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 Resonant Brillouin Scattering and Piezobirefringence in Semiconductors . 

       The present work is a study of the resonant Brillouin scattering and 

piezobirefringence in several semiconductors in the region neat the fundamental 

absorption edge. The thesis will be essentially devided into three subjects . 

One is concerned with the theoretical construction of the Brillouin scattering 

theory and piezobirefringence theory. The other is devoted to the experimental 

results of the Brillouin scattering by using the acoustoelectrically amplified 

phonon domains in several semiconductors such as CdS, ZnS, and HgI 2* The third 

is devoted to the measurement and analysis of the resonant Brillouin scattering 

in the range of photon energy above the fundamental absorption edge of CdS. 

      In Chapter 1, historical background of the resonant light scattering is 

reviewed and significance of the present work is explained. 

      In Chapter 2, classical and quantum mechanical theory of the Brillouin 

scattering are presented. Brillouin scattering cross sections near the MO 

critical point not only in the energy range below but also above the band gap 

are interpreted by the quantum mechanical theory of light scattering precess. 

Selection rules of the momentum matrix element and deformation potential 

scattering are discussed. 

      Chapter 3 deals with the basic concept of piezobirefringence and photo-

elastic constants are derived theoretically by the piezobirefringence theory. 

      Chapter 4 deals with the experimental procedure and detailed explanations 

of the sample preparation used in the present work are presented. The 

experimental technique of the acoustic domain injection method and the some 

results are also presented. 

       In Chapter 5, the experimental results and discussion on the resonant

    ( 16 ) 

  ABSTRACT



                             17 

Brillouin scattering in CdS, GaAs, ZnS, HgI 2 are presented. In the observed 

spectra, one can find a sharp resonant enhancement and cancellation in the 

dispersion curves of the resonant Brillouin scattering cross sections by 

TA-mode phonons in CdS, GaAs and ZnS. Resonant features of the scattering 

efficiency by pure LA phonon is found to be quite different form that of 

TA-mode, where only a sharp resonant increase is observed. The resonant 

Brillouin scattering in cubic and polytype ZnS was investigated in a wide 

range of the photon energy and we found that the scattering cross sections 

exhibit w 4 dependence as expected from the classical light scattering theory. 

Resonant Brillouin scattering experiment in layered compound HgI 2 was made by 

employing the acoustic domain injection method. The experimental data have a 

resonant cancellation, while no resonant enhancement has been found in the 

measured photon energy region. 

      Chapter 6 deals with the experimental results afid discussions of the 

Brillouin scattering above the band gaps of CdS. A dispersion curves of the 

resonant Brillouin scattering cross seciton above the fundamental absorption 

edge was measured for the first time by using acoustoelectrically amplified 

phonon domains. It has been difficult to obtain the dispersion of the 

Brillouin scattering cross sections in opaque region when one adopts a 

transmission type of experiment. To overcome this restriction reflection 

type of experiment with Ar ion laser was used because the wavelength of the 

Ar ion laser locate in the region of the three energy bands in CdS. The 

experimental results have shown a resonant enhancement in the region and are 

analyzed on the basis of light scatteing theory and piezobirefringence theory 

extending the photon energy above the band gap. A good agreement between the 

experimental data and theory was found when we take into account both the 

real and imaginary part in Brillouin tensor and in piezobirefringence 

coefficient.
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                         CHAPTER 1 

                       INTRODUCTION 

       In the past dozen or so years, inelastic scattering of light has become 

one of the most powerful means of investigating elementary excitations in 

solids. Light scattering has been used in numerous ways to study both 

acoustic and optical phonon, electronic and magnetic excitations, and exciton 

polariton. 1,2) Traditionally, Ramman scattering refers to inelastic light 

scattering from optical phonons and Brillouin scattering, to scattering from 

acoustic phonons. However, in the modern context the distinction is made on 

the basis of the magnitude of the accompanying frequency shift of the scattered 

light and the experimental technique used in measureing the frequency shift in 

the scattering process. In Raman scattering experiments, one usually measures 

a frequency shift 1 cm- (1 meV = 8 cm- or greater by using a grating 

spectrometer, while in Brillouin scattering the typical range of frequency 

shift is 10 -3 cm -1 ( 30 MHz 1 cm -1 ( 30 GHz ) and standerd method of spectrum 

anlysis is a Fabry-Perot interferometer. Quasi-elastic light scattering 

with a frequency shift less than a few tens of MHz is referred to as 

Rayleigh scattering, and here a photon beating technique-is employed. 

       Present dissertation is concernned with a study of the resonant Brillouin 

scattering and piezobirefringence in semiconductors. Before we go into a 

discussion of the specific advance in the field of the Brillouin scattering 

by acoustoelectrically amplified phonon domains , we shall review some recent 

advances in the study lof light,scattering in solids. The Brillouin scattering 

was first predicted by Brillouin in 1922. 3) Smekal 4) developed in 1923 the 

theory of light scattering by a system with two quantized ,energy levels: this 

theory contained the essential characteristics of the phenomena discovered by
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Raman 5) and independently by Lansberg and Mandelstam 6) in 1928. The Brillouin 

doublets were first obseved experimentally by Gross 7) in 1930 and later 

cofirmed by Mayer and Raman,8) Debye and Sears, 9) and by Lucas and Biquard 10) 

in 1932. Later many studies, both theoretical and experimental, were devoted 

to those phenomena, and the characteristics of the vibrational spectra of 

crystals, fluctuation phenomena, and other physical properties of solids and 

liquids were investigated. In the 1940's emphasis shifted to systematic 

investigation of single .crystals in order to obtain information for the semi-

empirical treatment of their crystal dynamics. Because of the small scattering 

cross sections, however, experments were difficult and remained in the hands of 

relatively few groups. The possibilities of the light scattering studies have 

drastically expanded in 1960's because of the developement of laser. 'Its 

monochrimacity, coherence, collimation and power quickly made the old mercury 

arcs obsolete as sources for light scattering spectroscopy. Ever since the 

discovery of the laser one could easily obtained the detailed experimental data 

enough to be compared with detailed theory. In the early days of Raman 

scattering experiments, work was only possible with materials transparent to 

the scattering radiation. The scattering volume, limitted by absorption 

length, was too small in opaque samples to make observation possible. The 

first measurement of the Raman scattering in the opaque region was observed 

by Russell 11) for Si with a He-Ne laser in 1965. The measurements were 

performed in the back-scattering configuration which has later become standerd 

for studies of resonance effects. Later, Raman scattering in the opaque region 

was made by Parker et al. 12) in Si and Ge with the 488.0 nm line of Ar ion 

laser in 1967. On the other hand. the first measurement of the Brillouin 

scattering in the opaque region was made by Sandercock 13) in Si by thanks to 

the use of multi-pass Fabry-Perot interferometer. In 1960's these two
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spectroscopies, Raman and Brillouin scattering, have developed into powerful 

technique for studying phonons and other kinds of elementaly excitations in 

solids. 2) However, their potential for studying excitations has expanded 

recently. The ability of these scattering technique to probe electronic 

transition lies in the dependence of scattering cross section on the exciting 

photon energy. Such excitation spectroscopies are known as resonant Brillouin 

scattering (RBS) and resonant Raman scattering (RRS). 

       The first experiment of the resonant Raman scattering has been performed 

by Leite and Parto 14) in 1966 for CdS by using discrete lines of Ar ion laser, 

which cover the range between 2.38 and 2.73 eV. Subsequently, in 1970, Ralston 

et al. 15) have comfirmed the resonance enhancement in CdS and also established 

the existance of an antiresonance of the Raman-scattering cross section for 

TO phonons immediately below the fundamental absorption edge. Such a structure 

is now understood as a cancellation (anti-resonance) between the contribution 

of the band edge and of higher transition: these contribution must have opposite 

signs. 

       Measurement taken with a few discrete lines, however, may sometimes miss 

sharp structure between discrete point. The slight mismatch in frequency 

between the band gap and the nearest laser can be minimized by varying the 

                                                             16) temperature or pressure of the sample. By this method, Pinczuk and Burstein 

were able to detect a resonance near the E I gap of InSb. This resonance was 

studied in greater detail by Leite and Scott 17) for InAs using lines of Ar 

ion laser. However such tuning techniques have limitations and pitfalls. 

A breakthrough occurred in the field of resonance scattering with the advent 

of the tunable dye lasers. 18) The dye laser with its ability to tune over a 

wide range of wavelengths naturally became the best source of radiation for 

resonant light scattering studies. The tuning range of existing dyes capable 

of lasing in continuous (CW) mode is approximately 410 nm to 965 nm. 19) This



4 

 tuning range is sufficient for studying the resonant scattering in a large 

number of semiconductors such as: III-V compound : GaAs, GaP and AlAs; ii-vi 

compound: ZnTe, ZnSe, ZnO, CdTe, and CdS: layered semiconductors: GaS ,GaSe, 

and HgI 2* With the help of ion laser and dye laser, Cardona and coworkers 

have extensively and systematically investigate the resonant Raman scattering 

                                                      20-25) in Ge
, Si, diamond, III-V compound and H-VI compound. 

       The first measurement of the resonant Brillouin scattering has been 

performed by Tell et al. 26) in 1965 using transduser driven LA phonons along 

the a-axis of CdS and ZnO. The incident light was tuned over several hundred 

nm to the transparency limit of the crystals. Over this range they observed 

almost decade dispersion in the P 31' P 21 and P 11 tensor confugurations. 

The second experiment of the resonant Brillouin scattering has been performed 

by Pine 27) in 1972 for CdS by employing the high contrast Fabry-Perot inter-

ferometer. The resonant condition has been achieved by thermally tuning the 

fundamental absorption edge of this sample through the incident radiation 

at 514.5 nm Ar laser light between 100 K and 30O.K. The data show a strong 

resonant enhancement in the vicinity of the fundamental absorption edge. The 

new experimental technique of resonant Brillouin scattering by making use of 

the strong amplified acoustic domains through the acoustoelectric effect in 

piezoelectric semiconductors was proposed by Garrod and Bray 28,29) in 1972. 

Scattering from acoustoelectrically or piezoelectrically driven ultrasonic 

waves is easily observed with lasers or conventional light sources and 

angular dependence establishes the sound frequency. Thermal phonon Brillouin 

scattering is much weaker, so laser sources are generally used with inter-

ferometric spectral analysis. They have used a particularly simple and 

versatile apparatus of this kind because the acoustoelectrically amplified 

phonon domains provide strong Brillouin scattering signal with high SIN 

ratio and permit the use of conventional light source dispersed with a single
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 monochrometer. They demonstrated a sharp dip in the scattering dispersion 

 about 30 meV below the gap and resonant enhancement near the fundamental 

 absorption edge of GaAs. This measurement is the starting point of the 

 investigation in resonant Brillouin scattering by making use of the high 

 density acoustic domains. Subsequently, similar resonace behaviours have 

 been observed in CdS from acoustoelectrical domains by Hamaguchi and 

     1 30) 31)  c oworkers , and independently by Gelbert and Many. Resonant Brillouin 

 scattering has also been performed from the acoustoelectrical domains in 

CdS and ZnO by Berkowicz and Skettrup 32) and CdSe by Yamamoto et al . 33) 

The experimental results have also clearly shown enhancement and cancellation 

in the region near the fundamental'absorption edge. Such studies were 

restricted to only crystals in which the acoustoelectrical instability can 

occur by the application of a high electron field. This disadvantage was 

successfully overcome by employing the acoustic domaixi injection method by 

Ando and Hamaguchi. 34) This method enables us to inject the intense acousto-

electrical domains amplified in CdS into other e~d-bonded semiconductors 

through the thin indium layer with a high transmission efficiency . 35) This 

method made us possible to investigate the resonant Brillouin scattering in 

the non-piezoelectric semiconductors or even in insulators such as ZnSe 34) 

ZnTe, 36) ZnCdTe, 37) CdS, 38) GaP , 39,40) GaSe and GaS. 41) The experimental' 

data show a resonant enhancement and a resonant cancellation by shear acoustic 

waves of direct gap semiconductors, while by longitudinal acoustic waves or 

by shear waves in GaSe, GaS and GaP, no resonant cancellation has been 

observed. 

      In these studies, the incident photon energies were limitted to the 

region in which the samples were transparent. Because of the strong 

absorption near the fundamental absorption edge, it has been difficult to 

obtain the dispersion of the Brillouin scattering cross section in the highly
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opaque region when we adopt a transmission type of experiment. To overcome 

this restriction Chang et al. 42) used reflection type experiment. 43) In the 

opaque region, the scattered light intensity is considerably weak even if we 

use a high density acoustic domains, so it is necessary to use laser. They 

used several lines of Ar ion laser with a Fabry-Perot interferometer. In 

their experiments, two kinds of Brillouin scattering were studied. One is 

scattering from ripple, which involves dinamic corrugation generated on the-

sample surface and the other is those from the elasto-optic mechanism, which 

is based on phonon induced modulation. The ripple mechanism, which is the 

well known mechanism, shows no dispersion above the band gap, while the 

elasto-optic mechanism shows explicit resonant enhancement in the opaque side 

of the absorption edge. 

