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ABSTRACT

The transient wave propagation in laminated composites parailel
to the iayers is treated, and the wave shape modification is
investigated by using the diffusing continuum theory. Concerning

the transient waves in iaminated rnaterials, the far-field
solutions were obtained for the elastic larninates by using the
head-of-the-pulse approximation. Butt the near-field behavior of

wave where the wave fxont changes its shape as it traveis has not

been investigated. Especially concerning the viscoeiastic
larninates, no analytical raethod for the transient waves has been

pxoposed up to the present. In the present analysis, the
transient waves Å}n the elastic or viscoelastic larninates are
considered, and behaviors of stress waves in the near--field are
investigated. In order to obtain an analytical solution in the
near-field, the multi-wave-fronts expansion method is proposed
which is useful to treat the transient waves with two wave fronts

like as the wave in a lamj.nated medium. The near-field solutions

ior the transient waves in the eiastic or viscoeiastic iarninates

are obtained for the cases of the two kinds of compressive
boundary conditions. The experimental studies on the transient
waves in laminated media are performed, and the cornparison
between experÅ}rnental and theoretical results is described. The
results show that the theoretical treatrnent used in the present

work can predict all the important qualitative features of the
transient wave, and also the quantitative agreement is good
enough.
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                           CHAPTER i

                          Introduction

     Increasing use of composite materials in modern structural

elements has recently stirnulated considerable interest in the

dynamic response of composite materials, and wave propagation

problems in those materials are a subject of interest in numerous

tields of engineering. It is well known that stress wave in a

composite material shows geometric dispersion as a resalt of

scattering induced by the inhomogeneities, and its shape is

modified as it propagates through such a medium.

     The investigations on stress waves in composite rnaterials

can be classified into two kinds of studies, one on a dispersion

relation for harmonic waves and the other on a modification of

transient wave. In the study on a harmonic wave propagation

parallel to the layers in an elastic larninated composite, the

exact dispersion relations were obtained by RytovCl), and by Sune

Achenbach and Herrman(2). Those exact theories, however, are

very complicated in mathematical treatment, and so approxirnate

models(2-6) which.exhibit geometric dispersion, and are less

complex than exact forrnuiations, were proposed by several

authors. One analyticai model satisfying this criteria is the

"diffusing 'continuum" theory proposed by Bedford and Stern(3).

Other models, for exarnple, the "effective stiffness" theory and

the "continuurn mixture" theory were proposed by Sun, Achenbach

                             -2-



and HerrrnanC2) and by Hegernier, Gurtnan and NayfehC4),

respectively. The dispersion relations for harmonic waves

derived frorn these approximate rrtodeis were cempared with the

exact theory and many argurnents have been made on the aecuracy of

the assumption used in these theories.

     An analytical study on the transient wave propagation

parallel to the layers of a linearly eiastic laminated composite

was. rnade first by Peck and Gurtrnan('7) by using the elastic

theory, and then ScottC8) deveioped th:Ls approach. to a three

layered piate. In those studies, they derived the formal

solutions by superposition of the infinite series of harrnonic

waves, and gave the far-field solutions by using the

head-of--theTpuise approximation. !Vheir results are vaiid for

waves far from'the loaded end where the shape of the wave front

becornes.stationai. The approximate theories mentioned above were

aiso used by Sve and WhittierC9), by Hegemier, Gurtman and

NayEeh(4) and by Hegemier and BacheCIO) to solve thte trans.ient

wave propagation problerns in the laminated materials, but they

also used the head-of-•the-pulse approximation and presented the

far-fieid solusions. Accordingly, the behaviors of the stress

waves near the ioaded end where the wave front changes its shape

as it travels were' not discussed in these analyses.

     Real cornposite rnateriais of interest in engineering exhibit

marked viscoelastic.pscoperty, Wave shape modification can also

occur as a result of spatiai attenuation owing to the viscosity
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of the material and so in the study on a wave propagation in a

viscoelastic composite rnaterial, it is necessary to consider not

oniy a geometric dispersion but also a spatial attenuation.

Concerning the waves propagting parallei to the layers of the

viscoelastic laminates, the dispersion relations for harmonic

waves were investigated by Stern, Bedford and Yew(ll) and by

Tanaka and ImanoCl2). For the transient waves, however, no

analytical method has been reported up to the present.

      !n this paper, txansient wave propagatinon in an. elstic and

a viscoelastic larninated composite is treated. These laminated

rnedia are composed of an infinite periodic aracay of two

alternating layers which differ in material properties and in

thickness. Waves propagatÅ}ng parallel to the layers in

semi-infinite laminates loaded by irnpulsive forces at the end

face are analyzed and wave shape modifications near 'the loaded

end are considered.

    In order to describe the fundarnental equations of motion for

the transient wave problem of a iaminated medium approximately,

the diffusing continuum theory is ernployed in the present work

which was proposed by Bedford and SternC3) to determine

dispersion reiations for harmonic waves traveling parallel to the

laminates. According to this theory, the propagation process can

be described approxirnately by a set of two.coupled partial

differential equations. ThLs approximate theory is reasonabiy

simple ande at the sarne time, is known to be able to predict

                             .4 --



fairly accurately the response of harmonic waves in the elastic

iaminates, and is also applicable to the waves in the

viscoelastic iarninates.

     As an analytical technique to find solutions for transient

waves in rnedia, there has been an integral transform method such

as Fourier-llaplace transform rnethod. For example, using this

method, PaytonC13) investigated the dynarnic bond stress in a

composite structutte subjected to a sudden pressure rise. In his

analysis, however, the numerical calcuiations were used because

of the complexity of the inverse transformation for the integral

solution. Hence, it see!ns to be difficult to treat the transient

waves in viscQelasic laminates by the method. In the present

paper, a new approach. to the anaiyticaZ study on transient waves

in iarninated raedia is proposed which. is based on the wave front

e)rpansion technique.

     Th.e wave front expansion teehnique was first introduced by

Achenbach. and ReddyCi41 to find solutions for transient wave with

singZe wave front propagating in a linearly viscoelastic rod.

Using thLs technigue, C.T.sunCi5) derived the solutions for a rod

of linear Maxwell material or a standard viscoelastic solid, and

cornpared the results with the solutions by the Lapiace transfrom

technique. In these papers, as an anaiytical tool, the theory of

propagating surfaces of discontinuity was used, and the stress
                                                          '
or prticle velocity at an arbitrary location was expressed in the

form of a Tayior expansion of time t about the arrival time of
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the wave front. But the composite materials treated here are

composed of two alternating layers which differ in material, and

sot for transient wave propagation, two wave fronts will occur in

each layer as a xesult of the differnt natural propagation speeds

in the two matrials. Applying the wave front expansion technique

to the present problems, the state quantities, such as stress,

strain or particle velocity at an arbitrary location of each

layer, should be expressed by a superposition of two

discontinuous functions which are caused by two wave fronts, and

the coupling relations of the discontinuities oi two wave fronts

of each layer should be determined.
                                                    '
     In Chapter 2 and Chapter 3 of this paper, transient waves in

the elastic laminated composite are treated, and behaviors of

strain waves near the loaded end are discussed. rn Chapter 2,

analytical rnethod to apply the wave front expansion technique to

the probiem of transient wave with multi-wave--fronts is

presented. By expressing the equations of metion in terrns oÅí the

strains of two kmdsof constituents, stress waves in semi--infinite

elastic laminates loaded by a surface pressure at the end are

investigated. The solutions are compared with the solutions by

conventional Fourier-Lap!ace transform method. In Chapter 3,

analytical treatment derived in Chapter 2 is extended to apply to

the velocity boundary condition. The eguations of rnotion are
                 'expressed in terms of the particle velocÅ}ties. As an example, an

elastic laminated composite irnpacted by a rigid body is
                                              '                              -6-



investigated.

     Chapter 4 and Chapter 5 are concerned with the stress waves

in viscoelastic laminated composites. rn Chapter 4, the

transient waves in the semi-infinite viscoelastic laminates

loaded by a surface pressure-are treated. In Chapter 5, impact

probiems of viscoeiastic larninates and rigid bodies are

investigated. The techniques introduced in Chapter 2 and Chapter

3 are extended to analyze the transient waves in such

viscoelastic medium which were difficult to treat by the

conventional.method. Analytical formulations are ebtained for

the mediurn of viscoelastic layers that obey the general lineaac

viscoelastic relation. The soiutions show a geometric dispersion

and a spatial attenuation caused by the viscosity of the

rnaterial .

     In Chapter 6, e)q?erimentai work on the stress waves in a

iaminated composite is described. The composite structure used

in this experiment is made of layers of aluminum and copper. The

strain waves generated by impact are measured by strain gages at

the differnt iayers in the composite. The anaiytical

calculations are compared with the experimental results.

Applicability of the diffusing continuum theory for the transient
                  '
waves is aiso discussed.

-7-



                            CHAPTER 2

               Transient Waves in Elastic Larninates

2.1 Fundamental Eguations

     The problem treated is a transient wave propagation along

the layers of an elastic laminated composite. The cornposite is

supposed to be an inrtnite periodic array of two alternating

elastic layers whÅ}ch differ in material properties and thickness

as shown in Fig.2.1.

                      :
                     :
                     --).                     -x                     .                  cro .
                     .x                     -                     :
                     :

                   Fig.2.1 Laminated composite

     A coordinate system is placed with the xz--plane as the

center plane of each layer, the x--axis in the direction of

propagation,• and yt-axis <j=1,2) perpendicular to the xz•-plane.

The composite is serni-infinite, bounded by the x=O plane, and is

suddenly loaded by a surface pressure on the x=O plane. Assuming

that no rnotion takes place in the z-direction, the prob!em is a

two dimensionai one.

     It will suffice to examine only one pair of adjacent layers

since deformations wiil be identical in each corresponding layer.

