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Abstract:

We develop a new method for the calculation of the cross section in the
distorted wave Born approximation (DWBA). The form factor in the transition
matrix element'is expanded with harmoniec oscillator wave functions. This method
is convinient not only for the microscopic calculation using shell model wave
functions, but also for the study of the recoil effect of the target nucleus.
This can be conveniently applied to the investigation about the term which is
assumed to be zero in the usual DWBA calculation and about the heavy particle
stripping term.

The numerical calculations are performed for the heavy particle stripping
term on the reaction 1!B(d,n)!2c. We found that the damping of the matrix
elements with increase of the nodes of harmonic oscillator wave functions is
very rapid. We also found that the recoil efféct plays an important role about
the angular distribution of the calculated cross section. The result obtained
using the reasonable interaction is much smaller than that of the usyal stip-
ping process. We can conclude that even if we calculate the heavy particle
stripping term microscopically, the heavy particle stripping contribution on
the reaction of 11B(dgn)léc is very small contrary to the result of Owen and

Madansky .



1. Introduction

The theory of the duteron stripping reaction given by Butlerl)

has had
remarkable success in explaining forward peaks of angular distributions. For
the stripping raction A(a,b)B, the main feature of the theory is shown in Fig.

la.

This reaction is induced by the interaction between the particles b and x writ-
ten with the solid line in the final channel, or by the interaction between the
particle x and A written with the dotted lihé in the initial channel. However,
some experiments extending the measurement of the angular distribution to the
béckward angle show a large component in the backward direction. To explain

these results, Owen, Madanskyz) 3)

and others have taken into sccount of the
héavy particle stripping mechanism in addition to the usual stripping porcess.
The featureof the heavy particle stripping mechanism is ‘ghown in Fig. 1b,

Fig. 1b

This reaction is induced by the interaction between the particles b and € writ-
ten with the solid line in the final channel, or by the interaction between the

pafticles a and C written with the dotted line in the initial channel. Owen and



Madansky calculated the cooss sections of the reaction !!B(d,n)!2C in the plane
wave Born approximation and obtained fairly good fits to the experimental results
shdwn in Fig. 2. But to obtain good results, they had to use the parameter
A2/Al describing how much the heavy particle stripping process contribufes to
the cross sections.

On the other nand, the analysis of deuteron stripping reactions using the
distorted wave Born approximation (DWBA) have obtained more remarkable success
than the analysis using the plane wave Born approximation and have explained
experimental results nol only qualitatively but also guantitatively. In spite
of such brilliant success of stripping reaction using DWBA, there have been only
a few calculationsh) of the heavy particle stripping mechanism using DWBA. The

reasons are as follows:
a) In D.W.B.A. calculations, distortion effects reduce the heavy particle strip-
p;n cross sectionS).
b)' In the actual calculations of the heavy particle stripping term, if we use
the pane wave Born approximation, the six-dimensional integration of the transi-
tlon matrix can be factorlzeéf;he product of two three- dimensional integration.
But if we use D.W.B.A., this factorization cann't be done. Furthermore, the
calculation of the heavy particle stripping term is more laborious than that
of the ususl stripping owing to the complicated form factor of the heavy particle
st;ipping term. |

Almost all the calculations:idone up to.nuwiarettﬁehzeahbyﬁshemgbénmpﬁicn
that 10B in the calculation of the heavy particle stripping term on the rpactlon
11B(d n)!2C is a single cluster and that interaction inducing reactions only
depend on the relative distance between the center-of-mass of !9B and the neutron.
We;call the calculation made by the above assumption as the macroscopic célcula—
t%én, while we call the calculation without the above assumption, that is; con-
sidering 108 as not a single cluster but assembly of nucleons as the microscopic

calculation.



At the stage in the development of the study of the heavy particle stripping
term, it is appropriate to present calculations of it using DWBA as consistently
as possible. We develop a new method for the calculation of the cross section
for this purpose. In §2, we give a treatmetn of the heavy particle stripping
term introducing the discussion of Rodberg, and also give our numerical célcu~
lation on the reaction !!B(d,n)l2C which Owen and Madansky have treated. We give
a description of the cross section using form factors expanded with harmonic
oscillator wave functions in §3. This method is applied to the calculation of

the heavy particle stripping term on the reaction 11B(d5n)120. Results end dis-

cussions are given in §4. Concluding remarks are given in 85.

2. Treatment of the heavy particle stripping process

2.1 Derivation of T°"PA pmatrix
The reaction

A(a,b)B (2.1)
is‘considered.

We write the Hamiltonian of the total system H as

= 2.2a
HeH_+H +K_\+V_,, (' )
- (2.2p)
H Hb+HB+KbB+VbB,

where Ha is the intrinsic Hamiltonian of the particle a, KaA the kinetic energy .
operator'between particles a and A, and VaA the interaction between partiqles a
a.nd A. We define the intrinsic state of the particle a by§ a, the intrinsic
stéte of the nucleus A by}E A and the plane wave of the relative mction between
pafticles a and A by $a. If we write the total energy by E, we obtain
(H *H K 0 ~E) b, B a = 0 (2.32)
(o HHpHK 5-B) B3, 81 = 0, (2.30)



The transition matrix Tba can be written as

Tow = <&, B | Vis [E5

= ($,3.F w (2.4)
ere b8 | Ve 25 | ¢a§a% 7
W _
ﬂo‘-‘-’— E - }-!} + (€ V”*A, (2.5a)
ES5= 8 [$BEn), (2.5b)
We definee the operator w; +) and the distorted wave X(+) as
(4-) { -
= , 2.6a)

I+ E — Ha-Ha—Kaa—Uanarie U“A ? :
|7<5+)§a°f’,q7 W | 4’&:‘@0) (2.6b)
(D(»)____, } X

b b+ E-Hu-Hs ‘KbB UbB"Le Uhs) (2.7a)
I~ ) ~
%8, T )= w8 |4, 3, Tp ba 2.7b)
From Eq. (2.7a), we obtain the equality as
OD_ (¥ (s — ‘ U “
VigQe = (W77 (Vig—UsB) + Vis (I ST PRy {Vig-Usg)))(1a
(2.8)
If we use the equality
} _ ¥ -- )
E —Ho= Hg—Kbs —Upg+i6 E-Htie  E-Ho—Hg-Keg-Uwgt € (Veg- UbB)E Htie
(2.9)
the second term of Eq. (2.8) becomes
{ )
B(|— g=U 19A
Vs (1 — < T e~ Kes —Uig 7 1e (Veg=Uss )){Lal
= Vue ' (B—r+€) (| + = Vap)
E - Hb ~He -Kpg ~UJpp +c¢ E-Htie ..
_ ! " (E ~Ha-HA—Kap +ie
= Ve E -~ Ho-Ha—Kyg—Upg +i€ ( )

(UO')*’*‘) CE. (2.10)



Under the condition

lim Le(uPr=1)=0,

(2.11)
e~—70
we obtain T as
ba
Toa= XY &, Lg | (Vg — UeB TG D | (2.12)
If we use the relation obtained from Egs. (2.5a) and (2.6a)
W | )
Qb = (\'-\’m (Va,r-UaA))Uja ) (2.13)
we obtair the amplitude of DWBA as
DWBA - -
Toa = <Xb)§btks\Vb8“UbB‘ A BoEn . (2.14)

2.2 Exchange effect

We follow the antisymmetric treatment of the transition matrix made by

Tobocman6). The state g;éf) is the solution of the total Hamiltonian with the

boundary condition that in the channel a there are the incoming wave and thecwvirt-

going scattered wave and in other open channels b there are outgoing scattered

)

—_ (+
waves, We can write the asymptotic behabior of 4:2 using transition matices

Tba.ln Eq. (2.4) as

Y - : U
To ~ ®BEn — T, Toa Mo 5, . g6
b ————
T ﬁb‘ks fee , (2:15)
vhere My is the reduced mass of the channel b. This is not antisymmetric wave

function. From Eq. (2.15), we obtain the antisymmetric solution of the total

Ha@iltonian H as
= - —®)
—%:) = N \/1% en P T ,

(2,16)



where N is the number of identical nucleons, Pn is the permutation operator and

é’n is its parity. The sum over n extends all possible permutations of N particles.

The asymptotic behabior of Eg. (2.16) is

‘}}2 ~ ¢o~ N-yg' ;\ €n P'n. (@a‘}:p\)

) s elRfig
- N Y e“’ﬁ)amz P (3,&5) Yig (2.17)
nh '

Since the sum over b includes all possible permutations, we can replace b by

P;}IJ in the summand for each value of n. Thus

i Rl
‘)1.:';\-)"‘ ¢a. N.X"ZZ GnE\. (§0\qu )“Zg N.)Q E“TP{’bu '5‘%& §5§EB"§’@E *
. - ezkbrbB
= %N%Z_\Z 61’\,?’0. (éu‘i‘p\)“j’_\; Ra"‘z‘%%i §b 3""‘756' )~ (2.18)
where '
: T ::Z N"/z €n Toho . (2.19)

n

The differential cross section -%%a‘can be written as
e

‘ " o 2 Mo M kbN_ 2
d“gl"b'& = %clﬁlf)ﬁ“%z] Tewd| = caTEvﬁ)“ e | Tot |
n

__ Malty kbp r
- ﬂzn%‘)im_'ZG“Tb&& (2.20)

In Eq. (2.20), we sum the cross section over Pnb since we cannot distiguish bet-

ween B, $g and Pn( &, %) .