      The objective of the present study is to present the dispersion curves 

of the resonant Brillouin scattering in various semicQnductors such as II-VI 

and III-V compound, and analyze these data by the light scattering theory and 

piezobirefringence theory. Especially, in the p~esent study, we shall 

extensively discuss the results of the resonant Brillouin scattering and 

piezobirefringence in cubic and polytype ZnS, theoretical analysis of the 

resonant Brillouin scattering i n GaAs, resonant Brillouin scattering and 

piezobirefringence in CdS, and resonant Brillouin scattering in layered 

compound HgI 2 . Also theoretical point of view, we shall constract the most 

complete expression of the Brillouin (Raman) tensor extending the existing 

light scattering theory to the three band process, which enables us to 

analyze the experimental data. The second motibation of the present study is 

to investigate the dispersion curves of the resonant Brillouin scattering 

cross section above the band gap and analyze the mechanism in the region 

theoretically.
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                        CHAPTER 2 

                 BRILLOUIN SCATTERING THEORY 

                         2.1 Introduction 

       In this chapter, we shall be concerned with a theoretical treatment 

 of the resonant Brillouin scattering, which permit us to make a quantitative 

 cal-culation of the Brillouin scattering cross section. 

       The microscopic theory of the Brillouin scattering was first derived 

by Benedek and Fritsch 44) and Born and Huang. 45) They dealt thouroughly 

with the scattering cross sections in cubic crystals by incorporating the 

photoelastic constant. Such an analysis has been extended to the case of 

anisotropic media by Nelson et al. 46) Hope 47) and Hamaguchi 48) by taking 

into account the intrinsic birefringence. In the present study, the 

expressions of the Brillouin scattering cross seLtion derived by Benedek and 
      44) 48) 

Fritsch is used in the case of cubic materials and that of Hamaguchi 

is applied to the case of anisotropic materials such as CdS and hexagonal 

ZnS. It should be noted that the formulation mentioned -above is valid 

only in the transparent optical frequency range, so in the long wavelength 

region, where the incident photons never excite the electronic excitations in 

the crystals. In the photon energy region near the band gap energy the 

macroscopic treatment of Brillouin scattering is not useful because such 

treatments never take into account the effect of electronic excitations. 

       The microscopic (quantum-mechanical) expression for first-order 

Brillouin (Raman) scattering is obtained by 3rd order time-dependent 

perturbation calculation including the effect of electronic excitation by 

Loudon. 49) He predicted that the scattering efficiency should increase
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drastically, kown as the resonant Brillouin (Raman) effect, when the 

incident or scattered photon energy approaches the band gap energy. It is 

also found that the deformation potential scattering of intermediate virtual 

states (electronic- excitaitons) by acoustic phonons plays an important role 

in the discussion of resonant effect. After his prediction, a considerable 

number of theoretical investigations on the dispersion of the resonance 

effect in semiconductors have been carried out. 50-57) The formulations of 

the first and second order Brillouin (Raman) scattering efficiency for the 

case in which the intermediate electron hole pair state are Wannier-Mott 

excitons have been given by Ganguly and Birman. 50) Later, more explicit 

calculation for Wannier-Mott excitons (allowed and forbidden scattering for 

transparent and absorbing frequency regions) was derived by Zeyher et al. 57) 

The final results of the above two calculations satisfactorily explains the 

resonant characteristics below and above the band gap-. These results, 

however, contain some minor mistakes, arising from the calculation of the 

integration in the continuum part of the Brillouin (Raman) tensor. These 

mistakes have been corrected and completed formulation of the Brillouin 

(Raman) tensor has been presented by Peuker 58) and Bechstedt. 59) They gave 

a detailed discussion of the role of the imaginary and real parts, involving 

the discrete and continuum part of the Brillouin (Raman) -tensor. It has been 

found in the present calculation that Coulomb interaction between electron and 

hole causes a strong asymmetry in the Brillouin (Raman) efficency with 

respect to the band gap, a strong enhancement only occurs below the gap. 

Section 2.2 is devoted to show the explanation of macroscopic treatment in 

the Brillouin scattering and scattering cross section for each acoustic mode 

in cubic and wurtzite materials are derived. In Section 2.3, microscopic 

theories are discussed based on the Loudon's and Birman's formulation.
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       In Section 2.4, deformation potential scattering'and momentum matrix 

 element are presented. 

             2.2 Basic Theory of Brillouin Scattering 

2.2.1 Basic Concept of the Light Scattering 

      The kinetics of any scattering process is usually governed by two 

conservation laws, namely those of energy and momentum. For the light 

scattering process represented schematicallay in Fig. 2.1, these two laws 

reduces to these two equations 60) 

                    energy conservation 16 
1 = r1W S ±r1W q (2.1) 

                     momentum conservation lik.= lik ± riq (2.2) 
                                                     I s 

where liwi, r1W are, respectively, the energy of the incident and scattered 

S ph6hons; lik i and f1k s are their momenta and riw q and fiq are, respectively, the 

energy and momentum of the phonon scattered. Tht +(-) sign in eqs. (2.1) and 

(2.2) corresponds to phonon emission (absorption) and the scattering process 

is called a Stokes (anti-Stokes) process. 

                                     SCATTERING PHOTON 

                                            ENERGY :' NCO

INCIDENT PHOTON 

ENERGY : Rcoi 

MOMENTUM ht 

    Fig. 2-1. Graphcal 

               phonons

description of the

s 

MOMENTUM fi~ S 

PHONON(S) EMITTED 

OR ABSORBED K(o q 

QUASI-MOMENTUM 

scattering of light by

ri q
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                                                                                 5 -1 I
n most light scattering experiment k 

i and k S are the order of 10 cm 

( wave vector = 2TF x refractive index x wavenumber) , so that q is also around 

10 5 cm -1 or less. In crystals the size of Brillouin zone is typically 

=10 8 cm-1. This implies that one-phonon scattering process, only small 

momentum phonons can be excited. In multi-phonon scattering this 

restriction is relaxed although the vector sum of the momenta of the phonons 

scattered still has to be small. For example two-phonon Raman scattering, 

the two phonons can have momenta liql and liq 2 provided q, +q 2 = k, 2' 

Since t i S = 0, we conclude that I'l 2' If these two phonons belong to 
some branch (overtone scattering), the Raman frequency w i - W S is equal to 

2w 
q . This is the reason why zone edge phonon energies can be deduced from 

two-phonon Raman scattering. In Brillouin scattering, since the acoustic 

phonon frequency is given by w q = v S q (where v s is the sound velocity), it 

is not possible to neglect k i - k s 

      In addition to the above consevation laws, the symmetry of the crystal 

also imposes restriction on the phonon(s) which can be observed by light 

scattering techniques. In the scattering process a photon of energy .9w i and 

polarization e i is converted into a photon of energy Ew S and polarization e* s 

If the small difference in energy between liw i and riw S is neglected, the 

scattering can be described in terms of a second-rank tensor known as Raman 

tensor. 1) 

2.2.2 Macroscopic Theory of BrilZouin Scattering in Cubic Crystals 

      Macroscopic treatments of Brillouin scattering from isotropic crystals 

has been derived by Benedek and Fritsch, 44) in which,the integral equations 

are solved. The theory predicts the scattering intensity, incident and 

scattered light polarization, in the cubic crystals. In the case of 

anisotropic crystals such as wurtzite crystals, Nelson 46) and Hamaguchi 48) 

have extended the theory of Benedek and Fritsch 44) by taking into account the



- 11 -

effect of intrinsic birefringence. In the following , we will discuss the 

 expression of the Brillouin scattering intensities in isotropic (zincblende) 

matrials. 

      A light wave passing through solid or liquid medium produces an 

oscillating dipole moment per unit or polarization P(r,t) at each point r*. 

The oscillating moments in turn radiate or scatter electromagnetic energy 

in all directions. The electric field scttered to the field point 

by the oscillating polarization within a volume Jd_r*J<< X 3 is 

                             x 2-* 2      _+ . [ 1-* -* x D P(r,t')/Dt' 
     dE (,R,t) - R-r R-r Jd_r+ (2.3)                        21-+                   c R - ri It, = t IR r1/c 
In eq. (2.3) 1-* -* is a unit vector parallel to the vector R - r connecting                 R-r 

the source point r and the field point R. t' is the retarded time t 

I -` - -*I I c  R r 
M9 calculated using as velocity the speed of light inside the 

medium (c rather than that in a vacuum (c). 

      For low-intensity incident radiation, the 'local polarization is 

linearly proportional to the electric field, the proportionality factor 

being the polarizability tensor a. In analyzing the origin of the scattering 

we have separated the time average part of the polarizability <a> from the 

time-space fluctuation part 6ot(r,t). This assumption is justified if only 

a negligible amount of light is scattered and no absorption is present . In 

cubic crystals the time average polarizability <ct> is a scalar times the 

unity tensor, and the index of the refractive index n is independent of the 

direction of propagation. The thermal fluctuations in a crystal , however, 

cause off-diagonal component to appear in the polarizability tensor . Writting 

the electric field of the incident wave within the medium as 

                E r i(k r W 0 (2.4)                 ("t) E 0 e i* i 5
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 We obtain that the polarization at each point in the medium is 

             4- i(k ' r - W t)           P(
r , t) = (<a> + 6a(r,t)).E 0 e i i (2.5) 

 To evaluate the second derivative of P, as required by eq.                                                               (2.3), we must 

 realize that the characteristic frequency for thermal fluctuations are small 

  <10 12 S-1 ) compared to the frequency in the optical region (=5.10 14 S-1 

We may therefore regard 6a(r,t) as a very weak function of the time and 

write 

                          2-*                D P(
r,t) 2 

                  3t 2 W i P(r,t) (2.6) 

On substituting eqs. (2.5) and (2.6) into (2.3) and carrying out the 

 integration over the illumination volume V at the retarded time t', one 

obtains that R >> r, 

               W. i(k'.'R W t)     4. i i(k k'),rld~ 
 E (R, t) = -(-1) 2 e -* X X (<a>+ 6a(r,t')).E e i rj]            c I

R V 0 
                                                                    (2.7) 

where 1' is a unit vector parallel to R which is the direction of scattering 

k and 
                      n 

i wj n w                              --- - l
i, ts = " 'i,- , (2.8)                            c c k 

where n 
s is the refractive index in direction E'. The integral in eq.(2.7) 

represents the superposition of phases of waves scattered from each illuminated 

point in the medium. In the absence of the fluctuations a ) this 

superposition leads to a complete cancellation of the scattered waves. The 

contribution to the integral from <a~'> term is zero except in the forword 

direction, because of, 

          fV1 00 e i(k i- d-r* (2Tr) 3 6 ('k (2.9)
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Scattering out of the incident direction (k'= k i ) results entirely from the 

fluctuations (6a ). The fluctuating component can be expressed in terms of 

their spacial components: 

                                      i(q . r+W (q)t")       60t r jd`qj6'a"(q e (2.10)           't) = (27r) 3/2 P f 
q In this expansion 2ff/1>*1 is the wavelength of the fluctuation, W 11 (q) is the 

angular frequency of the fluctuation corresponding to this wavelength. The 

index p denotes the posibility of a number of branches of the dispersion 

relation connecting the wave vector q and the corresponding angular frequency 

W 'P (q). W P (q) is double valued with (±) to account for the degeneracy in the 

dispersion relation for positive and negative running waves. Substituting 

eq.(2.10) into eq.(2.7) one obtains 

                   W. i(k R (W ±W (') t)                                1 4. 4. e s i 11 q        E (R X X             t) It 1-* dq q E 
                    c k 0 R 

      x e i(t i ks + q).r 

V 

               1dr (2.11) 

where 

n 
s 

            )(Wi W (q)) (2.12) 

The last integral in eq. (2.11) is a delta function provided that the 

integration volume is large compared to the wavelength of light, 

                            q r 3     fV -* CO Id'r-1 (2Tr) s + q) (2.13) 
Thus the wavevector of the fluctuation which produces the scattering in the
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 direction 1*+ is that which satisfies the implicit equation 
k 

                    q = k s i = K (2.14) 

 The solution of this equation is denoted by K and is called the scattering 

vector. Equation (2.12) indicates that the frequency of the scattered wave 

 (w s =k s c/n d ) is shifted by amount ± w 'P (q), and therefore eqs.(2.12) and 

 (2.14) represent the conservation of energy and momentum among the incident, 

 the scattered photons and scattering fluctuations (phonons). From eqs. (2.8), 

 (2.12) and (2.13) the angles of incident and scattered light may be calculated 

as follows Fig. 2.2), 2 

                  sin e' 0 11 (n 2 _ n 2 (2.15)                       i _~_
nv, f s + f X 2 i d 

                                                s 0 
2 

                    sin 8 .,f P (n 2 _ n 2 (2 .16)                            2n 
d v s f ~, 2 i d 

                                                s 0 

where the subscript "ill and "d" denote "incident" and-"deflected" or 

(scattered), respectively, X 0 the wavelength of the incident light in free 

space, v P the sound velocity and f 
s the frequency of the acoustic waves. 