                              -8-
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 We assume that the equation of motion (x-direction) in each

layer is given in the forrn of the following integral:

   giS,h' lllZ'tU.i aE:tsa' = Ej S,h" ).)Z,U,i dsj 't" S,Nj ).Tb'fiS dxi, j=itz (2.i)

where j=1,2 denotes the layers, and the j•-th layer zs

characterised by density e}, elastic moduius Ea, and layer

thickness 2hl; Ua (x,yi ,t) and T"e (x,yi ,t) are the displacement in

the x-direction and the shear stress, respectively, and t is

tlme.
                                  '
     The average displacement is defined as follows:

               hi 'U' ,' Cz,t> = Å}. j, Uac x, ?i ,t) dsi, 5-- s,2 (2•2)

By use of Eq.(2.2), Eq.(2.1) may be expressed as

  gi )z2tU"-?' = E} )iUl. + -ili.' 'tix} h," , j=a'2 (2.3)

     According to the diffusing continuum theory ( see APPENDIX

A ), the second term of Eq.(2.3) can be expressed approxiTnately

by

       -l{;.ITj,b til kcV.-Ut) (,.ij)

where

                B = 3Gi G2 /( hi G'z + hz Gt )

Substitution of (2.4) into Eq.(2.3) yields the equations of

motion which can be written as follows

                              -9-



        l,l'/i ,'.'-,il' l/i'i,"l .+ peB,gi,:-,V,2:-J.v;; } ,,.,,

where cl=(Ei/9i )t/2, j=l,2, are the elastic-wave speeds in each

materiaX. It is clear from Eg.(2.5) that each constituent motion

is coupled with a mornentum transfer term which depends on the

relative displacement only. By introducing the following new

variables

          Ut = Ui/hi , u2= S21 hi , ig =r xl h{ , r = cit/hs

Eq.(2.5) can be written in non--dimensional from:

         -b2 ut - D2 ul
         bz2 -- )}, + b( u2 - u,)         )?2zUi == c2 ZD2gU,2 + bs2( us -. u, ) l (2'6)

where

               h,B c,                                            9t ht          b= p, c? 'C= ci ' g2 = g2 h2

-- 10 -



2.2 Integral Solution

     In this section, a soiution by integral transformations is

presented for a transient wave propagating along the layers of a

laminated composite. The mathematicai treatrnent described here

closely foliows.that of Payton(13) who developed it to study the

dynamic bond stress in a composite structure.

     (a) The specific probiem treated here is stress waves in an

elastic laminated composÅ}te subjected to a uniforrn normal stress

ofastep-functÅ}on of timet on the x=O plane, as shown Å}n

Fig.2.l. Assurne that the cornposite is initially undisturbed,

then the initiaÅ} conditions are

                  bu, ?u.        Ut =U2 =                  ?r = eT =O, at -r =O (2.7)

and the boundary conditions are

                 )U2         ?u,         lg =Ee} ="EeH(T), at e=o (2.8)

                    zuf ?u,         Ut=: U2= )g = )g =O, at g== +oo (2.9)

where E=E2/Et, Eo=cre/Et and H(T) is a HeavisÅ}de unit-step

function.

     In order to obtain an integral solution to the problem,

apply the Fourier cosine transform to Eq.(2.6) on a dimensionless

distance g and Laplace transforrn on a dimensioniess time T.

Denote the Fourier cosine and Laplace transform of ua(;,T) as
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u7• (ArT) and Uj(g,s) respectively. Eiiminating the

displacernent -u*2(k,S) from the transformed equation

obtain the transformed displacernent fi?(k,s) in layer l

  -, 2 '12 s2+ c' k2+bg'(I+ h)

transforrned

 (2.6), we

 as follows

  UiC'i.,S)-(,c) Ee                                                           (2.iO)                  S{ S4+ [(I+ci)A2+(ttg2)b) s2 + [c2 k4 + bk2 ( c2+g2 ))

where h=hz/ht. Equation (2.10) can be rewritten in the form

        uf(k,,)=(-ftLS/2E, g2i.e.,"e$,,+)(b,giig+.,A)? (2.ii)

where

        Åë, <k)= (-liL)Sh[ot cx)kz +(tfg2)b .tp{k))'i2 (2.i2)

        tp, (k) = <t)Y2[(itc2)ft:+ "tg7)b-rpcA)l'12 (2.i3)
          g.,c?.) ., {["-.c2)k2+"-g2)b)2+ 4bS2 }'12 (2.14)

PerformÅ}ng Lapiace inversion results in (for T>O)

  uf(ft,'z ) = (-i}L)YZE. [ 21#f2'iis;)hb)E, + -tp'2"C2fttpS;: lisgZC''h) cos st?, •t

                 - -cp +c2$i+tybga(l+ft) cos st?,T] (2.Is)

Aplication of Fourier cosine inversion forrnula gives (for BO)

  Ui(},'ir)==-i}-E.i:me7t.{ft..,-\cg,Z.si)bE,cosE}dk-t--f}-E,5,"eQ(E,'e)cosR}dE (2.i6)

where

 Q(k,T)., -cPi2+c311,2$b92(t+ft) cos ,l?T .- -Åëi2+c2i;l-,lb,g2(l+h) c,sÅë,T (2.17)

     Differentiating (2.16) with respect to a dimensionless

distance t, we can obtain the strain ti(g,x) as foliows:

                              .b l2 -



 E,g,o==--j}-E,Sme1/;..tz{,.g,llfi,S•stnptdk--if-E,j,"eQ(Åí•'e)2•sin'RgdE (2.is)

            '
The first term of Eq.C2.18) can be evaluated by residue theory,

but the second term is too complicated to evaluate exactly. In

order to calculate the second term, we use a numerical

approximation as foUows: lntegration range (O,oo) of the second

te]Tn may be separated into two ranges (O,x) and (K,co) where K is

a suitably chosen large nurnber. The integral between (O,K) can

be evaluated by Simpson's rule, and the integral between (K,oo)

can be estimated asyrrlptoticaly for large x:

   EsC}.'() tz '- E,[ tllii?2S g2 + ( 1d itt'c2}!tg7) exp {- ["+S21c')b')'12• l; } )

  .- 2T.Eo5,K[-P,2'c?,pk,2,'rpN2<i'h) cos tp,T - -ip;'C2g.),'Lib,g'( t+h ) cos Åë,•zr)k• stnkg•dA

  -f- -ftt' [ -l}--• -"- si[)f (E -t-c)) -i- (il"-.T,. i) ("-st[ )f•ig •--•to ll )

  -- i},+reh, c) 5i-g.c2,E)e {2 cDs )[ 'r • stn }c e -• -iiT, coscKT• $Ln Kg +cg.•t-)K•cos>c(g +•Åé•)

 + cg-T)x• cos x(t-z) - -tr, GtcT)x• cos ft(}+c'c) -- -ilT.( g- cT)K• cos KG -c'c)

  - -l;- [( g+T>2• KZ + ( e- 'tr )K --irt•K2 -• -?l,TG +cv2 K2 - -il,r (}-cT)i4 •- c'ct•x2 }

  t- c } t't>2 x' St [x( } +v) + ( it -r)l }-Tl K2 St[x1g-rl) - -2r. (g+c't'i2c' Si [xc}+c't`))

  -• -ilr. cl -c'c)E--• crl K2St[K1e-cTl) ] (2.ig)

                                                             '
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where

            Si(x)= Sine integral = So=-S'pnP dp

     (b) Xf the stress of the loaded end is given as an

arbitrary function of time, the solution can be obtained by

superposing solutions of Eq.(2.i9). Denote the strain of the

loaded end as f(T) then using the fundamental solution (2.l9),

the total strain Er(e,'c) in layer l can be written as foUows

          Ei(g,z>== SI ?){li\') e,cg,ir-T')d'c' (2.2o)

where ei = EtG,'t)/ Eg •

     In the numerical calculation, following equation expressed

in the forTn of surnmation is employed

                     n       E.T<e,nAi ) = Z ritf(rAi )•e,( g,<rLmtr)4-u] (2•2i)
                    r=o

where

             )x == TIAr , h= T'/A lr

-14-



2.3 Wave E'ront Expansion Analysis

     When a transient wave propagates in Em eiastic

cornposite whÅ}ch is composed of two constituents,

supports elastic-wave disturbances traveling at two

speeds, and two wave fronts will occur in each layer,

layer is forced by the motion of the other through

action of the interface.

                     T
                               T? Tt

1"l,T2

 B2

e
 el

A
Bl

Al

s2(g2)

g=cT

s,<gi)

g=r

  larninated

each layer

  different

since each

a coupling

                     ,g
                         Fig.2.2 g--Tdiagram

     As shown in Fig.2.2, the positions of two wave fronts from

the loaded end can be expressed as straight lines St and S2 in

the E-T diagrarn, and a discontinuity occurs across those lines.

Now let us use two sets of skew coordinates Sn-Ta instead of E-T,

and, as the measure variables along the lines St and S2,

introduce ti and e2 which are projective guantities of the St and

S2 on the T--axis, respectiveiy. Let e2 be the angle between

line Sn(g=1,2) and the g-axis.' Then the relationships between

the two coordinate systems g-z and gg-Tg are

          gtgE•t`la.et, 'ttnT-g•buei (2.22)
                             -15-



The relations between derivatives of any function f(g,T)=f(1)(ll,Tt)

defined in two coordinate systems are expressed as

        7,k{.-ta•rt"et•(iiil;T,--•ill,7,)"-S`" , ),".f.-{ll.\l,." (2.23)

For the present problem treated here,

           tan el = 1 , twh e2 ---- 1!C

Since Sa (fi=l,2) is a characteristic curve for Eq.(2.6) and

indicates the position of the wave front, Til is a dimensionless

time measured from the arrival time of each wave front.

     Equation (2.6) can be expressed in the form of strains by

differentiation with respect to a non.dimensional distance g:

         'b2 El bZ EI
         .b.(, == .bl;, + b(E2-Et) 'S, (2.24)

         bz2.Eci =c2 D]:gEi +b(2(Et -- E2) J

By the use of (2.23), Eq.(2.24) can be expressed in terms of

gg-Ta as follows

 e: gE 'l," -2 k,( }rE l'")' b( ES"- E:" ) =O L (,.2s)

 )?',[/f') - ,k, ( Z,Elll,' )+(,- ÅÄ, )( ?i{li'). b,t,;Z (E;" - E;" ) .. , J

or

 DiEeCtl,' -2k,( ?iE;,i' )+o-c?)()ifr`II')+ bc2(ES2'- fir')=O )(2.26)

 )i i/li' -2k,( ], f(i2')+ bg2( Es"- Ey)) =o J

To find solutions, we assume that at an arbitrary location of

                              -l6-



layer jt j=1,2, the strain Ei(g,T) can be expressed as the surn of

two kinds of strain Et t•" (et,TO and E:2'C e2,T2) which are caused by

each wave front and are discontinuous across the line Si and S2                                                               '
respectively. Each strain E` it'(gi,Tg), j=1,2, is assumed to be in

the forrn of MacLaurin series- of Tg around the point just after

the arrival time of each wave front:

   zj(g,•t)= t:•`'(g,,t(,) + E;•Z'( g,,•c,) , }=f,l (2.27)

and

                             '   f#'fi'( }g,'rl) = .ZeO., A;'t,l (h) n'I IA 'tt >o,Q=1•z (2.2s)

where Apt is a discontinuos quantity of the n--th tirne derivative

of the strain in layer j across the wave front Sg, and is a

continuous function of et

                            (R)            Aice,:(z2) . [-3i"i#il-E •}.` )s, (2.2g)

where [F]si denotes the jump quantity of F across the wave line

Sn. The strains E;`) and E3Z' satisfy respectively the systern of

Eq.(2.25) and (2.26). Substituting (2.28) into Eqs.(2,25) or

(2.26) and cornparing the coefficients of the same order of

dimensionless time Tg, we obtain the following relations between

discontinuities:

   ill,illi,il':'=--.,,,`II`j,,1:"i'i':-At",",;'L.'.11,.[l,lli;llliii12A,;,'llAgl`l.'h .,,, d,A`t"f+, ] `2 30'

or
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   A`R,., = ar,3(A;fk - Ai21. )+ er2. d2dAi'l2"" + or2s' ddAiii'"'i l (2.3i)