2.3 Application to (d,n) (or {d,p)) reaction

Tobocman gave explicit expression for the (d,p) reaction antisymmetrizing

protons and neutrons seperately. Here we give explicit txpression for the (a,n)



reaction treating protons and neutrons as the same for the following calcula-

tions. For simplicity, we write the operatorzannPn as

= 0.6 P

nnaone (2.21)

DWBA
Then we may write ESGYLTLRL& explicitly as

DWBA _ 7% - '
e TbP A 'dﬁ*\-ﬁbl)%B(by RN "bN>I Q;’ Vblbi - UblB)P

[EalPgs opn v e 08 (00 o) X" (o, )>
(2.23)

Where bl’ b2‘. . . bN in the wave function §§U¥B and etc. aré N egydvalent nucleons.

Vb ... represents the two-body interaction between particles b and b,, and U
101 1 i b;B

represents the distorting potential which the particle b1 feels. We operate
2

the P to the initial channel states, and use the relation P= —Eﬁ
+)

_ (
P i‘:T{A(b3’ b)-#, . . .bN)Qa(bl,bz)'Xa (bl’ b2)>

- &~ | +)
Ji'xmfi)}[ T, (o5 By, o .bN) o (150, ) Xa’ (b, b2)>

~ (2 23)
whnere &:A(bB, . e, bN> is the normalized antisywumetrized wave function of
g;l(bB" . e ,bp). Next we operate the P to the interaction and the final state.

A v

R

ana blffB

Z D’Tbu Jyg"l 12 <Xé-) (b )@

j< ;éQVbl . UblB) (=)t Pblb_@A(bB, e, by) §a(bl,b2>xé*)_(bl,bzp

N-o ~ | N
A 0t i s,

1°1 1

(+)

|§A<b3,. - ,bN)éa(bl, Py) Xy (Pys Dp) >
T
+ @2 ) E )T 50y, by Bys -+ - D) [ (g V=Y )
. 374 3

~ | ~ (+) |
]gtA(bB, v )@ (b, b)Y (b b2)>} (2.2h)

If we drop the suffix b, which distiguishes between N nucleodns, Eq. (2.24) becomes



N~1 ~
S v (=) T e 4
ZénTana - f2 { Qxb 2‘Bb%BlVbx +VbA' UbBth{'A§u.,Xg)>
N Y o~ (+)
+ (12X X 57 8 % g Ve Vi VpEl¥a $aX s >)

where x is the captured particle in the particle s, and C is the remainder

(2.25)

obtained by removing the particle b from the nucleus A. Thus the transition
amplitude is seen to consist of three direct terms and three excahnge terms.
The first term of the direct amplitude is called the stripping term, the first
term of the exchange amplitude is called the knock on term and the second term

of the exchange amplitude is called the heavy particle stripping term.

2.4 Treatment of the heavy particle stripping term in DWBA

As we have mentiored in8l, one of the reason why there have been very few
calculations in DWBA ig the cancelation of the heavy particle stripping term

and the distorting optical potential. We introduce the treatment of Rodberg
5)

et al. Their conclvsion is that the heavy perticle stripping contribution to

the cross section is of order-k» compared with the usual stripping contribution.

We explain it in detail. They derived the amplitude of DWBA as

DWBA _ /() _ - (+) (2.1h4)
Toe ~X BuEa|VoxVorVonl Eadaxa |

in the reaction
atA +(b+x)+A » b+(x+A) > b+B (2.26)

(-) DWBA

_ - (+)0 . -
3 & 5l Vpa-lpp 223 5% a+ v in T

of Eq. (2.14) the heavy particle stripping term. If the interaction Vp, is

assumed as a one-body Woods-Saxon potential with the strength Vo equal to that

They call the transition amplitude < X

of the optical potential U

B

v
o]

Vb = )

A 1+ e (e = ToA%)/a (2.27

and the distorting optical potential UbB is assumed as

v
U, = 9

bB ’+ e (fog — lo QA“'DVE)/O\



then their heavy particle stripping term is

o (6e — (A +8)4

) v L1 2l g -t an)?

‘\V‘bﬂ -U_DB ) N 'a' 1+ e(t‘be — Vo (P\-H)Vé Mo A ( r;b rbﬁ 3 ( H}/)
1o (2fedn b ¥ 1 )

—r o (e e = bl v fife - 56 (ae)*) (2.29)

The residual interaction in Eq. (2.29) increases with the increasing target
radius. These introduce into the cross section a factor propotional to the

volume and thus to A. Combined with the factor of _1_ coming from the residual

A :
interaction, this causes the resulting heavy particle stripping cross section

to be of orderﬁg;compared with the deuteron stripping cross section. We remark

that the heavy garticle stripping term of their definition is the contribution

of the second and the third direct terms of Eq. (2.25), while the usual heavy

particle stripping term is the contribution of the second and third exchange

terms of Eq.(2.25). Of course the same discussion can be applied to the psual

neavy particle stripping calculation under the assumption that the interaction

VbC is a one-body Woods-Saxon potential with the same strength of the optical

po?ential UbB'
| But the approximation of replacing the‘interaction betweén complex particles

Ly one-bvody interaction has several question.

a. state dependence:

Thé potential seen in the bound staﬁe cannot be the same as that seen in the

scéttering state.

b;*:energy dependence of the optical potential:

Even in the same scattering states, the potentials'seen by the particle with

different energies are different. To avoid the energy déﬁendence of optical

potential we must use the nonlocal optical potential apd introduce the imagin-

ary part of the optical potential. It is‘not correct to assume that the inter-

carvion between & nucleon and a complex nucleus is a one~body potential haying

the same strength of the optical potential. The reason is as follows: If we

assume that the interaction VbB=Vbx+VbA in Eq. (2.14) is one-body Woods-Saxon



potential having the same strength of the optical potential UbB’ we obtain

DWBA _

Tba

. DWBA _ (-} - (+) X .
while Tba =<X'y Qb\i’ B} Vbx EA§axa > can explain many experimental results.

0,

In such case, it is important to examine how much the second direct term or the
sécond exchange term contribute to the total cross section without assuming
that the interaction between a nucleon and a complex nucleus is a one-body
optical potential. For this prupose our method of the calculation is very
useful. 8o we calculate the cross section of the second exchange term i.e. the
usual heavy particle stripping term on the reaction 11B(d,n)IZC.

7)

2.5 Macroscopic calculation

If we dare to assume the interacion to be a one-body type, it is reason-
able to determine the interaction type according to its role inducing the re-
acfion.

a . The interactioﬁ Vbx combines particles b and x, and makes the bound state a.
We assume that the interaction is a Gaussian form and that its strength is
adjusted to give the binding energy of the particle a.

b.  The interaction Vb combined particles b and C and makes the bound state A.

C
It is replaced by a one-body Woods-Saxon potentials, and its strength is chosen
té give a right seperation energy of the particle b from the nucleus A.

¢. The interaction VbA is the interaction between particles which are not
bbund, and then it is reaxonable to replace the interaction VbA by the oné-
bédy Woods~Saxon potentisl having the strength equal to that of the optical
potential Uy g

d. The interaction Vba is the interaction between particles which are not

bound. But as the number of nucleons in the particle a is much smaller than

that of the nucleus B, we cannot treat this interaction like the interaction



that
VbA' We assume that the interaction Vba is Gaussian type and.,its magnitude is

equal to that of the interaction Vbx' From the above consideration, the calcuaa-
tion of the second and the third direct terms of Eq. (2.25) is the same as that
of Rodberg et al, neglecting the contribution of the imaginary part of the opti-
cal potential. In the calculation of the exchange amplitude of Eq. (2.25),

the interaction Vbc and UbB are the same Woods-Saxon potentials, but the strength
of them may be different.

