is
presented for a transient wave propagating along the layers of a
laminated composite. The mathematical treatment described here
closely follows.that of Payton(13) who developed it to study the

dynamic bond stress in a composite structure.

(a) The specific problem treated here is stress waves in an
elastic laminated composite subjected to a uniform normal stress
of a step-function of time t on the x=0 plane, as shown in
Fig.2.1l. BAssume that the composite is initially undisturbed,

then the initial conditions are

2 Uy U2

U=\ == =-22 =0, at T=o0 (2.7)

and the boundary conditions are

U U
7t = E 73 = - g, H(D) , at ¢t = (2.8)
2U AU
U‘=Uz=b—2"=-3?=0, ot §=+oo (2.9)
where E=Ez/Et, Es,=0o/E1 and H(r) is a Heaviside wunit-step
function.

In order to obtain an integral solution to the problemn,
apply the Fourier cosine transform to Egq. (2.6) on a dimensionless
distance ¥ and Laplace transform on a dimensionless time T.
Denote the Fourier cosine and Laplace transform of wu;(§,t) as
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uf} (k,T) and U; (f,s) respectively. Eliminating the transformed

displacement ﬁ'i(fé,s) from the transformed eguation (2.6), we

obtain the transformed displacement uj (%,S) in layer 1 as follows

— V2 S+ &2+ b6 (/+h)
¥ 2

‘) . 2.10
Wik, s)= (—'n:) g S{ St [U+Cz)£2+(/+§2)b] 52+ [C?B* 4 bél(c%gl)]} ( )

where h=ha/hi, Equation (2.10) can be rewritten in the form

—2 _ 2 Ve _S2+CE+bEU+A)
Us(k.5)= (%) & TS 61)( 55 67 (2.11)

where
1 ‘é 1,02 F4 l/2 (2.12)
& (2) = (D) LU+ O+ e b +big) ) :
\
b k) = (%)‘/2[(1112)%:*' (+eh)b -k 1/2 (2.13)
\
Wiy = {[(-8 + (- b)Y+ 4b8? 1% (2.14)

Performing Laplace inversion results in (for T » Q)

* 2 %2 B2+ b5 1+ h) —P2+ CE bGP 1+h)
UCET) = (7Y e [ s P ¥ cos T

— ¢l + B2 b+ )
— coshT
= )

(2.15)

Aplication of Fourier cosine inversion formula gives (for &z 0)

_ 2 o (T b ah) 2. (7
weTy=-2 g.So DY coskidk + = E.po(E,’t)cosﬁng (2.16)

where

2. 3p2 2 _? z£z 2
Q('&.T): —4’1 +c*$%+ bS(1+h) cos _ q)z +C*R+55°(1+h) T (2.17)
¢l14, %T 4);4) C()5¢z

Differentiating (2.16) with respect to a dimensionless

distance ¥, we can obtain the strain §£1((,7) as follows:
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2 (T beurh) g _2 .S“’ i
6 o=-2 ‘E.Su CRAleh) bt~ ) QR D sim Ay

(2.18)
The first term of Eq. (2.18) can be evaluated by residue theory,
but the second term is too complicated to evaluate exactly. In
order to calculate the second term, we use a numerical
approximation as follows: Integration range (0,00) of the second
term may be separated into two ranges (0,x) and (X,oc0) where x is
a suitably chosen large number., The integral between (0,K) can

be evaluated by Simpson's rule, and the integral between (X,o0)

can be estimated asymptoticaly for large X:

E\(E )= -t [ l}t-‘:.‘!;ﬁz +( - I::’}/LC’) pr{ [(1+{'2/C2)b)/2 .g} ]

X 2, 292 2 _ L ISy 2
_%}50['4’;+C:17+l:(:(1+’1) cosbp — HHe i;tﬁg Uth) sy Ve scn o

+ B[ LS+ =R T s ) )

(+h)be €, : 2 ,
BT I TIwO 2CoSXT- Sin XE — <r COSCXT- Sin xt +(E+TIN-CoSX(} +T)

(3 -T)K: CoSX(E-T) = (T cosHE+eT) =~ L (- cT)k-Cos A(} -cT)
— BT K (= T ~TIHE = L reTi i - LG-cDiz-cTin?
+ 3+ S (3 + )+ G-l -TI SR g -] - —C’;(§+ct)z)t’5;[)f(§+cr)]

——C'-,(i-cr)li—crlx’Si[Klt-crl] } (2.19)
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where

X
Si (x)= Sine integral = j —gﬁ}f-dp
]

(b) If the stress of the loaded end is given as an
arbitrary function of time, the solution can be obtained by
superposing solutions of Eq. (2.19). Denote the strain of the
loaded end as f(t) then using the fundamental solution (2.19),

the total strain €i1(¥,T) in layer 1 can be written as follows

© 9 f(t’)

. = — € ( T-T dt’ (2.20)
€1(E.T) S° 5T (., T-TY

where €;= E((§,T)/ o .
In the numerical calculation, following equation expressed
in the form of summation is employed

n

L1(E.naT) = Z A{(rar).a[ b (n-r)aT ) (2.21)
r=0
where
n=T/aT |, r=T1/aT

- 14 -



2.3 Wave Front Expansion Analysis

When a transient wave propagates in an elastic laminated
composite which is composed of two constituents, each layer
supports elastic-wave disturbances traveling at two different
speeds, and two wave fronts will occur in each layer, since each
layer is forced by the motion of the other through a coupling

action of the interface.

T
T2 T
TnT2 S2(§2)
£=cT
B2 si(&)
B =T
B A Ar
6;

A £

Fig.2.2 ¥ -1 diagram

As shown in Fig.2.2, the positions of two wave fronts from
the loaded end can be expressed as straight lines Si and S2 in
the (-T diagram, and a discontinuity occurs across those 1lines.,
Now let us use two sets of skew coordinates Sit-Tt instead of i-T,
and, as the measure variables along the lines Si1 and Sz,
introduce ¥; and ¥, which are projective guantities of the S and
Sz on the t-axis, respectively. Let 6§¢ be the angle between
line St (2=1,2) and the ¥{-axis.  Then the relationships between
the two coordinate systems f{-tT and ¥;-Ti are

By =% tambt , Te=T-%-tanbs (2.22)

- 15 -



The relations between derivatives of any function § (i ,‘t)=f‘”(§g,'l.‘;)

defined in two coordinate systems are expressed as

f‘" ?’I} _ Bn fl"

’ 2Tt a'c"' (2-23)

:‘g =ton" B1- 3;. H‘
For the present problem treated here,

tanQi =1 , tan @, =1/¢
Since S¢ ({=1,2) is a characteristic curve for Eg.{(2.6) and
indicates the position of the wave front, T§ is a dimensionless
time measured from the arrival time of each wave front,

Equation (2.6) can be expressed in the form of strains by

differentiation with respect to a non-dimensional distance E :

-BZE: ___ 7 €4 _

(2.24)
¢, _ 4 2&: 2
_a'_—‘_cz = 2% 2 + b8 (& — ¢ )

By the use of (2.23), Eg.(2,24) can be expressed in terms of

t1-Ty as follows

t w

T T T
| (2.25)

9 Eu) 3 JEM . £ b (1) "

v~ 2o e ) Y U () + e (e - ) =0

or
z .(2) (2) ®
? 2

T - o2 (v i (S (e =

2 1
(2.26)

[¢3] [¢3)

)ag aaE(bf )+ b (e - £) =0
2

To find solutions, we assume that at an arbitrary location of
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layer j, j=1,2, the strain §;(f,r) can be expressed as the sum of

two kinds of strain 8(}"(21 ,T1) and i‘f’( {,,72) which are caused by
each wave front and are discontinuocus across the line S: and S:,
respectively. Each strain 8‘:’( £g,Tt), j=1,2, is assumed to be in
the form of MacLaurin series of 7Tt around the point Jjust after

the arrival time of each wave front:

($)) (z)

ij(g,'t) = & (5, ) + E} (%2, Ta) , é=1.2 (2.27)
and

™

h = 1))
L (8, Ty) = *nZ-‘o Ajm (1) por Te >0 , b=1,2 (2.28)

where A}f;. is a discontinuos quantity of the n-~th time derivative

of the strain in layer j across the wave front S3, and 1is a
continuous function of ¢t ,

W
) "E;
Ajn (31D = { 2 ]s, (2.29)

where [F]s1 denotes the jump quantity of F across the wave line
St. The strains g§’ and £§ satisfy respectively the system of
Eg.(2.25) and (2.26). Substituting (2.28) into Egs,(2.25) or
(2.26) and comparing the coefficients of the same order of
dimensionless time T¢, we obtain the following relations between

discontinuities:

m
d Al 0 &A.
d—%:_'— = oun( A(l‘.)n— A(z.n )+ D(:z'dg%
) m (2.30)
0 m ) dAzn dAz.ner

Az,mz = on ( Atn — Asn )+ clis dif + ol d§1
or

-17 -



(2) [¢3]

) . .
Atnez = o ( A;I,)l - A )+ ot -ii—A‘,—"- + O dArnes
di; dis
@ (2.31)
dAZ-nﬂ — ) @ dzA(z)
_—_diz = oy ( Az.n— Atn )+ o2 —_dél.
where

on=-b/2, =12, otz =b?/(1-C), u= C’/(/'Cz), ors=-2c/(1-¢?)
otz =-b8/2, am=1/2, e =-b/(1-C). Gra=-1/(1-C), ahs=2/(/=c)

Equations (2.30) and (2.31) show that the discontinuity Aﬂ}(ig)
can be expressed in the form of an n-th order polynominal with

respect to ¥,

n m
3 W (o) -
A;n(Z|) = E. Tinm e l=1.2 (2.32)

™e0

Substituting (2.32) into Egs.(2.30) or (2.31), and comparing the

terms of the same order of %3, we can derive the recurrent

formulas for the coefficients 7%,

Tiwstomes = ( Timm — Tiom ) + i ot YA

7’1'"7'7‘1"" = o13( T’.(I'L).m - )’z(fz)m )+ o (s 71(,‘7)191.7’“1 + O Qe )’2.(7’1).7111'2 ) (2.33)
(029

@ 3%

{ (2} {2)
Lrszm = Oz ( Iz.n.m - 7,:,,,‘ )+ o (s x.n.t,rnn + Q2 Q24 71,;(,77!#2 )
1t ) 2 (22
aenmer = ( 72.n.m - 71.7!.7n )+ 21 (22 7’-7‘-7“‘2

(2.34)

From (2.32), the following relation holds for m>n.

.i(,’y:.m =90, as mo>n, g=1,2
Equations (2.33) and (2.34) are connected with the boundary
condition at the loaded end.
By the use of (2.28) and (2.32), strain (2.27) can be

expressed as

- 18 =



o T " n - -
f_i({l‘-t) = Z Z{ T;:'m (COR T + Yj(.:)m (on §2) Ta } (2.35)

N=0 mM=0 s n! m! mn!
At the loaded end {=0, %;=%{=0 and T1=7.=T7, Eq.(2.35) now

becomes

Eico.Ty = Z( )’,},‘;,, + 7';527:.0 )———:; (2.36)

Nn=0

If the strain at ¥{=0 is given in MacLaurin series of t as follows

o n
E5c0.7) = Qin ——
} ,é, LY (2.37)
then, comparing Egs. (2.36) with (2.37), we obtain

t2)

. )
Ojmn = ri,n.u + Tj.n.o P=1.2 (2.38)

+

Thus, if the values of the coefficients 7% m and 72am for

n=0 and n=1l, are known, all coefficients are determined
successively by wusing Egs.(2.33), (2.34) and (2.38). Those
values for n=0 and n=1 are obtained as follows:; The differential
Egs, (2.25) and (2.26) are integrated with respect to the
corresponding time T3, starting from a point At below the wave
line St to a point By above it, as shown in Fig.2.2. As Al and

Bt approach the wave line Sit, the integral of ¢ vanishes because
¢

¢ is finite, and the integral of (?¢;'/7T¢) becomes
w

B1
Lim j 28 dTy = Lm { t(h( Bi) -~ i(i) } = [2‘.”]
Ar>Be ) 1T At>by 4 %¢,B1) }(il. A1) J dse

Thus, Egq.(2.25) yields after integration
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2 w
¢ = 0
'bit[ t ]S( (2.39)

[}
_odfew 1 [_B_E_z =
22§|[€’]‘;+ (1 C’) 2T Isi 0
Repeating the same process to the second equation of (2.39), we

have

(), =0 (2.40)

and from Egs. (2.39) and (2.40)

Ps‘;"] - (2.41)
0 T1 Jss

In the same way, the following relations are obtained from

Eq. (2.26)

)

—%;[if)]s, =0 |, [ E:v]s,: ¢ ’ [3_2‘1 ]Sz: 0 (2.42)

Equations (2.39)~(2.42) imply that the coefficients 7§£m for n=0

and n=1 should be

[iH] [¢3)
Tx,a.a = Qo 72...9 = Qo

L) (2? [e3)

9] w (2.43)
1,00 = )’1.1,0 = Y1 =0 , X'fa.o = };.‘:.)o = X’.I’.f =90

Thus starting from the relations (2.43), the other coefficients

are determined one by one.
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2.4 Numerical Results

Example 2.1 We consider a semi-infinite elastic laminated
composite subjected to a constant stress o, at its end surface
abruptly for 7>0. From Eq.(2.36) and (2.37), we obtain the

following relations for 7>0:

‘ = @ T 7, . 2,44

E}(O.T)— Z(x-'n'o‘f‘Xi'n'c)T:?}- , 1:1-2 ( )
M= M
hence

(1)
fi.a,a = O:/Ef . zfza),o = G./Ez

) (2) . (2.45)
Time + Jime =0 , §=12 (n>0)

Using Egs.(2.33), (2.34) and (2.45), we <can determine all
coefficients successively.

In order to illustrate our results, let us consider a
laminated composite consisting of two alternating layers of
aluminum (layer 1) and copper (layer 2). Here, we regard two
layers as elastic materials. The relevant material properties

are as follows:

Aluminum (Layer 1) Copper (Layer 2)

£ =0.2755x10"7 kg.s? /mm* £2=0.9133x10"" kg.s? /mm*
E1=7200.0 kg/mm? E;=12000.0 kg/mm?
G1=2700.0 kg/mm? ’ G2=4200.0 kg/mm?

In Fig.2.3 (a),(b), the averaged strain of each layer is
plotted aganist x for several values of t for two thickness
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ratios. One is the same thickness and the other is 1 to 5 for Al
to Cu layers. The evaluation of solution (2.35) is performed by
using finite terms. For comparison, an integral solution by
Fourier and lLaplace transformations (section 2.2) is also shown
in the same figure. Broken lines in Fig,2.3(a) show the results
obtained from the present method with ll~terms. The solution
with 19-terms shows good agreement with the integral solution for
the whole time range. In Fig.2.3(b), results by the present
method with 25-terms are plotted in broken lines. They are in
good agreement with integral solutions for +time smaller than
40psec. But for larger time t=50psec, it is observed that the
strain distribution apart from the wave front differs from the
integral solution. To obtain better agreement for a lager time
range, more terms in the series must be taken.

The results show that the strain distribution changes with
time as a result of the energy exchange between two layers due to
different natural propagation speeds in different layers and
sometimes tensile strain region appears near the wave front. The
wave modification in thin layer is more remarkable than in thick
layer. It should be noted, however, that the amplitude of

inherent wave front never changes in the individual layer.

Example 2.2 In this example we consider a laminated
composite subjected to a stress linearly rising from O to ¢ with
rise time T,. In order to simplify mathematical treatment of the
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boundary condition, we consider a superposition of two boundary
stresses linearly rising from t=0 and T=T7, with equal stress rate
of opposite sign. The superposition of the two stresses yields
the boudary conditicon treated here.

