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6-4. Dispersion curves of the Brillouin scattering cross
section cobtained by thermally tuning the band gaps.
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6-5. Dispersion curves of photoelastic constant P 4
obtained from the data shown in Fig. 6-3. Tﬁe present
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ABSTRACT

Yasuo Itoh, Doctor of .Engineering, Osaka University, June 1982.

Resonant Brillouin Scattering and Piezobirefringence in Semiconductors.

The present work is a study of the resonant Brillouin scattering and
piezobirefringence in several semiconductors in the region near the fundamental
absorption edge. The thesis will be essentially devided into three subjects.
One is concerned with the theoretical construction of the Brillouin scattering
theory and piezobirefringence theory. Thg other is devoted to the experimental
results of the Brillouin scattering by using the acoustoelectrically amplified
phonon domains in several semiconductors such as CdS, ZnS, and HgIZ. The third
is devoted to the measurément and analysis of the resonant Brillouin scattering
in the range of photon energy above the fundamental absorption edge of CdS.

In Chapter 1, historical background of the resonant light scattering is
reviewed and significance of the present work is explained.

In Chapter 2, classical and quantum mechanical theory of the Brillouin
scattering are presented. Brillouin scattering cross sections near the My
critical point not only in the energy range below but also above the band gap
are interpreted by the quantum mechanical theory of light scattering precess.‘
Selection rules of the momentum matrix element and deformation potential
scattering are discussed.

Chapter 3 deals with the basic concept of piezobirefringence and photo-
elastic constants are derived theoretiCally by the piezobirefringence theory.

Chapter 4 deals with the experimental procedure and detailed explanations
of the sample preparation used in the present work are presented. The
experimental technique of the acoustic domain injection method and the some

results are also presented.

In Chapter 5, the experimental results and discussion on the resonant
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Brillouin scattering in CdS, GaAs, ZnS, HgI, are presented. 1In the observed

2
spectra, one can find a sharp resonant enhancement and cancellation in the
dispersion curves of the resonaﬁt Brillouin scattering cross sections by
TA-mode phonons in CdS, GaAs and ZnS. Resonant features of the.scattering
efficiency by pure LA phonoﬁ is found to be quite different form that of
TA-mode, where only a shérp resonant increase is observed. The resonant
Brillouin scattering in cubic and polytype ZnS was investigated in a wide
range of the photon energy and we found that the scattering cross sections
exhibit w4 dependence as expected from the classical light scatteriﬁg theory.
Resonant Brillouin scattering experiment in layered compound Hg12 was made by
employing the acoustic domain injection method. The experimental data have a
resonant cancellation, while no resonant enhancement has been found in the
measured photon energy region.

Chapter 6 deals with the experimental results and discussions of the
Brillouin scattering above the band gaps of CdS. A dispersion curves of the
resonant Brillouin scéttering cross seciton abov; the fundamental absorption
edge was measured for the first time by using acoustoelectrically amplified
phonon domains. It has been difficult to obtain the dispersion: of the
Brillouin scattering cross sections in opaque region when one adopts a
transmission type of experiment. To overcome this restriction reflection
type of experiment with Ar ion laser was used because the wavélength of the
Ar ion laser locate in the region of the three energy bands in CdS. The
experimental results have shown a resonant enhancement in the region and are
analyzed on the basis of light scatteing theory and piezobirefringence theory
extending the photon energy above the band gap. A good agreement between the

P
experimental data and theory was found when we take into account both the

real and imaginary part in Brillouin tensor and in piezobirefringence

coefficient.
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In Chapter 7, the conclusions obtained in the presnt study are summarized.



CHAPTER 1

INTRODUCT ION

In the past dozen or so years, inelastic scattering of light has become
one of the most powerful means of investigating elementary excitations in
solids. Light scattering has been used in numerous ways to study both
acoustic and>optical phonon, electronic and magnetic excitations, and exciton

1,2 Traditionally, Ramman scattering refers to inelastic light

polariton.
scattering from optical phonmons and Brillouin scattering, to scattering from
acoustic phonons. However, in the modern context the distinction is made on
the basis of the magnitude of the accompanying frequency shift of the scattered
light and the experimental technique used in measuréing the frequency shift in
the scat;ering process. 1In Raman’scattéring experimeﬁts, one usually measures
a frequency shift 1 cm-l (1 meV = 8 cm_l) or greater by usiﬁg a grating
spectrometer, while in Brillouin scattering the typical range of frequency
shift is 10_3cmf1( 30 MHz ) - 1 cm_l( 30 GHz ) and standerd method of spectrum
anlysis is a Fabry—Péfot interferometer. Quasi-elastic light scattéring
with a frequency shift less than a few tens of MHz is referred to as
Rayleigh scattering, and here é photon beating technique is employed.
Present‘disseftation is concernned with a study of the resonant Brilioﬁin
scattering and piezobirefringence in semicoﬁductors. Before we ‘go into a
discussibn of the specific advance in the field of the Brillouin scattering
by acoustoelectrically amplified phonon domains, we shall review some recent
advances in the study of light scattering in solids. The Brillouin scattering
was first predicted by Brillouin in 1922.3) Smekal4) developed in 1923 the
theory of light scattering by a system with two quantized. energy levels: this

theory contained the essential characteristics of the phenomena discovered by



6)

Ramans) and independently by Lansberg and Mandelstam ° in 1928. The Brillouin

doublets were first obseved experimentally by Gross7) in 1930 and later

cofirmed by Mayer and Raman,s) 2

10)

Debye and Sears, aﬂd by Lucas and Biquard
in 1932. Later many studies, both theoretical and experimental, were devoted
to those phenomena, and the characteristics of the vibratioﬁal spectra of .
crystals, fluctuation phenomena, and other physical properties of solids and
liquids were investigated. In the 1940’s emphasis shifted to systematic
investigation of single crystals in order to obtain information for the semi-
empirical treatment of their crystal dynamics. Because of the small scattering
cross sections, however, experments were difficult and remained in the hands of
relatively few groups. The poséibilities of the light scattering studiééhﬂave
drastically expanded in 1960’s because of the developement of laser. 'Its
monochrimacitj, coherence, collimation and power quickly made the old mercury
arcs obsolete as sources for light scattering spectroscopy. Ever since the
discovery of the laser one could easily obtained the detailed experimental data
enough to be compared with detailed theory. In the early days of Raman
scattering experiments, work was bnly possible w;th materials transparent to
the scattering radiation. The scattering volume, limitted by absorptién
length, was too small in opaque samples to make observation possible. The
first measurement of thé Raman scattering in the opaque region was observgd

"~ by Russellll) for Si with a He-Ne laser in 1965. The measurements were
performed in the back-scattering configuration which has later‘become standerd
for studies of resonance effects. Later, Raman scattering in the opaque region

12)

was made by Parker et al. in Si and Ge with the 488.0 nm line of Ar ion
laser in 1967. On the other hand. the first measurement of the Brillouin

scattering in the opaque region was made by Sandercocle) in Si by thanks to

the use of multi-pass Fabry-Perot interferometer. In 1960°s these two



spectroscopies, Raman and Brillouin scattering,'have developed into powerful
technique for studying phonons and other kinds of elementaly excitatiomns in
solids.z) However, their potential for studying excitations has expanded
recently. The ability of these scattering technique to probe electronic
transition lies in the dependence of scattering cross section on the exciting
photon energy. Such excitation spectroscopies are known as resonant Brillouin
scattering (RBS) and resonant Raman scattering (RRS).

The first experiment pf the resonant Raman scattering has been performed

14)

by Leite and Parto in 1966 for CdS by using discrete lines of Ar ion laser,

which cover the range between 2.38 and 2.73 eV. Subsequently, in 1970, Ralston

15)

et al. have comfirmed the resonance enhancement in CdS and also established

the existance of an antiresonance of the Raman-scattering cross section for
TO phonons immediétely below the fundamental absorption edge. Such a structure
is now understood as a cancellation (antifresonance) between the contribution
of the band edge and of higher transition: these contribution must have opposite
signs. ' B

Measurement taken with a few discrete lines, however, may sometimes miss
sharp structure between discrete point. The slight mismatch in frequency
between the band gap and the nearest laser can be minimized by varying the

\
temperature or pressure of the sample. By this method, Pinczuk and Burstein

16)

were able to detect a resonance near the El gap of InSb. This resonance was

17)

studied in greater detail by Leite and Scott for InAs using lines of Ar

ion laser. However such tuning techniques have limitations and pitfalls.

A breakthrough occurred in the field of resonance scattering with the advent

18)

of the tunable dye lasers. The dye laser with its ability to tune over a

wide range of wavelengths naturally became the best source of radiation for

resonant light scattering studies. The tuning range of existing dyes capable

19)

of lasing in continuous (CW) mode is approximately 410 nm to 965 nm. This



tuning range is sufficient for studying the resonant scattering in a large
number of semiconductors such as: III-V compound : GaAs, GaP and AlAs; II-VI
compound: ZnTe, ZnSe, ZnO, CdTe, and CdS: layered semiconductors: GaS,GaSe,

and HgI With the help of ion laser and dye laser, Cardona and coworkers

¢
have extensively and systematically investigate the resonant Raman scattefing
in Ge, Si, diamond, III-V compeund and II-VI compound.zo—zs)

The first measurement of the resonant Brillouin scattering has been
performed by Tell et a1.26) in 1965 using transduser driven LA phonons along
the a-axis of CdS and ZnO. The incident light was tuned over several hundred
nm to the transparency limit of the crystals. Over this range they observed
almost decade dispersion in the P31, P21 and Pll—tensor confuguratione.

The second experiment of the resonant Brillouin scattering has been performed
by Piﬁe27) iﬁ 1972 for CdS by employing the high contrast Fabry-Perot inter-
ferometer. The resonant condition has been achieved by thermally tuning the
fundamental absorption edge of this sample through the incident radiation

at 514.5 nm Ar laser light between 100 K and 300- K. The data show a strong
resonant enhancement in the vicinity of the fundamental absorption edge. The
new experimental technique of resonant Brillouin scattering by making use of
the strong aﬁplifiedracoustic domains through the aeoustoelectrie effect in

28,29) in 1972.

piezoelectric semiconductors was proposed by Garrod and Bray
Scattering from acoustoelectrically or piezoelectrically'driven‘ultrasonic
waves is easily observed with lasers or conventional light sources ahd.
angular dependence establishes the sound frequency. Thermal phonon Brillouin
scattering is much weaker, so laser sources are generally used with inter-
ferometric spectral analysis. They have used a particularly simple and
versatile apparatus of this kind because the acoustoelectrically amplified

phonon domains provide strong Brillouin scattering signal with high S/N

ratio and permit the use of conventional light source dispersed with a single



monochrometer. They demonstrated a sharp dip in the scattering dispersion
about 30 meV below the gap and resonant enhancement ﬁear the fundamental
absorption edge of GaAs. This measurement is the starting point of the
investigation in resonant Brillouin scattering by making use of the high
density acoustic domains. Subsequently, similar resonace behaviours have
been observed in CdS from acoustoelectrical domains by Hamaguchi and

30) 3D

Resonant Brillouin

coworkers and independently by Gelbert and Many.

scattering has also been performed from the acoustoelectrical domains in

32) and CdSe by Yamamoto et a1.33)

CdS and ZnO by Berkowicz and Skettrup
The experimental results have also clearly shown enhancement and cancellation
in the region near the fundamental absorption edge. Such studies were
restricted to only crystals in which the acoustoelectrical instability can
occur by the applicatioh of a high electron field. This disadvantage was
successfully overcome by employing‘the acoustic domain injection method by
Ando and Hamaguchi.34) This_méthod enablés us to inject the intense acousto-
electrical domains amplified in CdS into other end-bonded semiconductors
through the thin indium layer with a high transmission efficienc§.35) This
method made us possible to investigate the’resonant Brillouin scattering in

. . . . 34
the non-piezoelectric semiconductors or even in insulators such as ZnSe )
. R .7

ZnTe,36) 37) 38) GaP,39’40) 41)

ZnCdTe, Cds, GaSe and GaS. The experimental 
data show a resonant enhancement and a resonant cancellation by shear acoustic
waves of direct gap semiconductors, while by longitudinal acoustic waves or
by shear waves in GaSe, GaS and GaP, no resonant cancellation has been
observed.

In these studies, the incident photon energies were limitted to the
region in which the samples we?e transparent. Because of the strong
absorption near the fundamental absorption edge, it has been difficult to

obtain the dispersion of the Brillouin scattering ecross section in the highly



opaque region when we adopt a transmission type of experiment. To overcome

42) 43) In the

this restriction Chang et al. used reflection type experiment;
opaque region, the scattered light intensity is considerably weak even if we
use a high density acoustic domains, so it is necessary to use laser. They
used several lines of Ar ion laser with a Fabry-Perot interferometer.  In
their experiments, two kinds of Brillouin scatﬁering were studied. One is
scattering from ripple, which involves dinamic corrugation generated on the .
sample surface and the other is those from the elasto-optic mechanism, which
is based on phonon induced modulation. The ripple mechanism, which is the
well known mechanism, shows no dispersion above the band gap, while the
elasto-optic mechanism shows explicit resonant enhancement in the opaque side
of the absorption edge.

The objective of the present study is to present the dispersion curves
of the resonant Brillouiﬁ scattering in various semiconductors such as II-VI
and III -V compound, and analyze these data by the light scattering theory and
piezobirefringence theory. Especially, in the piesent study, we shall
extensively discuss the results of the resonant Brillouin scattering and
piezobirefringence in cubic and polytype ZnS, fheoretical analysis of the
resonant Brillouin scattering in GaAs, resonant Brillou}n scattering and
piezobirefringence in CdS, and resonant Brillouin scattering in layered

compound HgIl Also theoretical point of view; we shall constract the most

2
complete expression of the Brillouin (Raman) tensor extending the existing
light scattering theory to the three band process, which enables us to
analyze the experimental data. The second motibation of the present study is
to investigate the dispersion curves of the resonant Brillouin scattering

cross section above the band gap and analyze the mechanism in the region

theoretically.



CHAPTER 2
BRILLOUIN SCATTERING THEORY

2.1 Introduction

In this chapter, we shall be concerned with a theoretical treatment
of the resonant Brillouin scattering, which permit us to make a quantitative
calculation of the Brillouin scattering cross section.

The microscopic theory of the Brillouin scattering was first derived
by Benedek and Fritsch44) and Born and Huang.45) They dealt thouroughly
with the scattering cross sections in cubic crysfals by incorporating the
photoelastic constant. Such an analysis has been extended to the case of
anisotropic media by Nelson et a1.46) Hope47) and Hamaguchias) by taking
into account the intrinsic birefringence. 1In the present study, the
expressions of the Brillouin scattering cross section derived by Benédek and
Fritsch44) is used in tﬁe case of cubic materials and that of Hamaguchi48)
is applied to the case of anisotropic materials such as CdS and hexagonal
ZnS. It should be noted that the formulation mentioned above is valid
only in the transparent optical frequency range, so in the long wavelengtﬁ
region, where the incident photons never excite the electronic’ekcitations in
the crystals. 1In the photon energy region near the band gap energy the
macroscopic treatment of Brillouin scattering is not useful because such
treatments never take into account the effect of electronic excitations.

The microscopic (quantum-mechanical) expression for first-order
Brillouin (Raman) scattering ig obtained by 3rd order time-dependent
perturbation calculation including the effect of electronic‘excitation.by

49)

Loudon. He predicted that the scattering efficiency should increase



drastically, kown as the resonant Brillouin (Raman) effect, when the
incident or scattered photon energy approaches the band gap energy. It is
also found that the deformation potential scattering of intermediate virtual
states (electronic —excitaitons) bybacoustic phonons plays an important role
in the discussion of resonant effect. After his prediction, a considerable
number of theoretical investigations on the dispersion of the resonance

30-57) The formulations of

effect in semiconductors have been carried out.
the first and second order Brillouin (Raman) scattering efficiency for the
case in which the intermediate electron hole pair state are Wannier-Mott

50)

excitons have been given by Ganguly and Birman. Later, more explicit

calculation for Wannier-Mott excitons (allowed and forbidden scattering for
transparent and absorbing frequency regions) was derived by Zeyher et al.57)
The final results of the above two calculations satisfactorily explains the
resonant characteristics below and above the band gap. These results,
however, contain some minor mistakes, arising from the calculation of the
integration in- the continuum part of the Brilloﬁ&n (Raman) tensor. These
mistakes have been corrected and completed formulation of the Brillouin

58) 59)

and Bechstedt. They gave

(Raman) tensor has been presented by Peuker
a detailed discussion of the role of the imaginary and real parts, involving
the discrete and continuum part of the Brillouin.(Raman)>tensor. It has Been
found in the present calculation that Coulomb iﬁteraction betﬁeen electron and
hole causes a strong asymmetry in the Brillouin (Raman) efficency with

respect to the band gap, a strong enhancement only occurs below the gap.
Section 2.2 is devoted to show the explanation of macroscopic treatment in

the Brillouin scattering and scattering cross section for each acoustic mode

in cubic and wurtzite materials are derived. In Section 2.3, microscopic

theories are discussed based on the Loudon’s and Birman’s formulation.



In Section 2.4, deformation potential scattering and momentum matrix

element are presented.

2.2 Basic Theory of Brillouin Scattering

2.2.1 Basic Concept of the Light Scattering

The kinetics of any scattering process is usually governed by two
conservation laws, namely those of energy and momentum. For the light
scattering process represented schematicallay in Fig. 2.1, these two laws

60)

reduces to these two equations

I+

energy conservation ﬁwi= hw * h (2.1)

s q

-

0y}
hq (2.2)

14

> >
momentum conservation ﬁki= Hks

where ﬁwi, Hms arg, respectively, the energy of the igcident and scattered
phonons; ﬁii and ﬁﬁs are their momenta and ﬁwq and 63 are, réspectively, the
energy and momentﬁm of the phonon scattered. The +(-) sign in eqs. (2.1) and
(2.2) corresponds to phonon emission (absorption) and the scattering process

is called a Stokes (anti-Stokes) process.

N

SCATTERING PHOTON
ENERGY : Ho
MOMENTUM : ﬁKs

INCIDENT PHOTON
ENERGY : how. PHONON(S) EMITTED

1
MOMENTUM : ﬁKi ~ OR ABSORBED : ﬁwq N
' | QUASI-MOMENTUM : Kq

Fig. 2-1. Graphcal description of the scattering of light by
phonons ’
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In most light scattering experiment ki and ks are the order of 105 cm 1

( wave vector = 2T X refractive index X wavenumber), so that q is also around

105 cm_l or less. 1In crystals the size of Brillouin zomne is typically

:108 cm—l. This implies that qne-phonon scattering process, only small
momentum phonons can be‘éxéited. In multi-phonon scattering this
restriction is relaxed although the vector sum of the momenta of the phonons
scattered still has to be small. For example two-phonon Raman scattering,
the two phonons can have momenta Hal and ﬁaz provided El-+aé = Kl-KZ'
Since Ki-ﬁsfzo, we conclude that 31==—32. If these two phonons belong to
some branch (overtone scattering), the Raman frequency Wy~ g is equal to
qu. This is the reason why zone edge phonon energies can be deduced from
- two-phonon Raman scattering. In Brillouin scattering, since the acoustic
phonon frequency is given by wq =v.q (where A is the sound velocity), it
is not possible to neglect Ki'_ts'

In addition to tﬁe above‘consevation laws, the symmetry of the crystal
also imposes restriction on the phonon(s) which ;an be observed by light
scattering techniques. In the scattering process a photon of energy ﬁwi and
polarization Zi is converted into a photon of energy Ews and polarization Zs'
If the small difference in energy between Bwi and ﬁms is neglected, the
scattering can be described in terms of a second-rank tensor known as Raméﬁ

1)

tensor.

2.2.2 Macroscopic Theory of Brillouin Scattering in Cubic Crystals

Macroscopic treatments of Brillouin scattering from isotropic crystals

44)

has been derived by Benedek and Fritsch, in which .the integral equations

are solved. The theory predicts the scattering intensity, incident and

scattered light polarization, in the cubic crystals. In the case of

46) 48)

anisotropic crystals such as wurtzite crystals, Nelson and Hamaguchi

44)

have extended the theory of Benedek and Fritsch by taking into account the
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effect of intrinsic birefringence. In the following, we will discuss the
expression of the Brillouin scattering intensities in isotropic (zincblende)
matrials.
A light wave passing through solid or liquid medium produces an
. . . . 3 . '*+ N ) .+
oscillating dipole moment per unit or polarization P(r,t) at each point r.
The oscillating moments in turn radiate or scatter electromagnetic energy
> >
in all directions. The electric field dE’ scttered to the field point R
—)
by the oscillating polarization within a volume [dr]«il3 is
> > > 2
1 o x dx > x 353, ey /067
R-r R-r

lar | ©(2.3)

dE’ (R, t) =
] - ’ . ”
cz|§ - ¥| t’> =t - IE - zl/c

> > >
In eq. (2.3) lﬁ;; is a unit vector parallel to the vector R - r connecting

the source point ; and the field point i. t’ is the retarded time t -
IE - ;|/cm, calculated using as velocity the speed of light inside the
medium (cm) rather than that in a Qaquum (c).

For low-intensity incident radiation, the local polarization is
linearly proportional to the electric field, the proportionality factor
being the polarizability tensor &. In analyzing the origin of the scattering
we have separated the time average part of the polarizability <o> from the
time—éﬁace fluétuation part 63(;,t). This assumption is justified if only
a negligible amount of light is scattered and no—absorption is present. 1In
cubic crystals the time average polarizability <&5 is a scalar times the
unity tensor, and the index of the refractive index n is indeﬁendent of the
direction of propagation. The tﬁermal fluctuations in a crfstal, however,
cause off-diagonal component to appear in the polarizability tensor. Writting

the electric field of the incident wave within the medium as

> >
>  di(k,-r - w,t)
e i i

E(r,t) = E, , (2.4)
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We obtain that the polarization at each point in the medium is

L >
BE,t) = (<> + 6&(?,t))-§0,e1(ki.r - w3t (2.5)

To evaluate the second derivative offg, as required by eq. (2.3), we must
realize that the characteristic frequency for thermal fluctuations are small

12 s—l) compared to the frequency in the optical region (2‘5‘1014 s—l).

(<10
We may therefore regard G&(;,t) as a very weak function of the time and

write

3B (Z,0) |

2

- wi PE0) ., (2.6)
ot

On substituting eqs. (2.5) and (2.6) into (2.3) and carrying out the

integration . over the illumination volume V at the retarded time t’, ome
- ->

obtains that R > r,

- ’ ' > > >

i(k’>-R -w.t) i -%) -1

B —— Tox [Ty x| (@ +8GE, ) Fy e 4 |dz|]
R v .

W
>, > i2
E’(R,t) = -() %

2.7

- >
where E’is a unit vector parallel to R which is the direction of scattering

and
n.w, nw
—)_11—) ->_Ss—)
ki = < li’ ks = S lﬁ . (2.8)

where n, is the refractive index in direction E’. The integral in eq.(2.7)
represents the superposition of phases of waves scattered from each illuminated
point in the medium. In the absence of the fluctuations(ﬁa) this
superposition leads to a complete cancellation of the scattered waves. The
contribution to the integral from <> term is zero except in the forword

direction, because of,

. . >0 >
fw et K2 L o3 sk, -k . (2.9)
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> >
Scattering out of the incident direction (k’==ki) results entirely from the
.+ .
fluctuations (S8a ). The fluctuating component can be expressed in terms of

their spacial components:

> bl
8a(%,t) = 3/22ﬁ dq]m“(q)e Tru, @) (2.10)
(2m)

In this expansion 2“/‘31 is the wavelength of the fluctuation, wu(Z) is the
angular frequency of the fluctuation correspondiﬁg to this wavelength. The
index u denotes the posibility of a number of branches of the dispersion
relation connecting the wave vector Z and the corresponding -angular frequency
wu(Z). wu(Z) is double valued with (+) to account for the degeneracy in the
dispersion relation for positive and negative running waves. Substituting
eq.(Z.lO) into eq.(2.7) one obtains

(k R (w +u) (q)t)

B @) = - <—)221+>< 1+><J.qul<6oc <q)-E )y &8 =
. R

>
r

ldr! 1(k - k + q)- )
(2 )3/2j | (2.11)

where

(——)(w w<q>ﬁ+ : , (2.12)

The last integral in eq. (2.11) is a delta function provided that the
integration volume is large compared to the wavelength of light,
- > > >
J laz| el ~kg+ T _ (53 sk, -k _+) (2.13)
V > o ’

Thus the wavevector of the fluctuation which produces the scattering in the
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direction iﬁ is that which satisfies the implicit equation

-t -t=k | 2

9=k iz . (2.14)
The solution of this equation is denoted by E and is called the scattering
vector. Equation (2.12) indicates that the frequency of the scattered wave
(ws =ksc/nd) is shifted by amount + wu(q), and therefore eqs.(2.12) and
(2.14) represent the conservation of energy and momentum among the incident,
the scattered photons and scattering fluctuations (phonons). From eqs. (2.8),

(2.12) and (2.13) the angles of incident and scattered light may be calculated

as follows ( Fig. 2.2),

2
A v
sin ei = Tnv [ fS + 5 (ni nd)] , (2.15)
iy f A
s 0
o 2
A v
09 =0 - o __ U 2 2
sin Gd = Sh v [ fS 5 (ni nd)] s (2.16)
d'u fSAO

where the subscript "i'" and "d" denote "incident" and- "deflected" or
(scattéred), respectively, AO the anélength of the incident light ip free
space? VU the sound velocity and'fS the frequenc} of the acoustig waves.
The angles 6; and 8& are the internal angles in the medium. The scattering
angle 6; is defined by

6; = GE-PS& ; (2.17)
- If the scattering medium is isotropic one obtains, n, =n, =n and in the

-d 0

case, egs.(2.15) and (2.16) reduce to the simple isotropic form

' 02/2 = 83 = 0} (2.18)
and
6; AOfs
Sin—2—=m : 5 (2.19)
0'u

where we have to note that 6; is the scattering angle in the medium.

