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第 1 :章序

1. 1 本研究の目的

壬A、
両開

高炉はガスと装入物の向流移動層型反応容器である 。 この反応容器の特徴は， 日産 l 万

トン以上の銑鉄の大量生産が可能であることと熱効率が90児前後と大変高いことであり， こ

のため，高炉は現在のところ銑鉄製造の主流を維持している。

しかし高炉には，巨大な向流移動層であるがために生産性・生産弾力性等の制御性が

必ずしも良くないという弱点もあり，安定した生産量・溶銑品質の確保の観点から，より

一層の制御性の向上が望まれている 。 さらに，近年， C 02 をはじめとする環境問題， コ

ー クス炉の更新の問題，および， コスト低減の観点から，高炉操業は，微粉炭多量吹き込

みによる低コ ー クス比 (300kg t以下 ) ・高ore/ coke C ore / coke 5 以上: ore/ coke とは l チ

ャージあたりの鉱石 (ore ) とコークス (c oke) の重量比である の 以下では，鉱石とコークス

の層厚比も含めてore/ coke と呼ぶ ) とし 1 う通気面・通液面での過酷な条件下での操業に移

行しつつあり，制御性の向上が高炉の最重要課題となってきている 。

このように，ますます重要になりつつある高炉の制御性の向上のためには，向流移動層

の基本である円滑なガス流れと固体流れ (装入物の降下・溶融挙動)に対する不安定要因

を解明し安定化対策を検討・提言することが必要である。

東田 5 高炉にはじまる高炉解体調査 1) -1; ) により， F i g. 1. 1 に示すように，高炉内の充

填構造が，鉱石が塊状の状態で降下する塊状帯CLumpy zone) ，鉱石類が軟化・融着・溶融

する融着帯 (Softening - melting zone , Cohesive zone ) , コ ー クスのみからなる充績層を

溶融したメタル・スラグが滴下する滴下帯 (Oropping zone) ，降下速度が小さく更新期間

が長いコ ー クス充填層の炉芯 COead-man) ， 2000 0C以上の高温でコ ー クスが燃焼するレ ー ス

ウェイ (Raceway) ，スラグ・メタル層の存在する炉床 (Hearth) で構成されていることが明

らかになり，とくにガス流分布を支配する融着帯形状に着目した研究7 )ー 11) が大幅に進歩

した。

さらに，装入物分布モデル 1 2) および高炉内の反応・伝熱・流動を考慮した高炉総合シ

ミュレーションモデル 1 :j). 11) の開発および高炉内での温度分布測定用の検出端 I ;j)や融

着帯観測の検出端 t 1))の開発により，炉内状況の推定が可能となってきた。



Higashida No.S B.F. Hirohata No.l B.F. Kukioka NO.4 B.F. 

F i g. 1. 1 Distribution of softening-melting layers in 
blast furnaces!). 

このように炉内状況， とくに高炉内のガス流れについてはかなりの事象が解明されつつ

あるが，装入物の降下や溶融の挙動および粉の挙動については未解明なことが多 L 、 。 また.

高炉内のガス流れについても，より一層の精度向上のためには，高炉内での装入物の層空

間率を情度よく推定することが必要であるc 高炉内での装人物の層空間率の推定に関する

研究 !日) はあるものの，固定層での実験結果に基づく層空間率の推定式であり ，向流移動

層での層空間率推定式の開発が望まれている 。

高炉内の装入物の降下と溶融の挙動の研究については.実炉での調査例 111) ， 1 弓} も少な

いため，未解明な部分が多いが，近年，模型実験により，装入物の降下と溶融の挙動が少

しずつ明らかになってきている。 例えば，擬似鉱石と温間模型を用いた融着帯形状に着目

した研究 1 7) ー 1 9) および，冷間模型実験に基づく炉壁混合層・炉壁停滞層の形成挙動に

及ぼす炉体内壁面形状 (以下，プロフィルと呼ぶ) の影響に関する研究2 0) -27) が報告さ

れている 。

前者の研究に関しては，融着帯形状と ore/coke分布の対応性を論じているものの，融着

帯形状を決定する降下速度・熱流比に及ぼすore/co同の影響を定量的に解析した研究はな

い。 後者の研究に関しては，溶融挙動をも考慮した研究!日)，あるいは，降下挙動に密接

に関連したガス流れをも同時に考慮した研究2 7)は少ないコ したがって，高炉内の装入物

の降下と溶融の挙動に及ぼすore/coke分布やプロフィルの影響をより定量的に解明する研

究が望まれている 。

- 2 -
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一方，近年の微粉炭多量吹き込み操業により，従来以上に，未燃チャーを含む粉の高炉

内での挙動2 H) 一川が着目されはじめ，充填層(固定層)内を対象とした囲気 2 相流に関

する研究 :1 !) -:J:j) が報告され充填層内での粉の流動特性が解明されている。 しかし高

炉のような移動層内における粉の挙動に関する研究はなく， とくに，微粉炭多量吹き込み

にともない増加することが予想される炉下部での発生粉の炉内での挙動に関する研究が望

まれている 。

本研究では，高炉の基本特性である向流移動層の状態をできるだけ模擬できる各種模型

実験装置を用いて， F ig. 2 に示すように，高炉内のガス流れ・降下・溶融の挙動に密接に

関連している ore/coke分布 ・プロフ ィル ・粉の影響を解明することを目的とし同時に実

炉での検証を行った。

まず，高炉塊状帯でのガス流れを支配する層空間率の推定式を導出すると同時に，装入

物分布モデル! 2) へ導入し装入パタ ン変更日寺のガス流れの変化を検討した。 っさに，

高炉内のガス流れおよび装人物の降下と溶融の挙動に及ぼすore coke分布 ・ プロフィルの

影響を解明し，炉壁停滞層や炉壁混合層の形成メカニズムおよび形成させないための対策

について検討したっ さらに，炉芯の形成挙動に大きい影響を及ぼす炉下部発生粉の挙動を

解明し粉を発生させないための対策および粉を局部的に堆積させないための対策につい

て検討した。

1. 2 本論文の構成

本論文の構成は以下のとおりである。

(1)第 l 章序論

(2)第 2 章 焼結鉱およびコークスの層空間率と形状係数の推定

ガスと装入物の向流移動層の層空間率および圧力損失を直接測定できる実験装置を用い

て，向流移動層の層空間率および形状係数に及ぼす高炉装入物の粒度構成の影響を解析し

た。 さらに，高炉用焼結鉱に適用できる新しい層空間率の推定式を導出し本推定式を装

入物分布モデルに適用 した。

3 -
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高炉内における装入物の降下と溶融の挙動に及ぼすore/coke分布の影響(3)第 3 章

高~.戸内の物理現象とできるだけ相似の条件を設定した高炉三次元半裁模型を用いて， 装

人物の降下挙動と溶融挙動に及ぼすore/coke分布の影響を検討し炉下部の炉壁温度に及

戸畑 l 高炉で上記の影響を

オールコークス操業時および微粉炭吹き込み操業時の適正な装入物分

布について考察した。

高炉内における装入物の降下と溶融の挙動に及ぼす炉体内壁面形状の影響( 4 )第 4 章

装高炉内の物理現象とできるだけ相似の条件を設定した高炉三次元半裁模型を用いて，

炉壁停滞層の形成メ人物の降下挙動と溶融挙動に及ぼす炉体内壁面形状の影響を検討し

炉壁停滞層の厚みに及ぼす突起物の突き出し長さ・設置位置・設置間隔・周辺カニズム，

部ore / cokeの影響および炉芯高さに及ぼす突起物の設置位置・中心部ore/ cokeの影響を解

装人物

炉壁混合層高炉シ ャフ卜部扇形の冷間模型および高炉三次元半裁の冷間模型を用いて，

凹凸形状)の形成挙動およびガス流れに及ぼすシャフ卜上部プロフィル (付着物，浸食，

'伊安息角 〉 の影響を解析し炉壁混合層の形成メカニズム，および装入物の性状 (粒径，
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壁混合層の空間率およびシャフ |、上部プロフィル損傷時の装入物分布について考察したu

シャフ卜上部プ

装入物の高炉三次元半裁模型を用いて，羽口からの粉コ クスの吹き込み実験を行い，

降下と通気性に及ぼす粉吹き込み量および粒径の影響を解析し本知見と実炉でのサンプ

リング結果を比較・検討すると同時に，移動層内における粉の堆積挙動について考察した。

レ ー スウェイレ ー スウェイ燃焼実験を行い，小型レースヴェイ燃焼炉を用いて，さらに，

ぼす周辺部のore/coke，降下速度の影響を解析すると同時に，

検証した。 さらに，

炉壁混合層の形成挙動とその通気性に及ぼすシャフ卜上部プロフィル，

さらに，炉下部のよ戸体損傷時の装入物分布について考察した。

性状の影響

析し fニ ー

( 5)第 5 章

さらに.君津 2 高炉でのシャフト上部炉壁面の補修前後の操業を解析し

高炉内における粉の挙動

ロフィルの補修効果を検証した。

(6)第 6 章

N
.
-
.∞
ご
-

高炉への微粉炭

多量吹き込みにともない予想されるレースウェイでの粉の発生量の増加に対する抑制対策

内でのコークスの粉化に及ぼす羽口風速 ・ コークス強度の影響を解析し
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について検討した。

(7)第 7 章総括

- 6 -

第 2 章 焼結鉱およびコークスの層空間率と形状係数の推定

2. 1 緒 Eコ

高炉塊状帯でのガ.ス流れや還元挙動を解明するためには，塊状帯での層空間率の定量化

が必要である。しかし高炉内充填層とくに移動層の状態での層空間率の推定に関する知

見は少ない。 田口ら l 川は，固定層での実験により，調和平均径と粒度分布の拡がりの大

きさを示す粒度構成指数 ( I 5 p) より近似的に求めた高炉装入物の層空間率推定式を提案

しているが，粒径(d p )の適用範囲が限定されている(コークス: O. 024m く d p く O.063m.

焼結鉱: O.006m く d p < O. 030m) ため，小境コークス，細粒焼結鉱使用時の層空間率の推

定には適用できないっ

一方，化学工学，粉体工学の分野では，多成分粒子充填層の空間率の惟定式が， Furnas 

ら :11) 大内山ら 1 ~)により提案されている。 Fu rnas らの推定式では，層を連続体として

取り限っているため配位数との関係が検討されていない。 また大内山らの推定式では，各

粒径の粒子を単独に充填した際の空間率がすべて等しいと仮定しているため，粒径により

空間率が異なる粉粒体の場合には，適用上の問題がある。 最近，鈴木ら :1 川 ， 1 7)により，

配位数推定モデル 1 H) ・川に基づいた多成分粒子のランダム充填層を対象とした層空間率

の推定式が提案された。

そこで，ガスと装入物の向流移動層の層空間率および圧力損失を直接測定できる実験装

置を製作し，向流移動層の層空間率および形状係数に及ぼす高炉装入物の粒度構成の影響

を解析した。そして，層空間率の測定値に基づいて鈴木らの層空間率推定式を修正し高

炉用焼結鉱に適用できる新しい層空間率の推定式を導出した。

2. 2 実験方法

2. 2. 1 層空間率の測定

層空間率 (ε 〉は. (2. 1)式に基づいて，装入物の嵩密度 (ρb )と装入物粒子の見掛

け密度 〈 ρ p ) より求められる 。

ε= 1 -ρ b /ρp (2. 1 ) 

2. 2. 1. 1 嵩密度の測定

装入物の嵩密度の測定に用いた移動層実験装置の概要をFig. 2. 1 に示す。 本装置は，ア

- 7 -



クリル製でノミイプの内径は0.6mである。このパイプの下端より常温の空気が吹き込まれ，

上端より装入された装入物はパイプの内部にある昇降式のガイドパイプにより下方に降下

する 口

2. 2. 1. 2 見掛け密度の測定

装入物粒子の見掛け密度 (ρp )は， (2.4 ) 式に基づいて，装入物粒子 l 個あたりの質

量(m) と装入物粒子 l 個あたりの体積 (v) より求められる。

ρp ニ m/ v (2.4) 

0
0
0
 

Iron pipe 

焼結鉱の見掛け密度は，ガス流れに影響を及ぼす凹面部を空間として考慮できるノミラフ

ィン法により測定した。 本研究で用いたパラフィン法では， 600C前後の温度に調整した/ぞ

うフィンの中に焼結鉱粒子を浸積し焼結鉱粒子の周囲にパラフィンのフィルムを形成さ

せた。 コークスの見掛け密度は， J ISK2151 に準拠した水法により測定した。

Measurement hole 
of pressure drop 

白
」nH a
 
r
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2. 2. 1. 3 粒子の平均投影面積の測定

粒子形状を調べるため，画像解析装置 CTOSPIX-1 [ :東芝製〉により，各均一粒径の試料

よりそれぞれ5"'100 個選んだ粒子の投影面積を測定した。

Tuyere of 
slit type 

2.2. 2 圧力損失の測定

装入物の層高を測定後に，層高O. 6mの装入物の圧力損失を測定した J ガス流速 (空塔速

度) は， 0.2"'1. 1m! sの範囲で変化させた。

凶ire

Ring pipe 

Fig. 2. 1 Experimental apparatus. 

2. 3 実験結果

2. 3. 1 均一粒子移動層の層空間率

供試試料として，高炉装入用のコ ー クスおよひ焼結鉱を使用した。 コークスおよび焼結

鉱の粒度範囲は， Table 2.1 およひ:'Table 2.2 に示すようにそれぞれ 7 段階に分割し各

粒度範囲の試料を均一粒径試料とみなした。 これら均一粒径試料の最大粒径と最小粒径の

比は1. 5前後でほぼ同じである。

均一粒径のコークスおよび焼結鉱の層空間率の測定値をFig. 2. 2 に示す。層空間率は粒

径との単純な直線関係になく粒径の減少にともない減少した。 そして，ある粒径で最小値

をとり，その粒径はコークスの場合には25""-'35mm，焼結鉱の場合には7"'10mmの粒径である。

さらに粒径が減少すると，層空間率は増加した。

本装置の特徴は，向流移動層の条件下で装入物の嵩密度の測定が可能なことであり，実

験ではガス流速を空塔速度で約 1 m/s ，降下速度をし 1'" 1. 7 x 10-'j m/ s とし高炉塊状帯の

条件に近い実験条件を設定した。 ただし円筒型の本実験装置では，高炉塊状帯で降下時

に生じる粒子の水平方向への配列変化は再現していない。 実験時に装入物を約1. 1m降下さ

せ，降下停止後に装入物の層高 ( L ) を測定しこの装人物の層高 (L) とアクリルパイ

プの内径 (D) より， (2.2) 式に基づいて装入物の体積 (V) を求め， この体積と事前に

測定した装入物の質量 CM) から， (2 . 3) 式に基づいて装入物の嵩密度 (ρb )を求める。

V = L ・ π ・ D 2 / 4

ρb = M/V 

(2.2) 

(2.3) 
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Table 2.1 Bulk density , apparent density and void fraction 
in moving bed of uniform-sized coke. 

Avemr(醐ae Et e Particle I Bulk I Apparent I Void 
d dpi a ) er d l(ame)ter B den(s/lty |l A de(ns /l tr 司 Vfra(c) t lon 

mρb (g/ cin : l )ρp(g/cm:l)ε-

5. 0 4'"'-'6 O. 525 1. 075 0.511 

8. 5 7 -10 O. 505 1. 039 0.514 

12.5 10-15 O. 521 1. 015 O. 487 

20. 0 15-25 O. 532 1. 016 0.477 

30. 0 25----35 O. 538 O. 992 0.458 

42. 5 35-50 0.517 1. 002 0.485 

62. 5 50-75 0..!95 1. 042 O. 525 

Table 2.2 Bulk density , apparent density and void fraction 
in moving bed of uniform-sized sinter. 

Average Particle Bulk Apparenl I Void 
d d pi am(me me ) r d i (mam) e t e r de1s Jty de(n/s i t v 1f  ra(c ) t i on ρb ( g / Cin l ) ρp(g/ cm:l ) I ε ー

-1.0 3'"'-'5 1. 884 3.921 O. 520 

6. 0 5-7 1.895 3.843 O. 507 

8. 5 7 '"'-' 1 0 1. 860 3. 559 0.477 

12.5 10'"'-'15 1. 746 3.401 0.487 

20. 0 15-25 1. 668 3. 293 0.493 

30.0 25-35 1. 598 3. 190 O. 499 

42. 5 35-50 1. 562 3.212 0.514 
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(1) Coke (2) Sinter 

Fig. 2. 2 Relationship between particle diameter and void fraction 
in moving bed of uniform-sized coke and sinter. 
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2.3. 2 多成分粒子移動層の層空間率

2 成分および 3 成分粒子移動層の層空間率の測定値を， F ig. 2. 3 およびFig. 2.4 に示す。

粒径の異なる 2 成分粒子からなるコ クスおよび焼結鉱の層空間率は，細粒の体積混合比

率の増加にともない減少し細粒の体積混合比率がO. 3 から O. 5 の範囲で、最小値を示す。

その最小値は，粗粒と細粒の粒径比 (d p l / d p 2) が大きい場合に小さい。 3 成分粒子か

らなるコ ークスおよび焼結鉱の層空間率も， 2 成分粒子移動層の場合と同様に，細粒の体

積混合比率の増加にともない減少するが，層空間率の最小値は，中間粒径の粒子の体積混

合比率の増加にともない大きくなる c 細粒の体積混合比率がO. 3 から O. 5 の範囲で最小値

を示すという知見は，他の粉粒体を用いたWestman らの研究 1 1l) McGeary の研究 11 ) お

よび Furnasの研究 ll) の結果とほぼ一致している 。
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Fig. 2.3 Relationship between fractional volume of fine particle 
and void fraction in moving bed of coke and sinter 
composed of two component particles. 
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Eq. (2.7) 

nHU -
-

0.5 

(
1
)
h
u
L
O

パ
ち
の
』ω
(泣
戸
市
山

Eq. (2.6) 

1.0 

0.5 

(
。)
h
u
L
O
一
ち
のh
F
ω岳
山
王
山

dpl=30 mm(25~35mm) 
dp 2= 12.5mm(10~15mm) 
dp3= 4 mm( 3~ 5mm) 

入 3 0
'"-' 40 

ιヂ'v 50 

60 

70 どさ
。

n
u
 

っ
ι

)

)

)