Next we introduce the outline of our macroscopic calculations. The differ-

ential cross section is derived from the transition matrix in Eq. (2.25) and

can be written as

®8)
_Mally e LIl (Binto) + Blm ®) = fum )
dsv. T @naY)? 2 T +l)(9-$a+\) ‘53
(E) R0, bo) Gl G C)Qan QY I 2
+§ 2s] (Bom (O +ﬁ ) = Bl ) l , (2.30)

where JA and JB are the spins of the target and the residual nucleil respective-
ly and 5. is the spin of the incident nucleon a. The quantities'ua and u, are
the spectroscopic asmplitudes of the direct and exchange processes respectivelyn
depending upon the internal nuclear structyre, where lb and la specify thé orbi-
tal angular momentum of the bound nucleon in the initial and final states resp

pectively. The spectroccopic amplitudes may be defined as

Y R I (T
Ay ® e+l als) Jpytisd /s (2.31a)

9.(};) = et JBC(QaSaJa) Inc(lpspdy) (=) Tp=dyHi-3,

}

#[(23+1) (21+1) (2s+1) (23 +l)(2jb+l)]yg‘

xw(J,053,3,.59 Ig) %[3 3, &y

1 1 lb

S S 5p (2.31b)
JBA(lsj) and a(s) in Egs. (2.31) are the reduced widths and may be defined in the

form



gia'gmég’w'd): g} (Jnd MaMe-My\TaMe) (Ls m & V4 Ms-Ma)

maL
InMa
X JsAu,SA) Vz(r) yl'm- (?) (}('s,u(d) g:’J'AMAﬁg} 2 (2.32a)

% o (o, 65,050 = 21 (565 Mp k1 SaMa) Q&) B (1) Hoymy, () Fua(0%)
s
SpMy (2.32p)

where the wave function %(r) is the radial wave function of the particles x,

y—s o (rbx’ Ty s cx) is the spin wave function of the particle x, % is the spatial
aa
part of the intrinsic wave function of the particle a, o is the spin coordinate

and £ is the intrinsic coordinate of the nucleus A. In Eq. (2.30), Bi(lma) is
written as
@i+t = I gdwaA Sdrbe XE ke, e Fim (e, 1on) X (ke Tan) , (2..33)

(D) (E)

where J and J are the Jacobians in the transformation of the coordinates of

xa and trbx to ‘raA and rbB and of W;C to ‘raA and “’:DB respectivély. They a:?e ex-

pressed as

3 .
J(D) = (-—-—iB——-) (2.3ka)
\ X(A‘i‘&) )
(E) ¢ |
J =( AB (2.34b)
L C(B+b)

Ed
vhere a, b, x, A, B, and C are the masses of corresponding particles a, b, x, A,

B and C. In Eq. (2.33), (00 RB’ {ra.A) may be written as
e P ) = Yale) Yo () Vi V% (r) (2.358)
oot (op ) = Yo lrn) Yug () Vimg) (), (2.350)

£{®8)

vee Toa) = U (ry,) Yl; (8, VeI () ) - (2.35¢)



(ba)1 1 27 . .
flma o a(‘\st faA) - ?L(laLb“a_Mbll'm) (-) b}ll (raC) o1 TG
W a a¥a' al

Viry,) %y () Ylbub(\“rbc), (2.354)

L]

bC)
f{m hla (FbB,IT‘aA) Z(lalbua"”thm‘ ()" yla aC)Ylaua ac

) () 4y f g B (2.35¢)

$(pB)1 1,
m s iy,)

2(1 Lty iy 11 (- b%1 (roe) le @,0)
U(rbB)%_b(r c) Ylb“b(rbc) (2.35f)

From Eq. (2.30), we can write for the cross section of each term for simplicity

as
2

o) 2 @) )
_%g. = ¢ vt i Al TS lP (2.36)

if we neglect the interference term. The notation c¢ is the factor independent

(X)

onY, and n is the factor due to the equivalent nucleons.
From Eq. (2.25), (D) is equal to 2\1—‘ and n(E) is equal to (N—2)‘/ N~ 2
We calculate the cross sections of Eq. (2.36) on the reaction !!B(d,n)l2cC.
‘I'he bound states %l(r) of Egs. (2.35) are solved in the Woods~-Saxon well by
giving right seperation energies, and the bound state %oo(r) of Egs. (2.35) is
solved in the Gaussian well by giving the binding energy of the particle a.
(in this case a is the deuteron). The spectroscopic factors are calculated from

8),

the assumed configuration

MBanas ‘0'672[@"“*3329’7@1]% + 0. 74 (Fowy ™[l Jn , (2.37a)

- '
[ng(MrJ F]o , (2.37b)

where %L[f] is the spatiel part of the wave function with the symmetry [f] and
tﬁe angular momentum L, and 27+ QSHF is the spin-isospin part of the :wave

function with the symmetry [T] which is dual to the symmetry [f], the spin



angular momentum S and the isospin angular momentum T. The suffix under the

ritht side of the bracket is the total angular momentum. We show the result in
Table 2 and Fig. 3. From Table 2, we can see that because of the very small
spectroscopic amplitudes of exchange terms, the contribution of the heavy particle

strippin terms is very small.

1
This result seems to be contrary to the result of Owen and Madansky ). But

®) ARG

as we mentioned in 81, they used the parameter ég(zwhich correspond to YR %A 3

in our calculation. According to their calculation hy%( is set to be of order

(E) AE) ‘g-b !& l ’
¥ js of order == for the capture of the

1 Rig 10

deuteron into D state and is of order ia%—for the capture of the deuteron into

S.state. This difference arises from the following reasons:

unit, but in our calculation

a. The wave functions in their calculation are only the products of orbital
parts and spin parts, and have not the total angular momentum. Then the re-
coupling factors such as Racsh coefficients and X-coefficients in Eg. (2.31b) do
not appear in the exchange term.

b. Their symmetric orbital wave function for two nucleons in the P-shell is

described as

Foan, )= g5 {00 +¥p0m)

but usually it must be described

G, m) = e ) Yplh)

Using the latter type wave function, the spectroscopic amplitude of the exchange

tern reduces more rapidly than that of the direct term.

We see from table 2 that the values of B uf)vary with the change of optical

) oo in

Qm; does not seem to be more larger than the

L. ,
value of order 10 in the 11B(d,n)!2C. From Fig. 3, the angular patters of the

parameters but that the ratio

heavy particle stripping term has not backward peak in DWBA because of the dis-
tortion effect. So the main component of the reaction may be the usual stripping

. cwanins the



tern and it may have the possibility of explaining the large Wackward peak due to the
distortion effect. The angular patterns of the stripping and heavy particle
stripping terms calculated by using harmonic oscillator bound state wave func-

tions are shown in Fig. 4. We carry out this calculateion to compare with the
microscopic calculation of §4. From Fig. L4 we see that the results obtained by

using harmonic oscillator bound states are similar to those obtained by using
Woods-Saxon bound state about the angular pattern. However the heavy particle
stripping cross section obtained by using harmonic oscillator bound states are

(6O Lba
much more reduced. This tends to make the ratio -——E£%7 smaller.
m

Table 1. OCptical parameter

incident channel exit channel
(a) (b)
v 50.0 T1.32 43,0
W 36.0 10.58 12.0
rg 1.5 1.5 1.25
ap 0.65 0.7 0.65
ag 0.65 0.7 —
b - L 0.98

The notations v, w, ap» a. and b are defined by Eq. (3.13) and ro is defined by

I

R=ro&é , where A is the mass number of the target nucleus. The deuteroﬁ

1k4)

optical parameters of the type (a) are given by Hodgson and those of the type

(b) are given by Nelson et allS).



Table 2. Cross sections of each process

o— !
inducing .
cs 2 2 magnitude of
interaction strength n Aes] lBlml cross section
(a) (v) (a) (v)
Direct  'bx k.5 3.936 21.8 | 110 2.78 13.9
vbA 43 , 3.936 11.1 230 1.22 27.4
Upg L3 3.936 14,5 263 1.72 41.3
iUbB 12 3.936 16.0 188 0.148 1.7L
’ _3 _4 4
Exchange Voa 4.5 2.557x10 2.31 15.5 1.92x10 13.1x10
ceptire _3 b _b
of Voo 52.4 y 2.55Tx10 16.6 15.6 19.1x10 17.9x10
deuteron _3 4 4
into Upp . L3 2.557x10 15.7 .13.3 | 12.1x10 12.1x10
S-.gtate _3 4 k4
. iU g 12 2.557x10 7.57 9.84 0.457x10 0.594x10
L _1 1 _ _3
Exchange V, a5 }. 1.679x107 | 0.811] 6.05 k.1x107 ) ya.ox107 -
capture % __ 1 3 _3
of Vi 52.4- 1 1.679x10 h.93 6.06} . 37.1x10 *-} k5.7x10
deuteron 1 '_gv 3
inta UbB 43 1.679x10 k.90 5.48 24.9x10 27.8x10
D-state - 1 _ _3
au 12 1.779x107 | 1.53 | 2.9110.605x1073 | 1.15x10

The results.(a) and (b) correspond to the optical parameters (a) ‘and {b)

regpectively.