In the Brillouin scattering measurements by acoustoelectically
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Fig. 2-2, Schematic diagram showing the wave vector construction between
the incident light (k.= nlw /c), the scattered light (k ns(wi
+Ho )/c), and the acoustic wave (q=w /v ). .

~amplified phonons, we employ the geometry shown in Fig. 2~3. 1In the case
we measure the external angles Gi and ed (or es==61+8d) instead of 6; and
Sé. Therefore we have to use Snell’s low to derive the incident and

scattering angles outside the specimen (in air). The result for the anti-

Stokes process is48) ‘2
21, o Yu o, 2 2
31nei = n131n[51g' { EHT;—X [fsin—-—g (ni-pd)]} + 81, (2.20)
iy i
s 0
2
v A v
. - . . =1 0 u 2
31n6d = nd81n[51n { oy X[fs-— 7 (ni-n§5]} + 61, (2.21)
du fsxo

where § is the propagation angle of the acoustic waves with respect to the
direction parallel to the slab faces. For the isotropic material and for

8§ =0 we have

8,/2=0,=0, , (2.22)
with es A f
sin -§-=-7£a: . (2.23)

In the case of CdS the refractive indices are n0==2.460 for ordinary
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waves and ne==2.477 for extraordinary waves. The acoustoelectric domains
(T2-mode) in CdS consist of the transverse aoustic waves propagationg in
the c—-plane with its polarization vector parallel to tﬁe c-axis. When the
polarization vector of tﬁe incident light is perpendicular to the c-axis,
the scattered light is polarized pafallelvto the c-axis. Oﬁ Fig; 2-4, is
shown the angle of incident light (Gi.), and the angles of diffracted
light (ed_) as a function of acoustic frequency of CdS. TFor comparison

is also shown the frequency dependence of 9i==6d=(60) for the isotropic
case (n= %%{ne-kno)). In the calculation we have used the-féllowing data:

AO =632.8 nm(vacuum wavelength of He-Ne laser), vu==1.76><105 cm/sec

8s
6% (]ir> o é?i'

84 | o

...........................

Ka M ki medium

" Fig. 2-3. Interaction geometry for optical diffraction by an off-axis
elastic wave. ﬁozwave vector of the incident light. k:wave
vector of the scattered light. q:wave vector of the acoustic
wave. ei:external incident angle. ©0,:external diffracted
angle. ~6_:external scattering angle. S:propagation angle of
the acoustic wave with .respect to the slab faces of the
specimen. '
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O I 2 3 4q S
PHONON FREQUENCY (GHz)

Fig. 2-4, Angles of incident light ((%) and that of diffracted 1light ((%)
outside the crystal as a function of acoustic phonon frequency
(f ) in CdS with the off-axis angle (6 ) of the acoustic wave
vector as parameter, where the incident plane is perpendicular
to the c—-axis of the crystal. The incident light polarized
perpendicular to the c-axis is scattered by the transverse
acoustic waves propagating in the c-plane with the polarization
vector parallel to the c-axis, and the scattered light is

polarized to the c-axis. Isotropic case is shown in the dashed

curves.
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(sound velocity of the acoustoelectric domain in CdS). It should be noted
that there exsists a remarkable difference between the two cases; optically
isotropic materials and anisotropic materials. Substituting eq.(2.10)

e 3 + -+ 1 “)‘ . . .
into eq. (2.11) and replacing 8o by Sc/4m, where 8¢ is the fluctuation in
the dielectric constant tensor, we obtain the expression for the amplitude

of the electric field scattered by the mode p of the fluctuation having the

—_
wave vector K,

N w, 3/2 e .
E,(K’t)h(%)z%—zel{k R [ug 0 (©]t]

u
Toxidy x (s ®-EPT . (2.24)

As follows from the eq. (2.24) the scattered light has the frequency

o)

the minus sign to the Stokes component. The direction of the scattered

+ub, where the plus sign corresponds to the aiti-Stokes component and

light is given by the unit vector Tﬁ and the wave Qector is given by
eq. (2.12). |

The total power dP’(E,ﬁ) in all frequencieé scattered into a sélid;
angle dR’ at the field point ﬁ is ﬁroportional to the mean squared field
strength,

P’ (q,R) = '8%r<f—E>’(E1>,t){2>R2dQ’ . : (2.25)

. The spectrum of scattered radiation is derived using the autocorrelation ‘
function for E’(E,t)l The fluctuation in the dielectric constant tensor
components results from the fact that those components depend on the state
of strain of the solid. A fluctuation produces avcorresponding-fluctuation
in the electric displacement vector 63(3,t)==6§u(3,t)-go. The fluctuation
ip the dielectric constant tensor &1 = (1/2)(3uk/3r1-k3u1/3rk), : and ?
being the dispiacement and position vectors, respectively, of an element of
the crystal. The fluctuation of strains are produced by tﬁé passage of

sound waves. In general, for small strains, the change in the dielectric



- 19 -

=
tensor component Geij(r,t) as a linear function of the elestic strain
-5
component ekl(r,t),

S, . (¥,t)
.. (x,
S >
R ’:E:pijklekl(r’t) , - (2.26)
Wk
where pijkl is the components of the photoelastic tensor. Each temsor for

the zincblende-~type crystals has the following form:

dielectric constant tensor:[e]

€1l 0 0
2
[e]l=10 €11 0 7 gy =1 (2'27),”
0 0 811
strain temnsir :[e]
€11 ®12 13
[e]= €51 €99 €9q. (2.28)
€31 €32 ©33
photoelastic constant tensor:[p]
P13 P12 P30 0 0
Pip Pj3 P1p 0 00 _
[pl= Py3 Pyp P13 0 0 O (2.29)
0 0 0 p,0 0
0 0 0 0 1,0
0 0 0 0 0 p,|

In eq. (2.27), n is the refractive index of the crystal. Note that the
strain [e] is the symmetric tensor. One can write Geij(¥,t) using eq.(2.26)

as



- 20 -

> >
Segy () =€y e D Py e () - (2.30)
k,1

N :
From the Fourier transformation of ekl(?;t) into ekl(q,t), we obtain for the
fluctuation of the electric displacement in the crystal
6D, = 8. (X,t)-E,
i ij i

+
=€ 1003 Pmak1 %1 K Oy

2
[
= il Ej-Ku“(E,t)é’j : (2.31)

It can be seen from eq. (2.31) that in the light sqattering experiment one
observes not Z;but the component of g'in the plane perpendicular to the
scattered wave vector k given by

BeTox dpxdh | (2.32)
The vector gu therefore determines explicitly the polarization of the light
scattered from each acoustic mode M. From eqs.(2.24), (2.25) and (2.31) we
obtain

2 .3

CEy Wy 4 4 v KT

=) 'e
O 1{wu(q)]

dp’ = ae’ . (2.33)

The result of eq.(2.33) is valid provided that ﬁwu<<kBT. The correct form

for eq.(2.33) at all temperature is

cE(z) W 3 é” > N ’ o
dp’=8—ﬂ—<c 2 2 i, (@ [(<n, (@+1>+<n, (9)>] d2°
(4'rr) p=12Pv,
(2.34)
where )
<nu(g)>= 1 . (2.35)

exp <ﬁwu<Z> [kgT = 1)

The two terms in the square brackets at right hand side of eq.(2.34)
correspond to the so-called Stokes component and anti-Stokes component,

respectively. The intensity of light scattered into the solid angle {2’
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during the optical path 1ength r is given by

U2 h
dpP’ (R*) = E l~—i -———[(<n >4—1)4—<n >1dQ’-r (2.36)
Oulpu |
where I0 is the incident intensity and AO is the wavelength of the light in
vacuum. The summation in eq. (2.34) indicate that one must include
contributions from three different acoustical phonon mode, i.e., these from
two transverse modes and one longitudinal phonon mode.
In the case of Bwu<<kBT’ eq. (2.34) can be written in good
approximation as
> .
= k_T/hw . 2.37
n = KT/, (@ | (2.37)
Thus, the energy demsity of eq. (2.34) can be replaced by kBT in the case
of Brillouin»sbattefing by -thermal phonons [@u = hu(g)ﬁwu(g)2 kBT].
The intensity of light scattering through anti-Stokes or Stokes process

is given by
3

2 8
:E:: N
dp’(’) =1 —_ S redQ® . : (2.38)
0 A4 2 VZ
p=1 0 P u

It should be noted here that the solid angle Q° is the internal solid angle

in the sample. In Brillouin scattering measurement an aperture is usually
placed in front of the detector, which determines an external collection
- angle , not the internal cone ’ given in eq. (2.34) and eq. (2.38). For

small cone angles one obtainsés)

cose
dQ dqo’ s (2.39)

ny \/ ny - sin 9

where ed is the external scattering angle. The scattering cross section ©

B
e ﬂ2n8 3 (¢! cosf .
o, = — E o B d (2.40)

4 2 2 :
A - ov. \/ 2 .2
0  u=l u ng nd sin Sd
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where OB is defined as the Brillouin scattering intensity per unit path
length per unit external solid angle.

According to the eq. (2.31), 1ight scattered by acoustic waves should
exhibit certain distinguishing characteristics which should depend strongly
upon the polarization and propagation direction of incident light beam
relative to those of acoustic waves.  To evaluate the intensity of Brillouin
scattering, one has to calculate !Eulzlpvﬁ for the conditions appropriate
to one’s experiments.

Case 1 (T1-Mode Acoustic Phonons in Cubic Materials)
The Tl-mode phonons propagate .in the [110] direction with shear

polarization parallel to the [110] direction. We adopt the configuration

that the incident light polarization is parallel to the [110] directionm.

Acoustical polarization: T = (1/v2, 1/V2, 0) , (2.41a)
Acoustical propagation: IZ= (1/v/2,-1/v2, 0) , (2.41b)
Incident light polarization: TE= a/v2, 1/V2, 0) . (2.41c)

Substituting eq. (2.41) into eqs.(2.31) and (2.32), one obtains ZTl as

>T1

=L - 1
and ng as
2T1 _ 1 - .3
g = 2(pll plz)cosei r, - o (2.43)

where 9; is the incident angle inside the specimen, and the vector ig stands
>
for the unit vector lying the scattering plane. The scalar product of 1§
and IE is given by
-> >
l§° lE =0 , (2.44)
which means that the scattered light polarization is explicitly perpendicular

to the incident light polarization. Substituting eq. (2.42) into eq.(2.40)

we can obtain the Brillouin scattering cross sections for Tl-mode phonons as
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2 4
T E Tl , cosf
11 9] 1 <> 2 K d
o= [ =(P,,-P )cos@f|l+i]
B XA Cll--C12 211 12 i S

(2.45)

n\/n -—sinzed

where Cij is the component of the elastic stiffness tensor. In eq. (2.45),

we used the following relation:
_ 1/2
Case 2 (T2-Mode Acoustic Phonons in Cubic Materials)
The T2 -mode phonons propagate in the [110] direction with shear
polarization parallel to the [1101 direction. We adopt the configulation
that the incident polarization is parallel to the [110] direction.

e >
The vectors T, 13 and 1E are, thus written as

Acoustical polarization: T = (1/v2, 1/v2, 0) , (2.473a)
Acoustical propagation:.ia= (o , 0 , 1), (2.47b)
Incident light polarization: IE==(1/V§; 1/v2, 0) - (2.47¢)
Substituting eq.(2.46) into eq.(2.31) and (2.32), one obtains ZTZ as
’ T2 -> ) .
= 1 . 2.48
| 4 Pssly ( )
and ETZ‘as
T2 T :
£ =py,c080,1% . (2.49)

The scattered light polarization is also explicitly perpendiculatr to the

> > .
incident light polarization, because 1:-1E1=0. Substituting eq.(2.48) into

eq.(2.40), we obtain

2€2 o
o =—al Cos@ili+|2] ~ > (2.50)

— [p
B 14 2C44 44 s 3 3
0 n\Yn - sin Gd

where C44 is the component of the elastic stiffness tensor, and we used the

T2

™ cosed

following relation:

. R (2.51)
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2.2.8 Macroscopic Theory of Brillouin Scattering in Wurtzite Crystals

The macroscopical theory of Brillouin scattering in the wurtzite-type
crystals offeres the closest analogy with that in the zincblende-type
crystals. One must, however, take into account the anisotriéic
nature of the optical properties [i.e., birefringence and dichroism] in these
crystals, since the scattered and incident lights have sometimes different
polarizations. For the crystals with crystal symmetry of 6mm, gﬁZ, 622,
or 6/mmm, the dielectric¢ constant tensor [e], strain tensor [e] and

photoelastic constant tensor [p] can be written as

€11 0 0
[e]l=10 €11 0 (2.52)
0 0 eqq
with
=n®  and =n? (2.53)
€117 1% 2 €337 Mo : :
and '
r1’11 P1p P30 0 0
Pig P;p P13 0 0 0
0 0 0 p,0 O
0o 0 0 0 »p, o‘
_o 0 0 0 o0 p66-]
with

1
Pe6 =3 (P11 ~Pyp) (2.55)
where n and n, are the refractive indices for the ordinary and extraordinaly
rays, respectively. If the birefringence effect is taken into account, the

wave vectors ki[eq.(2.8)], kd[eq;(Z.S)] appeared in 2.2.2 becomesAs)
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R U
;= < 12 (2.55)
N ndws N
k—s>= c liz > (2.56)

where n, and n, are the refractive indices for the polarization of the
incident light and for that of the scattered light, and Iﬁ is a unit vector
in the direction of the scattered wave vector ﬁ.
One can write eq.(2.26) by using the formulation of [p] in eq.(2.54),
-aelj(;’t) - €imsnjpmnklekl (2.58)
and thus the fluctuétioh in the electric displacement vector in the crystal
8D is written 2
60" (q, £)=6e" (4, £) K, = —-];;-quuu(q,t)c (2.59)
The vector E, which determines the polarization of the scattered light

is given by the same form as eq.(2.32), one obtain the Brillouin scattering

cross section in the wurtzite ' type crystal as

i 3 cosed :
- z . (2.60)
0 1 n \/nz-sinze “
d d d

In the following, we evaluate the Brillouin scattering cross section in the
wurtzite type crystals for three special phonon modes;(l) Tl-mode acoustic
phonons, (2) T2-mode acoustic phonons and (3) LA-mode acoustic phonons by

the aid of the above results,

Case 1 (T1-Mode Acoustic Phonons in Wurtzaite Matertials)

The Tl-mode phonons propagate in the direction perpendicular to the
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c-axis with shear polaization perpendicular to the c-axis. We adopt the

configulaiton that the incident light polarization is perpendicular to the

c—-axis and parallel to the‘shear polarizaiton. The vectors ?, iz and<IE,
thus, become48)

Acoustical polarization: % =( 0, 1, 0) , (2.61a)

Acoustical propagation: IZ=( i, 0, 0) » (2.61b)

Incident light polarization: EE=( 0, 1, 0) - (2.61c)

Substituting eq.(2.61) into eqgs.(2.59) and (2.32), one obtains ng as

—)T]___]__ _ > >
£ =5y ) A5l (2.62)
where sz is the unit vector in the OXl--OX3 plane,_and then
2TL2 (py =Py,
[E°4]° P117P12) =+ 22 2
" 2 T 2(cy ~c ) E)Sllle ’ (2.63)
2va1 11 712 ‘

where the sound velocity v,, of this phonon mode is given by the same form

T1
as eq.(2.46). The elastic stiffness teﬁsor [¢] has the similar form as
eq.(2.54). The Brillouin scattering cross section can be obtained by
substituting eq.(2.63) into eq.(2.60). Thus we find that the polarization

of the scattered light is perpendicular to the incident polarizaion for the

scattering by the Tl-mode acousitc phonon.

Case 2 (TZ—Mbde Acoustic Phonons in Wurtzite Materials)

The T2-mode phonons propagate in the direction perpendicular to the
c-axis with shear polarization parallel to the c-axis. We adopt the
configuration that the incident light polarization is parallel to the c-axis.

> > >
The vectors T, 13, and 1E are, thus, written as

Acoustical polarization: ? =(0, 0, 1), (2.64a)
Acoustical propagation: Tg=( 1, 0, 0) (2.64b)

Incident light polarization: I§=( 0, 0, 1) . (2.64¢)
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It is clear from eq. (2.64) that
mir=0, T>Io=0 anda @, d).d =0
q q E =~ @ ) q’1VE’

so that eq.(2.59) can be reduced to as

€
T2 33 2 +
VA : (2.65)
Then, one obtains
€
>T2 332, o> >
S AL =i, (2.66)

where the vector iicin eq.(2.66) is the unit vector perpendicular to the
c~axis of the crystal. Thus we find that the scattered light is polarized
perpendicular to the incident beam. One can finally obtain
2T2,2 p2 €
18777 44 - 33

2
PVra

The sound velocity'vT2 is given by the same form as eq.(2.50). The Brillouin

. (2.67)

scattering cross section can be obtained by substituting eq.(2.67) into

eq.(2.60).

Case 3 (LA-Mode Acoustic Phonons in Wurtzité Materials)

The LA-mode (pure longitudinal) phonons propagate in the direction
perpendicular to the c-axis with acoustical polarization perpendicular to the
c-axis We adopt the configuration that the incident light polarization is

> >
parallel to the c-axis. Thé vectors T, lg and Iﬁ, thus become

Acoustical polarization: T =(1, 0, 0), (2.68a)
Acoustical propagation: I+=( i, 0, 0), (2.68b)

q
Incident light polarization: Iﬁ:( 0, 0, 0) . (2.68¢c)

Thus, eq.(2.59) can be reduced to as

&LA 33)2 1 » : : (2.69)

11 lle

where the vector T”C is the unit vector parallel to the c-axis. It can be

31(6
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seen that the polarization vector of the light does not change after being

the Brillouin scattering process. Finally, one obtains

EM% P31 E33.42 2
ik e o METN (2.70)
2pvLA 11 "11
In eq. (2.70), we used the following relation:
1/2
vy, = (egy /oY (2.71)

The Brillouin scattering cross section can also be obtained by substituting

eq.(2.70) into (2.60).

2.3 Quantum Mechanical Theory

2.3.1 Brillouin Scattering for Uncorrelated Electron-Hole Pairs
The detailed nature of the resonant light scattering mechanism of
the Brillouin (Raman) scattering is examined by quantﬁm mechanical theory.

Expression for the Brillouin (Raman) cross section, GB, can be derived by

49)

the application of time-dependent perturbation theory by Loudon.

Using time-dependent perturbation theory, the Brillouin (Raman) scattering

probability per unit time is given by6l)

: s g lawy2
<f’Hllk><k|Hl|J><J|Hl|l> ]

Pluu) = @r/EH Y | Y
£

ik

(wj-wi)(wk-ws)
x - - 2.72
S(wi W wq) | ( )
where [i> is the initial state consisting of a crystal in its ground state

plus an incident photonj;and !f> is an additional phonon qu;|j> and |k>

denote intermediate states in which excitons are excited in the solid. Hl
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is the interaction Hamiltonian, assumed to the sum of the exciton-radiation

Hamiltonial (HER) and the exciton-phonon (HEP) interaction as follows;

H1=HER+HEP . (2.73)

By permuting the order in which Hee and HEP occur in eq. (2.72) one obtains

the following six terms contributing to the scattering probability.ag)

<0|Hpp (W) [B><B|Hy, [a><a|H o (w,) 0>
+mS) (wa + ws)

Pugsu) = @r/EYY [P

f |a,B
<O|HER(wi)|B><B|HEP[a><a]HER(wS)|0>
(wB +w +ws) (wo‘+ws)

(wB +w0

0

<0|HER(wS){B><B|HER(mi)|a><u[HEP[0>
- wi) (woc+ w

0)

(wB + Wy

<OIHER(wi)|B><B!HER(wS)Iu><u|HEPI0>

+ (w6 + w0+ws) (wa+w0)
<0]HEP|B><B|HER(ws)la><a|HER(wi)JO>
-’ @y + 6, -0 ™ v
A 2
<0|H__|f><B|H,. (w,) |o><a|H__(w ) |0>
+ EP H_ER 1 ER S a(wi_ws _wq) (2.74)

(uoB + Wy = W )(wa+w)

To simplify the notation, only exciton states are shown in eq. (2.74). |0$
denotes the ground state in which no excitons aré excited. |o> and|B>;
represent states in which excitons o and B are excited, respectively. The
Brillouin (Raman)cross section is taken related to the scattering rate P by
the equation

O(wi;ws) =VP/v=nPV/c s (2.75)
where v and c are, respectively, the velocity of light inside the medium and
in vacuo; n is the refractive index of the scattering medium and V its

volume. 1In studying resonant scattering, one usually tunes Hwi, close to
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some excitation energies, ﬁwa’ so of the six terms in eq.(2.74), the first
one becomes the strongest component to reminding terms which can be taken
to be equal to a constant C. Thus in resonant light scattering the Brillouin

tensor Ris can be written as

. LZ <0|HER(wS) |B><B|HEP|a><a|HER(wi) |o> ‘o 2.76)
is v (Wt w ~w,)(w -w,) )
0. B B q i’V e i

where V is the crystal volume. In most cases the constant C is much smaller
than the resonant term and can be neglected. <0[ﬁER(wS)]B> and <a|HEPl0>
are known as the p-matrix elements and informatioq on <B|HEP|a> can be
obtained by the deformation potential scattering. The electron-phonon
interaction <B|HEPla>.is reprented by

<g |Hp o> = Eijégij ' (2.77)
where E;g is the matrix element of the deformation potential, and i and j

refer to the coordinates axis (x, y and Z) and»§;j is the strain tensor.

The Brillouin scattering cross section GB has the form

(>4

e )2 o

2
9% < (Fme |

(2.78)

S|
R,
2 w,'ig! ?

20v
p I i

where the energy density @ can be replaced by kBT in the case of Brillouin
‘scattering by thermal phonons. vu is the sound velocity in acoustic mode .

The dominant term in eq.(2.74) (=eq.(2.76)) can be written as

: P..E, P

1 0B Ba a0
T — — , W =W, tw (2.79)
is V (wB ws)(wa wi) s 1~ g

a,

R

where E is the matrix element of deformation potential scattering and

Ega

and Pa are the appropriate momentum matrix elements, where subscript o

Pog 0

and B stand for single electron hole pair states. The mechanism of the light

scattering can be described from a phenomenological aspect as follows:
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a photon incident on a crystal in a ground state |0> creates a virtual
intermediate electron hole pair in a state |a>, the electron or the hole of
the state |o> will be scattered to a state |B> by phonon via deformation
potential, and finally the electron and hole in the state |B> recombine to
emit a scattered photon (return to the ground state |0>). The scattering
efficiency is expected to resonate when the incident or the scattered photon
energy approaches one of the resonance energies (ﬁwOt or EwB ).
49
Loudon ) has constructed the theory assuming the intermediate state

as non-interacting electron hole pair states. It is usually a good
approximation to assume that the band edge in semiconductor is parabolic in
k space, i.e.,

w (k) =w_ (0) +H%k%/2u (2.80)

o go
9 ,
W, (k) =w_,(0) +Ek>/2y (2.81)
B gB

where U is the reduced effctive mass, which is assumed-to be equal for the
|a> and |B> pair states for simplicity, nga(O) and ﬁwgB(O) are the optical
band gaps at k=0 for pair states o and B corresponding to the incident and

scattered light, respectively. Then with prescription

Knax
VZ —_— = K2k (2.82)
(2w ) ‘
Equation (2.79) can be written as
20gZpaPao [ max 1k
R, o= — 5 — (2.83)
2m) ﬁk _ ﬁk ~
0 (wgB +-—ﬁ— W, 4—wq)(wga + oo Ty )

where the momentum matrix element P and deformation potential Z-matrix

elements are assumed to be independent of k. The integral eq.(2.83) can be

30)

performed from k=0 to kmax' One obtains the following results.
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P .E, P Aw
is~ - 2(%g53/2 w ??wpu_gg [ B-ws)l/ztan_l(w -?w )1/2
(2m) gB ga q & gB s
12 -1, Mg 172 ) 84
- (wga-wi) tan (w __w.) 1, (2.84)

ga

1

where ﬁAwa (or HAmB) is the combined width of the conduction and valence

bands, which is given by
2

Aw hk

gal

Aw

g8

(2.85)

max

In the limit when kmax'+ o, then one obtains the well-known expression

2 P08%8at a0

R =
2 —w_+
@m* Yg %

is

q
with

2 POB:BaPaO

1
[(yg = 0g)

/2 1/2

- (w ] (2.86)

gal - wi)

X

Re.(R. ) =
is (Zﬂ)z wgB

[Iwgs"wslllz

and

2 POB:BaPaO

e(wgB

-w__tw
g q

_ws) _ |wgu-wi-[l/29(wga"wi)] (2.87)

Im.(RiS)=

(2m)? Ygp ™ Ygq

1/2
[ ’wgB_wsl

where 0(z) is the step function.
If wga is equal to wgB’ eq.(2

model) as

e(ws—

X

+w
q

' 1/2
weg) = Iwga-wi[ e(wi-wga)] (2.88)

.86) reduces to the simple form (two band

2 = -1/2
R, = P.E P (0w -w.) (2.89)
is (2ﬁ)2 Oc"oco ol “Tga i
with
_ 2 - _.o-1/2 _
Re.(RiS)-————E-Poa_aaPuolwga il 8 (W W) (2.90)
(2m)
and :
-2 = - -1/2 -
Im.(Ris)-(zﬂ)z POuuuaPaolwga w, | 8 ( wga-+mi) (2.91)



- 33 -

WITHOUT EXITON
3 BAND MODEL

e | ——REAL
FIRST TERM ==~ IMAGINARY
N ' e .
\Q\ ./”/:”
|SECON s
TERM—Y7 \|/
o - WITHOUT EXITON
T oy o 2 BAND MODEL

o

ooy B

TRANSPARENT =~ OPAQUE TRANSPARENT _ OPAQUE

Fig. 2-5.

a) Real and imaginary part of the first and second term of Brillouin
tensor RiS ( eq.(2.86)). b),c) Frequency dependence of the Brillouin
tensor R~ calculated for real(solid line) and imaginary(dashed

" line) pa%% for three band(eq.(2.86)) and two band ( eq.(2.89))

process. d),e) Frequepcy dependence of the squared modulus of
2

"Brillouin tensor |Ris| for three and two band process. w is the

incident frequency,wA and Wy are the gap frequency.
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The wi—dependence of the real and imaginary parts of the Brillouin tensor and
the scattering amplitude are illustrated graphically'in Fig. 2-5. The
squared modulus [Ris|2 which shows the essential spectral dependence of the
scattering cross section is also represented there. Inspection of eqs.(2.86)
and (2.89) shows at once two important propaerties of the Brillouin tensor,
calculated for non-interacting electron-hole pairs: a) !Ris‘z as function of
W is symmetric with respect to the frequency %(wAfka) (wA for the two band
case). Fig. 2-5 d) and e) show graphically this symmetry; RiS is real for
uy<wA_expressing the fact that only virtual electronic process can take place
in that frequency region. RiS is pure imaginary for w>wé and reflects .the
fact that ingoing and outgoing photons are resonance with electronic states.
For wA <w < wB,
part of the Brillouin tensor reflects the demnsity of states. The above

62)

Ris is in general complex. In other word, the imaginary

result disagrees with that of Jain and Choudhury whe obviously omitted

the imaginary part of the Brillouin (Raman) tensor.i

2.3.2 Brillouin Tensor for Electron-Hole Pairs with Coulomb Interaction
In the following we consider the first-order Brillouin scatteing

process and that the virtual intermediate states are assumed to be Wannier-

57)

Mott exciton, and polariton picture is not introduced in the calculation

for simplicity. The first step is to write the total Hamiltonian for a
bounded crystal. The Hamiltonial consists of free photon, exciton, and
phonon fields plus the bilinear exciton-photon and trilinear excion-phonon

50)

couplings.
s s . Pol
The total Hamiltonian H can be split into a polariton part H ° , @

(harmonic) phonon part HL, and exciton-phonon interaction H’:

p=wolt e uwtrw, (2.92)
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Pol _ > A+ A _l__ A+A L
H :—Zﬁclkl(aﬁ a, + )+21:Hwi(bibi + 5 )
K,y v
2mhw
Coa i 1 2 DA ~
vip. g o6 @Al va ) e
iny c|k] ky -ky
U)Z
2@t va et v, (2.93)
ty k| 4c Ky -ky -ky Ky
L > ataA 1
B =) BR(Q) (68, +5 ), (2.94)
> qq
q
—> A'{'A Ai
H' = £, b.b, + c.c. 2.
2.:+1J(q) i35 T ©° | (2.95)
1,359
a 3+, E+ are creation operators for photon, excition, and phonon,

e 1
respectively. % denotes the momentum of photon andy a.polarization lebel; .

i and E are quantum labels which characterize the exciton and phonon states
for a bound crystal, respectively. The exciton label i consists of qﬁantum
numbers for the relative and center—of-mass of the exciton as well as band
indices for the electron and hole band. In eq.(2.93), gi,ﬁ is the bilinear
exciton-photon coupling coefficient, which can be expressed as matrix element
<i!Z;-g]O>, where |i> is the exciton state;|0> is the ground state, with no
exciton present; 24 is the vector potential for photon K; 3 is the relevant
momentum operator.k We shall implicitly assume that the optical tramsition
0~>1i is dipole allowed; fij(q) is the exciton-phonon coupling coefficient.