 

m
m
m
 

m
m
m
 

n
H
U
「
「J
v
r
h
d

F
h
d
「
ぺJ
V可
l
l

~~~ 

F
h
J
「
h
d
n
H
U

「
J

フ
」
1
l

，
，
s
，
、
、
，
，z
・
‘
‘
，
，E
E‘
、

m
m
m
 

m
m
m
 

F
h
J
F
h
d
 

門
/
』
n
U

内
ζ

A

斗
q
J
可
1

=
=
=
 

可
ム
今

'』
守
》

n
ド

n
y
n
ド

」
U
A
U
.
パ
u

100 
0 

100 
0 

50 

Particle diameter dp (mm) 
(2) Sinter 

10 5 
。

、
l
'

o
m
 

5

m

 
(
 

円
ド

A
u
 r
 

ρ
』

ρ
』

+
し

l
k

戸
」

n
u

、
J
m
p
u

t
-

、
内

d

1

・
1
)
A
u
-
ｭ(
 

ρ
ャ

rhd 
、
，a
，F
L
 

.

、
，
，

+
B
L
w
 r
 

『d
n
ν
'
 

。

0 
708090100 50 60 

Sv 3 (%) 

(2) Sinter 

30 40 10 20 n
l
u
 

nHu n
u
 

、
i
l
'nHU 

Q
J
 

n
u
 
no 
nHU 

7
/
 

50 60 

Sv 3 (%) 

(1) Coke 

10 20 30 40 

o Mono-component ρ
しl
 

p
し

・

lι
'
E
b
 

r
l
r
ι
 

円
d
p

し

n
y
+
L
 

n
u
 

ρ
L
・
1
1

n
H

e
d
 

-
-
f
i
Au
 

n
H
 

n
+E
且

円
パu

n
u
 

ρ
し

ρ
M
U

n

・

m

O

S
 

H
u

n
し

nヒ

l

l

 

n
U
P
T
i
p
し

H
ν

円
U
-
t
i
a
V
E
L
 

'
l
l

・
-
門uv
l

n
d
p
u
nd
 

n
u
L
U
n
H
r
 

n
u
 

・

l
g
+
L

6
t
L
n
u
n
u
 

p
し
f

l
ρ

」

a
v
n
 

vl
n
u
n
u
 

r
l
ム

m
川
n
ドm
 

n
u
n
H
n
U
 

ρ
」
・
1
L
n

し

ρ
しw
n
e
 

+
L
n
u
p

し

e

・

l
r

-
n
U
φ
L
h
H
 

F
し
十

L

n
y
n
d
 

;
l
y
i
f
ｭ

-
n
u
r
'
i

n
u
 

n
b
 

n
H
A
U
J
U
 

G
-
-
e
 

1
A
n
u
cd
 

+
ー
し

H
v
n
u

a

p

 

-
-
d
m
 

ロ
し
n
u

円
U

n
k
a
c
 

F ig. 2. 4 

• Multi-component 

Relationship between particle diameter and shape factor 
in moving bed of coke and sinter. 

F ig. 2. 5 

察考4 2. 

0.4'" 形状係数は粒径の増加にともない増加しコ ー クスのいずれの場合にも，焼結鉱，Ergun 式に基づく形状係数の推定4. 2. 

多成分粒子移動層の形状係数の測定値であり，図中の.印は，1. 0 の範囲にある。 なお，(2. 5 ) 式のErgun 式がよく用いられる。高炉内でのガスの圧力損失の推定には，

この形状係(2.6) 式および (2.7) 式が適用できると考えられる口バラツキはある ものの，
ρ (1 ε ) μ (1 -ε) 2 ム P

一一一一 =150( この補正係数が粒径の増加いわゆる形状係数を含む補正係数と考え られる 。数(ゆ〉は，(2. 5) u
 

εf (ゆ d p ) 
u 十 1.75 ( 

ε4 (ゆ d p ) 2 L 

粒径の増加にともないコ ー クスおよび焼結鉱の形状にともない大きくなる理由としては，

さらに壁効果のが球形に近くなることあるいは抵抗係数が小さくなることが考えられる 。本実験で求めた均一粒子移動層における層空間率と圧力損失の測定値を (2. 5) でそ

空間率に及ぼす壁効果がほとんど無視できると考えられる D/ dp影響が考えられるが，F ig. 2. 5 に示す粒子径(2.5 ) 式を満足するような形状係数 ( ゆ ) を求め，式に代入し

粒径の増加にともない補正係数が増加している。が30以上 (d p 20mm以下) の範囲でも，焼結鉱の場合には (2.7)式に示すコ ーク スの場合には (2. 6) 式，(d p ) との関係より，

壁効果によるガスの不均一流れの影響により圧力煩この補正係数の増加を，したがって，ような均一粒子移動層における形状係数の推定式を得た。

失が低下した結果として説明することはできないと考えられる。

(2.6) 1. 331 + . I og I 0 ( d p ) 

コークスの場合

O. 390 中

(2. 7) 1. 268 + . I og I 0 ( d p ) 

焼結鉱の場合

O. 338 中
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層空間率に及!ます形状係数の影響
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2 4. 2. 

均一粒径のコ ー クスおよび焼結鉱の層空間率と粒径との関係F i g. 2. 2 に示したように，

その粒径はコ ー クスでは層空間率はある粒径で最小値をとり，は単純な直線関係になく，

25"'35mm，焼結鉱では7"'lOmmである 。

安息角が増層空間率が大粒径の範囲で粒径の増加にともない増加する理由については，

クスと考えられる 。 内径が最大粒子径の 11倍以上の円筒容器を用いたコ加するため 1 f,) 

0.500 トω
立
の
工
的

壁効果の影も同様な傾向を示しており，と焼結鉱の層空間率に関する田口らの測定値 l 川

響は小さいと考えられる 。
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0.400 ト
層空間率が小粒径の範囲で粒径の減少にともない増加する理由を検討するため，っさに，

Diameter dp (ー)Diameter dp (ー)粒子の平均投影面積C2.8 ) 式に基つ、 き，コークスと焼結鉱の球形度を測定した。 そして，

(2) Sinter 

Fig. 2.6 Relationship belween particle diameter and shape factor of 
Carman in moving bed of uniform-sized coke and sinter. 

( 1) Co ke C A) と等体積球相当径 (d v ) よ り 粒子の球形度をあらわす指標のひとつであるCarman

粒径および層空間率との関係を解析した コの形状係数を求め，
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Carmanの形状係数はO. 56から0.71の範囲にある 司コークスの場合には，が異なっている。

。粒径の減少にともないCarmanの形状係数が減少するため粗粒径が20mm以下では，そして，
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コ ー クスの層空間率が増加するものと考えられる。一方焼結鉱の場合な充填状態になり，

粒粒径がlOmm以下では，Carmanの形状係数はO. 65から O. 91 の範囲にある。 そして，には，

℃
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密な充填状態になると考えられる径の減少にともないCarmanの形状係数が増加するため，

細粒焼結鉱の層焼結鉱の場合には，したがって，層空間率の測定値は増加している 。が，

| 
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(2) Sinter 

0.500 0.600 0.7000.8000.900 1.000 

Shape factor of Carman ﾘc (一)

ミクロな表面形状の影空間率が大きい理由をCarmanの形状係数で説明することはできず，

響が大きいと考えられる。

(1) Coke 

Relationship between shape factor of Carman and void fraction 
in moving bed of uniform-sized coke and sinter. 

細粒の範囲でコークスと焼結鉱のCarmanの形状係数が大きく異なっている理由は以下の

F ig. 2. 7 スラグボンドなどの結合が弱し 1部分から切断されように考えられる。焼結鉱の場合には，

コークスの場合には均質な基質のため細粒になる程るため細粒になる程球状化しやすく，

偏平化しやすいものと考えられる。

均一粒径のコークスおよび焼結鉱における Carmanの形状係数と層空間率の関係

層層空間率と形状係数の聞に負の相関があり，コークスの場合には，をFig. 2.7 に示す。

っさに，
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空間率は形状係数の増大にともない減少する。なお図中の実線は，粒径が50"-75聞の範囲

のコークスを除いて， コークスの層空間率を形状係数に対して直線近似したものである。

一方，焼結鉱の場合には， Carmanの形状係数と層空間率の聞には， コークスの場合のよう

な負の相関がなく，層空間率は形状係数の変化に対しでほぼ一定値である。 これは，焼結

鉱の場合には，形状係数よりもミクロな表面形状が層空間率に大きい影響を及ぼすためと

考えられる 。

2. 4. 3 粒度偏析を考慮した新しい層空間率推定式の導出

2. 4. 3. 1 層空間率の測定値と従来の層空間率推定式に基づく計算値の比較

鈴木ら 4 引， 37) らは，均一粒子充填層の空間率，各粒子の体積基準の混合分率および粒

径から 3 成分粒子充填層の空間率を推定するモデルを作成しそのモデルを多成分粒子系

に拡張している 。 この多成分粒子系モデルでは， m成分粒子充填層の着目粒子と接触粒寸こ

の基本的な接触の方法として， m 2 個の方法を考えている。 そして，着目粒子周囲の部分

的な層空間率をそれぞれ ε( 1.1)， ε ( 1. 2) , ε ( m ， m ) とし， これら m 2 種類の部分

的な層空間率を組み合わせて， m成分のランダム充填層全体の空間率を表現している。

多成分粒子充填層内の粒子 j に着目した場合の層空間率 ( し ) は， (2. 9 ) 式に示すよ

うに接触粒子 k の面積基準の混合分率 ( S ak ) と部分的な層空間率 ( ε ( j ， k) ) の積算値に

比例し全体の層空間率 (ε) は， (2. 10) 式に示すように εJ と粒子 j の体積基準の混合

分率 (S V J) の積算値で表されると仮定している。

π1 

εJ - j゚ . L S ak . ε(j ， k) (2.9) 
J = 1 

町1

ε L SVj ・ εJ (2. 10) 
j = 1 

ここで ßj は比例定数であり，粒子 j を単独で充填した場合の層空間率の測定値 C E j ) 

より， (2. 11)式で求められる。

j゚ - Ej/ε(j ， j) (2. 11) 

一方，田口ら 1 6) はコークスおよび焼結鉱の層空間率の推定式として，それぞれ (2. 12) 

式， (2. 14) 式に示すように，調和平均径 ((dp)H) と粒度分布の拡がりの大きさを示す粒

度構成指数 ( 1 s p) の近似式を導出している。

- 16-

コ ー クスの場合

ε 二 (0.153 log( d ph 十 0.418) (1-ム ε) (2. 12) 

Aε= 1. 225xlO-2 1 spo. 116 (2. 13) 

焼結鉱の場合

ε 二 0.403Cd p h 11.11 (1_ム ε) (2. 14) 

ム ε = 1. 64 x 10 -3 1 s p 1. 0 11 (j (2. 15) 

3. 2 節で得られたコークス，焼結鉱の 2 成分粒子移動層における層空間率の測定値と

鈴木らのモデル :36) , :37) および田口らのモデル 1 6) による層空間率の計算値の比較をFig. 

2. 8 , F i g. 2. 9 に示す。 コークス，焼結鉱ともに，粗粒と細粒の粒径比 Cd p 1 / d p 2 ) が

3 以下と小さい範囲では，鈴木らのモデルによる計算値は測定値とよく一致するが，粒径

比が 3 以上の範囲では，細粒の体積混合比率がO. 5 以下の範囲で，鈴木らのモデルによる

計算値は測定値より小さくなる口一方，同一粒径比では， コ ー クスのモデル計算値が，焼

結鉱に比べて，測定値と良く一致している 。 粒径比が 3 以上の場合に，細粒の体積混合比

率がO. 5 以下の範囲で層空間率の測定値がモデル計算値より大きくなる理由は，細粒の比

率の小さい場合には，細粒の粒度偏析により細粒と組粒が均一な混合状態になりにくいた

めと考えられる 。

田口らのモデルによる計算値によると，コークスの場合には，粒径比が6. 0 の場合に層

空間率が0.15以下と推定される場合があり，焼結鉱の場合にも，粒径比が7.5 の場合に層

空間率がO. 30以下となっている。田口らのモデルにおいて，層空間率の計算値が測定値に

比較して小さく推定される主な理由は， (2. 12) 式， (2. 14) 式からわかるように，粒径の減

少にともない層空間率が減少すると仮定しており，細粒の層空間率の計算値が小さく推定

されるためと考えられる。
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コークス2. 3 に示す高炉装入物の粒度分布に近い焼結鉱，3 成分および:Table 2 成分，

細粒コークスの粒径 :7"'10mm) を変をベ ー スにして細粒の比率 (細粒焼結鉱の粒径 :3"'5mm，

更した多成分粒子移動層の層空間率の測定値と鈴木らのモデルの計算値の比較をFig.2.10

層空間率の測定値は鈴木らのモデルの計算値とよく一致すコ ー クスの場合には，に示す。

層空間率の測定値は鈴木らのモデルの計算値より大き~ \ 0 上記焼結鉱の場合には，るが，

および，コークスに比較して表面形状が複雑なこと，焼結鉱の場合には，の主な理由は，

粗粒と布団細粒の形状が球形に近く見掛け密度が大きいために粒度偏析が促進されやすく，

粒が均一な混合状態になりにくいことに起因すると考えられる。
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2. 4. 3. 2 粒度偏析を考慮した新しい層空間率推定式の導出

鈴木らの層空間率推定モデル '1 B) . ~ 7 ) を ， 細粒の偏析現象を考慮したモデルに修正する 。

鈴木らのモデルでは， (2.9 ) 式に示すように，各粒子基準の層空間率 ( ε J ) は，ランダ

ムに存在する接触粒子 k の面積基準の混合分率 ( S ak ) と部分的な空間率 ( ε ( j ， k) ) の積

算値に比例すると仮定している。 しかし通常は細粒の偏析現象が発生するため，組粒の

周囲に細粒が存在する確率はランダム充填の場合よりも小さく，各粒子基準の層空間率の

計算には，面積基準の混合分率 (S ak ) よりも小さい値の指数を用いる必要がある。 そこ

で，各粒子基準の層空間率 ( ε j ) は，体積基準の混合分率 ( S Vk ) を考慮した (2. 16 ) 式

で表される指数 ( S k ) と部分的な空間率 ( ε ( j ， k) ) の積算値に比例すると仮定すると

(2. 17 ) 式で表される。 ここで， γ は体積基準の混合分率 ( S Vk ) にかかる係数である。

Sk =(Sak+ r ・ SVk )/2: (Sak + γ ・ SVk ) 

=( Sak + γ ・ SVk) / ( 1 + γ ) (2. 16) 

εJ = J゚ .2: Sk ・ ε ( j ， k) (2. 17) 

(2. 16) 式において，従来の接触粒子 k の混合分率 ( S ak ) でなく体積基準の混合分率

( S Vk ) を考慮した指数 ( S k ) を用いることの物理的意味を明確にするために， F i g. 2. 11 

に示すような粒径が30mmと 4mmの 2 成分の球形粒子充填層を考え， (2. 17 ) 式で表される新

しい指数 ( S k) と面積基準の混合分率 ( S ak ) との関係をFig.2.12に示す。 図より，接触

粒子の粒径が30mmの場合の Sk は S ak に比較して大きく，接触粒子の粒径が 4 mmの場合の

Sk は S ak に比較して小さいことがわかる。 したがって，粗粒子のまわりに細粒子が接触

した場合の相対的に小さい層空間率 (Fi g. 2.11の ε( 1， 2) )にかかる指数 (S k) は S ak より

小さくなり，細粒子のまわりに粗粒子が接触した場合の相対的に大きい層空間率 (Fig. 2. 

11 の ε(2 ， 1))にかかる指数 (S k) は S akより大きくなるため，全体の層空間率 (ε 〉 の推

定値は (2. 11) 式から得られる値より大きくなる。 このように， (2. 16) 式で表される新しい

指数 (S k) を鈴木らの層空間率推定モデルに導入することにより，粗粒子と細粒子が分離

する偏析現象が生ず、る場合にら層空間率を精度良く推定できる 。

ε 1 。
ε( 1.1) ε (1 .2) 

ε2 

v- 、 J
，、‘_.，

_"，-..、.( YI , 
，、、守，、

，‘、， J ‘ … 金
ε (2. 1 ) ε (2.2) 

Fig.2.11 Types of two component random 
mixture of spheres. 
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0.6 

本来， この係数 (γ) は， 細粒の偏析の程度によって変化するため，偏析に大きい影響

を及ぼすと考えられる細粒焼結鉱の比率によっても大きく変化する 。 そこで， Table 2.3 

に示した高炉装入物の粒度分布に近い焼結鉱をベースにして，粒径が3"'5mm の細粒焼結鉱

の比率を20 ， 40 , 60児とした場合の層空間率の測定値と計算値との差異を係数 7 に対して求

めた。 その結果をFi g. 2.15に示す。 図から，粒径が3"'5聞 の細粒焼結鉱の比率の増加に伴

い，層空間率の計算値と測定値が一致するための係数 (γ) が小さくなることがわかる。

上記の粒度分布の焼結鉱に， Fig . 2 . 15の知見に基づいて係数 ( γ) を適切に設定した新し

い層空間率推定式による層空間率の計算値，従来の鈴木モデル (1 = 0 時の新しい層空間

率推定式と等価) , 田口モデルの計算値および測定値の比較をF i g . 2 .1 6に示す。 図から，

鈴木らの層空間率推定式を修正した新 しい層空間率推定式によ る層空間率の計算値が測定

値とよく一致しており，高炉装入物の粒度分布に近い焼結鉱を用 いた向流移動層の層空間

率は， この新しい層空間率推定式によって精度良く 推定で き る こ とが判明した。

焼結鉱の 2 成分および多成分粒子移動層に，新しい指数 Sk を導入した層空間率推定モ

デルの計算値と測定値の比較をFig . 2 . 13およびFi g. 2.14に示す。 図から， (2. 16) 式中の体

積基準の混合分率 ( S Vk) にかかる係数 (γ) が O. 6の場合に計算値と測定値がよく一致

することがわかる 。
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Table 2.4 Charging patterns 
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 6mm ~玉 d p < 30rnm ε =-0.0956 log(d p) + 0.599 ( 2.20) 

30mm 豆 d p ε = 0.2107 logCd p ) 十 O.145 (2.21) 

2. 5 新しい層空間率推定式の装入物分布モデル I 2) への適用結果

2. 4 節で導出した高炉装入物の粒度分布に近い焼結鉱にも適用できる新しい層空間率

推定式を装入物分布モテル 1 2) に導入した。 そして，室蘭 2 高炉での焼結鉱粒度男IJ装入時

を含むTable4 に示す装入ノ f タ ー ン時の装入物分布を計算し従来の田口らの層空間率推定

式! 日)の適用結果との比較を行った。 なお，層空間率推定式の基礎デー タとして必要な均

一粒径のコークス，焼結鉱の見掛け密度と層空間率については， Tab 1 e 2. 1 と Table 2.2 

に示す測定値に基づき， F i g. 2.17から Fig. 2 . 20にて求めた (2. 18)式から (2. 25) 式に示す粒

径による近似式を用いて推定した。

焼結鉱の場合

3mm 三三d p < 30mm ρp =-0.877 log ( d p ) 十 4.449 ( 2.22) 

30mm ~五 d p ρp 3. 139 ( 2.23) 

3mm 三五dp く 8.5mm ε= -0.1298 log( d p) + 0.601 ( 2.24) 

8. 5mm 三五 dp ε = 0.0479 log( d p) + 0.432 ( 2.25) 
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コークスの層空間率炉頂での層空間率の計算結果をFig.2.21 に示す。 図に示すように，

田口らの層空間率推定式および新しい層空間率推定式のいずれを用いた場合にも O. 500 は，
.: Taguchi et al. 
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Os 装入時に，両者の推定式の計算結果が大きく異なる 。 田口らの層空間率推定式を用い

た場合の計算結果では，細粒焼結鉱の層空間率は炉中心から炉壁にむかつて単調に減少し

細粒の多い炉壁近傍では O. 340前後の極端に小さし叶直となっているが，新しい層空間率推

定式を用いた場合の計算結果では，細粒焼結鉱の層空間率は粗粒焼結鉱の層空間率より

0.020から O. 030大きい値であり炉中間部で 0.465と最小値をとり，炉壁近傍では 0.477

と増加している 。

つぎに，装人物分布モデルによる炉頂でのガス流速分布の計算値から炉壁部.中間部，

中心部の特定範囲における平均ガス流速分布を求め，百分率表示したものおよび三角ダイ

ヤグラム上に図示したものをTable2.5 およびFi g. 2.22に示す。 表および図からわかるよ

うに，新しい層空間率推定式を導入した場合には，田口らの層空間率推定式を用いた場合

に比べて， 中間流が 1 ""2 oh大 きくなり中心流がい30b小さくな っ ている 。 さらに，新しい層空

間率推定式を導入した場合には，田口らの層空間率推定式を用いた場合に比べて，粒度別

装入による周辺流の低下現象がよく表現されている。

以上の計算結果から，新しい層空間率推定式を装入物分布モデ、ルに導入することにより，

t戸頂での鉱石の層空間率およびガス流速分布をより正確に推定できることがわかっ た。
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Fig. 2.22 Gas velocity ratios calculated by burden distribution model. 

Table 2.5 Gas velocity ratios calculated by burden 
distribution model. 

2. 6 結日

ガスと装人物の向流移動層の層空間率および圧力損失を直接測定できる実験装置を用い

て，向流移動層の層空間率および形状係数に及ぼす高炉装人物の粒度構成の影響を解析し

以下の知見を得た。

(1 )均一粒径のコ ー クスおよび焼結鉱の層空間率は，粒径との単純な関係になく，ある粒径

で最小値を示す。