For a linearly rising stress from T=0, Egs.(2.36) and (2,37)

can be written as follows:

= W ) T o, T .
£0.T) = ), (Lime + Timw ) 77 = Er T, @ 717 (2.46)
n=o

hence we can obtain the following relations

43 (2 R

7}.0,0 + 7;1,0.0 =0, t=1.2
) @

li1o = C’—'/T- Er, zz.f.a = 0 /TaEz (2.47)
162 {2

Jinsz,0 + }/j,nd,o =0

As an example, the strains are calculated in the same composite
as in example 2,1. In Fig.2.4, the strain of each layer is
plotted against t for several values of x. The present solution
with 19-terms is in good agreement with an integral solution for
the whole time range.

From the numerical results, we can predict that the strain
in each layer gradually approaches with time to the value

€=0,52x10"* calculated by the effective modulus theory,
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CHAPTER 3

Impact Problems of Elastic Laminates

3.1 Analysis for the Velocity Boundary Condition

Let us consider the transient wave propagation along layers
in an elastic laminated composite which is semi-infinite, bounded
by the x=0.plane, and is suddenly struck by a rigid body on the
x=0 plane, as illustrated in Fig.3.1, 1In this case the boundary

condition at the sruck end is given in terms of particle velocity.

/Wm\

%

. Ve He.Er e G
%//// / - 0,,E2,G2 - 2h2 —-
‘ iy

7

Fig.3.1 Geometry of problem

Equation of motion (2.6) is given in the form of the

particle velocities after differentiation with respect to T:

TV 2V, by -n)
2TE g2

s } (3.1)
P Ve 2BV Ly - )

2Tz %2

where

b= fB/RCT, c= C2/Cy ., §2=f|fu/f’zﬁz
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By differentiating the Eq.(3.1) n times with respect to
dimensionless time 1T, and considering the finite discontinuities

across the wave front, we obtain the following relations:
{a’”m]z [3“"v,] eb | [z"m]_[w“m ]}
T wTT T 2T
niz Nz n »
[a v]= cz[a ,V’,]+ M:{ P m]_[) m”
™ 25T e 2T

By the use of (2.23), Eg.(3.2) can be expressed in terms of

(3.2)

Pg~Th:

(T f"b‘f”] {[2"1&“’ _[TI' U } -
32,‘[3?," ] 23, {n,“' +b m“} T ] 0 }
i -b'nv.z(i) . _[a'nﬂu.(() [j‘fzv(i)] ﬁ{ [7111)_‘(1)] [ U“)]}
ﬁ,f [3-(1" ] 2321 ?-—(nﬁ ]+ (1 ?TTH-: + [ ')"Gn —3T| o
(3.3)
and

B sl o-o B2 e -85 -

* e & N vz
3 o (20 (582} -

Following the procedure introduced in the previous chapter,

(3.4)

the state quantities, such as strain or paticle velocity at an
arbitrary location of each 1layer, can be expressed by a
superposition of two discontinuous functions of non-dimensional

time T@ which are caused by two wave fronts:

(2)
3 ) )“f,(:.)] [ T;\ [ ) 60 ]
G50 —,.Z. n [m B ,,Z, nt LTl Jis (3.5)
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Skl A
Vit ) Z [n. L*Z—;i! [TTj"—]i (3.6)

Also, as shown in Chapter 2 , the Jjump gquantities which are
continuous functions along the wave line can be expressed in the
form a polynomial of degree n with respect to ;.

TV S @ :
[) ] Z;Ymm i=1,2, f=12 (3.7)
’c’ mabd

In order to obtain the - strain g; as a function of the
particle velocity V; , we introduce the well-known relation given

by

Differentiating (3.8) n-1 times with respect to 7, and applying

Eg. (2.23), we obtain the following relations:
{2 E:”]: _)—[) U,(U] [)hvjl‘)}
AT kLT 2T (3.9)

)= - ()

2

By substitution of (3.2) and (3.10) into (3.5), the strain can be

expressed as

& &y n W " i
Ej<§.‘t)=ZZZ-—’-{ Jon-t,ma Jm'"‘} nl ml '’ (3.11)

N=0 m=o =1t

where

c”’=(] for =1
¢ for =2

- 27 -



Substituting (3.7) into Egs.(3.3) and (3.4), and comparing the
terms of the same order of §;; we can obtain the recurrent

formulas for the coefficient .‘P‘,“’

W _ o W )
Inef,mef _-2—_{ Y’/”‘”'fz + b( ﬂl”l’"— f;(‘ n,m ) }

(3.12)
()] (<} m ) (1)
Z,n+2,m = 1{ Y,n mez mf,'m-rl +—= C‘ ( ﬁ,n.:n 2,;1,,,,,) }
and
(2 (2) (
f, 112,m = { ?:le-fz ﬁ/’ﬁ’];?ﬂf{ + bc ( ji’ﬂhm - 1,20.m }
{(3.13)

w
jpz,m‘hmﬂ { j’i ,mrz + b’ (ﬁ,iim - (Z; m) }

where X =c¢¥/(/-c?).
If the particle velocity at {=0 is given 1in a MacLaurin

sexies of T by

. = T .
Vioty= 2 Sim =7 | i=1.2 (3.14)

n=e

then, we obtain the following relation from the boundary
conditions (3.14)
ff;,',),,o + J(,l;,, = Gim i=1,2 , m=0.1,2,- (3.15)
In the same way mentioned in Eg. (2.43) the coefficients

for n=0 and n=1 are given as

[§3)

Floe= e, 92, -,
(3.16)

(2 )
o — (2) 1
1.0 Jeg,0 = F, 0 = 0, ;i’p = z‘“ - S)‘,m =
‘ 1,0 2.0, T

thus all coefficents _?;‘ﬁ’m are determined successively by using
the recurence formulas (3.12) and (3.13) starting from the
boundary conditions (3.15) and (3.16).
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3.2 Numerical Results

The general solutions for impact problems obtained in the

last section will be applied to some specific problems.

Example 3.1 Let us examine a transient wave in a semi-infinite
elastic laminated composite struck by a rigid body of mass
density p, and initial wvelocity Vv, on the x=0 plane.

Denote the length of the rigid striker f/, as shown in Fig.3.1,

then its equation of motion is expressed as follows:

AV =,—-—-—?‘—E'!—— gilo,T) + i-‘i’—iz(o.'c) (3.17)
= T B f B )

By the use of (3.11), the boundary condition can be expressed as:

W @ _ P h 2, W th
Jemo ® Simare = W,Z‘"em{( Frmag= Teome)

2 0 )
+ §|§:( ?;nﬂA = Jz.n.e } (3.18)

By employing Egs. (3.12), (3.13) and (3.18), we can determine all
coefficients successively.

In Fig.3.2 the strain distribution in each layer at various
times is illustrated. In the numerical calculation, the laminate

properties are chosen as follows:

Layer 1 Layer 2
c1=5000.0 m/sec c2=3500.0 m/sec
E{=7200.0 kg/mm? E2=12000.0 kg/mm?
G1=2700.0 kg/mm? G2=4200.0 kg/mm?
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Fig.3.2 Strain distribution in an elastic laminated
composite struck by a rigid body
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Fig.3.3 Strain distribution in an elastic laminated
composite subjected to a constant velocity impact
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The calculations are performed by using the first 19 terms
of the infinite series of Eq. (3.11). It is obvious that the
strain distribution changes its shape with time, in the present
case, the strain at the struck end jumps to the value of the wave
front immediately after impact and then monotonically decreases

to the value zero.