We now turn to the polariton Hamiltonian and its eigenstates. HPOl is a

bilinear form in the photon and exciton operators, and can be therefore be

diagonalized by a linear transformation to give

Pol > ot A (2.96)
H = .
+E Hc‘kOkaOYBk y "
. K.y 0
0
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1

The vacuum state |0> of HPo is defined by B+YIO>==O for all iO and y. Note
k

that we use label ka of the external photon to label the polariton state. We
shall discuss this more fully below, and also later for the scattering cross
section we shall need to specify asmptotic "incoming" and "outgoing" photon
state and we shall then affix "in" and "out" to the B' and B operators.

The operators ﬁ are linear combinations of the 3 (operator for photon) and

b (operator for phonon). It is convenient for the following to begin with

linear combination of the & and foperators which correspond to the classical

field and momentum variable:

A-I- Pl
3, e 1/2 .t
k -ky e l® a a :
A, T2 Py = EEEDTIG, -a,0 ., o
Ry el ey ok
~ A
b. + b,
A i i i . 1/2 ~t _ 1%
it v R P I CIU CH LT (2.98)
In terms of these auxiliary operators, we write the ﬁ+ operator as
> > >
k.Y k.Y k
A"‘ _ O A O A YA k Yl\
B, =2 A +r® B 4 @6 +n01), (2.99
koY Ty K'Y R'YT Ryt Ry n ot

and likewise for Hamailtonian adjoinf. Scalar amplitude are written -
‘everywhere without caret, the corresponding operators are written with caret.
To find the correct linear combinations eq.(2.99) the equétion of motion is
used.

,HP°1]=Ec|§O|ABi =ﬁw§i . (2.100)
ky  kgy 7 kyy kqy

This can be written as a system of equation for the scalar amplitudes

. 2 _
1wiHi-wai-—0, (2.101)

-mpk,y, +A, =0 7 (2.102)
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2

w .
2 ., i 27 1/2 -
(w; —wHa, =21 = GG~ E 8 %yt 0 (2.103)
®ry? 130
2,2 2 . 2m,1/2
(—w24-c k’ -pr)AK,Y, = =2iw (7{) / E gi,—i’ S0y (2.104)
i
Inserting eq.(2.103) into eq.(2.104) gives
2 2.2, 2 8 — ¢, Dy LBy 2
{-w”+c K +al} Ay = o E e R (2.105)
p Y —> w - w k’.Y’

i,k’y? i

]

- > - >
For simplicity we drop the subscript (kOY) on AEOY . PEOY aior, and HkOY

k’y? k’y?
defined from eq. (2.99). The quantum label i for the exciton can be
decomposed into two labels A and s which are quantum exciton wave.function
is a product of a wave function for the center-of-mass motion Ws(;) and a
wave function for the-rélative motion.

Now we specialize to the case of no spectral dispersion, which means
in particular neglect of the dependence of the exciton frequency wiEwa,S
upon tﬁe center-of-mass quantum number s, and also néglect s dependence in
any matrix elements. This will permit us to evaluate the sums over i = (},s)
in eq. (2.105) and so obtain simplified expressioms. ‘In the case of infinite

> ->
crystals s stands for the momentum k, Ws(r) is simply a plane wave and the

coupling function has well known from

=g’ 6 . (2.106)

In the case of a bound medium, the coupling function 8\g. > can be caluculated
>

by expanding WS(?) in pla ne waves and using eq. (2.106). The result is
- Yy
Bre,kry = 81 LB (2.107)

> -
where Ws(k) is the Fourier transform of Ws(r). Using the f sum rule

2 8 ’
Wy =—ﬁ’1§ :|gK | | (2.108)
A
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which permit us to eliminate w2 in the left-hand side of eq. (2.105). Next

P
we use the completeness of the set of WS(;) which states
> >
8(r-r’), if both arguments are in
E :W:(?)Ws(?’)= the crystal region; (2.109)
s

0 , otherwise

Then the Fourier transform of eq.(2.105) can be written
(~w” - c2V2)AY ) = 4nwzjd¥x(¥,?’>AY ) (2.110)

which is Maxwell’s equation for K(;) in a medium with

Bk
e RB A , if the both

2
A wi— (w=in)

§(r,r’) = arguments are in the crystal region; (2.111)

0 , otherwise.

It is clear from eqgs. (2.110) and (2.111) that this case the integro-
differential equation (2.110) needs to be solved subject to specifying
asmptotic conditions on the homogeneous equation (right-hand side zero),
which physically corresponds to vanishing exciton-photon coupling
coefficient, i.e., gI=0. For this reason, *in is put in the denominator
in eq. (2.111), with n a real positive infinitesimal quantity. The positive
sign (negative sign) in fromt of in corresponds to "out" ("in") boundary

conditions. The polarition operators gz'z and ﬁK ¥ can correspondingly be
0 0

labeled with "in" and "out" to regulate the asmptotic photon solution as
either incoming or outgoing .

Summarizing, we have solved Maxwell’s equation eq. (2.110) with
susceptibility equation eq.(2.111) via diagonalizing HPOl' Once A(?) is
known the other amplitudes can be determined from eqs. (2.103) and (.104).

Equation (2.103) gives, in particular,
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Y

a(2) = 21 &b 1/2 Z — %, (2.112)
- (wtin)

.
if r is in the crystal region and 0 otherwise.
The differential cross section per unit volume, per unit scattered

frequency interval for scattering of a photon with wave vector‘io into a

photon with wave vector'ié exciting a phonon E in the crystal is63)
2 k’
d“o _ L\ 12
dQdw’ (;wﬁc> :E:é[w w? -Q(q)]><[T+ +,§QY(M-F1”)I’ (2.113)
. q O
with
R 4P BB’ o
T S (w-k1n)-—<0{a c+><T (w-&in)a+ Y]0> . (2.114)
kyv’a kg Koy’ g kg

HPE is the photon-exciton interaction in the polariton Hamiltonian eq. (2.93)

and !O> is the product of the free photon, exciton, and phonon vacuum states.
The T operator is

PE .,
™ E (wrin) = @ E4r) + (HPE+H’)W(HPE+H’) (2.115)

The T operator in eq. ( 2.115) describes the scattering of photons by two
potentials HPE and H’. Equation (2.115) can be written as follows by using
an operator indicating which can be established after some algebra

HPE

b3
L —H+HE +H D

1
z-H+H’

PE 1 H’
(z)

PESTTRRe

PE

1 H
P ) . (2.116)

+(1+H
1+

The operator in parentheses in the second term when applied as in eq.(2.114)
will permit us to introduce new states. The application of this operator to
the ket ai |0> will produce a new state which we call [¢+ >, which can be

labeled byothe "in" and "out" labels. This state can be identified as an
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eigen state of HPOl. Thus let the new state be64)
[¢%“§>= (1+ 1 5ol HPE)ai 0>
0 h(w+1in) - H koy
(2.117)
[¢I<’lf{l>= (1+ L 5T HPE)Q-_‘; 10> .
0 h(w -in) - H koy

For vanishing exciton-photon coupling equation (2.117) reduces to a photon
plane wave. Choosing the plus (+) or minus (-) sign with (in) in eq.(2.117)

produces "out" or "in" going scattered waves. TFor vanishing exciton-photon

/\—f‘ /\+
coupling a=0 and the B> operator reduces to Ai Depending on chose of
k vy . dY.
tin in eq. (2.111), these operators become the Bip%t and correspondingly the
0

" and "in" scattered waves.

"in" operators which describe "out
However a solution of the Schrddinger equation which describes
scattering of a particle in a potential is uniquely determined by the

incident wave vector of the particle (here photon) and the asymptotic

behaviour. Thus they are identified

14{»“% = ﬁl’{"utlm (2.118)
oY oY
in _ _ »tin

MIE > = Bkoy]0> . | (2.119}
0y

This important step permits us to rewrite the original transition matrix
element between bare photons as a matrix element between appropriate polariton

states. Then eq. (2.114) becomes

. B ¥
T, ., =<0l & wiPos - E £y (@)<0|B" b:bjB_fut[O>
koY 4 koY kgy? a4 kg 13 koY T kgy

-> ~q A i A~
- E £, @(<0] (8] ,b]11b,, 81 1418]" ,bj]{€2,3i0“t]|o> | (2.120)
13 koY koY koY kY
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and using eq.(2.112) this becomes

OY,cl 0 ij
£ (Q) (w, +0°) (W, +w) +£, . (Q)( ) (w?
13 (D @) +07) w, +w) ij(q) w=-w) (W -w,) (2.120)
ST 3T
i J

>
If we trnasform the k label in i= (K,i) into ? space, eq.(2.120) becomes

2
do _ 53 s -> - 2
andw’ - ¥oXo Z Slo-w -Q@1] R, (@S, L @], (2.122)
4 y Yy’ p
/2 vy > Y% 1/2
> Wy gAfAA’(q)gA wk’
R 5(q,w) = .
A ‘ AN ww’
X 1 + 1
[ﬁwx-ﬁ(w-kin)][ﬁwk, “R@’ +in)] [wa-+ﬁ(w-kinﬂ[ﬁmx,-&h(wi Fim)]
' (2.123)
->
>k :ln* k out .
SW,(?Z) R T (r), 0 > (), (2.124)

C

The vector potential A in eq. (2.124) is determined by Maxwell’s equation
eq. (2.110) and the condition that outside the crystal the incident or
scattered wave K taken to be unit amplitude. The prefactor in eq. (2.122)‘is
calculated using this boundary condition. Tge letter C in eq. (2.124)
means that the r integral runs only over the crystal. One obtains the
scattering efficiency {dimension [1/(length times frecuency)]} from the cross
section dZO/dew’ [dimension (length squared/frequency)] by calculating the
latter for unit volume.

Next we consider a simple insulator and we limit duréelves to one
valence and one conduction band and the corresponding discrete and continuous

exciton state. The bands are assumed to be parabolic and the band masses
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negative and positive for the valence and conduction band, respectively.

The quantum number A is then determined by the internmal exciton momentum

K and a discrete variable n=1, The oscillator strength gI 1565)
Y _ -1/2
gy = (e/m)<PY>(wA ) ¥y (0) (2.125)
> X > -> ‘
<P>\>= fdr¢v(r)PY¢c(r) : (2.126)

where ¢ is a Bloch function at the zero center. The momentum matrix element

is assumed to be nonzero. For free electron-hole pairs
2
v, ]°=1, (2.127)
k

while for Coulomb correlated pairs

T/t IE!
;o] =2 (2.128)

!2 1
|| sinh(ﬂ/rolﬁl)

T 733
mr n

v, (0)

where Ty is the 1s exciton radius. The Brillouin tensor for correlated

electron-hole pairs becomes

e2<p s<p ,S(c -c_)
Y Uy? cc Vv

2

T0.1/2
RYY’ ((1)) = (T)

W wm

x<:§i ; 3 :

ER [ﬁ(w-+in)-+EB/n2-Eg][ﬁ(w’4-in )4—EB/n2-Eg]

>
® em/rolkl/sinh (r/r |K|)
T | dkk ) 7 :
™ [A(w+in)-h"k /Zu-Eg][H(w’-Fin)-ﬁ k /Zu—Eg]
0

(2.129)

Here EB is the exciton binding energy EZ/ZUrg of the 1ls exciton, U is the
reduced mass. In eq. (2.129), the first term is the contribution f;om
descrete exciton levels and the second term is the contribution from
continuum exciton leveis. Writing the numerator in the moré.symmetric way as

follows:
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m/r

k| z
o 07! /sinh(n/r|k])

1+ coth(n/rO!E{ )

1+ coth(Tr/VEB/Ek ) (2.130)

By using these relation one obtains

Rcont.(uD __A Kdk 1+ coth(m EB/Ek) (2.131)
vy’ 2mr o [A(w+1in) - E, - Eg] R(w’ +1n) - E - Eg]

where Ek==ﬁzk2/2u, A is the prefactor appeared in eq.(2.129). The integral

in eq.(2.131) can be splitted into two parts in accordance with the -

numerator 14—coth(W/EB/Ek).

term is performed by contour integration in the complex E

Here the complete integration in the second

59)

plane. The

k

first integration is trivial. The second integral can be performed by

contour integration in the comﬁléx plane as shown in Fig. 2-6. There are

Im.E g

% 5
><45u:1
S

Re. EK

a, = ﬁ(w +i77)-Eg
dz= ﬁ(w'+i77)—Eg

Fig. 2-6. Contour for the evaluation of eq.(2.131)
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single poles at Ek=al=ﬁ(w+1n) —Eg,Ek=a2=ﬁ(m +1in) —Eg and at the

singularities of Ek=—EB/n2 (n=1, 2, 3,*-++ ) arising from coth (’WEB/Ek)

Using the formula

E = |
1. /% 11
coth(m/EL7E ) =V & [ 1+ 2y S5 —% (2.132)
B n=1 " E + )
k 2
n
one obtains ~
h(w +in) -E_ |

oQ

cont. ___A
RYY’ (W) = 4EBﬁwq [ln h(w?>+1in) - E

0Q

+ i{ tan—l[ (Ao - Eg) /fn] - tan_l[ (hw’ - Eg) /Anl}

) ; N \/ Ex ) | \/ Ep
T coth{T\ ¥+ -, /° coth{m H(w’+in)—Eg>€
1e= 1 1
_ 52 =t ] (2.133)

2=l n° [B(w+in) + EB/_nz—Eg] [E(w’ +in) +Ey/n” -5, ]

Then eq.(2.129) can be extended to the case of three band process (one

conduction band and two valence bands). By using egs.(2.129) and (2.133)

‘ 2.
C 00 = 35.1/2 © Pop=Ratn0
R, == R sy = —_—
1s lmazz Y OLZB(V) 4 32
0 vy ’ o™

[ae]
| 2 .

N 2 . 2
=1l {E(wi+1nD; +EB/n —Ega][ﬁ(ws+1nD)+EB/n —EgB]

ﬁ(ws + inC) - EgB,
ﬁ(u)i+ inC) -E

1
YA (E ~E +Ew)[ln
B'gB "ga T q go

. -1 - |
+4{ ean” [ (fuy - ) /fnc] - tan l[(ﬁws ~E_g) /fin;])

[ E :
+ 11T%coth (’ITVH (wi"'inc)'Ega‘ > coth <TT\/F: (ws+inc)—EgB ) s]

_i 1 ‘ 1
] (2.134)

3 . 2 . 2
n=1 2n [ﬁ(wi+1nc)+EB/n —Ega][ﬁ(ws+1nn)+EB/n —EgB
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In eq.(2.134) the first term corresponds to the n-th discrete exciton
contribution and rest four terms correspond to the unbound continuum exciton
contributions. E  (=hy ) and E _(=hw _ .) are optical ener aps for

8o, 8ol g8 g8 P 8y gap

incident and scattered light, respectively, and e the phenomenological

p

damping factor for the discrete and continuum exciton levels, respectively.

The broadening effect removes the divergence at critical points in the

Brillouin tensor. For simplicity we assume Np =rnj=r and no incident light

frequency dependence in the present calculation. Detailed discussion about

the damping factor (life time broadening effect ) is presented in Capter 6.
In the limit EB—>0, which condition corresponds to the no Coulomb

interaction (free exciton model), the hyperbolic contribution'in eq.(2.134)

' . ; . . 66)
yields for following expanssion given in eq. (2.137). Using the formula
1,2 z3
coth z = ;+§—E+--- , ' (2.135)
with _ 1
coth z —p -z—'(if z>0 ), (2.136)
one obtains
E E,>0 .
coth 7 \/;(w T ?-—E — 1 [A(w+1in) - E oL]l/z,(2.137)
1T ga TVE. &

B

and the other part of eq. (2.134) vénish asymptotically when EB->O.

Using the above relation, eq. (2.134) reaches asymptotically the-
expression for the Brillouin tensor for free electron-hole pairs given in
eq.(2.86). 1Inspection of eqs. (2.134) and (2.86) shows several important
properties of the Brillouin tensor in the case of Coulomb interaction.
Brillouin tensor is, in general, a complex function and consists of real and
imaginary part and eq.(2.134) is expressed as follows:

R, = R® +ir_, © (2.138)

where r and i indicate real and imaginaly part of Ris’ respectively. It is
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. . . r i
convenient to decompose the discrete and continuum part of RiS and RiS as

follows:
Rr = Re (Rdisc. i Rcont.) (2.139a)
is ) is is ? :
RY = 1. gdiser 4 goont.y (2.139b)
is is is

By using eq. (2.86) we have already presented the dispersion curves of RiS
near the direct gap semiconductors in Fig. 2-5, based on the simplified 2-
and 3- band model (one conduction band and two valeﬁce bands; Ega = EO’
EgB = EO + AO’ where AO is the separation of the_valence bands). From Figs.
2-7 to 2-13, we shall discuss the dispersion of RiS where exciton effect is
taken into account (with exciton case). Our numerical calculation of Figs.
2-7 to 2-13 using the formulas of Brillouin tensor was carried out on the
HP 9825A desk-top computer. It may be worth nothing however that the
numerical summation shows that the n sum rapidly converges; taking 10 terms
is sufficient for an accuracy of‘10_6. The number of calculated points is
1400 ( 0.5 meV interval) and the total calculatién time is about half. an
hour. The calculated data are stored in the memory and drawn by a plotter
" (WATANABE WX 4675 Type).

First of all, we comparedvthe continuum part of Ris (with exciton)
~and RiS of no exciton case. The results are shown in Fig. 2-7. 1In Fig. 2—7,
four different curves are calculated; a) real part of the continuum‘part of
Ris in the case of the Coulomb interaction (EB==28 meV, I'=0 meV); b)
imaginary part of the continuum part of Ris in the case of Coulomb
interaction (EB==28 meV, I'=0 meV); c¢) real part of RiS in the case of no

Coulomb interaction (E_,=0 meV, I'=0 meV); d) imaginary part of Ris in the

B
case of no Coulomb interaction (EB==28 meV, I'=0 meV). The effect of

cont.

Coulomb interaction on Re. (R1S ) consists mainly in the appearance of

logarithmic singularities at E==E0 and E==E0-FAO. On the other hand the
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N cont. ) )
imaginary part of RiS shows dominant peak between the resonance energies.

This result mahifests that the contribution of the imaginary part of Brillouin
tensor is important, especially in the region near the band gaps. On the
contrary the real and imaginary part of the Brillouin tensor in the case of

no exciton (curves c and-d, respectively) shows mirror symmetry respect to

E==E0-+(l/2)A0. Figure 2-8 shows the calculated curves of the continuum part

cont.

of Ris (=Ris ) based on the three band process with three different

broadening paramenters ( I'=0 meV, 20 meV, and 40 meV). Below the band gap,
‘real continuum part shows resonant enhancement. Above the gap, the real
continuum part is the same order of magnitude as below but different sign.

When the excited states have an infinite lifetime (I = OmeV), the real part

cont.

of RlS shows divergence at the band gap energies, while the imaginary

ont.

s is zero when the incident photon energy E is lower than that

part of R;
of EO , and nerly zero when the incident photon energy E is higher than that
of E04-AO, and has positive non~zero value between EO and Eoi-Ao. The
broadening paramenters broaden the resonant features and decrease the
intensity of Ris' In Figs. 2-9 and 2-10, we show the discrete part of Ris
which was calcualted by using the first term of eq. (2.134). 1In Fig. 2-9,
we show the real part of Rgisc., where we find divergence at ground state
exciton energy (dashed curve) and narrow resonant peaks arising from higher
order exciton states (n>2). The damping parameters broaden the resonance
feature. In Fig. 2-10, we show the imaginary part of Rgisc.. It is
important to point out that if the photon enegy is resonance with exciton
state, real part of Ris is completely zero and imaginary part is infinite
when T'=0. The spectral positons of the infinite peaks correspond to the
n=1and n=2 exciton states. In Figs. 2-11 and 2-12, we show‘the real and

imaginary part ot RiS which was calculated by using eq. (2.134). The discrete

and continuum contribution add up constructively below the band gap leading
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to a strongly increased Brillouin efficiency due to the Coulomb correlation.
Above the gap the discrete and the real part of the continuum contribution
have different sign and roughly of the same sign of magnitude. The resulting
cancellation makes the total real part of RiS (Fig. 2-11) rather small in the
continuum. This destructive interference is also discusséd in ref. 55.

Figure 2-12 also shows that the Coulomb correlation tends to diminish somewhat
the imaginary part of the Brillouin tensor. In total as shown in Fig. 2-13,
the Coulomb attraction between electron and hole causes strong asymmetry in
the Brillouin efficiency IRiSI2 with respect to the gap, a strong enhancement
occurs at n=1 eﬁciton state. Theéé resonant features are in contrast to those
shown in the case of no exciton, where the Brillouin scattering efficiency

IR. l2 shows sjmﬁetric form with respect to the band gap.

18

The resonant cancellation can be explained by the following relation;
o, = C|[R, +R ’1'2 | (2.140)

B is "0' °?
in which C is the prefactdr appering on the right-hand side of eq. (2.134),

Ris is the resonant contribution given by eq. (2.134), arising from the

M0 critical point, and R0 is a non -~ resonant contribution arising from the
other far off critical points in the band structur. The resonant contribution

Ris is opposite in sign to the nonresonant contribution RO in the longer-

wavelength region. The resonant cancellation, therefore, occurs at a

wavelength when Ris + R0 = 0. The experimental results of resonant

cancellation will be discussed in Chapter 5 and 6.
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2.4 Defofmation Potential Scattering
and Momentum Matrix Element

The intermediate electronic states produced by the incident light
interact with the acoustical phonon via deformation potential interaction,
resulting in a change in their ‘electronic states. The transitions of the
intermediate electronic states are determined by the transformation
properties of the excited states and relevant acoustical phonon modes in
crystals. Such a selection rule of the deformation potential scattering
determines the electronic transition process (inter- or intra-band process)
which plays an important role in the resonant Brillouin scattering process.
The excitation of an acoustic phonon produces a displacement of the atoms
of the lattice, and this displacement perturbes the periodic potential,

leading to the electron-phonon interaction energy H The electron-

EP’

phonon interaction is linear in the component u of the relative
) 49) A )

displacememt, and a matrix element of HEP is written as

<a|Hp, [8> = gy ula (2.141)
where a is the lattice constant, included to give a convinent normalization.
The deformation potential EBa is a matrix element»of the perturbed periodic
potential with respect to u.

In this section we shall present the non-vanishing matrix elements of

deformation potential scattering of hole (or electron) in zincblende and

wurtzite crystals.

2.4.1 Zincblende Type Crystals

As shown in Fig. 2-14, the band structure of the zincblende type
crystals consists of twofold degenerate s-like conduction band with double

symmetry F6 and a fourfould degenerate p-like multiplet (J=%3/2, m_=13/2,

J

+1/2 in angular momentum notation) with P8 symmetry and a spin-orbit~
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CONDUCTIO
BAND

[
1
A-VALENCE

B-VALENCE |
I BAND \T,
C-VALENCE
r BAND r,
ZINCBLENDE WURTZITE

Fig. 2-14.