Experimental values and calculated values of the cross sections

Fig. 2
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3. Method of the calculation

3.1 Method

The reaction A(a,b)B is considered. The corresponding transition amplitude

can be written as

Toa = jd\MSd\EB XT (Ro, 1o8) <Tg Mp SoMp V] TaMaSaTe) XS (ke 18A), (3.1)

where JA’ JB’ S, and sb are the spins of the particles, and M, , MB’ n and m, are

)

their corresponding Z-components,’y;é—) and '”)(:‘ are the distorted incoming and out-
going waves regpectively and H is the Jacobian defined in Egs. (2.2ka) and (2.3k4b).
If we use the completeness of the harmonic oscillator wave functions %-‘LQ’JQ the

9)

transition amplitude (3.1) becomes

~ bR
Toa=J ?\. Ldm’B 3<Lby"("%, les) SLM,L;,M“,( B+b s "LB)
(+ gt W [P\
No LoMup

. ‘ X , ‘ |
X S&K:BS C“roA ylvg LbHLbk-—Bt‘% V) W;B)( JB_MB Sb,mb, Vt JA M/.\ Sqmag> }‘NGMML&-%:FAKV) w

x X
Sd\r‘\l\ FoLaMin (A2 Y 1aA) XS Clka, 1p) (3.2)
Thg harmonie oscillator wave functions NL%’)“)can be written as
Frim, i) = e wir) Yim () )
Y

LN+ N+l PR ) 2 2

I\APE [Q L2+ 2N P rte V"
NU Oy @urnpr e

§ Z (r;l)(QLM).'! =2y )R

(ZLAZR+DN . (3.3)



We expand the form factor using multipole terms which correspond to the transfer

to the target with definite angular momenta Jj, 1 and §.

j:IB—JA, S= Ja— Sy, JT=_& +$% i (3.4)

The transition amplitude becomes

Lo.

NbLbMLb

=J Z (dﬁsjd\m\ X5 ko, ) %Z (Ja §Ma1;138Ms) ({5 mms |img)
3

X (SoSeMa=Mp |SMs) (Mo (- G(;Mwa“’N“L“M“) (o8, M3a) XE ke i1ap)

3.5
Using the orthogonality of Clebsh-Gordan coefficients, we obtain the inverted form

as

(Nb L My Na LaMuo)
Fesym (g, o)

= J‘ 2 0+) QZ
(%“ (Ind Mamjl JeMe) (s mang | § M5 ) (S aSumMamms|SMs)
MaMgM{ X
MaNpMs A
dadp Mia My

X (=5 %Mo (JaTaMjaMA 1T 4) (J6T5 M5 Mel 1) (La SaMiaMaljattys) LSy Mo | due)

X 5LM,L..,M (a Y lw) o LaMea) A+0LV W“A)<(L53b)db JB)IM' v , (Laga)éa JA)IU)
(3.6)

where

<((Lb3b)¢3538 IV CLaSaddada)I D

Z (Lo SaMiaMaljatis) (Luss Mwmbtgb'méb) ( 1o 3aMM Ma ) (dpdp MyuMe 1T M)
Muat u o WMoMy,
Mia Mis MaMe

j(ﬂf{,gfo{'ﬁp Mol MLb(*‘B‘”{.%" / Ws)(JeMasbmb]\/ | JaMa Saad: %W_QMW A+dv “KU

¢ A e ecuple Lot =nd v 27 o T,
em : . ‘ -

The information of the reaction type is included in this matrix element. If we

v M
sum over Z-components in Eq. (3.6) and write G(I\'bI"bMLbNaLa La (Ir B,Y ) as the
’ sjm
product of two factors



(W MNLM) (‘\Ib NL) (N,LM. N LM )
lsj:f‘b L8'a"a La’ (N0, )=h g P @ i v e e el (i) (3.7)
we obtain
. 1025 +1) (2jat)) (2§t)
(B L larg) Z -0 yTatha-TAlatl (9.1*«*)«[(”*‘)(%*) §40 et Ghett)
1s3 = /. AN 2Je+ 1

x W(J J 3b B’ j) Lasa']a

- Ii‘_bsb'].b

NS _d
x {18 )37 TV ((1,8)3,9,)THD (3.8)

defining the form factor
GXL\’M“N“L“M“) (g, Wap) = (Ls~Mi LaMio |0m) FoLu-te (B, e et 7 Yoo )

3.9)
Ve neglect the spin-orbit coupling in the distorted wave and define the patial

amplitude by

tatig (o LoM g N LaMua) 4
et " e Zﬁdfw‘mm oio) fim s, 1ip) X (o, ),
| MMy (3.10)

To calculate Eq. (3.10), the distorted wave 'Xl‘t'\h_;‘)is expanded in partial waves as

Wmm%&ulmhmwmmmmWM) (3,11a)
‘;) (o og) :"E‘trfs Z (5 WLy, G, r,,s) VL.,HL\, (ﬁ,e) yLbMLb (kb) (3.11b)
bFhy,

where ¢ and & denote the polar angles of the vectors | and k. The function YLM(&\')
is the spherical harmonics. The partial-distorted wave X (kr) is the solution of

a radial Schrodinger equation with a optical potential U(r)

a* - 2 2U L+
[ T +K2——lk -——EU(F)-—L—‘—T——')J Y (k) =D (3.12)
ar Y h r 2
where'\is the Coulomb parameter Vl:: %%;?‘ For U(r) we take a Gaussian absorption'

form or a Woods-Saxon absorption form,



v r-R3

) = (G, )t el ) (3.130)
or
A Y
U(r) = . W
rreel(e-R)/, ) e ((r-)/ ) (3.130)
I

Inserting Egs. (3.9) and (3.11) into Eq. (3.10) and performing the angular part

of the intrgration, we obtain

Lu=T ' (Nl.No)
lr:LNbLbNM)(e) = “ﬁ%h ettt 0p 112 (Lum L-miLe 0)[ tme))l ﬂ—b )J-Ub‘-‘* )
(3.1L)

where

o

U N .
lmm — L faa dfap Y raa (—P&‘—d Y, GA) X Lo Ratap) S luedlis #Nb%(-gxg-\’) i ) Xio(Re, Vo8 ).
v

(3.1
The functionﬁé%jis the radial part of the harmonic oscillator wave function ggfined

by Eq. (3.3). If we use the relation

é‘ éﬁ 3!2

| 14T 34 Tas ; J> = J(230+1) (235041 (233 1) (2004 +1) i s Ty | 1G0Tl }) T3
Jad
bLbN L) i3 d2¢ J
we. obtain for the spectroscopic sgplitude A in L-8 representation the
following equation
J, + 3 -I +L +1
a (NLyN. L), S«-/ I51Lg85) (3,11, yib(-) A e A (o141) (2At)
1s3

x (2A+1) (23 S FINAN(2T, +1) (2141) (2s41) (2 +))
X W (j J b B,Iq
X Lasaja 5Lasaja Lbsbjb

8, J
LpSydy, LS, 7, HLeSpdy

ted- Amsi A%l
x {( LLy) A L (8,804 I8l V | ( A)/\L(sasA) NgIm, (3.16)

The notation (JB[LB ) is defined by the equation



QJBMB Z (Jg) Lese) ( Le SeMiLgMse|daMs) ?LBMLB(XSB Msg

Mg
Msg

. ’ .
The matrix element \(LBLB)I\L(SbSB)ASIMIVl (LaLAML(SaSA)AsIM> can be written as

< (Lote)AL (56588 T IV I (LalAd AL (5aSA)As T 1)

= < (Lptg) Al (5658) As IV (Lata) AL 5aSa) As)

= (4t Te Mty Mg ) A7 Mag) (Fa Ta Mta M1 | ATMaT) < (LoLe)h (658D As (TedNy IV (Lalm)AL [SmSA)I\S(faTA)MZ

(3.17)

where ta’ tb, TA and TB are the isospins of the particle a, b, A, and B respec-

tively, and m a® By MT and MT their Z-components respectively. The differ-
A
ential croms section is then given by

de _ Mally Re  0Ja+) NoloNaLo)  (NoLu Nale)
AT @A) Ra 23atl [ Qsm\ A’fg ﬁ‘m
A" Nl
Where/ua is the reduced mass between particles a and A.

(8)

5 (3.18)

3.2 Recoil effect

It is difficult to calculate the matrix elementin Eq. (3.17) numerically

. . Shell
We define F (NbmeLb' NALAmLa) by

shell
F he (Nb Ly Mip? NabaMia)

= Z (LoLs My, Mis I AL ML) (5638 Mso Mg AsMAs) (LaLa Mia Mipl AMaL) (Sa S Tha MonlAsMps )

hell
x € (LoLe)AL 5b58)As (1 Te)Ar | V) (La LAY AL (Sa5A) As (taTa) At > e) (3.19)

and define F(nbl :n l a1 ) by

lb



F (Mp Qo M 4o Lo Ms)
= Z (o Lg Mt Mg | AuMar) (Sb S8 Mso Msg{ AsMas) (la LaMtatial AuMas)(Sa Sa Msa Msa) AsMag)

x <Unle) A (se58)As o TOAT| V] (LaL ) AL (5aSADNs (44 TA) AT 7) (3.20)

The wave functions in the matrix element Q’(lbLe)AL(SbSS)AS&TBMﬂV’(Q““‘\ML(S“%)/B&‘&)”ﬁare

intrinsic wave functions 'I’A a.nde:E.B.._. If we assume that:
T, shell _
i A yooo(}w’ \rA)q;A’ (3.218)
I §hell _
ER —yooo(BV’»rB)‘I‘B’ (3.21p)

and perform the integration over the cocrdinate of the center-of-mass of the

total particles, we obtain the realtion

FShen(NbmeLb: No. Lo Mie) = Z (T e ¥ Mea lLaMea) (C Lo i e Lo M)

LIUNUTIN '

TodoMey

N A
x (NoLa0O; Lol A‘ N T MNa 0 ',L,)(N‘b\_boo)' Ly ! b2B] IVC"Y\bﬁb,' Lb)F(’anb’meb:’l'l_aQq'mlm).
: (3.22)
The notation (MLimadsyL | m*MINE Ne;L ) is the Talmi coefficient.
The validity of the approximation written by Egs. (3,21) was discussed by Elliot

lO).

et al We insert Egs. (3.22) and (3.20) into the inverted form of Egq. (3.19)

We finally obtain the equation

shell
< (Lot)AL (5S8) As (£ TedA7 IV | Lalr) Au (5aSA) As (taTADAT

= J(ZLa*1)(2Le+) Z (g Ne+)) W (T toAle;be AW (T laAla ;Lmhf.)