(2)粒径の異なる 2 成分・ 3 成分のコークスおよび焼結鉱の層空間率は，細粒の体積混合比

率が O. 3から o. 5の範囲で最小値を示すO

(3)圧力損失の測定値と Ergun式に基づ‘く圧力損失の計算値が一致するように， コークスと

焼結鉱の形状係数の推定式を得た。 その推定式によると， コークス，焼結鉱の形状係数は

粒径の増加にともない O. 4から1. 0の範囲を増加する。

Taguchi et al. Present study 

Center Inter-Wall Center I Inter-Wall 
mediate I削 ia tel 

Case 1 46. 20 25. 97 27.83 43. 37 

Case 2 42. 24 30.47 27. 30 41. 41 31. 49 I 27.10 
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( 4 ) コ ー クスの場合には，層空間率と Carmanの形状係数の聞には負の相関があるが，焼結鉱

の場合には，層空間率はCarmanの形状係数の変化に対しほぼ一定である。

( 5 )多成分粒子のランダム充填層を対象とした鈴木らの層空間率の推定式により，高炉用コ

ー クスの層空間率を精度良く推定することができる 。

(6)多成分粒子のランダム充填層を対象とした鈴木らの層空間率の推定式を，移動層の層空

間率の測定結果に基づいて修正し高炉用焼結鉱に適用できる新しい層空間率の推定式を

導出した。

( 7)上記の新しい層空間率推定式を導入した装入物分布モデルを用いて，室蘭 2 高炉での焼

結鉱粒度別装入時の炉頂での鉱石 ・ コークスの層空間率分布およびガス流分布指数を計算

し従来の田口らの層空間率推定式の適用結果に比べて，より正確に推定できることがわ

かった。

- 30-
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第 3 章 高炉内における装入物の降下と溶融の挙動に及ぼすore/coke分布の影響

3. 1 緒日

高炉操業を安定化させるためには，高炉下部での装入物の円滑な降下を確保することが

重要であり，装入物の軟化・収縮・滴下による体積変化を考慮すると，装入物の降下に及

ぼすore/coke分布の影響が大きいと推察される 。

従来，擬似鉱石と温間模型を用いた融着帯形状に着目した研究 I 7). 1 H). 1 川 が報告され

ているが，装入物の降下挙動と溶融挙動に及ぼすore/coke分布の影響を定量的に解析した

報告は見当たらない。

そこで，筆者らは高炉内の物理現象とできるだけ相似の条件を設定した高炉三次元半裁

模型を用いて，装入物の降下，ガス流れおよび炉内温度に及ぼすor e coke の影響を実験的

・ 理論的に解析し高炉の適正な装入物分布を考察した。

3. 2 実験方法

3. 2. 1 実験装置

実験に用いた高炉三次元半裁模型をFig. 3. 1 に示す。 本装置は， 4000m :1 級の大型高炉の

火入れ当初のプ口フィル(シャフト角 : 810 04' ，朝顔角 81 0 07' )の 1 /20縮尺の温間模

型である 。 装置の前面は耐熱性のガラスで構成され， コークスや擬似鉱石の降下と溶融の

挙動の観察が可能である 。

コ ー クスと擬似鉱石は，ベルおよびムーバブル ・ アーマ ー CMA) により交互に層状装入

される。 180 ocの加熱空気が18本の羽口より吹き込まれ，擬似鉱石が溶融滴下する。 溶融

物は炉床にj留められ出銑口より排出され， コ ー クスはレースウェイ直下に設置した 6 台の

ロータリ - ・ フィ ー ダーにより下部ホッノ fーに運ばれ，さらにチュ ー ブラ ・ コンベアによ

り密閉貯蔵庫内へ排出される。本装置の検出端の概要をTab l e 3.1 に示す。 熱電対温度計

(計36点〉および圧力計( 9 点〉により，炉高方向 ・ 炉径方向の温度分布，炉高方向のガ

ス圧力分布を測定し赤外線放射温度計により炉内の温度分布(ガラスの表面温度)を測

定した。
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高炉下部現象を支配する主要な力および熱量は，装入物の重力 F g，ガスの慣性力 F \, 

F � t ，装入物層内の内部摩擦力 F r およびガスから装入物への伝熱量Q h ，装入物への蓄

積熱Qc および溶融体の融解熱量Q であることを次数評価法 1 :l)に基づいて推定し，そ

れぞれの力の比およびエネルギーの比より，無次元数 πí (i= 1--5) を導出した。 主要な

無次元数は， Froude数 (π1 ， π 3) ，内部摩擦係数 (π2) ，および， Stanton数 〈 π1 ) , 

h
-
N
 

溶融体の融解熱量QÀ と装入物への蓄積熱Qc の比 (π5 ) と推定された。 そして，模型

と実高炉の L が等しいとおくことによって，主要変数に関する相似比の算定式を導き，

(3. 8) 式より模型実験の羽口風速， (3. g) 式より模型実験の送風温度， (3. 10) 式より擬似

鉱石の融点を決定した。 幾何学的縮尺比( 1 ソ 1 )が 1 /20の模型と実高炉の主要な変数の

相似比に基づく計算値をTab1 e 3. 3 に示し実験条件を決定するための実高炉操業条件お

よび対応する基準実験条件をTable3. 4 に示す。

Table 3.2 Nlain dimensionless numbers and scale factors which dorninate 
the physical phenornena in the lower part of the blast furnace. 
(Oash (') indicates the rnodel) 

Dimensionless number (π) Scale factors Remarks 

Fig.3.1 Schematic illustration of threeｭ
dirnensional sernicircle rnodel. 
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Circumference 1 
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( Top gas 
Infrared radiation 
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(3) Burden pressure a t wa 11 Burden pressure gauges Height 
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Aθi = t m t 。

Aθ d=T ， - t c 

Table 3.3 Comparison of principal variables between 1/20 scale 
rnodel and actual blast furnace. 

3. 2. 2 実験条件

Table3.2 に示すように，装入物の降下挙動およびレースウェイの形成挙動を決定する

力学的相似則ならびに擬似鉱石の溶融挙動を決定するエネルギー相似則を導き~ 2) 実高

炉と相似な模型装置の諸元と実験条件を決定した。

Variables Scale model Blast furnace Remarks 

Superficial gas velocity u,' =0. 29m/ u, = 1. 39m/s πi 

Blast velocity at a tuyere U t' =43m/s U t = 174m/s π3 

Flame temperature 1, ' = 1800C T, =2350oC π4 

Coke temperature at a tuyere t c' = 1450C t c = 15500C 

Melting point of ore tm' = 1200C tm= 14500C π ョ
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Table 3.4 Standard experimental conditions. Table 3.5 Properties of quasi-ore and coke. 

Blast furnace operation conditions 

(1) Productivity coefficient 2. 5 t / ( d ・ m . l )

(2) Fuel rate 480 kg/tp 
(3) Raceway depth 1. 3 m 

2 Standard experimental conditions 

(1) Blast volume 130 Nm.l h 
(2) Blast temperature 180 oc 
(3) Amount of coke discharge 91 kg/h 
(4) Charging number 26 chl h 
(5) Amount of coke charge 3.5 kg/ch 
(6) Amount of quasi-ore charge 11. 7kg/ ch 

Items Coke 
Fusible alloy Stearic acid 

(1 ) Weight composition 92.6 O� 7.4 00 

(2) Melting points 100----123T 65 ---700C 

(3) True density 9.1 g /cml 0.85 g /cm.l 1. 09 g /cm3 

(4) Bulk density 2. 0---2. 1 g / cm'l 0.43g/cm:l 0.54 g /cm3 

(5) Diameter 3 ---5mm 1 ----4 mm 2.....__4mm 

装入条件として， 3 種類の装入パタ ー ン ( MA未使用 ( C 1) 0 11 ) ，鉱石内振り CC 11 

o ~ 11) ，および\ コ ー クス内振り ( C L 110 IJ ) ;以下，鉱石外振りと呼ぶ) を選択した。

ここで，添字は， MAのプレートと鉛直面のなす角度である 。 Fig. 3. 2 に示すように， MA未

使用の場合には，半径方向における擬似鉱石とコ クスの層厚比 (L 0/ L c :以下， ore/ 

coke と呼ぶ)がほぼ均一な分布，鉱石内振りの場合には，中間部のore/ cokeが最大となる

分布， 鉱石外振りの場合には，周辺部のore 1cokeが最大となる分布である。

3.2. 4 実験方法

コ ー クスのみの装入と排出を開始し炉内のコ ー クスおよび炉体の昇温が完了した約 5

時間後より， Table 3.4 に示す装入量の擬似鉱石とコ ー クスを交互に装入する 。 そして，

装人物の降下状態や炉内温度分布がほぼ定常状態に到達したと判断される，擬似鉱石の装

入開始後約 1 時間から 2 時間の聞の温度および圧力の測定値の 1 時間平均値を実験値とし

て採用した。

C W 
4 

Cha r、9(1ngp)attern 

/ 0: (CoOo 

?ム: (C20 0 0 ) 久
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〆
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3. 3 実験結果

3. 3. 1 装入物の降下挙動と溶融挙動に及ぼすore/coke分布の影響

高炉内における装入物の充填状態に及ほごすore/coke分布の影響をPhoto. 3. 1 に示し，滞

留時間 ( タイムライン〉 に及ぼすore/coke分布の影響をFig. 3. 3 に示す。 ここで， タイム

ラインは着色コークスを用いて測定した装入後の経過 (等) 時間 (min) であり，タイムラ

インの円周ノ〈ランスは，実験終了後の解体調査によると良好であった。 この理由は，擬似

鉱石中のステアリン酸がガラス面と装入物の間の潤滑剤として作用するためと考えられる 。

MA未使用の場合には， シャフ卜部の装入物の降下速度分布は半径方向でほぼ均一である

が，炉腹上端より中心部の降下速度が小さくなり，炉腹中段から炉腹下端の範囲に炉芯頂

部が形成される。 炉壁近傍の降下速度はシャフ卜下部以下の領域で減少しはじめ，炉下部

の装入物の主流は，炉壁と炉芯の聞の領域をレ ースウェイに向かつて降下し逆V型の融

着帯を形成する。鉱石内振りの場合には， 0 re/ cokeの大きい中心部から中間部の降下速度

が大きく，炉芯が縮小する 。 そして， Vv-型の融着帯が形成され，炉芯表層部に未溶融の融

着層が積層する 。 鉱石外振りの場合には， ore/cokeの大きい周辺部の降下速度が大きく，

。

Distance from center (mm) 

Fig. 3.2 Radial distribution of layer thickness 
ratio CLo/Lc) of ore to coke. 

3.2. 3 実験試料

実験試料として， コークスと擬似鉱石を用いた。 コ ー クスの粒径は 2-----4 mm，擬似鉱石

の粒径は 1.....__5mmとした。 擬似鉱石は粒状の易融合金とステアリン酸の混合物 1 2) である 。

擬似鉱石の構成と配合成分の性状をTable 3.5 に示す。
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炉芯が上方に拡大する。 そして，逆U型の融着帯が形成され融着帯の根部が肥大し未

溶融物が レ ー ス ウ ェ イ へ流入する。

合の炉壁温度に比べて，炉高方向全体にわたり低く，とくに朝顔部では200Cから 300C低い。

(1) Charging pattern 
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Photo 3.2 Relationship between Lo/Lc distribution and ternperature 
distribution in the lower part of blast furnace model. 

(2) Charging pattern 
(C0020) 

(3) Charging pattern 
(C2000) 

Photo 3.1 lnfluence of Lo/Lc distribution on cohesive zone 
profi le and dead-man profi le. 

50 

Wa11 temperature (OC) 

Fig. 3.4 Influence of Lo/Lc distribution on wall 
temperature dislribution. 
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Fig. 3.3 Influence of Lo/Lc distribution on burden descent. 
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3. 4. ガス流れlこ及ぼすore/coke分布の影響3. 3. 2 炉内の温度分布に及ぼすore/coke分布の影響

赤外線放射温度計により測定した炉下部の温度分布と ore/coke分布の関係をPhoto . 3. 2 

に示す。 炉壁温度の炉高方向分布に及ぼすore/coke分布の影響をFi g. 3. 4 に示す。 MA未使

用の場合には，高温の領域は羽口を中心とした逆V型の融着帯と炉芯に固まれた領域であ

り，羽口から遠ざかるにつれて温度が低下している。 鉱石内振りの場合には， ore/cokeの

小さい周辺部の温度は， MA未使用の場合の炉壁温度に比べて，炉高方向全体にわたり 10 0C

から 200C高い。 鉱石外振りの場合には， ore/ cokeの大きい周辺部の温度が， MA未使用の場

高炉三次元半裁模型では充填層内のガス流れを正確に測定することが困難なため，理論

解析により高炉三次元半裁模型内のガス流速分布を推算しガス流れに及ぼすore/coke分

布の影響を解析した。

ガス流れモデルは， (3. 11) 式に示す連続の式と (3. 12) 式に示す二次元に拡張したErgun

の圧損式を連立して求めた杉山らのモデル 1 3) に基づき， (3. 13)式に示す流れ関数世に関

する二階の偏微分方程式を差分化して数値計算し，ガスの流線を求めた。
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。 。

r (G r ) + (rGz ) =0 ( 3.11) 
。 Z 。 r

-gradP= (f1 +f2 I G 1) G ( 3.12) 

。 2 ゆ f 2 。中 E 
(一一一) ( _ ) 2 十 (f 1 +f2 一一ー)) 
。 r 2 r ど 。 r r 

。 2 ゆ 。 φ E 
十(一一) ( _ ) 2 十( f 1 十 f 2 一一ー))

。 Z2 r f 。 Z r 

δ1 中 2 f 2 8φ a 中

十( (一一一(一一) (一一) ) 
。 rθz r f 。 r 。 Z

。ゅ 。 f 1 E 。 f 1 E 
+ (一一〉 (一一十一一

。 r θr r 。 r r2 

E 
(fl +f2 一一) ) 
r r 

a 中 。 f 1 E 。 f 2 
+ (一一〉 (一一+一一 ) = 0 ( 3.13) 

。 Z δz r 。 Z

ここで，

a 中 2 aφ 2 
ど= ( ) + ( ( 3.14) 

δz 。 r

計算に際して， コークス層，擬似鉱石層，融着帯，および，炉芯の形状は実験値を使用

した。 コークス層および擬似鉱石層の空間率は，実験結果からそれぞれ0.5 1. 0.45 とした。

レースウェイの空間率はコークス層の空間率の1. 4倍~ 4) とし，融着帯の空間率は鉱石層

の空間率の O. 7倍 45) とした。なお，炉芯の空間率は，炉芯内に10%以上の粉コークスが

存在するという知見46) に基づき， コークス層の空間率の O. 9倍と仮定した。

MA未使用の場合，鉱石内振りの場合および鉱石外振りの場合のガスの流線の計算結果を

Fig. 3. 5 に示す。塊状帯でのガス流線は炉壁に平行してほぼ等間隔であるが，融着帯以下

の領域(融着帯，滴下帯および炉芯〉では. ore/ coke分布の影響を強く受けて変化してい

る 。 逆V型の融着帯が形成されたMA未使用の場合には，融着帯の通気抵抗が大きいために，

羽口から吹き込まれたガスは融着帯の根部を迂回し塊状帯へ流出している。 W型の融着

首回F←

帯が形成された鉱石内振りの場合には，羽口から吹き込まれたガスの一部は炉壁に沿って

塊状帯へ流出している。 逆U型の融着帯が形成された鉱石外振りの場合には，羽口から吹

き込まれたガスは融着帯の根部を迂回して炉中心部に向かい，塊状帯へ流出している D

Be11y bottom ・匂

Bosh bottom -f 
Tuy巴 re-

(1) Charging pattern (2) Charging pattern (3) Chargi~g pattern 
(CoO~) - (C0020) (C2000) 

Fig. 3.5 Influence of Lo/Lc distribution on gas flow. 

朝顔部での周辺部 〈炉壁から50mmの範囲)のガス流速に及ぼす周辺部のore/ cokeの影響

をFig. 3. 6 に示す。 周辺部のore/cokeの増加に伴い，周辺部のガス流速は減少し周辺部

のore/cokeが朝顔部での周辺部のガス流速の有効な制御因子であることが確認された。

立二 0.5 。
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Relative ore/coke layer thickness 
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Fig. 3.6 Influence of Lo/Lc in wall region on gas 
velocity in wall region of bosh zone. 
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3. 4. 2 装入物の降下速度および炉下部温度に及ぼすore/cokeの影響

3. 4. 2. 降下速度の計算方法

装入物の降下速度を計算するために， F ig. 3. 7 に示すような固体流れの流線を仮定する c

すなわち， 装入物は，

①シャフ卜部では， 炉壁によって形成される仮想的な円錐の頂点を墜点とする流線に沿 っ

て降下する I 7) 。

②炉腹部では， 炉壁と平行な流線に沿って降下する c

③朝顔部では， 炉腹下端あるいは炉芯表面での流線の交点と羽口先端を結ぶ流線に沿って

降下する 。

装入物の降下速度 CV) は， 前記の流線に沿った装入物の降下距離を降下時間で除した

値として計算し さらに相対降下速度 C V/ V ave. ) は， 降下速度 (V ) と平均降下速度

CV  ave. ) の比と して計算した。 なお， シャフ卜部の降下速度 C V (0"'3 0 )) は， 時刻が 0'

と 30' におけるタイムラインから計算した降下速度であり， 炉下部の降下速度( V (30-60) ) 

l ま， 時安11が30 〆 と 60 〆 におけるタイムラインから計算した降下速度である。

Fig. 3.7 Assumed solid flow lines. 

3 4. 2. 2 降下速度分布に及ほ‘すore/coke分布の影響

シャフ卜部および炉下部の半径方向における装入物の相対降下速度(V/Vave.)分布と

ore/coke分布の関係をFig. 3.8 に示し， 周辺部での装入物の相対降下速度と相対ore/coke

-40-

の関係をFig. 3.9 に示す。 シャフト部・炉下部ともに相対ore/cokeの大きい範囲の相対降

下速度が大きく， とくに炉下部での影響が大き L 、 。 シャフト部では (3. 15) 式， 炉下部では

(3. 16) 式に示すように， 周辺部の相対ore/cokeの増加にともない， 周辺部の相対降下速度

は増加している。 高ore/coke部分で降下速度が増加する原因としては， 擬似鉱石層の軟化

収縮および溶解による体積減少量が大きいためと考えられる。

シャフト部

V w/V a v e =0.918 +0. 070((Lo/Lc)w/(Lo /Lc) ave. ) 

炉下部

V w/V a v e =1.111 -.0. 125((Lo/L)w/(Lo /Lc)ave.) 
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250 
炉下部温度に及ぼす降下速度の影響3 2. 4. 3. 
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高炉の安定操業にとって重要なプロセス変数であるレ ー スウェイ近傍，朝顔部および1炉

炉下部温度と呼ぶ)と周辺部の相対降下速度の関係をFig. 3.10に腹部の炉壁温度 (以下，

示す。 炉下部での周辺部の相対降下速度の+0 . 1の増加にともない，朝顔部の炉壁温度は約

Stanton 数基準に基づく下記 (3. 17) 式の変この 15 0Cの温度差の実験値は，15 0C低下する 。

50 戸
F
M
V
Z

(3. 17)式の分子の温度差

分母は模型( ム θd ) は実炉での羽口先のフレーム温度と装入物の融点の温度差であり，

ここで，換式で実炉換算すると，約200 oCの温度差に対応する 。

3 2 。

。

での送風温度と擬似鉱石の融点の温度差である 。

(ー)

Influence of Lo/Lc in wall region 
on wal 1 temperature. 

reglon Lo/Lc in wa11 

Fig.3.11 

(3. 17) 
ム θd

15 

1450 2350 
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熱流比と炉下部温度の関係3 4. 3. 

2 で説明したよう に，炉内の温度分布は装入物の降下速度分4 l および 3.<!. 3. 

Shaft zone 

250 

布と同時にガス流速分布の影響を受ける 。 そこで，装入物の降下速度とガス流速を用いて，