Schematic illustration of the lowest conduction band and
upper valence bands in zincblende and wurtzite type
materials. Selection rule of the dipole transition

is also shown, where ||and_L_indicate the polarization
parallel and perpendicular to the c-axis (or z-aixs), -
respectively.
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splitting energy AO. The dipole transition is allowed between conduction
band and any valence bands in any case of the incident light with linear

polarizaziton. The unperturbed wave functions of three valence bands are

given by67) .
o, = %[2z++(x+ iy, (2.142)
oy, = %] E+ind> | (2.143)
o = :/1—5|z+- (X+17)4> (2.144)
o,.= 71_6—[2z+ - (X- iVt (2.145)
2= %[ (X—1iV)4>  » (2.146)
7q>vc,'= /lglzw X-1iv+> (2.147)

where * and ¥ indicate spin up and spin down, respectively, and subscript
A, B, C of &, indicate the corresponding A, B, C valence bands,
Vaou
respectively and A’, B’, and C’> indicate the Kramers conjhgates of the
corresponding wave functions. X, Y, Z are the valence-band wave functions
which transform as atomic p functions under the opérations of the group of
tetrahedron and S is the conduction band wave function which transforms as
- an atomic S function under the same operators. In order to calculate
) ) i . ) ., 68)

eq.(2.141), we use Picus and Bir’s strain orbital Hamiltonian.

=3a’(e + + 2.148
HXC a’ ( XX eyy ezz) ( )

for the conduciton band at K==0, and

_ a 2__ 1_2
Hxv-— a(eXX-Feyy-Fezz) 3b[(Lx 7;£.)exx-kc.p.]
© 6d '
- — {[LX,Ly}-Fc.p.} (2.149)

V3
for the valence bands at ﬁ==0, In eqs.(2.148) and (2.149), the parameter a’

and a are the hydrostatic-pressure deformaiton potentials for the conduction
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and valence bands, respectively, and b and d are the uniaxial deformation
potential appropriate to strains of tetragonal and rhombohedral symmetry,

respectively. e, is the component of the strain tensor, Li the orbital

angular momentum operator given by69) ]
A 0 1 O b [0 i O B 1 0 0O
LX =—|1 0 1 L =—]|1 0 i, L =—]0 0 01,(2.150)
/2o 1 ol’ Y /2Lo i 0 Z /2Lo 0 -1
and _
1 0 0O
12=L2+L2+Lz=zﬁ 0 1 o] . (2.151)
R A [0 0 1

"c.p" in the right-hand side of eq.(2.149) indicates cyclic permutations
with respect to the indices x, y, and z, and the quantity in the square

bracket denotes the symmetrized product:

(2.152)

1
[LX,Ly -2(LXLy4-LyLX) .
In the case of the presence of all strain components, the strain-
orbital Hamiltonian matrix for the valence bands can be written in
Table 2-1.

>
The acoustic waves produce a displacement u(r,t), which can be given

by the following plahe—wave form:

> o > '
uZ(r,t) = quoexp[i(q-t-qwt)] s (1.153)
+ . . 3
" where 7 is a unit vector in the direction of the polarization of the sound
wave, and subscript 7 represents the component of the direction x, y, or z.

> : .
The strain components eij(r,t) are related to the elastic displacememts

u(@, ) by?®
- L 3Ui+ du, ) ' (2.154)
ij 2 Brj or :

The non-zero component of the strain tensor can be obtained from eq.(2.154)
The corresponding non-vanishing strain components obtained from eq.(2.154)

are as follows, (See,eq.(2.41));
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For Tl-mode acoustic phonons:

e and e, with e__=-e . (2.155)
XX vy XX yy

For T2-mode acoustic phonons:

eyz and e, with eyz= e . (2.156)

where the Tl- and T2-mode acoustic phonons propagation in the [110] and
[001] directions, respectively, with shear polarization to the [110]
direction. The strain-orbital Hamiltonians [eqs. (2.148) and (2.149)1, thus,

become

H . =0 (2.157)

xC
2 1_2 2 1_2
HXV -3b[(LX -3 1L )eXX +(Ly-—§-m )]gyy (2.158)

It

for the Tl-mode acoustic phonons, and
HXC =0 | - (2.159)
--%4 {[L_,L le_ +I[L ,L le_} (2.160)
v’z Tyz z’7x" zx

V3
for the T2-mode acoustic phonons. It is noted from eqs(2.157) and (2.159)

HXV

that the deformation-potential scattering of electron in the conduction
bands disappears for both the Tl- and T2-mode acoustic phonons. The wave .
functions of the p-like valence bands can be now in the matrix

representation as follows:

1 0 1
Oyp = =2} 1la+j0|B) (2.161)
3 0 0
1 : :
)
. I:O:Ioc (2.162)
0
1 |0 1
% = (| 1] - V2| 0lR) (2.163)
/3 Lo 0 :

0 0 v
0,0= “=(/Z | 18- [0]a (3.164)
V3 0 1 |
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o

op=| 0|8 (2.165)
1 _
1 |0 0

Qo= —=(| 1|8+ /2101 o) (2.166)
V3 Lo 1

where o and B indicate spin-up and spin-down, respectively. Substituting
eqs. (2.158) and (2.160), and eqs. (2.161) to (2.166) into eq.(2.141), one can
find the deformation potential scattering of holes_ih the valence bands. We

obtain the following results:

— - —
- = = = +H =O

:B,A=/§b, :C,B=VEB, N 0 (2.167)
for Tl-mode acoustic phonons, and
®aa = Zpp = F¢c = 0
= . = = _ (2.168)..
op =4 Egp = a/v2, “AC' =/6/Y2

for T2-mode acoustic phonoms. It is clear from above, results that the
interband deformation-potential scattering is forbidden for both the T1-
and T2-mode acoustic phonons. Fiure 2-15 shows the schematic diagram of the
electronic transitions which plays an important role in the first-order
Brillouin scattering process. EB@ means that the excited holes
in the o valence band (0 exciton) are scattered By the deformation potential
to the B valence band (B excitons). Note thaf EBa has the symmetric
property:

EB& = EaB (2.169)

2.4.2 Wurtzite Type Crystals

‘We shall obtain the matrix element Z_  in the case of the wurtzite

. “Ba
. . 70,71)
type crystals based on the quasi-cubic model

71)

It has been pointed
out by Hopfield that the direct-gap of wurtzite can be obtained

from that of zincblende by the action of a small hexagonal crystal field.
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T2-mode | LA-mode

Fig. 2-15. Schematic diagram of the allowed transition process for
holes in valence bands in the case of a) zincblende and
b) wurtzite crystals. ‘
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Under the spin-orbit interaction and crystal field interaction, the energy

difference of the split valence bands (correspond to the A, B, and C

71
valence bands) are given by )
Aso+ Ac \/ Aso+ Ac 2 2 ’
Epa = EgB - EgA ==y - Ve Feole (2.170)
Aso-'-Ac \/ Aso.*-Ac 2 2
Foa T Bge T Ea T Tz TV T A (2.172)
\/ Aso+Ac 2 2
ECB = EgC - EgB =2 G——jr——-ﬁ - EASOAC (2.172)

where Aso and Ac are the spin-orbit energy and crystal field parameter,

respectively. The corresponding wave functions of the three split valence

bands are

e | (2.173)
5= apS_t+ aSyt . _ (2.174)
¢VC= aCS_+— aBSO+v, | (2.175)
@VA,=S_+ , (2.176)
@VB,=aBs++— aCso+ s (2.177)
D' =acS,t agSyt - (2.178)

where 4 and | represent spin-up and spin-down, respectivély, and S+, S_ and

SO are defined by using the p-like basis functions X, Y, Z as follows.

5, = R+iN/V2, 5 = X-iNNVZ, 5, =2 - (2.179)
The admixture coefficients aB and'::l.C are
_ 1., 3 2.-1/2
aB-[1-+2(2 Z_—EBA) ] s (2.180)
SO
_ 1 _.3 2.-1/2 (2.181)
a.= [14-2(2 ZT—ECA) ] .
. 80
a 2 + a 2 =1 ., : (2.182)
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The wave function of the conduction band is s-like in character:
¥, =g > . (2.183)
It has been shown that the strain—orbital Hamiltonian Hx for the s-

72)

like conduction band of wurtzite crystals at k=0 is given by
ch = dlezz + d2(eXX + eyy) s (2.184)

for the p-like valence bands by

o 2 2 2 2
H = (C14-C3LZ )eZZ-F(C2-+C4LZ )(exx+-eyy)-+c5(L_e+4-L+e_)

+C6([LZ,L+]e_z +[LZ,L_]e+z) , (2.185)

where the coefficient Ci and di are the deformation potential, eij is the
component of strain tensor e, = e - e *2ie ,ande, =-e * ie , and
* XX vy Xy Iz Xz yz
Li is the strain-orbital momentum operator having the same form as
eq. (2.150) and L, =(th iLy)//i} In the case of the presence of all strain
tensor component, the strain-orbital Hamiltonian matrix element for the
valence bands can be written as shown in Table 2-2.
The non-vanishing strain components of wurtzite-type crystals are

obtained from eq.(2.154) as
Tl-mode acoustical phonons:

e (2.186)

Xy
T2-mode acoustical phonons:

e and e with e = e : . (2.187)

zX vz zZxX vz

The strain-orbital Hamiltonian eqs.(2.184) and (2.185), hence, become

H=0 (2.188)
2 2
Hy = Cg(L "e, + 1, "e)=2C5(LL +Lo ) Sxy (2.189)

for the Tl-mode acoustical phonons and

Hoo =0 | 4 - (2.190)
Hoy = C([L L. Je_ +[L L le, ) (2.191)

206(LXLZ-FLZLx)eXZ
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for the T2-mode acoustical phonons. It is clear from eqs. (2.188) and (2.190)
that the deformation potential scattering of electrons in the conduction

bands disappear for both Tl- and T2-mode acoustical phonons, as similar to

the case for the zincblende-type crystals. The wave functions of the p*liké
valence bands [eqs. (2.173) to (2.178)] can be written in the matrix

representation as

1
o, 0] a , (2.192)
0
0] 0]
®VB= ag 0l o + aC 118 (2.193)
_l4 .OJ
3 -
@VC= aC O] a - aB 118, - (2.194)
_l_ _0-
0
e (2.195)
1
(1] 0]
Sype= ag [Of B - a. [1]a > (2.196)
[ 0] 0
1] 0]
@VC,= aC g B+ ag é o . (2.197)
R SR

'Substituting eqs. (2.189) and (2.191), and eqs.(2.192) to (2.197) into
eq.(2.141), one can obtain the deformation-potential scattering of holes
in the valence bands of wurtzite-type crystals. We finally obtain the

following results:

— —
(=)

“AA = TBB ~CC
Zpa = 23Cso Zep 705 SacT 3cSs (2.198)

for Tl-mode acoustical phonons and

L= @/2)¢C, , =, . = (1/2)a.C (2.199)

“CB 6° “A'C B6
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for T2-mode acoustical phonons.73) It can be found that form the above
result that the interband deformaiton—potential scattering is forbidden
for both the Tl- and T2-mode acoustical phonons.

The matrix elements of the deformation-potential scattering for
longitudinal acoustical phonons in wurtzite crystals can be also be
obtained by the same procedure mentioned above. Now, we present the matrix
elements of the deformation potential scatteing for longitudinal acoustic
phonons (LA-mode). From eq.(2.68) and (2.154), the atomic displacement of
LA-mode phonon produces the non-vanishing strain coﬁponent e The strain-
orbital Hamiltonian of eq.(2.184) and (2.185), thus, become

H = (2.200)

xC d2exx
2 L2 2 2 2 2
- = - 2.201
H y (c,+C,L e +Cc(L e, +Lje) [c, +2C5 (L Ly) +C L Je )
Substituting eqs. (2.200), (2.201) and eqs. (2.192) - (2.197) into eq. (2.141),

one obtains the following matrix elements:

_— I L2 o 4 L 2
Epa=dpm (€4 €Y, Epp=dy = (Cotag €, Ec=4d, (C,+acCy)
Epa=2pCs> Egp = 2cCs 0 Fyp T 330 (2.202)

It should be noted. that the ipterband deformaiton potential scattering Eua
is allowed in the case of LA phonons, in contrast to those for the
transverse acoustical phonons.

In order to determine the Brillouin scattering process, we have to
take into accousnt the selection ruies of opticél transiton (dipole
transitions) in addition to those of the deformation potential scattering.
The p-matrix elements in zincblende and wurtzite crystals are calculated
by using the wave functions shown in eqs.(2.142) to (2.147), and eqs.(2.173)
to (2.178), respectively. The results ars shown in Table 2-3, where S is

the s-like conduction band, P =<X+|PXIS> =<X+|PX{S> and PY and P are

also defined similarly.
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Table. 2-3. Momentum matrix elements of the zincblende and wurtzite
a)  Zincblende )

P_ St Sv P St S¥
Ova 0 RIY6 Syar P, /Yo 0
R N %: 0 . 0 )
yc 0 -P_/V3 Sycr P_I3 0
Py s St P st st
. 0 ~iP /{6 dyy  TIBVE 0
Oyp iR 0 @VB, 0 ipy/JZ
Pyc 0 iPy//3 - iPyA/3 0
P st St P st St
oy  VOP,/3 0 Oyar 0 Y6P /3
Dyp 0 o ypr 0 o
oy V3P,/3 0 S 0 /3P _/3

b) Wurtzite

P St St P st st
Sua P_/V2 0o Suar 0 PX//Z
Oyp  apP,/v2 -0 I 0 agP /v2
oyc 8P /Y2 0 yer o ak /V2
2, st S¢ 2, st st
s 5 ‘ P o
- 1Py// 0 Oy pr 70 1Py//2
QVB 1aBPy//2 0 ) QVB' 0 —1aBPy//2
Oy iaCPy//Z 0 e 0 -iaCPy//Z
B, st S P, st St
. 0 0 yar 0 0
%yB 0 ack, oyp' T2, 0
o) 0 -a_P o) a.P 0
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2.5 Summary

In this chapter, we gave a detailed description of the theoretical
treatment of the resonant Brillouin scattering. We presented both macro-
scopic (classical) and microscopic‘(quantum—mechanical) theory. We
learned from the quantum mechanical theory how resonant enhancement and
cancellation occur in the dispersion curves of resonant Brillouin scattering
cross section. We exammined carefully the resonant characteristics of the
scattering cross section both below and above the fundamental absorption
edge. From the present theory, we find the Coulomb inferaction between
electron and hole causes a strong asymmetry in the Brillouin efficiency with
respect to the band gap, a strong resonant enhancement only occurs below
the gap.irlt is also found, not only the real but the imaginary part of the
Brillouin ‘tensor as well plays an important role in determining the dispersion
curves of the resonant Brillouin scattering cross seckion near the fundamental
absoption edge. From the analysis of'deformation potential scattering of
intermediate virtual stétes by acoustic phonons, we showed that the observed

resonant feature is interpreted in terms of the three band model.
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CHAPTER 3

PIEZOBIREFRINGENCE THEORY

3.1 Introduction

In fhis chapter we shall discuss the theory of the photoelastic
constants in zincblende and wurtzite materials. From a macroscopical
point of view, the Brillouin scattering cross section is known to be
proportional to the square of the photoelastic constant. Such constants
can be obtained independently from the stress induced birefringence
experiment (piezobirefringence, P.B). This is evident if we consider the
situation that the piezobirefringence is characterized by the change in the
dielectric constant induced by the static stress (uniaxiai stress), whereas
the Brillouin scattering’is caused by the change in the dielectric constant
by the dynamic stress (lattice vibration or travelling acoustic waves).
Therefore both effects are characterized by the magnitude of the photo-
elastic constant. »

In Section 3.2, we shall present the basic concept.of the piezo-
birefringence and briefly discuss the method to determine the
piezobirefringence. 1In Section 3.3, we present a experimental method of
the piezobirefringence. In Section 3.4, we shall derive a theoretical
expression of the dielectric functions, which are used to construct
theoretical expressions of the photoelastic constants. In Section 3.5, we
~obtain the theoretical expression of the photoelastic constants by using
the model dielectric constant, strain-orbital Hamiltonian aﬁd w5ve functions

in the valence bands.
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3.2 Basic Concept of the Photoelastic Constant

The application of a uniaxial stress to a crystal produces a change -

in the optical properties due to a change in energy gaps and momentum

matrix elements.74) The complex photoelastic (elasto-optic) constant
. . . 75)
Pijkl and piezo-optic constant ﬂijkl are defined through
1., -
A sij)" Piik1®k1 = Mgkt o (3.1)

where €., is the dielectric tensor, e the strain and Xk the stress
ij kl 1

r i . 76
tensor. Writting €54 as eiji-ieij’ eq. (3.1) can be rewritten as )

(hef . +1inet )
1j ij’ _

= Pijklekl . (3.2)

- €..E..

ii75j

In the region where e' <e’ the denominator of the left hand side can be
. r r . .
approximated by Eiiejj and the real and imaginaly part of Pijkl are related

directly to the corresponding change in eij'

The piezobirefringence coefficient 0 is also defined by the following

equation 77)
Aeij
@ =% T %1% Pk Skim (3.3)
m
where S . 1s the elastic compliance tensor.
klmn
A cubic semiconductor which is optically isotropic if unstressed
become birefringent when a uniaxial stress is applied.74 78 ) Such a

birefringence induced by a uniaxial stress is called piezobirefringence
and characterized by the difference in the refractive indices between the
light polarized parallel and perpendicular to the stress direction. In

cubic crystals the difference in the refractive indices is
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- _13 '
n“-nJ_— 5 nO(P44/C44)X s . (3.4)
for the [111] stress, and
P -P .
o -n = - %-ng Cll-ClZ X - (3.5) .
11 12

for the [100] stress, where X is the stress magnitude, ng is the refractive
index at zero stress, and Cij is the elastic stiffness constnat.

On the other hand, for wurtzite crystals the birefringence induced

by a stress along [1120] direction is given by

11 712 (3.6)

where the light is assumed to propagate along [1100] direction and ng is the
refractive index of the ordinary wave at zero stress.
It is clear from eqs. (3.4) - (3.6) that the photoelastic constants

are experimentally determined by the change of the refractive index (An).

3.3 Piezobirefringence

One of the expérimental method used to determine the photoelastic
 constant is based on the measurements of the piezobirefringence. The term
plezobirefringence denotes the effect of change in the optical birefringence
induced by an elastic deformation. If the crystal is optically anisotropic,
two optical waves with different velocity but the same wavenormél, will in
general be propagated through the crystal. The polarization of these waves
will be perpendicular to each other (see Fig. 3—1). If the propagation
direction corresponds to one of the principal axis (Xk)’ the polarization
6f these waves will be along the two other principal axis (Xi and Xj)'.

The principal axis are the directions which if chosen as the coordinate
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systemvmake the dielectric constant diagonal. We consider a plane
polarized optical wave at normal incidence on a samble cut in the form
of a plane-parallel slab and one of the principal axis be perpendicular
to the plane of incidence. 1In the regién of transparency,lwhere the
absorption can be neglected, two different lineary polarizrd waves
(p—polarization) with amplitude Ei and Ej will propagate through the
crystal. |

The electric vector of these waves, as a function of the position

Xy in the crystal can be written

27, .
E; (x,) =E, cos ¢ sin(ut - — = x) > (3.7)
27Tn,
Ej(xk) =E, cos ¢ sin(wt- —X_l-xk) , (3.8)

where ¢ is the angle between the polarization of the incident wave and the
principal axis. The amplitude of thebincident wave is EO,‘and(u and K_are
angular frequency and the wavelength in vacuum, respectively. n, and nj
are the refractive indices along the optic axis. If in the experiment

the sample is placed between two crossed polarizers, respect to the optic
axis, the transmitted light inténsity It‘through the second polarizer will

. be given by the equation

I/1, = sin2<z¢)sin2(An%F9 , | (3.9)

where IO is the intensity of the incident light, b is the thickness of the
crystal, and Anﬁ=ni-nj. By measureing the ratio (It/IO), one can
determine the crystal birefringgnce An. From eq.(3.9), the best condition
of this experiment is made by’éutting(b= 45°, because the transmitted

intensity is maximum. The transmitted intensity had a minimum when
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ok By
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1
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|

Y

Fig. 3-1. The geometric configuragion used in measurements of the
optical birefringence. K is the wavevector of the

incident light. Xj and X; are the optical axis and EO
is the amplitude of the incident light.

An 5= o, : ’ (3.10)

where m (the order of the interference) is an integer with positive or
negative. The transmitted intensity would be zero if the light beam

would be exactly monochromatic and collimated. From eq.(3.10) one obtains

o= (3.11)
On the other hand, the transmitted intensity has maximum when,
'n' .
L ‘ (3.12)
A 2
1. : ,
= =2 .13
An (mrkz)b . (3 )

The dispersion of the birefringence An()) can be determined from positons
of the successive maxima and minima. In the region near the fundamental
absorption edge, the effect of the dichroism (i.e.; the anisotropy of the
absorption coefficient) must be taken into account. If the ‘polarization

of the light forms the angle ¢ with respect to the optic axis, the
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intensity of thr light transimitted through two crossed polarizers is:

I = IO[EXP{-(l/Z)(0°||+"‘.L)b}smz(An "ﬁill) +

H(exp{-(1/2)abl-exp{-(1/2)a b} Isin’2p (3.14).
where o and aJ_is the absorption coefficientsAfor the two principal
directions. From eq.(3.14) it follows that the intensity of the transmitted
light is modulated by the factor sinz(An %?). The modulation arising from
the dichroism is much slower than that caused by birefringence. The spectral
positons of the maxima and minima of the transmitted intensity will be same

as those given in eq. (3.11) and eq. (3.13).

3.4 Dielectric Constant

For the purpose of determining the photoelastic constant, we have to
obtain the theoretical expression of the model dielectric constant. 1In
this subsection we shall discuss theoretical expression of the frequency-

9)

dependent dielectric constant derived by Cardona.7 First of all, we

consider the contribution to ez(w) of the EO gap is

O Z A|<clp(k’)1vi>|2'—1§(w —@01)1/2‘, (3.15)
i=A,B,C ‘ o :
with
A = 2262 /2y on* n2y3/2 (2.16)

- * s
In eq.(3.15) m dis the combined density-of-state mass, and <|p(k)|> 2 is
the dipole transition between the i-valence band (i=A,B or: C) and

conduction bands and w,. is the energy difference between the i-valence

0i

and conduction band. For simplicity we assumed that the matrix element P

. > . A
1s k-independent quantity. The real part of the dielectric constant can
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also be calculated from eq.(3.15) by using following Kramers~Kronig
relations;
[oe] ? s

w ez(w )

P\ —F—— dw’ , (3.17)
0 (w’) -w

ERLS

sl(w) —€, =

9 °° el(w’)
— S —_— b
ez(w) - P N 5 dw’, (3.18)
W) ™ -w
0
where € _ is the high—freqpency dielectric constant and P represents the
Cauchy’s principal value.

Substituting eq.(3.15) into eq.(3.17), we obtain the following

equation by using the contour shown in Fig. 3-2.

e -1 = Z al<lpl>1? 03 e ) (3.19)
where i=A,B,C
£x) = (1/xD)12- A+ - a-0l?% | (3.20)

f(x) is, in general, a complex function and f(x) can be divided by real
and imaginary part as follows;
f(x) = fr(x) + ifi(x) (3.21)

where the subscript r and i indicate the real and imaginary part of f(x),

respectively.
S asHz-a-oY - a+r0t?) ocx<1 (3.22a)
f x)=
t ;‘I (1/x2)[2— (l+x)l/2] x>1 (3.22b)
0 0<x<1 (3.23a)
f.(x)=
. 1/x%) x-1)t/? x>1 (3.23b)

Figure 3-3 shows the calculated line shape of fr(x) and fi(x). Note that

imaginary part of f(x) is zero below the band gap ( x<1).
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fiw < huwe Tw>Tiwe

Fig. 3-2. Contour for the calculation of the real part of the dielectric
function f(x).

For zincblende-type crystals the dispersion in the dielectric constant

of Ge and IITI -V compounds can be interpreted with the parabolic.band

model (PBM). 74)

In this model the dielectric constant below‘the edge is
the sum of the contribution of the E0 and E04-A0 edge plus a constant D
which corresponds to the effect of the avarage gap Eg. 80) In the II-VI
compounds the effect of the exciton is strong and exciton modificaiton of
the interband absorption edge is taken into accousnt. If we include the
contribution of the ground state of the E, exciton:
c” .
__7___E§__7 (3.24)
E° -(hw)
ex

we can write the dielectric constant as follows:

1
ew) = €? ——n
ex E2 - E

ex

ss w,‘ 1. w W
O IECD) +5 (£
0 ~0s os

+ D (3.25)



Fig. 3-3. Real and imaginary part of the dielectric functions
f(x) and g(x).
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where Cex’ and C0 are the fitting parameters and E is the energy of the

ground state exciton.