Mo laMp Ly
VAL

X (Nola00;Llalo:A] N Nalajla) (NeLteoojiylbe BIN DMole;Le)

% < (U LB)AL (558D As (teTo) Ar 1V] (Laba) A (saSh) As (taTa) M7 (3.23)



Using shell model wave functions for the target and residual nucleus states, we

shell
can calculate matrices < (Lolg)AL Gu58)Ns(teTB)ATIV] (Laka) Mo (5a5a) As (taTa) At 2 ¢

and obtain matrices < (lele) AL (5eS8) s (teTe) Ar I VI (Lalpd AL aSA)As (taTa)ATY
in Eq. (3.16). If we take only one term N=1=0 in the summation of Eq. (3.23),

we obtain the equation
CCLl8)ALrsS8)As (hT8) ATIV) (LaLA) AL (5aSa)As (ta TA) A1

tla 2NptLy spedl

2Na !
B (0: ) (bge) 27 ()M (68)Ns L TRATIV] (Lalw) A GaShIs (o TnA D

(3.23a)

The removal of the center-of-mass motion of the microscopic calculation is
similar to that of the center-of-mass motion in the calculation of the reduced

ll)'

width for nucleon clusters in the shell model We show the numerical results

for the heavy particle stripping term of the reaction 11B(d,n)lzc in §h,

3.3 Comparison our method with the usual calculation

We show that our method is identical to the usual calculation in the strip-
Pin reaction. We consider ihe reaction
a+A > (b+x) + A> b +(b+A) - b+B

The matrix element ((( LbSb)c'}b Te ) IM| Vbx! (( LaS&);\aJA)”Din Eq. (3.8) can

be written as

C((LeSedie T ) T Vox | (L LaSe)ia Ta YT M)

= e *ATT To (o) W (T8 +1) (246+1) (2jx+1) (2§at)) (2La*1) (25at+)

C o , . A
X W(adndode; Ijx) (LuSsds <[¥N\,Lb(—é% Y, Vo) %AWXA)]LQIV(G")l VM%A‘{Mﬁ
Ix iz (3.2k)
La Soda



where %Nb%(ﬂg’;‘)’w is the harmonic oscillator wave function including the sphe-
rical harmonics of rank Lb and 35:&_ " is the intrinsic spatial wave function

of the particle a. Substituting Eg. (3.24) into Eq. (3.8) yeilds the result as

( NobuNake)
Aus|

ot (QLat) st

e V@t st JBAQJ)&(SK[Q""L"( B¥b " 'ﬁa)yf{“m\)}u\%x)yNoLu(K%%P; LY %Z

(3.25)

NolsNaLo) p (NbloNals)
From the Fgs . (3.9) (3.10) end (3.25), the quantity ) A‘Q;" o) Bim  (®)
NQLQ

in Eq. (3.18) becomes NpLb

L Wle r&L«)ﬁ(m LoNa La) ()

QsA
No Lo
Notp
= <4, JLad '(Q-LQ‘H)(Q_SQ.H) 5
T e (Ls}) a(s
;umu (2125 +1) Jea (s )
NoluMus

¢ Y J * - ! /
o Jomta fame (g 0T} V50 e, (v, ) B0

. : +)
X1 Lﬁ?ﬁ‘ SJRASAEB’)Q (hm)(Lbu—mummHn)ﬁ‘,,bLb_m“ W;,e) 5‘ A+a )ﬂ'&;\)'x (M“JW)

= [ 25+

]
2T (8si) @ €5)
25+| Jea ) \] 2+

X yaraajdmsyg>«(mb,&) ﬁm (rea) V(nx) 3a (T Xg)(h) oA ) |

(3.26)



where we use the completeness of the harmonic oscillator wave function and the

relation

< [ (ﬁgui"'ab;gg Y, ﬁ‘bs') ‘7‘1 (ﬁA)} LaMuo \ Vbi‘ meLQmLA (“ﬁ‘% V,‘G{A) Qa(rw> (Lbi MM lum»)

= ) XU BRI B0 | Vo | Frnssnis (057, 1) B0 (Lo s iamis)
LiMly

3.4 Calculation of the matrix elements in the form factor

We use the notations <(bB)A{V} (aA)A) and ((L*N'»Lu(w)fb) (Pb(%)atwmw

T TN a1V [ rate 00, o) a0 SN 20 g aTenawnp ] s

as the simplified form and the explicit form of the matrix element ¢ (Loled\e

(ﬂss)hs(fﬂi)/\ﬂw(LaLA)Ax_&h%)As(tath respectively. The notation '}LB is the orbital

QTrrIQSs-HP

part of the wave function of the nucleus B and is the spin-isospin

part of the wave function of the nucleus B. Qb(K) is the orbital part of the

internal wave function of the particle b. In our calculation ?b(l&,) is assumed

{

as follows: ‘

!

. 4)(%) — Yooo W 1) Ys00 (i) <**7* ~ * %ooo (b, %)
’ (wWove Punctioms of center:of~moss motion of particle b) 2

(3.27)

Where\"ooé"‘;‘r)is the harmonic oscillator wave functioﬁ defined by Eq. (3.3). For

example, if the particle b is composed of three nucleons
cbb(pb): Yooo ﬂ% W, ru—w») $ooo (4 Ve, Wo-3)

- g (3.28a)

Wbere rt-u,s) is the distance betweén the particle 1 and the center-—of‘-—mé.ss of

the particles 2 and 3, and F2-3 is the distance between particles 2 and 3. If

the particle b is composed of four nucleons



%(Vb): %000 (F Vo, I0e2) Yooo W, 34 Y000 (Vo , We,y—a,4)

= Yoos (T WV, Mim2) Yooo (5 W B—q.2) Fooo (*%r; Vo, M -0,9,3))  (3.28b)

shell
The matrix element {WB)AVIGAWwritten here is the matrix element<(bBAVIGAN in

Eq. (3.27), but we remove the suffix shell for simplicity. We give the ex-
préssion for the matrix element {GBIA|VI (aMIAY according to the six terms in
Eq. (2.25)

a. V= Vb stripping terp

x°

We transform the orbital part of the wave function of the particle a as
¥ NaLamua. (0, ia) Gy (V)

= Z Q) (b o b sla | 052 phc| N Lo 0 OsLa) [S‘NBL&,W' W) q)b())a)(‘/‘mlx.“‘); Wx) (Px(va)] LaMua,

(3.29)

where

R (M) = qu\oo @ V, bx) Yooo Ve i) dlex | (3.30)

and K is determined by Eqs. (3.28). Next we transform the wave function of the
micleus B as
2Te+ 258 | [- QWH I 1 o« e+l 28] } ‘
F e 'FT- <BIAX D (i, [ Ty i gs8T8 .
Ax!

Here CBYAX) is the coefficient of fractional parantage and it is explicitly
written as

<BYIAX > = <olgleSeTefnalaSaTa owlwswtx ), (3.31)

The notation O(B denotes the quantum number except for the angular momentum



guantum numbers. By using these equations, we cbtain the matrix element

(bR Vox | (e AYAZ

= Z Qb () (N6 W b 5 Lol Ao * mad Nolamos La) < BUAX > < Satadi sty sxtxy<b (AL BN ()0l
ny
xX

B H2SH+ 4
(e o S P L) [ o T g R4l 1)

LaSata

The recoupling factor in Eq. (3.32) is given by the following equation:
<hAMBHA TR AN

= (Lo (Labe)Lg; Al Labas A ou(Sasx) S 5 sl (S8x)3a5nAs) CtelTat) Tp 5 Ay | (Ekt0) taTash),
(3.33)

The letters a, b, . . . in Egs. (3.31), (3.32) and (3.33) denote all the

quantum numbers of the particles a, b, . . . . The matrix element {(pX)IR|Vexl(t'x)a>
in Eq. (3.32) is the two-body matrix element in the reaction (d,p) and (&,n).