(3. 18)式で計算した熱流比と炉下部温度との関係を解析した。

。

ρ
」

ρ
」

n
H

n
H
O

」

n
u

n
u
n
H

ヲ
ι

z
o
 
z
e
 

u

v

J

F

'

 

1
1

・
n
H
ρ

」

Y
E
B

「
コ

v
v
u

ρ
」

n
u

川
U

R
U
R
U
T
I
 

--a 

しJ

o 200 ト

(3. 18) 
. v s C s ・ ρsC s • G s 

熱流比
C f • G f 

u
k、
守
、

企
\
な

と
、

150 • 

100 ト

ω
'
Lコ
パ
←
伺
L
ω

巳ε
ω

一
←

• U f Cf ・ ρf

\む\50 ト{
{
の
三
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1.0 

oU 
0.5 2 で求めた降下速度の実験値を使用した。装入物およびガスの物性値に4. 3. しては，

i i 斗よi よ

それぞれ900Cの値を使用した。ついては，reglon Re1at咩e descent ve10city in wa11 
Vw/V ave. (ー)

レ ースウェイ近傍の温度および炉壁温度に及ぼす熱流比の影響をPig.3.12に示す。 朝顔
Influence of burden descent velocity 
in wall region on wall temperature. 

F i g. 3.10 
レースウェイ近傍の温度および炉壁温度部での周辺部の熱流比の+0. 1の増加にともない，

はそれぞれ約 5 0C低下し周辺部の熱流比がレースウェイ近傍の温度および炉下部の炉壁

円'1この 5 0Cの温度差は，温度を支配している重要な因子であることが確認された。 なお，つぎに，炉下部温度に及ぼす周辺部のore/cokeの影響をFig.3.11 に示す。 周辺部でのore

記の Stanton数基準の実炉換算値では800C に相当する oこの 2 0Cの温度

前記のStanton 数基準に基づく実炉換算値では300Cの温度差に対応する。

朝顔部の炉壁温度は約 2 0C低下する。/coke の+ 0.1 の増加にともない，

差は，
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首』ー一

の低下-重油比(0i lR) ・微粉炭比 (PCR)ム B2 温度は補正燃料比 (HFR)(3. 20) 式から，

の増加にともない低下することがわかる。
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Relationship between relative ore to coke 
ratio at wall and relative descent velocity 
at wall in Tobata NO.1 blast furnace. 
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F i g. 3.12 

Fig.3.13 
降下速度および炉下部温度の関係実高炉で・のore/coke ，5 3. 

戸畑 l 高炉における炉壁から約 1 m の範囲の周辺部の相対ore / coke と相対降下速度の関

し 1ずれも炉頂に設置相対ore/coke. 相対降下速度は，ここで，を Fi g. 3.13に示す。係 I H) 

各種操業時の適正な装入物分布6 3. されたプロフィルメ ー タ の測定値である 。 周辺部の相対ore coke は周辺部のore / coke

火入れ直後を想4 節の高炉三次元半裁模型実験の知見に基づいて，3 節および 3.3. 周辺部の相対降下速度は周辺部と装入の平均ore/coke (( O/ C)ave. ) の比であり，( (O/C) w) 

定した正常な炉体プロフィルの高炉における適正な装入物分布を考察する 。と面積補正して求めた平均降下速度 ( Vave. )の比である 。 周辺部の相対の降下速度 (Vw) 

羽目先端近傍の温度!日)オールコークス操業時には，補助燃料吹き込み操業時に比べて，F ig. 3. 9 で示した高炉三次元模型の実験結果ore/coke と周辺部の相対降下速度の聞には.

周辺部のore/cokeおよしたがって，が低下しやすい。およびシャフト下部の炉壁温度 3 0)周辺部の相対o l" e l正の相関が認められる。 両者の相関式を (3. 19) 式に示すが，と同様に，

び熱流比の減少により周辺部の温度が上昇する鉱石内振りが周辺部温度の低下防止策としcokeの + 0. 1の増加にともない，周辺部の相対降下速度が+0 . 008増加している 。

中間部から中心部にかけてのore/cokeを過大にすると，炉芯表層て有効である。ただし
(3.19) (R= 0.749 ) Vw /Vave. =0.954 + 0.082 ((O/C)w /(O/C)ave.) , 

融着層の直接還元反応による吸熱と炉芯への通気不良のため部に多数の融着層が積層し

に炉芯の温度が低下し炉芯不活性になる可能性がある。周辺部のore/実炉では，朝顔上部のステーブ温度と給水温度の差であるム B 2 ì温度は，

高ore/cokeに起因する通気性の悪化が懸念されるが，微粉炭多量吹き込み操業時には，ム B 2 温度に影響をcokeや降下速度だけで、なく，他の操業要因の影響をうける 。 そこで，

降下速度(熱流比〉の低下による温度上昇と羽口先端近傍の温度上昇により炉壁近傍の溶及ぼすと考えられる高炉操業要因を独立変数とする重回帰分析(ステップワイズ回帰分析)

中心部のore/cokeを減少してしたがって，周辺部のore/cokeを増加し

通気性を良好に維持できる鉱石外振りが有効である 。

融能力は大きい。

(3. 20) 
-313.7, 

ム B2 温度の統計的推定式として (3.20) 式を得た。

-32. 38 (O/C) w 十1. 121 (Oi lR) + 0.775(PCR) 

を行い，

ム B2 =0.91(HFR) 
(R=0.844 ) 
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3. 7 結日

高炉内の物理現象とできるだけ相似の条件を設定した高炉三次元半裁模型を用いて，装

入物の降下挙動と溶融挙動に及ぼすore ' coke分布の影響を解析し以下の知見を得た。

(1 )半径方向のore/coke分布がほぼ均一の場合には， シャフト部の降下速度分布は半径方向

にほぼ均ーとなり，逆V型の融着帯が形成される。

(2 )鉱石内振りの場合には，炉芯が縮小しW型の融着帯が形成され，周辺部の温度が上昇す

る 。

(3)鉱石外振りの場合には，炉芯が拡大し逆U型の融着帯が形成され，周辺部の温度が低下

する 。

(4)周辺部のo re/cokeを局部的に増加すると，その領域の装入物の降下速度が増加し炉下

部のガス流速が減少するので， レ ー スウェイ近傍の温度および朝顔部の炉壁温度が低下す

る 。

(5)戸畑 l 高炉では，周辺部のore/cokeの増加にともない周辺部の降下速度が増加し炉下

部のステーブ温度が低下した。 本結果は，高炉三次元模型と同様な結果である 。

(6)適正な装入物分布は，高炉の操業条件により異なり，オールコ ークス操業時には， シャ

フト下部および羽口先端近傍のよ戸壁温度が低下しやすいので，鉱石内振りにより炉壁近傍

のore/cokeを減少することが望ましく，炉壁近傍の溶融能力の大きい微粉炭多量吹き込み

操業時には，鉱石外振りにより中心部のore/cokeを減少し通気性を改善することが望ま

しし ' 0

-...--

第 4 章 高炉内における装入物の降下と溶融の挙動に及lます炉体内壁面形状の影響

4. 1 緒 1=1 

高出銑比あるいは低燃料比を指向する高炉操業において，炉況を安定に維持するために

は，応力状態が受動状態である高炉下部での装入物の降下領域を拡げて装入物の降下速度

を低下させ，鉱石の還元と溶融に必要な時間を確保すると共に，装入物の降下を円滑にす

ることが重要と推定される。

従来，炉壁近傍の降下挙動に及ぼす炉体内壁面形状の影響を冷問模型実験に基づいて解

析した研究20) -25 ) が報告されているが，炉下部での装入物の降下挙動と溶融挙動に及ぼ

す炉体内壁面形状の影響を論じた研究 I D) は少い。 そこで，筆者らは高炉内の物理現象と

できるだけ相似となるように条件を設定した高炉三次元半裁模型乃 1) -5 :1)を用いて，装入

物の降下挙動 (降下速度分布，炉壁停滞層および炉芯の形状)と溶融挙動に及ぼす炉体内

壁面形状の影響を解析した j 1)- 日i) 。 さらに，降下挙動・溶融挙動と ore/coke分布との関

係を解析することにより，炉壁面が損傷した場合の適正な装入物分布について考察した口

4. 2 実験方法および実験条件

実験には既報~ 1) -5:1) と同じ高炉三次元半裁模型を用いた。 実験上の主な操作因子とな

る炉体プロフィルとして， Fig. t 1 に示す 5 種類の条件を設定した。 (1)は火入れ直後を想

定したもの ( シャフト角81 0 04' ，朝顔角 81 0 07' ，炉腹高さ 150mm，朝顔高さ 200mrn :以

下，正常プロフィルと呼ぶ ) , (2), (3 )は炉壁付着物を想定して突き出し長さ 15mrnの突起物

TUYe~e~~ 
B10ck ま

B10ck Cコ
M 

ヨ
(1) No b10ck (2) Block on bosh (3) B10ck on b巴 11y (4) B10ck on shaft (5) B10ck on shaft , 
(Norma1 profi1e) bottom bottom and be11y be11y and bosh 

Fig.4.1 Inner wall conditions. 
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突起物の直上の炉壁近傍に突起物の突きされた。 炉腹下端に突起物を設置した場合には，(4 ) は F 型ステーブを想定して突き出をそれぞれ朝顔下端および炉腹下端に設置したもの，

:炉芯が縮小しW型の融着帯が形成された。出し長さの 2---5 倍の厚みの停滞層が形成され，し長さ 1 0mmある いは 1 5mmの突起物をシャフ 卜 下部・ 炉腹上端・ 1戸腹下端の 3 ヶ所に設置 し

たもの， ( 5)は冷却盤の露出を想定して突き出し長さ 1 0mmの突起物をシャ フト下部か ら朝顔
4
h
'

旬
、

ha
-
e

-
|
 

し た ものであシャフト下部印刷 )朝顔部 30mm , 部の範囲に設置(設置間隔 : 炉腹部，

クスと擬似鉱石を，コと同じであり，装入物および装入条件は既報 :i l)-5:l)る 。 また，

;以下，コークス内t反り ( C <!il On ) 鉱石内振り ( C (J 0 < 11) , 川未使用 ( C IJ 0 f1 ) , 

ム ー ノくブル ・添字は，ここで，鉱石外仮りと呼ぶ)の 3 種類の装入ノミタ ー ンで装入したJ

MA未使用の場合ア ー マーのプレー卜と鉛直面のなす角度であるの Fig . 4. 2 に示すように ，

ore /c o k e と日干ぶ〉: 以下，半径方向における擬似鉱石とコークスの層厚比 ( L0/ L c (こは，

鉱石外中間部のore / cok eが最大となる分布，鉱石内振 りの場合に は，がほぼ均一な分布，

(3) Block on bel1y bottom 

Influence of block position on cohesive zone profile and 
dead-man profile in case of (Co 00) charging pattern. 

(2) Block on bosh bottom (1) No block 
(Normal profile) 

Photo. 4. 1 M 

周辺部のore / cokeが最大となる分布である。

C 
4 

振 りの場合には，
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250 200 150 100 50 
。

Distance from center (mm) 

(3) Block on belly 
bottom 

(2) Block on bosh 
bottom 

(1) No b 1 oc k 
(Normal profile) 

Radial distribution of layer thickness 
ratio (Lo/Lc) of ore to coke. 

Fig. 4. 2 

Influence of block position on burden descent in case 
of (Cu 00) charging pattern. 

F ig. 4. 3 

実験結果3 4. 

装入物の降下挙動と溶融挙動に及ぼす炉下部の炉壁突起物の影響3. 4. 

装入物の降下速度分布に及!ます炉壁突起物の影響2 3. 4. 滞留時間 ( タおよび，MA未使用の装入条件の場合の高炉内における装入物の充填状態，

と同様な固体流れの仮定に基づき計算した半径方向における装入物の相対既報5 1) . 52) イムライン〉 に及ぼす炉壁突起物の影響をPhoto. 4. 1 およびFig. 4. 3 に示す。 正常プロフ

突降下速度 ( V/Vave . ) 分布と炉壁突起物の設置位置の関係をFig. 4.4 に示す。 なお，炉腹上シャ フ ト 部の装人物の降下速度は半径方向でほぼ均一であるが，ィ ルの場合には，

流線は炉起物により炉壁に形成される停滞層内でも装入物はわずかに降下 し ているが，逆V型の融着帯が炉芯の頂層は炉腹まで上昇し，端より中心部の降下速度が小さくなり，

シ ャフ卜部の降下速度

と 3 0 I におけるタイムラインから計算した降下速度であり，

ここで，壁停滞層内を迂回しながら羽口先端に向うと仮定した。

(V (0 ---30 ) ) は時刻が o I 

突起物の直上の炉壁近傍に突起物の

炉芯が縮小し逆V型の融着手存が形成

形成された。 朝顔下端に突起物を設置した場合に は，

突き出 し長さの 1 ---2 倍の厚みの停滞層が形成され，
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正常プロフィルの場合とほぼ同が低下している。 朝顔下端に突起物を設置した場合には，におけるタイムラインから計算しと 6 0 r 炉下部の降下速度 (V (30----60) ) は時五IJが 3 0 r 

中心部の温度が大幅に低下じ温度分布であ っ た。 炉腹下端に突起物を設置した場合には，た降下速度である。 装入条件はMA未使用の条件である。

100.00 "c 
90.00 "c 

した。正常プロフィル

炉腹下端に突起物を設置した場合の降下速度

朝顔下端に突起物を設置した場合の半径方向における降下速度分布は，

の場合の降下速度分布とほぼ同じであるが，
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周辺部の降下速度が減少

W 

正常プロフィルの場合の降下速度分布と大幅に異なり，分布は，

86. Z5 "c 

(3) B10ck on be11y bottom (2) B10ck on bosh bottom (1) No b10ck 
(Norma 1 profil e) 

1.2 

1 .0 
0.8 

Influence of block position on temperature distribution in 
the lower part of blast furnace model in case of (C() 00) 
charg i ng pa ttern. 

Photo 4. 2 

0.6 

0.4 

0.2 

50 100 150 200 250 
Distance from center (mm) 

V(Orv30)/Vave.: Re1ative_d~scen~ ~~lqcity 
between Omin and 30min 

。

。

察考4. 4. 
W 

(1) Shaft zone 
C 

1.6 による降下挙動の推定国体流れモデル 1 3) ・ 1 4) 4. 4. 

は離散ボTanaka ら 5 H) .五日)高炉内における装入物の運動を模擬する数学モデルとして，

現状ではホ ッ パ-内あるいは炉頂での装入時の粒子のールモデルの適用を試みているが，

(4. 2 ) 式に示す連続体を仮定(4. 1)式に示す連続の式と運動に限定されている。 そこで，

50 100 150 200 250 
Distance from center (mm) 

V(30rv60)/V ave.: Re1ative descent velocity 
between 30min and 60min 

(2) Bel1y and bosh zones 
o : No b 1 ock 
(Normal profi1e) 
Block on be11y bottom 
B10ck on bosh bottom 

に基つ.き，したポテンシャルフロ ーの運動方程式を連立して求めた杉山らのモデル 1 :3). 1 4) 
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(4.3) 式に示す流れ関数 ( ゆ s ) に関する二階の偏微分方程式を差分化して数値計算し

ゆ s は速度ポテンシャルであり K は流通抵抗である。ここで国体の流線を求めた。
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� (� s 
(一一一- F s ) 

K 8 中 s

=KV s 

θ2 ゆ s
K ( + 一一一一

。 Z 2 

。 K

grad ゆ sFig. 4.4 

。 rr 。 Zδz 

8 中 sθK a φ E 。
炉内の温度分布に及ぼす炉壁突起物の影響3 3. 4. 

-F s ) 
θr 

十一一一一一

θr 
-F s ) 

。 r

K 一一一一

δr 
MA未使用の装入条件の場合に赤外線放射温度計により測定した炉下部の温度パタ ー ンと

(4.3) =0 
高温の領域は羽口を

羽口から遠ざかるにつれて温度

壁面突起物の関係をPhoto. 4.2 に示す。 正常プロフィルの場合には，

中心とした逆V型の融着帯と炉芯に囲まれた領域であり，
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炉壁停滞層の層構造と形成メカニズム2 4. 4. 正常プロフ ィ ルと炉腹下端に突起物を設置した場合における降下速度分布F ig. 4. 5 に，

突起物を炉腹下端に設置した場合に形成される炉壁停滞層の層構造の解体結果をFig. 4. と同様な固の実験{直と計算値を比較 して示す。 図中の上段に示 した実験値は既報Z リ. ;; 2) 

6 に示す。 炉壁停滞層は擬似鉱石の融着層 (擬似鉱石が軟化融着して層厚が薄くなってい上記の杉山らのモデル 1 '1) 下段の計算値は，体流れの仮定に基づき求めた値である。 また，

突起物の存在により炉壁近傍の装入物の降る層〉 とコ ー クス層の積層構造となっており，炉壁停滞層および炉芯の形状を適融着帯，鉱石層，に実験から得られたコ ー クス層，)
 
-l
 

擬{以鉱石のこの炉壁停滞層の層構造は，積層したものと考えられる。下速度が遅くなり，炉芯および炉壁停滞層は十分に大きな流通抵抗 C K ) を持つ充填層と仮定した。 す用し

融着層とコークスの積層構造→コ融着層が長時間後に溶融滴下すると推定されるため，中心部・中間部で小さく周辺部で大きいこと !i(]) 炉芯内のコ ー クス更新速度は，なわち，

実炉でも炉壁停滞層の層構造クスリッチな層構造の時間的変化を繰り返す可能性があり，炉芯表層でK = 5出銑口 + 0.5mと仮定したスラグ面と援する炉中心部でK= 1000, から，

は時間的に変化する可能性があると推定される。その間では炉中心部と炉芯表層との距離に応じて按分した値とした。 炉壁停滞層でとし

ク ー ロンの降伏限界値とFig. 4. 6 に示すように，この炉壁停滞層と移動層の境界には，その他の領域は装入物は非常にゆっくり降下しほぼ停滞していることから K = 1000とし

水平であこの変形層では，等しい勇断応力の条件で装入物が降下する変形層が存在する。ではK = 1 とした。

変形層内装入物は断続的に降下するため，った融着層が縦長状態に変形しながら降下しポテン シ ャルフロ ー を仮定降下速度分布の実験値と計算値は比較的良く一致しており，

の空間率は移動層内の空間率より大きいと推定される。炉壁停滞層がした運動方程式の流通抵抗 ( K ) を 1 "-' 1 000の範囲で設定することにより，
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壁面応力分布に及ぼす突起物の設置位置の影響をFig. 4.7 に示す。朝顔下端につぎに，

突起物直上の朝顔下部朝顔中部で壁面応力が最大となるが，突起物を設置した場合には，
(2) Calculated results 

o No block 
(Normal profile) 

・ Block on bel1y bottom 

Comparison between calculated results and experimental 
results on radial distribution of burden descent. 

突起物直上の朝顔下部の壁面摩擦力が小さいために，このように，の壁面応力が小さ~ �o 
F ig. 4. 5 

壁面応力の増

突起このように，

炉壁停滞層が小さいと推定される。 炉腹下端に突起物を設置した場合には，

とくに突起物直上の炉腹部の壁面応力が最大となる。加の範囲が広く，
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物直上の炉腹部の壁面摩擦力が大きいために，炉壁停滞層が大きいと推定される。 Table 4. 1 Assurnpt ion for calculat ion. 

1200 
0: No block 
(Normal profile) 
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ム: Block on bosh bottom 
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4.4. 3 ガス流れに及ぼす炉壁突起物の影響

炉内の空間率の仮定をTable 4 . 1 に示す。 擬似鉱石層およびコ ークス層の空間率は実験

値を用い，融着層45) ，炉it、 5 1) , 52) およびレースウェイ 11) の空間率は従来の知見に基

づき仮定した。 さらに， 4. 4. 2 の知見より，炉壁停滞層の空間率は融着帯の空間率に

等しく，変形層の空間率はコ ー クスの空間率に等しいと仮定し杉山らのガス流れの数学

モデル J ~)， 1 1) に基づいてガスの流線を計算した。 計算に際して， コ ー クス層，鉱石層，

融着帯，炉壁停滞層，および，炉芯の形状は実験値を用いた。

正常プロフィルの場合および炉腹下端に突起物を設置した場合に，鉱石内振りの装入条

件で装入物を装入した場合のガスの流線の計算結果をFig. 4 . 8 に示す。 w型の融着帯が形

成された正常プロフィルの場合には，羽口から吹き込まれたガスの一部は炉壁に沿って塊

状帯へ流出している D 一方， U型の融着帯が形成された炉腹下端に突起物を設置した場合

には，炉壁停滞層と移動層の間の変形層でのガスの流線の間隔が狭く，炉芯部でのガスの

流線の間隔が広いことからわかるように，炉壁停滞層と移動層の間の変形層でのガス流量
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Fig. 4.8 Comparison of gas stream 1 ines in case wi th no block 
and with block on belly bottom. 

が多く，炉芯部でのガス流量が少ない。

4. 4. 4 炉下部の温度分布に及lます炉壁突起物の影響

4. 3. 3 で説明したように，炉腹下端に突起物を設置した場合には，正常プロフィル

の場合に比べて，炉下部の温度分布が大幅に異なり，中心部の温度が大幅に低下した。 4