3.5 Photoelastic Constant
In this subsection we shall represent a theoretical expression of the
phétoelestic constnat in zincblende and wurtzite materials. Now we show
the effect of [001] and [111] stress for zincblende-type crystals,

For [001] stress, the strain components are derived from eq.(3.1) as

€2z " SllX ?
e k" eyy = SlZX , (3.26)
e =e _=e =0,
Xy Xz @ yz
where S11 and 812 are elastic compliance constants. The strain-orbital
Hamiltonian for the energy difference between conduction and valence band becomes
: 2 1
H€ = -a(Sll+ZS )X - 3b(Sll— SlZ)X(Lz - §]L )
- 3 2 _1
__-SEH 25E001(Lz - 3L ) (3.27)

where SEH = a(Ss ~F2312)X = (3Eg/3P) XxP is the shift of the gap Eg’ due to

the hydrostatic component of -the strain, and SE =2b(Sll-Slz)X is the

001
linear splitting of the pé,z multiplet. From eq.(3.26) and (3.27) the
. Hamiltonian matrix for the valence bands can be written gs‘81)
33 31 11
1222”001 52001 135”001
33, [ 1 : 1 ]
227001 | 3P0 "0Bg~ 30Epy O 0
3 1, 1 1
27001 0 o~ 8By + 7800 772880 (3.28)
1 2
0 =V/28E - =N\, ~ 8E
|3.3> 001 | 27 “°%001 370" %%
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>
where AO is the spin-splitting of the valence bands at k=0. Diagonalizing
the above Hamiltonian matrix, one obtains, for the change in the energy

>
difference between the conduciton and valence band at k=0 ;

__1 1eo
AE, - Ey) = = 3By +SE;+350Ey,, ,
1 1 1,2 2.1/2
AE_-E_) = 6AQ4—6EH OBy, - 10,7+ B,8E o, + (9/4) (BEyy,) ,
1 1 1,2 2.1/2
AME_ - E_;) = 00 +8E, ~ 8B 0 + S[A " +ASEy + (9/4) (8Eqy )]
(3.29)

For 0E001<:A0, eq.(3.29)»can be explained in power of 6E001/A0 to give

A(EC- EVZ) = - %—AO + GEH + %6E001 >
AE_~E ) = - 300 + OB, - 26E . - 2(5E )7 /A, (3.30)
AE -E;3) = %AO + OBy + %(5Eo01)2/Ao :

3

It should be noted that since the state g3§> is not coupled by the stress
to other two valence bands it has a linear stress dependenge while the
states with my = 1/2 have a nonlinear stress dependence caused by the off-
diagonal term in eq.(3.28). From thé unperturbed wave functions of the

valence band state at ﬁ = 0, to the first order in ao( EdOl/AO) have been

calculated to first order X;

u . = l.3. >
v2.Xx = 227001 °
31 1 11
= [ > —_— = > .
u1,x = 157001 + /5 % 1557001 (3.31)
11 1 11
= |- => _ _ >
us3 x = 155001 * 0 12537001

It should be shown that the intensity of optical transition is proportional to



- 82 -

> >
l<‘¥1!e'p|‘{’2>| s . (3.32)
where g is the unit polarizaiton vector of the electric field of the incident

82,83 .
1

>
radiaition and p is the linear momentum. For symmetry consideration, t

> .
can be shown that the only nonzero matix elements of p between T25, and PZ

are
P =< x+|Px{s+> = <Y+|Py|s+> = <zt|p_[st>, (3.33)

with similar expressions forvspin down. The p-matrix elements for zincblende-

and wurtzite-type crystals at i = 0 are shown in Table 2-1 in Chapter 2.

From wavefunctions shown in eq.(3.31), selection rules and relative

intensities:for transition to Fz have been calculated, as a function of X

for light polarized parallel and pérpendicular to the stress axis. These

intensities-are given by

<CIP”|V1>2=%P (l+oc0—%oco +eoe),

<c]P_L[v1>2 = %—Pz(l-2a0-+%u02-+'-- y

<[P vt =0, (2.34)
<clPJ_]v2>2 = %_PZ R

<c[P I Iv3;2 = % P2(1—20c0+—g-a02+ e )

<c|P_L|v3>2 = %-Pz(l-kao- %a02+--- )

For a [111] stress, the analysis is almost identical to that for the

stress along [001]. The strain components are given by'sl)
- - - 1.
e x = eyy =e, = (S11 + 2812)(:3X), (3.35)
- - - L 1.
exy = eyz =e (2844)(3)(), (3.36)

where S44 is an elastic compliance constant. -The strain Hamailtonian of
eq.(2.149) now has the form
He = —a(Sll4-2812)X-(6d/¢3)

x [{LXLy} -F{LyLZ}‘-k{LXLZ} ](%T 844)({§X) . (3.37)



- 83 -

The problem of diagonalizing H€ can be simplified if we make a
transformation such that the [111] direction becomes.z axis. For stress
parallel to [111] direction it is convenient to make.a rotation so that
[111] direction becomes the z axis. The wave functions of the valence

band then have the form81)

'%'%'111 l(—-)l/2 E+i04> , (3.38)
2.2 1,=| Y22z + @+ 141> (3.39)
35111 B e S Y N (3.40)
vhere
- GY2x-v  (3.41)
- SV x4v-2) (3.42)
Z=-(%)l/2(x+y+z) ; - (3.43)

The stress independent wave functions have the same form as eq.(3.3l) with

aO replaced by oy (=6E, .. /A Under this rotation the Hamiltonian matrix

111 O)'
for this stress direction has the same form as the matrix for along the
- [001] direction [eq.(3.28)], with the quantity 6Elll = (d//?)s44X replacing
5E001. Therefore, from eqs.(3.30) and (3.34) one can write for enegry

change between the conduction and valence bands, and the momentum matix

elements for [111] stress to first order in stress as

A(EC—E )=-§-A +8E, - 18E + oo,

vl 0" %%y T 2% 111
ME ~E .) = - 37 +6E + isE (3.44
7) 3707 %%y 111 ’ (3.44)
A(E -E )=—2—A + OE, + LB, 4.
c ™3 T3 g7 2°%Mn ’
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2.2 2
!<C[P” |V1>! =‘§P (l+0£l+"' ) )
2.1 .2
I<c|py |vy>] =g P -20, 400 ),
2
]<cEP "]v2>] =0,
2.1 .2
[<elpy [v,>[%= 5 2%, | (3.45)
2.1 2
]<CIP"lV3>I =—3-P (1—20!,1+--- )
21 .2
I<cfP_L[v3>| =3P Q+a )

To first order in stress, the change in £(w) can be expressed by74)

- § : o Je
Ae(w) = aX}{— ( 5P APi-Fam iAwgi ), (3.46)
' i=A,B,C &
where P = |<|p|>{2 is the squared p-matirx element and summation indicate

that contribution from three valence bands mustlincluded. The first term
on the right-hand si&e of eq.(3.46) corresponds to the contribution from
the first order change in the squared p—matrix elements éndiinterband
transition energies, respectively.

Substitiuting eqs.(3.30) and (3.34) into eq.(3.46) and using the

model dielectric constant of éq. (3.20), one obtains the expression of thei

-photoelastic constant Pll'-PlZ:in the following éxpression:77)
E. w
= C 0 _ (9y3/2
P11 Prp = 7lmsGeg) +h e Ge) - (DY Pex, 1)
o, 0] Os
- X E E
ex ex 0 1 ex 3 1
t 2 2 TR 3t 71+ D,
n, (1-x") 01-x ex 0 1-x
ex ex exs
(3.47)
where g(x) are defined by [see Fig. 3-3]
-1/2, (3.48)

g(x) = (1/x)[2- (1+x) Y2 (15
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and

-(3m =°/2)3/2 2 0'5/2 , (3.49)

2
cC = —3(41TNfl)b/EeX .

ox (3.50)

The photoelastic constant P can be obtained by the same procedure

44
in the case of Pll-Plz. Substituting eqs.(3.44) and (3.45) into eq.(3.46)

and using model dielectric constant of eq.(3.20), one obtains the expression

of the photoelastic constant P4411n the following expression: 78)
c Eo 3/2
P, =7 80 + 4 TlE(x) - (——) £(x, )1}
T on 0
0
C 3- x E
ex ex 0 1 ex 1
+ 4_{ 77t 3l 5+ (E g ) 3 1}+D, (3.51)
oy 1-x7) 0 1-x 1-x
ex ex ‘ exs
where
- (3w’ /2)3/2 a1, | : (3.52)
C = -3(4TNE.)d/E 2 (3.53)
ex 1 ex °* v :

In eqs.(3.47) to (3.53), we used the following notation;x0 = HQ/EO, Xy =
ﬁw/(Eo +AO), X = ﬁw/EXl, X oxs™ ﬁw/(Ex14-AO) with HwO—EO and Hw EO+-AO,
hw the photon energy;Ao the spin—orbitvsplitting,energy, Exl the ground-
state exciton energy, P the momentum matrix element, and N and fl are the
number of molecules per unit volume and oscillator strength of the exciton
respectively. The term D is the non-dispersive contribution arising from
the El, E1 +Al and E2 gaps. Long-wavelength dielectric properties of
semiconductors have been treated quite successfully by Van Vechten 84)
with the Penn model, 80) 4 simple model of an insulator in which an
average isotropic gap at the edge of spherical Brillouin zone is assumed.

It is well known that Ei(the imaginary part of the €) in zincblende

materials has a strong peak (EZ) in the neighbourhood of which most of the
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85)

optical density of state is concentrated. The corresponding transition

occur over a large number of the Brillouin zone, close to its boundaries.

80)

For the purpose of represent this fact Penn suggested the model of non-

physical spherical Brillouin zone with an isotropic gap (wg) at its bounderies.

Penn obtained with this model the static dielectric constant for a finite

85)

i

wavevector q. The result can be approximated by the analytic form.

w w
ew=0,0) =1+ ()2 F {14-L L/ -2 (3.54)
w w k
g g F
w 1 w 2
with F=1-—84+= (&) (3.55)
wF 3 wF

In eq.(3.54) wp is the plasma frequency obtained for the density of

valence electron and wp and kF the corresponding free electron Fermi

energy and wave number. The dimensionless quantity F is usually close to
one. Equation (3.54) yields two céntribution to the change in €(0) due fo
the stress (X): One grises from the change in plasma frequency and the other
from that in the Penn gap, as folléws;i

de d Inw d 1Inw
1 _0_ 2( P _
EOdX * dX dXx

gy . A (3.565

The first term in the braket should not exist for pure shear stress.

. 84) . . -2.5
- According to Vechten, : wg for C, Ge, Si is proportional to (a0 )
where a, is the lattice constant. If one makes the assumption that this

law gives also the change in wg with lattice constant for a given material

when a stress is applied one can calculate the volume dependence of €

de -2.5
1 0 _ _dInX N
—Ea'ﬁi— =2(0 ——-Hif————~9 =5/X . (3.57)

Equation (3.57) become the following relation

AE(0)/EQO) = 5 & , (3.58)
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where € and e are the static dielectric constant and strain tensors,

respsctively. Using eq.(3.58) one obtains the non-dispersive photoelastic

Constant78)
=1L -
D= 5e(0)  for By -Py,, (3.59)
n
0
.15
%o

Equations (3.59) and (3.60) predict the correct sign for D and D~ , but a
magnitude which is several times too large. This is because the
0’ El’ E2 gaps to the photoelastic constant do not have

the same signs. The effect of damping was taken into account by replacing

contribution of the E

hw with Hhw+il' in the above equations of the photoelastic constant.
The piezobirefringence analysis of the wurtzite-type crystals is
almost identical to the zincblende-type crystals. The  stress-induced
changes in the band gap energies and squared p-matrix elements can be
obtained by solving the eigenvalue problem as similar to those in.the
case of zincblende. We now present the component of dielectric temsor

by taking into acount the exciton effect in the following form:

: c§xe
o = AQ 1] -
e (B = Ay (—-——1_Xz + £(xgy)) » (3.61)
with exa
o _ O 3/2,,
Aij = FijEex(GEga) /8, (3.62)
and
exo, 3/2 o 4
Cij = 8(GEga) /(FijEex) . (3.63)

Here o labels the three valence bands A,B, and C, Fij is the streigth
parameter(evz) related to the oscillator strength, and G is the exciton
binding energy. The first and second terms in the right-hand side of

eq.(3.61) correspond to the cotributions from the discrete excitons and the



-~ 88 -

unbound continuum excitons transitons, respectively.

Case 1. Photoelastic Constant PJ 7 —P21 for Wurtzi?:e—Type Crystals |
Using the strain-orbital Hamiltonian of eq.(2.185) and three %ave

functions in valence bands of eqs.(2.173) to (2.178), the stress induced

change in the band gap enérgys and strength parameters are obtained as

follows (first order in stress X)

AEgA = [ EgA(X)-EgA(O) }=0, (3.64a)
'AEgB = EgB(X)-EgB(O) 1=0, (3.64b)
AEgC = [ EgC(X)-EgC(O) =0, (3f64c)
a 2 a 2
A, A A A B C
= - = — _— - » (3.64
O, /¥e (0) = [AF, AFyy]/FiX(O) 4= + FoIC (5, - 51,)X s (3.64d)
BA CA
B ,.B _ B B B _ _ 4 _
Any/rxx(O) = [AFXx AFyy]/FXX(O) = E;;CS(Sll Slz)X ’ (3.64e)
C € oy = tprC awC 1 o€ v _ & ) |
Any/FXX(O) = [AF —A:yy] F_(0) = - EEZCS(Sll §190X » (3.64£)
where C5 is the deformation potential, EBA and ECA are defined in eq. (2.170)

to eq. (2.172). Substituting eq. (3.64) into eq. (3.46), one obtains the
expression of the photoelestic constant P66 (= %(Pll - Plz)) in the

- following form:
1

Poe = ;“E‘ Dgg + CsFgg) » (3.65)
, 11
with 2 2
ag 8 A 1 B 1 C (3.66)
F,, = 2( == + =)~ 2= ¢ _ g2 & | )
66 EBA ECA XX EBA XX ECA XX

In eq.(3.65) D66 is the non-dispersive contribution arising from the higher
lying critical points. In accordance with the previous discussion, we can
introduce the lifetime broadening effect in the calculation of the photo-

elastic constant by replacing E of eq.(3.61) by E+il.
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Case 2. Photoelastic Constant P44 for Wurtzite-Type Crystals

The photoelastic constant P44 can be obtainedvby using the strain-
orbital Hamiltonian of eq.(2.185) and»three wave functions in valence
bands of eqs.(2.173) and (2.178), the stress induced change in the band

gap energy and strength parameters are obtained as follows

0o (3.673.)

BE, = [ Egy(®) - E 0 1=
AEgB = EgB(X) - EgB(O) 1=0, (3.67b)
AEgC = E o () - EgB(O) 1=0,: (3.67¢)
‘32 a2
A, A 1 c B
bF. /¥ (0) = /§_c6 T ( E;Z-+-EEZ Y (3.67d)
2
B ,_B 1 T, 2 1
AF° JF° (0) = = — ¢ ( - ) s (3.67¢)
xz' Txx /7 6 a; EBA ECB
_ 'a2
AFiZ/ng(O) - - JL-Cé Tz( EB + El ), (3.67€)
V2 a, CA CB

where C6 is the shear deformation potential, and

2B 2.C
agF (0 1/9 acF, (0 1/2 '
T=l—mg 1 =l (3.68)
2aCFXX(0) ZaBFXX(O)
Substituting eq.(3.67) into eq.(3.46), we obtain
P, = ———( D, + CF,,) (3.69)
€11%33
where az az az
T c B, A c B
F44 - 2 /5 [( EBA + ECA)gxx - (aZE B a2 )Exx
B BA B CB
a2
B C
- ( + eo 1. (3.70)
a2E a2E XX
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In eq.(3.70), D44 is the non-dispersive contribution arising from the higher
lying gaps.
Case 3. Photoelastic Constant Pél for Wurtzite-Type nystals

According to the Brillouin scattering scattering geometry for LA mode
phonons, non-zero strain component is oniy e x (we can replace exx-i-eyy
withexx:without any loss of generality) and the other components vanish.
Using the strain-orbital Hamiltonian of eqs.(2.184) and (2.185) and three
wave functions in valence bands of eqs.(2.173) and (2.178), the stress

induced change in the band gap energy and strength patameters are obtained

as follows:

AEgA =[(C,-d) +¢le (3.71a)
- oL 2
AEgB = [ (C2 - d2) + ché]exx y (3.71b)
2
AEgC = (CZ -d)) + accaleXX , ‘ (3.71c)
A o A | i
AF_JF(0) =0, | (3.72a)
o2
B , B _ B
AFXX/FXX(O) =-2¢, ———ECB , (3.72b)
o2
arC /¥C 0y = 2 ¢, =& (3.72¢)
xx' XX 4 ECB

Substituting eq.(3.71) into eq.(3.46), we obtain the expressioh of the

photoelastic constant p in the following form:
31 &

S & (A) _ (B) 3
P31 Zee. [ D3p FCFgp + (Cy - dIF5" 1, (3.73)
33733
where . . ’
2B 2 C A B C
(A) _ 35Fxx ~ 2cfxx aexx 2 88xx 2 aexx :
F3l = =2] T 1+ [ NG + ap 7% + a. 5% 1, (3.74)
CB gA gA gC
A
F(B)_(aexx + aeix 4 3€§X) 3.75
31  “3E JE oF > - (3.75)
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a
Jg. .,

1]
oE

g0.
energy gap Ega and given by the following equation:

where is the first derivative of the dielectic function 8;3 by the

88?‘ o exoL(B"xexoc) :
-5E;i—-- By Y g(xy) 1 (3.76)
with - exa
@ _ _a 3/2
Bij = Fij(GEga) /16 . ‘ (3.77)

In eq. (3.73), D3 is the nondispersive contribution arising from the

1
higher~lying gap transitions.
Next we consider the relation between the Brillouin-scattering cross

1.46)

section and the photoelastic constant. From the result of Nelson et. a
we find the power ratio of the scattered light P(p to the incident light p®

as
p® wA@IDAQ (n n ) cos5 (cosé )Tm o

Pe 32ﬂ2c4pvzsines

@ eff .0 - ©®_6
|4 Pt 40P 1I = OglpMpT T, (3.78)

where the notationris the - same as used by Nelson et al.,46)

and kBT is
replaced by ¢. 1Imn the present strudy we used three types of acoustic
waves, Tl- , T2- and LA modes as defined in Chapter 2.2. The relation

between the Brillouin scattering cross section for the three modes of

acoustic waves are
6 4 2

GB(Tl) = 1 0w (P PlZ) s (3.79)
6 4 2
OB(TZ) = Azn0 44 , (3.80)
for the zincblende-type crystals, and
- 6 4 2 .
GB(Tl) = Blnow (Pll - P12) s : (3.81)
6. (T2) = B,nn3w'p,> (3.82)
B 2707 447 : *
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. .334_ 2
GB(LA) = B3nenew P31 , (3.83)
for the wurtzite or polytype crystals, where Ai and Bi are frequency
independent factors involved in eq.(3.78). Using these relations we are able
to compare the wavelength dependence of the Brillouin-scattering cross

sections with that of photoelastic constants determined from the piezo-

birefringence measurements.
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CHAPTER 4

EXPERIMENTAL TECHNIQUE

4.1 Introduction
We have largely concerned ourselves up to this point in the

dissertation, with the theoretical aspect of the Brillouin scattering and
piezobirefringence. 1In this chapter, we discuss.the experimental aspects
of our work. The intense phonon domains amplifiéd by acéustoelectric
instabilities are very useful to investigate the dispersion spectra of
the resonaﬁt Brillouin scattering near the fundamental absorption edge of
semiconductors. They consists of intense ultrasonic waves with various
frequency components from 0.1 to 4 GHz, concentrated spatially with about

0.5 mm width, 50~ 88

The acoustic waves in domains are amplified by a
factor of 106 to 109 above thermal equilibrium value. These amplified
waves consists of piezoelectrically active shear waves in a narrow cone
(<10°) along the direction of the electron drift. The wide frequency
range and high energy density provide great advantages in investigating -
phonon-phonon interaction, electron-phonon-photon interaction in semi-
conductors. The generation of acoustic domains , however, aré restricted

89) 90) 92)

91
to piezoelectric semiconductors such as GaAs, GaSb, ) CdSe,

93)

cds,
and ZnO. To overcome this restriction, acoustic domain injection method
is introduced in which the acoustic domains are injected from CdS to other
semiconducters or insulators. . This acoustic domain injection technique
has also successfully extended by us to semiconductors such as ZnS and

layered compound HgIz. In these experiments, the incident photon

energies, however, were restricted to the region in which the samples
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were transparent due to the strong absorption near the band gap. Therefore
it has been difficult t§ obtain the dispersion of the Brillouin scattering
cross section in the opaque region (above the fundamental absoption edge )
when we use a conventional light source (Xe flash lamp) and transmission
type of experiment. To overcome this limitation, we employed the
reflection scattering geometry and a high intensity Ar ion 1aser between
457.9 and 514.5 nm. It should be noted that we investigated the Brillouin
scattering not by ripple mechanism but by the elasto-optic mechanism. The
Brillouin scattering by the ripple mechanism, which is caused by the
dynamic corrugation on the surface, show no dispersion. However the
Brillouin scattering by the elasto-optic mechanism,:which is caused by the
change in the dielectric constant by the phonons, shqws dispersion.

Our main interest of the present study is the latter mechanism (elasto-
optic mechanism) in the opaque region of the materials.-

As is shown in the previous Section, Brillouin scattering cross
section is proportional to the relevant photoelastic constant. Therefore
we can obtain the dispersion of the photoelastic constant by the Brillouin
scattering experiment. It is impossible, however, to determine the absolute
value of the photoelastic constant only by the Brillouin scattering
experiment. In order to determine the sign and absolute value of the photo-
elastic constants, we performend the piezobirefriﬁgence measureﬁepts.

In section 4.2 we present some of the physical poperties of the
materials used in the present study and sample preparation method. In
Section 4.3, we discuss the Brillouin scattering technique below and above
the fundamental absorption edge. In Section 4.4, we discuss the piezo-
.birefringence technique. 1In Section 4.5, we describe the acoustic domain

injection method.
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4.2 Material and Sample Preparation

In the present study we used.bulk single crystals, CdS, ZnS, and
HgIz. The CdS crystals used were ultra~high purity (UHP grade) and
purchased from Eagle Picher Company. We used two kinds of ZnS$S
crystals; i) synthesized by melt-grown at Eagle Picher Company (UHP grade)

ii) grown by I, chemical transport method. The melt-grown ZnS contains

2

= 10 7% stacking faults along the c-~direction of the axis, while ZnS grown

by I, chemical tramsport is pure cubic and shows no optical anisotropy.

2
The HgI2 crystals were grown by the DMSO (dimethylsulfoxide) solution
growth. In Table 4-1 are listed the crystal structure, growth method,
electrical properties for each crystal. \

All the samples used in the present study were‘cut in the form of
rectangular parallelepipeds with typical dimensions oé about 0.7x1.5%6.0
mm3. The crystal orientation of sample was determined by means of light

94,95)

figure method with the accuracy of one degree. They were lapped

on a glass plate using 3000 grit Cr203 powder, and subsequently polished

by 8000 grit Al Final optical polishing was done by using 0.3 um

203.
A1302 powder and polish-etched by Syton for 10 minutes. The optical flat
surfaces of layered compound Hg12 were obtained by cleavage with Cellotape
and used for the measurement without any additional treatment. In order
to obtain ohmic.contacts, indium is deposited by evaporation on the both
ends of the samples at v 10'_6 Torr and copper wires are soldered on them.
The ZnS samples (polytype and cubic) used in the piezobirefringence

3

experiments were parallelepiped of typical dimensions of 1.2X1.3X6.0 mm

cut from the same crystals used in the Brillouin scattering experiments.
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4.3 Brillouin Scattering Technidue
4.3.1 Transmission-Type Experiment

The experimental setup of the.Bfillouin scattering for transmission
type of experiment is shown Fig. 4-1. The arrangement was used in the
measurements in the photon energy region where the photon energy is below
the fundamental absorption edge. Experimental technique in the opaque region
by using Ar ion laser are touched upon in the next subsection 4.3.2.

A high intensity light source of a continuous spectrum is obtained
from a Xe-flash tube (Sunpack Strobo GTPRO 4011). The light source enabled
us to measure Brillouin scattering signal in the wide spectral range from
300 nm to 900 nm. The spectrometer is a conventional monochromator (JASCO
CF-50), 50 cm focal length system. We used gratings blazed for 750 nm
and 300 nm (1200 lines per mm). This was calibrated with the emission
lines from a mercury arc and a He-Ne laser line. The resolution is about
0.5 - 1 nm in the range of the present experiment. The incident light
dispersed with the monochrometer was polarized by a Gran—-Thompson prism
(Pl) and collimated by lens (Ll) and then focused into the sample. The
typical size of light spot at the surface of the specimens was about
0.5 mm in diameter. The scattefed beam was analyzed by a .film polarizer
(Polaroid HN 32 for visible wavelength regioﬁ, HNB’P for ultra—§iolét
region). The scattered light was detected by a photomultiplier tube.

We used at present a photomultiplier tube with an S-20 cathod (RCA-
7265), which has approximately 20 % quantum efficiency at 400 nm
wavelength and drops to appriximately 2 % q.e. at 720 nm, The detected
signal was displayed on a storage oscilloscope (Tecktronics 7623A). A
typical Brillouin scattering signalvand current wave form in-the sample

are shown in Figs. 4-2 and 4-3. The experimental configurations of
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Brillouin scattering measurement for Tl-, T2- and LA-mode phonons for
zincblende and wurtzite crystals are listed in Table 4—2; ‘In order to
obtain the strong signals, synchronization of optical and electrical pulses
was employed to measure the scattering from traveling acoustic domain when
the pulsed light source was at the peak intensity. The acoustical domains
was genérated by an application to the high voltage pulse of 0.6V 1.5 kV
with several usec duration. The high-voltage pulses were generated from

a Velonex, Model 350, high power pulse generator.