If the particles x and b are composed of more than two nucleons, we take out

one nucleon from the particles x and b using the coefficients of fractional
pérantage and the Talmi coefficients. The matrix element ((bx’)al\/ul(b'{f)@‘becomes

as follows
<IN WVox | W6

= Z\ bty () (Mo, Ly Nglin s Lo 12 1] NoLb M 0 Lb) < Sotudi Seito) Yo 2 ?
bibabl
‘3('1;212
T

% <(b|bz)b1 0o b2 X )8y 307 < b (4 TDXY; G | (ba X )0 X1 5 0 Y < I XE D



\
A

X O b, MDY ( Monboy Mg by, ), Ly Vlkp, o1 Mg L5 05 b ) <SBEE{I Saatin VaYa D <‘b&)b’ X, A\QEM;?0|)®7
X Oy % (%) M00 (o L Mg lag s L) thxy ™ 1] b no;ly ) {Bxtx{lsnta ke Y

X <bi (LX) 50 ) (biX2) Qg X1 AY (W 4 )% B + B H 4 )Rattetim)

x < (%, Loy (V) Y ag bt ) taal Viaoxgl { %m0 (V5 Mo0) F g s w,rrxz)]_ ta)

X S <pb‘(9b)* ?b‘ (\)a) dabt gé&; q)it“)&) Y‘M,Qx. ¢ V)Ir\ll)d‘rxl dgx’l 2

(3.3k4)
where
bpp () = S (f'rtoo (f7Woua) Vooo(ﬁ Po, Moz ) dlloios (3.35a)
Q.b.b,_(’ﬂ) = g L}:OO (pVJ lrblvb!) Lfooo (ﬁva,\ﬁlbz ) dlrb‘bz , (3.35b)
Qogza (W)= J Yoo (V) NMex) Yooo (U Vo, Mxg ) dlxyxa (3.35¢)

The parameters B andy is determined from Egs. (3.28) and))A is the parameter
adjusted to the separation energy of the particle x from the nucleus B. The
notations n(B) and n(x) is the nucleon numbers contained in the particle b and

X respectively. We take the two body interaction sas

| V= $() (W+BPT~HPT ~MPPT)  w+B+H+M=1 .
b, V= VbA
We transform the states of the particles B, a and A into the following

forms

+1 2 SHH! | ot 252
@LBQTH‘ QSBHF:—.Z <BIUNXD [%L'AQTAH r S[:‘lx r]LBSBTﬁ)
le (3. 368.)



li‘ No Lo (o, V,u'“) ¢au)a)2ta+\ Q%aﬂry

= 2;1 (Mot N Ly Lo | A flo b NauLam o5 La) Quep (M) <Sata {isxtx Sty >

ty+l 25+
x [ P 1V, 1) G () 2V 5P Sy o, i 00 * "’].L,sm
(3.36b)

e

2Tat | 294 (g, Ten 25cH 2
T F:éqiuu%m ’ 7 rJ]'-A‘S'ATA-(3.36<:)

By using these equations, we obtain

COBIA | Veal (ap)d

= ZB<B{\A17< b(A0) B AL X (bADB; A <AIC )Y Cb (Cy) A, B | (by)d C 5 BD
nA‘x B
Cyyud

x Ghxv ) (M lx My Ly 5t Ux‘»}lb', Malanosta) < Satallsxtxsyty
x CXb2a A Al xw A)B A <o (Cy)A B |44 C ;87D CANICY)
X <[‘f~m, GBI, G, )2 BH N 7 g ngg)ld&itd | Vby]

[ ity G0, 16) B, (v) LN IV P G 227 ) satd ),
(3.37)

The matrix element < (by)d | ngi (w4 d v in Eq. (3.37) is a two-body
matrix element if the particle b is a single nucleon, but if the particle b is

composed of more than two nucleons, we take out the single nucleon b, from the

2
particle b. The matrix element <(vy) d |ng,‘ (p'9)a > then becomes

<Coddd | Voy | (BYHdD

= Z Bupa M) ML) CNodoiMpadozs Lol Mu, 1] NoLo o5 Lo) < SotofiSeite Y2 Y 7
'W n ’
by b2 bl €



« < (bybgdb ¥ sl by (b28)e 5 d) Obybr (1) (T bV g 5 L[ Mot 1] Myl Wo; 1)
¥ < Sy ty USety Y Ya) <(bioObY S 4| bi(big)e 54

(W @t B 4 @ H tetieriyg

"\/[ Py V1) gty WV '@M Vmg l[(’LM Ly (RIBL) Fmgty WA/‘Q)] u) ,
(3.38)
c. V =U(rbB)_

In the numerical calculation, we set V = 1 and multiply the final channel

distorted wave function X (Rfg)by the optical potential U(rbB)' Then we

obtain
< GBGBANJQAIAD
- Z O (M) (Mo Luna b sLal Mot Mxl NaLamojLla){Sata i Sotp et )
— ¥
xSBIA XD < (AN B 5A1 A A 5 AY Sﬁr Vo) P, (%) dFb Stm G bV, 1) ) A &
(3.39)

a. V= Vba; knock. o?x term

The matrix element < (bB)A|Vabl@AAD can be written in the following form:

{(LBIA| Vool (@MIAD

= Z <Blea?<b (Ca)B; A badd CiAY CARCYI<aA NG CSAD

2ta’+ 25041

x< [ Yoty bV, Dy (D) LB 2T T P]MSMJ

Aol [y T Ga (v, i) Jalra) 2042550 Musits), oy
3.40



If the particle a is a single nucleon, we set %k%)equal to 1. It is also the
same gbout the particle b. If it is not a single nucleon, the matrix element in

Eq. (3.40) can be written as the linear combination of two-body elements
< (0094 ) Voo | (YYD

:Z < (bhbi)ba,d] b tbsore;dy
NN b, by
ECO«\Gzai

X
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(3.41)

e, V= VbC_ heavy particle stripping term

The matrix element can be written as
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(3.42)

If the particle b is composed of more than two nucleons the matrix element

<(4b)d | Vgl gt 47

is expressed using two-body matrix elements.

C (30)d {Vyb) (W¥)dY
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(3.43)
£. V= Ulrg) ‘

As in the case ¢, we multiply the final channel distorted wave function

yhb(rbB) by the optical potential U(rbB). The overlap integral <GEBIAJGAIND>

in the exchange configuration becomes



¢ GBI (@RIAD

= Z <Bf{coy <b (CadBIAL (badd C5AY<ANCH<a (s Al (ba)dCs A

C,d

¥ j i L V) 9% () B, dif d g Séf‘a % NaLe (47, 10) $a (Vo) difadZa, ,

(3.34)

L. Numerical Calculation of the heavy particle stripping term on the

reaction 11B(d,n)12C and discussion

4,1 Numerical calculation of the matrix element in the form factor

As we have mentioned in §1, the heavy particle stripping mechanism is
shown in Fig. 2. In the case of the reaction !!B(d,n)!%C, we take a to be a
deuteron, b to be a neutron, A to be !B, B to be !2C and C to be '0B. Then
wave functions describing 11y ang@ 12¢ for this calculation are given in Egs.
(2.27). Since the core C is composed of four S-shell nucleons and six P-shell

nucleons, the matrix element in Eq. (3.23) can be written as

shetl
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= 4 <4 w,m)22 T $sean” Rﬂl]ﬁil\y’g{b\
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where Vsb is the interaction between particle b and & nucleon in the S-shell,
Vpb the interaction between the particle b and a nucleon in the P-shell, and {[*
the coordinate of the internal motion of the deuteron. The parameter ;ﬁ
represents the extension of the intrinsic state of the deuteron and should be‘

' _ ﬂHm&HF 2 Hmwr~
adjusted to the binding energy of the deuteron. The notation[ig,&‘] t?EUz[‘-" (4 Ahsivg
denotes the state constructed by coupling the two states to have the toﬁal

spatial angular mOmentumAL, the total spin As and the total iso-spin AT. To

shell

simplify the notation, we write the first term of Eq. (4.1) as Fg (N'b]:,bLBNaLaLA.)
hell . . ‘ -
andt S s o Y R
he second term as Fp (NbLbLBNaLaL.A.). Using.the table of Jahm and -Wieri
12 .
gern( ); we obtain for the decomposition the following expressions:
12¢ » 1% + g:

QSG‘D“PIAMJ = é_j:ﬁ [QSQ]B&J P sea0) BT‘@ﬁ]]ooo
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(L.2a)
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We recouple the final channel wave function |b(a'C)B;A> to |a'(bC)A;A> and
separate the spatial part of the wave function of the particle a' into the cen-

téy-of-mass MmOtion and the internal motion using the Talmi coefficient. The

letters a', b, A and C in the wave function |b(a'c)B;A> represent the total
gquantum numbers of each particle. The non-vanishing matrix elements in Eq.