Example 3.2 The second problem concerns the propagation of a
compressive wave generated by a constant velocity impact at the
boundary of a half space at t=0. Mathematically, this problem
can be represented by letting §, e in Eq.(3.18), then the new
boundary condition becomes
50}(.‘7);1»1.0 + lf}tzv:u,o =0 , i=1.2 (3.19)
In Fig.3.3 the strain distribution in the layer at various
times is illustrated. The strains are calculated for the same
composite as in example 3,1, and the solution (3.11) is
approximated by 19 terms. The results show that the strain at
the end of each layer, which is larger in layer 2 than in layer 1
immediately after impact, changes rapidly at first and
subsequently continues to decrease in layer 2 or increase in
layer 1, with diminishing rapidity, and ultimately approaches to
the constant same value in both layers 1 and 2 calculated by the

effective modulus theory.
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CHAPTER 4

Transient Waves in Viscoelastic Laminates

4.1 Fundamental Equations

Consider an infinite periodic array of two alternating
linearly viscoelastic layers, perfectly bonded at their
interfaces. We will treat the transient wave propagation along
the layers which are semi-infinite in length and are suddenly
loaded by a surface pressure applied at its end x=0.

For the type of propagation problems being considered, a
state of plane strain will be assumed to be in the z-direction.
Applying the diffusing continuum theory ( see APPENDIX B ), the
basic equations governing this composite can be written in the
form:

(i) Equations of motion

(1) Constitutive relation
%Eiﬂu &cm)«hj:Jéu—t')a(1,t')dt' , k=12 (4.2)
(1) Interaction term
1
P =B.{ lat)r- n(zn)+ fo, B'CE-1) { Uit - Tt }db (4.3)
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where

L, ATy Ly diBd)
oo =T, ey =g B.=Boy , BLt}:T

In the foregoing the subscript k refers to the k-th laminate, and
k-th layer is characterised by density p; , creep function for the
axial strain J& (t), relaxation modulus for the shear stress G#
(t), and thickness 2ht. Also 0% and Ux denote the averaged
stress and displacement in x-direction, respectively. In
Eg.(4.3), B(t) is a linear viscoelastic relaxation modulus which
is a function of Gk (t) and hit ( see APPENDIX B ). It is clear
from Egs. (4.1)-(4.3) that the motions of each constituent are
coupled by the interaction term which depends on the relative
displacement only.

In order to make the equation of motion into non-dimentional
form, we introduce the following new variables

S§=2/A: . T=Ct/hi, O%=0/0: . C=cz/ci. £=HRi/Rs

where ct=(1/f J&)/?, k=1,2, are the propagation velocities in each
material.

Substituting (4.2) and (4.3) into Eg.(4.l1), and expressing
the results in terms of dimensionless stress, the eqguations of

motion now becomes:

fort -i_ T W r T fc'=2,ﬂ._

Z__?Tz.t.za_[:LdQ(T TGy 'C)d 21 ‘P

. 2 u:u)
30 o 2 (T . dT' =48 4 <. (
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i T 1 M ' 1 P 7
- =0 (5,1 =TGR +2f { al(T-TI G TY - JO(T-T) G(3.T) }dT
2{ g -t {m T - J et | T
raf perty [ a0, - T alr-Tr G (T f dde

where (4.5)

1 2P — P T . _ <2 i _Jut) _B(r) Tz
Y=y K=RiJuB. , {=— . qxO)= 2T . Br= =%

Differentiation of Egs. (4.4) and (4.5) n times with respect

to dimensionless time t yields

A+2 'nfl-‘v n
it dv =30 _TY¢
tn&z+zza' Tnel-& +2J d, (I T) O—(Z;T) -C -[nagz btn }
(4.6)

PRI I R U ONEON i S
Sgm +2;G’u 2T +2-L 0 (T-T)- G}, THdT = Comaig +5

T¥ _ } TG } S AT .
ot {N“ JZ'C" +2§{°{"5f;7 Jdo.at,.. +2 {ai"r-Jalta Y dt

x|

+23. 6 {nm‘ n*z }”55 {o-30: }dt +4Z$ Z{de"gtga - Jo )';'ITJ}

Amt

nri-i

n . T
va g {d o - ol e +4ja’"'j oGy =] -0ty 03 } dT'dT’ (.79
Since the integral terms in each equations are continuous across
any wave front, Egs.(4.6) and (4.7) yield the following relations

between finite discontinuities across the wave front:

(2002 Prad [0 [ B0 - (2K

L=t

n2 [ nrz

2 03
[ﬂ:"*zz )+2 20k

imf

zv-?-

} (4.8)
fot) = (o) 3 (32

T 2T™
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K ('b'("] [*n'_x ] -I L 0—2] +2Z: i (0(“""@ ) %S—}} _J'(dzio"‘ﬁl-)[-g

=5l
vt P
+4§‘: & ;-.{d"[_f—oi] - 3o (S ) (4.9)

where, finite jumps across the singular plane are denoted by

square brackets following the usual convention.

4.2 Analysis

In analysis of transient wave propagation in a 1laminated
medium, we apply the multi-wave-fronts expansion method which is
presented in the foregoing chapter. In a laminated composite
with two different viscoelastic materials, two wave fronts, i.e.,
two propagating discontinuities appear in each layer, too.

Let us consider the wave fronts generated by an impulsive
surface pressure on the end of laminates. There are two wave
fronts, i.e., §=7T and {=c7 in each layer, expressed as straight
lines Si and S2 in the (-1t. One of them is an inherent wave
front, and the other is a wave front produced by an influence of
the other layer.

To simplify mathematical treatment of the propagating
discontinuity, we introduce two sets of skew coordinates Sp-Ta,
(¢=1,2), instasd of ¥-7.

As shown in Chapter 2, the relations between derivatives of
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any function f(f,t)=f%3,, Ty ) defined in two coordinate systems

are expressed as follows:

)£ @ v _TSW
JE” = cuz ( 2% 7T!) f T Ty (4.10)

For the problem treated here,
c®=1 and c®=¢
To find solutions, we assume that at an arbitrary location
of a layer k (k=1,2), the stress 0%(¥,r) can be expressed as the

#'(%2,72), which are

sum of two kinds of stress ¢§’(%,,7,) and ¢
caused by each wave front and are discontinuous across the 1line
Sy and S:2, respectively.

Using (4.10), and considering that the stress 039 is

continuous along the line Si, Egs.(4.8) and (4.9) can be

expressed in terms of ¥,-Ts as follows:

2 = A () ne2 az-L (1) LITN)
?Dgz[zg:"] 2 ag [gt921] -2 §UIO [z'(‘hr(zr'-‘] - [?a{_a::'] = 0 }
2 nH n4l ) {
L 2 o (- 2w () - 5 5 -
(4.11)
2 N __w ) N4Z_ (2) . ne2-l w
5%[%;—]_2;%;[3'(22—” ]+ (=ch) [ 2‘[3:: ]-2 ¢ ."Zz-d”[z(;\fz-l- ] 3-(71 ] =0
2 .n xm ml (x) ne2 mzl .27; w }
%}[%—]_2%[31-"“] ;d"[armzL]*'f» [l—] = 0
(4.12)
%1, (4, n (@), R (9), i i
T = G- (38 o4 (e (B25) - padosty (089
(l) Y 'h-lJ
+4§§ JZ‘:{O(: Zr"g-'a] —J-od [grn_ﬁj]} . =12 (4.13)
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Each stress ot%;g,Ta) (¢=1,2) is also assumed to be expressed in

a MacLaurin series of Ty around a point just after the arrival

time of each wave front:

C%(3,T) = G&Gv, Ty) + O%( 35, T2)

O T r 208
—Z‘ ' 3(1 ];I ni DT:" ]gz 4 i="2 (’-l.lll)

'n-o
The discontinuities can be expressed in an n-th order polynominal

of ¥ with a spacial attenuation factor as follows,

Tody 3 o-atelt 1.2 -
[ ] ,.Z.;n’”" ) f=1.2 . 1.2 (4.15)

Using Egs. (4.14) and (4.15), we can write the solutions in the

form

Guh Ty = 5 Y e Sy T W et

%, nm mi
R=0 WM=e ' * Nime Mu0

(4.16)
Substituting (4.15) into Egs.(4.11)-(4.13), and comparing the

terms of the same order of %;, Wwe can obtain the recurrent

formulas for the cofficient 7£?m:

(0]

w
Tinesmer _'é-{ Y'“:. (1) —2- Zq"' Tine2-L Lm 71\1\(4’) } }

[$2] W

n nex
zne2,m =X - " __2 1
{ m(7z) 2-Tanet met o1 lz-'dz. 2ome2-3,m + C‘ Ynn(’]") }
(4.17)

[22)
(2)

Lnezm == cz{ Tn 'n(7l) -2 71 ,,,,,,,..,,—zc’ Z.du Tinsz-im = €1 Yam (9 } }

77:*1,7:14—— r;‘.,,\( 2 dn zmz- @
{ B2 F b Tinacin +5. Y0 ) (4.18)
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1 W ) © 1 th
?\l-’:\(Yi) = Yim.'nnz - Zd;. Tfi.u,mﬂ + (d;0)2'7im-'h+ 20080 - T finetm

) ) 3 by ioehy. .,
"?7:;(4’) = Yram ~J-Tzm+ 2';2..'{(“"*@') Tinim =J- (0 + o) Ta 'n}
.= I w
+4i§l.z {q?o. :.3:-1—3-’“ —J- 0l - ;,nd'--;‘.n} , k=12, i=1.2
- =i . .
3 (4.19)

where

A=¢/-c2 , K=% T B
At the loaded end £(=0Q, {;=(,=Q and 7 =7:=7, and Eq.(4.16)

now becomes

Gi(O.t):Z{Y:..)n.a'f E:\,e}"';%!—; ®=1.2 (4.20)

If the stress at £=0 is given in a MacLaurin series of T by

0300, T) =) Qi ;f:‘ , 4=1.2 (4.21)

heo

then, comparing Eq. (4.20) with (4.21), we obtain
Yimo + Time = Oim k=12 (4.22)
Thus, if the values of the coefficents ¥ %. and Y= for
n=Q and n=1 are known, all the coefficients can be determined
successively by using Egs. (4.17)-(4.19) and (4.22). Those values
for n=0 and n=1 are obtained as follows: Equation (4,4) expressed
in terms of §,-7T/ yields after integration across the wave line

St

2 1 2630 $
5.[0'1‘"3 +awu[0"] =0, —25%,—.[0-20)]*'( 1= T J-20(0:") =0

(4.23)

Repeating the same process to the second equation of (4.23), we
obtain
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(oz")=0 (4.24)

and substituting (4.24) into (4.23), we get

1)
(o9)=n e obh,  (o)=0 . [§F] =0 (i-25)

Similarly, the following relations are obtained from Eg.(4.4)

expressed in terms of §(,-Tz:
@ _g! 201y _
[05)=Yeow €5 [oP)=0 ., [$5]=0 (4.26)

Equations (4.24)-(4.26) imply that the coefficients h(,an),m for n=0

and n=1 should be

(4] (12

@ @ _ o _ _
do=lz1a=0

Q] 3] )
71.0.0 =aA1o , 0.0 — Qz,0 , 100 = [1.1.0 = 7!-1-! =0, 7;.0.0 = 72
(4.27)

Thus, starting from Eg.(4.27) and boundary condition (4.22), all
coefficients are determined successively by using the recurrent

formulas (4.17)-(4.19).
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4.3 Viscoelastic Model

We consider a three-parameter solid for a constituent of
linearly viscoelastic laminates. The corresponding axial creep
function Jt (t) and the relaxation modulus G4¢(t) for the shear

stress are defined as follows ( see APPENDIX C ):

_ Ao Ki+§-6i- Kh ;Gio Gto (4.28)
_ Gt , Gko _ Gte 4 (4.29)
Grlt) S+ e (=50 ) 9

where K4 and 74 are the bulk modulus and the viscosity
coefficient of the viscoelastic material, respectively, and

G+0=G%(0) .

Differentiating Eq. (4.28) with respect to t, we obtain

Loy = M Kg +5Go _ Ki+ 3Ghe G nb § =0
J‘E(U) dit (1 K'k"'ﬁ'ﬁ'ﬁ )( K'ﬁ*‘%‘eﬁu 2-,”2) (4.30)

Je o) ___cm( Kt+3Gﬁo___l>_ Sto (_ 301120)1 ”

i
o%o = 2J4(0) K1+&G-“, 274 Gt -31)
Applying the Laplace transformation to (4.29), we obtain

x o f ! _ L 25+ Mk
Gu () =5 G ( 5 +5mp) = 20% a0 (4.32)

where

_ G Ke+rEGto 3
T2 T a2 G

Substituting (4.32) into Eq. (B2) ( see APPENDIX C ) we obtain the
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interaction coefficient

BY(sy= 3G -G - s*+es +d
RGIG)+ RiGls) * s(stP)(s+P) (4.33)
where
- 3Gio G20 = Q+( az- b)‘/z’ = Q- (al_ b)‘/z
B ﬁleo + f2 G0 ’ CP, 432

a=1 2R Gzo +2F2 U2 Grio + RiMaG20+ Ra i Gro
4 RiGzo + RzGewo

]

b=—3-mp, ,  e=(pu+m) d-:—i;;m,uz

Performing the Laplace inversion, we get from Eq. (4.33)

H-ed +d $-eqr +d
PLP-42) P (P2~ R)

Bty = B.{ qf% + exp(-pit) + ex?(—fe’d}

(4.34)

and differentiating (4.34) with respect to t, we cbtain

ﬁ."=—£§§§§ = Kb + Kelcbdt lz1 (4.35)

where

$roed +d =_'.f£;:§?ﬁL
K|=_;!~— q’l(‘?u“?x) ’ K2 2 CPJ((PJ"'(PI)
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4.4 Numerical Results

Example 4.1 Consider a semi-infinite viscoelastic laminated
composite subjected to a constant stress o¢; (dimensionless stress
=1) at its end surface abruptly for 7T5>0. From Egs.(4.20) and

(4.21), we obtain the following relations for T>0.

=n It 11 T" _
0o, T) Z.{ rﬁ.,n.o+ X }.n! =1, k=1.2 (4.36)

ne=e &.n.e

hence

Yieo=t , Yemo=t ,  Vime+ Hime =0,  het.z (4.37)
Using Egs. (4.17)-(4.192) and (4.37), we can determine all coeffi-
cients successively.

The results are shown in Figs.4.l (a),(b). The calculations
are performed by using first 25 terms of the infinite series of
Eg. (4.16). Fig.4.1l(a) shows the stress waves in a layered medium
composed of two sorts of viscoelastic materials, and in
Fig.4.1(b), one layer is assumed to be an elastic. In both
figures, the average stress in each layer is plotted against x
for several values of t.

Both results show that the stress wave changes its shape
with time. However it should be noted that the decrease of the
amplitude of the wave front is owing only to the wviscosity of
the material, and is not affected by the coupling action through
the interface. As shown in Fig.4.1(b) the wave front in elastic

layer does not decrease at all.
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Example 4.2 1In this example we consider a laminated composite
subjected to a stress linearly rising from 0 to 05 with rise time
To -

In Fig.4.2, the stress of each layer is plotted against t
for several values of x. Layer 1 and layer 2 are assumed to be
an elastic and a viscoelastic material, respectively.
Calculation is perfomed by wusing first 25 terms of solution
(4.16). It is found that the stresses just behind the wave front
decrease remarkably with time in the elastic layer with faster
propagation velocity, and increase in the viscoelastic layer with

slower propagation wvelocity.
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CHAPTER 5

Impact Problems of Viscoelastic Laminates

5.1 Equations of Motion

The problem considered here is to determine the transient
stress waves in wviscoelastic laminates, caused by an impact of a
rigid body. The analytical treatment derived in Chapter 4 1is
extended to apply to the velocity boundary condition.