The angles 0! and e' are the internal angles in the medium. The scattering d 

angle e , is defined by 
s 

                  el = 0! + 01 (2.17) 
                       s I d 

If the scattering medium is isotropic one obtains , ni = n d =n 0 and in the 

case, eqs. (2.15) and (2.16) reduce to the simple isotropic form 

                  V/2 = e! = e (2.18) 
                        s I 

and 
                     01 X f 

                  sin S 0 s (2.19)                     2 2
n 0 v 

where we have to note that 0' is the scattering angle in the medium . s 

      In the Brillouin scattering measurements by acoustoelectically
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Fig. 2-2. Schematic diagram showing the wave vector construction between 
           the incident light (k 

i = n i w i /c), the scattered light (k d= n s (W i            +
w P )/c), and the acoustic wave (q=w 

P /V P ). 

amplified phonons, we employ the geometry shown in Fig. 2-3. In the case 

we measure the external angles e and 0 (or 0 0.+e ) instead of e' and                                i d 
s I d i 

0'. Therefore we have to use Snell's low to derive the incident and d 

scattering angles outside the specimen (in air). The result for the anti-

Stokes process is 48) . 2 

            sine n sin[sin-1 X [f + v 11 (n 2_ n 2 + 61, (2.20)                     i 2
n i v s f X 2 i d 

                                                     s 0 
2 

            sine sin[sin-1 -~n 0 X [f v. 2_                  = n 
dvP (n n~, + (2.21)               d d s f X 2 i d 

                                                     s 0 

where is the propagation angle of the acoustic waves with respect to the 

direction parallel to the slab faces. For the isotropic material and for 

6 =0 we have 

                        e s /2 0 1 = 0 d (2.22) 

with 0 X 1 f 

                          sin 2
v (2.23) 

P 

      In the case of CdS the refractive indices are n 0 2.460 for ordinary
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waves and n 
e = 2.477 for extraordinary waves. The acoustoelectric domains 

(T2-mode) in CdS consist of the transverse aoustic waves propagationg in 

the c-plane with its polarization vector parallel to the c-axis. When the 

polarization vector of the incident light is perpendicular to the c-axis, 

the scattered light is polarized parallel to the c-axis. On Fig. 2-4. is 

shown the angle of incident light (e i ), and the angles of diffracted 

light ( 8 d ) as a function of acoustic frequency of CdS. For comparison 

is also shown the frequency dependence of 0 i = e d= (a 0 ) for the isotropic 

case (n= -T(n e +no)). In the calculation we have used the following data: 

X 0 =632.8 nm(vacuum wavelength of.He-Ne laser), v ij = 1.76 xlO 5 cm/sec

" d

e I

d

air e ~

q

.............. ..........

kid e; ki med~ium
Lei

-I

ei a i r-

Fig. 2-3. Interaction geometry for optical diffraction by an off-axis 
            elastic wave. -k>.O:wave vector of the incident light. k:wave 

           vector of the scattered light. q:wave vector of the acoustic 

            wave. e 
i :external incident angle. e,:external diffracted            angle. e s :external scattering angle? 6:propagation angle of 

           the acoustic wave with respect to the slab faces of the 

            specimen.
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 0 2 4 5 
     PHONON FREQUENCY (GHz) 

  Angles of incident light (6.) and that of diffracted light                             I ed 
   outside the crystal as a function of acoustic phonon frequency 

  (f s ) in CdS with the off-axis angle (6 ) of the acoustic wave 
  vector as parameter, where the incident plane is perpendicular 

   to the ,c-axis of the crystal. The incident light polarized 
  perpendicular to the c-axis is scattered by the transverse 

  acoustic waves propagating in the c-plane with the polarization 
  vector parallel to the c-axis, and the scattered light is 

  polarized to the c-axis. Isotropic case is shown in the dashed 

   curves.
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(sound velocity of the acoustoelectric domain in CdS) - It should be noted 

that there exsists a remarkable difference between the two cases; optically 

isotropic materials and anisotropic materials. Substituting eq.(2.10) 

into eq. (2. 11) and replacing 6a by ft/Or , where 66 is the fluctuation in 

the dielectric constant tensor, we obtain the expression for the amplitude 

of the electric field scattered by the mode p of the fluctuation having the 

wave vector K, 
                  W. 3/2                 1 2 (27T) i{k R [W ±W ('K)1tj 

       E (K, t) 
c 4TrR e i 

                              1->-X [14 X oc W . E ) 1 (2.24)                            k k 0 

As follows from the eq. (2.24) the scattered light has the frequency 

W 0 +w P , where the plus sign corresponds to the aiti-Stokes component and 

the minus sign to the Stokes component. The direction of the scattered 

light is given by the unit vector 1 and the wave vector is given by 

eq. (2.12). 

      The total power dP'(q,R) in all frequencies scattered into a solid! 

angle dWat the field point R* is proportional to the mean squared field 

strength, 

                       C 2 2             dP' (q, R) `--< I E' (q t)j >R dQ' (2.25)                       87r 

The spectrum of scattered radiation is derived using the autocorrelation 

function for E'(q,t). The fluctuation in the dielectric constant tensor 

components results from the fact that those components depend on the state 

of strain of the solid. A fluctuation produces a corresponding fluctuation 

in the electric displacement vector 6D(q,t)= 6c (q,t).E 0' The fluctuation 

in the dielectric constant tensor e k1 = (1/2)(9u k /3r 1 + Du I Or k ), -u and -r 

being the displacement and position vectors, respectively, of an element of 

the crystal. The fluctuation of strains are produced by the passage of 

sound waves. In general, for small strains, the change in the dielectric
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tensor component 6E 
i,(r,t) as a linear function of the elestic strain 

component e kl ('r,t), 

                66 (r,t)                 ij 

(2.26)                     .6. . Tpijkle kl(r 't) 
                      J3 k ,l 

where p ijkl is the components of the photoelastic tensor. Each tensor for 

the zincblende-type crystals has the following form: 

dielectric constant tensor: [6] 

                      0 0 

                    0 0 11 n 2 (2.27)
_ 

                  0 0 

strain tensir :[e] 

                      e 11 e 12 e 13 

                [e]= e 21 e 22 e 23 (2.28) 

                   L e 31 e 32 e 33J 

photoelastic constant tensor:[p] 

                   pll P12 P13 0 0 0 

                    P12 pll P12 0 0 0 

               [p]= P13 P12 pll 0 0 0 (2.29) 

                0 0 0 P44 0 0 
                   0 0 0 0 P44 0 

                    LO 0 0 1 0 0 P44J 

In eq. (2.27), n is the refractive index of the crystal. Note that the 

strain [e] is the symmetric tensor. One can write 6c ij (r*,t) using eq.(2.26) 

as
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           66 ij ('r, t) = F_ ii E: jjzpijkl'(r,t) (2.30) 
                                 k, 1 

 From the Fourier transformation of e kl (r,t) into e kl (q,t), we obtain for the 

 fluctuation of the electric displacement in the crystal 

                    6D. E 6F_ (K,t)-E 

                      =6 
im 6 njpmnkl e kl ('K,t)E 

2 

                       E j* Ku mt)~ i (2.31) 

It can be seen from eq. (2.31) that in the light scattering experiment one 

observes not but the component of ~~'in the plane perpendicular to the 

scattered wave vector k given by 

                      1->. X (lt X C (2.32) 

k 

                     _*P 
The vector ~ therefore determines explicitly the polarization of the light 

scattered from each acoustic mode 11. From eqs.(2.24), (2.25) and (2.31) we 

obtain 

                    2 3 
                          cE w k T' 2 

               dP' = -g7r 0 ( 0 ) 4 E: 4 V B 1: _2 dQ' (2.33) 
                        c 11 (4

7T) 2 p P=J[w 
P (,q)] 

The result of eq.(2.33) is valid provided that ~w 
P <<k B T. The correct form 

for eq.(2.33) at all temperature is 

             CE 2 W 3            0 0 4 4 V 
      dP' ) E: - j:JLa_-4,-W (q)[(<n (q)+l>+<n (q)>] dQ'            87r c 117(47r;y =l 2pv 2 q 11 P 

                                 P 
(2.34) 

where 

                <n 
11 (q) > (2.35)                          exp(rlw 

11 (q)/k B T - 1) 

The two terms in the square brackets at right hand side of eq.(2.34) 

correspond to the so-called Stokes component and anti-Stokes component, 

respectively. The intensity of light scattered into the solid angle Q'
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during the optical path length r is given by 

                 2 8 3 

       dP'(Q' 7 no 1 2 11w (<n > + 1) + <n >1dW -r (2.36) 
                              Pv 11 P                      0 P=l 11 

where 1 
0 is the incident intensity and X 0 is the wavelength of the light in 

vacuum. The summation in eq. (2.34) indicate that one must include 

contributions from three different acoustical phonon mode, i.e., these from 

two transverse modes and one longitudinal phonon mode. 

      In the case of 16 11 <<k B T, eq. (2.34) can be written in good 

approximation as 

                     n
. = k B T/fiw P (q) (2.37) 

Thus, the energy density of eq. (2.34) can be replaced by k T in the case B 

                                                     n riw _* )- k T]. of Brillouin scattering by thermal phonons 14) 
P q P q - B 

      The intensity of light scattering through anti-Stokes or Stokes process 

is given by 

                                             Tr n 'P 2                                       0 (D            dP' (Q') = 10 2: - It, I r . dQ" (2.38) 
                                    Ix Pv 

                            P=l 0 P 

It should be noted here that the solid angle 0' is the internal solid angle 

in the sample. In Brillouin scattering measurement an aperture is usually 

placed in front of the detector, which determines an external collection 

angle 0, not the internal cone 2' given in eq. -(2.34) and eq. (2.38). For 

small cone.angles one obtains 48) 

                         dQ cose d dQ' (2.39) 

                           n Vn 2 _ sin 2 0 
                          d d d 

where 6 d is the external scattering angle. The scattering cross section 0 
B 

is 
7T 2 n 8 3 2 cose 

             B 4 0 0 2 d (2.40)                       X
0 Pv 11 n n 2 sin 2 8                                  d V'd - d
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where a B is defined as the Brillouin scattering intensity per unit path 

length per unit external solid angle. 

      According to the eq. (2.31), light scattered by acoustic waves should 

exhibit certain distinguishing characteristics which should depend strongly 

upon the polarization and propagation direction of incident light beam 

relative to those of acoustic waves. To evaluate the intensity of Brillouin 

scattering, one has to calculate Ep,2/pv2 for the conditions appropriate 

P to one9s experiments. 

Case 1 M-Mode Acoustic Phonons in Cubic Materials) 

      The Tl-mode phonons propagate in the [1-10] direction with shear 

polarization parallel to the [110] direction. We adopt the configuration 

that the incident light polarization is parallel to the [110] direction. 

                 Acoustical polarization: Tr = (1/Y72-, 1IY72-9 0) , (2.41a) 

                   Acoustical propagation: l-,-- (1/,'r2-,-l/,12-, 0) , (2.41b) 

q 

            Incident light polarization: 1- (11,r2_9 11,72-9 0) (2.41c) E 
                                                                                                                  -)'Tl 

Substituting eq. (2.41) into eqs.(2.31) and (2.32). one obtains as 

                                -*Tl 
= 1                             (p P )1- (2.42) 

                             11 12 q 

      -*Tl 
and E as 

                             -+Tl I                                 -T(P P
12 )Cose,-J-* (2.43)                                          i S 

where 0! is the incident angle inside the specimen, and the vector 1- stands S 

for the unit vector lying the scattering plane. The scalar product of 1-S 

and 1-+ is given by E 

                             1-+ 0 (2.44)                       S E 

which means that the scattered light polarization is explicitly perpendicular 

to the incident light polarization. Substituting eq. (2.42) into eq.(2.40) 

we can obtain the Brillouin scattering cross sections for Tl-mode phonons as
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              7T 2 F_ 4 Tl cose 
       cr 11 ~D I l(P 2 d (2.45)          B 4 C 11 - C 12 2 11 - P 12 )cos6i'11-S 2 

                              nl~ /ns~in                                                      d~ 

where C 
ij is the component of the elastic stiffness tensor. In eq.(2.45). 

we used the following relation: 

                            1/2 
               v Tl= I (Cil - C 12 )/2 (2.46) 

Case 2 (T2-Mode Acoustic Phonons in Cubic MateriaZs) 

      The T2 -mode phonons propagate in the [110] direction with shear 

polarization parallel to the [1101 direction. We adopt the configulation 

that the incident polarization is parallel to the [110] direction. 

      The vectors ff, 1-* and 1-* are, thus written as 
                 q E 

                  Acoustical polarization: Tr = (llvr2-, lbT, 0) , (2.47a) 

                   Acoustical propagation: 1-*= ( 0 0 , 1) , (2.47b) q 

             Incident light polarization: 1-+= (11VY, llyrf, 0) - (2.47c) 

E 

                                                                                                 _"T2 
Substituting eq.(2.46) into eq.(2.31) and (2.32), one obtains as 

                       -T2                                    1->- (2 .48) 

     ->'T2 P44 q 
and as 

                                  -*T2 
                             P cose 1-* (2.49)                        44 i S 

The scattered light polarization is also explicitly perpendiculatr to the 

incident light polarization, because 1--l- 0. Substituting eq.(2.48) into 
                                             s E 

eq.(2.40), we obtain 

          Tr 2 E 2 (D T2 cose            11 2 d 
                        C (2.50)        CF =       B X 4 2C 44 [P44 ose'l S 2 

         0 n ~In ~-s in e d 

where C44 is the component of the elastic stiffness tensor, and we used the 

following relation: 

                    v T2= (C 44/01 2 (2.51)
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 2.2.3 Macroscopic Theory of BriZZouin Scattering in Wurtzite CrystaZs 

      The macroscopical theory of Brillouin scattering in the wurtzite-type 

crystals offeres the closest analogy with that in the zincblende-type 

crystals. One must, however, take into account the anisotripic 

nature of the optical properties [i.e., birefringence and dichroism] in these 

crystals, since the scattered and incident lights have sometimes different 

polarizations. For the crystals with crystal symmetry of 6mm, 6m2, 622, 

or 6/mmm, the dielectric constant tensor [c], strain tensor [e] and 

photoelastic constant tensor [p] can be written as 

                      C 11 0 0 

                 161= 0 F-11 0 (2.52) 

                         -0 0 633 
with 

                    2 2 
                  6 11 ~ n 

0 and '~:33 n e (2.53) 

and

[p]

with 

               P66 

where n and n are the 
        0 e 

rays, respectively. If 

wave vectors k i [eq.(2.8)]

 pll P12 P13 0 0 0 

 P12 P11 P13 0 0 0 

 P31 P31 P33 0 0 0 

 0 0 0 P44 0 0 

 0 0 0 0 P44 0 

           0 0 p 66 

1 (
P P12) 2 11 

refractive indices for the 

the birefringence effect is 

 , k d [eq.(Z.8)] appeared in

(2.54)

               (2.55) 

ordinary and extraordinaly 

 taken into account, the 

2.2.2 becomes 48)
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                             n i Wi 
                  kt = - (2.55) 

c 

                            n d W
S                              k->- = (2 .56) 

                             s c 

where n 
i and n d are the refractive indices for the polarization of the 

incident light and for that of the scattered light, and 1 t is a unit vector 

in the direction of the scattered wave vector k. 