3. 2 および 4. 4. 3 で説明したように，炉腹下端に突起物を設置した場合には，炉

腹部以下の炉下部での中心部の降下速度が増加しガス流速が低下したために中心部の熱流

比が増加し中心部の温度が低下したと推定される。

ガス流れ・固体流れ・伝熱を考慮した杉山らのモデル I 3) , 14) に基づく炉下部の温度分

布の計算値を実験値と比較してFig. 4. 9 に示す。ここで，炉内の温度分布の実験値は赤外

線放射温度計による測定値である 。
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炉壁停滞層が形成されやすr ステーブの高炉に比べて，

くしかも脱落しにくいと推定される 。

冷却盤高炉では，このことより.国体流れが熱流比分

布を介して炉内の温度分布に大きな影響を及ぼしていることが推察される。

比較的よく一致しており，炉下部の温度分布の計算値と実験値は，
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Comparison between calculated result and experimental 
result on temperature patterns. 

F ig. 4. 9 

炉壁停滞層の厚みに及ぼす炉壁近傍 (炉壁から 22. 5mm (実炉換算値450mm) の範っさに，

F i g. 4.11 に示す。炉壁近傍のore/coke (擬似鉱石層とコ ー クスのore/cokeの影響を，囲)炉壁停滞層の形成挙動に及ぼす炉壁突起物および‘ore/coke分布の影響5 4. 4. 

炉壁このことより，よ戸壁停滞層の厚みは減少している。層の層厚比〉 の増加にともない，
マ~ -r': 

'-'- C' , 炉壁停滞層の厚みに及ぼす炉壁突起物の突き出し長さの影響をFig.4.10に示す。

近傍のore/cokeが炉壁停滞層の厚みの有効な制御因子で、あることが判明した。 炉壁近傍の実験開始後にトレ ー サ ー として装入した着色コ ー クスの70炉壁停滞層の厚みについては，

炉壁停滞層の厚みが減少するメカニズムは明確ではないが，ore/cokeの増加にともない，分時点での等時間線より決定した。 朝顔下端に突起物を設置した場合の炉壁停滞層の厚み

炉壁近傍のore/cokeの増加にともなう突起物の直上の装入物の垂直荷重応力の増大により炉腹部およびシャフト下部に突起物を設突起物の突き出し長さの 1 "-' 2 倍であるが，は，

炉壁停滞層の厚みが減少すると推定される。」のこ突起物の突き出し長さの 2"-'5 倍に増加した。置した場合の炉壁停滞層の厚みは，

ステ ー ブの r部や冷却盤が炉内に火入れ当初の炉体内壁面プロフィルが損傷しとより，

炉壁停滞層の厚みが経時的に増加すると推定される。 炉壁停滞層の厚突出しはじめると.

上下の突起物の間隔突起物の設置間隔によっても変化する 。 冷却盤高炉のように，みは，

t戸

約 2 倍であった。

了ステ ー ブ高炉のように，

下部に上下の突起物の間隔を 1OOmm"-' 1 50mm に した場合に比べて大きく，

が30mm"-'60mmと短い場合に形成される炉壁停滞層の厚みは，
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突起物の直上の炉壁近傍に形成される炉壁停滞層の炉壁近傍のore/cokeを増加した結果，

厚みが大幅に縮小した。
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Influences of layer thickness ratio of Quasi-ore to 
coke near wall (within 22.5mm from wall) and block 
position on thickness of sluggishly descending zone. 

Fig.4.11 

炉壁近傍のore/cokeFig.1.11の知見はそれぞれ定常状態での実験結果に基づいており，

炉腹下端に突を変化させた時の炉壁停滞層の厚みの推移を示したものではなし 1。 そこで，

最初によ戸壁近傍のore/cokeを小さくし突起物の直上の炉壁近傍に起物を設置した場合に，

1.3 0.5 
。

。

実験途中で炉壁近傍のore/cokeを増加させた実験の例をPhoto.4.3炉壁停滞層を形成させ，

(ー)

ハ
U
&
1
L
t
H
n
 

pし

ρ
」

n
U

VEa-
,BEA 
n
u
-
n
u
 

-
-
l

‘
パ
けu

q
・

u
n
H

a
n
d
 

H
U
 

n
u
-
-ij 

r
l
O
L
 

n
u
φ
l
u
 

nu 

o
e
 

-
-
A

円
し

+
l
b
 a
m
 

v
i
n
u
 

r
A
 

q
u
f
l
 

円
、u

・

ρ
L
m

u仙
+
i

ν

n
u
m
川
L
H
u

b
n
n
け
U

門
ピ
ロ

P
U
F
h
d
-
T
A
 

-

-

A

P

L

 

・h
u
n
u
'
n
u

a
T
L
--EA 

1
n
u
n
u
 

r
l
+
L
n
d
 

e
-
-
m
 

v
J

山
円
一

n
d
f
k

」
U

1

1

a

 

r
a
ρ

し

f
i
ρ

ν
」
U

ハ
U
4
ー
しn
u
n
u
 

c
d
p

」

n
u

p
し

F
し

p
u

n
u
 

n
H
n
u
n
u
 

ρ
u
・
1
A
.

，

A

H

U

&

'

L

 

t
l
i
n
c
-
t
i
 

f

ム

-
u
n
s

n
u
n
u
n
U
 

T
i

p
し

n
ド

in center し。 /Lc

Fig.4.12 

0 20) から鉱石外振り ( C2 0 0 0 )に変更し

炉壁停滞層の形成挙動と密接に関連している。突起物を炉上記の炉芯の高さの変化は，

突起物直上の炉壁近傍に突き出5 で述べたように，4. 4. 腹下端に設置した場合には，

この炉壁停滞層により上方の装入物し長さの2---5 倍の炉壁停滞層が形成される。そして，

に示す。 装入ノぞタ ンを鉱石内振り (Co

F i g. 4. 7 に示すように炉下炉下部の垂直応力が著しく減少しの荷重が保持されるため，

本実また，炉芯が縮小したものと推定される 。部の受動応力領域が上方に拡大した結果，6
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(1) Charging pattern 
(C0020) 

Fig. 4. 炉壁近傍のore/ cokeが減少するため，

炉芯が縮小したものと推察される。

験で中心部のore/ cokeを増加した場合には，

11に示したように炉壁停滞層が拡大し
in the thickness of sluggishly descending zone by 
the charging pattern from (CO 020) to (C20 00). 

Decrease 
changing 

Photo 4. 3 
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4. 5 炉体損傷時の適正な装入物分布

4. 3 節および 4. 4 節の知見から，炉体内壁面が損傷した場合の適正な装入物分布は

以下のように考えられる 。

炉下部の炉体損傷時には，炉壁停滞層が形成されやすく，炉芯が縮小しやすいため，中

心部の降下速度(熱流比)が増加し炉芯温度が低下する可能性がある。 したがって，炉

芯温度を低下させないためには，炉体損傷時に形成される炉壁停滞層をできるだけ縮小さ

せることが必要である。

一方， 4. 4. 5 で説明したように，炉壁近傍のore/cokeが炉壁停滞層の厚みの有効な

制御因子であり，鉱石外振りにより炉壁近傍のore/cokeを増加させると，炉壁停滞層の厚

みが減少する。 しかしその場合には炉壁近傍の熱流比の増加によりよ戸下部の温度が低下

しやすい5l).551 0 したが っ て，鉱石外振りにより炉壁近傍のore/cokeを増加した分布の

適用は，補助燃料吹き込み時に比べて炉壁温度が低下しやすいオ ルコ クス操業時 ï (J ) 

には難しいが，降下速度 (熱流比〉 の低下による温度上昇と羽口先端近傍の温度上昇によ

りよ戸壁近傍の溶融能力が大きい微粉炭多量吹き込み操業時には有効であると推察される 。

4. 6 結 Eコ

高炉内の物理現象とできるだけ相似となるように条件を設定した高炉三次元半裁模型を

用いて，装入物の降下挙動と溶融挙動に及ぼす炉体内壁面形状の影響を解析し以下の知

見を得た。

( 1)炉腹部に突起物を設置した場合には，突起物直上の壁面応力および壁面摩擦力が最大と

なるため，炉壁停滞層が形成されやすく，突起物の直上の炉壁近傍に突起物の突き出し長

さの 2'"'-'5 倍の厚みの停滞層が形成され，中心部の温度が低下する。

(2)炉壁停滞層は，擬似鉱石の融着層とコ クス層の積層構造であるが，擬似鉱石の融着層

とコ ー クス層の積層構造→ゴ クスリッチな層構造の時間的変化を繰り返す可能性がある 。

この炉壁停滞層と移動層の境界では， クーロンの降伏限界値と等しい努断応力の条件で装

入物が降下する変形層が存在しこの変形層では水平であった融着層は縦長の状態に変形

しながら降下する 。

(3 )炉壁停滞層の厚みは，炉壁突起物の突き出し長さの増加および上下の突起物の設置間隔

の短縮にともない増加し炉壁近傍のore/cokeの増加にともない減少する。

- 60 ー
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( 4 )炉芯の高さは，炉壁突起物による炉壁停滞層の形成および‘中心部のore/cokeの増加にと

もない低下する 。

(5)炉下部の炉体損傷時には，炉芯温度を低下させないために，炉壁近傍の停滞層をできる

だけ縮小させることが必要であり，炉壁近傍のore/cokeを増加した装入物分布が望ましい。

このような装入物分布は，炉壁近傍での溶融能力が大きい微粉炭多量吹き込み操業時に有

効であると推察される。
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第 5 章 炉壁混合層の形成とその通気性に及ぼすシャフト上部プ口フィル，

装入物性状の影響

5. 1 緒 Eコ

高炉の安定操業のためには，周辺流および炉体熱負荷を増加し荷下がりを悪化させる炉

壁混合層をできるだけ形成させないことが重要であると推察される 。 従来，炉壁混合層に

関する多くの研究2' ) -2 り 。:;:1) .6 1)- 日 5 )は， 炉壁混合層の形成挙動に及ぼす内壁面形状

(例えば， シャフト角，付着物， 浸食，凹凸形状，等) の影響に関するものであり，炉壁

混合層の形成挙動とガス流れあるいは装人物性状の関係に着目した研究 2 ~ ). 26). 27) は少

い。 そして，そのいずれの研究も二次元模型を用いており，実炉のガス流れ・炉壁混合層

の形成挙動と異なる可能性がある。

そこで， 高炉三次元半裁の冷間模型を用いて，炉壁混合層の形成挙動とガス流れに及ぼ

す炉口部直下のシャフ 卜 上部プロフィルの影響を解析し高炉シャフ卜部の扇形冷間模型

を用いて， 炉壁混合層の形成挙動に及ぼす装入物の性状 (粒径，安息角 ) の影響を解析し

た。 さ ら に，炉壁混合層の形成メカニズム，空間率およびシャフ卜上部プロフィル損傷時

の装入物分布について考察した。

5. 2 実験方法

5. 2. 1 高炉三次元半裁の冷間模型を用いた実験

実験に用いた高炉三次元半裁の冷間模型をFi g. 5. 1 に示す。 本装置は，高炉の1/10縮尺

の模型であり，装置上部より装入された装入物は，羽口直下に設置された 6 本の排出用パ

イプおよびタ ー ンテーブルにより排出される。

実験条件として，コークス排出量を50kg/hとし送風量を200Nm 3 / h とした。 ここで，送

風量はI (5. 1)式に示すシャフト部での修正Froude数 ( Fr 1) が模型と実炉とでそれぞれ

一致するように求めたシャフ卜部のガス流速より決定した。 コークス排出量はI (5.2) 式

に示すシャフ卜部での装入物の慣性力と重力の比である Froude数 (F r 2) が模型と実験で

一致するように求めたシャフト部の降下速度に基づいて決定した。

F r , 

F r2 

ρf • U:! 

( ρpρf ) .g.dp 

V s:! 

g • d p 

-63-

(5. 1) 

(5. 2) 



,._ 

物を降下させ，装入物の降下状況およびガスの吹き抜け状況を観察した。 さらに，装入物

を一定の距離 C80mm ) 降下させた後に， シャフ卜上部での圧力損失 (層高480mm) を測定し

熱線風速計を用いて装人物表面直上のガス流速を測定した。

Hot wire 
anemometer 

Hot wire Hot wire 

Gas pressure tap 

♀
♀
 

D
U門

代J

(1) Scaffo1ding profi1e (2) Rugged wa1l profile (3) Wall erosion profi1e 

o
h
門

Fig. 5.2 Upper shaft profi le condi tions. 

Rotating disk 
5. 2. 2 高炉シャフ卜部の冷間模型を用いた実験

実験に用いた高炉シャフ卜部の冷間模型をFig. 5. 3 に示す。 本装置は，大型高炉の 1/10

縮尺の角度が30 口 の扇形模型であり，装置上部より層状に装入された装入物は，装置下部

の 4 ヶ所に設置されたスクリュ ー ・ フィーダーにより排出される 。

実験条件としてコ ー クス排出量を 100 k g/ hとし無送風とした。 シャフト上部のプロ

フィルとして付着物を想定し突出し長さが60mmの突起物を設置した。

装入物として，コ ー クス，アルミナ球，焼結鉱，および，擬似鉱石を用いた (以下， コ

ー クス以外の装入物を鉱石と呼ぶ〉 。 注入法G 7) により求めた上記装入物の安息角および

嵩密度をTab l e 5 . 1 に示す。

実験開始より 15分後に装入物の降下を停止し実験装置の背面より吸引法により装入物

のサンプリングを行い，サンプリング箇所毎に装入物中の鉱石比率を求めた。 なおサンプ

リング箇所はFig. 5. 3 に示すように，高さ方向に 5 段，径方向に 771Jの計35箇所である。

Fig. 5. 1 A half section three-dimensional cold 
mode 1 of b 1 as t fu rnace. 

装入物として， 1/1 0 に縮尺した焼結鉱 (粒径が1 "'3mm と 0 . 5""lmm の混合物 〉 とコ ー

クス (粒径: 5'" 7mm) を用いた。 この粒径の範囲では，焼結鉱， コ ー クスの内部摩擦角は実

炉のものとほぼ同じと推定される 66) 0

シャフト上部のプロフ ィルとして， Fig. 5.2 に示すように， シャフト上部での付着物を

想定してシャフト上部に幅 1 0mm ・ 長 さ 1 40mm の突起物を設置したプロフィル(以下，付着

物プロフィルと呼ぶ) , シャフト上部での炉壁面の凹凸形状を想定して間隔20mm毎に厚み

2 mmの突起物を 10段設置したプロフィル(以下，凹凸プロフィルと呼ぶ) ，および\ シ ャ

フト上部での炉壁レンガ浸食を想定したプロフィル (以下，浸食プロフィルと呼ぶ) の 3

種類を設定した。

シャフト中部までコ ー クスを充填した後に，層厚40mmの鉱石層とコ ー クス層を20deg の

傾斜角で交互に層状に 5 層ず、つ装入し所定の送風量 C200Nm : ! /h ) を吹き込みながら装入

- 64- - 65-
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5. 3 実験結果

5. 3. 炉壁;毘合層の形成挙動に及ぼすシャフト上部プロフィルの影響

シャフ卜部が健全なプロフィル (以下，正常プロフィルと呼ぶ) の場合および付着物プ

ロフィルの場合の装入物の降下状態をPhoto. 5. 1 に示す。 正常プロフィルの場合には，鉱

石層とコ ー クス層は層状態を維持しながら降下するが，付着物プロフィルの場合には，約

30mm (実炉換算値: 300脚)の幅のよ戸壁混合層が形成される 。

490 

Alumina 
ball 

Coke 

c
m一
∞

Sampling 
unit 

0
0門
戸

(1) Norma1 profile Screw 
feeder 

(2) Scaffolding profile 

Photo 5.1 Influence of upper shaft profi le on layer 
structure of burdens near wall. 

5.3. 2 炉壁混合層の形成挙動に及ぼす鉱石性状の影響

突起物直下の炉壁混合層 (サンプリング番号 X二7) および炉壁混合層に隣接した炉内側

の領域(サンプリング番号ト6) の鉱石の存在比率に及ぼす鉱石の粒径の影響をFig. 5.4 

に示し安息角の影響をFig.5.5 に示す。 鉱石の粒径の増加にともない，鉱石の存在比率

は炉壁混合層内で増加し炉壁混合層に隣接した炉内側で減少する。 そして，鉱石の安息

角の増加にともない，鉱石の存在比率は炉壁混合層内で増加し炉壁混合層に隣接した炉

内側の領域で減少する 。 したがって，粒径と安息角がコ ー クスよりも小さい細粒鉱石の場

合には，タ戸壁混合層内での存在比率は小さい。

Fig. 5.3 A sector cold model of blast furnace shaft. 

Table 5.1 Physical properties of charged materials. 

Diameter Angle of repose Bulk density 
(mm) (deg) (g/ cm:l) 

Alumina ball 1 中 21. 2 2.144 

Alumina ball 4 ゆ 23.4 2. 144 

Alumina ball 8 ゆ 26.3 2. 160 

Quaisi-ore 4 --6 33. 9 2.083 

Sinter 1 ~ 3 33. 1 1.947 

Coke 4 --6 37. 1 0.506 

- 66- - 67-
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高ガス流速の範囲が炉壁から30mm (実炉換ルの場合に比べて約 2 倍に増加すると同時に，

中心部から中間部のガス流速が減少する 。算(直: 300mm) と1. 5倍に拡大し

正常プロフィル

高ガス流速の範囲が炉壁から30肌 (実炉換算

ロ

炉壁近傍のガス流速が最大で 0.30m/ s と，

の場合に比べて1. 5 倍に増加すると同時に，

値: 300mm) と1. 5倍に拡大する 。
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Fi g. 5. 5 

Fig. 5. 6 に定義した段差角度が45deg と断面積の拡大が急激な浸食プロフィル(シャフ

正常プロフィルのと，炉壁近傍のガス流速が最大で0.50m/s卜角度: 36deg) の場合には，炉壁近傍のガス流速分布に及ぼすシャフト上部プロフィルおよび細粒鉱石3 3. 5. 

高ガス流速の範囲が炉壁から40mm (実炉換算値場合に比べて2. 5 倍に増加すると同時に，の比率の影響

浸食プロフィルの場合のFig. 5.7 に示すように，: 400mm) と 2 倍強に拡大する。ただし，装入物表面直上のガ‘ス流速分布に及ぼすシャフト上部プロフィルの影響をFig. 5.6 に示

段差角度が 10deg と断浸食による断面積の変化率により異なり，炉壁近傍のガス流速は，炉壁中心部から中間部のガス流速はほぼ均一であるが，す。 正常プロ フィルの場合には，

炉壁近傍のガス流速は最(シャフト角度 : 71deg) には，面積の拡大の変化率が小さい場合その高ガス近傍のガ.ス流速は最大で0.20m/ s と中間部のガス流速に比べて約 2 倍大きく，

大で0.23m/ s と正常プロフィルの場合のガス流速とほぼ同じである 。

正常プロフィ

流速の範囲は炉壁から20mm (実炉換算値: 200mm) である 。

炉壁近傍のガス流速は最大で 0.36m/ s と，付着物プロフィルの場合には，

-69-- 68-
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シャフト上部の圧力損失に及ぼすシャフト上部プロフィルおよび細粒鉱石

の比率の影響

4 5. 

シャフ卜上部の圧力損失に及ぼすシャフ ト上部プロフィルおよび細粒鉱石の比率の影響

ムロ

¥¥ ,45deg ¥¥ ) Odeg 
\V(Shaft\\(βhaft 
司 ang1e "ang1 e 
¥ 36deg j 刊 71d句) 正常プロフィルに比をFig. 5. 9 に示す。 付着物プロフィルのシャフト上部の圧力損失は，

段差角度が45deg 以上ではほぼ一定である。 凹凸プロフィルの場合べて70"'90児に減少し

正常プロフィルに比べて 65児に減少する。 浸食プロフィルのシャフ卜上部の圧力損失は，

正常プロフ ィ ルとほぼ同じ段差角度が 10degの場合には，のシャフ卜上部の圧力損失は，

一方，正常プロフィルに比べて 90児に減少する 。段差角度が45deg の場合には，であるが，

し 1ずれのプロフィルにおいて細粒鉱石の比率が 40見の場合のシャフ卜上部の圧力損失は，

細粒鉱石の比率が O 唱 に比べて約 2 倍に増加する 。も，
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凹凸形状) 時の炉壁混合層の形成メカニ

付着物の上部段差および下部段差

浸食，

付着物プロフィルの場合の炉壁混合層の形成要因は，

シャフト上部プロフィル損傷 (付着物，

ズムをFig.5.10に示す。
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である。 付着物の上部段差では，炉内の断面積が急激に縮小するため，粒径と安息角の大

きいコ ー クスの降下が遅れやすい。そして，そのコークス層の聞を粒径と安息角の小さい

鉱石とくに細粒鉱石が浸透しながら下方へ降下するため，付着物の炉壁近傍にコ ー クスと

鉱石の混合層が形成される 。 付着物の下部段差では，炉内の断面積が急激に拡大するため，

付着物の下面の空洞に向かつてコークス層と鉱石層が流れ込む。 そして，その流れ込みの

過程で，粒径と安息角の小さい細粒鉱石が，空間率が大きくなったコークス層内を下方に

浸透するため，付着物の下部段差の直下の炉壁近傍に，コ クス主体の混合層が形成され

ると推察される 。 この細粒鉱石の浸透現象により，炉壁混合層内の鉱石の存在比率が鉱石

の粒径と安息角の減少に伴~ '/卜さくなるという Fi g. 5. 4 , F i g. 5. 5 の知見も説明すること

め混合層はほとんど形成されず，炉壁近傍のガス流速は正常プロフィルの場合と同じであ

る 。

凹凸プロフィルの場合の炉壁混合層の形成要因は，凹凸面とコ ークスとの摩擦角が大き

いことである 。 凹凸面の近傍で，粒径と安息角が大きいコ ー クスの降下遅れと粒径と安息

角の小さい細粒鉱石の下方への浸透現象が進行し， コ ー クス主体の混合層が形成されると

推察される 。

5.4. 2 炉壁混合層の空間率とガス流の周辺流化の関係

浸食プロフィルの場合のよ戸壁混合層の形成要因は，上記の付着物の下部段差と同様に，

浸食による断面積の急激な拡大である 。 とくに，炉内の断面積の変化率が大きい段差角度

が45deg ( シ ャフ卜角度 :36deg ) の場合には，炉壁混合層が形成されるため，炉壁近傍のガ

ス流速が増加する。 しかし炉内の断面積の拡大の変化率が小さい段差角度が10deg ( シャ

フト角度 :71deg ) の場合には，装入物の降下挙動が炉内プロフィルの変化に追従できるた

5. 3. 1 および 5. 3. 3 より， シャフ卜上部プ口フィルの損傷時には，炉壁混合層

が形成されると同時に炉壁近傍のガス流速が増加することが判明した。 そこで， シャフト

上部のガス圧力の測定値を (5.3 ) 式に示す圧力損失に関する Ergun 式に代入することによ