   -{LitftIY!ti-`i""=:c(2,(AS23,-A?,1)-t-or,,W'Ai'X J

where

    oe'ti= -b/2 , otft2 = t!2 , oct3 = bS21(1- c;) , atft" = c21( /- ci) , cr,r = -2c 2/(l- ci)

   oczs=-bg2!2, or22=t12, cr2s=-bcil(/-•c:). c(24=-i/(1-ci), ct2s= 2/(/•-c2)

Equations (2.30) and (2.31) show that the discontinuity Ai}ICgg)

can be expressed in th.e form of an n-th order polynominal with

respect to rsg,

        AV•S'"c},> = i 73se,,, (O(l:'[',ea)'" , Q-i.2 (2.32)

                   neO '
Substituting (2.32) into Eqs.(2.30) or (2.31), and coraparing the

terms of the same order of gg, we can derive the recurrent
                                                            'formulas for the coefficients 7}iÅílm,

   7,il'.,.,.., : ( >'tY .m - r,i2,,, ) + crt, or,2 )r,,`Al,,,.2

   IX2i'"'.2,"t =r orf3( Yr,(n"."t - r,,`,'lh, ) + arn ( oris Z2YS.s,m.f -t- cr. crTt" 7,f{'.,.., ) (2'33)

or
   )lti:'+2. xt == otri) ( i2{.m •-p 7Tt.(,21m ) + otrat ( or2r )ft.Cn':t,ta.i -t- cri, cr24 )rf,tn2), 7n+2 )

                                                          (2.3U)   r2`,;'.,,tn.t = ( )21:.',,. - ?1iiZ.'.,,, )+ ot'2t cr22 )r21'nlta.2

Frorn (2.32), the following relation holds for m>n.

               )'itn),,,, =O, Qs m>n. est.2

Equations (2.33) and (2.34) are connected with the boundary

condition at the loaded end.

     By the use of (2.28) and (2.32), strain (2.27) can be

expressed as

                              -18-



   Ei(g.-c)=.z".e, ,z."....,{ )tjf:. <eC;';ls)'" liEi" + ')'j`, '.., (cti,,',i:)"i I:il } (2•3s)

At the ioaded end e=O, Et=(z=O and Tt=T2=Z, Eq.(2.35) now

becomes

                    oe          Zi(O'T) =: 2.l,( ri ,e + rii2.',, )-ilZi/[)'""' (2'36)

Xf the strain at g=O is given in MacLaurin serSes of T as follows

                   oe          8jCO,T)=.Z.,ajen "L" (2.37)

then, comparing Eqs.(2.36) with C2.37). we obtain

          aj're = rj`1;.e + 7iZ.',e , }=s,2' (2•38)

    Thus, if the values of the coefficients 7tfZn',"t and 7i'A,m for

n=O and n=1, are known, all coefficients are determined

successively by using Eqs.(2.'33), (2.34) and (2.38). Those

values for n=O and n=1 are obtained as foliows: The differential

Eqs.(2.25) and (2.26) are integrated with respect to the

corresponding time rg, starting from a point As below the wave

line Sl to a point Bg above it, as shown in Fig.2.2. As Al and

Bg approach the wave line St, the integral of ESg' vanishes because

E3g' is fi.nite, and the Lntegral of C?E3n'/)Tg) becomes

    ,lt.:b,,S,B,t 311i\' c{Tg = ,ll,tlr:.,,{ t3t'<ge,Bt) •- E3"(gt,At)} = [E;"'),,

     Thus, Eq.C2.25) yields after integration
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      -itk[?,fil,tj]`,',.(O,-+,)[,?.f,g,f)J,,.,,, ] (2'3g'

Repeating the sarne process to the second equation of (2.39), we

have

              ( E :" ),, •-- O ( 2 . i; o )

and frorn Eqs.C2.39) and (2.40)

              {3\"' ],, =o                                                          (2.ij1)

In the sarne way, the following reiations are obtained from

Eq.(2.26)

     z?g,( E2"')s.=O , [Eii']s,=O , [??IE:l'),. =o (2'42)

Equations (2.39)-(2.42) irnply that the coefticients 7j{,Yn',m for n=O

and n=l should be

     Zf'j., = at.o , V,`'.i,,= ar,o

     \t"•:•o= )(•l.'e = 7gf;]t -'-o, )f,`.','.,= 7..`Z', =., >:,r.`;l, =o (2'43)

Thus starting from the relations (2.43), the other coefficients

are determined one by one.
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2.4 Numerical Results

     Example 2.l We consider a.semi-infinite elastic larninated

composite subjected to a constant stress ifo at its end surface

abruptiy for T>O. From Eq.(2.36) and (2.37), we obtain the

following relations for r>O:

                 oo       Ei(o,`C)= .Z.,( ljl",';,v -t' Xi`,2n',o) 7'l,:.) = ill ) i--' t'2                                                        (2.op)

hence

        (t)       7,,,., =: cr./Ef , ).i2,',. := o7./E2

      li';,o -t- Xi[2k., ==;o, g' lap- i,2 (n.,> . <2'q5)

                          and (2.45), we can determine allUsing Eqs.(2.33), (2.34)

coefficients $uccessiveZy.

     In order to Ulustrate our results, let us consider a

iarninated composite consisting of two aiternating iayers of

aluminum (layer i) and copper <layer 2). Here, we regard two

iayers 'as elastic materials. The relevant material properties

are as follows:

    Aluminum (Layer l) Copper (Layer 2)

     ?i =O.2755xiO-9 kg.s2/mm4 e2 =o.g133xlo'e kg.s; /mm+

     Ei=7200.0 kg/mm2 E2=12000.0 kg/mma
     Gt=2700.0 kg/mm2 ' G2=4200.0 kg/rnm2

     Zn Fig.2.3 (a),(b), the averaged strain of each layer is

plotted aganist x for several values of t for two thickness
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ratios. Ctne is the same thickness and the other is 1 to 5 for Al

to Cu layers. The evaluation of solution (2.35) is performed by

using finite terms. For comparison, an integral solution• by

Fourier and Laplace transformations (section 2.2) is also shown

in the same figure. Broken lines in Fig.2.3Ca) show the results

obtained from the present method with ll--terms. The soiution

with 19-terrns shows good agreement with the integrai solution fer

the whole time range. In Fig.2.3<b), results by the present

method with 25-terms are plotted in broken lines. They are in

good agreement with integral solutions for time smaller than

40psec. But for iarger time t=50psec, it is observed that the

stxain distribution apart from the wave front differs frorn the

integral solution. To obtain better agreement for a lager tiine

range, more terrns in the series must be taken.

     The resuits show that the strain distribution changes with

time as a result of the energy exchange between two iayers due to

different naturai propagation speeds in different layers and

sometimes tensile strain region appears near the wave front. The

wave modification in thin layer is more rernarkable than in thick

layer. It should be noted, however, that the amplitude oÅí
                                                                'inherent wave front never changes in the individual layer.

     ExarnpXe 2.2 In this exampie we consider a larninated

cornposite subjected to a stress iinearly rising from O to (ro with

rise time T,. In order to simplify mathematical treatment of the

                             -- 22 ..



fi
'
o"
v6
wt

--
f
9
5
;
tu

t

10

8

6

4

2

' ' - ' -"

'

-t....-.

tOps     2Clys

   PRE5ENT SOLVTION
 ----- Il TERMS
      19 TERMS
   tNTEGRAL SOLUTtON

          Ea;

30ps 4tlps sops

o

8

6

4

2

     50

ttl---'-g

      s

  10ps

  1oo 150
   DIsrANcE(mm)

    x
     sss
      N--g
            501.ts

20"s       30ps

200 .

  at

  40ps

    v-
    b
    :
    v     8
    Y
250

    -    f
    9
    =
    z    w     s

   an

8

6

4

2

o

8

6

`

2

o

  s-s
   s-s-

    -
10;JS

  ---- PRESENT SOU.JTION
           2S TERMS
        tNTEI3RAL SOLUTION

               Ecu

xlps     30ps          40its               50ps

. h-

o  SO 1co ISO 2oo 250
         D:STANCECmm)

  hAt=30mm hcu=30nwn          '

Fig.2.3 Strain distribution in

        subjected to a constant

             ... e
             Y             96              x ECu             v               4                   x=             a                         x=so
             ur 2
              l

so

-t--

A{9,ts

1oo 150
OISTANCE {mm)

        so"S zoys

!

 200 2SO

EAt

   40"s

      Sops

(a)
     (b)

  Al-Cu

stress

X=100

so 1oo o NGO
       D!STANCE(rnm)

 1zat•--10mm. hcu--50mtn

1aminated copaposite

X=ISO

vso

      o

    -8    Y
    96
    5
      4
    ?    w2
    `
      o

Strain

i9

EN

20

TIME
30 40 SO

 xlcr6Csec)

x=o
x=so

X=10Q

X=1

Fig.2

                10 20 30 40 50
                      TIME xloS(sec)
                h41=30mm. hcv=30m,n

.4 distribution in an Al-Cu laminated
   subjected to a linearly rise stress

composite

- 23 --



boundary condition, we consider a superposition of two boundary

stresses Unearly ris.ing fromT=O and T=Towith equal stress rate

of opposite sign. The superposition of the two stresses yields

the boudary condition treated here.

    For a linearly rising stress from Z=O, Eqs.(2.36) and (2.37)

can be written as foUows:

  Ei(o,'zr)=: Sill(}r21;,, + )i9:,, ) ,'i,:h! = t,o. .',C'.. , ii•=iez
                                                         (2.46)
            n=o

hence we can obtain the following relations

        7iE'3,, + rif2;,, =a, i := s,2
        7ftji).a = Cre/7re Et , )1!Z,l,o := Cre /'Z:7D E2                                                        (2e47)
        ?rS'n'+2.o -f' ?'ilSZn'a,o -pto

As an exarnple, the strains are calculated in the same composite

as in example 2.i. In Fig.2.4, the strain of each layer is

plotted against t for several values of x. The present solution

with l9-terms is in good agreernent with an integral solution for

the whole time range.