      One can write eq.(2.26) by using the formulation of [p] in eq.(2.54), 

         -66 
ij (r,t) C im 6 njpmnkl e kl (2.58) 

and thus the fluctuation in the electric displacement vector in the crystal 

6D is written 2 
                                              'P 

-E            6D"(q t)=6F- (q2t) = "~l qu (q,t)~ (2.59) 
                          0 0 

      The vector which determines the polarization of the scattered light 

is given by the same form as eq.(2.32), one obtain the Brillouin scattering 

cross,section in the wurtzite~ type crystal as 

                    Tr 2 F- 4 3 cose             11 Z d 
            B= 4 p=l 2pv P ~n2 _ 2 (2.60)                    0 n d d sin 0 d 

In the following, we evaluate the Brillouin scattering cross section in the 

wurtzite type crystals for three special phonon modes;(l) TI-mode acoustic 

phonons, (2) T2-mode acoustic phonons and (3) LA-mode acoustic phonons by 

the aid of the above results. 

Case 1 (Tl-Mode Acoustic Phonons in Wurtzite MateriaZs) 

      The Tl-mode phonons propagate in the direction perpendicular to the
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c-axis with shear polaization perpendicular to the c-axis. We adopt the 

configulaiton that the incident light polarization is perpendicular to the 

                                                                                                     -* -+ 4. 
c-axis and parallel to the shear polarizaiton. The vectors 7T, l-)- and 1-*, 

                                                       q E 

thus, become 48) 

                 Acoustical polarization: 7 =( 0, 1, 0) , (2.61a) 

                  Acoustical propagation: 1-*=( 1, 0, 0) , (2.61b) 
q 

             Incident light polarization: 1-±=( 01 1~ 0) - (2.61c) E 

                                                                                                   -*Tl 
Substituting eq.(2.61) into eqs.(2.59) and (2.32), one obtains as 

                  -Tl 1 
                                      1-* 1 (2.62)                        (Pll - P12) ( k) 3'

xz 3, 

where 1 xz is the unit vector in the OX 1- Ox 3 plane, and then 

                          (Pll-P12) 2 
(,-*) 2 2 (2.63)                   I 

2pv 2 2(c 11-C12) lk 3 lxz                     Tl 

where the sound velocity v Tl of this phonon mode is given by the same form 

as eq.(2.46). The elastic stiffness tensor [c] has the similar form as 

eq.(2.54). The Brillouin scattering cross section can be obtained by 

substituting eq.(2.63) into eq.(2.60). Thus we find that the polarization 

of the scattered light is perpendicular to the incident polarizaion for the 

scattering by the Tl-mode acousitc phonon. 

Case 2 M-Mode Acoustic Phonons in Wurtzite MateriaZs) 

      The T2-mode phonons propagate in the direction perpendicular to the 

c-axis with shear polarization parallel to the c-axis. We adopt the 

configuration that the incident light polarization is parallel to the c-axis. 

The vectors ff, l-, and 1- are, thus, written as 
             q E 

                Acoustical polarization: 7T =( 0, 0, 1) (2.64a) 

                 Acoustical propagation: 1-*=( 1, 0, 0) (2.64b) 
q 

            Incident light polarization: 1±=( oil 03, 1) (2.64c) 

E
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 It is clear from eq.(2.64) that 

        Tr 0, 1- . 1-+ = 0 and (l 0 '          q q E q 1 E 

 so that eq.(2.59) can be reduced to as 

                       ->-T2 633 2 -* 
                         P44 (---) 1 q                          E

ll (2.65) 

 Then, one obtains 

                   -*T2 633 2 
                     P44 (T-) I 1-k* x 1-q* 11-c (2.66)                           Eli 

 where the vector ljcin eq.(2.66) is the unit vector perpendicular to the 

 c-axis of the crystal. Thus we find that the scattered light is polarized 

 perpendicular to the incident beam. One can finally obtain 

                          ->-T2
,12 = 2                       P44 E33 )4 2 2 

                  Pv 2 2c 44 ( F- 11 11 k x 1 q l-Lc (2.67)                    T2 

The sound velocity v T2 is given by the same form as eq .(2.50). The Brillouin 

scattering cross section can be obtained by substituting eq .(2.67) into 

eq.(2.60). 

Case 3 (LA-Mode Acoustic Phonons in Wurtzite Materials) 

      The LA-mode (pure longitudinal) phonons propagate in the direction 

perpendicular to the c-axis with acoustical polarization perpendicular to the 

c-axis We adopt the configuration that the incident light polarization is 

parallel to the c-axis. The vectors 7T, 1-* and 1-~-, thus become 
                                   q E 

               Acoustical polarization: 7 =( 1, 0, 0), (2 .68a) 

                Acoustical propagation: 1-*=( 1, 0, 0), (2 .68b) 
                                                                             -* q 

           Incident light polarization: 1-*=( 0 , 0, 0) - (2.68c) E 

Thus, eq.(2.59) can be reduced to as 

            -LA 33 2 
                P31 I 11c (2.69) 

where the vector is the unit vector parallel to the c-axis . It can be                11c
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seen that the polarization vector of the light does not change after being 

the Brillouin scattering process. Finally, one obtains 

                  -LA 2 p C 
             1~ 1 '31 33 4 2 

                2p 2 2c 11 11 ) 11 11c (2.70)                      vLA 

In eq. (2.70), we used the following relation: 

               v LA= (c 11 /P) 1/2 (2.71) 

The Brillouin scattering cross section can also be obtained by substituting 

eq.(2.70) into (2.60). 

               2.3 Quantum Mechanical Theory 

2.3.1 BriZZouin Scattering for Uncorrelated EZectron-Hole Pairs 

      The detailed nature of the resonant light scattering mechanism of 

the Brillouin (Raman) scattering is examined by quantum mechanical theory. 

Expression for the Brillouin (Raman) cross secti .on, a V can be derived by 
the application of time-dependent perturbation theory by Loudon. 49) 

Using time-dependent perturbation,theory, the Brillouin (Raman) scattering 

probability per unit time is given by 61) 

   P(W ;W )= (2Tr/ri 6 <fjH lk><klH 1 lj><jlH 1 li> 12            S (Wl - W ) (W - W 
                    f j,k i i k S 

                X6(w W 
s- W q) (2.72) 

where li> is the initial state consisting of a crystal in its ground state 

plus an incident photon;and if> is an additional phonon 5w 
q ;lj> and jk> 

denote intermediate states in which excitons are excited in the solid. H
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is the interaction Hamiltonian, assumed to the sum of the exciton-radiation 

Hamiltonial (H ER ) and the exciton-phonon (H EP ) interaction as follows; 

                  H, = H ER +H EP ' (2.73) 

By permuting the order in which H ER and H EP occur in eq. (2.72) one obtains 

the following six terms contributing to the scattering probability. 49) 

    P(W ;w (2Tr/fi 6-T <01H ER (W s )1~><~JH EP I o,><a I H ER(Wi)1O>        i s D (W +W 0 + W s )(W Ot + W S) 
                         f a'~ 

            <01H ER (W i )1~><~JH EP1a><ajH ER (W S )JO> 
            + (

W +W 0 +W )(W +W ) 

          + <01H ER (W S )1~><~JH ER (W i )ja><UjH EP10> 
                        (W + W 0- W i )(W a + W 0) 

           + <01H ER (W i )J~><~JH ER (W s )jot><ajH EPIO> 
                      (W 0 s )(W Ot 0) 

           + <01H EPI ~><~JH ER(Ws) ja><ajH ER(wi)'Io> 
                          (W + W s- W i)(Wa- W i) 

2 

           + <01H EP'~><~IHER(Wi) ja><ajH ER(ws)lo> 6(w W w (2.74)                        (W s- )(W Ct W) q 

To simplify the notation, only exciton states are shown in eq. (2.74). 10> 

denotes the ground state in which no excitons are excited. la> andIp 

represent states in which excitons a and ~ are excited, respectively. The 

Brillouin (Raman)cross section is taken related to the scattering rate P by 

the equation 

                a(W ;W )= VP/v= nPV/c (2.75)                   i s 

where v and c are,.respectively, the velocity of light inside the medium and 

in vacuo; n is the refractive index of the scattering medium and V its 

volume. , In studying resonant scattering, one usually tunes liwi, close to



                                              - 30 

some excitation energies, fiwall so of the six terms in eq.(2.74), the first 

one becomes the strongest component to reminding terms which can be taken 

to be equal to a constant C. Thus in resonant light scattering the Brillouin 

tensor R. can be written as 
          is 

        R. <01H ER(Ws)l~><~ IH EP I o,><o, I H ER(Wi)'O> - + C (2.76)            is V (W + W 
q - W i )(W Ot - W 

where V is the crystal volume. In most cases the constant C is much smaller 

than the resonant term and can be neglected. <01H ER (W s )1~> and <alH EP 10> 
are known as the p-matrix elements and information on <~JH EPI(l> can be 

obtained by the deformation potential scattering. The electron-phonon 

interaction <~JH EPla> is reprented by 

                <~JH i3s (2.77)                      EPla> ~ 7
a~ ij 

where is the matrix element of the deformation potpntial, and i and j         ct~ 

refer to the coordinates axis (x, y and Z) and S ij is the strain tensor. 
The Brillouin scattering cross section 9 B has the~ form 

                 e 2 0 W 12 
                        2 _ 

            Cr sIR (2.78) 

                                   

1 3                B (-]Km-c) 2
pv,, W I is 

where the energy density 0 can be replaced by kBT in the case of Brillouin 

scattering by thermal phonons. vp is the sound velocity in acoustic mode 'P. 

The dominant term in eq.(2.74) (=eq.(2.76)) can be written as 

                        P P 
              R U ~a Oto 31 W

s=W +W (2.79)                is V (W -W )(W - W q                                    s a 

where is the matrix element of deformation potential scattering and 

P U and P.0 are the appropriate momentum matrix elements, where subscript Ot 

and ~ stand for single electron hole pair states. The mechanism of the light 

scattering can be described from a phenomenological aspect as follows:
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a photon incident on a crystal in a ground state IO> creates a virtual 

intermediate electron hole pair in a state Ia.>, the electron or the hole of 

the state la> will be scattered to a state 1~> by phonon via deformation 

potential, and finally the electron and hole in the state IP recombine to 

emit a scattered photon (return to the ground state 10>). The scattering 

efficiency is expected to resonate when the incident or the scattered photon 

energy approaches one of the resonance energies (riw a or 16 ). 

      Loudon 49) has constructed the theory assuming the intermediate state 

as non-interacting electron hole pair states. It is usually a good 

approximation to assume that the band edge in semiconductor is parabolic in 

k space, i.e., 

                W C
t (k) = w ga (0) + 1~ 2 k 2 /2p (2.80) 

                W M = w 0 (0) + ri 2 k 2 /2p (2.81) 

where ji is the reduced effctive mass, which is assumed-to be equal for the 

ia> and IP pair states for simplicity, 16 (0) and liw (0) are the optical                                         ga 0 

band gaps at k= 0 for pair states a and ~ corresponding to the incident and 

scattered light, respectively. Then with prescription 

               11: IN 2 max 2 (2.82) 
                              Tr k dk                 k (2 )2 0 

Equation (2.79) can be written as

where the 

elements 

performed

R. 2P U = Wao  is (270 2 j 
 momentum matrix e 

are assumed to be 

 from k= 0 to k 
               max

k 
max
       - ~z 

0 (W lik 2 + (W + fik 2 _W       9 ~ + 'Y_P i 
q ga 211 i 

 lement P and deformation potential HE-matrix 

 independent of k. The integral eq.(2.83) c 

                               30)     O
ne obtains the following results.

k 2 dk
(2.83)

be

Lx 

can



where 

bands,

theIn

with

and

where

model) 

with

and
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  R. 2 2( 2Tr 3/2 P U ~a P ao -W ) 1/2 tan-1 0 ) 1/2     is (2TF) W 0 - Wga + W q g~ s W 0 - W s 

   - (W - W 1/2 tan- ( Aw 9, ) 1/2 (2 .84) 
        got Wga - W i 

fiAw a (or fiAw is the combined width of the conduction and valence 

which is given by 

           Aw Aw lik 2 (2.85) 
               got 0 max 

 limit when k max then one obtains the well-known expression 

   R. = 2 P U ~a P ao Hwo - W 1/2 - (W - Wi) 1/2 (2.86)     is (27T) 2 w O-W got + W q s ga 

 Re.(R i s 2 - P U ~a P ao X          ~277F wg~ - Wga + Wq 
           [jW g~_ WsIl/2e(Wg~_ Ws) Wga - Wi 1/2 e(W ga - Wi (2.87) 

                 P P 
  Im.(R is 2 - U ~a ao X                 2 w

g~ - Wga + Wq 

          [jW g~_ Wsll/20(w s _ W 0 1W ga_ will/20(wi_ Wga)] (2.88) 

e(z) is the step function. 