り，ガス流の周辺流化に密接に関連していると考えられる炉壁混合層の空間率 (ε2 ) を

推定したさ なお，空間率の計算にあたっては，以下の仮定に基づいた。

ができる。

ム P μ ( 1 -ε) ~ ρ ( 1 -ε) 
一一一一二 1 50 C

L (ゆ ・ d p ) ~ εj 
u + 1. 75 ( (5.3) 

( ゆ・ d p )ε 1 

Influence of b10ck 
angle (Rapid reducｭ
tion of cross section) 

UI SI _j_ U ~ S ~ =u CSI +S2) (5.4) 
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工炉内の充填層は， F i g. 5. 11 に示すように，層構造の乱れのない移動層(以下，層状移動

層と呼ぶ)と炉壁混合層に分割でさ炉壁混合層の幅は平均で30mmである。

⑦ガス流れはピストン流であり，層状移動層と炉壁混合層のシャフト上部での圧力損失は

等しい。

Mixed zone near wa11 
where coke is rich 

③層状移動層内の空間率 ( εI ) は，正常プロフィルの場合の空間率に等しく，同じ粒度

分布条件では一定である 。

④コ ークス層 (粒径: 5"'7mm) の空間率は0.511 68 ) とし，鉱石層(粒径: 1 "'3mm) の空間率は

0.520 (8 ) とする 。 そして，細粒鉱石(粒径: O. 5'" 1mm) と粗粒鉱石(粒径: 1 "'3mm) の混合物

の空間率は，著者らの多成分系粒体の空間率推定式日目)に基づき推定する 。
(1) Scaffo1ding and 
wa11 erosion profi1es 

Fig.5.10 Formation mechanism of mixed zone near wall in case of scaffo lding , 
wall erosion and rugged wall profiles. 
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炉壁近傍のガス流れに及ぼす段差角度の影響は断面積の急激な拡大時に大きいとおよび，

F ig. 5. 6 での付着物プロフィルの場合の炉壁近傍のガス流速が浸食し 1 う仮定に基づけば，

プロフィルの場合とほぼ同じあるいは少し小さくなる可能性もあると考えられる 。 凹凸プMixed zone 

正常プロフィルに比べて 20児大 きい。 浸食プロフィルロフィルの炉壁混合層の空間率は，drop 
A and B 

正常プロフィルとほぼ同じであ段差角度が 10degの場合には，のよ戸壁混合層の空間率は，

正常プロフィルに比べて 7 児大きい。段差角度が 45degの場合には，るが，velocity 
U2 

Void fraction 
C2 

コ クス主体の炉壁混合層の形成シャフ卜上部プロフィルの損傷時には.本知見より，

た土
品

に起因する空間率の増加のため炉壁近傍のガス流速が増加したものと推察される。

市田粒鉱石の比率がO児の場合に細粒鉱石の比率が20児， 40児の場合の炉壁混合層の空間率は，

490 

A 

Pressure drop 
between A and B 

(δP /L) 1 

velocity 
Ul 

Void fraction 
εl 

Gas 
。
∞
寸

B 

細粒鉱石の中心部への流れ込みに起因する炉壁近傍のガスこれは，比べて7"'20自大きい。

炉壁混合層内Fig.5.13に示すように，そして，によるものと推察される。流速の増加 7 ()) Assurnption of layered structure of burdens 
in upper shaft. 

F i g. 5.11 

上記のよ戸壁混合層のメカニズムのガス流速の計算値と実験値は比較的よく一致しており，

の仮定がほぼ正しいと推察される 。
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の炉壁混合層の90deg) 比較してFi g. 5.13に示す。付着物プロフィル(段差角度: 45deg , 
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実炉でのシャフト上部炉壁面の補修前後のガス流分布の比較5 5. シャフト上部プロフィル損傷時の装入物分布の考え方3 4. 5. 

1990年 5 月 28 日から 6 月稼働 9 年目にはいった君津 2 高炉(1982年 2 月に火入れ) は，シャフ卜上部プ口フィル損傷時の炉壁混合層の形成とガス流の周辺流2 より，4. 5. 

250"'500mm とレンガの浸食が激しかった4 日の長時間休風 (休風時間: 184 時間〉時に，シャフト部での熱このガス流の周辺流化は，化の間に密接な関係のあることが判明した。

シャフ鉱石受け金物直下 7mの範囲の非冷却部 CFig.5.16 の(1 ) ) に水冷金物を取り付け，抑制することが必要であ負荷の上昇あるいは小吹き抜けを引き起こす可能性があるため，

卜上部の冷却盤にキャスタブルを吹き付けた CFig.5.16 の(2) ) 0 水冷金物取り付けおよび装入物表面直上のガス流速る 。 付着物プロフィルおよび凹凸プロフィルの場合における，

冷却盤へのキャスタブル吹き付けによるシャフト上部炉壁面の補修前後のシャフト上部ゾF ig. 5. 分布に及ぼす炉壁近傍(炉壁から95mmの範囲〉の相対ore/cokeの影響をFig.5.14.

データを比較した期ここで，ンデのCOガス利用率 (ηco) 分布の比較をFi g. 5.17に示す。タ戸壁近傍の ore/coke と装入の平均ore/炉壁近傍の相対ore/ coke は，ここで，15に示す。

装入ノミタ ー ンがほぼ同じである 2 週間前後の期間とした (補修前: 5 月 8 日 ----5 月聞は，炉壁近傍の相対ore/cokeがO. 6 と小さい場合には，cokeの比である 。 いずれの場合にも，

シャフト上部シャフト上部炉壁面の補修により，補修後: 6 月 12 日 "--6 月 21 日 )。21 日，炉壁近炉壁近傍の相対ore/cokeが1. 4 と大きい場合には，炉壁近傍のガス流速は増加し

可 coOコの η coの変動が2.4"'"4.4児減少しゾンデの炉壁近傍 (炉壁から1. 5mの範囲の 3 点 )シャフ卜上部プロフ ィ上記の知見より，傍のガス流速は平均ガス流速に近い値となる。

炉壁浸食あるいシャフ卜上部炉壁面の補修により，これは，平均値が2.0"'7.6児増加した。よ戸壁近傍の相対ore/coke を1. 4 程度に大きくすることにより炉壁近傍のガル損傷時には，

炉壁近傍のガス流が安定化は炉壁画の凹凸形状に起因する炉壁混合層の形成が抑制され，ス流速を抑制できる可能性があると推察される。

君津 2 高炉は長時間休風この炉壁近傍のガス流の安定化により，したためと考えられる 。

燃料比を 10"'15kg/ t1 ヶ月後の 7 月以降，5.2 に示すように，

Cooling 
pl a te 

り coが1. 5%上昇した。
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Fig. 5.15 Influence of relat ive ore/coke 
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above burden surface in case 
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ratio=20丸

Table 

Brick 

Distance from center (mm) 

Influence of relative ore/ 
coke near wall C95mm from 
wall) on gas velocity 
distribution just above burden 
surface in case of scaffolding 
profile and small ore Cdp:0.5 
'" 1. Omm) ra t i 0=20%. 
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炉壁混合層の形高炉シャフ卜部の冷間模型および高炉三次元半裁の冷間模型を用いて，
50 

凹凸形状) および浸食，成挙動とその通気性に及ぼすシャフト上部プロフィル (付着物，

以下の知見を得た。安息角 ) の影響を解析し装人物の性状 (粒径，40 

シャフ卜部が健全なプ炉壁混合層が形成され(1 )シャフ卜上部プロフィルの損傷時には，

高ガス流速の範囲が1. 5"" 

細粒鉱石の比率の増加にともないさら

炉内断面積の急激な変化あるいは炉壁面での摩擦角の

増大に起因するコ ー クスの降下遅れと粒径と安息角の小さい細粒鉱石の浸透現象により形

炉壁近傍のガス流速が1. 5""2. 5 倍に増加 し

こ のガス流の周辺流化現象は，

(2 ) シャフ卜上部での炉壁混合層は，
10 
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40 

ロフィルに比べて，

2. 0 倍に拡大する 。
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よ戸壁近傍の相対ore/ co k e を1. 4 程度に大きくす( :3 ) シャフ卜上部プロフィルの損傷時には，

炉壁近傍のガス流速を平均ガス流速に近い値に抑制することができる 。る こ とにより，
n ﾗ 

: Before repair of upper shaft (90.5.8-5.21) 
Charging pattern : (C1C10101) X m + (C1C10407) 

m = 3, n = 2 or m = 3, n = 2 
: After repair of upper shaft (90.5.8-5.21) 
Charging pattern : (C1C10101) X m + (C1C10407) 

m = 3, n = 2 

• • 
鉱石受け金物直下 1mの範囲の水冷金物取り付けおよびシャフ卜上部(4 )君津 2 高炉では，

口。

シャフ卜の冷却盤へのキャスタブルの吹き付けによるシャフ卜上部炉壁面の補修により，
n ﾗ 

り coの平均値が増加した。上部ゾンデの炉壁近傍のCOガス利用率 ( り co ) の変動が減少し
Comparison of ηco and its deviation of 
upper-stack probe between before and after 
repair of upper shaft in Kirnitsu NO.2 BF. 

F ig. 5.17 

炉壁浸食あるいは炉壁面の凹凸形状に起シ ャフト上部プロフィルの補修により，これは，

炉壁近傍のガス流が安定化したためと考えられるu因するよ戸壁混合層の形成が抑制され

Change of production. fuel rate and CO gas utilization 
between before and after repair of upper shaft in 
Kimi tsu NO.2 BF. 

Table 5. 2 

Before repair After repair 

1990.4 5 6 7 8 9 

Production (t/d) 6432 5840 5509 6537 6981 6915 

Fue! rate(CR) (kg/t) 513 503 507 493 490 488 

CO gas utilization (児) 47.8 47.6 47.8 49. 2 49. 2 49.1 
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第 6 章 高炉内における粉の挙動

6. 1 緒 Eコ

高炉への微粉炭吹き込み量の増加にともない， レ ー スウェイ周り (炉芯内) の粉率が増

加することが報告 :j 0). 7 1). 72) されている。 粉率増加の原因としては，微粉炭多量吹き込

みにともなう未燃チャ一発生量の増加28) あるいはレ ー スウェイ内でのコ ー クス滞留時間

の増加7 川によるコ ー クス粉化量の増加が考えられる 。 この炉芯内の粉率の上昇は，高炉

の通気性や通液性に悪影響を及ぼし 7t) ，装入物の降下とガス流れの状態を不安定にする 。

したが っ て，高炉の安定操業のためには，高炉内の粉の挙動を解明することが重要である

と推察される。

従来，高炉内の粉の挙動に関する研究として，充損層 (固定層〉 内を対象とした囲気 2

相流に関する山間 7 -,) • 7 G) の研究 柴田らの研究 :J :1 ) が報告され，充填層内での粉の流

動特性が解明されている 。 しかし高炉のような移動層内における粉の挙動に関する研究

例 71 ) . 77) は少なく，高炉内の粉の挙動に関しては未解明な部分が多 l'0 

そこで，高炉三次元半裁模型コけを用いて，羽口からの粉コ クスの吹き込み実験を行

い.装入物の降下と通気性に及ぼす粉吹き込み量および粒径の影響を解析すると同時に，

移動層内における粉の堆積挙動について考察した。

さらに，小型レ ー スウェイ燃焼炉を用いて， レースウェイ燃焼実験を行い， レ ー スウェ

イ内でのコ ー クスの粉化に及ぼす羽口風速・コ ー クス強度の影響を解析し高炉への微粉

炭多量吹き込みにともない予想されるレ ー スウェイ内での粉の発生量増加の抑制対策につ

いて検討した。

6. 2 実験方法

6. 2. 1 羽口からの粉コークス吹き込み実験

F i g. 6. 1 に示す高炉三次元半裁模型;) 3 ) を用いた。 炉頂よりコ クスを装入し 18本の

羽口より常温の空気を送風しレースウェイを形成させた。 そして， レ ー スウェイ直下のロ

タリ ー フィ ー ダ ー よりコークスを排出した。 粉コークスの吹き込みは 18本の羽口より行

っ fこ O

実験条件として， コ ー クス排出量を90kg/ hとし送風量を200Nm :1 /h とした 。 ここで，送

風量は， (6.] ) 式に示すレ ー スウェイでのFroude数が実炉と模型でそれぞれ一致するよう
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に求めた羽口風速より決定した。

Fr =店=u ド (6.1) 

h
戸
N

装入物として， 1/20に縮尺したコークス(粒径: 2"""'4mm) を用いた。 吹き込み粉として.

粒径の異なる 3 種類 (0. 1mm 以下(以降-0. 1mm と呼ぶ)， O. 1......,0. 5mm, O. 1""'" 1. Omm) の粉コ

ークスを使用し吹き込み量を 10 ， 20 ， 30 ， 40kg/h と 4 水準変更した。 なお，この粉コーク

ス吹き込み量は，実炉でのコークス燃焼量に対応するコークス排出量90kg/hの 1 1， 22, 33, 

44 0 0がレースウェイ内および近傍で粉化したことに対応している。 そして，堆積プロフィ

ルとして， V型分布と M型分布の 2 水準とし，粒径分布として，均一粒径分布と粗粒コー

クス (4"""'6mm) を装入し中心部(炉口部で除した無次元半径で O. 2の範囲〉の粒径を大きく

した粒径分布とした。

本装置に設置したサウンジングにより装入物の降下状態を測定し着色したコークスを

用いて測定した装入後の経過(等〉時間のタイムラインより装入物の降下領域を測定した。

ガス圧力を測定すると同時にレ ー スウェイ形状のVTR撮影データに基づき， レ ー スウェ

イ形状の変動を測定した。 さらに，実験終了後に， F ig. 6. 2 に示すように， シャフ卜下部

以下の領域を50mm間隔で吸引法によるサンプリングを行い，炉頂および炉外に排出された

粉のサンプリングも行った。 そして，採取試料の粒度分析を行った。

Fig. 6.1 A half section three-dimensional 
model of a blast furnace. 
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6. 2. 2 レースウヱイ燃焼実験

F ig. 6. 3 に示す小型レ スウェイ燃焼炉 11) を用いた。 燃焼炉本体は，幅 405mm，奥行
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Fig. 6.2 Dimension of sampling unit. 

Fig. 6. 3 Schematic illustration of small-size raceway furnace. 
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実験時とにより羽口風速を150m/ sから 220m/ s まで変更した。送風温度は800 oc一定とし，

聞はコークス燃焼量一定という考え方から60分一定とした。

の異なる 3 種類のコークスの冷間強度 (D Ii ~O ) 6.2 に示すように，実験試料はTable

平均粒度10----11mmとしたものを用いた。 破砕コークスを製造後 6----15聞に破砕・整粒し

F ig. 6. 5 に示すよの聞には，前の実験試料の冷問強度 (0 Iî ;O ) と反応後強度 (C S R) 

うな直線関係があった。なお破砕前の実験試料の冷問強度 (0 g;O) と破砕後整粒した実

以降の

コ ークス強度と呼ぶ〉 を用いたっ

3100 
100 
100 
2 

50 
100 

2 

3 

4 

F ig. 6. 6 に示すような直線関係があるので，

解析にあたっては実験試料の強度として冷間強度(以降，

験試料の I 型強度 (I:。。〉の聞には，5 

6 

Tuyere 

Coke strength Coke stmith Size Apd paren t 
after crushing e13)ty 

on~o I~OO Ra(mnmg ) e -(%l m) IIl Ave!?ge size ρp(g/c in 3 ) 
15 ~3 

mm) 

A 8l. 5 49. 4 6 ----15 0.13 10.35 O. 92 

8 1 

T 
44. 6 I 6 ----15 O. 11 11. 13 O. 88 

一斗 一一一

C 75. 7 36. 6 I 6 --15 I O. 18 O. 89 

Properties of experimental materials. 6. 2 Table Sampl ing location. F ig. 6. 4 

内径26mmのステンレス鋳物製の水冷羽口を有している 。585mm，高さ 670mm の箱型燃焼炉で，

吹き込み温度が800 oc になるまで空気を加熱した。 そガスの加熱は90kWの電気炉で行い，

コ ー クスの燃焼を開始したc空気が所定の温度に上昇した後にコ クスを充填し，して，

計72点〉は実験開始奥行方向12点，充填コークス内の温度測定 (泊IJ定点:高さ方向 6 段，

95 
燃焼炉内をFi g. 6. ， 1 に示すような 108箇所の20分後より行った。 炉内を十分に冷却後，

試料採取箇所毎に粒度分析を行100mm の立方体毎に吸引法により炉内コークスを採取し

90 85 
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レースウェイ形状の測定は実験後に採取した鳥の巣の形状より行った。

羽口径を変更するこ

Coke B佃lVa苅 s t i 1l Bias1 1 1 8last Tuyere 
vo me t emPe(T。rCa 13 l u re ve oc t y d i amDe t , er 

D I:; 。 (N /h l){mu /s j mm) 

81. 5 72 760 143 26. 0 

2 I 81. 5 72 800 180 23.6 

3 81. 5 72 780 176 23.6 

4 81. 5 72 800 221 21. 3 

5 77.9 72 800 148 26. 0 

6 77.9 72 800 180 23. 6 

7 77.9 72 800 220 21. 3 

8 75. 7 72 760 173 23. 6 

9 75. 7 72 780 217 2l. 3 

送風量を72r\ml ' h 一定とし，

Experimental conditions. 

6. 1 に示すように，

Table 6.1 

った。なお，

実験条件はTable
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小スリップも粒径が-0. 1mmと装入コークスの粒径に比べて十分小さい場合には，さらに，実験結果および考察3 6. 

発生しない高炉における粉の挙動3. 6. 

装入物の降下に及ぼす羽口からの粉吹き込み量および粒径の影響3. 6. 

炉内のガス圧力分布に及ぼす羽口からの粉吹き込み量および粒径の影2 3. 円h
u

粒径の影響をFig. 6. 8 に装入物の降下に及ぼす粉吹き込み量の影響をFig. 6. 7 に示し，

響20kg/hの場合には断続的な小スリップ示す。 粉 (粒径:O. 1,..._, 1. Omm) 吹き込み量が10kg / h ，

粒径の影響をFi g. 6.10に示す。ガス圧力に及ぼす粉吹き込み量の影響をFi g. 6. 9 に示し，30kg/h以上の場合には断続的なスリップが発生すると同時にレ ー スウェイの拡が発生し

Injection rate 
of coke fines 
o 0 kg/h 
10 kg/h 

20 kg/h 
30 kgjh 
40 kgjh 

20kg/hの場合には朝顔部のガス圧力が増加し粉 (粒径:O. 1 -1. Omm) 吹き込み量が10kg t' h ，粉吹き込み量が30kg/hの場合でしかし，大 ・崩壊に起因した周期的な棚吊 りが発生する。

• 
企

-
v

周期的な棚吊りは発生せず小スリップが断続粒径が O. 1-0. 5mm と小さい場合には，

的に発生した。

も，
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粉吹き込み量が30kg

ガス圧粒径が-0. 1mmと装入コ ー クスの空隙に対して十分小さい場合には，

力の増加幅は小さい。

しかし30kg/ h以上の場合には炉高方向全体のガス圧力が増加する。

hの場合でも，

レ ー スウェイ形状に及ぼす羽口からの粉吹き込み量の影響3 3. 6. 

Fig.6.13にレースウェイ深度およびその変動に及ぼす粉吹き込み量の影響をFig.6.12 ，

レ ー スウェイ高さと深度の比の変動に及ぼす粉吹き込み量の影響をFi g. 6.14に示す叫示し

(H R )はFi g. 6.11 に示すよレ ー スウェイ深度 (0 R )およびレースウェイ高さここで，

50 40 30 20 円
U

、E
・

E
・50 40 30 20 10 

( kg/ h) fines rate of coke Injection ( kg/ h) fines rate of coke Injection 15秒毎に測定した。うに定義し

Influence of injection rate 
of fines (0.1"'1. Omm) on 
variation of raceway depth. 

Fig.6.13 Influence of injection rate 
of fines (0.1"'1. Omm) on 
raceway depth. 

Fig.6.12 レースウェイ深度を羽口径で除した無次元レ ー スウェイ深度 ( OR i O t) およびその 'fE

そし粉(粒径:o. 1 ---....1. Omrn) 吹き込み量の増加にともない増加する動 ( σo R /0 t ) は，

レ ー スウェイ形状の変動を示す指標としてと っ たレ ー スウェイ高さと深度の比の変動て，
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6. 3. 1. 4 粉の堆積挙動に及ぼす羽口からの粉吹き込み量および粒径の影響

炉下部での粉の堆積挙動に及ぼす粉吹き込み量の影響をFig.6.15に示し粒径の影響を

Fig.6.16に示す。 粉 (粒径:O. 1 -----1. Omm) は，まず炉芯表層部に堆積し，つづいて朝顔部の