(&.l) can be written for LA = 1 in the following form,

hell \ . _
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and for L, = 2
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The matrix element F SP®*(N L LN L L) caﬁP%btained by substituting
S bLb Baa A AN

. . . shell
Vpb for thg interaction Vsb in the expression Fp (NbLbLBNaLaLA)' We use the

notation Ep(NbLbLBNaLaLA) for the remainder obtained by removing the overlap -

int . shell . ] ] .
ntegrals from the matrix element FP (NbLbLBNaLaLA) in Eqs. (4.3). 1If
we insert Eqs. (4.2b) and (4.2c¢) intc Egs. (4.3), the matrix element Ep(NbLbNaLaLA)

can be written as a linear combination of the matrix elements of the follow-

ing type.
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We may use the simple notation <(to)Aiprl(b'C')A> for the above matrix
element.

We seperate the matrix element Ep(NbLbLBNaLaLA) into two parts. One
of them contains only the matrix elements of the type as <(bC)A]pr](va)A>

and is denoted by E(D)(N Ll L L ) and the other contains the matrix ele-
P

BB Baah
ments of the type as < (bC)A). S ' : (x¥D)

yp < ]pr\(b C')> (C'#C) and is denoted by E (N, L Ly
NaLaLA)‘ If we take the interaction depending only on the relative distance ries
: . : (ND)
as we made in the macroscopic calculation of § 2, the term Ep (NBLbLBN&LaLA)
vanishes. But as we shall see later (see Table 6), according to this micro-
scopic calculation using the antisymmetrized wave functions for the target and

residual nuclei and the two~body interaction of Rosenfeld type, the term EéD)(

. . 1
NbLbLBNaLaLA) vanishes. If we express the matrix elements <(bC)A|pr|(b C)A>

using two-body matrix elements, we obtain the final results such as Eq. (3.k42)

expressed by the linear combination of two-body matrix elements for the term

E (N .
p( plplEN L L A)
In the step of this calculation, we show the intermediate states appearing

in this calculation in Fig. 5. The matrix elements Ep<NbLbLBNaLaL are expressed

)

in terms of the two-body matrix elements in Table 3.



Fig. 5 Intermediate States
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Table 3

matrix elements-

Representation of Ep(NbLbLpNalalp) by twokbddy
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In Table 3, the spin-isospin wave functions are defined by

m:_![':(ﬁr___\l—-j—ssr +ﬁ\'r ,_33\[")} (4.4a)
=g (7 — 727} (4.1)
V\3:“l‘;“(3lr"533r + {3V~ 3 )} (4.he)
=g ("T-FT 5T =37, (4.ka)
o= T +BT 4 [T97 447 ), (1. ke)
=g (P +F ), (b.Le)

(D)

For example, EP (NblONaOI) is defined by
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We check on this step of the é“-z%lculation in the following way.
a. We have used the relation that the matrix elements < (bC)A|V|[(b'C')A> are

expressed by the linear combinations of the two-body interactioﬁ. If we make

the interaction V equal to unity and the parameter v equal to Vo we obtain

pb

| 2Te1 2541
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For example, to obtain the results in Table 3, the following relation was used.
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To examine whether above relation is correct or not, we set Vpb=1' Then the
above equation is examined to be correct, as its right side is unity.

b. We express the matrix element Ep(NbLDLBNaLaLA) by the two-body matrix elements

of the type

<(F w1 ol )LQTﬂ ki R AN Gortioy) 2THEHN )

Owing to the symmetry of the wave function f_qo‘ L(.N]LTH—‘ZS“T’ , the

two-body matrix elements such as

(it on )" T | Vil (%qo,)bnp> and <G 4o, )37 \ Vo | Yor1401), 37 2 eﬁc.

are not contained in the matrix element Lp(NbLbLBNaLaLA).

Finally, if we take the two-body interaction

V(r)= ( Vw +Vs (&%) + Vr (i T2) + Vo (& &) (7, 'Wz))al(r)) (k.58)
23 .
f(r)= W eh-% ,

the matrix element F:hell

(L.5b)
(NbLbLBNaLaLA) becomes as followes:
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where we use the notation for the two-body matrix element as follows
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These equations are the explicit expression of Egq. (3.42) for the reaction

11B(d,n)lZC. If we put VSb=Vpb=l’ vd=vA=v, we obtain the non-vanishing overlap

integrals.: From Eqs.b(h.6a), (4.6v) and (L.61)

shell __shell - -3
Fp (010101)-FS (010101 )=(~ )§§;§~ (-)3888 x 10™ ,
from Egs.(b.6c), (4.6d)and (L4.65)
shell __shell _ -5
Fp (101021)=F_ (101021)-(—);r=§f7=:7— =(- -b129 x 10 ,

from Eq. (4.6f) (4.6g) and (4.6k)

_5
F;hell( Shell(101022)= 5 =2875 x 10

T 83 {7

We give the parameters used for the calculation in Table k. Table 5 shows the

101022 )=F

values of Vw’ Vo’ VT and VUT for the four types of the interaction.

4,2 Discussion about the matrix elements in the form factor and the cross section

In table 6, we give the numerical results of the matrix elements 6F5hell(

N L LN L LA) + ypSbell for four types of the nuclear force such
as Wigner, Serber, Rosenfeld and Gillet types. The matrix elements FéD)Shell(

(NbLbLBNaLaLA),

NbLbLBN L LA) for the Rosenfeld interaction vanish, although the matrix elements

F;hell(N L.L.N L L,) have the same trend for four types of the interaction. To

b b BaaA
shell . : .
(NbLbLBN L LA) with the increase of

the node Nb’ we show the feature of FShell(N LbLBN L Ly ) for the Rosenfeld force

by the solid line of Fig. 6. We also calculated the matrix elements for A=0.T5

see the damping of the matrix elements F

and 0.80. The results obtained for these values of A are similar to those for A
equal to O.T7T.
From Table 6, the matrix elements UF (NbLbLBN L LA) are pf the same order as

the matrix elements 6F (NbLbLBN L.L, ) in the case of the Wigner and Serber forces.
But in our calculations, this S shell effect is considered to be small implicitly.
If the effect of nucleons in the S shell is large, we must take into account the

neutron going out from S shell in addition to from P-shell. 1In other wards we must



take as the antisymmetric wave functions for the description of the target 11g(
antisymmetric wave function of four nucleons in the S shell and seven nucleons in
the P shell) in stead of (antisymmetric wave function of four nucleons in the 8
shell) x (antisymmetric wave function of seven nucleons in the P shell).

The contribution of the S shell in the case of the Rosenfeld type happens to
vanish due to the fact that it has only V_ term as can be seen from Egs. (4.61)
(4L.63) and (4.6k). We compare the rgsult for the Rosenfeld interaction with that
of the macrosecopic calculation.

We show the results of the microscopic and the macroscopic calculation in Fig.
8. The result of the microscopic calculation with the reasonable strength of the
two-body Rosenfeld interaction is larger than that of the macroscopic calculation
by the factor.lO. But it.is much smaller than that of the usual stripping calcu-
lation. The orders of the experimental results are few milli-barns and the
results of the usual stripping calculations ére of the same order as the experi-
mental results. We cen conclude that even if we calculate the heavy particle
stripping term microscopically, the heavy particle stripping contribution on the
reaction of 11B(d,n)!2C is very small.

We also find the following results. The cross section of the capture of the
deuteron into S state is QM,IQQ}Q 2§ that into D state. The COntribﬁtion of the
D state in the wave function of the !B is very small as in the case of the macro-
scopic calculation. Thfg result: {s- due to the recoupling factors of Eq. (3416)

in spite of the fairly large matrix elements shown in Table 6.

k.3 Recoil effect

To obtain F(NbLbLBN L LA),

HITAC-5020. The results are shown by the dotted line in Fig. 6 for the Rosenfeld

we solve Eq. (3.23) by using the electric computer

force. In Fig. 6, we show only the matrix elements F(NbLbLBN L LA) But in



addition to the above matrix elements, many matrix elements with the same order of
values appear, for example, about 100 matrix elements in the case LA=1' The main
contributions of these matrix elements for the Rosenfeld force are shown in Fig.
T. These matrix elements play an important role to affect on the pattern of the
angular distribution of the cross section. In Fig. 9, we show the cross sections

calculated with and without the recoil effect. In the macroscopic calculation

without the recoil effect, the form factor is as follows

(bC) n
fim (g, Wap) = % (Lo Ly Ma-ly] tm)(—>“°ﬁa(m\)7;,,¢<lm\)V(r\,s) Halo) Yh,lﬁh(ﬁﬁ)
alhy

in stead of Eq. (2.35e).
We calculated the matrix elements for Eq. (3.23a) and obtained nearly the"

same values as the exact solutions concerning the matrix elements F(NbLbLBNaLaLA)

shell(

N L. L

having the same quantum numbers as the non-vanishing matrix elements F IR

NaLaLA)' But we can obtain no matrix elements having other quantum numbers by
solving Eq. (3.23a).