     From the numerical results, we can predict that the strain

in each layer graduaily approaches with time to the value

e=O.52xlO'" calculated by the effective modulus theory.
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                          CHAPTER 3

              Impact Problems of Elastic Larninates

3.1. Analysis for the Velocity Boundary CondÅ}tion

     Let us consider the transient wave propagation along

in an eiastic larninated composite which is semi-infinite,

by the x=O.piane, and is suddenly struck by a rigid body

x=O piane, as illustrated in Ng.3.i. In this case the

condition at the sruck end Å}s given in terms of particle

                 "-r> X              //.Y.o. x
                   9o

                    Fig.3.1 Geometry of problem

     Equation of motion (2.6) is given in the form

particle velocities after differentiation with respect to

           li/pt.Zt.l-,l;)/)2i;.blsll'v-,ViL) l

           )T2 ?}Z

where
              b= fttBIPi ci, c= cz/c, , S2= 9t fit/ft {l2
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     By differentiating the Eq.C3.1) n times with respect to

dimensionless time T, and considering the finite discontinuities

across the wave front, we obtain the following relations:

     [7)l"i.'J,ls.)=[))"i;)Vti.)+b{())".tVl.Z]-[);IV:'k]} N

     ())"iZEz.)=czk)"}'.Z)\z.}+bg2{{);Tv.A-nyP)"Tu.zl}S (3'2)

By the use of (2.23), Eq.(3.2) can be expre$sed in texrns of

Xg -la Tg :

   -i]lliB".V,i`")-2,-?,,[;It//eC,"]+b[(}".v,{i']pm(#,:g']}...m, ->

   -illr? [')bn.zV: i.,i`"]-2S, ( i?)"I i,ll,li,t'll + " -ti -ilr. )[}"li2i,\il`i'] + b,9,2 [ ["?.'l.V( :[,/") ll -b [ lil'I/,a."') ) =: oJ

                                                            (3e3)
and

   .2i,llii ['.)b".ii:J":.litz)]- 2k,[").}")IilliV,:,`!'j+ <t -- ci)['.2bi"lilZ,ll}ll'] -e- bc;( [).?",-rV,iz,"'] -- [ Ili"TV,-;`2] l -e-.. ol

   illll,[l",Lt.:ti']-2,--?-,,kl'l,\z,"']+bg2([gM,V.SZ']pm(}"ei#CX']}., J

                                                            (3.4)

     Foilowing the procedure introduced in the previous chapter,

the state quantities, such as strain or paticle velocity at an

arbitrary location of each layer, can be expressed by a

superposition of two discontinuous functions of non--dimensional

time Tg which are caused by two wave fronts:

      Ei g,t) =.z"O;., ;ii," B".,E;(r: )g, -t- ;lel., i\ii[ITE,tr;')}, (3.s)
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      vd'c},T)=ii.li,iiM(Xtr\)`"]g,+#.,I;(eMTth,S(2))}. (3.6)

Also, as shown in Chapter2, the jump quantities which are

continuous functions along the wave iine can be expressed in the

forrn a polynomial of degree n with respect to ge:

        n cQ) n       [))T/in)=',lli.Ii,Sl}`•:'pm ilitf , }=g•z• ?=i•2 (3.7)

     In order to obtain the strain Ei as m function of the

particie velocity vi, we introduce the weki-known xelation given

by

              )Ei-:a)V '                                                         (3s8)              ?T - )g

Differentiating (3.8> n-l utmes with respect to T, and appiying

Eq.C2.23), we obtain the fioiiowing reiations:

        [WtS'."]=:i;):},[ll"lillnU-{f`')mIllil"•IV:,/"`') (3'g)

        [g",E.4')--e{Å}[ghi`,\,#']-f-l'll\IL,V.r.C")] (3.io)

By substitution of C3.9) and (3.ZO) into (3.5), the straÅ}n can be

expressed as

        Ej(g'i)=.Z'.O, iil.i:, ;., '2(,ini{ lfil:-i,ta.t- Sl'i';,m} IIili" 7}ni.'," , (3•ii)

where

               c(a)-{l f,gr,;r-l
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Substituting (3.7) into Eqs.(3.3) and (3.4), and cornparing the

terms of the same order of gQ; we can obtain the recurrent

formulas for the coefficient YXS{th :

    ii?tfn`'tt,ntf = 'S"'"-{ Slf.`n"•"n ' b( Y2Yn'•m- sct,`;',,n ) ]

                                                   }
                                                        (3.12)
    Y2Sl.2,ta --' 2{ Y2Yl,..-2.f,7fl',,,.,,+-Il/l;2( frg,f,",. •-- y.5'S,.> } i

and
     '
                                                     '   .fe,,`7,'.,., .,,, -me ÅÄ. { S`7,,".',...-- 2Ji7,C,st.,.,, +bC2( Zi;n',m M"' difr`IiffZn'•m>} ) (3.,3)

    .fi`1,SZS",,.,, =:t{ X,iZ,',.,. + bg2( .fr`ls,`.'l. - .f??.52.',., ) } e

where A=c2/(I-c2).
                                                '
     If the particle velocity atg=O is given in a MacLaurin

series of t by

                                             '            vi(o,z>:i!IiL S},n ."i;,," , jmg.2 (3eiij)
                     "=-

thene we obtain the foilowing relation from the boundary

conditions (3.l4)

           SejClh),o + S'}(,Zn),o = t:•i,h , j=l,Z , n=oet.2"4- (3.i5)

     In the sarne way rnentioned in Eg.<2.43) the coefficients

for n=O and n=i are given as
     y;,'},o == es,o , Y.(2.',,. :zz.e

     EPiEie'•o= f('tl:'•o " ES'sSZsls = o, iP i:.. = sg.1`,l.= yT,y,'., =e (3'i6)

thuS all coefficents YiYnlm are determined successively by using

the recurence formulas (3.l2) and (.3.l3) startÅ}ng from the

boundary eonditions (3.15) and (3.i6).
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3.2 Numerical Results

                                            '

    The general solutions for impact problems obtained in the

last section will be applied to some specific problems.

Exarnpie 3.l Let us examine a transient wave in a semi-infinite

elastic larninated composite stxuck by a xigid body of rnass

density P, and initial velocity ife on the x=O plane.

Denote the length of the rigid striker e, as shown in Fig.3.ls

then its equation of motion is expressed as foilows:

       'b)k.Jz;;i <o,r)= g,QiS.ft"FL,f.v fl,>{ Eico,'c> -t- lliEEZs E2co,T>} (3ei7)

By the use of C3.Zi), the beundary condition can be expressed as:

       Sl}i"n).t,o nyt- li'jlZpt'ts,o =' r]i,li;jll!i(Nr"'g;yQ,(efiilli':k) gZ2., zl(g){< Yii:'-g,fm Y't(Sn''b>

                               + {,zElf(ff?,"S-,,, --• seS,"k,,)) (3.is)

By empZoying Eqs.<3.l2), (3.l3) and (3.Z8), we can determine aiX

coefficients successively.

     In Fig.3.2 the strain distribution in each layer at various

tirnes is iiiustrated. In the numerical calculation, the laminate

properties are chosen as Åíollows:

           Layerl Layer2
           ct=5000.0 m/sec c2=3500.0 m/sec
          El=7200.0 kg/mm2 E2=l2000.0 kg/mm2
          Gt=2700.0 kg/mm2 G2=4200.0 kg/mm2
                                                  '
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     The calculations are performed by using the first 19 terms

of the infinite series of Eq.(3.ll). It is obvious that the

strain distribution changes its shape with time, in the present

case, the strain at the struck end jumps to the value of the wave
 '
front immediately after impact and then monotonically decreases

to the value zero.

Exarnple 3.2 The second problem concerns the propagation of a

compressive wave generated by a constant velocity impact at the

boundary of a half space at t=O. Mathematically, this problern

can be represented by letting g,-bo in Eq.C3.18), then the new

boundary condxtion becomes

           Y'S,'S.t,,+g'}ii.',,,, =:o , jss,z (3e19)

     In Fig.3.3 the strain distribution in the layer at various
                                 '
times is ilZustrated. The strains are calculated for the sarne

composite as in example 3.Z, and the solution (3.iZ) is

approxirnated by 19 terms. The results show that the strain at

the end of each layer, which is larger in layer 2 than in layer l
                    '
immediately after impact, changes rapidly at first and

subsequently continues to decrease in layer 2 or increase in

layer i, with diminishing rapidity, and ultimately approaches to

the constant same value in both layers i and 2 calculated by the

effective modulus theory.
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                           CHAPTER 4

           Transient Waves in Viscoelastic Laminates

4.i Fundamental Equations

     Consider an infinite periodic array of two alternating

linearly viscoelastic layers, perfectly bonded at their

interfaces. We will treat the transient wave propagation along

the iayers which are semi-infinite in length arid are suddenly

loaded by a surface pressure applied at its end x=O.

     For the type of propagation problems beÅ}ng considered, a

state of plane strain will be assumed to be in the z--direction.

Applying the diffusing continuum theory ( see APPENDIX B ), the

basic equations governing this cornposite can be written in the

forrn :

(i) Equations of motion

         p, bDZitf=?l.a --llT, , p, ))Zt-t,z=Dlat-x2 +-II (".1)

(i) Constitutive relation

        ?b -\" = Jfo 'C-ku•t) +5,t. J{ ct-t' )• trs a, t') dt' , ft = 1, z (4•2)

(i) Interaction term

       'p = B. { Ui ci,t) -b ii. c= ,t)} + j.1 B'( Åí-- v) { Ui a,v) - Uz a, t'>} dt' (4. 3)
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where

                         --      Jh =JÅí<o) , Jkict,)=a`drli:,llV) , B.=Bc,, . Bt,t,). d3.Bt,C,t')

In the foregoing the subscript k refers to the k-th laminate, and

k-th layer is characterised by density p{ , creep function for the

axial strain Jk(t), relaxation modulus for the shear stress GR

(t), and thickness 2hS. Aiso cr& and uft denote the averaged

stress Emd displacement in x.-direction, respectively. In

Eg.(4.3), B(t) is a linear vÅ}scoeiastic relaxation modulus whx'ch

is a function of Gft(t) and hft (. see APPENDIX B ). :t is clear

from Eqs.<4.1)-(4.3) that the motions ef each constÅ}tuent are

coupled by the interaction term which depends on the relatÅ}ve

displacement only.

     Xn order to make the equation of rnotion into non-dimentional

form, we introduce the foliowing new variabies

      g-a!fif, ecf= c,tlAf. Cri --c-'fGlo;. , c=c21cs. Apt fVnf

where cft=(l/Pt•Jk)i/2, k=Z,2s are the propagation velocities in each

material.

     Substituting (4.2) and C4.3) into Eq.(.4.1), and expressing

the results in terrns of dimensionless stress, the eguations of

motion now becomes:

      IEtil, -t-21si,Ei, S,Tct;('t-'t ')•ari (g,z') dT': gt$ --- v) s

      :' TCr2, +2illlliii25.Tctl c't-'c')• or (l.T') dT' =c2 ?Diilii + g. 4) J (4•U)
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  -ili-'idF•' = (Yl, (g•'t ) --J•cs77(g.T) -t- 2Jl,T[ ct1(T--'t')•cf,cg,'t') -J•cr1(T-}'r')•oT,(;,T') ]d't'

      + 2 I.r e`<t-'i ')•{( r, ( lj ,O - J• or. G,tu') ] dT'

      + zi-S.T pS(T-•t').S.T'[ ct;cT-x") •(s', g,'c") -J• cri(T-T")• (y2 ( lj •'c ") ] dTrd'C'

                                    'i'    v== -Elr, 3fPL • K- {s•Jo•B" ,g= -;l:2- , cricT)- ,Jii}'•BLZv== gi`.V' ,J-tt.