4.3.2 Reflection-Type Experiment

For the purpose of studying the resonant Brillouin scattering above the

S : 2,43
fundamental absorption edge in CdS, we employed reflection type of experiment4 ).

that extends measurement into the region where the sample is opaque. The
difference between the transmission and reflection type’ experiments is shown

in Fig. 4-4. It should be noted that in the case of reflection type of
experiment only the k component parallel to the scattering surface is conserved

because the interaction between phonon and photon is localized within the

-1

penetration depth ( = ¢ ). We used the single line mode of Ar ion laser

(NEC GLG 3200) in which we may select éight'different gvailable operating
wavelenghts, with different output power levels for each wavelength. These
wavelength, and the maximum power available at each wavelength are:

514.5 nm (2.410 eV) 800 mW ,
501.7 nm (2.471 eV) 150 mW
496.5 nm (2.497 eV) 300 mW ,
488.0 nm (2.541 eV) 700 mW
476.5 nm (2.602 eV) 330 mW
472.7 om (2.623 eV) 50 mW ,
465.8 nm (2.662 eV) 30 mW ,
457.9 nm (2.708 eV) 140 mW .
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Figure 4-5 shows the schematic diagram of the experimental setup used in
the Brillouin scattering in the opaque region. The.Ar ion laser light was
polarized by a Gran-Thompson or- Rochon prism and focused onto the scattering
surface by lens. We would like to point out here that the good S/N ratio
of scattering light depends strongly on the surface condition of the sample.
In order to obtain a reliable data we pdlished the scattering surface by
Syton for 10 minutes. We find that Syton etching is a excellent method

to obtain a optically flat surface for the measurement of the reflection
scattering configuration.+ The scattering light was detected by a photo-
multiplier (RCA-7265) without using a Fabry-Perot interferometer. We

used same detection system as was used in the transmission type of

experiments.

4.4 Piezobirefringence Technique .

Piezobirefringence spectra were measured with standerd optical_and
phase-sensitive electronic detection thchnique. The biock diagram of the
system is shown in Fig. 4-6. The optical system consists of a halogen
lamp, double spectrometer, chopper, crossed polarizers, and detector.

The light source was a tungsten-filament halogen lamp. Measurements were
performed. in the wévelength region 900 nm to therabsorption edge of
material. Polaroid HNP’B sheet polarizers were used as polariéer and
anlyzer. Monochromatic light was obtained by Spex 1401 double spectro-
meter with a 1200 line/mm reflec;ion gratings blazed at 500 nm. We

o
widened the slits to give a resolution 0.5 A since high resolution was not

t Very recently, Aspnes and Studna reported that bromine-methanol is better
agent than Syton in Ge, Si and some III-V compounds, for removing oxide and
residual amorphous layer from the surface. [D. E. Aspnes and A. A. Studna:
Appl. Phys. Lett. 39(1981)316.]
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usually required for the measurement of the piezobirefringence. The light
was chopped at ~ 200 Hz and the signal detected with a PAR model 126 lock-
in amplifier. The output from the lock-in was applied to the x input of
an xt recorder (YEW type 3056 vertical penrecorder), while the marker output
from double spectrometer (100 cm—l) was conected to the recorder. The
samples were alined by light-figure method as described in Section 4.3 to
better than 2° and cut to dimensions approximately 1.2x1.3X6 mm. After
cutting, the samples were polished, etched, and mounted on the stress
appratus. The sample was placed between two pushing pistons and uniaxial
stress was applied from a spring which was compressed by means of rotating
the nob of the micrometer-head. The compressioh of the spring was
measured by the scale of the micrometer-head and uniaxial up to 1.0 kbar
was used.

The polarizer was oriented so that the beam incident on the sample
was polarized at 45° to the stress axis (shown in Fig. 4-7). TUnder these

condition, the light components polarized parallel and perpendicular to the

stress are equal. The measurements were carried out at room temperature.

4.5 Acoustic Domain Injection Method

In this section we will discuss the acouétic domain injéction method.
Figure 4-8 is a schematic illustration of the experimental configulation
of acoustic injection from CdS to ZnS. The two specimens are bonded
together through the vacuum evaporated thin film of indium. The intensity
of the acoustic waves of the domain excited in CdS and those transmitted to
ZnS are estimated by the Brillouin scattering thechnique mentioned in the
previous Section 4.3. Note that the acoustic phonon intensity is

proportional to the Brillouin scattering efficiency, if the light
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wavelength, optical path and scattering solid angle are constant. Therefore
we can estimate the acoustic energy from the Brillouin efficiency at a
wavelength, for example , using a He-Ne laser of several mW intensity.

We considered a case of CdS-ZnS, shown in Fig. 4-8, to estimate the
transmission efficiency. For simplicity we neglected the indium layer at
the bounded surface. It is well known that the acoustic waves amplified
in CdS through acoustoelectric effect travel in a direction parallel to
the c-plane with atomic displacement parallel to the c-axis. In Fig. 4-8,
therefore, the excited acoustic waves are the transverse waves with the

atomic displacement parallel to the [110] axis and wave vector along the

[001] direction. The transmission efficiency TP is given by35)
2, ... 2
[e_1.  4tpc, ) 27 )Y
T = ac'T _ 44 44 (4.1)
P e 1. 1/2,, ... \1/2, ? :

where P and C44 are crystal mass density and elastic stiffness constant in

CdS and the corresponding values with prime are for other samples bonded

to CdS. Here [Pac]T and [Pac]I are acoustic Pointing vector for
transmittited and incident waves, respectively. We oftain from eq.(4.1)
TP==O.94 for CdS-ZnS, TP==O.94 for CdS-ZnSe and TP==0.95 for CdS-ZnTe which
are appreciably high. The experimental value of the transmission efficiency
can be measured by the Brillouin scattering, as stated in ref796. We
measured the Brillouin scattering intensity in CdS and bonded specimen ZnS as
function of position and the intensity at the Bonded surface was estimated
by extrapolation. 1In Fig. 4~9, we show an example of the oscilloséope
display of the Brillouin scattering signal by the injected écoustic domains
obtained from the CdS-ZnS system (upper trace). The current waveform
exhibitting the acoustical instability is also shown in the 1owe? trace

of the figure. The Brillouin scattering signal P, is produced by the

1

injected forward-traveling acoustic domain, while the signal P2 is

produced by the reflected domain at the end surface of the injected crystal.
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The experimental transmission efficiency was obtained using the

extrapolated values, which are shown in Fig. 4-10 py solid circles for
CdS-ZnS. Similar experiments were carried out for CdS- ZnTe and CdS-ZnSe

and the results are also shown in Fig. 4-10.? We find that the efficiency for
CdS-ZnS sample is about 85 %. at fhé frequency f=0.35 GHz. and decreases
with the increase in frequency of acoustic waves. The decrease in efficiency
at higher frequencies is mainly due to the acoustic mismatch of the waves in
the three layer structure CdS-In-ZnS.

The attenuation coefficient of the transmitted acoustic waves can be
obtained fromvthe measurement of the Brillouin scatteirng intensity as a
function of probing position. The acoustic frequency dependence of the
attenuation coeffient is given by:ocLoc fl'l‘5 in ZnSe and oy = fl'2 in ZnTe?5’96)
Experimental results show that the frequency dependence of attenuation
coefficient depends strongly on the intensity of the acoustic waves
transmitted in the bonded specimen. In the frequency region used in the
present experiments, attenuation is dominated by Akhieser loss and expected
to be given by the relation uLcrfz. 97-99) The departure from the f2—
dependence seems toreflect nonlinear phonon-phonon interaction of the high

7,98) In the presnt method the acoustic energy density

" of transmitted waves in the samples is about 106 to’109 times higher than

intensity phonons.

the thermal equilibrium value and thus the nonliear interaciton exists.
Such a non-linear interaction of phonons is clearly seen in the case of the
CdS-ZnS system (Fig. 4-11) where we found a complicated spectral dependence
of the transmitted acoustic waves. Attenuation of the lower frequency
phonons (0.37 - 0.56 GHz) becomés slow in the latter stage of propagation,
while higher frequency phonons shows steeper attenuation at that stage.

The results suggest that phonons of frequency f are converted to lower

sub-harmonic phonons of frequencies, £/2, f£/4, and so on, by strong

non-linear effects (parametric effect).
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X Stress
45° |

Ana_lyzer

Polarizer

Schematic diagram of the sample used for the piezo-

- birefringence experiments. Samples were placed
between two crossed polarizers. Uniaxial stress was

applied by the stress apparatus

Fig. 4-7.
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Fig. 4-8. Schematic illustration of a specimen used for the acoustic
domain injection. Acoustic domains excited in a semi-
conductive CdS are transmitted to an insulating ZnS.
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4.6 Summary

Experimental arrangement and sample construction used in the present
work are presented. We have sho&n the Brillouin scattering technique by
employing the acoustoelectrically amplified phonon domains and piezo-
birefrinfence technique. We found that in order to obtain the Brillouin
scattering signal where the incident photon energy is higher than that of the
band gap, one must use reflection scattering geometry with high intensity
light source. The acoustic domain injection method is also discussed and
found this technique provides high transmission efficiency from CdS to other
materials such as non-piezoelectric semiconductors, insulators and layered

compounds.
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CHAPTER 5

EXPERIMENTAL RESULTS

5.1 Introduction

Chapter 5 deals with the experimental results and discussions of the
resonant Brillouin scattering and piezobirefringence in GaAs, CdS, ZnS and

HgT Present measurements are performed by the transmission type of experi-

X
ment, where the incident photon energy is lower than that of the fundamental
absorption edge. Brillouin scattering study above the fundamental absorption
edge will be-discussed in the following chapter. The main features of the pre-
sent results are following. Steep resonant enhancement in scattering cross
section is observed just below the fundamental absorption edge. Also the
structure of resonant cancellation is found in the scattering‘cross sectionvby
transverse acoustic phonons, while a weak resonant cancellation is found by
longitudinal acoustic phonons in CdS. In layered compound HgIz, we found that
the contribution of higher gaps plays an important role in the dispersion of the
scattering cross seciton. It is found in comparison with the theory that the
structures of resonant enhancement and cancellation are Well explained by the
theoretical treatment of the resonant scatteriﬁg. The scattefing cross sections
are analyzed by the piezobirefringence fheory and the dispersion of the photo-
elastic constants are determined. In Section 5.2, we shall analyze the
scattering cross sections of GaAs. In Section 5.3, we describe the experimental
results of the resonant Brillouin scattering in ZnS. In Section 5.4, the
results of the resonant Brillouin scattering by T2- and LA-phonons in CdS are
discussed. In Section 5.5, the results of the resonant Brillouin scattering in

HgI2 are discussed. 1In Section 5.6, We show the acoustic figure of merits.
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5.2 Analysis of Resonant Brillouin Scattering in GaAs

In this section we analyze the Brillouin scattering cross sections in
GaAs by using the Brillouin scattering theory and piezobifefringence theory}OO)
The main purpose of the present section is to explain the resonant
cancellation and resonant enhancement observed in the experiment of Garrod
and Bray.zg)
5.2.1 Brillouin Scattering Cross Section

Figures 5-1 ande—Z show the experimental dispersion of the Brillouin
scatteriné cross sections for T2- and Tl-mode phonons in GaAs,

29)

respectively. The scattering cross sections by T2-mode phonons show
a resonant cancellation (898 nm) near the fundaméntal absorption edge.
The cancellation point by Tl-mode phonons, on the other hand, is not found
in the measured wavelenght region. The piezobirefringence measurements?g’IOI)
however, reveal that a cancellation occurs at 976 nm which is relatively
far from the fundamental absorption edge as compared with the results forE
T2-mode phonons.

The theoretical curves shown by dashed and soiid lines in Figs. 5-1 and
5-2 are calculated from eq.(2.140)(EB==O;Without exciton model) and
eq.(2.140)KEB==4.2 meV;with exciton model), respectively. The numerical
parameters used in the calcualtions are listed in Table 5-1. Non-vanishing
values of the matrix elements EBa for the deformation potential scattering
are as follows:[See, eqs.. (2-167) and (2-168)]

EAB=d=-4.59 eV

o= d/V2=-3.25 eV for T2-mode , (5-1)
£,.=/6/2=-5.62 eV

and

EAB= /é_b=—3.05 eV
. : % for Tl-mode , (5.2)

Ecp ™ /6b = 4,31 eV
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Table 5-1. Parameters used in the calculation of
Brillouin scattering cross section O
and photoelastic constants Pll-Plz,

“and P44 for GaAs at 295 K.
symbol numerical value
a
= v 1.422
EgA ( EgB) (eV) , )
E_. (eV) 1.736%°
g
A (eV) 0.341°
0 4 ©
2 (ev?) 7.5x10"
XX A c
PP (ev?) 22 10"
XX 4 ©
FC (ev?) 12 x 10
XX
d
eV 4.4
Ey (meV)
a &) 133°
0
u 0.0564°
b (eV) ~1.76 + 0.158
d (eV) -4.59+0.25%
a
Reference 102.
Ppeference 103.
CReference 104.
dReference 105.
eReference 50.
fReference 106.
gReference 107.
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where the numerical values are estimated by using the deformation potential
b and d reported in ref. 107. The matrix elements PaO and POB are obtained
from ref. 104.

The resonant cancellation is explained phenomenologigally as follows.
The scattering cross-section is proportional to the square of |Risi-Rb|,
where Ris is the resonant contribution arising from the fundamental
absorption edge and R0 is the non-resonant contribution from the far-off
critical points in the band structures. When the term RO is opposite in
sign to Ris’ the resonant cancellation occurs under the conditionf!Ris4-Rol
={(. We see in Figs. 5-1 and 5-2 that the theoretical curves calcualted
from both model (free electron-hole and exciton models) show good agreement
with the experimental data, and that there is no appreciable difference
between the theoretical curves because of the small value of the exciton
Rydberg constant. The experimental data for Tl-mode phonons by Garrod and
Bray are limitted to a narrow range of wavelength and thus the cancellation
is not apparent. The present anal&sis, however, predicts a cancellation at
about 970 nm as shown in Fig. 2-2. Such a prediction is found to be
consistent with the observation of the sign reversal in the photoelastic

01)

constant at 976 nm reported by Ferdman and Horowiczl and Higgnbotham et

74) as will mentioned later.

al.
5.2.2 Photoelastic Constant

We have already shown that Brillouin scattering can be treated from
a phenomenological aspect by incorporating the photoelastic constant,

{

There are following relations between them given in eqs.(3.79) and (3.80)

64 2 ‘
OB(Tl) = Alnow (Pllr-Plz) (5.3)
642
OB(TZ) = Aznow Pas (5.4)
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By using the above relations the theoretical results will be compared with
the resonant Brillouin scattering cross-section reported by Garrod and
Brayzg) The values of parameters used for the calculation of photoelastic
constant are also given in Table 5-1. Figure 5-3 shows the theoretical
dispersion of the photoelastic constant P44 calculated from eq.(3.51)

along with the experimental data. We compared the theoretical curve

with the square root of the dispersion of resonant Brillouin scattering
observed by T2-mode phonons according to the relation of eq.(5.4).

Figure 5-3 shows that a sign reversal exists at 898 nm which coincides with
the cancellation point in the Brillouin scatteing cross section. We present
in Fig. 5-4 the theoretical dispersion of the photoelastic constant Pll-Plz,
where Pll--P12 is related to the square root of the Brillouin scattering
cross section by Tl-mode phonons. From the analysis a sign reversal of the
photoelastic constant Pll-PlZ can be expected to occur at 976 nm although
the experimental data of the resonant Brillouin scattering in the wavelength

101)

region are lacking. However, as mentioned earlier Ferdman and Horowicz

74)

and Higginbotham et al. reported a sign reversal of the piezobirefringence
coefficient relevant to the photoelastic constant Pll--P12 at 976 nm in
GaAs, which is in gdod agreement with the presnt analysis.

The exciton transitions in III-VI compounds are relatively weaker
than those in IT-VI compounds such as CdS, ZnSe, ZnTe, etc. Fbr example
the exciton Bohr radius (ao) and exciton Rydberg constant (ecxiton binding
energy; EB) are 45 A and 10 meV for ZnTe, and 51 A and 19 mev for ZnSe.

On the other hand, they are 133 A 105) 103)

and 4.2 meV for GaAs.
It follows from these condition that we can neglect the effect of the
~discrete exciton. on the dispersion of the photoelastic constant in GaAs

and thus the assumption of zero Rydberg (EB==O) seems to be reasonable.

Such an assumption has been made by Higginbotham et al. for the analysis
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Dispersion of Brillouin scattering efficiency by T2-mode
phonon domains in GaAs at 298 K reported by Garrod and
Bray. Theoretical curves were calculated from eq.(2.140);
(with exciton;EB==4.2 meV), —---(without exciton;EB=0).
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Fig. 5-2. Dispersion of Brillouin scattering efficiency by Tl-mode
phonon domains in GaAs at 298 K reported by Garrod and
Bray. Theoretical curves were calculated from eq.(2.140);
(with exciton;EB==4.2 meV), -—-- (without exciton;EB=O).
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Fig. 5-3. Dispersion of photbelastic constnat P44. Theoretical curve
was calculated from eq. (3.51).
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of piezobirefringence. 1In conclusion, the resonant Brillouin scattering
data obtained by Garrod and Bray are well explained by the present analysis

upon the light scattering and piezobirefringence theory.

5.3 Resonant Brillouin Scattering
and Piezobirefringence in ZnS

In Section 5.3, we present the results of the resonant Brillouin

scattering in cubic and polytype ZnS at 300 K and 77 K for the two types

of transverse acoustic waves73’110’lll)

35,108)

by using the acoustic domain
injection method. Also the measurements of the piezobirefingence
have been performed to obtain dispersion of the photoelastic constants

in the same crystals. The main purpose of the present section is to comparé
the spectral dependence between cubic and polytape ZnS. In Section 5.3.1
we shall discuss briefly about the crystal structure in cubic, wurtzite

and polytype ZnS. In Section 5.3.2 we shall discuss the resuits of.the
Brillouin scattering cross section in the region below the fundamental
absorption edge. In Section 5.3.3 we shallipresent the dispersion of ‘the

photoelastic constant derived by the present Brillouin scattering experiment

and piezobirefingence experiment.

5.3.1. Crystal Structure and Optical Properties of ZnS

The crystal structure of ghe II -VI compounds consists of two types
of structures. One is. zincblende and other is wurtzite structure. Both
structures are characterized by tetragonal coordination (sp3) and the
zincblende structure can be distinguished easily from the wurtzite structure
by the structual periodicity along the <111> or <0001> axis ( Miller index

(hkl) stands for the cubic system, while (hkjl) represents the hexagonal
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system); the zincblende (cubic) structure has a three-layer stacking (3C)
as ABCABC and wurtzite structure (hexagonal) has a fwo layer stacking (2H)
as ABAB of the closed-packed plane along the <111> or <0001> direction.
All of the II-VI compounds, for example, ZnSe, ZnTe, ZnS, CdS form crystals
with zincblende arrangement. Some of the TI-VI compounds such as ZnS, CdS
and CdSe also crystallize in the wurtzite arrangement. Figure 5-5 shows
the arrangement of group II metal atoms and group>VI non-metal atoms in a
(a) zincblende and (b) wurtzite form. The zincblende structure is baséd
on the cubic space group Tﬁ. There are four molecules AIIBVI in a unit
cell. The wurtzite structure is based on the hexagonal space group Cgv
and there are two molecules in the hexagonal units cell.

It is well known that ZnS crystallizes in both zincblende and wurtzite
structures. There exists a wide variety of polytypes with stacking faults

in which twinned layer of cubic alternates with wurtzite layer.lll’llz)

13)

Birman1 has performed calculation to determine the band structure of
wurtzite and zincblende. Though he did not deal explicitely with ZnS
polytypes, it can be concluded from his work, that the band gap will vary
smoothly with o. The percentage of hexagonality of the structure o has to
be defined as the percentage of close-packed planes which are in a
hexagonal nearest neighbor environment. For example, if the three possible
positions of the close packed planes are denoted by A, B, C, |
respectively,ll4) then the 4H polytype is.ABACABAC'--, the B’s and C’s are
in hexagonal environments and thus 50 %. Eventually =100 % for Wurtzite
and 0=0 7% for zincblende. For a polytype mH with m >6, knowledge of the
layer sequence is essential for the determination of a. The value of o is
proportional to the magnitude of the birefringence of a crystal dn and given

115,116)

by u==6n/6n0, where Gno is the birefringence of wurtzite. In Fig.

5-6.(a), the degree of birefringence &n, is plotted as a function of a.
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The letters A, B, C locate the positions of Zn-S

(large open circles) in a) zincblende, b) wurtzite form and c¢) poly-

type of ZnS.

Fig. 5-5. The arrangement of Zn atoms (small filled circles) and sulfur atoms
layers.
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The degree of birefringence An==ne-no, where n, and n_ are the extreme
value of the refractive index was determined at 546 nm by Brafman and

115) In Fig. 5-6 (b) and (c), the absorption position versus

Steinberger.
o are presented. They defined the absorption position edge as that
wavelength AO’ from which the absorption coefficient is 6 cm_l. Both XOH
and XOJ—refer, respectively, to polarization parallel and perpendicular
to the optical axis. It is seen that An, XO"and XOJ-are linear function of
o. It follows that the linear relatiomn of Fig. 5—6, if the magnitude of
birefringence An is known, the band gap energies of any polytypes can be
determined by linear interpolatiomn.

Most of the ZnS crystals.grown from the melt.shows stacking faults
along the é—axis. These stacking faults arise during the grouth of

117 Stacking faults in ZnS have been investigated many times

118-120)

crystals.

by the method of x-ray crystallography and electron

microscopy.121_123)

It has been shown that they occur as flat, practically
two-dimentional formation in the <111> and <0001> plane of, respectivély,
the cubic and hexagonal structures.

For the purpose of determining the hexagonality and band gap energy
of the polytype ZnS, we performed the natural birefringence experiment.
Figure 5-7 shows a photégraph of ‘the polytype ZnS platelet placed between
two crossed polarizers. The surface of the samble are parallél to the
c—axis. The integer m of the stripes indicate the_order of dinterference.
Using the relations given in eqgs.(3.11) and (3.13) the magnitude of the
birefringence An and hexagonality o are determined. The relations between
An and o are listed in Table 5-2. Figure 5-8 shows the recorded spectra
of the transmitted intensity of the ZnS sample placed between two crossed
polarizers. (a) and (b) indicate the measured positions of the sample

shown in Fig. 5-7. From these spectra, the dispersion of the birefringence
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Fig. 5-7.

ZnS crystal photographed between crossed polarizers. The
direction of the c-axis is indicated by an arrow. The
integer m indicates the order of the interference. The
wavelength of the illuminated light is 650 nm and the
thickness of the sample is 1.79 mm. The relation between
m and the magnitude of the birefringence An is shown in
Table 5.2. Most of the region of this sample is uniform,
while the left-hand edge of the sample shows tight stripes
due to variation of the birefringence.
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Table 5-2. Relations among m, An, and o.
(d=1.79 mm, A =650 nm.)

3

m An x 10 o (%)
5 1.8 7.6
6 2.2 9.1
7 2.5 10.6
8 2.9 12.2
9 3.3 13.7
10 3.6 15.2
11 4.0 16.7

can be determined by using the relation given in egqs.(3.11) and (3.13).
In cubic crystals (o=0) the valence bands are degenerate F8 and spin-orbit
split off P7 bands, whereas in wurtzite (0o =1) the three valence bands

(T9,T F7) are completely separated. In polytipes, the band gép energies

7,
are estimated by the linear dependence of the band gap enefgies to the
haxagonality a. The results are showin in Fig. 5-9. The numerical values

used to determine the location of the band gaps are listed in Table 5-3.

5.3.2. Brillouin Scattering Cross Sections

In the present experiment, we performed the acoustic doamin injection
method, where phonon domains amplified through acoustoelectric effect in Cds
are injected into end-bonded ZnS. We used two kind of ZnS, i) synthesized
by melt-grown at Eagle Picher Company (UHP grade) and ii) grown by 12
chemical transport method, as described in Section 4.2.

Figure 5-10 shows experimental data of the transmission efficiency
of the acoustic démain from CdS into ZnS samples in the frequency range of

0.3 - 1.0 GHz ( 90 % efficiency is achieved at 0.3 GHz in one of the
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Fig. 5-9. Ev Variation of the location of three band gaps (EgA’EgB

EgC) on the degree of hexagonalitya at room temperature.
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Fig. 5-10. Frequency dependence of the transmission efficiency
'of the acoustic phonon domains from CdS into ZnS
samples.
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samples). Theoretical value TP (eq.(4.1)) of the efficiency in the higher
frequency region is mainly due to the acoustic mismatch of the waves in
the three layer structure CdS—In—ZnS.log)

The mode of the acoustic waves excited in ZnS by the acoustic domain
injection method are determined by the crystal orientation as described
in Chapter 4.  The identification of the acoustic mode can be made by
measuring the velocities of the injected acoustic waves. The slope of
the curves in Fig. 5—11 give the sound velocities which are v(T1) =2.1X
103 m/sec and V(T2)==3.4><103 m/sec in cubic ZnS, and the corresponding
values 1in polytype ZnS are V(T1)==2.8><103 m/sec and v(T2) = 2.7><103

m/sec. The values of the measured velocities are in good agreement with

those calculated from the elastic constant reported by Berlincourt et

.124) 25)

al ~and Cline et al.1 as listed in Table 5-3.
Figure 5-12 shows wavelength dependence of the. Brillouin scattering
cross section UB for 0.3 GHz Tl-mode phonons at 77 K and room temperature
A 73,109) ) .
for cubic and polytype ZnS. ‘From the configuration for the
scattering by Tl-mode phonons we find that optical anisotropy (natural
birefringence and dichroism in polytype crystal ) does not take part in and

therefore the Brillouin scattering cross seciton 0, is propartional to

B
Is/It’ where IS and It stand for the light intensities spattered and
transmitted through the sample. The Brillouin\scattering cross sections
represent a deep monimum (resonant cancellation)_at around 366 nm in the
cubic and 360 nm (352 . nm at 77 K) in the polytype at room tenperature. At
shorter wavelengths we find a resonant enhancement in polytype crystal.

We have to point out here that no resonant enhancement in cubic ZnS in
contrast to the case of the polytype ZnS. The disappearance of the resonant
enhancement in the cubic ZnS can be ascribed to a strong absorﬁtion of the

light in this region due to iodine impurities. Iodine impurities



- 136 -

POSITION (mm)
=

CuBIC(TI)
CUBIC(T2)
POLYTYPE(TI)

POLYTYPE (T2)

® O =m 0O

L

Fig. 5-11.
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Domain transit-time versus light-spot position for Tl- and T2-
mode for cubic and polytype ZnS from the Brillouin scattering
measurements. The slope of each line gives the domain velocity
for each mode. '
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have been found to be about 300 ppm in the ZnS crystal prepared by the
chemical transport method and measurement of optical transmission shows a
strong absorption in the region below 370 nm. When we use thinner specimen
(=20.3 mm), a resonant enhancément is observed as in the case of Brillouin
scattering by T2-mode phonon which will be mentioned later. It is

very interesting to point out in Fig. 5-12 that the Brillouin scattering
cross section show a decrease as the wavelength increases. Such a decrease
arises from the w4 dependence of the scattering cross section in eqs. (3.79)
to (3.83).