From this discussion, we may say the following conclusions about the recoil
effeét.
a. The recoil effect makes the value.;of the cross section large by the factor
about (a+A ) x ( b+*B_ ) = 1.5 (in this case) because the main contribution to
the crossAsection coﬁes from the matrix element F(010021). This can be seen from
Fig. 9.

b. The exact recoil effect change the angular pattern because of the large contri-

bution of the matrix eleménts such as F(NbOO'll) in Fig. T.

5. Concluding remarks

The main work of this papef is to develop the method of the DWBA microscopic

calculation. We remark as follows:



Application:
a. This method can be conveniently applied to the investigation about the térm
which is assumed to be zero in the usual DWBA calculation and sbout the heavy
particle stripping term.
b. This method can also be aﬁplied to the microscopic calculation on the rsaction
(t,p) pnd (d,t)etc.

Problem of the convergence:
¢. We find that , in the numerical calculation on 11]é(d,n)lzc, the matfix slements
in the form factor decrease very rapidly with ths increage of the nodes of the har-

monic oscillator wave functions used for the expansion of the form factor.

Recoil effect:i
d. This method is very convenient to include the recoil effect in the microscopic
calculation. This effect makes the magnitude of the cross section large, and varies
the angular pattern.

Cross section of the heavy particle strippin process on 11B(d,n)l?C:
e. .The value of the cross section of the heavy particle stripping process is much
smaller than that of the usual stripping process. From Fig. 2, the usual stripping

calculations with more reasonable optical parameters may explain the backward peak

of the experimental results due to the distortion effect.
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Table 4 Parameter of the harmonic oscillator wave function

Symbol Meaning Value Validity of the value of the
parameter
the force range of the
Gaussian interaction 2.0fm
]
the parameter of the From the Kuruth's calculatioél3)
vA. bound harmonic oscillator about the energy of P-shell
wave function of P-shell "~ | nuclei, the range of the
nucleon in 12C and !lB 0.24fm 2 parameter A extends from 0.69
to 0.77. 1In our calculation,
we take A = 0.7 so OA::%%:ojy
the parameter of the C. L. Lin and S. Yoshida
vd bound state harmonic 0. 2402 have used the parameter
oscillator wave function ' \)d=0.213f‘fm"2 from the electron
describing the internal scattering. But to simplify
bound state of the our calculation, we have
deuteron taken va=0.24fm'2
the parameter of the har- | To simplify the calculation
N monic oscillator wave 0.24fm™2 we have taken v = Va
function used to expand
the form factor

Table 5 Type of the force used for our calculation

Vi Vo Ve Vor
Wigner 1.0
Serber 3/8 -1/8 -1/8 -1/8
Rosenfeld -1/10 -7/30
Gillet -1/5 -3/10 | -1/10




Table 6 Value of the expansion

coefficient of the form factor

N Wigner Serber Rosenfeld Gillet
0 2270 -1040 0 -302.7
1 -858.2 -393.4 0 -114.4
(D) , .
oF " (N, 10103) 2 —243.0 ~104.0 0 ~30.27
3 70,14 _141.7 0 1y, 006
4 +13.09 +1,708 0 1,742
5 14,55 +6. 66U 0 +1.939
0 164,9 - -462.2 -798.8 -888.6
1 18.22 -170.4 -229.9 -219.6
2 ) - - -
6Fp<ND> (NblOlOl) 22.68 3.808 15.93 14.33
3 ~21.98 19.26 28.89 51.88
I -13.63 16.40 25.31 38.51
5 ~7.124 9.536 15.02 21.66
0 -2105 -1502 ~798.8 -1191
1 -840.0 -563.8 -229.9 ~334.0
2 -1. -107. - -
pr(NblolOl) 1.616 107.9 15.93 15.93
3 -92.43 5. 484 28.89 47,87
4 -0.537 21.10 25.31 4o.24
.5 7.430 16.19 - 15.02

23.60




N Wigner Serber Rosenfeld Gillet

0 | -2412 -1739 0 -377.5

1 -91.7 -413.6 0 -127.7
6FéD>(Nb10021) 2 | -241.0 ~105.7 0 —2L 46

3 -31.93 -9.971 0 3.2

L 13.88 9.263 0 6.473

5 15.440 8.589 0 b 47k

0 -87.63 -718.5 -1087 -711.1

1 -9.68 -159.8 -270.6 -143.2
6FéND)(Nb10021) > 12.04 30.737 15.79 40.29

3 11.67 51.68 62 .40 59,28

L 6.346 36.23 L6 .54 40.12

5 3.783 19.96 26.24 21.79

0 | -2499 -1857 -1087 -1088

1 -921.3 -5773.4 -270.6 -270.9

2 -228.9 -75.33 15.71 15.83
6Fp(Nb10021) 3 -20.26 41.71 62 .40 62.48

4 20.22 45.49 L6 .54 46.59

5 19.22 28.55 26.24 26.26

0 ~16.16 -16.12 -33.81 -34,17

1 -11.51 -11.48 -24 .07 24,33

2 -6.401 -6.1385 -13.38 -13.53
6Fp(Nb30021) 3 -3:163 -3.156 ~6.616 -6.688

L -1.453 -1.450 -3.640 -3.-73

5 -0.6365 -0.6349 -1.331 -1.345




N Wigner Serber Rosenfeld Gillet
0 | 1679 772 .4 0 228.6
1 634.6 291.2 0 85.13
- (D), 2 167.9 76.52 0 21.70
6F 7 (N10022) | 4 22.23 9.772 0 2.313
L -9.669 - .684 0 1.691
5 -10.74 -5.0673 0 -1.644
0 -61.02 399.9 679.5 Lis,1
1 -6.732 100.3 170.8 9L .21
2 8.001 -5.15 0.086 ~21.34
6FéND)(Nb10022) 3 8.130 _22.55 ~32.39 —34.72
Ly 7.508 -16.91 -9.341 -23.88
5 2.634 -9.553 -8.509 -13.04
0 | 1617 1172 679.5 673.7
1 627.8 391.5 170.8 179.3
2 175.9 71.37 0.086 0.36
6Fp(Nb10022) 3 30.36 -12.77 -32.39 -32.40
L -2.161 -21.59 -9.341 -22.18
5 -8.106 -14.61 -8.509 -14.68
0 | -145.9 -145.9 -123.89 -123.89
1 -103.9 -103.9 -88.20 -88.20
6Fp(Nb30022) 2 -57.79 -57.79 -49.05 -49.05
3 ~-28.56 - -28.56 -24.24 =24 .24
L -13.12 -13.12 ~11.14 -11.14
5 -5.747 -5.747 -4.878 -4.878




N, Wigner . Serber Vb Wigner Serber
|
! 0 -1918 ~730.7 0 4218 ~1770
|
| 1 -1033 ~387.7 4F (N, 10101) 1 | -1891 -781.8
!'HFS(N010101) 2 | -458.9 | -121.1 2 | -701.9 ~225.1
‘ 3 ~188.4 ~70.68 * 3 | -258.8 —212.3
4 -7h.21 | -27.83 6Fp(Nb10101) 4 -87.30 -23.12
5 -28.38 -10.64 5 -l2.93 -3.976
0 1749 ~655.9 0 | -l2ug -1588
1 -928.0 -348.0 uFé(Nb10021) 1 | -1849 -586.6
4r_(,10021) 2 -411.9 | -154.4 2 ~-640.8 -155.1
3 ~169.1 ~63.44 * 3 | -189.3 -18.68
Y -66.61 | -24.98 6Fp(Nb10021) 4 -46.39 -10/36
5 ~25.U7 =9.553 | 5 -6.26 ~10.75
0 1751 540.2 0 3368 1712 |
1 764.5 286.6 4F_ (N, 10022) 1 139; 678.1 i
E (N_10022) 2 339.3 172.2 2 515.2 198.5 %
1 3 139.3 52.26 + 3 | 169.6 39.49 1
4 54.78 20.57 6Fp(NblOO22) 4 52.70 -1.02 |
5 20.98 7.869 5 12.87 -6.741 !
|




s

i i et aman.§

F(1b30022)

FND10022)

07

“t

PO Ry

61y (NbLbLgNaLaLy) + 4Fs(NoLbLgNalaly)

e value | ..

4

positiv

e negative value |-

F(1b30021)

&

'

Rosenfeld Force

BNaLaL A ).
Nb10021)

Value of F(NbLbIpNalalp)
(NoLbLgNaLaly ).

F(

FShell

P

Fig. 6

w2 e se- F(NbLOL

F(Nblolol)

s B N, o T n i Y

<+ e o P e S e 000 1 LA s T



6Fp(NbLbLBNaLaL A)+LsF S(NbLbLBNaLaL A)

appearing by solving Eq. (3.23).

Value of F(NbLbLBNaLaLA)

Fig. 7

Rosenfeld force

S U D

B 40/0. Ny

e 1112

IS PESGw M

A

53 Yo

T 230456 N 23N

B By (s Saial Ve
luwm.lllemelmm

N ISR Y S

alue
alue-

B
v

tive

positiv
hepative:

1’11 00 0600 00 00 00O




Fig. 8 Comparison between macroscopic and microscopic results
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Fig. 9 Recoil effect
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