If W 
got is equal to wg, , eq.(2.86) reduces to the simple form (two band 

 as 

   R is 2 P Oa W a P * (W - Wi )-1/2 (2.89)       T2Tr; a ao ga 

 Re.(R 2 P P 1W - W 1 -1/2 O(W W (2.90)       is _~2T7r Oa act ao ga i ga i 

 Im. (R 2 P P - Wi 1-1/2e(_W +W (2.91) 
      is U

TO 2 Oa,7aa ao Wga ga i
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The w i-dependence of the real and imaginary parts of the Brillouin tensor and 

the scattering amplitude are illustrated graphically in Fig. 2-5. The 

squared modulus IR i s 12 which shows the essential spectral dependence of the 

scattering cross section is also represented there. Inspection of eqs.(2.8 -6) 

and (2.89) shows at once two important propaerties of the Brillouin tensor, 

calculated for non-interacting electron-hole pairs: a) IR is 12 as function of 

W is symmetric with respect to the frequency 1 for the two band                                      f(WA+ WB) (WA 

case). Fig. 2-5 d) and e) show graphically this symmetry; R is is real for 

W <W A expressing the fact that only virtual electronic process can take place 

in that frequency region. R is is pure imaginary for w>w B and reflects the 

fact that ingoing and outgoing photons are resonance with electronic states. 

For WA < W < W V R i
s is in general complex. In other word, the imaginary 

part of the Brillouin tensor reflects the density of states. The above 

                                       62) 
result disagrees with that of Jain and Choudhury who obviously omitted 

the imaginary part of the Brillouin (Raman) tensor. 

2.3.2 BriZZouin Tensor for EZectron-HoLe Pairs with CouZomb Interaction 

      In the following we consider the first-order Brillouin scatteing 

process and that the virtual intermediate states are assumed to be Wannier-

Mott exciton,57) and polariton picture is not introduced in the calculation 

for simplicity. The first step is to write the total Hamiltonian for a 

bounded crystal. The Hamiltonial consists of free photon, exciton, and 

phonon fields plus the bilinear exciton-photon and trilinear excion-phonon 

couplings. 50) 
                                                                    Pol 

      The total Hamiltonian H can be split into a polariton part H a 

(harmonic) phonon part H L, and exciton-phonon interaction H': 

              H=H Pol + H L + H', (2.92)
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       Pol 't A 1 1 
         Eric (a_, +Zrlwi(^t^       H a. + -f b.b. + 

               -I- ky ky 
             k , Y 

                           2Trriw 
,1/2               + b ka + a + C. C.                         ~ i , ky I-* / i -). 

              i,k,y kl ky -ky 

2 

                     W P t 
A At            +E (a~, + a )(a , +                                           a, (2.93) 

                    4c ky                                 ky -ky ky                k
,y 

     H, q c            rio (^t^ (2.94)                          -'C4 + T 
                 q q q 

                      -tA A 
     Hy f (q)b i b . c~ + C.C. (2.95)        T -*ij j q 

A At At 
a bil c are creation operators for photon, excition, and phonon, 

respectively. t denotes the momentum of photon andy a.polarization lebel; 

i and q* are quantum labels which characterize the exciton and phonon states 

for a bound crystal, respectively. The exciton 1~bel i consists of quantum 

numbers for the relative and center-of-mass of the exciton as well as band 

indices for the electron and hole band. In eq.(2.93), gi
't is the bilinear 

exciton-pboton coupling coefficient, which can be expressed as matrix element 

<0 --P"10>, where li> is the exciton state;10> is the ground state, with no 

exciton present; is the vector potential for photon t; p is the relevant 

momentum operator. we shall implicitly assume that the optical transition 

0,-i is dipole allowed; f 
ij (q) is the exciton-phonon coupling coefficient. 

We now turn to the polariton Hamiltonian and its eigenstates. H Pol is a 

bilinear form in the photon and exciton operators, and can be therefore be 

diagonalized by a linear transformation to give 

                    Pol (2 .96)                    H 5clk n BI- B1,
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                          Pol T he vacuum state 10> of H is defined by B 
V 10>= 0 for all ~ 0 and -y. Note 

that we use label k--* of the external photon to label the polariton state. We 0 

shall discuss this more fully below, and also later for the scattering cross 

section we shall need to specify asmptotic "incoming" and "outgoing" photon 

state and we shall then affix "in" and "out" to the B and B operators. 

The operators B *are linear combinations of the -a (operator for photon) and 

b (operator for phonon). It is convenient for the following to begin with 

linear combination of the -a and operators which correspond to the classical 

field and momentum variable: 

                    a-+ + a 
              ky -ky 1/2          A_, 1/2 P-* i(clkl) (a_, - a (2.97)          ky (C!-k*i ky ky -ky 

             b i + b 1/2 ^t 

             (W i) 1/2 H i = i(W i ) (b i b J. (2.98) 

In terms of these auxiliary operators, we write the ^t                                                         B operator as 

              k 0 y k 0 y k 
0 y k OY-                   (A~., A-)~ + P -* P->- + (Ot Ot. + 11 (2.99)        k y kl

yf^kl I ky f ki I       0 ky Y Y Y 

and likewise for Hamailtonian adjoint. Scalar amplitude are written 

everywhere without caret, the corresponding operators are written with caret . 

To find the correct linear combinations eq.(2.99) the equation of motion is 

used. 

                          Pol         ir, B H ric I -k* 0 (2.100) 
          ky Oy t Oy Oy 

This can be written as a system of equation for the scalar amplitudes 

          iW 2 IT. - wot. = 0, (2 .101)                 i I -I 

        -iwp 
MY, +A*, 0 (2.102)                k 

Y9
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2 
           2 W i 2,rr 1 / 2      (W i - W )Oti = 2i - (- h ) Z gi A 10 (2.103)                           W -*1 ~ 9 IN tly,                           k y 

    (-W 2 +c 2 k' 2 +W 2 -2iw ( 27r 1/2 (2.104)              p y E91,4, "i -
i Inserting eq.(2.103) intoeq.(2.104) gives 

                              g 9 
  {-w 2 + c 2 k 2 +w 2 87r X i,-k'y' i,k'y' w 2 A (2.105)                  qy= 2 2 i -*'                 P W - W k y 

                                  k y i ->-

For simplicity we drop the subscript (k y) on Akoy Ploy akor and H Oy                                                              0 1 -*
' i                                                  k$y' k y 

defined from eq. (2.99). The quantum label i for the exciton can be 

decomposed into two labels X and s which-are quantum exciton wave.function 

is a product of a wave function for the center-of-mass motion T s r and a 

wave function for the-relative motion. 

       Now we specialize to the case of no spectral dispersion, which means 

in particular neglect of the dependence of the exciton frequency W i W X
's 

upon the center-of-mass quantum number s, and also neglect s dependence in 

any matrix elements. This will permit us to evaluate the sums over i-=(X,s) 

in eq. (2.105) and so obtain simplified expressions. In the case of infinite 

crystals s stands for the momentum k, T 
s is simply a plane wave and the 

coupling function has well known from 

                              gy, (2.106)                       k 
, k y X k,k' 

In the case of a bound medium, the coupling function gX
s' can be caluculated 

by expanding T 
s (r") in pla ne waves and using eq. (2.106). The result is 

                                      Y, k                      g
Xs,k'y' = gX T s (2.107) 

where T 
S(k) is the Fourier transform of T S (r). Using the f sum rule 

                        W 2 = 8,, gy,' 
                    P ri X (2.108)
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which permit us to eliminate w 2 in the left-hand side of eq. (2.105). Next P 

we use the completeness of the set of T 
s (r*) which states 

                                 6(r - r'), if both arguments are in 

                                          the crystal region;          ET s ('r)T s(r (2.109) 

s 

                                  0 otherwise 

Then the Fourier transform of eq.(2.105) can be written 

             2 _ 2 2 2         (-W c V )A Y (r) = 4Trw fdrX ('r, 'r') A Y ('r') (2.110) 
which is Maxwell's equation for A r) in a medium with 

2 

                         - 2 gX1 if the both                      rr 
W 2_ (W ± iTI) 2 X 

         6(r , r arguments are in the crystal region; (2.111) 

                       0 , otherwise. 

      It is clear from eqs. (2.110) and (2.111) that this case the integro-

differential equation (2.110) needs to be solved subject to specifying 

asmptotic conditions on the homogeneous equation Zright-hand side zero), 

which physically corresponds to vanishing exciton-photon coupling 

                     Y=O For this reason , ±ifl is put in the denominator coefficient, i.e., 9. * 

in eq. (2.111), with n a real positive infinitesimal quantity. The positive 

sign (negative sign) in front of iT1 corresponds to "out" ("in") boundary 

conditions. The polarition operators B k
oy and B ~Oy can correspondingly be 

labeled with "in" and "out" to regulate the asmptotic photon solution as 

either incoming or outgoing 

      Summarizing, we have solved Maxwell's equation eq. (2.110) with 

                                                     Pol. 
susceptibility equation eq.(2.111) via diagonalizing H once A(r) is 

known the other amplitudes can be determined from eqs. (2.103) and (.104). 

Equation (2.103) gives, in particular,
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                         W 2 gy           2i 2
Tr 1/2 X X      Ot ('r) E 

W 2 _ (W ± iTI) 2 A (2.112) 

Y if r is in the crystal region and 0 otherwise. 

       The differential cross section per unit volume, per unit scattered 

frequency interval for scattering of a photon with wave vector t 0 into a 

                            5 _" in the crystal is 63) photon with wave vector t 
0 exciting a phonon q 

   d 2a k; ~2 2                 E 6 1 W - W 0 (q) I X I T-, (W + iTI) (2.113)    TQ17' ~2 _7rrI C ) k , y'q5k OY 
                 q 0 

with 

 T (W + TI) = <0 I a c xT H PE ' H'        _* . (w + iTI) ^a_, Y (2.114) 
  k'y5q k y q k   0 0 6Y 0 

H PE is the photon-exciton interaction in the polariton Hamiltonian eq. (2.93) 

and 10> is the product of the free photon, exciton, and phonon vacuum states. 

The T operator is 

    T H PE H' (w + iTI) = (H PE +H) + (H PE + H') 1 _(H PE + H') (2.115)                                         (W + iTI) - H 

The T operator in eq. ( 2.115) describes the scattering of photons by two 

           PE 
potentials H and H'. Equation (2.115) can be written as follows by using 

an operator indicating which can be established after some algebra 

          PE           H 
, H' PE 1 PE          T (z) = H ~_

- -H+ H' (z-H+H'+H. 

                   +(l+ H PE 1 H'(z)                                  z-H+H' )T 

                   (l + 1 H PE (2.116)                             z - H+H' 

The operator in parentheses in the second term when applied as in eq.(2.114) 

will permit us to introduce new states. The application of this operator to 

the ket a t 10> will produce a new state which we call 1~ >,-which can be 
       0 it 0 labeled by the "in" and "out" labels. This state can be identified as an
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              Pol 64) 
eigen state of H Thus let the new state be 

           ~Out~, 1 PE ^t +           k Y 
Hpol H            0 (W + iTI) - k OY 

(2.117) 

           in> (l + 1 - H PE )a t 
           k OY ]i (w - iTI) - H Pol 

OY 

For vanishing exciton-photon coupling equation (2.117) reduces to a photon 

plane wave. Choosing the plus (+) or minus (-) sign with (ifl) in eq.(2.117) 

produces "out" or "in" going scattered waves. For vanishing exciton-photon 
                            ~t ~t 

coupling ot =0 and the B-~- operator reduces to q
OY. Depending on chose of                    k Y 

±iTI in eq. (2.111), these operators become the B~out and correspondingly the                                         k
o~ 

"in" operators which describe "out" and "in" scattered waves . 

      However a solution of the Schr6dinger equation which describes 

scattering of a particle in a potential is uniquely determined by the 

incident wave vector of the particle (here photon) and the asymptotic 

behaviour. Thus they are identified 

                 !~Qut -touti O>                    k B k (2.118)                   OY OY 

                    in > ^tinj O>                          B (2.119)                         k 
OY                   OY 

This important step permits us to rewrite the original transition matrix 

element between bare photons as a matrix element between appropriate polariton 

states. Then eq. (2.114) becomes 

                 ^in ifiin ^t- ~outi o>               <01B c q b b    T Wfi"'uj O> f (,)<o          ->- -* -* , -* ij -* I i j     k'ylq k
oy y q k Y k Y k Y      0 0 0 ij 0 0 

                   fiin t tout in ~,t, tout     =Efij (q)-) ~<O I ~ I b i I[b j B ~ Y ]+fB $ 9 b j ][b i B~ 110> , (2.120) 
      ij OY 0 OY k OY



and using eq.(2.112) 

                    T-1 -~- I -* 
          k 0 y'q _k 0 

If we trnasform the k 

    d Cr k k$ 3 
   dQdw' 0 0 

q 

            YY (q,w) 

X

 ij ~q) ~w i W') -(W i + W), + f ij (q) (w w j ) (W' W i )
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this becomes 

             -~- 
9 9 4-     k OY 

) *in k 0 y ) out i 

ij

             3/2 
W 3/2 j 

label in i--::(X,k) into r space, eq.(2. 

          ->,
) I I q    W, - O(q 1: R YY (q, w) S YY' 

             YY' 
       1/2 y ->. Y '* 1/2      W 

X gX f XXI (q)gX WX, 

T W W, 

X

X

(2. 120)

        fiW ri (W + iTI) ] [fiWX fi(w' + iTI) 

                               k' in* ko 9C                        i
q r 0 ('r)     S YY' (q) fc d'r e- A A 

The vector potential A in eq. (2.124) is det 

eq. (2.110) and the condition that outside t 

scattered wave k taken to be unit amplitude. 

calculated using this boundary condition. T 

means that the r integral runs only over the 

scattering efficiency Idimension [1/(length 

section d 2 a/dQdw' [dimension (length squared 

latter for unit volume. 