In order to examine more precisely the w4 dependence in the dispersion
of the Brillouin scattering cross sections, we extended the measured
wavelength fegion to the longer wavelength region. Figure 5-13 shows the
dispersion curves of the Brillouin scattering cross secitons for 0.3 GHz
Tl-mode phonons for 320 nm to 650 nm. We can see a decrease of the
scattering cross section explicitely in the longer wavelength region.

So far as our knowledge is concerned such a wavelength dependence has ndt
been observed because earlier quks are restricted to a narrow rangé of
wavelengths. The cross section given by eq. (2.78) has an ws/wi factor
appearing in the classical light scattering theory. An explicit wzwi
dependende can be obtained by using Er coupling instead of E-K in the

130) Therefore we take into account the w4 dependence in the

Hamiltonian.
following calculations. 1In other words, we calcuiated RiS using eq. (2.134)
and evaluated Op from eq. (2.141) including w4 dependence in C. Parameters
used in the present calculation of the Brillouin scattering cross sections are
listed in Table 5-4. The resu}ts are represented by the solid curves in

Fig. 5-13.

Figure 5-14 shows the resonant Brillouin scattering cross section Op

for 0.3 GHz T2-mode phonons at 77 K and 300 K for polytype and cubic ZnS.
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Table 5-4. Parameters used in the calcualtion of the Brillouin scattering
cross section and photoelastic constants of ZnS at 300 K (the
values at 77 K are given in the brackets)

Cubuc (77K) ; Polztype(o=0.1) (77K) Wurtzite
b c a
B, (eV)  3.66 (3.826°) 3.688  (3.289%) 3.74 (E]| ©)
3.682 '
E g (eV)  3.66 (3.826°) 3.691  (3.833%) 3.78%  (8lo)
3.682
E (eV) 3.76 (3.891P) 3.764  (3.902%) 3.88%2 (Bl @
3.7522 3.872 (ELe)
E, (mev) 31° 31 - 34°
B d d d
A (meV) 72 74 : 92
S0 - d ' c d
A (meV) 0 3 55
CcY d d
a, (&) 23.8 23.8
d d
0.18 0.18 ,
3 0.58 0.691
ag 0.814 0.723
2b = -1.06% (eV) c, = 2.5 (e
2 = 3.4 2 (eV) _ c, = 2.25%ev)
% = -1.5 L (eV) C, = 0.728 (eV) Jp—
a/v/3 = -2.14% (ev) c, = -1.07 &eV) —_
‘ Cs = 1.09 8 (eV) —_—
Ce = 1.57 8 (ev) —_—
a
bReference 126.
Reference 127.
gReference 116.
eReference 128.
fReferenee 129.

Reference 72. £ e
8e evaluated this values by using b=-0.75 (eV), d=-3.7 (eV) and
eq.(4) in ref. 127. ‘
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Dispersion curves of the Brillouin scattering cross sections
for 0.3 GHz Tl-mode phonons measured at room temperature and
77 K. Solid curves are calculated by the Brillouin scattering
theoryjeq.(2.134) and (2.140). The thickness of the sample

is 1.2 mm.
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Fig. 5-14.

1 A [ S TR T W IO-7
350 400 450
WAVELENGTH (nm)

Dispersion curves of the Brillouin scattering cross sections
for 0.3 GHz T2-mode phonons measured at room temperature and

- 77 K. Solid curves are calculated by the Brillouin scattering

theory; eqs.(2.134) and (2.140). Unless otherwise noted, the
thickness of the sample is 1.2 mm.
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The angles of the incident and scattered light were calculated using eqs.
(2.15) and (2.16). 1In order to obtain the scattering cross section we have

to make a correction due to the absorption as pointed by Ando and Hamaguchi.BO)
In the present work we measured the transmitted light intensity It“ X
and ItJ.for the light polarizaiton parallel and perpendicular to the c-axis
and the scattering cross section was obtained from IS//f;aTi;J: The resonant
feature observed here is essentially the same as that for the case of the
scattering by the Tl-mode phonon domains. The cancellation points are 360 nm
at 300 K and 352 nm at 77K in the polytype ZnS, - while in cubic ZnS
cancellation occurs at 355 nm at 300 K and thus a slight shift of the .
cancellation point toward the energy gap exists. We find a decrease in GB

at larger wavelengths due to the w4 dependence as in the case of the Tl—méde

phonons.(See Fig. 5-15) Theoretical curves of eqs. (2.134) and (2.141) are

fitted to the experimental data by taking into account the w4 dependence.

5.3.3 Photoelastic Constants

"In this subsection we state that the stress-induced birefringence
(piezobirefringence) nj-n; is related to the photoelastic constants. 1In
the presnet study we carried out the piezobirefringence measurement for the
_ uniaxial stress in the [111] and [100] directions in cubic ZnS and in the
[1120] direction in polytype ZnS. |

Figure 5-16 shows the recorded spectra of the piezobirefringence
experiment in polytype ZnS (a=0.1). 1In this experiment, uniaxial stress
perpendicular to the c-axis is applied to the sample with X=0.5 kbar and
1.0 kbar. The vertical arrow indicate the positon (359.3 nm) of the
isotropic point of the piezobirefringence. From this spectra photoelastic

constant P., - P on polytype ZnS is determined from piezobirefringence

11 "12

with uniaxial stress parallel fo the c-axis and the natural and piezo-
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birefringence of polytype ZnS are shown in Fig.5-17. As seen in Fig. 5-17
the compression along the c-axis of polytype ZnS reduced the magnitude of

131)

the birefringence. From the piezobirefringence experiments we deduced

Pll--P12 in both cubic and polytype ZnS and P44 in cubic ZnS. The results :
are shown in Fig. 5-18 where we find that the photoelastic constants are
negative at longer wavelengths, approaching zero at shorter Wavelengths,

and sign reversal occurs near the absorption edge. The spectral position
of the isotropic point of the piezobirefringence corresponds to the
wavelength at which photoelastic constnat becomes zero. The positions are

365 nm (by extrapolation) for Pll—-P in cubic ZnS,

| 12 and 365 nm for P44
while the value is 359.4 nm for Pll--P12 in polytype ZnS. Theoretical values
of P11"P12 and P44 in cubic can be calculated ffom eq.(3.47) by adjusting

the parameters C, Cex’ D and the results are éhown by the solid curves in
Fig. 5-18. The energy gaps given in Table 5-3 are used in the calculations
and the best fitting parameters are shown in Table 5-4. Eqﬁations.(3.66)
and (3.70) reduce to eqs. (3.47) and (3.51), respegtively, in the limit
EgAf=EgB' In the polytypes ZnS with a small o the energy sep;ration between
the A and B valence bands is quite small (3 meV for 0=0.1). Therefore we
can evaluate the value of Pll-P12-for polytype ZnS (a=0.1) from egs.
(3.47) and (3.51), and the result is shown by the solid curve in
Fig. 5~19, where the best-fitting pérameters given in Table 5-4 are used in
the calcualtion.

Figures 5-20 and 5-21 show the dispersion curves of the photoelastic
constantsP., -P., and P

11 "12 44

scattering measurements by using eqs.(3.79) to (3.83), where the theoretical

, respectively, deduced from the present Brollouin

values are adjusted to the experimental values at 460 nm in Fig. 5-19. Im
the analysis the dispersion of the refractive indices and m4 dependence are

taken into account. Theoretical curves were calculated by eqs.(3.47)(for
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Pll-Plz) and eq. (3.52)(for P44), which are shown by solid curves, where
the parameters used in the calcualtion are shown in Table 5-4. In all
cases we find a good agreément between the experimental and calculated

results. Fig 5-21 and 5-22 show the dispersion curves of the photoelastic

constants P._, ~-P_,..and P

11 12 L4 respectively, for 77 K and 300 K, deduced

from the present Brillouin scattering measurements by using eqs.(3.79)
and (3.83). Theoretical curves are calculated by same method as described
in Figs. 5-20 and 5-21.

Piezobirefringence experiment to deduce P in polytype ZnS was not

44

performed in the present study and therefore the magnitude of the photo-

elastic constant P44 is unknown. The value of P in the polytype crystal

44
is estimated in the folowing way on the basis of the quasi-cubic model. It
is convenient to describe atomic positions in zincblende (space group Tj )
in ‘terms of a Cartesian set of axis coinciding with the cubic x, y, z axis;
in wurtzite (space group Cgv ) or polytype (crystal symmetry C3V)‘hexagonal
axis are defined as hexagonal x, y, z axis. The relations between these

113) The photoelastic

different system are z =[111], y =[211], x =[011].
constants referred to the hexagonal axis are then obtained by

1

Py =3P PiatPy,) s (5.5)
P, - PI, = l(P -P. . +4P, ) (5.6)
11 - f12 T 3%117 12 44’ .

where P;. - P, and P,, are photoelastic constants referred to the hexagonal

11 "12 44
axis and Pll--P12 and P44 are those referred to the cubic axis. 1In order to
check the validity of the quasi-cubic model we calculated Pil-Piz from eq.

11" F12°

with the measured value -0.11. The value P,, estimated at 460 nm from

(5.6) and obtained P ~0.12 at 460 nm which is resonable agreement
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Fig. 5-18.

Dispersion curves of photoelastic constants of ZnS determined by the
static stress-induced birefringence measurements at 300 K.
Theoretical curves were calculated from eqs. (3.47) and (3.51).
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Fig. 5-19.

Dispersion curves of the photoelastic constant P -P of ZnS
determined from the Brillouin scattering cross sectiofi’ in Fig.
5-13, where the sign and magnitude of the photoelastic constant
is fitted to the experimental value of the piezobirefringence
data at 460 nm. Theoretical curves were calculated from eq.(3.47)
with the parameters given in Table 5~ 5.




- 152 -

] | ] ] !

Fh4)(|()2
O

5

500 600
WAVELENGTH (nm)

= CUBIC
* POLYTYPE

Fig. 5-20.

Dispersion curves of the photoelastic constant P

from the Brillouin
sign and magnitude
experimental value
Theoretical curves

of ZnS determined
scattering cross section in Fig. 5-15, where the
of the photoelastic constant is fitted to the

of the piezobirefringence data at 460 nm.

were calculated from eq.(3.51) with parameters

given in Table 5-5 .
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Fig. 5—21. Dispersion curves of the photoelastic constant P, -P of ZnS

at 77 K and room temperature. 11 12
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Fig. 5-22. Dispersion curves of the photoelastic constant P44 of ZnS at
77 K and room temperature.
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eq. (5.5) is -0.040. This value is used to obtain spectral dependence of

P,, for the polytype in Figs. 5-19 and 5-22. As mentioned in the case of

44

P Theoretical value of P44 caﬁ be calculated by eq. (3.51), which.

11~ P12
is shown by the solid curve in Fig. 5-19 and 5-22 (parameters used are
shown in Table 5-5).

All the experimental data of the Briilouin scattering experiments are

found to be in good agreement with the piezobirefringence theory as shown

in Figs. 5-18 to 5-22.

5.4 Resonant Brillouin Scattering
by T2- and LA-mode in CdS

In this section we will discuss the resonant Brillouin scattering in
CdS by  two kinds of phonons. In 5.4.1, dispersion of the Brillouin
scattering by T2-mode phonons and photoelastic constant P44 is presented. .
In 5.4.2, dispersion of Brillouin scattering by LA-mode phonons and

photoelastic constant P31 is presented. -

5.4.1 Resonant Brillouin Scattering by T2-mode Phonons in CdS

ihe spectral dependence of the Brillouin scatteing cross sections for
the acoustoelectrically amplified T2-mode phonon domains in CdS measured at
room temperature and 77 K are shown in Fig. 5-23. The phonon’frequency is
selected to be 0.3 GHz. The incident and scattering angle related to the
appropriate phonon frequency were obtained from eqs.(2.15) and (2.16),

) and natural birefringence.l33)

using the data of refractive indicesl32
In the case of T2-mode phonons, the absorption coefficient of the

scattered light is different from that of the incident light because the
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scattered and incident light have different polarization (ei”c—axis and e
1 c-axis ). Hence in order to deduce the Brillouin scattering cross
section, we have to take into account a dichroism correction of absorption

30)

of light. This was first made by Ando and Hamaguchi. They obtained the

following relation near the fundamental absorption edge:

I o.dQ a b
s__B s (-—=—)
I0 o, —-on /n, P cosB?
i s s i s
ns b
X{l-—exp[-(di-as—ﬁjﬁ cosei 1} (5.7)

where oy and o are the absorption coefficents for the incident and
scattered light, respectively, and b is the width of the sample in the
scattering plane. " The refractive indices n, and ny refer to

the values of the incident and scattered light, and the incident angle

8£ and the scattered angle Qé= (e;—-e;) are defined in Section 2.2. The
experimental data shown in Fig. 5-23 are obtained from dichroism correction

134) The experimental data show

using the absorption coéfficient of Dutton.
resonant cancellation at 560 nm (room temperature) and 550 nm (77 K).

Above the cancellation point steep resonant enhancement is observed.

The shift of the cancellation point by changing the temperature of sample

- corresponds to the shift of the band gap energy. The theoretical dispersions
of the Brillouin scattering efficiency were caléulated by using eq. (2.134)
and (2.140). The numerical values used in the present calcualtion is

listed in Table 5-6 . The solid curves are theoretical ones taking into
account the real part of the Brillouin temsor. Imaginary part of the
Brillouin tensor,which plays an important role in the region very close to

the fundamental absorption edge, is omitted because the imaginaly part is

negligible in the region far from the fundamental absorption edge (See
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Table 5-6. Parameters used in the calculation of the Brillouin
scattering cross sections and photoelastic constants

in CdS
Symbol Numerical value
Eoa (eV)? 2.452 (295K) 2.531 (77K)
Ep (en)? 2.466 (295K) 2.545 (77K)
Ec (e)? 2.525 (295K) 2.604 (77K)
E, (mev) P 28
g A c 4.14 %103 0
XX yA/A
g2 B ¢ 2.82x103 3.64x 1073
XX ZZ
€ ¢ ¢ 1.38x 107> 6.97 x 107>
XX ZZ
c, (ev)? 2.9

d

C4 (eV). -1.5
Cg (en)d - 2.4
a, 0.75
a, | 0.66

a

bReference 70.

Reference 135.

Creference 136ﬂ '

dReference 72.
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- CdS T2 mode
) e 77 K
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WAVELENGTH (nm)
Fig. 5-23. Dispersion curves of the Brillouin écattering cross sections

in CdS for 0.3 GHz T2-mode phonons measured at room
temperature and 77 K. The solid curves are calculated by

the Brillouin scatteirng theory given in eq. (2.134) and
(2.140). The vertical arrows indicate the spectral positions
of the wavelengths corresponding to the ground state levels
(n=1) of A valence band.
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Fig. 5-24.

Dispersion curves of the photoelastic constant P,, of CdS
determined from the Brillouin scatteing cross section in
Fig. 5-23, where the sign and magnitude of the photoelastic
constant is fitted to the value P44==— 0.075 (at 630 nm).
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Chapter 6). The experimental data show a maximum in the region very close
to the fundamental absorption edge. We presume, however, this maximum
arises from the experimental difficulty because both the transmitted and
scattered light suffer from strong absorption. Brillouin scattering cross
section is proportional to Is/It’ wherevIS refers to the scattered

light intensiry and It the transmitted light intensity. Near the

fundamental absorption edge, the magnitude of I, and It change considerably

S
( a factor of lO2 or more). In the strong absorption region , the S/N
ratio of the factor IS/It becomes bad. We conclude that this maximum

of the dispersion curves comes from the low S/N ratio of the signal

and no maximum peak exsists in the resonant enhancement region.

_.Figure 5-24 shows the dispersion of the photoelastic constant P44
deduced from the present Brillouin scattering measurement by using
eq.(3.82), where the theoretical values are best fitted to the experimental
values. The absolute va}ue énd.sign are fitted.to the value of P44=

78)

~0.075 at 630 nm obtaiﬁed by Yu and Cardona. In the analysis the
dispersion of the refractive indices and w4 dependence are neglected
because the measured region of the incident light is narrow range.
Theoretical curves were calculated by eq. (3.69), which are shown by solid
curves, where the parameters used in the calcualtion are shown in Table 5-6.

In both cases for 295 K and 77 X, we find a god& agreement between

experimental and theoretical results. .

5.4.2 Resonant Brillouin Scattering by LA Phonons in CdS

In this subsection, we present dispersion curves of resonant Brillouin
scattering by LA (logitudinal acouétic) ﬁode in CdS at room temperature,
and an analysis of the resonant behaviour by the theory based upon the

54)

Brillouin scattering theory and piezobirefringence theory.
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Since the first observation of the resonant Brillouin scattering

29)

in GaAs, similar measurements have been carried out in various semi-

conductors. The measured data, however, are limitted to tansverse acoustic

27)

phonons (Tl- and T2-mode phonons). Pine observed a weak resonant -
enhancement for the scattering from LA phonons, where the scattering cross
section was measured by thermally tuning the fundamental absorption edge
in CdS through the incident radiation at 514.5 nm.

We report here a novel technique to observe the resonant behavior
for the Brillouin scattering from LA phonons with the propagation difection
and atomic displacement perpendicular to the c-axis.

The present measurement was made at room temperature by using the
mode converted LA phonons which were generated by reflection of the acoustic
domains at the anode of the sample. The dimensions of the sample are
1.3 mm wide, 3.9 mm thick and 6.8 mm long. We found that thicker specimens
are suitable for generation of the'mode converted LA phonons. This seems
to be the fact that the amplified acoustelectric domains propagate with a
cone angle of about 100. Therefore various component of mode converted
phonons are generated from the off axis components of the domains in
thicker specimens. Polarization of the incident and scattered light are
© parallel to the c-axis and. thus the correspondipg photoelastic constant
is P31.

The identification of the LA phonons was made by the sound velocity

v, = VCll/p = 4.34><105 cm/sec and the selection rule of the light

LA
polarizations. 1In this configuration the optical anisotropy does not take
part in and therefore the Brillouin scattering cross section is

proportional to Is/It where Is and It stand for the scattered and transmitted

intensities of the light. Scattering cross sections Og thus obtained are

plotted in Fig 5-25 along with the values estimated from the data of Tell
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26)

et al. for the purpose of comparison, where the latter data are obtained

from Raman-Nath experiment. We find a fairly good agreement in the data
between the two different methods, and both exhibit a weak resonant

enhancement near the fundamental ébsorption edge. It should be noted here

that resonant cancellation as observed in the case of TA phonon528—38)

is not found in the photon energy range investigated. From the similar

30)

anlysis as made by Ando and Hamaguchi we find that the transition of

the intermediate holes between the B valence band predominates in the
process and thus two band theory is possible. We evaluated the scattering
cross section using the relation given in eq.(2.134) and (2.141). The:
result is shown by the solid curve, where we find a good agreement with
~the experimental data. 1In the analysis we find that a sign reversal of

Ris+-R occurs at wavelength'A = 750 nm and that the non-dispersive component

0

RO is very weak compared with that of transverse acoustic waves. We

applied the piezobirefringence analysis to the present data and the results

are shown in Fig. 2-26, where the photoelastic constant P31 is estimated

using the relation given in eq.(3.83).
We find in Fig. 2-26 that the theoretical curve obtained from
piezobirefringence analysis shows a good agreement with the experimental
dispersion where the theoretical curves is adjusted to give the experimental
137)

value of P_ . =-0.041 atA= 633 nm Since the present expériment does

31

not provide the absolute value of P the experimental values are

31’
normalized at 550 nm so that the experimental values are best fitted to the
theoretical curve by the method of least mean squares. The analysis
reveals that the most dominant contribution coﬁes from the excitation of
holes in the B valence band and ;hat the sign reversal of the photoelaétic

constant occurs at the wavelength about 750 nm. These results are

consistent with the resonant Brillouin scattering analysis mentioned above.
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Fig. 5-25. Dispersion of Brillouin scattering cross sections (closed
circles) in CdS at 300 K by 1.2 GHz LA phonos. Solid
curve 1is calculated by taking into account the exciton
effect. For comparison results of Tell et al. are
plotted by open circles. ’
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Fig. 5-26.

| |
550 590 030
WAVELENGTH (nm)

Dispersion of the photoelastic constant P_. obtained from

the data shown in Fig. 5-25. Solid curve™1s calculated by
the piezobirefringence theory and the values are adjusted

to give P31==—0.04l at 633 nm.
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In conclusion, the observed resonant behavior of the Brillouin
scattering by LA phonons is explained by the theories of resonant Brillouin
scattering and piezobirefringence theory when we assume the non-dispersive

component has the different sign from the dispersive component.

5.5 Resonant Brillouin Scattering in HgI2

In this section, we shall discuss the observation and an analysis of
resonant Brillouin scattering in the layered type semiconductor HgI2 by
the pure-transverse (PT) acoustical phonons at room temperature in the
\photon energy of 1.45-2.2 eV. We performed the resonant Brillouin
scattering méésuremént by employing the amplified acoustical domainvinjection

method.

5.5.1. Optical Properties of HgI2

The layered semicénductor Hg12 gives rise to a strong anisotropic
behavior of the physical properties due to the singularities of the
cryétal structure. At room temperature, Hg12 occurs as red tetragonal
crystal (Dii)bwhich changes to a yellow orthorombic form on heating 400 K.138)
Red tefragonal HgI2 cleaves easily to give crystallographic plane
perpendicular to the crystal c—axis. The absorption edge of Hg12 is
characterized by the direct optical transition from three p-like valence
bands, which are split due to spin orbit interaction and crystai field
perturabation, to an s-like conduction band. Normal incidence reflectivity
measurement at 4.2 K (E|| c-axis, qlc-axis) shows three sharp exciton
peaks at A(2.339eV), B(2.538eV), C(3.35eV), peak A being at the absorption

139)

threshold. A group theoretical analysis of the band structure of the

tetragonal Hg12 in the I'-point of the Brillouin zone has shown that the
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conduction band has the symmetry TZ and the valence band has its origin
in p~orbitals of iodine and is split by the spin-orbit coupling and crystal
field into three valence bands with symmetries T;, F; and Fg .140) The
reflection maxima A, B, and C coinside with the optical transitions into thé
corresponding exciton series, respectivély. This band structure in the T
point is very similar to those of wurtzite crystals such as CdS,CdSe and ZnS.
We have deduced the real and imaginary part of the dielectric constant
by means of the conventional Kramers-Kronig analysis 141) of the

39)

reflection data of Kanzaki and Imai. The procedure used for the
extrapolation of R(E) from 6 eV to infinite energies has been described

in ref.1l41. It is clear fromkFig. 5-27 to Fig. 5~30ithat the optical
transitions are direct and three sharp exciton peaks are shown near the
fundamental absorption edge. Various parameters related to the fundamental
absorption edge is listed in Table 5-7. Figure 5-30 showé the combined
density of state calculated from the datakof Fig. 5-27. 1t should be

noted that the back ground peak is very close to the fundamental absérption
edge. Such a structure is in contrast to those found in III-V or IT-VI
compound. We assume that the backgrouﬁd peak‘at around 3.5 eV of the combined
density of state (€2E2) corresponds to direct transitions at higher bands al-
though the characteristic of the transition is unknown. Thus it is interest-
ing to compare the Brillouin scattering cross sections between II-VI (IIL -V)
compounds and layered compounds since the Brillouin scattering cross section
strongly depends on the band structure and density of state in higher emnergy

region. We shall present a simple microscopic model to calculate the

contribution of the broad peak to the Brillouin scattering cross sectionms.

5.5.2 Sample Preparation and Experimental Procedure

The HgI, crystal used in the presnt experiment was grown

2
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142
from the solution growth by using dimethylsulfoxide (DMSO) solvent. )

The sample is cleaved along the c-plane and used without further treatment.
The sample is bonded to the end-bonded surface of the CdS single crystals
through a cyanoacrylate resin (Aron Alpha) and high intensity acoustic
domain was injected into the Hgl,. We found that cyanoacrylate resin

is suitable material for bonding thinner or layered crystals to CdS. The

Hgl., crystal was cut and cleaved in the form of parallelepiped with

2
dimensions of about 2 mm wide, 5 mm long, and 0.54 mm thick. The acoustical
domain injected into the layered-type specimen travels in the direction
perpendicular to the c-axis with shear polarization perpendicular to the
c-axis (Z.e. PT phonon domains). The identification of the injected domain
was made by the sound velocity. The slope of the line in Fig. 5-31 gives

the sound velocity which is w T =1.46><103(m/sec). Theoretical value of

P
the sound velocity is calcualted by using the existing data of the
elastic constants and density of HgIZ}AB)USing the formula Vpp =
/(Cll—-Clz)/Zp = l.468>€103 (m/sec), wherevCll==3.303><lO11 (dyn-cmfzj,
C,, = 0.559%10™" (dynem ) and p= 6.354 (g-cm ). We find that the

experimental and theoretical results show a good agreement.

5.5.83 Brillouin Scattering Cross Sections

Figure 5-32 shows the spectral dependencé of the Brillouin scattering
cross sections for pure transverse acoustic phonons in HgIz, obtained at
room temperature in the region of transparency. The following scattering
configurations were used in the present measurements by taking into account
their polarization selection rules 73): gi'Lg’ Zsj_Z and Zitgs’ where gi and
Zs are the unit vector in polarization direction of the incident and
scattered light, respectively. The frequency of the acoustical domains has

been selected to be 0.4 GHz by properly setting the incident and scattered
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angles.