I戸壁近傍に堆積する 。 そして，粉吹き込み量の増加にともない，粉の堆積領域が拡大する

と同時に，炉芯表層部と朝顔部の伊壁近傍での粉の高濃度領域 (30 0b以上)が拡大する。

しかし粉吹き込み量が30kg 1 hの場合でも，粒径が O. 1mmとコ ー クス層の空隙に対して十

分小さい場合には.粉 (粒径: -0. lmm ) はコ ー クス層内を上昇して炉外に排出され.炉芯

内の粉の堆積量は少い。 そして，粒径が 0.1-----0.5mm の場合には， Photo. 6.1 に示すよう

に，コークス層内を上昇した粉の一部は装入物の層頂の中心部に堆積し残りは炉外に排

出される 。 この層頂の中心部に堆積した粉はコークス層との境界近傍では流動化しながら，

コ ー クス層とほぼ同じ速度で降下する 。

68'20" 

50' 

60' 

(1) No injection (2) -0. lmm ( 3) O. hO . 51llm ( 4) O. h 1 .0111111 

k:{}}}ll 0 '\， 20 ?~ 仁コ 20 '\， 30% 区亙 +30%

Fig.6.16 Influence of size of fines on burden descent and fines 
deposit behavior (Injection rate=30kg/h). 
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(1) No injection (2) Injection rate = 
10 kgjh 

(3) Injection rate 
20 kgjh 

* Coke fines (0 .1 '\, 1. 0mm) 
depos it a rea 

医] 10 '\, 20% 

区~ 20 '\, 30% 

t.;.;.;J +30% 

64'00" 

60' (1) -O.lmm ( 2) Q. h ,Q. 5mm ( 3) Q. 1 rv 1 . Qmm 

Photo 6.1 Relationship between size of coke fines injected through 
tuyere and deposit behavior of fines. 

(4) Injection rate = 
30 kgjh 

(5) Injection rate 
40 kgjh 

Fig.6.15 Influence of injection rate of fines CO.1"'1.0mm) on 
burden descent and fines deposit behavior. 
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6. 3. 1. 5 粉の堆積挙動に及ぼす層頂プロフィルおよびコ クス粒径分布の影響

炉頂での粉の堆積挙動に及ぼす層頂プロフィルおよびコ ーク ス粒径分布の影響をFig. 6. 

17に示し，炉頂でのガス流速分布に及ぼす層頂プロフィルおよびコークス粒径分布の影響

をFig . 6.18に示す。 v型分布の場合には，粉コ ー クスは層頂表面に対し垂直な方向に飛び

出すため中心部に堆積しやすく， 中心部のガス流速が減少する 。 しかし中心部に粗粒コ

ー クス層を形成さ せた場合には， 中心部のガス流速が大きいため中心部への粉コ ー クスの

堆積は抑制され，粉コークスは組粒コークス層の周囲に堆積する。 そして，中心部のガス

流速は粉吹き込み開始80分後で も減少しな L 、 。 M型分布の場合には，粉コークスは中心部

と周辺部の 2 つの方向に飛び出すため，初期の段階では， 粉コ ー クスは周辺部と中心部に

堆積する 。 そして，中心部に粗粒コークス層を形成させた場合には，周辺部への粉の堆積

が進行するため，中心部のガス流速が増加する。

エ入| 

Large size coke '、 La γge size coke 
in centra1 region in centra1 region 

(1) V-shaped stock (2) M-shaped stock 

Fig.6.17 Influence of stock top profile and coke size distribution on 
deposit behavior of fines at top level of furnace. 
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6. 3. l. 6 粉の堆積挙動と装人物の降下挙動の関係

炉下部での装入物は炉壁と炉芯に固まれた領域を粒子の配列を変化させながら降下して

いる 。 したがって，粒子配列の変化時に空隙が瞬間的に形成され，その空隙内にガスが流

れこむため， 一時的に空隙内に粉が堆積しでもガスに随伴して上方に移動すると推察され

る。一方，降下速度が小さく粒子配列の変化の少ない炉芯表層部および朝顔部の炉壁近傍

では，空隙が瞬間的に形成される可能性が小さいため，羽口から吹き込まれた粉は一旦空

隙内に堆積するとガスに随伴して移動しにくいと推察される 。

粒径が O . 1mmと装入コ クス粒径と比較して十分小さ い場合に炉芯内に粉の高濃度領域

( 30月以上) が形成されない理由は，粉がガスに随伴 して コー クス層の空隙内を上方に移

動 しやすいためと推察される 。

Fig.6.15, Fig . 6.16によると，装入物は粉の高濃度領域を迂回しながら降下するため，

装人物の炉下部での降下領域が縮小し滞留時間が短くなる 。 これは， コークス層内への粉

の堆積量の増加にともない，粉を含むコ ー クス層の内部摩擦角が増加 l 川 し，擬停滞層が

形成されるためと推察されるO このように，装人物の降下挙動と粉の堆積挙動は相互に密

接に関連 しており，装人物の安定な降下を確保するためには，粉の高濃度領域を形成させ

ないことが重要である F

6. 3. 1. 7 粉の堆積挙動と粉の粒径の関係

6. 3. 1. ~で，粒径が O. 1---0. 5mm の粉の場合には， コ ー クス充填層内を上昇した

粉の一部が装入物の層頂の中心部に堆積し残りが炉外に排出されることが判明した。

そこで，上記の粉の流動現象とガス流れとの関係を解明するために， (6. 2)式に示すWen

の式7 H) より本実験条件での流動化開始速度と粉の粒径の関係を求め， (6 . 3) 式よ り終末

速度と粉の粒径の関係を求めた。 両者の計算結果をFi g. 6.19に示す。

d p ・ Umf ・ ρ If d p 3 . ρ g (ρp sρg ) g 
= ((33.7) 2 十 O. 0408 ・ 1/2_33.7 (6. 2) 

μ 
μ 2 

4 d p ( ρp sρg ) g 
U t ( ) 1/2 (6.3) 

3 ρz ・ Cd

C d 24/Rep (Rep<0.4) (6. 4) 



C d 10/Rep I /~ (0.4 <Rep<500) (6. 5) 

C d = 0.43 (500 く Re p く 200 ， 000) (6.6) 

5 
L 

ーーー: Termina1 ve10city Ut 

一一 Minimum f1uidized 
ve10city Umf 

4 

〉、

+-' 

からみると， 0.1 ,...._, O. 3mmの粒径の粉は炉頂まで吹き上げられる可能性が大きく， 0.3mm 以

上の粒径の粉はコークス層内を上昇できないと推定される。

炉頂まで吹き上げられた粉はガス流に随伴してV型の層頂面に直角の方向すなわち中心

方向に飛び出し粉が炉外に排出されるか中心部に堆積するかは終末速度との関係で決ま

る 。 炉頂レベルでの空塔速度が0.59m/ s であるので，炉外に排出される粉の最大径は 0.2

m以下の範囲にあり， 0.2mm 以上の粉は炉頂まで吹き上げられたとしてもほとんど炉外に

排出されないで層頂に堆積すると推定される。

羽口より 0.1--0.5mm の粒径の粉を吹き込んだ場合のシャフト下部以下，層頂中心部の

堆積粉および炉外排出粉 (サイク ロンで捕捉された粉〉の粒径分布をFig. 6.20に示す。 炉
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本実験条件では，空塔速度は羽口レベルで0 . 30m s，炉腹レベルで0.25m s，炉口レベルで

0.59m/ s であり，コークス充填層の空間率を0 . 51川と仮定すると，充填層内での実ガス

流速はそれぞれO.59m/ s, O. 49m/ s, 1. 18m/ s となる 。 Fi g. 19より，炉内でのガ、 ス流速の最小

値である炉腹部レベルでの空塔速度で流動化するコ ー クスの粒径は約1. Omm であり，炉腹

部レベルでの実ガス流速で吹き飛ばされるコークスの粒径は約O. 2mm である 。 したがって，

終末速度からみた場合には， O. 1,...._,0. 2mmの粒径の粉は炉頂まで吹き上げられ， 0.2mm 以上

の粒径の粉は吹き上げられないが流動化によりコークス層内を移動 (上昇)する可能性が

あると推定される。

一方，球(一次球)粒子細密充損層の最小空隙を通過できる最大球の径は球(一次球〉

粒子の径の0.155 倍であると仮定すると， 2--4mm の粒径のコークス充墳層内の最小空隙

を通過できる最大球の径はO. 33--0. 66mmである 。 したがって， コークス充填層内の空隙径
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P h o to .6.3 に示すように未還元のものとマグネタイト段階粉焼結鉱は，いるものであり，O. 3---0. 5mmの比O. 1---0. 3mmの比率が大幅に増加 し下部から炉頂へと上昇するにつれて，

層頂の中心部の粉コ ー クスはコ クスの付着

粉あるいは シャ フ卜 下部でのソリュ ー シ ョ ンロス反応により発生したものと推定された。

し たがっ て，まで還元されたものであっ た。O. 3"'-'0. 5mmの比率が 0.7% と炉外のサイクロンの粉では，

ほぼ零に近い数値になってい る 。

率が大幅に減少する 。 そして，

a) Fine sintered ore unreduced 

b) Fine sintered ore reduced 
to magnetite 

実炉での炉内堆積粉の調査結果

炉頂堆積粉

2 

2. 

3. 6. 

6. 

炉頂クロスゾンデF i g. 6.21の操業推移に示すように，1989年 l 月，名古屋 1 高炉では.

a) Coke fines non-gasified 

b) Coke fines gasified and 
zinc-coated at coke surface 

の中心温度とシャフ卜上部ゾンデの中心部のcoガス利用率 ( ηco ) が同時に低下する現象

中心部の半径2m以内の領域に粉休風時に層頂部を観察した結果，

が堆積していることが判明した。
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そこで，

505 

500 

が顕在化した。

Micro-structure of fine 
sintered ore sampled 
in the central region of 
stock toP. 

0 . 5mm 以1mm 以下が約60% ，

Photo 6.3 

粉の粒径分布をTable 6.3tこ示す。 粉は 3 mm以下であり，

Micro-structure of coke 
fines sampled in the 
central region of stock toP. 

Photo 6.2 

ふ
F i g. 6.22に示した6 で示した方法と同様に，3. 6. 下が約25 0 òで-あった。 そこで，

ふ
20 

名古屋 l 高炉の操業条件での流動化開始速度 ・ 終末速度と コ ークス粒径の関係か ら名古屋
15 

l 高炉の炉頂での中心部のガス流速を推定した。 層頂の中心部に堆積した0.5mm， 1 mmの粒
10 
1989 Jan. 
26 炉口部での平均ガス流速 (空塔では径の粉コ ークスの終末速度は1.4m/ s, 2. 8m/ sであり，

30 29 28 27 

中J心流層頂部近傍の実ガス流速では約 2 m/s ) に比較して大きい数値ではなく，約 1 m/s , 
Operation results of Nagoya NO.1 blast furnace. Fig. 6.21 

がかなり抑制されていると推定された。

その堆積粉が粉コ

中心部のガス温度と coガス利用率 (月 c o ) が同時に低下したと推定

中心部の堆積粉により中心部のガス流速が低下し

ークス主体のために，

以上の知見より，
粉の大部分 (90%以上〉 は粉コ ー クスであり，採取した粉の顕微鏡観察結果によると，

される 。
Photo.6.2 に示すようにほとんど

ガス化反応が進行していないものと表面がガス化されその周囲に亜鉛がコ ーティングして

一部分 00%以下〉 が焼結鉱であ っ た。 粉コ ー クスは，
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巾
l

W~i?ht I Weig~~" ratio 
(g) (見)

+ 5 mm O. 2 。

5"-'3mm 10.3 1.5 

3--1mm 243. 5 35.9 

1 ,,-,0. 5mm 243. 7 36. 0 

0.5--0.1mm 158. 8 23. 4 

-O.lmm 22. 0 3. 2 

6. 3. 2. 2 炉芯堆積粉

室蘭 2 高炉において休風時に羽口コークスサンプラーにより採取した粉(-3mm) の半径方

向分布をFig. 6.23に不すO 室蘭 2 高炉の羽口レベルの粉 ( -3mm) は レ ースウェイ先端から炉

芯表層部に多く，粉の高濃度領域は 6. 3. 1. 4 の Fig.6.15 ， Fig.6.16に示した高炉三

次元模型の知見と同じである。 そして，その粉率の最大値の位置は半径方向で変化し 高

炉の操業が不安定であった期間 ( 1990. 2--6) にはその位置が羽口よりにあり炉芯が肥大

していたと推定される。 また，君津 4 高炉の l 本羽口微粉炭多量吹き込み試験においても ，

微粉炭吹き込み量が200kg/ t (空気比二 O. 75 ) の場合には，未燃チャ ーが炉芯表層部に堆

積していたことが報告28) されている 。
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DI日。 =77.9の場合レースウェイ近傍でのコークスの粉化挙動3 3. 6. 

(6. 7) -9.01 Ut =0.083 Qt レースウェイ近傍の粉コークス堆積量に及ぼす羽口風速およびコ ー ク3. 6. 

ス強度の影響

DIな。 =8 1. 5の場合( - 1mm) 堆積量の半径方向]分布をFig. 6.24に示す。 粉コークス羽口レベルの粉コ ー クス

(6.8) -5.24 

150 
x Dliﾇ= 75.7 

・ Dd~O = 77.9 15 
150 o D11ﾇ= 81.5 

150 200 

B1ast ve10city Ut(m/s) 

Influence of blast velocity on deposit of -1mm coke fines 
around raceway (region within 100mm of raCeway nose). 
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=0.053 Qt レースウェイから離れるにつれて急激レ ー スウェイ先端近傍で多く，(- lmm) 堆積量は，

(一 l mm ) 堆積量のピークは高羽口風速の場合に大きい。粉コークスに減少する。 そして，

m
 

レースウェイ近傍(レースウェイ先端より 100mmの領域) の粉コ ー クスつぎに ，

レ ー スウェイ近傍の粉コ ー クス(-lmm) 堆積量に及ぼす羽口風速の影響をFig.6.25に示す。

(- lmm ) 堆積量に及ぼす羽口風速粉コ ー クス堆積量は羽口風速の増大にともない増加し

5.0 コ ー クス強度 ( D 1 日。 〉 が75. 7 と極しかし，の影響はコ ー クス強度が低い場合に大きい。

レ ー スウェイ内で発生レースウェイ天井部での吹き抜け現象により，立高に低し 1場合には，

炉外へ飛散したためにレ ー スウェイ近傍の粉コ ー クスの多くが，
、、
‘
，l
'
''

m
川

m
出
'
l
l
A
 

/
F
t
、した粉コ ー クス

とくに羽口風速が220m， s の場合に上記現象が顕(- lmm) 堆積量が少ないものと考えられ，

F i g. 6.25 

著であった。 Fi g. 6.25より求めたコ ー クス強度が一定の場合におけるレ ー スウェイ近傍の

(6.8 ) 式に示(- lmm) 堆積量 ( Q t) と羽口風速 ( U t ) の関係式を (6. 7 ) 式，粉コ ー クス

す。

(6.8 ) 式を用いて補正した各羽口風速レベル(150， 180, 220m/ s) 上記 (6.7)式つぎに，

(- lmm ) 堆積量に及ぼすコ ークス強度の影響をにおけるレースウェイ近傍の粉コークス

(-1mm) 堆積量はコークス強度の低下にレ スウェイ近傍の粉コ クスF ig. 6.26に示す。

〈一 lmm) 堆積量に及ぼすコ ー クス強度の影響は羽口風速が粉コークスともない増加し，

220m/s と大きい場合には大きい。 Fig. 6.26より求めた羽150m/ s と小さい場合には小さく，

コと

(6. 11) 式

(6.9) 

口風速が一定の場合におけるレースウェイ近傍の粉コ ークス(- 1mm) 堆積量 ( Q t) 

(6. 10) 式，計算式内では D I と略す) の関係式を (6.9) 式，

ニ -0.053 D I +6.930 

= 150m/ sの場合
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レ ー スウェイおよびレースウェイ近傍におけるコークスの性状変化3 3. 3. 6. 

Y=2の試料採取場所に対応〉レ ー ス ウ ェイおよびレースウェイ直上部 (Fi g. 6. 4 の x =1. 2, Influence of coke strength DI~~o on deposit 
of -lmm coke fines around raceway 
(region within 100mm of r a cewa ~ nose). 

F i g. 6.26 

の高さ方向の変化をFig. 6. 気孔率および I 型強度 ( I~OO) におけるコ ー クスの平均粒径，

28'こ示すD

炉芯コークス温度に及ぼす粉コー ク ス堆積量の影響2 3. 3. 6. 
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レ ー スウェイ近傍すなわち炉芯表層部に粉を堆積させないことが望ましいと推察めには，

される。
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コークスの平均粒径はいずれの羽口風速の場合にもレースウェイ直上部から羽口レベル

に向かいほぼ直線的に減少している。気孔率はいずれの羽口風速の場合にもレ ー スウェイ

直上部から羽口上200mrn のレベルまで増加しているが， レースウェイ内での気孔率は羽口

風速のレベルにより大きく変化する。 羽口風速が220m/ s と大きい場合には， レースウェイ

内での気孔率は大きく減少するが，羽口風速が150m/s と小さい場合には， レースウェイ内

での気孔率はほとんど減少しない。 この理由は衝風の運動エネルギーの差異に起因すると

考えられる 。 すなわち，羽口風速が220m/s と大きい場合には，衝風の運動エネルギーが大

きくコ ー クスの旋回速度が大きいため， レースウェイ内でのコークスの劣化層の粉化量が

大きくなり，気孔率が減少する。一方羽口風速が150m/s と小さい場合には，衝風の運動エ

ネルギーが小さくコ ー クスの旋回速度が小さいため， レースウェイ内でのコ ーク スの劣化

層の粉化量が少なくなり，気孔率はほとんと減少しない。 I 型強度は平均粒度と同様にい

ずれの羽口風速の場合にもレ ー スウェイ直上部から羽口レベルに向かい低下している ♀

6. 3. 3. 4 レ ー スウェイでのコークスの粉化に関するコークス強度と羽口風速の

当量関係

6. 3. 3. 1 で，羽口風速の増加あるいはコークス強度の低下にともなってレ ースウ

ェイ近傍でのコークス粉化量が増加することを述べた。 したがって. コ ーク スの粉化に関

する羽口風速とコ ー クス強度との間には当量関係が存在することが推察される 。

微粉炭多量吹き込み操業では緒言で述べたように， レ ー スウェイ近傍でのコークスの粉

化量が増加する可能性があるのでコークス強度の増加が望ましい。 しかしコークス強度

が上限に近い強度に達していて， もはや改善の余地が少ない場合には，両者の当量関係が

存在するならば，羽口風速の低下で対処することが可能である。 また，微粉炭吹き込み量

が比較的少ない操業でも，羽口風速をさらに低下できればコークス強度を低下することが

できるので， コークス製造コストの低減が可能である。

そこで，既報の高炉二次元模型による冷問実験結果7 g) および 6. 3. 3. 1 で述べた

小型レースウェイ炉による熱問実験結果を用いて，羽口風速とコ ー クス強度との当量関係

を解析した。

レ ースウェ イ近傍，すなわち炉芯表層部の - lmm の粉コ ークス堆積量 ( Q t ) が (6. 12) 

式に示すようにコークス強度 (D Ii ~O) と羽口風速( U t )の関数であるとみなすと，

(Q t ) の全微分は (6. 13)式で表される。
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Qt =f (D I , Ut) (6. 12) 

dQt (濂t / δ D 1 ) ・ d D 1 + (θ Qt/ δU t )・ d U t (6. 13) 

ここで，粉コークス堆積量 (Qt )を一定にする条件，すなわち， d Qt = 0 の場合のコ

ークス強度 ( D 120 ) と羽口風速 ( U t )の当量関係(コークス強度 (D 1日。)が i 低下

した場合に， コークス粉化量を一定にするための羽口風速 (U t )の低下量)は (6. 14) 式

で表される 。

dUt /dDI=- (δ Qt/ δDI) / (濂t /澡t) (6. 14) 

したがって，実験により (δQr/δD 1 )と〈 θQr/δU t ) を求めれば， (6. 14) 

式に基づいて CdUt / dDI) を計算することができる。

既報の高炉二次元模型による冷問実験7 1))ではコークス強度 (D g~O) を 3 水準 (76.3 ，

80.3, 84.7) 変更し小型レースウェイ炉による熱問実験ではコークス強度 (D 1 日。 〉を

2 水準 (77. 9, 81. 5) 変更した。 なお羽口風速は冷問実験，熱問実験とも 3 水準(150 ， 180, 

220m/ s) 変更した。冷問実験および熱問実験の結果を用いて (6. 14)式に基づいて計算した

CdUt / dDI) , コ ー クス強度 (D Ii ~O) および羽口風速 (U t )の関係をFi g. 6.29 

に示す。

F i g. 6.29に示す実験値を最小二乗法に基づいて直線近似することにより (6 . 15)式を得た。

d U t / d D 1 =0. 135 U t + 1. 53 D 1 - 140 (6. 15) 

図中の 3 本の直線は (6. 15) 式に基づく計算値である口 Fi g. 6.29より明らかなように，

(dUt/dD 1) の値は UtおよびDI日。の減少にともなって減少し例えば U t =220m/ s, 

D I;~o =85の場合の (dUt / dDI) の値は 20m/ sであるが， U t = 180m/s. D Ii ~o = 

85の場合の ( dUt / dDI) の値は15m/ s'こ低減する O すなわち， U t 二 220m/s. D 1 日。

=85の操業条件から D 120 を84に低下した場合にコークス粉化量を増加させないためには，