       Next we consider a simple insulator ani 

valence and one conduction band and the corri 

exciton state. The bands are assumed to be i

120) 

2

3

becomes

(2.122)

- -F 
N + (W, + irl) iTI) 1W X + f, (W + ir))] 

                            (2.123) 

  ko 9 out 
 A (2.124) 

 is determined by Maxwell's equation 

tside the crystal the incident or 

litude. The prefactor in eq. (2.122) is 

ion. The letter C in eq. (2.124) 

ver the crystal. One obtains the 

length times frequency)]j from the cross 

squared/frequency)] by calculating the 

ator and we limit ourselves to one 

he corresponding discrete and continuous 

to be parabolic and the band masses
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negative and positive for the valence and conduction band, respectively. 

The quantum number X is then determined by the internal exciton momentum 

_+ 
ngth gy 65) k and a discrete variable n= 1, The oscillator stre is 

                   Y -1/2                 gX = (e/m)<P Y >(w X h(o) (2.125) 

             <P X >= fdr~v(r)P Y ~c(r) (2.126) 
where ~ is a Bloch function atthe zero center. The momentum matrix element 

is assumed to be nonzero. For free electron-hole pairs 

                 1~_'(O) 12 = 1 (2.127) 

k while for Coulomb correlated pairs 

k 

       1~ (0) 12 1 14~'+ (o) 1 2 Tr e Tr/rO (2.128)             n 3 3 k _>_                 7Tr n rolki sinh (Tr/rO I k I 

where r 0 is the ls exciton radius. The Brillouin tensor for correlated 

electron-hole pairs becomes 

                    r 0 1/2 e 2 <P Y ><P 
Y' ~'*(C cc -C vV          R (w) = (-) 

          YY V W W m 2 

                                   00 

                1: Trr 3 n 3 [ri (w + iTI) + E /n 2_ E (w' + iTj + E /n 2_ E 
                   n=l B 9 B 9 

                              e Tr/rO k /sinh (ff/rol-k*j)          1 
dkk 

]i (w + -i.Tj) -fi 2 k 2 /2-p - E 
9 1 Ifi(w' + iTI) 2 k 2 /2-p-E 9 (2.129) 

Here E is the exciton binding energy fi 2 /2pr 2 of the ls exciton, 'P is the      B 0 

reduced mass. In eq. (2.129), the first term is the contribution from 

descrete exciton levels and the second term is the contribution from 

continuum exciton levels. Writing the numerator in the more symmetric way as 

follows:
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k 

               e Tr/r 01 *'/sinh(Tr/ro 

                 1 + coth(7T/r 01k, 

                   1 + coth(Tr/YrE--/E, (2.130)                            B k 

By using these relation one obtains 

                                   1 + coth (TrVE- /E, 
                                    00 

    cont (W) = TA kd- B k (2.131)   R C    YY, TFrOf [ri (W + iTI) - E - E I [fi(w' + iTI) - E - E 
                 0 k 9 k 9 

             ,2 2 
where E k = h k /2P, A is the prefactor appeared in eq.(2.129). The integral 

in eq.(2.131) can be splitted into two parts in accordance with the 

numerator 1+ coth(7Tvlf--/E,). Here the complete integration in the second                   B k 

                                                    59) 
term is performed by contour integration in the complex E k plane. The 

first integration is trivial. The second integral can be performed by 

contour integration in the complex plane as shown in Fig.,2-6. There are

EB E134

c

Xa (31 a2 
Re-EKFx x

\/ v amp

a, =h(w+i77

a 2 = -h W+ i77

Fig. 2-6. Contour for the evaluation of eq.(2.131)

-Eg
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single poles at E k= a 1 = Qw + iTI) - E 9 E k = a 2 

singularities of E k= -E B /n 2 (n= 1, 2, 3,----

Using the formula 

            ~ ~E 00             coth(Tr E TE-) - 1 k + 2                     B k Tr E B E 
                                           n=l 

one obtains 

          cont. A (w irl)        ,~Y, (W) = WE 
B ln (w' + iTI) E 

        + i~ tan-1 I Ow - E 
9 ) /I~Tj tan-1 I (r1w, 

     +Tri ~ coth (7r E B coth 
                         w + E

g 
         \4-(-

                00

 ( 7T vii(w

  ~(w'+ iTI) - E 9 and at 

    arising from coth 

n 2 E B    EI,+ - ) 
2 n 

9 

9 

 E 
9 

        E B 

         + iTI) - E
g

I

the 

(TrvlE---/E,    B k 

(2.132)

 - 1 2: 
    2 

n=l 

Then eq.(2 

conduction 

     R. 
        is 

x 

   + -4 -E 

B 

    + if 

    + iTr 

       00

 I [ li W + in) + E B /n 2 ._E 9 11 

 to the case of three band 

bands). By using eqs.(2. 

1/2 e 2 Po-~-E~ap UO 

     4 a 2 m 0 

1

~~l n' [ fi (w + iTI) + E B /n 2_E 

eq.(2.129) can be extended 

ction band and two valence 

                           a 0 

 is 2 (V       4Tra
O 

  T - I
E 

 n=l 

(E 0 

tan

process 

129) and

(2.133) 

(one 

(2.133)

  n 3 N(W 

   E + fiW 
    ga q 

    (16 - E

+ iTI + E /n 2_E ] [rI(W + iTI ) + %/n 2 
   D B ga s D 

   ln s        f
, (W i + iTj C E 

ga 

ga ) /IiTi C tan-1 I (rIW s- E 0 ) /9T, C 

E V- E B 
  B ~6__ +iTI ) -E coth (7r (Ws +iTIC) -E 

i C ga

- E 
0 1

coth (

1: 1 3 
n=l 2n

ii-(W

1

)g

/n 2 _

H

I r, (w i + iTI c ) + E B
    ga I s

+ iTI D ) + E
(2.134)
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In eq.(2.134) the first term corresponds to the n-th discrete exciton 

contribution and rest four terms correspond to the unbound continuum exciton 

contributions. E 
ga (=fi-o ga ) and E 0 (=BW 0 ) are optical energy gaps for 

incident and scattered light, respectively, Tj D and qC the phenomenological 

damping factor for the discrete and continuum exciton levels, respectively. 

The broadening effect removes the divergence at critical points in the 

Brillouin tensor. For simplicity we assume TID = TIC= F and no incident light 

frequency dependence in the present calculation. Detailed discussion about 

the damping factor (life time broadening effect ) is presented in Capter 6. 

       In the limit E B -*0, which condition corresponds to the no Coulomb 

interaction (free exciton model), the hyperbolic contribution in eq. (2.134) 

                                                          66) 
yields for following expanssion given in eq. (2.137). Using the formula 

                 coth z + z z + (2.135) 
                       z 3 45 

with 1 
                coth z 
z (if z 0 (2.136) 

one obtains 
                             B 1/2

            coth Tr 

and the other part of 

      Using the above 

expression for the Br 

eq.(2.86). Inspectio 

properties of the Bri 

Brillouin tensor is, 

imaginary part and eq 

                R. 
                      is 

where r and i indicat

          eq. (2.134) vanish ~ 

          relation, eq. (2.134 

         illouin tensor for fr 

         n of eqs. (2.134) and 

         llouin tensor in the 

          in general, a complex 

         .(2.134) is expressed 

         E R r + iR i             i
s is 

         e real and imaginaly

            [ri (W + iTI) - E ga J2.137) 
          TrVE. B 

        symptotically when E B ->-O. 

         reaches asymptotically the~ 

        ee electron-hole pairs given in 

        (2.86) shows several important 

       case of Coulomb interaction. 

         function and consists of real and 

        as follows: 

                             (2.138) 

       part of R is' respectively. It is
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                                                                     r i convenient to decompose the discrete and contin
uum part of R i

s and R,s as 

follows: 

                                r isc. cont.                        R S= Re. (R~* + R (2.139a)                          i is is 

                              I disc. cont.                         R 
is= Im. (R is + R is (2.139b) 

By using eq. (2.86) we have already presented the dispersion curves of R 
is 

near the direct gap semiconductors in Fig. 2-5, based on the simplified 2-

and 3- band model (one conduction band and two valence bands; E 
ga = E011 

E
g~ = EO + A031 where A 0 is the separation of the I valence bands). From Figs. 

2-7 to 2-13, we shall discuss the dispersion of R 
is where exciton effect is 

taken into account (with exciton case). Our numerical calculation of Figs. 

2-7 to 2-13 using the formulas of Brillouin tensor was carried out on the 

HP 9825A desk-top computer. It may be worth nothing however that the 

numerical.summation shows that the n sum rapidly converges; taking 10 terms 

is sufficient for an accuracy of 10-6. The number of calculated points is 

1400 ( 0.5 meV interval) and the total calculation time is about half.an 

hour. The calculated data are stored in the memory and drawn by a plotter 

(WATANABE WX 4675 Type). 

      First of all, we compared the continuum part of R i
s (with exciton) 

and R 
is of no exciton case. The results are shown in Fig. 2-7. In Fig. 2-7, 

four different curves are calculated; a) real part of the continuum part of 

R 
is in the case of the Coulomb interaction (E B= 28 meV, F= 0 meV); b) 

imaginary part of the continuum part of R 
is in the case of Coulomb 

interaction (E B= 28 meV, r= 0 meV); c) real part of R 
is in the case of no 

Coulomb interaction (E B= 0 meV, r= o meV); d) imaginary part of R 
is in the 

case of no Coulomb interaction (E B= 28 meV, r= 0 meV). The effect of 

Coulomb interaction on Re. (R cont. consists mainly in the appearance of 
                        is 

logarithmic singularities at E= E 0 and E= E 0 + A 0* On the other hand the
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imaginary part of R cont. shows dominant peak between the resonance energies.                 i
s 

This result manifests that the contribution of the imaginary part of Brillouin 

tensor is important, especially in the region near the band gaps. On the 

contrary the real and imaginary part of the Brillouin tensor in the case of 

no exciton (curves c and d, respectively) shows mirror symmetry respect to 

E= E 0 + (1/2)A 0* Figure 2-8 shows the calculated curves of the continuum part 

of R (=Rcont* ) based on the three band process with three different     is is 

broadening paramenters ( r =o meV, 20 meV, and 40 meV). Below the band gap, 

real continuum part shows resonant enhancement. Above the gap, the real 

continuum part is the same order of magnitude as below but different sign. 

When the excited states have an infinite lifetime (r =OmeV), the real part 

of R cont. shows divergence at the band gap energies, while the imaginary    is 

          cont. 
part of R is is zero when the incident photon energy E is lower than that 

of EO 9 and nerly ze .ro when the incident photon energy E is higher than that 

of E 0 + A0, and has positive non-zero value between E0 and E0+ A0. The 

broadening paramenters broaden the resonant features and decrease the 

intensity of R. . In Figs. 2-9 and 2-10, we show the discrete part of R 
                is is 

which was calcualted by using the first term of eq. (2.134). In Fig. 2-9, 

                                isc. we show the real part of 0* where we find divergence at ground state 
                                 is 

exciton energy (dashed curve) and narrow resonant peaks arising from higher 

order exciton states (n> 2). The damping parameters broaden the resonance 

                                                       disc. f
eature. In Fig. 2-10, we show the imaginary part of R. It is                                                                   is 

important to point out that if the photon enegy is resonance with exciton 

state, real part of R i
s is completely zero and imaginary part is infinite 

when r=O. The spectral positons of the infinite peaks correspond to the 

n= I and n= 2 exciton states. In Figs. 2-11 and 2-12, we show the real and 

imaginary part ot R 
is which was calculated by using eq. (2.134). The discrete 

and continuum contribution add up constructively below the band gap leading
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to a strongly increased Brillouin efficiency due to the Coulomb correlation. 

Above the gap the discrete and the real part of the continuum contribution 

have different sign and roughly of the same sign of magnitude. The resulting 

cancellation makes the total real part of R i
s (Fig. 2-11) rather small in the 

continuum. This destructive interference is also discussed in ref. 55. 

Figure 2-12 also shows that the Coulomb correlation tends to diminish somewhat 

the imaginary part of the Brillouin tensor. In total as shown in Fig. 2-13, 

the Coulomb attraction between electron and hole causes strong asymmetry in 

the Brillouin efficiency IR i sl 2 with respect to the gap, a strong enhancement 
occurs at n=l exciton state. These resonant features are in contrast to those 

shown in the case of no exciton, where the Brillouin scattering efficiency 

2 
IR isl shows symmetric form with respect to the band gap. 

      The resonant cancellation can be explained by the following relation; 

2                    a B = CIR i s + R 01 (2.140) 

in which C is the prefactor appering on the right-hand side of eq. (2.134), 

R 
is is the resonant contribution given by eq. (2.134), arising from the 

M 0 critical point, and R 0 is a non- resonant contribution arising from the 

other far off critical points in the band structur. The resonant contribution 

R 
is is opposite in sign to the nonresonant contribution R 0 in the longer-

wavelength region. The resonant cancellation, therefore, occurs at a 

wavelength when R i
s + R 0 = 0. The experimental results of resonant 

cancellation will be discussed in Chapter 5 and 6.
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           2.4 Deformation Potential Scattering 

                    and Momentum Matrix Element 

      The intermediate electronic states produced by the incident light 

interact with the acoustical phonon via deformation potential interaction,-

resulting in a change in their-electronic states. The transitions of the 

intermediate electronic states are determined by the transformation 

properties of the excited states and relevant acoustical phonon modes in 

crystals. Such a selection rule of the deformation potential scattering 

determines the electronic transition process (inter- or intra-band process) 

which plays an important role in the resonant Brillouin scattering process. 