The spectral dependence of the Brillouin scattering cross sections
show a resonant cancellation in the vicinity of the band gap. Such a
feature is in contrast to those found in other direct-gap semiconductors

90y38) nS,73’109) ZnSeBa) and so on, where the spectral

such as CdS, Z
dependence shows clear resonance features (resonant enhancement and
cancellation) in the region near the direct gaps. The absence of resonance
features has been thought to be due to that the contribution from the
direct gap in HgI2 is rather weak so that the nonresonant contributions are
dominant in the Brillouin scattering process. Such a resonant feature of
Hg12 is very similar to those found in GaSe and GaS by Adachi and

41)

Hamaguchi.

The Brillouin-scattering cross section is now given by

i
|}
~~
93]

.
(9.9)

where R is the Brillouin tensor, Wy and w, are the frequencies of the
incident and scatterd radiations, respectively, and mq is the frequency
of the relevant acoustical phonons. In the present analysis, we can
separate the Brillouin tensor R into three independent components:
Ri=R, 4B ER (5.9
where Ris and Ris are lowest-direct and higher-direct gap resonance terms,
respectively, and R0 is the non-resonant term arising from the other, far-
off critical points in the band structure. Evaluation of Ris is given by

eq.(2.140). For the transition at around w, = 3.5 eV, we use essentially the

80)

0

Penn model. Within this model the Brillouin tensor contribution R;S

can be written as

2
b o ol a ol g ok K W (5.10)
LT ey
0 0 Yo
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Table 5-7. Parameters used in the calculation of the Brillouin
scattering cross sections of Hg12

Symbol Numerical values
i a a b
E_, (eV) 2.339 (4.2K) 2.320 (77K) 2.231° (300K)
8 a a b
EeB (eV) 2.538 (4.2K) 2.505 (77K) 2.426° (300K)
EZC (eV)  3.85% .2 3,31 (%) 3.238° (306K)
E, (mev) 345, 419
e
ag 0.76
a, 0.64°
e :
EeA’ EeB’ and Eec are the ground state exciton energy for
a""‘ = Mrsetals ZEREE _._ e ay _aa_ _ga— ._.B.
Reference 139,
bReference 144.
CReference 145.
dReference 146.

®Calculated by using eqs. (2.180) to (2.182), where we used ﬁ0=

0.812,
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Fig. 5-27. Refrectivity spectrum of HgI2 at 4.2 K; EJ} c-axis, k| e-
axis (From ref.139).
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Fig. 5-28.

Real and imaginary parts of the refractive index n
and k of Hglp at 4.2 K, obtained from the Kramers-
Kronig anlysis of the reflection spectrum shown in.
Fig. 5-27.
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Fig. 5-29. Real (€1) and imaginary (€,) parts of the dielectric
constant of HgIy at 4.2 K, obtained from Fig. 5-28.
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Fig. 5-30. Combined density of states function €2E2 (in arbitrary
units) for Hgly, as obtained from the Kramers-Kronig
analysis (4.2K).
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Fig. 5-31. Domain transit—time versus light-spot position for PT
mode for HgI, from the Brillouin scattering measurements.
The slope of line gives the domain velocity.
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Fig. 5-32. Brillouin scattering cross section of HgI,. Theoretical curves

are calculated by using eqs. (5.8) and (5.9).
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In order to calculate the Brillouin scattering cross section we have
introduced the non-resonant or non-dispersive element Ro arising from the
higher gaps. The solid curve in Fig. 5-32 is calcualted from eq. (5.8).

The symmetry of the I' band in HgI2 is same as that of the wurtzite crystals.
Therefor the selection rules of the I' point of both the momentum matrix

elements POB and Pa , and deformation potemtial matrix elements are exactly

0
same as those in the case of the Brillouin scattering by Tl-mode phonons in
wurtzite materials. In the present PT-mode phonons, virtual A, B, and C
excitons (or excitation of holes in A, B, and C valence bénds) are excited.
There exist two interband preocesses, namely A to B, A to C, B to A, C to A
process. On the other hand intraband process is forbidden from selection
rule. We used Wy = 3.5 (eV), A = 127.2 (arb. units), R0 = 7.5 (arb. units).
The relarive value of RiS = 1.18 (arb. units) at 600 nm, and RiS = 0.48

(arb. units) at 700 nm. According to this model given in eq. (5.8) we find
that the contribution of ﬁigher band transition is not negligible and the
decrease of the Brillouin scattering cross sections in the longer wavelength

region is well interpreted as due to the contribution from higher lying gaps

near 3.5 eV.

5.6 Acoustic Figure of Merit (Mz)

It is well known that the light scattering by ultrasonic waves is
applied to the acousto-optic devices such as light modulator and scanner.
This means that it is possible in principle to control light by the action
of ultrasonic waves as an information carrying signal in optical data-
processing devices. The great successes in recent years of applied reserch
in acoustic optics have clearly shown that it is pracrically applied to a

number of functionable devices, for communication system, signal processing
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and other system. Therefore in order to design such an acousto-optic

. devices we have to take into account the precise diépersion of the photo-
elastic constant of the material used in the devices because the Brillouin
scattering intensity is proportional to the photoelastic constant. In -
particular, there exsists resonant cancellation in the vicinity of the

37)

fundamental absorption edge. Dixon1 has pointed out, however, that

the photoelaétic dispersion appears to be much less important consideration
for modulator design than was initialy expected. Gordonl47) has shown that
for acoustic modulator there are at least three different criteria judging

a material’s usefulness;’the center frequency fo, the dynamic width Af,

and the scattering parameter n (the fractional light power scattered is

2.1/

. 2 . . .
sin™n ) are under a wide variety of circumstances related by

oar 12 3 -1
foAfnn,9(n P /pv)(K0 h cos@o) Pa > (5.11)

in which n and p are the refractive index and photoelastic constant,
respectively, AO is the optical wavélength in air, 60 is the scattered angle,
Pa is the acoustic power, and h is the acoustic—~beam height. Assuming that
the acoustic-beam height is held constant, the combination of material

2 .
parameter M, = n7p /ov constitutes a "figure of merit" by which materials

1
for use as acoustic modulation may be compared in the usual situation in
which both bandwidth and diffracted intensity are important. Since the

parameter n is given byl48)

n a5 @%p2/ovd) (Aozh coszeo)_lwoPa , (5.12)

where WO is the acoustic beam width. If only the scattered light intensity
' 6 2 3

were important and appropriate figure of merit would be M2 =np /pv .

According to the eq. (5.12) it follows that if we wish to reduce the

electrical power consumed by the device we must use a material



= 78 =

having a higher quality factor MZ' Figure of merit M2 has already listed in

137 These data are obtained, however, at a

a number of materials by Dixon.
fixed wavelength and the dispersion of the M2 is not presented. The
developement of various types of semiconductor laser and dye lasers on the
past dozen years has led to remarkable progress. Near future it will by a
possibility that the acoustic-devices will be operated in a various region
of wavelength. Therefore it is important to determine the detailed dispersion
of Mz over the wide range of wavelength of the materials.

In Fig. 5-33 we obtained the dispersion of M2 in CdS, ZnS, and GaAs.
It is seen from this figure that in the region far from the fundamental
absorption edge the dispersion of M2 shows less dispersive, while near the

fundamental absorption edge intensity of M2 decreases and steeply approaches

zero (resonant cancellation). Finally in the region very close to the

for devices is achieved in the region far from the fundamental absorption
edge. It is seen in Fig. 5-33 that GaAs is a good modulating materials
in the infrared region. In visible and ultraviolet region, ZnS and CdS can
be used as modulator, respectively.

In conclusion, to design the acousto-optic devices we must take into

account the dispersion of the acoustic figure of merit.
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CHAPTER 6

Resonant Brillouin Scattering

in the Opaque Region of CdS

6.1 Introduction

We have studied the resonant Brillouin scattering in several
semiconductors by means of transmission type of experiments. In these
experiments, however, the incident light was restricted to the transparent
region because the experimental conditions that the transmitted light signal
were measured. Therefore, it is difficult to obtain the dispersion of
Brillouin scattering cross seciton in the opaque region due to the strong
absorption. To overcome this restriction we have empolyed the reflection
scattering configuration (See Chapter 4) and we have 6béér§rd resonant

enhancement in the opaque side of the fundamental absorption edge.148)

6.2 Experimental Procedure

The samples used in the present study are single crystals (purchased
from Eagle Pitcher Company, UHP grade) with = 20 ohm-cm resistivity and
with tﬁe scattering surface of optical flat mechanically polished and finally
polish~etched by Syton. We used several lines of Ar ion laser between
457.9 nm and 514.5 nm operation at = 200 mW CW as the incident light source
for experiment. This laser provided light polarized vertically, and when
horizontally polarized light was required, this was obtained by means of"
using a Rochon prism. The scattered light polarization was analyzed by
placing a sheet poiaroid matefial between the photomultiplier and sample.
The reflection scattering geometry used in the present study is shown in

Fig. 4-4 (b). The T2-mode phonons amplified through acoustoelectric effect
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propagate in the direction perpendicular to the c-axis with shear polarization
parallel to the c-axis. The laser light beam is incident on a polished
surface parallel to the c-axis (ei [lc~axis) and the scattered plane was
perpendicular to the c-axis‘(esJ_c-axis). Also we measured in the scattering
where the incident light polarization is perpendicular to the c-axis
(eiJ_c—axis) and the scattered plane was parallel to the c-axis (esllc—axis).
The interaction length between phonon and photon is comparable to the
penetration depth (a_lfro.l um) and restricted to the surface region because
in the region above the fundamenatal absorption edge o is = 105 cm . Here
the Brillouin scattering process produces a scattering light out of the
propagation direction of the reflected beam. The light scattered by the
ripple mechanism shows no rotaion of the polarization, but the scattering by
the elasto-optic mechanism is rotated 90°. Our main interest in the present
study is the latter mechanism in the opaque region. Therefore, we choose
the polarization direction of the scattered light perpendicuiar.to the -
incident light. It is important to point out that S/N ratio of the
scattering signal is strongly dependent upon the surface condition of the
sample. While the CdS is pure (UHP grade) some trouble was had in obtaining
good CdS surface. 'The best results were obtained from Syton-etched surface,
- but the Rayleigh scattered light, which comes from the surface defect, causes
the Brillouin scattering signal noisy. To reduée the effect of the noise,
we measured the data several times and averaged thses data. The crystals were
held at room temperature, but some heating of the scattering surface was
inevitable; It is estimated that this heating should not have exceeded
about 30 K.
The identification of the acoustic waves was made by the sound velocity
v(T2) =/EZZ75— = (1.80%£0.05)x 105,cm/sec and selection rules of the light

polarization (See Fig. 4-4 (b)).



- 182 -

6.3 Experimental Results

In Fig. 6-1, we show the experimental results obtained from the presnf
study. The scattering intensity (Is) was normalized by the incident light
intensity (IO). This figure shows the spectral dependence of the Brillouin
scattering efficiency for 0.5 GHz T2-mode phonons at room temperature. Open
circles show the data obtained by choosing the incident light poralization
parallel and the scattered light polarization perpendicular to the c-axis

(e ll c-axis, eSJLc—axis), while the closed circles show the data obtained

by choosing the incident light polarization perpendicular and the scattered
light parallel to the c-axis (ei_Lc—aXis, eSH c—axis); Very recently,
Chang et al. have reported the resonant Brillouin‘scattering efficiency in
the opaqﬁe région by employing a Fabry-Perot interferometer, which are

also shown in the figure. They obtained the signal by‘using the acousto-
electrically amplified phonon domains with 524 MHz TZ;méde phonons.42) These
two independent data were plotted by normalizing at 496.5 nm. It should be
noted that these data shoﬁ good agreement in spite of using different kind
of instruments. The experimental data show a peak at around 500 nm and a
clear resonant enhancement in the opaque region of CdS.

We have already shown that in the transparent region resonant
Brillouin scattering cross section has resonant enhancement and resonant
cancellation below the gap. These resonant features ha&e been successfully
explained by the Brillouin scattering theory. Thus it is interesting to
consider whether the resonant enhancement in the opaque region is explained
by the same theory with same parameters used in the calculation in the
transparent region.

Fugure 6-2 shows the theoretical curves of the real and imaginary part

of the Brillouin tensor Ris for T2-mode acoustical phonons in CdS at room

temperature. We calculated these curves by using egs. (2.134) and (2.140).
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The numerical parameters used in the present calculation is listed in Table
5-6. In the present calculation, the contribution from the A, B and C
valence bands is taken into account. Below the fundamental absorption
edge, real part of Ris dominates the imaginary part. These facts indicate.
that only virtual electronic state can take place in the long wavelength
region. Near the band gap, both the real and imaginaty part of Ris show
strong resonant enhancement. In particular, the imaginary part shows a
resonant peak at around 512 nm. This position corrésponds to that of the
ground state exciton energy associated with the A valence band (Eex =

2.424 eV = 511 nm). This strong peak of the imaginary part of Ris shows

the fact that the incident and scattered photons resonate with electron
states. Above the band gaps, both the real and imaginary part of RiS
decrease steeply and approach zero when we neglect the contribution from the
higher energy critical points. The total light scattefing cross section

o is proportional to the square of RiS-I-R0 as follows:

B

r

2
l = l(Ris

o, « |R, +R

I r A
B is TRy + iR ) + Ry + iRy ) |7, (6.1)

where RO (= Rg + iRé ) is the non-resonant term of the Brillouin tensor
arising from the far off critiéal points in the band structure and has an
.opposite sign to Ris' The resonant cacellation (OB = 0) occurs when RiS +
R0 becomes zero. The spectral position of the fesonant cancellation is

shown af the cross point of --RO and the real part of Ris'

Figure 6-3 shows wavelength dependence of the Brillouin scattering
cross section OB(in arbitray units) for 0.5 GHz T2-mode phonons at. room
temperature, where open circles with error bars are obtained by the reflected
light scattering geometry and the solid circles are experimental data

obtained by the transmission light scattering geometry. These two

independent data were plotted by comparing with the theoretical curves.
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According to the theory for surface elasto-optic scattering in isotropic

149)

opaque materials, the cross seciton varies with absorption coefficient

o, as [l%—(al/ZWn)Z]_l.éz) For CdS at room temperature, The refractive
index n=2.8 and o is nearly c_onstantf\»lO5 cm_l, for 450 nm < A< 500 nm.
In the region, the measured Brillouin scattering cross section is reduced

by less than=5 %.42)

Therefore absorption correction can be neglected. We
find in Fig. 6.3 a clear resonant enhancemt in the opaque region, where

the three absorption edges 506 nm, 503 nm, and 491 nm exist. The resonant
features (resonant cancellation and resonant enhancement ) in the transparent
region have been already explained by the Brillouin scattering theory. It

is interesting to check whether the resonant enhancement in opaque region

is explained by the same theory with same parameters. In order to clarify
this problem, we calculated two kind of theoretical curves. One is
calculated by using eq.(6.1), where both the imaginary and real part of Ris
are taking into accouﬁt. The other is calculated by using the following
relation;

[ r r|2

R, + R

is 0 (6.2)

o

B « ’
in which only the real part of the Brillouin temsor is considered. A solid
curve is calculated by eq.(6.1) including both the imaginary and real part
of Ris and RO. On the other hand, a dashed curve is calculated by taking
into account the real part only by eq.(6.2). The experimental.data show a
good agreement with the former results butbpoor agreement with the latter
calculation. We measured the Brillouin scattering intensity by tuning the
energy gap thermally at 514.5 nm and we find no change in the intensity.
Therefore we conclude that a minimum does not exist near the band gap.

From these results, we conclude that the imaginary part of_Ris plays an

important role, in particular, in the region of the absorption edge.

Figure 6.4 shows the dispersion curves of the Brillouin scatteirng
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Fig. 6-1. Brillouin scattering efficiency in the opaque region of CdS
at room temperature for (O) e.]| c-axis, e 1 c-axis, (@)
e. | c-axis, egl] c-axis, (A) e.h c-axis, e i_c—axis, obtained
by Chang et al. The vertical Adrrows indicHte the spectral
positons of the ground exciton leveles for A, B, and C valence

bands.
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Real and imaginary part of the Brillouin tensor for the
case of T2-mode phonons in CdS at room temperature.
Theoretical curves are calculated using the Brillouin
scattering theory. The vertical arrow indicates the
spectral position of the ground exciton energy (EAl).

Fig. 6-2.



Og (vorb‘. units)

1

10

Fig. 6-3.

- 187 -

CdS T2-mode
300 K

— ABSOLUTE
VALUE

-———-REAL PART

— o — . W W M NS AR M XX SNE SN NN XD I

200

| l
500 600 700
WAVELENGTH (nm)

Dispersion curves of Brillouin scatteing cross section for
0.5 GHz acoustic phonons. The present data in the opaque
region is shown by open circles, while the data in the trans-~
parent region is shown by the closed circles.
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Fig. 6-4. Dispersion curves of the Brillouin scattering cross
section obtained by thermally tuning the band gaps.
The measured data are normalized at 300 K. Four
different theoretical curves are shown; (a) Absolute
value, T = 25 meV; (b) Absolute value, T' = 35 meV;
(c) Absolute value, I' = 45 meV; (d) Real part only, T =
35 meV. ‘ :
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Fig. 6-5. Dispersion curves of photoelastic constant P4 obtained
from the data shown in Fig. 6~3. The presnt éata in the

opaque region is shown by open circles, while the data
in the transparent region is shown by closed circles.
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cross sections ontained by thermally tuning band gaps. We showed

here four different theoretical curves.. The experiméntal data show a
good agreement with the theoretical curves when we choose damping facter
as =35 meV. The physical meaning of the damping factor will be discussed
in Section 6.4.

It has been shown that the Brillouin scatteirng cross section is
analyzed from phenomenological aspect by incorporating the piezobirefringence
theory. 1In Fig. 6.5, we show the dispersion curves of the photoelastic
2, where the

constant P44 determined by the relation G |P

44-

subscript r and i indicate the real and imaginary part of P44, respectively.

B

Since the present method does not give sign and absolute values of the
photoelastic constant but relative values. they are adjusted to the values

77)

of Yu and Cardona, P -0.054 at 630 nm. The theoretical curves of

44
the absolute value of P44 (|PZ44-iP24|) obtained from piezobirefringence
analysis shows a good agreement with the experimental data in the region
investigated. This indicates again that the imaginary part of the photo-
elastic constant plays an important role to determine the dispersion and

thus the dispersion of the Brillouin scattering cross section in the resonant

enhancement region.

6.4 Lifetime Broadening Effect

The damping energy I' depends strongly on the temperature. In generai
the damping factor can be expressed by a sum of three independeﬁt
contribution as follows;lSO)

D(T) = Ty + T (D+ T (D), (6.3)

where PO is an independent part of temperauture T arising from the foreign

nature defects, Fac(T) is a contribution from acoustic phonons (proportional
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to T for the thermal phonons), and FLO is a contribution from LO phonons
(proportional to [exp(ﬁmLO/kBT)-l] where ﬁwLO is the LO phonon energy).
51)

BleilandGay1 measured the temperature dependence of I' and shows that

the dominant contribution to I' at room temperature comes from LO phonons.

From their results, I' = 30V 50 meV at room temperature andI' = 5 meV at

77 K. This value shows a resonable agreement with that obtaied from the

present Brillouin scattering measurement in the opaque region ( T = 35 meV).
Theoretical expression of the energy dependence near the fundamental

absorption edge is proposed by Hopfield as follows:152’153)

r w>w
e e

T'(w) = (6.4)
Peexp{c (ﬁwe -fw)} , w< W,

in which Hwe and Fe are the energy and broadening factor at an
absorption edge, respectively, and C is a constant related to the Urbach
rule. When we use a resonablt value Pe = 38 meV, estimated from the half-

36) S1) lines at room temperature,

width of excitonabsorptionl and emissionl
it turns out that [' is very small in the transparent region. Wasa et al.
obtained that I' = 0.5 meV (300 K), I' = 0.6 meV (310 K) and T = 1.2 meV

153) On the other hand near the band.gap it is obvious

(350K) at 560 nm.
that T becomes large and I' is nearly constant value (I = 38 meV). Therefore
we conclude that near the fundamental absorption edge lifetime broadening

factor T is nerly constant and the main contribution of T comes from LO

phonons.

6.5 Summary

We have observed the Brillouin scattering cross secitons in the opaque

region of CdS by making use of the reflection scattering configuration. It
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turns out that the Brillouin scattering cross section shows clear resonant
enhancement above the fundamental absorption edge. The resonant enhancement
in the opaque region is well explained by the Brillouin scattering theory
and piezobirefringence theory when we choose same parameters used in the
analysis in the transparent region of the scattering cross section. It was
also found that the imaginary part of the Brillouin tensor (or photoelastic
constant) is important in determining the dispersion curves near the band
gap. Life time broadening factor is determined by the presnet work and
found that this value (I = 35 meV) is nearly equal to that of the LO phonon

energy.
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CHAPTER 7

Conclusions

The results and conclusions obtained in the present work are

summarized as follows:

1) Theoretical expression of the Brillouin scattering cross section was
derived by the time—~dependent third order perturbation theory. We showed
that the resonant enhancement and cancellation are well explained by the
resonant Brillouin scattering theory. We also presented that the Coulomb
interaction causes a strong asmmetry in the Brillouin efficiency with respect
to the band gap, a strong resonance occurs at the photon energy of the

ground state exciton level. It also turns out that the role of the imaginary
part of Brillouin tensor is of significant importance'for the scattering

mechanism in the vicinity of the band gap.

2) We have derived the expressions of the photoelastic constants Pll-PlZ’
P44 in zincblende, and Pll-Plz, P44 and P3l in wurtzite materials by using
the model dielectric functions. We showed these formulations can be extended
to the region where the incident photon energy is higher than that of the
band gap energy and imaginary part of tﬁe dielectric constant plays an
important role in determining the complex photoelastic constants. A simple

model is also shown to explain the non-dispersive term of the photoelastic

constants by using the Penn model.

3) We showed acoustic domain injection method provides great advantages in
investigating phonon-phonon or electron-phonon-photon interaction, in non-

piezoelectric semiconductors, insulators and layered compounds.
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4) It is established that the reflection scattering configuration in the
Brillouin scattering experiment with a high intensity laser provides resonant
light scattering signal in the opaque region, above the fundamental absorption

edge.

5) Resonant Brillouin scattering in GaAs by the transverse acoustical phonons
has been analyzed by the Brillouin scattering theory and piezobirefringence
theory. The resonant enhancement and cancellation are found to be well
interpreted in terms of the sign reversal of the Brillouin (or photoelastic
constant). A good agreement was found between the experimental data and the
theoretical calculation. We found in GaAs that the effect of the discfete
exciton on the dispersion of the Brillouin scattering cross seciton and
photoeiésfic"éonstaﬁf is negligible because the exciton Rydberg energy is
small (4.2 meV) as compared to other II-VI compounds. We also predicted a
cancellation of the Brillouin scattering at 976 nm fo£ the scattering by

the slow transverse (T1) acoustic mode vhenons.

6) Observed dispersion spectra of the Brillouin scattering by TA-mode
phonons show sharp resonant enhancement near the fundamental absorption
edge in CdS, cubic and polytype ZnS. These resonant featureé are explained
as follows: The contribution to Brillouin tensér (or photoelastic constant)
from the lowest direct gap and that from higher‘bénds have opposite sign

and thus cancell at a certain energy below the gap.

7) Observed dispersion spectra of the Brillouin scattering cross sections in
CdS by LA-mode acoustic phonons show only the resonant enhancement in the
measured region. We have analyzed the data by the Brillouin scattering
theory and piez§birefringence theory and find a good agreement between .

experimental data and theories. In the analysis, it turns out that a sign

>
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reversal of Brillouin tensor (or photoelastic constant) occurs at wavelength
A =750 nm and that the non-dispersive component RO is very weak compared

with that of transverse acoustic waves.

8) The resonant Brillouin scattering in cubic and polytype ZnS has been
investigated in the photon energy region 1.8 to 3.7 eV using two different
transverse acoustic waves excited by acoustoelectric domain injection method.
The results show a resonant cancellation and enhancement near the fundamental
absorption edge and are in good agreement with the resonant light scattering
theory. It is found that the scattering cross sections exhibit w4 dependence

as expected from the classical light scattering theory.

‘9) Measurements of the stress-induced birefringence have been carried out

to obtain spectral dspendence of the elasto—opticalvconstants (photoelastic
constnats) in ZnS. The results show a good agreement 'with the photoelastic
constants estimated from the resonant Brillouin scattering data. From the
present work we find that the magnitude and sign of the photoelastic constants
can be determined in a wide range of photon energies when we combine the
resoannt Briliouin scatteing with the piezobirefringence measurements.

It is difficult to eluqidate'the absolute value of the photoelastic constants
only from the Brillouin scattering experiments. This difficulty may be

removed by using the present method.

10) Resonant Brillouin scatteirng in Hgl

2 has first been investigated at

room temperature by making use of the acoustic domain injection method. The
experimental data show a resonant cancellation only in the lower side of the
photon energy region, while no resonant enhancement has been observed.

The spectral depen&enée of the cross seciton has a good agreement'with the

theoretical expression when we take into account the higher direct transiton.
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It was also found that the contribution of higher band transiton is strong
and the decrease of the Brillouin scattering cross section in the longer
wavelength region is interpreted as due to the contribution from higher

gaps near 3.5 eV. _ .

11) The precise dispersion and absolute values of the acoustic figure of
merit (Mz) was found to be important factor for designing acousto-optic
devices. We showed the dispersion of acoustic figure of merit in ZnS, CdS

and GaAs.

12) We have determined the Brillouin scattering cross sections in the opaque
region of CdS by employing the reflection scattering geometry. It turns out
that the Brillouin scattering cross section clearely shows resonant
enhancement above the fundamental absorption edge. The resonant enhancement
is successfilly explained by the Brillouin scattering'theory and piezo-
birefringence theory when we choose same parameters used in the analysis in
the transparent region of the scattering cross section. It was also found
experimentally that the imaginary part of the Brillouin tensor is important
in determining the dispersion curves near the band gap. Life time broadening
factor is determined by the present work and found that this value (T =35 meV)

is nearly equal to that of the LO phonon energy.
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