For the wave motion along the layers, as shown in Chapter 4,
the basic equations derived from the approximate continuum theory
can be expressed by Egs.(4.1)-(4.3). In the present chapter,

instead of Eq.(4.2), the following constitutive relation is

employed:
- t - ,
Tr{x.1) = Eto %—u;} +S Ek(t -1) %‘ii(x,t')dt , *=1.2 (5.1)
o#
where ‘
[ d Est
E“’:E‘R(O), E;(t) = T{:’Ei(—)

Substitution of (5.1) into (4.1) and (4.3), and
differentiation of them with respect to t, vyield the following

equations:

.= e X t t L~
T _ a0 el 20 prtgonl I gty — L 2P
wr T8 T TEe 3t S, Eatt “S, e (X )bt PR ot
) (5.2)
LAV 1 S S XY S DO L K PRSP C W 7.
e S et Ee L Ez(t t)L 31’(1,’()(& o ot



2= B { T -THan) -;{S B'(t - US {muk’) Vouth )t dt' (5.3)

where Vi (x,t) is the particle velocity and ce¢=(Et/ft )V* .
By introducing the following parameters
= x/4, T=ct/f, Vi= W/V , C=cafC1, R =hilt4
Egs. (5.2) and (5.3) can be rewritten in the non-dimensional form,
where Vv, 1is an initial velocity of the rigid body.
Differentiating them n times with respect to dimensionless time

T, we obtain

’

e L] net T T =z »
v ? ‘ _ ¥
2V 3 V%, J e,'(r—t)J LUy et dr - 2
[

T R T, 1% 2T

} (5.4)
”sb

»e2 N2 net 2
3 Ve 2 U L2 2 lez
Perraals T ~2C 7T"’J eix- T)J Y% (¢, dt-dc’ + 3

[ "'U'z nel LT
b 14' n‘c“ ?or" +2 ;?cwf Bl - T)J {V1(i ™ - Uiy, ‘l’)}d’l‘ dr’
(5.5)
where
y R b= fiB./En, 3__:?:&: ,
et ) =—’2Ez§—:) ’ gty = B0
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5.2 Analysis

According to the analytical techniques proposed in Chapter
3, the state quantities, such as stress or particle velocity at

an arbitrary location of each layer, can be expressed by:

IS G} [ (n

.y T30

OR(3.T) = ‘Z Sl sl M Z : {wn %, (5.6)
- S vy SO SRS

Vel 1) "Z; o) [F.};f L 'n_?[ rcf’: ;liz (5.7)

where
0% =6‘i/ﬂCIVo
Also, as shown in Chapter 4, the propagating discontitnuities in

the viscoelastic materials can be expressed as follows:

(§ 3] o

{? Ve = }: foomm - exr( el¥e), *k=1.2, f=1.z
WY =

(5.8)
In order to express the stress (5.6) as a function of the

particle velocity wi, we rewrite Eq.(5.1l) as follows:

A 20% _ Vs 2 (T (2
% 2T 2% 27T—L e*u_t)f. S (3, Thdedr (5.9
where
e = Ete / Eto

After differentiating (5.9) n-1 times with respect to T and
considering the relation (4.10), we obtain the following

relation:
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()] (] { n t) Ty [44] ,
o F® up® 3‘]()—226 Tt en°§ Wk 4

T
5 2Tr et T8 & et . 32
i 0 Tt ,
+2)" ek 7{,‘,’_" + 2 S €% (T—Th) 4" 4Tl (5.10)
? -5
i=! 1

where

1 for =1
Cm)z{_c for §=2

Since the integral is continuous across the wave line, Eq.(5.10)

yields the following relation between finite discontinuities:

) 1) n—i—l 4] . Y
e T _ 2 [3 m]_[av‘f] Zei. (T8, zze‘f. il yf]
EZ( 27} ]" Wa b AT TR Lt ) T

L=t

(5.11)
By employing (5.11) and (5.8), Eq.(5.6) becomes
2 o 0 37
(%, T) = CmZi{ joinrrnﬂ —€lay’£nr.m —finm
=0 M=
()
—ZZeiv( T‘k net-i, mef —EN )oi mi-i,m )
l-(
M I
1 2 _
+2lZ=;€§o ¥, n—;,m} Tni i 2zp ( eﬂaf!) (5.12)

By the use of (4.10), and the consideration of
discontinuities across the wave front, Egs. (5.4) and (5.5) can be

expressed in terms of [ -Ty as follows

* _,vm 2 [3“" U,“’ _ w ?n4,u)
)Zz }'(: ]—2)_)“ -ot'nﬁ‘] - Z[%s ]+[)T,"]

()]

SR

) 2 (T84 - o [T - o [ 30 - B[

)T;n«n '[-'mz c2 -a-["l
(5.13)
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nH_(2) Nz, () N @
w3 ] oo (5] = 2 1aM e (55

(z)

TV 2 (v @) _ o TYY
ﬁi{ szz ]_27_2;[ AT ] - 2{ p ] 7[ 2‘(:"] (5.14)
) LUm et ‘ Sm-mum —’hfZ )mz- ”
(l)}_ ‘Z.;e ° 7Zz[ Tt'“'t] ‘Zﬂ,e ° _[ -tml-c.] ?L::e* [ Tmz- ]
2 q,(ﬂ ?'“ UU\ -b’\U(l) ] i { )'R'lU,(l) )’ﬂ- @), }
b{n. {z-c; ]'{nli}+2§{3o [n“-‘] {ﬁ,ﬂ] (5.15)

Substitution of (5.8) into Egs. (5.13)-(5.15) yields the recurrent

formulas for the coefficient _‘Pé?w)\.a\ as follows:
(1] (1 [C})
mstnnt = A Prom (£) — 2 P (B0) - o ) }

L | }
joz ntz,m = 1{ Sbn.m () -2 f "’m,m” _2.4>:;(§2)+ 7():)"“)0)}

(5.16)
?(2’ 2 { @ (2) (2}
twz,m =5 Prm () =28 netmer =2 Prm( $1) - cz ¢, UP}}
(2 (2)
rz Ny, met ="2L{ n,m(ﬁ"z)—z ¢”:7ﬂ(§’2)+2’ 7:;2!:1 ("P)}
(5.17)
4,(!)
nm(ﬁ = .(fi n,mi2z -2€u 50; n,m+1 + ( e“) Yi nm "‘2814?;(;),
+1.m
P (E2) = Z { 284
nmPg & e"" £, n-z mez — 2~ 5?& n-l,mer 4 (€4,)% }‘" net, ,,,}
LAd
(8]
-2 et. n )
g i { jpi net=i, met — €10 -F%, ne1-i. rn} g €%s- %, me2-0,m
AW wn o 94
b /m ) = Lo~ 2am T ZZ 50 { Yl n,-( m 2‘;)—1.,7:1 (5.18)

izt
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where

A= C’/(,—Cz) ’ b= ﬁl‘Bc/ElO

If the particle velocity at {=0 is given by

e n
Vk(0,T) =Zﬂi,a% ’ *=1,2 (5.19)

Nud

then, we obtain as boundary conditions as follows

(2)
e + Prme = T, k=1,2 (5.20)

Applying the same procedure introduced in section 4.2, we can

determine the lowest coefficients as follows:
(€3] (2)

1,000 = C1,0 , 2,00 = U2,0
(5.21)

27 ) 2> ) i) _ ol =0
10,0 = Jyoe = Je,1,3 =0, 20,0~ JTz2,00= J2,1.1 T

Thus, starting from Egs, (5.20) and (5.21), all coefficients are

obtained successively one by one,.
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5.3 Numerical Results

In the present section, specific problems of longitudinal
impulsive motion of viscoelastic laminates subjected to an impact

are treated by the methods previously developed.