The excitation of an acoustic phonon produces a displacement of the atoms 

of the lattice, and this displacement perturbes the periodic potential, 

leading to the electron-phonon interaction energy H EP* The electron-

phonon interaction is linear in the component u of the relative 

displacememt, 49) and a matrix element of H EP is written as 

               <ctIH EP I ~> = =-~a u/a , (2.141) 
where a is the lattice constant, included to give a convinent normalization. 

The deformation potential 7 ~
a is a matrix element of the perturbed periodic 

potential with respect to U. 

      In this section we shall present the non-vanishing matrix elements of 

deformation potential scattering of hole (or electron) in zincblende and 

wurtzite crystals. 

2.4.1 ZincbZende Type CrystaLs 

      As shown in Fig. 2-14, the band structure of the zincblende type 

crystals consists of twofold degenerate s-like conduction band with double 

symmetry r 6 and a fourfould degenerate p-like multiplet (J= ±3/2, mi =±3/2, 

±1/2 in angular momentum notation) with r 8 symmetry and a spin-orbit-
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Fig. 2-14. Schematic illustration of the lowest conduction band and 
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materials. Selection rule of the dipole transition 

is also shown, where liand I indicate the polarization 
parallel and perpendicular to the c-axis (or z-aixs), 
respectively.
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splitting energy A 0' The dipole transition is allowed between conduction 

band and any valence bands in any case of the incident light with linear 

polarizaziton. The unperturbed wave functions of three valence bands are 

given by 67) 

           (D VA ~ 112Zt+(X+ iY)+ (2.142)                       T_                          v6 

           0 VB ~ i I (X + iY) t> (2.143) 
                     T_                             ,2 

            (D 
VC ~ 1 zt - (X + iY) (2.144)                     V3__ 

            0 VA'= 1 12Z+ - (X - iY) t> (2.145) 
                               r-

                    v6 

            (D 
VB'= 1 1 (x - iY) +> (2.146)                     V2__ 

                 -LI Z+ + (X - iY) t> (2.147)              VC' 
VY 

where t and + indicate spin up and spin down, respectively, and subscript 

A, B, C of Va indicate the corresponding A, B, C valence bands, 
respectively and A', B', and C' indicate the Kramers conjugates of the 

corresponding wave functions. X, Y, Z are the valence-band wave functions 

which transform as atomic p functions under the operations of the group of 

tetrahedron and S is the conduction band wave function which transforms as 

an atomic S function under the same operators. In order to calculate 
                                                68) 

eq.(2.141), we use Picus and Bir's strain orbital Hamiltonian. 

                  H xC = a'(e xx + e yy + e ZZ) (2.148) 
for the conduciton band at t= 0, and 

                                                2 _ + C .P         H V _a(e + e + e 3b [ (L -:-:-L e 
         x xx yy zz x 3 xx 

            6d {[L
x5L y 1+ C.P.1 (2.149)               vT3-

for the valence bands at t= 0, In.eqs.(2.148) and (2.149), the parameter a' 

and a are the hydrostatic-pressure deformaiton potentials for the conduction
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and valence bands, respectively, and b and d are the uniaxial deformation 

potential appropriate to strains of tetragonal and rhombohedral symmetry, 

respectively. e 
ij is the component of the strain tensor, L i the orbital 

angular momentum operator given by 69) 

      0 01] i 0 0 0 0   0 1 L [I L [0 1 Lz [1  x (2.150) 

                               i 0 0 01 
    ,/2 0 1 0 y V2 0 i 0]~ V2 0 0 -

and                2= 2 2 2= 1 0 01             11 L +L +L 
z 2K 0 1 0 (2.151)             10 0 1 

11c.p" in the right-hand side of eq.(2.149) indicates cyclic permutations 

with respect to the indices x, y, and z, and the quantity in the square 

bracket denotes the symmetrized product: 

1            [L
XIL y f(L x L y + L y L X) (2.152) 

      In the case of the presence of all strain components, the strain-

orbital Hamiltonian matrix for the valence bands can be written in 

Table 2-1. 

      The acoustic waves produce a displacement u(r,t), which can be given 

by the following plane-wave form: 

          u Z (r,t) 'ff Z U 0 exp[i(q-t (1.153) 

where 7 is a unit vector in the direction of the polarization of the sound 

wave, and subscript Z represents the component of the direction x, y, or z. 

The strain components e ij (r,t) are related to the elastic displacememts 
  ->' 44) 

u(r,t) by 

            e 1 ~u 3u. (2.154)               ij = 2 (_~_r. + arj 

The non-zero component of the strain tensor can be obtained from eq.(2.154) 

The corresponding non-vanishing strain components obtained from eq.(2.154) 

are as follows,(See,eq.(2.41));
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For Tl-mode acoustic phonons: 

               e xx and e yy , with e xx = -e yy , (2.155) 

For T2-mode acoustic phonons: 

              e 
YZ and e zx , with e YZ = e zx 9 (2.156) 

where the Tl- and T2-mode acoustic phonons propagation in the [17101 and 

[001] directions, respectively, with shear polarization to the [1101 

direction. The strain-orbital Hamiltonians [eqs. (2.148) and (2-149)], thus, 

become 

            H xC 0 (2.157) 

           H 2 1 2 2 1 2              xv 3b[(L x - 3 IL )e xx +(Ly- ~ L )Ieyy (2.158) 

for the Tl-mode acoustic phonons, and 

             H xC = 0 (2.159) 

             H xv = - 6 d UL y L z le yz + [LZ3.L x le zx (2.160)                        r-                         Y3 

for the T2-mode acoustic phonons. It is noted from eqs(2.157) and (2.159) 

that the deformation-potential scattering of electron in the conduction 

bands disappears for both the Tl- and T2-mode acoustic phonons. The wave 

functions of the p-like valence bands can be now in the matrix 

representation as follows: 

                   1 (
,72- a+ 0 (2.161)       VA 01 0 

                  vrT 10 

        VB 11001(x (2.162) 
        (D -L( [011' r2- 0 (2.163)         VC Vr3 0 1101 

              4) VA'= -L(,r2- 0 (3. 1 164)          11001 -1011
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            (P 
VB 0 (2.165) 1 

                01 

       (D 1 V2- [00] a) (2.166)      VC, [0] + 
                 V3 0 1 

where a and indicate spin-up and spin-down, respectively. Substituting 

eqs. (2.158) and (2.160), and eqs. (2.161) to (2.166) into eq.(2.141), one can 

find the deformation potential scattering of holes in the valence bands. We 

obtain the following results: 

0             AA BB cc 

               B'A=vr3-b, C'B=v76-b AC = 0 (2.167) 

for Tl-mode acoustic phonons, and 

            (D 
AA BB cc 0 

              (D 
BA d , w- CB d 1,72-, AC' =,/r6-/ V2- (2.168),,, 

for T2-mode acoustic phonons. It is clear from above.results that the 

interband deformation-potential scattering is forbidden for both the Tl-

and T2-mode acoustic phonons. Fiure 2-15 shows the schematic diagram of the 

electronic transitions which plays an important role in the first-order 

Brillouin scattering process. means that the excited holes 

in the a valence band (ot exciton) are scattered by the deformation potential 

to the ~ valence band excitons). Note that has the symmetric 

property: 

                                                            (2.169) 

2.4.2 Wurtzite Type CrystaZs 

      We shall.obtain the matrix element E ~
a in the case of the wurtzite 

type crystals based on the quasi-cubic model 70,71) It has been pointed 

out by Hopfield 71) that the direct-gap of wurtzite can be obtained 

from that of zincblende by the action of a small hexagonal crystal field.
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 Under the spin-orbit interaction and crystal field interaction , the energy 

 difference of the split valence bands (correspond to the A, B, and C 

valence bands) are given by 71) 

                  A + A + A 
                       So c so c) 2 2     E E - E -=-A A (2.170)     BA gB gA 2 3 

so c 

                  A +A A +A P 
                              Sic) c so c 2     E E - E -~_LA A (2.172)     CA gC gA 2 3 

so c 

                                   so c                                 so c 2 2                            _ ~6   E )2 ~           E - E 2 :-LA A (2.172)     CB gC gB 2 3 so c 
where A so and A c are the spin-orbit energy and crystal field parameter, 
respectively. The corresponding wave functions of the three split valence 

bands are 
                      1) VA = S + t (2.173) 

                         VB = a B S - t+ a C S 0 4- (2.174) 

                         VC= a C S-t- a B S 0 (2.175) 

                       4) VA'= S_+ (2.176) 

                       VB' =a B S + a C S 0 t (2.1 77) 

                       VC T=a C S + a B S 0 t (2.178) 
where f and represent spin-up and spin-down, respectively, and S+, S_ and 
S 0 are defined by using the p-like basis functions X, Y, Z as follows. 

        S+ = (X + iY) S_ = (X - iY) /,/2- , S 0 z (2.179) 
The admixture coefficients a 

B and a. C are 

                            1 3 2 -1/2                            a = [l + (2 --7:--E (2.180)                       B 2 A
so BA 

                     aC= [1+-1(2 _ 3 2 -1/2 (2.181)                                         2 
_'Y__ECA                                            so 

                    a B 2 ac 2 (2 .182)
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The wave function of the conduction band is s-like in character: 

                    TC =Is > . (2.183) 

      It has been shown that the strain-orbital Hamiltonian H for the s-
x 

                                                   72) lik
e conduction band of wurtzite crystals at k = 0 is given by 

             H 
xc ~ d 1 e zz + d 2 (e xx + e yy (2.184) 

for the p-like valence bands by 

                       2 2 2 2             H 
xv (C 1 + C 3 L z )e zz + (C 2 + C 4 L z )(e xx + e yy ) +C 5 (L - e + + L+e_) 

                 +C 6 ([L
z,L+le_z +[Lz,L_le+z) , (2.185) 

where the coefficient C i and d i are the deformation potential, e ij is the 

component of strain tensor e+ = e - e ± 2ie , and e+ = e ± ie , and                                - xx yy XY -Z xz yz 

L 
i is the strain-orbital momentum operator having the same form as 

eq. (2.150) and L+ =(L ± iL VVY. In the case of the presence of all strain                    - x y 

tensor component, the strain-orbital Hamiltonian matrix element for the 

valence bands can be written as shown in Table 2-2. 

      The non-vanishing strain components of wurtzite-type crystals are 

obtained from eq.(2.154) as 

Tl-mode acoustical phonons: 

                 e (2.186) 
                    xy 

T2-mode acoustical phonons: 

                    e 
zx and e yz with e zx = e yz (2.187) 

      The strain-orbital Hamiltonian eqs.(2.184) and (2.185), hence, become 

                  H 
xC = 0 (2.188) 

                  H 
XV = C 5 (L_ 2 e + + L + 2 e_) =2C 5 (L x L y +L Y L X )e xy (2.189) 

for the Tl-mode acoustical phon'ons and 

                   H xC = 0 (2.190) 

                  H xv = C 6 ([Lz9L + ]e -Z +[L z L_]e +z (2.191) 

                      = 2C 6 (L 
x L z +L z L x )e xz
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for the T2-mode acoustical phonons. It is clear from eqs. (2.188) and (2.190) 

that the deformation potential scattering of electrons in the conduction 

bands disappear for both Tl- and T2-mode acoustical phonons, as similar to 

the case for the zincblende-type crystals. The wave functions of the p-like 

valence bands [eqs. (2.173) to (2.178)] can be written in the matrix 

representation as 

          4) VA '10)] Ct (2.192)
           a a + aC [1       VB B [10] 0 

      VC a C [ 101 a a B [10 

0 

       (D VAI ~ 1101 ~ I 

0 

       0 VB1 ~ a B 11001 a C I]( 

1 

                 II
VC,= a 0 + a I        C B [(          1 0 - C 

Substituting eqs.(2.189) and (2.191), 

eq.(2.141), one can obtain the deforma 

in the valence bands of wurtzite-type 

following results: 

       AA BB cc 0 

        BA a B C 5' CB =0 AC = a C C 5 

for Tl-mode acoustical phonons and 

       AA BB cc 0 

        BAI -(1/2)a C C 6' CB1 (1/

~ I

~ I

0 

        a C 1 a 11001 [0] 
 0 + a B 01 

0 1 110 
 and (2.191), and eqs.(2.192 

in the deformation-potential 

wurtzite-type crystals. We

(1/2)C 6' = A'C

                (2.193) 

                (2.194) 

                (2.195) 

                (2.196) 

                 (2.197) 

    to (2.197) into 

    scattering of holes 

   finally obtain the

= (1/2)a 
B C 6

(2.198)

(2.199)
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  for T2-mode acoustical phonons. 73) It can be found that form the above 

  result that the interband deformaiton-potential scattering is forbidden 

  for both the Tl- and T2-mode acoustical phonons. 

        The matrix elements of the deformation-potential scattering for 

  longitudinal acoustical phonons in wurtzite crystals can be also be 

  obtained by the same procedure mentioned above. Now, we present the matrix 

  elements of the deformation potential scatteing for longitudinal acoustic 

  phonons (LA-mode). From eq.(2.68) and (2.154), the atomic displacement of 

  LA-mode phonon produces the non-vanishing strain component e xx . The strain-

  orbital Hamiltonian of eq.(2.184) and (2.185), thus, become 

               H 
xC = d 2 e xx (2.200) 

             2 2 2 2 2 2 
    H 

xv =(C 2 + C 4 L z )e xx + C 5 (L - e + + L + e_) C 2 + 2C 5 (L x - L y + C 4 L z ]e xx (2.201) 

  Substituting eqs. (2.200), (2.201) and eqs. (2.192) (2.197) into eq. (2.141), 

  one obtains the following matrix elements: 

                          d 2 2       AA d 2- (C 2 + C 4 BB 2 C 2 + a B~ C 4 cc d 2- (C 2 + a C C 4) 

       BA= a B C 51 7 CB a C C 5 ' 11~ AC a B a C C 4 (2.202) 

  It should be noted that the interband deformaiton potential scattering 7- OLa 

  is allowed in the case of LA phonons, in contrast to those for the 

  transverse acoustical phonons. 