     Differentiation of Eqs.(4.4) and (4.5) n tirnes with respect

to dimensionless tirne z yields

  {:zig1.,,+2•illl7, ctio ')?":`.'Qlri.i +2•S,Tcts""a --'t')•cr, (z,'co d'c' = fi,ZUsT}, - glz9b. )/

   ?Z"i2gl[, +2-}l.i, cyiL ]";II,l, -t-2•S,Xc(r'3a.T').cr,(},tt,)d•e,== c2 }"z",an)z}, +g li;t4'. J (4'6)

 -ili' e","n --- I ?;.orn -J•ll,lii-. I + 2'1 -, [ od'e ),"i",a.i -J-ctlo}X.':os.l, ] +2•Sf{ct?'tr` -J cr:t'gi} dr'

           -- --  +2•i.li.,6i{re,.-,-J•3l,lliCi:l+2-SJp""{uTte-Jcr,}dz't-4l,"..et'tJi{oce',}',',&,-,.k-J•o(Sre.;,.,]

              't  +4•{l.lii, pi •S:{cr"t":` or --J•ct:":"cr,]ai' + 4S,'e"fJ,r{ct; •gi -J•ct;• cr,) dz'idT' (4.7)

Since the integral terrns in each equations are continuous across

any wave front, Eqs.(4.6) and (4.7) yield the following relations

between Einite discontinuities across the wave front:

                       ,    [ }"i2g,l, ] + 2 ill.l, qk [-l'I;i#;,,,;orl,., ) -[ };',cr•,.) - [ g".W. ]

    [l//Z.Cf,i2, l) +2i,Ili.,or?;,[:D411 i9i;-;',2 Cr2)=c2[}llllilll,)+ •g t)b"TIP, ] ] (4'8)
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    -k-[4,4,' ) = [li iff,i' ] -- J•[);,U.;2]+2•i{(oc}o+pt•) [),"2"C.'il,] --JcÅëtrr2,. pE)[;i`.il}

            +4,i.,p,itili',.{ctt'•[g"-i'/g.g/,]---J•orge[•lltillll$ii.lori!,]} ,,.,,

wheret finite jumps across the singular plane are denoted by

square brackets following the usual convention.

4.2 Analysis

     In analysis of transient wave propagation in a lamÅ}nated

medLum,we apply the rnulti-wave-fronts expansion method which is

presented in the foregoÅ}ng chapter. In a larninated composite

with two different viscoelastic materials, two wave fronts, i.e.r

two propagating discontinuities appear in each layer, too.

     Let us consider the wave fronts generated by an impulsive

surface pressure on the end of laminates. There are two wave

fronts, i.e.,g=T and t=cT in each layer, expressed as straight

lines St and S2 in the E-r. One of them is an inherent wave

front, and the other is a wave iront produced by an influence of

the other layer.

     To simplify mathematical treatrnent of the propagating

discontinuity, we introduce two sets of skew coordinates St-Ta,

(g=l,2), instasd of Z-T.

     As shown in Chapter 2t the relations between derivatives of
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any function f(;,z)=fd)Gg,Tg) defined in two coordinate systems

are expressed as follows:
            '
                                                '         ?)hgl ..-- ct,. .< )?}! --- sli7t )nf(t), ))"{,=}"TStit' (4.lo)

For the problern treated here,

               ctt)= 1 and cC2)= c

     To find solutions, we assume that at an arbitrary location

of a layer k (k=l,2), the stress afkC4,T) can be expressed as the

sum of two kinds of stress crÅíO(gs,'TO and (rk(i)(;2,'u2), which are

caused by each wave front and are discontinuous across the line

Si and S2, respectively.

     Using (4.10), and considering that the stress crkCa) is

continuous along the 1Å}ne SA, Eqs.C4.8) and (4.9) can be

expressed in terms of gg•-Ts as follows:

                               -k2i,[ig,\Y{,L"]•-2k,[]',;a.S"]-2tlelct,:(l;;IC,ll.')-(3".,V,•.C')]=

tilZi, [ g",d,{"] --2 f}T, [ :"l,of",')+ ( i - -2,, )c e"i,k") - -f,, ill.Il,, or.k C3,IEIIiXl:'",',,`iffS'] + -ll,, •[ 4,ip,,C"] =- e '

                                                          (4.11)

                                             LSIII,(-l'gtigl.cg.I`V]-2k,[[tg\igil.c l'igi,\')+(1--c2)[{IITilliilli.,,,,`']-2c2•i/#2,ct},[D?"Eiili',Lt,.;')-c2•({lltiKl..']=o

                                                               l
iiltiii[lll,flI(i;l]-2gl};7,[tltligS!l(i,,`,')•-2•tT.:ict,t,[gl,ll,glili,,i..,"')+s-[}l,Z"!Å},.")-;, J

                                                          (U.12)

 -ili[-illl.cilf!t,."') = [ ii"(gie') -J•[ZiX.,O::i`.O'j + 2•i {(orie +Bie ) [ )ll-;II Il') - J• (q,i,+pi )( ')?"r'",gE{.') ]

                          }i         +4',E.:,6i•]lllli,{ot'tt'(:ni,.';-EI•li'•')-J•or2'pf}','-i.'ig•iiV]}, p-,,2 (ij.i3)
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Each stress artR gs,'rg) (1=i,2) is aiso assumed to be expressed in

a MacLaurin series of Ta around a point just after the arrival

time of each wave f•ront:

     cs'k cl,T) =: (y '(g,,tc,) + (sr{t'c lj.,T.)

        =il.l,, '.C.`?[),X,if,tY']g,t#l.k, II}t[);,orii')g,, i=t•z (4.ilj)

The discontinuities can be expressed in an n-th order polynominal

of ge with a spacial attenuation factor as followst

     f'b)X.(O'i') --,l.lk7M'.,. Iill, e'ct;"gt , rii=:i•Z • t'"i•2 (ij.is)

Using Eqs.C4.l4) and (4.l5), we can write the solutions in the

form
                                     '
    cri(E•T)=:1{'"ll.,;.,7i9.,,,, li\; ..ewtl e'qiolji+ II.:.iil.l.)";:.,,, ;ii2i ,illttÅÄe-ct;eg2

                                                        (4.16)

Substituting C4.15) into Egs.(4.U)-(4.i3), and comparing the

terms of the sarne order of ta, we can obtain the recurrent

forrnulas for the cofficient k`,a,',.:

    71t.Un'.,.m+r = 'zli'{ rn`,`m' c7t) '-2' ,'E.El q}e 'Ttfn"t2-t,"t - 7;1'.t (v') }

    ?/fllt2,?,t =x{ r// ln(72)-2•7,`.'.'.t,M.t -• {l,r il.lll, cri')r ,';,2-i,za +-2T, 7i':cv,) } }

                                                        (4.17)
   7t!r.'.z.,, =-". { r7,,Yl ,c)rt)--2• 7t!2n'.t,7"tt - 2c2 :.ll, crt`,• 7tli.'..i,., -c2 )"M t c}p) }

   )12Yl;.t•mt, =-ili-{ rn!2;l,()r.)-2•tY.ictle'7;•;'a-i•n +S');2,'"tcV') } (4.}is)
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    YTtM'sc'Vs) = Vsd,,'n,,nt2 -2at',71Q.'n,)..t + (cr;.)2•7ielx,),+2ct1. ' Vifi.t.n

   'lr7Sl•t(g,) = )'ER,)L "J•'1;,tn',7n + 2•tl.,{(oct'•+pE) •'ri:k., -J•(ctj•+ pt)• 7f,tn'-i,,,,}

           +4il.k,p5•t;/{qto•\iEgn'ad,n -J'ctS'7Ef'h.'-ik} , i="2 ' i=(`:,g)

where

             t = c'/(l- c2) , K= St •J,o 'Be

     At the loaded end E=Q, gt=Ez=Q and rt =T2=T, and Eq.(4.16)

now becomes

        {sico,z)=2.:.{ Y:"nn+VtU.:,e} nT.i" , k'i•Z (4.2o)

If the stress at g=O is given in a MacLaurin series of Z by

        cS7ico,x) == iil.i. attn i.: t ".t.z (4•21)

then, comparing Eq.(4.20) with (4.21), we obtain

         V:,'#.e+ 7k",;.. --- akn , kt•i,z (4.22)

     [rhms, if the values of the cDefficents 7tS2nlm and Vi'l.m for

n=Q and n=1 are known, all the coefficients can be determined

successively by using Egs.(.4.17)-(4.19) and (4.22). Those values

for n=O and n=1 are Qhtained as follows: Equation (4.4) expressed

in terms of gi-Ti yields after integration across the wave line

st:

    jltt-, [cr,"') + crt', (cs7,("] = o ) -2SLg,(cri"] -t- "- ÅÄ, )[ g.(c5ii2,M) --2oc{,C(r ") =:o

                                                          (4.23)

Repeating the same process to the second equation of (4.23), we

obtain
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              ( d2("] -- O (4.24)
and substituting (4.24) into (4.23), we get

    (cr Y')= )r,!?,, e- ctit ;t, Cg'f/ `') =o , [ D, CT"ll`'] = o (4.2s)

Similarly, the following relations are obtained from Eq.(4.4)

expressed in terrns of h-T2:

    [cr:2')=')r,12,l. e-q:•g2, [crEZ')=o , (?zCTri2') =:o (4.26)

Equations <.4.24>-(4.26) irnply that the coefficients 7inn).m for n=O

and n=l shouid be

    )rtE`,',, = at,o , )f.`,a'., == a,,c , Z,,`,7,'. == )rtf2tl, = ]rTtiZt'.t -- o , ?:,1!;',.= ?r,S;'.,= 7ri'7.f = e

                                                       (4.27)

Thus, starting fscom Eq.(4.27) and boundary condition C4.22), ali

coefficients are determined successively by using the recurrent

formuias (4.17)-(.4.I9).
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4.3 Viscoelastic Model

            '

     We consider a three-pararneter solid for a constituent of

linearly viscoelastic larninates. The corresponding axial creep

function Jk(t) and the relaxation iaodulus Gt(t) Åíor the shear

stress are defined as follows C see APPENDMX C ):

                                         wht Gso Ji(b="Kt.i.g.G,,{1 --(1- :tt'+tSGG"t',)e'cP(- K.. 2r.Gk, 2'}T,"t>} (4'28)

  qktt)= a2RP+ !IgDexp<- .G7S#t) (4.2g)

where Kt and 7k are the buik modulus and the viscosity

coefficient of the viscoelastic material, respectiveiy, and

                                                               'Gko =Gk CO).