Example 5.1 Let us consider the longitudinal compressive waves
in a laminated medium struck on the contact plane x=0 by a rigid
body with finite length 8. and initial wvelocity v, . In the
analysis, the -perfectly plane contact is assumed. Then, the
equation of motion of the rigid body whose mass density 1is

designated by £, is expressed as follows:

AUk Plfl:’

— 'ﬂz
~—(0,T ——
7T O e

{oon + 22000, ) (5.22)

By the use of Eq. (5.12), the boundary condition (5.22) can be

expressed as

0 (2 Phi Z 5 AN m
oot Jg e, 0 = ————— -
net,n f.Q (ﬁ('f'ﬁz g o C(D { Ti?\h’ elb &,n-1,0
(” ZZ ( 1 (4] n .
Frmo — ek ?ﬁ.n si-1,1 —Cho-Sn1-1,0) +2)7 et Fh ., }
i., 7] ’,
(5.23)
where
St = Ete/Ero , E®= fz/fy, CP=cyfer, *k=t.z,14=t2

Using Eq.(5.23) and (5.16)-(5.18), all coefficients are obtained
successively.
In Figs.5.1 (a),(b), the average stress in each layer of
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laminated composite struck by a rigid body is plotted aganist x
for several values of t. Fig.(a) is the case of two alternating
viscoelastic layers, and Fig. (b) is the case of an elastic (layer
1) and viscoelastic material (layer 2). The calculation is

performed by using first 25-terms of the infinite series (5.12).

Example 5.2 We now turn our attention to the stress waves in
semi-infinite viscoelastic laminates due to a constant velocity
impact, i.e., the velocity of the impact at the end of the
laminates is kept constant. In this case, the corresponding
boundary condition is obtained by letting g, »o0 in Eq. (5.23)
Pemet,o + Fometre = 0 (5.24)

The stress waves due to a constant velocity impact are
plotted in Fig.5.2 aganist x for several values of t. Here again
the composite used in Fig.5.1(a) is employed. Calculations are
performed by using first 25-terms of infinite series (5.12).

The results show that, in the viscoelastic layers considered
here, the wave front propagates with constant velocity and the
magnitude of wave front decreases exponentially with time t. It
is found that, 1in the viscoelastic 1laminates, wave shape
modification occurs as the results of a geometric dispersion and

a spacial attenuation.
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CHAPTER 6

Experiments of Transitent Waves

In this chapter, experimental studies on a transient wave
propagation in an elastic laminated structure are presented, and
the strain wave modification along the layers observed experimen-
tally is compared with the theoretical calculation mentioned in

Chapter 2.

6.1. Experiments

Strain gauge

\
\\\\\\\\\\\\\\\\\\\\:\\\\\\\\ 9 \\\\\\\C\\\\\\\?—
NN A [ &%\C‘SS\\\N{
10115 115

2heu= 20w ,2bw= 20w
enzhwi/3 , ez hool/3

Fig.6.1 Specimen

The composite structure used in this experiments is composed
of 4 plates of aluminum and copper. Each plate was pressure
bonded to each other by using epoxy resin. The dimensions of
specimen are shown in Fig.6.1l. In order to realize the assump-
tion of the infinite periodic array of layers approximately, the
outer layer with half thickness of the corresponding inner layer
is bonded on both sides of the specimen.
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Fig.6.2 Experimental apparatus

The apparatus used to generate and observe the propagating
strain pulse is shown in Fig.6.2. In this experiments, the
aluminum buffer is attached at the top of the specimen as shown
in Fig.6.l, and the strain pulse is generated by the impact of
the aluminum striker on the buffer. Through the buffer with
120mm length, the shape of the transmitted wave front is
corrected to be uniform and the plane wave enters the specimen.
The strain waves in each layer of the composite are measured by
strain gauges. In the present experiments, the strain gauges
were bonded at the position of h;//3 (2hy= thickness of layer)
from the center line of each layer as shown in Fig.6.1. It is
because that, according to the diffusing continuum theory (see
APPENDIX A), strain at this point is equal to the average strain
in the cross section of the layer.
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The strain measurement is planned to be finished before the
release wave from the lateral surface of the specimen returens to
the gauges position. The experiments are performed at relatively
low stress levels, and so, the theoretical calculations are
performed assuming all of the materials as linearly elastic.

Material constants used in calculation are listed in Table 6.1.

Table 6.1
Aluminum ( Layer 1 ) Copper ( Layer 2 )

P =0.2755x107" kg.s? /mm* §,=0.9133x107 kg.s? /mm*
Ey=7200.0 kg/mm? E2=12000.0 kg/mm?
G1=2700.0 kg/mm? G2=4200.0 kg/mm*

6.2. Experimental Results and Comparison with Theory

The comparisons of the wave forms propagating along the
alunminum and copper layer are shown in Figs.6.3 and 6.4. Solid
and dotted lines in these figures mean the strain variation with
time in the aluminum and copper layer respectively, observed at
the positions 10mm, 25mm and 40mm far from the loaded end. The
results show that the strain wave changes its shape as it
travels, The strain in the aluminum layer decreases its
amplitude but on the other hand, in the copper layer, the strain
wave increases its amplitude as it travels; and then the two
strain levels in both 1layers gradually approach to the same
value.
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The comparisons between experimental and theoretical results
are shown in Figs.6.5(a),(b) and 6.6(a), (b). Figures {(a) and (b)
show the strains in the alminum and copper layer, respectively.
Solid lines in Figs.6.5 and 6.6 are the strain variation observed
in the experiments and are the same one as shown in Figs,6.3 and
6.4, respectively. Dotted lines are obtained by the theoretical
calculations. Calculations are performed employing the strain
variation measured near the loaded end ( 10mm far from the loaded
end ) as the boundary condition. Using a least-square criterion,
the input strains are expressed by the 24-th order polynomials,
and the calculations are performed by using the first 80-terms of
the infinite series solution (2.35).

The agreement between experimental and theoretical results
is good; especially for the arrival time of the wave front and
the wave shape of rising part. Those results show that the
diffusing continuum theory can predict all the important
qualitative features of the transient wave, and also the

quantitative agreement is fairly good.
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CHAPTER 7

Conclusion

The transient waves in laminated composites have been
treated, and the wave shape modification has been investigated by
the diffusing continuum theory. Concerning the stress waves in a
composite materials, usually the head-of-the-pulse approximation
was used to obtain the far-field solutions. In the present work,
we have been concerned with the near field where the wave front
changes its shape as it travels.

In Chapter 2 and Chapter 3 of this paper, transient waves in
the elastic laminated composite have been treated, and behaviors
of strain waves near the loaded end have been discussed.

In Chapter 2, transient waves in semi-infinite elastic
composite submitted to the surface pressure at the end of
laminates have been investigated. In order +to obtain an
analytical solution near the loaded end, the multi-wave-fronts
expansion method has been proposed which is useful to treat the
transient waves with two discontinuous planes like as the wave in
a laminated medium. Analytical results by the present method
have been compared with those obtained by the integral solution.

In the theoretical analysis, two sets of skew coordinates
along the characteristic curves have been employed. The use of
these coordinates has facilitated the mathematical treatment of
the propagating discontiuities in laminated medium. It has been
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shown, for the elastic laminates, that the discontinuity
[5%#73t§] at the wave fronts can be expressed by the n-th order
polynomial of the spatial coordinate ¥y . Furthermore, It has
also been shown that the coefficients of the each term of the
discontiunity are determined by the recurrent formulas derived
from the equations of motion for the elastic laminates; and
infinite series solution obtained from the present analysis can be
determined step by step from the lowest term. This approach is
mathematically more simple than Achenbach and Reddy's one in
which they obtained each term of the infinite series by
integrating the differential equations one by one. And so, while
in their approach, only 7-terms were used for the wviscoelasitc
single rod, in our approach, the first 25~terms solution has been
obtained easily for the elastic laminates. It has been found
that the present method is applicable to any boundary condition
and the calculation time is reduced remarkably compared with the
conventional integral solution. The numerical results have shown
that the transient wave modification in the elasitc laminates
occurs mainly as a result of the energy exchange between two
layers due to different natural propagation speeds in different
layers.

In Chaper 3, the analytical treatment introduced in Chapter
2 has been extended to apply to the velocity boundary condition.
In this chapter, the equations of motion have been expressed in
terms of the particle velocities, and the relations of the
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discontinuities between particle velocities and strains have been
obtained. As the numerical calculations, two examples have been
considered. The semi-infinite elastic laminates impacted by a
rigid body has been first treated. The boundary condition for
this problem has been obtained from the equilibrium of the motion
for the rigid striker. The second example is concerned with the
composite subjected to a constant velocity impact. For this
case, the boundary condition has been easily obtained from the
limiting case of Eq. (3.18) as {, +o¢, and it has been shown that,
at the impact end, the strains of two layers change with time and
ultimately approach to the constant value.