羽口風速 (U t )を200m/s まで低下する必要があり. U t = 180m/s , D Iî ~o =85の操業条

件から D IiF を84に低下した場合にコークス粉化量を増加させないためには，羽口風速

(U t )を 165m/s まで低下する必要がある。
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L 一一J ,1 1 shows the p 1 ace where fi 問 5 generate. 
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Generation , circulation and deposit mechanism of fines 
in blast furnace. 

F ig. 6.30 Coke strength eQuivalence of blast velocity. Fig.6.29 

羽口から吹き込む粉の粒径を 0.1"-'0.5mm とした冷間Photo. 6. 1 に示すように，一方，炉内粉の発生と循環・堆積メカニズム4 3. 6. 

装入コ ー クス内を上昇した粉コ ー クスの一部が装入物の層頂の中心部に堆模型実験では，3 のレ ー スウェ2 の粉の挙動に関する知見および 6.3. 6. 4 , 6. 

6. そして，その堆積粉は層頂近傍では常時流動しながら装入物とともに降下した。積しイ近傍でのコークスの粉化挙動に関する知見に基づいて考察した炉内粉の発生と循環・堆

中心流が抑制された場合に層頂中心部に粉の堆実炉においても，2 で示したように，3. 積メカニズムをFig. 6.30に示す。

微粉炭多量吹き込みによる高とくに，積物がしばしば観察されている 。 以上の知見から，熱間模型実験でのFig.6.16の知見，冷間模型実験での粉の堆積挙動に関する Fig.6.15 ，

中心部のore/cokeの増大により中心流が抑制される可能性が大ore/coke操業時のように，レ ー スウェイ内および近傍で発生した粉粉の堆積挙動に関する Fig. 6.24の知見によれば，

炉芯表層部および炉芯内の粉は炉芯の上部から降下してきた粉の可能性もきい場合には，レースウェイ先端から炉さらに，は炉芯表層部および朝顔部の炉壁近傍に堆積しやすい。

ひとつはレ-あると推察される。 その場合の炉芯上部の粉の由来はふたつに大別される 。お芯表層部の粉率が多いという実炉の羽口レベルでの粉率分布に関する Fi g. 6.23の知見，

炉スウェイ近傍での機械的磨耗および炉下部でのソリューションロス反応により発生し，羽口風速の低下によりレースウェイ内でのコークスの粉化が減少し炉芯表層部でのよび，

もうひとつはシャフト下芯と融着帯下面の聞のコークス層を上昇した粉コークスであり，炉芯表層部の粉はレースウから判断すると，粉率が低下したとし 1 う実炉操業試験結果H 0) 

ソリューションロス反応により発生し炉頂に吹き上げられ層頂の中心部

装入粉である 。あるいは，に堆積した焼結鉱粉・粉コークス，

部での還元粉化，ェイ内および近傍で発生した粉コークスあるいは未燃チャーが堆積したものと推察される。
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このように，炉芯表層部の粉は， レースウェイ近傍の粉が飛散し堆積する可能性 I ~ ) , 

R 0) -H 'j) と炉下部でのソリューションロス反応時の発生粉が降下し堆積する可能性H 1) が

し 1ずれもあると考えられる。

一方，炉;台、内の粉については，アルカリによ るコ ークス強度劣化説H2) ，あるいは，溶

融FeO による炉芯コークスの細粒化説 B 5) も提案されており，今後一層の検討が必要であ

る 。

6. 4 結 Eコ

高炉三次元半裁模型を用いて，羽口からの粉コークスの吹き込み実験を行い，装人物の

降下と通気性に及ぼす粉吹き込み量および粒径の影響を解析し移動層内における粉の循

環・堆積挙動について考察した。 さらに，小型レースウェイ燃焼炉を用いて， レースウェ

イ燃焼実験を行い， レ ー スウェイ内でのコ ー クスの粉化に及ぼす羽口風速・コークス強度

の影響を解析し高炉への微粉炭多量吹き込みに伴い予想されるレースウェイでの粉の発

生量の増加の抑制対策について検討したロ

(1)高炉内での粉の循環・堆積挙動および降下と通気性に及ぼす粉の影響

①羽口からの粉の吹き込み量の増加にともない， スリップ回数・ガス圧力が増大し， レ ー

スウェイ形状の変動が増加する。ただし，粉の粒径が装入物の粒径に対して十分小さい場

合には，粉吹き込みの影響は小さい口

②羽口から吹き込まれた粉は，炉芯表層部および炉壁近傍の降下速度の小さい領域に堆積

しやすい。そして，炉芯表層部および炉壁近傍に粉の高濃度領域が形成されると，その領

域の装入物の内部摩擦角が増大するため炉下部での降下領域が縮小し炉下部での装入物

の滞留時聞が短くなる。

③中心流が抑制されたV型分布の場合には中心部に粉が堆積しやすく，その堆積粉はコー

クス層との境界近傍で流動化しながら，コークス層とほぼ同じ速度で降下する。しかし

V型分布の場合には，粗粒コークスの中心装入等により中心流を確保できれば，中心部へ

の粉の堆積を抑制できる 。 M型分布の場合には周辺部に粉が堆積しやすい。

④名古屋 l 高炉では，炉頂クロスゾンデの中心温度とシャフ卜上部ゾンデの中心部の ηco

が同時に低下する現象が顕在化したが.その原因は，層頂の中心部の半径2m以内の領域に

コークス主体の3mm 以下の粉が堆積し中心流が抑制されていたためと推定された。
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⑤室蘭 2 高炉では，羽口レベルの粉(- 3 mm) は， レースウェイ先端から炉芯表層部に多

い。そして，操業不安定時の粉率の最大値の位置は羽口寄りにあり，炉芯が肥大していた

と推定される 。

⑤炉芯表層部の粉は， レースウェイ近傍で発生した粉コ ー クスが直接堆積したものと推察

されるが，微粉炭多量吹き込みによる高ore/coke操業時のように，中心部のore/cokeの増

大により中心流が抑制される可能性が大きい場合には，炉芯の上部から降下してきた粉が

堆積した可能性もあると推察される 。

(2) レ ースウ ェイ内でのコ ークスの粉化挙動

①レ ースウェイ近傍すなわち炉芯表層部の粉コーク ス (- lmm ) 堆積量は，羽口風速の増大

あるいはコークス強度の低下にともないほぼ直線的に増加する。

②レースウェイ近傍すなわち炉芯表層部の粉コークス (-lmm) 堆積量の増加にともない，

炉芯表層部へのガス流通量が減少するため，炉芯表層部の温度が低下する。その温度低下

は，炉芯表層部の粉コークス ( -lmm ) 堆積量 1 00の増加に対して320Cである。

③レ スウェイ近傍すなわち炉芯表層部でのコークスの粉化量を一定に維持するためのコ

ー クス強度と羽口風速の当量関係を定量化した。例えば， U t =220m/s. 0 1 日。 =85の操

業条件から， 0 g~o を84に低下した場合，コークス粉化量を増加させないためには，羽口

風速を200m/ s まで低下する必要がある 。
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第 7章総括

本研究では，高炉の基本特性である向流移動層の状態をできるだけ模擬できる各種模型

実験装置を用いて，高炉内のガス流れ・降下・溶融の挙動に及ぼすore/coke分布・プロフ

ィル・粉の影響を解明することを目的とし，同時に実炉での検証を行った。

まず，高炉塊状帯でのガス流れを支配する層空間率の推定式を導出すると同時に，装入

物分布モデルへ導入し装入パタ ー ン変更時のガス流れの変化を検討した。 っさに，高炉

内のガス流れおよび装入物の降下と溶融の挙動に及ぼすore/coke分布・プロフィルの影響

を解明し炉壁停滞層や炉壁混合層の形成メカニズムおよび形成させないための対策につ

いて検討した。 さらに， ，~戸芯の形成挙動に大きい影響を及ぼす炉下部発生粉の挙動を解明

し粉を発生させないための対策および粉を局部的に堆積させないための対策について検

討した。

第 1 :章序 壬A
面開

高炉内における装入物の充填構造と降下・溶融挙動に関する研究と高炉の安定操業のた

めの課題を概説し，本研究の目的と意義および本論文の構成を述べた。

第 2 章 焼結鉱およびコークスの層空間率と形状係数の推定

ガスと装人物の向流移動層の層空間率および圧力損失を直接測定できる実験装置を用い

て，向流移動層の層空間率および形状係数に及ぼす高炉装入物の粒度構成の影響を解析す

ると同時に，高炉用焼結鉱に適用できる新しい層空間率の推定式を導出した。

均一粒径のコ ー クスおよび焼結鉱の層空間率は，粒径との単純な関係になく，ある粒径

で最小値を示す。 粒径の異なる 2 成分・ 3 成分のコークスおよび焼結鉱の層空間率は，細

粒の体積混合比率がO. 3 から O. 5 の範囲で最小値を示す。

圧力損失の測定値と Ergun 式に基づく計算値が一致するようにして求めた形状係数の推

定式によると， コ ー クスと焼結鉱の形状係数は粒径の増加にともないO. 4 から1. 0 の範囲

を増加する。

多成分粒子のランダム充填層を対象とした鈴木らの層空間率の推定式を，移動層の層空

間率の測定結果に基づいて修正し高炉用焼結鉱に適用できる新しい層空間率の推定式を

導出した。上記の新しい層空間率推定式を導入した装入物分布モデ、ルを用いて，室蘭 2 高



炉での焼結鉱粒度別装入時の炉頂での鉱石・コ ー クスの層空間率分布およびガス流分布指

数を計算し従来の田口らの層空間率推定式の適用結果に比べて，より正確に推定できる

ことが判明した。

第 31章 高炉内における装入物の降下と溶融の挙動に及!ますore/coke分布の影響

高炉内の物理現象とできるだけ相似の条件を設定した高炉三次元半裁模型を用いて，装

入物の降下挙動と溶融挙動に及ぼすore/coke分布の影響を解析しさらに，オ ー ルコ ー ク

ス操業時および微粉炭吹き込み操業時の適正な装入物分布について考案した。

半径方向のore/coke分布がほほご均一の場合には， シャフト部の降下速度分布は半径方向

にほぼ均ーとなり，逆V型の融着帯が形成される。 鉱石内振りの場合には，炉芯が縮小し

W型の融着帯が形成され，周辺部の温度が上昇する 。 鉱石外振りの場合には，炉芯が拡大

し逆じ型の融着帯が形成され，周辺部の温度が低下する。

or e / c okeを局部的に増加すると，その領域の降下速度が増加しガス流速が減少する 。 朝

顔部での周辺部の熱流比の+0.1の増加にともない， 朝顔部の炉壁温度は約 5 0C ( Stanton数

基準の実炉換算値約800C) 低下する。

戸畑 l 高炉において，周辺部のore/cokeの増加にともない周辺部の降下速度が増加する

こと，および周辺部のore/cokeや降下速度が炉下部温度を低下させる主要因のひとつであ

ることを検証した。

オ ー ルコークス操業では，炉下部の炉壁温度が低下しやすいので，鉱石内振りにより炉

壁近傍のore/cokeを減少することが望ましく，微粉炭多量吹き込み操業では，炉壁近傍の

溶融能力が大きいので，鉱石外振りにより炉壁近傍のore/cokeを増加し中心部のore/ coke

を減少することが望まし l\ o

第 4 章 高炉内における装入物の降下と溶融の挙動に及!ます炉体内壁面形状の影響

高炉内の物理現象とできるだけ相似の条件を設定した高炉三次元半裁模型を用いて，装

入物の降下挙動と溶融挙動に及ぼす炉体内壁面形状の影響を解析しさらに，炉下部の炉

体損傷時の装入物分布について考察した。

水平応力が最大になる炉腹部の炉壁に突起物が存在するプロフィルの場合には，突起物

直上の炉壁近傍に，突起物の突き出し長さの 2--5 倍の厚みの停滞層が形成される。 この

炉壁停滞層は，擬似鉱石とコークスの積層構造であり，炉壁停滞層と移動層の境界では，
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水平であった融着層は縦長の状態に変形しながら降下し装入物は断続的に降下する。 そ

して，停滞層の厚みは，炉壁突起物の突き出し長さの増加および突起物の設置間隔の短縮

にともない増加し炉壁近傍のore/cokeの増加にともない縮小する 。

炉芯の高さは，炉壁突起物による炉壁停滞層の形成にともない低下し炉芯部の温度が

低下する 。

炉下部の炉体損傷時には，炉芯温度を低下させないために，炉壁近傍の停滞層をで、 きる

だけ縮小させることが必要であり，熱流比の許容できる範囲内で炉壁近傍のore/ cokeを増

加した装入物分布が望ましい。 このような装入物分布は，炉壁近傍での溶融能力が大きい

微粉炭多量吹き込み操業時に有効である。

第 5 章 炉壁混合層の形成挙動とガス流れに及ぼすシャフト上部プロフィル，装入物性

状の影響

高炉シャフ 卜 部扇形の冷間模型および高炉三次元半裁の冷間模型を用いて，ガス流速分

布および炉壁混合層の形成挙動に及ぼすシャフト上部プロフィル (付着物，浸食，凹凸形

状) および装入物の性状 t粒径，安息角 ) の影響を解析しさらに炉壁混合層の形成メカ

ニズム，炉壁混合層の空間率およびシャフ卜上部プロフィル損傷時の装入物分布について

考察した。

シャフト上部プロフィルの損傷時には，コ ー クス主体の空間率の大きい炉壁混合層が形

成され， シ ャフ ト 部が健全なプロフィルに比べて，炉壁近傍のガス流速が1. 5 _.._, 2. 5 倍に

増加し高ガス流速の範囲が1. 5 '"'-' 2. 0 倍に拡大する 。 このガス流の周辺流化現象は， 装

入物中の細粒鉱石比率の増加にともないさらに助長される 。

シ ャフト上部での炉壁混合層は，炉内断面積の急激な変化あるいは炉壁面での摩擦角の

増大に起因するコ ー クスの降下遅れと細粒鉱石の浸透現象により形成される。

シャフ卜上部プロフィルの損傷時には，炉壁近傍のore/coke と装入ore/cokeの比である

相対ore/coke を1. 4 程度に大きくすることにより，炉壁近傍のガス流速を平均ガス流速に

近い値にまで抑制することができる 。

君津 2 高炉では， シャフ卜上部炉壁面の補修により， シャフト上部ゾンデの炉壁近傍の

coガス利用率 ( ηco) の変動が減少し ηcoの平均値が増加した。 これは， シャフ卜上部

プロフィルの修復により，炉壁浸食あるいは炉壁面の凹凸形状に起因する炉壁混合層の形

成が抑制され，炉壁近傍のガス流が安定化したためと考えられる。
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第 6 章 高炉内における粉の挙動

高炉三次元半裁模型を用いて，羽口からの粉コークスの吹き込み実験を行い，装入物の

降下と通気性に及ぼす粉吹き込み量および粒径の影響を解析すると同時に，移動層内にお

ける粉の堆積挙動について考察した。 さらに，小型レ ー スウェイ燃焼炉を用いて， レース

ウェイ燃焼実験を行い， レースウェイ内でのコークスの粉化に及ぼす羽口風速・コークス

強度の影響を解析し高炉への微粉炭多量吹き込みにともない予想されるレ ー スウェイで

の粉の発生量の増加の抑制対策について検討した。

羽口からの粉の吹き込み量の増加にともない，スリップ回数・ガス圧力が増大し， レ ー

スウェイ形状の変動が増加する。 ただし，粉の粒径が装入物の粒径に対して十分小さい場

合には，粉吹き込みの影響は小さい。

羽口から吹き込まれた粉は，炉芯表層部および炉壁近傍の降下速度の小さい領域に堆積

しやすい。 そして，炉芯表層部および炉壁近傍に粉の高濃度領域が形成されると，その領

域の装入物の内部摩擦角が増加するため炉下部での降下領域が縮小し炉下部での装入物

の滞留時聞が短くなる 。

中心流が抑制されたV型分布の場合には中心部に粉が堆積しやすく， M型分布の場合に

は周辺部に粉が堆積しやすい。 しかし V型分布の場合には， 粗粒コ ークスの中心装入等に

より，中心流を確保できれば，中心部への粉の堆積を抑制できる 。 この炉頂での粉の堆積

現象は，流動化開始速度と終末速度で説明できる。

名古屋 l 高炉では，炉頂クロスゾンデの中心温度とシャフト上部ゾンデの中心部の ηco

が同時に低下する現象が顕在化したが，その原因は，層頂の中心部の半径2m以内の領域に

コークス主体の3rnm 以下の粉が堆積し中心流が抑制されていたためと推定された。

室蘭 2 高炉では，羽口レベルの粉 (-3rnm) は， レースウェイ先端から炉芯表層部に多い。

そして，操業不安定時の粉率の最大値の位置は羽口寄りにあり，炉芯が肥大していたと推

定される。

レースウェイ近傍すなわち炉芯表層部の粉コークス (-lrnm) 堆積量は，羽口風速の増大

あるいはコークス強度の低下にともないほぼ直線的に増加する。そして， レースウェイ近

傍すなわち炉芯表層部の粉コークス (-lrnm) 堆積量の増加にともない，炉芯表層部へのガ

ス流通量が減少するため，炉芯表層部の温度が低下する。その温度低下は，炉芯表層部の

粉コークス (-lrnm) 堆積量 1%の増加に対して320Cである。

レースウェイ近傍すなわち炉芯表層部でのコークスの粉化量を一定に維持するためのコ
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ークス強度と羽口風速の当量関係を定量化した。 例えば， U t = 220m/ s, 0 I! ~ O = 85の操

業条件から， 0 1 日。を84に低下した場合， コ ー クス粉化量を増加させないためには，羽口

風速を200m/ sまで低下する必要がある 。

炉芯表層部の粉は， レースウェイ近傍で発生した粉コークスが直接堆積したものと推察

されるが，微粉炭多量吹き込みによる高ore/coke操業時のように，中心部のore/cokeの増

大により中心流が抑制される可能性が大きい場合には，炉芯の上部から降下してきた粉が

堆積した可能性もあると推察される 。
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戸
】

-
-
-
一
口

Eコ
τ王

A :平均投影面積 Cm2 ) 

Cd :抵抗係数 (-) 

CSR: コークスの反応後強度: 100 oc温度で CO 2 と 2 時間反応させた後の I 型ドラム試

験機 600回転後の10mm以上の比率 (財)

C f ガスの比熱 (J/ (kg 0 K)) 

C s 装入物の比熱 (J/(kgoK)) 

D :パイプの内径 (m) 

DH :炉床径 (m) 

D 1 , 0 I~~o :コ ークスの冷間(ドラム)強度:ドラム試験機 150回転後の 15mm以上の比

率

DR :レースウェイ深度 (m) 

Dt 羽口径 (m) 

d p :装入物の平均粒径 (m) 

d p c コークスの平均粒径 (m) 

(dp)H :調和平均径 Cm) 

dv :等体積球相当径 (m) 

F f :装人物内の摩擦力 CN) 

F Il装入物の重力 CN) 

F I :ガスの慣性力 (N) 

F I t 羽口でのガスの慣性力 CN) 

F r :フルード数 (一)

F s コークスの排出および擬似鉱石の軟化収縮による消滅項 Cm2/s)

f 1 :粘性抵抗係数 Cl/s) 

f 2 :慣性抵抗係数 (m2/kg) 

G, Gf :ガスの質量速度 (kg/ Cm2 0 s)) 

Gr :ガスの質量速度の r 成分 C kg/ Cm 2 ・ s))

G s :装入物の質量速度 Ckg/Cが・ s))

Gz ガスの質量速度の z 成分 (kg/Cm 2 ・ s ))

g :重力加速度 Cm/s2) 
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Ho :炉芯高さ (m) 

HFR : 送風温度，送風湿度，補助燃料比， コ ー クスのAsh，スラグ比を補正した燃料比

(kg/t) 

HR :レ スウェイ高さ (m) 

h :粒子・流体聞の伝熱係数 (W/ Cm2 ・ k ) )

1 s p 粒度分布の拡がりの大きさを示す粒度構成指数 (-) 

I~OO ドラム試験機 150回転後の 3 mm 以上の比率 (児)

K :系の流通抵抗 C-) 

L :装入物の層高 Cm) 

LB :突起物の突出し長さ (m) 

L c :コークス層の層厚 (m) 

L 0 :擬似鉱石層の層厚 (m) 

CLo/LcLve  :装入時の擬似鉱石とコ ー クスの層厚比(一)

( Lo /Lc )w: 周辺部の擬似鉱石とコークスの層厚比 C-)

:代表長さ Cm) 

M :装入物の質量 Ckg) 

m :装入物粒子 l 個あたりの質量 Ckg) 

CO/C)ave. :装入時の鉱石とコ ー クスの重量比 (一)

(O/C) w :周辺部の鉱石とコ クスの重量比 (-)

Oi 1 R :重油比 (kg/t) 

P :圧力 CPa) 

PCR :微粉炭比 (kg/ t)

Q c :充填物の蓄熱量 (J) 

Qr :コークスの粉化量 (児)

Qh .ガスから充填物への伝熱量 (J) 

Q). :融着物の融解熱量 (1) 

Re p : 粒子レイノルズ数 (一)

r 半径方向の位置 Cm) 

S :シャフト上部での平均断面積 Cm2) 

S ak :接触粒子 k の面積基準の混合分率 (ー)
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S k : (2. 16 ) 式で定義される指数 (一)

S Vk :接触粒子 k の体積基準の混合分率 (ー)

S ぃ S 2: シャフト上部での層状移動層，炉壁混合層の平均断面積 (m2 ) 

Tf :フレ ム温度 CC) 

t c 羽口レベルのコークス温度 CC) 

t m 鉱石の融点 CC) 

t 0 鉱石の軟化開始温度 CC) 

U mf 流動化開始速度 Cm/s) 

Ut 終末速度 Cm/s) 

U , U r 空塔ガス流速 (m/s) 

Ut 羽口風速 Cm/s) 

U ぃ U 2 :層状移動層内，よ戸壁混合層内の空塔ガス流速 Cm/ s)

V :装人物の体積 Cm" ) 

V a v e . 装入物の平均降下速度 Cm/s) 

VBG :ボ、 ッシ ュガス量 CNm:J/min) 

V s :装入物の降下速度あるいは固体の流速の絶対値 Cm/s) 

V s r r 方向の国体の流速 (m/ s) 

V s z Z 方向の固体の流速 Cm/s) 

Vw 装入物の周辺部の降下速度 Cm/s) 

v 装入物粒子 l 個あたりの体積 Cm3) 

W :炉壁停滞層の厚み Cm) 

Z :高さ方向の位置 (m) 

γ :体積基準の混合分率 S Vkにかかる係数 (-) 

�. B 2 : 朝顔上部のステ ー ブ温度と給水温度の差 CC)

ム P : 充填層の圧力損失 CPa) 

ム ε: 粒度分布の拡がりによる層空間率の減少率

ム θd ガスと装人物の温度差 CC) 

ム θi 装入物の温度上界量 CC) 

ε : 層空間率 ( 一 )

εcohesive zone 融着層の空間率 (一)
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εcoke コークス層の空間率 (-) 

ε 。 r e 鉱石層の空間率 ( -) 

εj 多成分粒子充填層内の粒子 j に着目した場合の層空間率 (一)

吉 J 粒子 j を単独で充填した場合の層空間率の測定値 ( ー )

ε(j ， k) :多成分粒子充填層内の着目粒子周囲の部分的な層空間率 (一)

ε1 ， ε2 :層状移動層，炉壁混合層の空間率 (一)

θ :段差角度 (deg) 

.À m 融着物の融解熱 CJ/kg) 

μ :ガスの粘度 CPa.s ) 

μc 装入物の内部摩擦係数 (ー )

れ :無次元数 (一)

ρ ， ρ{ ， ρg .ガスの密度 (kg/m:l ) 

ρb 装入物の嵩密度 (kg/m:J ) 

ρcρmρ5 コークス，融着物，装入物の密度 Ckg/m3 ) 

ρp ， ρp s 装入物粒子の見掛け密度 Ckg/m ~l ) 

ゆ :形状係数 (ー)

ゆ c : Carmanの形状係数 C -) 

ゆ s 速度ポテンシャル Cm2/s) 

W, ゆ:流れ関数(ガス流れ) Ckg/s) 

ゆ s 流れ関数(固体流れ) Cm:J/s) 
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