     Differentiating Eq.(4.28) with respect to t, we obtain

  Jkv)-Et!ililll!g?t{,{>=-(i-Xi'IG,-,,:)(--lt[Iil-lkllllli-",t,ll.illllib,,fr7X)t (4•3o)

         t  ct{•.= giiv,g, --• -S}Es! <- ,K", $. il,: -ges2sL7, 5L ==-- geo <- 3.ct,{: )i ,,.,,,

     Applying the Laplace transforrnation to (4.29), we obtain
             '
  Gs` <s) = -S GAb( -3I- + s.'i,k) : 'g' Gee s2is'. filli) o.32)

where

           '"k= 2G71P --'-' KKkki`;fl'<ih".ei.kO, G3ft.orle

Substituting (4.32) into Eg.(B9) < see APPENDIX C ) we obtain the

                              - 40 •-



interaction coefficient

        B'cs)= R.G?<, i'klle'`i}) = Bo s<Ss2',illi?)fsd.,p.) (t;.33)

where

      Bo==--stL-iil\:!LiliZi;J(}. -:G.fi&.ZaO,, , cl>i"a+<a2-b>V2, tp.=a-(a2-b)V2

      a-Å} 2ftt ta2o '2A#4az.lilto.'itgf,fr2o+ ft2pt'eio ,

       b= -1;-TIAiMT. , e== t(Pt+jug) , d---•- 4g. "xCt,M.

PerforrRing the Laplace inversion, we get frora Eg.(4.33)
   Bct)=Bo{-zig,i;,p-. -t- -ftili;i{E,k,p,-,pS) exp(-q?,t)+ t'Z.-i,pl}.iS5 eip(-(Rt>}

                                                         (4.34)
and differentiatÅ}ng (4.34) with respect to t, we obtain

       6,2=U2SES222-E'(.) = Ki(-(l),)i+ l<2(--ct?.)2 , iit (4.3s)

where

        Ki==-l--Slii,f$Ilteflr(rp,.-tp.d), K2=-E-rp$i(erp.2-+tpS
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4.4 Numerical Results

Exarnple 4.i Consider a semi-infinite viscoelastic larninated

composite subjected to a constant stress ofo (dirnensionless stress

-=l) at its end surface abruptly for T>O. Frorn Egs.(4.20) and

(4.2i), we obtain the following relations for bO.

                "       07k(o,v=:ill.l.{ ri'A.e+ 7{i;.,} .T.t" =i, ft=s•2 (4.36)

hence

        7'i';.t :l, 12f"..e =i , X21'n..+ 7riCZn',, =:o, lktt•z (4'37)

Using Eqs.(4.l7)-(4.l9) and (4.37), we can determine aU coeffi-

cients successively.

    The results axe shown in Figs.4.1 (a),(b). The calculations

are performed by using first 25 terms of the infinite series of

Eq.(4.16). Fig.4.1(a) shows the stress waves in a layered rnedium

composed of two sorts of viscoelastic materials, and in

Fig.4.l(b), one layer is assumed to be an eiastic. In both

figures, the average stress in each layer is plotted against x

for several vaiues of t.

     Both results show that the stress wave changes its shape

with tirne. However it should be noted that the decrease of the

arnplitude of the wave front is owing only to the viscosity of

the rnaterial, and is not affected by the coupling action through

the interface. As shown in Fig.4.1(b) the wave front in elastic

layer does not decrease at all.

                            -- 42 -



  to

6S
g .6

  A
  .2

  o'

 to
6 •8

g .6

  .4

  2

   o

10ps 20ps30ps40pssops

50

10ps

100 150 2oo
D15TANCE Cmm)

20-,s 30ps

40ps

250

50ps

   50 1oo 150 200 25C)
         DlSTANCE(mm)
      hi=30mm h2=30mrn             '
(a) Viscoelastic-Viscoelastic

Fig.4.1 Stress distribution in

        subjected to a constant

                  t2

 t2

 to

6S
8fi

 `
 .2

  o

8
N6

a

10pS 20)ts 30ys 40ps50ps

so vaO 150
O:STANCE(mm)

2oo 2se

to

.6

s
.4

.2

o

ze

.8

.6

.4

.2

o

to

.s

40ps seps
.6

l
.2 10ps 20ps 30ps

o 50 1oo 1SO 2oo 2se

bo
6-

                DISTANCE(mm}
            hl=30mm h2=30mm                    '
        (b) Elastic-Viscoelastic
               '
 viscoelastic 1aminated composite

stress

xrto
X=50

X=100
xs15e

10 20
TIME

30

8
g

40 50xltr6{sec)

x=o
X=50

X=100

X=ISO

Fig.4

                   10 20 30 40 50                         TIME xlO'6(sec)
                      hJr30mm h2=30mm                             '
.2 Stress distribution in an elastic-viscoelastic

   composite subjected to a linealy rise stress

1aminated

-43-



Exarnple 4.2 rn this exarnple we consider a larninated composite

subjected to a stress linearly rising from O to era with rise time

To.

     In Fig.4.2, the stress of each layer is plotted against t

for severai values of x. Layer l and layer 2 are assumed to be

an elastic and a viscoelastic material, respectively.

Calculation is perfomed by using first 25 terms of solution

(4.i6). rt is found that the stresses just behind the wave front

decrease remarkably with time in the elastic layer with faster

propagation velocity, and increase in the viscoelastic iayer with

slower propagation velocity. •

-44-



                            CHAPTER 5

            Impact Problerns of Viscoelastic Laminates

5.1 Equations of Motion

     The problem considered here is to determine the transient

stress waves in viscoeXastic larttinates, caused by an impact of a

rigid body. The analytical treatrnent derived in Chapter 4 is

extended to apply to the velocity boundary condition.

     For the wave motion along the layers, as shown in Chapter 4,

the basic equations derived from the approximate continuum theory

can be expressed by Egs.(4.1>-C4.3). In the present chapter,

instead of Eq.(4.2), the following constitutive relatÅ}on is

employed:

            '      'if'k<x,t) :E"e ))"U'.k 'S,t.ESlt Ct ke S') :tllllkU. (-h')dt' e 'it "1'2 (5el)

where
                              t , d( Et(Åí')
                 Eh = Eft (o), Et Ct) = dt,t

     Sub.stitution of (s.1) into C4.i) and (4.3), and

differentiation of them with respect to t, yield the following

eguatlons:

                               '  i,Z,v-l -c? }i.Vl+ X, ,ft,--ji Elct-t')jk.V-i;cx•bdt'•dt' - ,,'fu }l,i- •y

  )it'V-iZ '-'ci )iiV: + ll,'':It Ii Elct-t')Ii' )i."v-;cz.t-)cft".dt' . e&, .g{t: j (5'2)
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i}IPt = B•{ V,cx,t> -• [S7. <x,Å})} - , tYSi Bt(t -f)Si'{ ii, t. ,t.>-- ijl,kx,tV>} dV• Kt'

where vrt(x,t) is the particle velocity and cs=(Eft/sÅí)V2 .

     By introducing the following pararneters

  g= x/At. 't = ct t/ fi,, vT} = 'v'tlve , c == c2/ct, fl = Aa /flt

Eqs.(5.2) and (5.3) can be rewritten in the non•-dimensional

where vro is an initial velocity of the rigid
Diffexentiating them n times with respect to dimensioniess

T, we obtain

                              tISilil,l-l,lj'l"e,li.1."-.-2,,iill`Xs,S,;1T,;1],li,i/IZIImi,(i'1'lli"lli.1.al'th-"l"#.]

                                  ' -i; lll.zZrP. = ?v".tUiT - )z"TVri. t- 2 )-2T)X.'i LT p'(•t -T'),(,T{ vT,<},'t") - vrs(g,-t-")}dT'f`dCT'

            '

  V,= p,g,v7, )?.7zOr , b= AtB./EtpJ g= pR.'ftft,` ,

             ;.   ei'c-t')---- 2Eik(ii') 1 B'LcTe)= 2BiiiT')

(5.3)

 form,

 body.

  time

(5. ij )

(5.5)
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5.2 Analysis

     According to the analytical techniques proposed in Chapter

3, the state quantities, such as stress or particle velocity at

an arbitrary location of each layert can be expressed by:

         c""c\•T)"X. Tn'l[';Tif,l`")`,'III.l. i',{);Tif.ii'X (s•6)

         vftct,'[) =: IIil.l, ;,i [).)".Vu,\)};,-y iil.I:. ,i,:zs" (?.tVik.i')i, (s•7)

where

                erk = u"Tt1Pt ct v,

Also, as shown in Chapter 4, the propagating dis,contitnuities in

the vÅ}scoelastic materials can be expressed as follows:

    {)i"zVR\)) = lil.II,Yin,}h,.--l;l]/- exp(-e'iotg), i=i,z. 2=f.z

                                                         (5.8)

     In order to express the stress (5.6) as a function of the

particle velocity vrÅí, we rewrite Eq.(5.1) as follows:

                                  '    tt Z)O.tlft = ))VgS -2 7)T S,T e'tCTdT')S,T lltft(;,T')dz"dT' (5'9)

where

                ig = Eie !Eto

After differentiating (5.9) n-1 times with respect to T and

considering the relation (4.10), we obtain the following

relation:
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 -liifl"),".,(,'i,ft.Cn'=iili!11iiiÅÄ-,--ll",V,.;"-2•tL;1e;k{l':SS:;:iiii'",i.tl,.,-zel,I-Ti,lgVi"dTi

        +2 il.t, e'!Nv 'bi'.c't,.V-\' +2Sit, e"{"ck--Tb v7ib arui (s.io)

where

           c(a)-{l f,:r, k-:-l

since the integral is contÅ}nuous across the wave line, Eq.(5.IO)

yields "L-he following relation between fjnite discontinuities:

-:lf"'()ia,.Y'}-k,[li,".iS']--(}',\\')-2t".le;•,-'--lj,(ll':llllllil".t-/i;')t?ll.l,e}•t),'"t"rV-i;')

                                                         <5.Il)
By employing (5.ll) and (5.8), Eq.<5.6) becomes

crGcg,i) -i g,f, ii{ S7f,';.,,,"tt -eQ, jefe,;.,,. -Y7kEe.',,.

          t=t MtO                   tsnP

             n-1 .          -2Ze`to( Y?{k..t,..i -e}'o 5?L{ll,.i-L,in )

             t't
          +2 1. ;}., elao •s';", 'n -i ,m } il,I] lif gxp (- eio ti ) <s. i2)

     By the use of (4.10), and the consideration of
discontinuities across the wave front, Eqs.(5.4) and (5.5) can be

expressed in terms of gg-Tg as follows:

   /Z,iZ;'ilrMtz",/ill]l,2./llÅíi:fiillll,li'l'l.=i[-/1Il,,l'l)GI.+lllli•i)'j.,(ii;")--k•[`l:,\gii;')l

                                                          (5.l3)
            '                      '                                   '
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  trlji())n.cU,iZ))-2')-?x2[))MT'ztnVf`;/)]-(t-ci)[))MiZ"Vtit))--2c,lpixl]+c2[#.c.:)) ,I

  'iliiil( ',".,\i") -2,d)},[ 4"ilM]lf`t') =2[ `l)pt -7[ ))"•riP.;2'] (,. ,J,,

                                           '                  '
  [;lrCL:'}=;..,e'L{etr}zi'iI[')1111LgV..("!))-'2tL',eleS}Tg())Mli'i.,t,\.C"i")-t'li':2te'tfto())biZi.i.\ellg}}

  -t•();,N,i',:')-(}"-,u,':'}-[),".,v,\'}+2l.l;,.,6jt{(),"l'i\.iil'}-{),"ll\.l.l'}} (s.is)

Substitution of (5.8) into Egs.(5.13)-(5.15) yields the recurrent

formulas for the coefficient 9Åíga," as follows:

  fRtX'+s,)n•t = -i!'{ `l'{1'7rt(flt) d2'9E'nY CÅëf) -- 9n`1n(4')} '

                                                        N

  ffl2:L'tz,nt - A-{ `l';I,'.(ft?.) --2•.fl.1'L.t,n•"-2•`V!}r;I'.cg,)+g. gSIS:,.(g)} Jl

                                                        (5.16)

  jPif:l2,m --'- -' "l}T, { `l'iZ,'n ( Y,) - 2Yei2n'ts.m+t "2 `7bnSh(ei) q c2 st?{,2h (P) }

 Y.iZS,,,.., ==f{ <i5:,2il, (sf?.) -- 2•sbSfin(ip,)+3 ip{,2;, (ip) }

                                                        (5.I7)
                                                         '
  `75n`!,'n(Y7k> '-" YX'n,,nt2 -2eio'Y?tYA.m.t +(e'to)2'YTi.t:.m +2ele S`lkf.".t..,

  9b:,'il,(it) = i.., elo { .SRk`ln'-i,mt2 -- 2'elo'9i'n'-•i.?nt, +(eie)Z•Yt!S'-t,m}

   -- 2'i.iilll., ele { Y{,in).t-i,mtt - ele'YlftEi"'.i-i.,n } + l.Ili.,' etto•.sRf,'Sn.i,trr

 -l;-'9nE':(i?) -- SFI,f'nl.t" S`?2S`n',"t '2'l.i;.,S3:'{ SetSli,,n - .S`l2Yn'-i,m} (5'i8)
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where

           7L= c2/(t-- cZ) , b= At•B./Eio

     rf the particle velocity atg=O is given by

                oo      vk<o,r)=;.l. dt,x p;irf , i=i,2 (s

then, we obtain as boundary conditions as foliows

     SPil'n,e + 9t`,2n',e == Ct•n , t"i,2 (s.

Applying the same proceduxe introduced in section 4.2, we can

determine the lowest coefficients as foXlows;
     Y?ffotlo :tf.o , 92i2olo '-"" t:2.o

                                                        (5
    Y',f2.'..=: .Yr,f2,.'o = Sf',`i'.r ---o . YlzS'.'.o=Y72Yi'.opt-- YI29f'.t =O

Thus, starting frora Egs.(5.20) and (5.21), all coefficients

obtained successively one by one.

.19)

20)

.21)

 are
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5.3 Nurnerical Results

     Jn the present section, specific problems of longitudinal

impuisive motion of viscoelastic laminates subjected to an impact

are treated by the methods previously developed.

Example 5.1 Let us consider the longitudinal compressive waves

in a larnina-ted medium struck on the contact plane x=O by a rigid

body with fini'te length ee arrtd initi'al velocity v.. In the

analysis, the•-perfectly plane contact is assumed. Then, the

equation of motion of the rigid body whose rnass density is

designated by Pe is expressed as follows;

    ))UT:fiCD,'t)=: p,g,{'A41' fi,>{ ori{o,'t) + S.fi2, (sT2(o,'t)} (s.22)

By the use of Eq.(5.l2), the boundary condition (5.22> can be

express.ed as

  YltY;"'•o' Yk`i)ltt•o = g.Q,(Plkillii,) S.Ii, ;l.;, Ekc'ftcplE'{ Y'{!li-i,s "- ese sRil;-i,e

     - YR`,Rn' ,e '- 2 til', eie ( va(,gA -i -i , t - eio ' Y7{ •"i-b,-i.o ) t 2Åí eio 9tS'n'.i.. }

                                             ttt
                                                        (5.23)

where

   ik= Eie/ Eto , fi{t)-- fit/ fit, C(1)'•-'- Cllcs , k=t,2. t=1.2

Using Eg.(5.23) and (5.X6)-(5.l8), all coefficients are obtained

successively.

     In Figs.5.1 (a).,(b}, the average stress in each iayer of
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laininated composite struck by a rigid body is plotted aganist x

for several values of t. Fig.(a) is the case of two aiternating

viscoelastic iayers, and Fig.(b) is the case of an elastic (layer

1) and viscoelastic material (.layer 2). The calculation is

perforrned by using first 25-terms of the infinite series (5.l2).

Example 5.2 We now turn our attention to the stress waves in

send-infinite viscoelastic laminates due to a constant velocity

impact, i.e., the velocity of the Å}mpact at the end of the

iarninates is kept constant. In this case, the corresponding

boundary condition is obtained by ietting Q, .oo in Eq.(5.23)

               9t`'!mt,o+YÅí'n+t,o =o (5•24)
     The stress waves due to a constant veloÅëity irnpact are

piotted in Fig.5.2 aganist x for several values of t. Here again

the cQmposite used in Fig.5.ICa> is employed. Calculations are

perforrned by using first 25--terms of infinite series (5.i2).

     The resuits show that, in the viscoelastic layers considered

here, the wave front propagates with. constant velocity and the

magnitude of wave front decreases exponentia)ly with time t. It

is found that, in the viscoeiastic iarninates, wave shape

modification occurs as the results of a geometric dispersion and

                         'a spacial attenuation.
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                            CHAPTER 6

                 Experiments of Transitent Waves

     In this chapter, experimental studies on a transient wave

propagation in an elastic larninated structure are presented, and

the strain wave modification along the layers observed experimen-

tally is compared with the theoretical calculation mentioned in

Chapter 2.

6.1. Experiments

                           Straln gauge

No. 'cu

1
o At

.rv -

Butter(Al) No Cu'

. p& rv
x

o Al

10 1515
                                       2he"= 20"- ,2tw= 20"v-
                                       eN=tw/ts,edv=ha/r3

                           Fig.6.1 Specimen

     The composite structure used in this experiments is composed

of4plates of aluminum and copper. Each plate was pressure

bonded to each other by using epoxy resin. The dimensions of

specimen are shown in Fig.6.l. In order to realize the assurnp-

tion of the infinite periodic array of layers approximatelyi the

outer layer with half thickness of the corresponding inner iayer

is bonded on both sides of the specimen.
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                    Fig.6.2 Experimental apparatus

     The appayatus used to generate and observe the propagating

strain pulse is shown in FÅ}g.6.2. In this experiments, the

aluminun buffer is attached at the top of the specimen as shown

in Fig.6.l, and the strain pulse is generated by the irnpact of

the alurninum striker on the buffer. Through the buffer with

120mm length, the shape of the transmitted wave front is

correct-ed to be uniforrR and the plane wave enters the specimen.

The strain waves in each layer of the composite are rneasured by

strain gauges. In the present experiments, the strain gauges

were bonded at the position of hJ/i/:i- (2hi= thickness of layer)

from the center line of each layer as shown in Fig.6.1. It is

because that, according to the diffusing continuum theory (see

APPEND!X A), strain at this point is equal to the average strain

in the cross section of the layer.
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     The strain measurement is planned to be finished before the

release wave from the lateral surface of the specimen returens to

the gauges position. The experiments are performed at relatively

low stress ieveis, and so, the theoretical calculations are

performed assuming all of the rnaterials as linearly elastic.

Material constants used in calculation are listed in Table 6.1.

                         Table 6.1

        Aluminum ( Layer 1 ) Copper ( Layer 2 )

        Pt =O.2755x1O"7 kg.s21rnm" 92 =O.9133xlO'9 kg.s2!mm"

         Et=7200.0 kg/mm2 E2=12000.0 kg!mm2
         Gi=2700.0 kg/mm2 G2=4200.0 kg/mm2

6.2. Experimental Res.ults and Comparison with. Theory

     The comparisons of the wave forrns propagating aiong the

alunminum and copper layer are shown in Figs.6.3 and 6.4. Solid

and dotted lines in these figures mean the strain variation with

tÅ}me in the alurninum and copper layer respectivelyr observed at

the positions iOmm, 25rnm and 40mm far from the loaded end. The

results show that the strain wave changes its shape as it

travels. Th.e strain in the aluminum layer decreases its

amplitude but on the other hand, in the copper iayer, the strain

wave increases its amplitude as it travels; and then,the two

strain levels in both layers gradually approach to the same

value.
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    The comparisons between experimental and theoretical results

are shown in Figs.6.5(.a),(b) and 6.6(a),(b). Figures (.a) and (b)

show the strains in the alminum and copper layer, respectively.

Solid lines in Figs.6.5 and 6.6 are the strain variation observed

in the experiments and are the same one as shown in Figs,6.3 and

6.4, respectively. Dotted lines are obtained by the theorettcai

calculations. Calculations are perforrned employing the strain

variation measured near the loaded end (. IQmm far from the ioaded

end ) as the boundary condition. Using a ieast-square criterion,
 '

the input strains are expressed by the 24-th order polynomials,

and the calculations are performed by using the first 80•-terms of

the infinite series solution C2.35).

    The agreement between experimental and theoretical results

is good; especially for the arrival time of the wave front and

the wave shape of ri'sing part. Those resuits show that the

diffusing continuum theory can predict all the important

qualitative features of the transient wave, and also the

quantitative agreement is fairly good.
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                            CHAPTER 7

                            Conclusion

     The transient waves in larninated composites have been

treated, and the wave shape modification has been investigated by

the diffusing contÅ}nuum theory. Concerning the stress waves in a

cornposite rnaterials, usually the head-of-the-pulse approxirnation

was used to obtain the far-field solutions. In the present work,

we have been concerned with the near field where the wave front

chimges its shape as it traveis.

     In Chapter 2 and Chapter 3 of this paper, transient waves in
     '
the elastic larninated composite have been treated, and behaviors

of stram waves near the loaded end have been discussed.