Chapter 4 and Chapter 5 are concerned with the stress waves
in viscoelastic laminated composites. The multi-wave-fronts
expansion method introduced in previous Chapters has been
extended to analyze the transient waves in such viscoelastic
medium which were difficult to treat by the conventional method.
In Chapter 4, the transient waves in the semi-infinite
viscoelastic laminates have been investigated for the case of a
surface pressure end loading. Impact problems of viscoelastic
laminates with rigid bodies have been studied in Chapter 5. The
diffusing continuum theory for the viscoelastic laminates has
been employed. BAnalytical formulations have been constructed for
the medium of viscoelastic layers that obey the general linear
viscoelastic relation. It has been shown that, for the
viscoelasic laminates, a propagating discontinuity [fdi?at{] is
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expressed in the form of an n-th order polynominal with respeet to
Ey accompanied with a spatial attenuation factor.caused by the
viscosity of the material, and the coefficients of the
discontiunity are determined by the recurrent formulas obtained
from the equations of motion for the viscoelastic 1laminates.
Calculations have been performed for two kinds of composite
materials composed of elastic and viscoelastic layers and two
sorts of viscoelastic layers. From the numerical results for the
viscoelastic laminate, it has been found that wave shape
modification occurs as the results of a geometric dispersion and
a spatial attenuation.

In Chapter 6, the transient wave propagation has been
investigated experimentally by wusing an elastic laminated
structure, and the results have been compared with theoretical
ones. The agreement between experiment and calculation has been
good enough, and it has been found that the theoretical treatment
used in the present work can predict the important aspects of the

dynamical behavior of laminated composite well.
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APPENDIX A

Interaction Term for Elastic Laminates

The interaction between two constituents in the laminated
composite is caused by the shear stress acting on the interface
of the layers. Therefore, in order to determine the interaction
coefficient B(t), we should obtain the shear stress at the

interface.

Y2

o X‘LH‘
LN T

-——

——

Y Txyo

~N
T
»

Fig.Al Typical displacement profile in a laminated composite

The geometry of the layers and the profile of displacements
are shown in Fig.Al, where Ur and Uz represent the displacement
in the layer 1 and layer 2, respectively. The displacement and
shear stress are continuous across the interface.

Now, let us assume that the displacement in the y; -direction
which is relatively small compared to the displacement in the
x-direction may be neglected and the gradient of the shear stress

is independent on y; in each layer:

Then the profile of a displacement in any cross-section of layer
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can be expressed as follows

— 5“ 2- z jei, 2
Vi = 2-(;3 (Y Rid)+x 3 (A2)

where K is an arbitrary function of x and t.

From Eg. (Al), the shear stress Txyo at the interface is given

by
Tayo = js'ﬁi ="§;'ﬁz (A3)

Now we define the average displacement of each 1layer by the

following integral:

h z
Ui = 4| Uidd LR (ak)
Then we may write
5’J'f13=-3'T(?—{U5—K} , i=t2 (A5)

Substituting Eq. (A5) into Eq. (A3), we can obtain the shear stress

at the interface

Tz;o': B { Ul - Dz } (A6)
where
B = 3G G2
G2+ R G (AT)
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APPENDIX B

Interaction Term for Viscoelastic Laminates

In the present appendix, the interaction term p and
coefficient B(t) for the viscoelastic laminates will be
determined by the methods developed in APPENDIX A.

By employing the shear relaxation modulus G&(t), (k=1,2),
the relation between shear strain 74(t) and shear stress T&(t)

can be written in the form

Tedt) = Jto Gutuf Ge(t-1) ‘”““ dat’ £=1.2 (B1)

where 7go =74#(0). Assuming that the shear strain is expressed as

DUE/Byﬁ , it becomes, after Laplace transformation,

,
Tieo) = Too Gi(s) +GE [ Vi) = Yoo} = 5-GEc» -—?2—1’512—5)— , k=t,2
(B2)
Introducing the following assumptions,
TR _ =5-Gi ()__UESL f (s) , fmt.2z (B3)

TS

the shear stress and the displacement in any cross-section of the

layer become

T€(5)=f:<s)-7i , k=1.2 (BY)

Ui(S) *-Z*—Sf—z}g{;(yz—if:)'f}(‘ , k=t,2z (B5)

where K*is a function of s.

From (B3), the shear stress 7s; at the interface is

- 69 -



T.’ES)=-7(,‘($)-£| =—f:(s)~ﬁz (B6)

The average displacement of each layer becomes as follows
f& ¥
TF ey =1 N > 1O B TR ~
W) =—- 5. Uity dYs 35676 e+ K', f=1.2z (B7)

Substituting (B7) into Eq. (B6), we can write the shear stress at
the interface in terms of the average displacements

e =s-8"®{ Ues) - Wis) ]

(B8)
where
x 3G1(3)-Gi(s)
= B
B G + Gis) Rz (B9)
Applying the Laplace inversion to Eq. (B8), we obtain
— = t — — )
Toh) = Bo{ b - W) +j B'(k-1H{ Ut - Tat) | dt (B10)
°
where B(t) is the Laplace inversion of B* (s), and
B.~Bw , pu)=-4E4 (B11)

Te(t) in Eg. (B1l0O) is equivalent to the interaction term p in

Eg. (4.3).
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APPENDIX C

Constitutive Relations for Viscoelastic Laminates

In this appendix, we will determine the constitutive relations
for a viscoelastic material, applying the correspondence
principle.

For the wave motion being considered, we assume that the
strain in the yg -direction is relatively small compared to the
strain in the x-direction and can be neglected. Then Hooke's law

for elastic material can be written,

Oix = (K& +2Ge) €ex Texy = Gk Yeay ‘en)

where K& is the bulk modulus and G& the shear modulus. We now
introduce the correspondence principle represented by the

following substitutions

’

i
3K& %— ) 2G4 <« S: (c2)

and, using Eq. (C2), Eq.(Cl) yields the corresponding relation for

a viscoelastic material as follows

Pf:Pf:Uiz = ‘é‘( P;ET;; + 2P 0% ) €4 ) Pf:'(u;z';—dknzg (¢3)

where P", Q", P' and Q'are the operators which describe the
viscoelasic behavior of the material.

We now apply this relation to specific material which is
elastic in dilatation and is viscoelastic of the three-parameter
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solid in distortion:

. d
Pa= 1+ Fud Q= 3" g
" " (ch)
P’L =1 ) th = SKfK
Then Eq. (C3) becomes
Ge + PG =  Ke+ 3800 Eax + (KR + 28140 E4x (c5)
Thay+ PorThay = ;— 3\;, 7&13 + %2;, h‘"é‘ (C6)

From (C5) and (C6), the axial creep function, the axial and the

shear relaxation modulus are obtained as follows:

Ki+ 5 34 ke+38% L
i - Yy WTarY 57
Jatr= Ki +2 { Ko+ 3 3%\/?t1)£xP< Ke+53%/P8 P ) }
(cT)
Estd= (Ke+ -%—‘Z’f") + -—i—( 3;.( [ Pei = §o) 1P (=1/Pss) (c8)
Gek)=2-{ $he + (5 3’“ — 24 21P(-t/Ph0) ]} (c9)
Substituting
Pt =27%/ Gro 5 Jao~ To , G 47% ©10)

we can rewrite Egs. (C7)-(C9) as follows:

{1 -(1- Kt + 5 Gho

- 1 Kt + 3610 Gioy
—— {4
Ja) Ki+ 5 G K% +§—'Giv) exp (= Ki+5-61‘o 27 )}
2 Gto (c11)
Es®) = (Kt 3 Gro) T 5 Goo AP (— 552 1)
7% (c12)
Gty = G+ Glarp (- Tet) (c13)
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