     In Chapter 2, transient waves in semi-infinite elastic

composite submitted to the surface pressure at the end of

larninates have been investigated. In order to obtain an

analytical solution near the loaded end, the multi-wave-fronts

expansion method has been proposed which is useful to treat the

transient waves with two discontinuous planes like as the wave in

a laminated medium. Anaiytical resuits by the present method

have been compared with those obtained by the integral solution.

    In the theoretical analysis, two sets of skew coordinates

along the characteristic curves have been employed. The use of

these coordinates has facilitated the mathematical treatrnent of

the propagating discontiuities in larninated medium. It has been
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shown, for the elastic larninates, that the discontinuity

[)"EfS>/bzer) at the wave fronts can be expressed by the n-th order

polynomial of the spatial coordinate Eg. Furthermore, !t has

aiso been shown that the coefficients of the each term of the

discontiunity are deterrnined by the recurrent forrnulas derived

from the equations of motion for the elastic laminates; and

infinite series solution obtained from the present analysis can be

determined step by step from the iowest term. This approach is

mathematicaZly more sirnpie than Achenbach and R6ddy's o-ne in

which they obtained each terrn of the intinite series by

integrating the difÅíerential equations one by one. And so, while

in their approach, only 7•-terms were used for the viscoelasitc

single rodt in our appxoach, the first 25-terrns solution has been

obtained easily for the eiastic laininates. It has been found

that the present method Å}s applÅ}cable to any boundary condition

and the calculation time is reduced remarkably compared with the

conventional integrcal so:ution. The numexicai results have shown

that the transient wave modification in the elasitc,larninates

occurs mainly as a result of the energy exchange between two

iayers due to different natural propagation speeds in different

layers.

     In Chaper 3, the analytical treatrnent introduced in Chapter

2 has been extended 'to apply to the veiocity boundary condition.

In thÅ}s chapter, the equations of motion have been expressed in

terms of the particle velocitiesr and the relations of the
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discontinuities between particle velocities and strains have been

obtained. As the numerical calculations, two examples have been

considered. The semi-infinite elastic laminates impacted by a

rigid body has been first treated. The boundary condition for

this problem has been obtained from the equilibrium of the motion

for the rigid striker. The second exarnple is concerned with the

composite subjected to a constant velocity impact. For this

case, the boundary condition has been easiiy obtained from the

iirnLting case of Eq.C3.18) as 2o•oo, arid it has been shown that,

at the impact end, the strains of two layers change with tirne and

ultimately approach to the constant value.

     Chapter 4 and Chapter 5 are concerned with the stress waves

in viscoeiastic larninated composite's. The rnulti-wave-fronts

expansion method introduced in previous chapters has been

extended to anaiyze the transient waves in such viscoelastic

medium which were difficult to treat by the conventional rnethod.

In Chapter 4, the transient waves in the semi-intinite

viscoeiastic larnÅ}nates have been investigated for the case of a

surface pressure end loading. Impact problems of viscoelastic

larninates with rigid bodies have been studied in Chapter 5. The

diffusing continuum theory for the viscoelastic iaminates has

been employed. Analytical forrnulations have been constructed for

the rnediurn of viscoelastic layers that obey the general linear

viscoelastic relation. It has been shown that, for the
viscoelasic larninates, a propagating discontinuity LbnCrS/}bzÅë) is
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expressed in the fonn of an n-th order polynominal with respect to

gs accompanied with. a spatial attenuation factor.caused by the

viscosity of the material, and the coefficients of the

discontiunity are determined by the recurrent forrnulas obtained

from the equations of motion for the viscoelastic larninates.

Calculations have been perforrned for two kinds of cornposite

materia!s composed of elastic and viscoelastic layers and two

sorts of viscoelastic layers. From the numerical results for the

viscoelastic laminate, it has been found that wave shape

modification occurs as the results of a geometric dispersion and

a spatial attenuation.

     In Chapter 6, the transient wave propagation has been

investigated experimentaliy by using an elastic larriinated

structure, and the results have been compared with theoretical

ones. The agreement between experiment and calculation has been

good enough., and it has been found that the theoretical treatment

used in the present work can predict the important aspects of the

dynamical behavior of laminated composite well.
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                           APPENDrX A

              Interaction [I]erm for Elastic rJarninates

     The interaction between two constituents in the laminated

composite is caused by the shear stress acting on the interface

of the layers. Therefore, in order to determine the interaction

coefficientB(t),we should obtain the shear stress at the

Å}nterface.

                           y:

2hz
Vl

x

 rxvo
-. -. -

2hi

Yi

vt

          Fig.AI Typical displacement profile composite

     The geometry of the layers and displacements

are shown in Fig.Al, where Uf and U2 displacement
in the layer 1 and layer 2, respectiveiy. displacernent and

shear stress are continuous across the interface.

     Now, let us assume that the displacement in the yi -direction

which is relatively small cornpared to the displacement in the

x-direction may be neglected and the gradient of the shear stress

                 'is independent on yl in each layer:

            -)!lil;iin'U -,, = G•, i,2xU,{ - f} (Ai)

Then the profile of a displacement in any cross-section of iayer
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can be expressed as follows

          V}=2it(f'i(Ul-ft;)+K , jel,2 (A2)

where K is an arbitrary function of x and t.
                                                        '
     From Eq.(Al), the shear stress T=te at the interface is given

          'CIiso= Ss•ftt =- S.•K; (A3)

Now we define the average displacement of each layer by the

following integral:

          u-,=k.I.'"u}•avi ---- ,lj,, ll:.K (Ah)

Then we may write

          fj.-lli =:- 5'K(}iri <Uj-K} , i=i)Z CA5)

Substituting Eq.(A5) into Eq.(A3), we can obtain the shear stress

at the interface

               'Z lzs,=: B< U,-V,} (A6)
where

                      3a,•a2               B--                    'Rs Gz+ fi2 at (A7)
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                           .APPENDIX B

           Interaction Term for Viscoelastic Larninates

     In the present appendix, the interaction term p and

coefficient BCt) for the viscoelastic lairvLnates wiil be

determined by the methods developed in APPENDIX A.

     By empioying the shear relaxation modulus Gk(t), (k=1,2),

the relation between shear strain 7ÅíCt) and shear stress Zk(t)

can be written in the forrn

   tTÅí(b= 7i.•ei(t)+S,rG-k(t-t') diftt(,t') dt' , R=s.2 (Bl)

where 7ko=lk(O). Assuming that the shear strain is expressed as

)Ui/)gfi , it becomes, after Laplace transformation,

   rt';(s)= 7Ao-G:(s)+G::(s){s7k'(s)-- 7t,] :s•Gl(s) 77US'ÅíS) , 1-t,z

                                                            (B2)
Introducing the following assumptÅ}ons,

       )bTv:<i'> =s•G2(s):tll"IiiE27iS)-- f (s) , i-s•z . (B3)

the shear stress and the displacement in any cross-section of the

layer become
                             '
       T:(s)=f (s)• 7t , i-t•2 (B4)
       V;(S)=-r2""==T:-:.s{;G(ic).)(Y2-AaA)+K', ktt,z (Bs)

where K`is a function of s.

     From (B3), the shear stress Ta` at the interface is
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                    7r.'(s)=f, '<s)-1, =- f.'(s)•A2 (B6)

The average displacement of each layer becomes as follows

       i"x-fcs)----1,S.S"V;cs)dYa=-'itTljli5iil;s'. 'st'a(Sc),)k'K',R'-'•i•z (B7)

Substituting (B7) into Eq.(B6), we can write the shear stress at

the interface in terrns of the average displacements

                te.$(s) == s• B'(s){ urcs) - u,'(s>}
                                                            (B8)
where

                     B*(s)= Gr(.)}ftIitr;s3fati)(;K). (Bg)

Applying the Laplace inversion to Eq.(B8), we obtain
        'l,ct)=: B.{ u-""', ct) •- iliCl )}+S: B'cf-'t'){ VrLct')- U2ct') } dt' (Blo)

where B(t) is the Laplace inversion of B'(s), and

                    B. ---• sco) , Bt(tt) .. ddBi,t')                                                            (Bll)

To(t) in Eq.(BIO) is eguivalent to the interaction term p in

Eq.(4.3).
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                            APPENDIX C

        Constitutive Relations for Viscoelastic Laminates
                                                '

In this appendix, we will determine the constitutive relations

for a viscoelastic material, appiying the correspondence

principle.

     For the wave motion being considered, we assume that the

strain in the yi-direction is relatively small compared to the

strain in the x-direction and can be neglected. Then Hooke's law

for elastic material can be written,

        Cfkx =(Kk +-fl-(EFk)Ekx , 'tÅí.ta = Ciirk•'>rEt} (Ci)

where KÅí is the buik modulus and Gft the shear modulus. We now

introduce the correspondence principle represented by the

foliowing substitutions

                  Q's' "'s                                                            (C2)          3Kk- ps,, , 2Gfte p{

and, using Eg.(C2), Eq.(Cl) yields the corresponding relation for

a viscoelastic material as follows

   Pi PE"orftx = 'il-< Pi (ir;': +2PL:' g'E )'Ekx , P{ t',.?=tQ'k')Ifi,e (C3)

where P", 9", P' and 9'are the operators which describe the

viscoelasic behavior of the material.

     We now apply this relation to specific material which is

elastic in dilatation and is viscoelastic of the three--pararneter

                              d. 7Z -



soiid in distortion:

                        '          p{=i+ pi, ddt , g'k= gts+ zi, ddt

          Pi' = 1 , Q'i = 3Kk

Then Eq.(C3) becomes

    c:kTx + pt'6:-7Lx = ( KE+}g{,)Etx + (KiPi't+ 'S-2L)ikz

     'ukx}+ TL 'i'k te = -l- X'ko 7kie t -z:- 2Åít 7kxe

Frorn (C5) and (C6), the axial creep function, the axial

shear relaxation modulus are obtained as follows:

     Jftct)=Ks.S?l,k,{t-(t--ltl'II{III2ii7i{iili ;l3sZkS,/gn,)e'xp(':ik'+;t33/,iO,/?{,

     E*tt)= ( K`,.. •:l-•x.1,) + 21}- ( 7{s /p{s -- 8k,) efxp(--•'tlp{s>

                        '     Gict)=il-{ g'k. + ( IIi,i -zi,) eTp(-t/?4{)}

Substituting
             k; -"2k/Gk, , 7{,- Grkv , g{, --> 4?k

we can rewrite Eqs.(C7)-(C9) as follows:

       Jkct)==Kt.tSa,,{4-(i-KK`i'.'#"GG,":)exp(--E:.'tg'21,B'o.

        Esct) = < Kkt -g- GF",) + -g- G", ecp ( - SG,o t)

        qkci) = {l;o + 4" exp(- S",O t)
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   (C4)

   (C5)

   (c6)

and the

  ?t,'i)}
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    (C8)

    (C9)

   (CIO)

sxt)}

    (Cll)

    (C12)

    (Cl3)