        In order to determine the Brillouin scattering process, we have to 

  take into accousnt the selection rules of optical transiton (dipole 

  transitions) in addition to those of the deformation potential scattering. 

  The p-matrix elements in zincblende and wurtzite crystals are calculated 

  by using the wave functions shown in eqs.(2.142) to (2.147), and eqs.(2.173) 

  to (2.178), respectively. The results ars shown in Table 2-3, where S is 

  the s-like conduction band, Px =<XtIP x IS> =<X+IP x IS> and P y and P z are 
  also defined similarly.
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elements of the zincblende and wurtzite
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                            2.5 Summary 

      In this chapter, we gave a detailed description of the theoretical 

treatment of the resonant Brillouin scattering. We presented both macro-

scopic (classical) and microscopic (quantum-mechanical) theory. We 

learned from the quantum mechanical theory how resonant enhancement and 

cancellation occur in the dispersion curves of resonant Brillouin scattering 

cross section. We exammined carefully the resonant characteristics of the 

scattering cross section both below and above the fundamental absorption 

edge. From the present theory, we find the Coulomb interaction between 

electron and hole causes a strong asymmetry in the Brillouin efficiency with 

respect to the band gap, a strong resonant enhancement only occurs below 

the gap. It is also found, not only the real but the imaginary part of the 

Brillouin-tensor as well plays an important role in determining the dispersion 

curves of the resonant Brillouin scattering cross section near the fundamental 

absoption edge. From the analysis of deformation potential scattering of 

intermediate virtual states by acoustic phonons, we showed that the observed 

resonant feature is interpreted in terms of the three band model.
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       CHAPTER 3 

PIEZOBIREFRINGENCE THEORY

                         3.1 Introduction 

      In this chapter we shall discuss the theory of the photoelastic 

constants in zincblende and wurtzite materials. From a macroscopical 

point of view, the Brillouin scattering cross section is known to be 

proportional to the square of the photoelastic constant. Such constants 

can be obtained independently from the stress induced birefringence 

experiment (piezobirefringence, ,P.B). This is evident if we consider the 

situation that the piezobirefringence is characterized by the change in the 

dielectric constant induced by the static stress (uniaxial stress), whereas 

the Brillouin scattering is caused by the change in the dielectric constant 

by the dynamic stress (lattice vibration or travelling acoustic waves). 

Therefore both effects are characterized by the magnitude of the photo-

elastic constant. 

      In Section 3.2, we shall present the basic concept .of the piezo-

birefringence and briefly discuss the method to determine the 

piezobirefringence. In Section 3.3, we present a experimental method of 

the piezobirefringence. In Section 3.4, we shall derive a theoretical 

expression of the dielectric functions , which are used to construct 

theoretical expressions of the .photoelastic constants. In Section 3.5, we 

obtain the theoretical expression of the photoelastic constants by using 

the model dielectric constant , strain-orbital Hamiltonian and wave functions 

in the valence bands.
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       3.2 Basic Conce-Dt of the Photoelastic Constant 

      The application of a uniaxial stress to a crystal produces a change-

in the optical properties due to a change in energy gaps and momentum 

matrix elements. 74) The complex photoelastic (elasto-optic) constant 

P.. and piezo-optic constant 7. are defined through 75) 
 13kl ijkl 

              A( Pijkl e kl 7r ijklXkl (3.1) 

where c is the dielectric tensor, e kl the strain and Xkl the stress 

tensor. Writting 6 as 6 r + icii 31 eq. (3. 1) can be rewritten as 76)               ij ii i 

              (,,r                             . . + iAcl.)                     ij 13 
= P 

le (3.2)                            ijk kl 
                      11 33 

In the region where 6 i < E; r the denominator of the left hand side can be 

                    r r 
approximated by e i

i 6 jJ and the real and imaginaly part of Pijkl are related 

directly to the corresponding change in 6 ij-

      The piezobirefringence coefficient a is also defined by the following 

equa ion 77) 

                Ct P (3.3) 
                 X ii ii ijklSklmn 

where S kl
mn is the elastic compliance tensor. 

      A cubic semiconductor which is optically isotropic if unstressed 

become birefringent when a uniaxial stress is applied. 74 78 ) Such a 

birefringence induced by a uniaxial stress is called piezobirefringence 

and characterized by the difference in the refractive indices between the 

light polarized parallel and perpendicular to the stress direction. In 

cubic crystals the difference in the refractive indices is
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             n n _L~ - .1 n 3 (P /C )X (3.4)                    2 0 44 44 

for the [1111 stress, and 

                    1 3 P 11 P 1              n,j - nL ~ - i , 0 C 
11 C 12 X (3.5) 

for the [100] stress, where X is the stress magnitude, n 0 is the refractive 

index at zero stress, and C ij is the elastic stiffness constnat. 

      on the other hand, for wurtzite crystals the birefringence induced 

by a stress along [1120] direction is given by 

                      1 3 P 11- P 12                 -n                          n
o C 11 - C 12 (3.6) 

where the light is assumed to propagate along [1100] direction and n 0 is the 

refractive index of the ordinary wave at zero stress. 

      It is clear from eqs. (3.4) - (3.6) that the photoelastic constants 

are experimentally determined by the change of the refractive index (An).

                    3 ..3 Piezobirefringence 

       One of the experimental method used to determine the photoelastic 

constant is based on the measurements of the pi -ezobirefringence. The term 

piezobirefringence denotes the effect of change in the optical birefringence 

induced by an elastic deformation. If the crystal is optically anisotropic, 

two optical waves with different velocity but the same wavenormal, will in 

general be propagated through the crystal. The polarization of these waves 

will be perpendicular to each other (see Fig. 3-1). If the propagation 

direction corresponds to one of the principal axis (X k ), the polarization 

of these waves will be along the two other principal axis (X i and X 
j ). 

The principal axis are the directions which if chosen as the coordinate
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system make the dielectric constant diagonal. We consider a plane 

polarized optical wave at normal incidence ona samp le cut in the form 

of a plane-parallel slab and one of the principal axis be perpendicular 

to the plane of incidence. In the region of transparency, where the 

absorption can be neglected, two different lineary polarizrd waves 

(p-polarization) with amplitude E i and E j will propagate through the 

crystal. 

       The electric vector of these waves,.as a function of the position 

x k in the crystal can be written 

                                       2Trn. 
            E i (x k )= E 0 cos~ sin(wt- X I x k) (3.7) 

                                       27rn. 
            E i (x k ) =E 0 cos~ sin(wt- X j x k) (3

.8) 

where is the angle between the polarization of the incident wave and the 

principal axis. The amplitude of the incident wave is Eo,~andw and X are 

angular frequency and the wavelength in vacuum, respectively. n i and n 

are the refractive indices along the optic axis. If in the experiment 

the sample is placed between two crossed polarizers, respect to the optic 

axis, the transmitted light intensity I 
t' through the second polarizer will 

be given by the equation 

                            2 2, Trb             I 
t /1 0 = sin (2~) sin (An. -X) (3.9) 

where 1 0 is the intensity of the incident light, b is the thickness of the 

crystal, and An= n i- n j* By measureing the ratio (I 
t /1 0 ), one can 

determine the crystal birefringence An. From eq.(3.9), the best condition 

of this experiment is made by putting ~ = 45', because the transmitted 

intensity is maximum. The transmitted intensity had a minimum when
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E 0

                       7Tb                   A
n -T = m7T (3.10) 

where m (the order of the interference) is an integer with positive or 

negative. The transmitted intensity would be zero if the light beam 

would be exactly monochromatic and collimated. From eq.(3.10) one obtains 

                  An = mX (3.11) b 

on the other hand, the transmitted intensity has maximum when, 

                 An 7Fb = (M+1)7r (3.12) 2 

               An (m+ i ) X (3.13)                      2 b 

The dispersion of the birefringence An(X) can be determined from positons 

of the successive maxima and minima. In the region near the fundamental 

absorption edge, the effect of the dichroism (i.e., the anisotropy of the 

absorption coefficient) must be taken into account. If the polarization 

of the light forms the angle ~ with respect to the optic axis, the
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intensity of thr light transimitted through two crossed polarizers is: 

    it = I [exp{-(1/2) Oll+ otj)blsin 2 (An 'b) +         0 X 

               1 (exp{-(1/2)alibl-expt-(1/2)a _L~I]sin 2 2~ (3.14)-

where aii and al is the absorption coefficients .for the two principal 

directions. From eq.(3.14) it follows that the intensity of the transmitted 

light is modulated by the factor sin 2 (An Trb The modulation arising from 

the dichroism is much slower than that caused by birefringence. The spectral 

positons of the maxima and minima of the transmitted intensity will be same 

as those given in eq. (3.11) and eq. (3.13).

                      3.4 Dielectric Constant 

      For the purpose of determining the photoelastic constant , we have to 

obtain the theoretical expression of the model dielectric constant. In 

this subsection we shall discuss theoretical expression of the frequency-

dependent dielectric constant derived by Cardona. 79 ) First of all, we 

consider the contribution to c 2 (W) of the E 0 gap is 

              Ml A I <c I P (-k*) Ivi>12 1 (W -W ) 1/2 (3.15)                  2 2 ~Oi 
                               i=A,B5C 

with 
                 2 1/2 2 2 3/2              A = (2e ri /M )(2m*/h (2.16) 

In eq.(3.15) m * is the combined density-of-state mass, and <lp(,k)l> 2 is 

the dipole transition between the i-valence band (i= A,B or C) and 

conduction bands and w 01 is the energy difference between the i-valence 
and conduction band. For simplicity we assumed that the matrix element P 

is k-independent quantity. The real part of the dielectric constant can
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 also be calculated from eq.(3.15) by using following Kramers-Kronig 

 relations; 

            F_ (W) - E:. = 2 Pf 2 dw' (3.17)                   1 Tr 2 _ 2 
                     0 W) W 

                 M= - 2 Pf Fl(w')- dw', (3.18)                       2 7T 2 _ 2 

where coo is the high-frequency dielectric constant and P represents the 

Cauchy's principal value. 

       Substituting eq.(3.15) into eq.(3.17), we obtain the following 

equation by using the contour shown in Fig. 3-2. 

                          Aj< IP1>12 W 0 312f(xoi) (3.19) 

where i=A,B,C 

           f(x) = (I/x 2 ) [2 - (1 + x) 1/2 _ (1 - X) 1/2 (3 .20) 

f(x) is, in general, a complex function and f(x) can be divided by real 

and imaginary part as follows; 

           f(x) E f 
r (x) + if i(x) (3.21) 

where the subscript r and i indicate the real and imaginary part of f(x) , 

respectively. 

                    (l/X 2 )[2- (1-x) 1/2 _ (l + X) 1/2 1 0 < X:!~ 1 (3.22a) 

                   (,/x2) [2 - (1 +x)1/2] X > 1 (3.22b) 

                           0 0 < X~~ 1 (3.23a)            f i(x) ~(I/x 2 ) (X - 1) 1/2 x > 1 (3.23b) 
Figure 3-3 shows the calculated-line shape of f 

r (x) and f i (x). Note that 

imaginary part of f(x) is zero below the band gap ( x <1) .
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Fig. 3-2. Contour for the calculation of the real part of the dielectric 
           function f(x). 

      For zincblende-type crystals the dispersion in the dielectric constant 

of Ge and III-V compounds can be interpreted with the parabolic band 

model (PBM). 74) In this model the dielectric constant below the edge is 

the sum of the contribution of the E 0 and E 0 + A 0 edge plus a constant D 

which corresponds to the effect of the avarage gap E 
9 . 80) In the II-VI 

compounds the effect of the exciton is strong and exciton modificaiton of 

the interband absorption edge is taken into accousnt. If we include the 

contribution of the ground state of the E 0 exciton: 

                                C99 

                       2 ex 2 (3.24)                           E 
ex - OM 

we can write the dielectric constant as follows: 

              F- (W) C ) 1P 1                      ex E 2 E 
                              ex 

                  + C!P If( W ) + W M W                       0 
W 0 2 w O

s W os 

                  + D (3.25)
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where C 

ground

ex) and C 0 are 

state exciton.

the fitting parameters and Eex is the energy of the

                   3.5 Photoelastic Constant 

       In this subsection we shall represent a theoretical expression of the 

photoelestic constnat in zincblende and wurtzite materials. Now we show 

the effect of [0011 and [111] stress for zincblende-type crystals . 

      For [001] stress, the strain components are derived from eq.(3.1) as 

                         zz 11 
                       e xx~ e yy S 12 X (3.26) 

                         xy xz yz 
where S 11 and S 12 are elastic compliance constants. The strain-orbital 

Hamiltonian for the energy difference between conduction and valence band becomes 

                                                                  2 _ 1                He = _a(S 11 +2S 12 )X- 3b(S 11 - S 12 )X(L z IL 
                    = -6E 3 6E (L 2 _ 1 U, (3.27)                     H 2 001 z 

where 6E H = a(S 11 + 2S 12)X (DE 
9 /3P) xP is the shift of the gap E 9 , due to 

the hydrostatic component of the strain, and 6E 001= 2b(S 11- S 12 )X is the 

linear splitting of the P3/2 multiplet. From eq.(3.26) and (3.27) ,the 

Hamiltonian matrix for the valence bands can be written as 81) 

                 11,3> 3 l'i                2 2 001 2 2 001 If -?001 

   3 3 1 A                    -z - 6E - -6E 0 0    1-D-?O01 3 0 H 2 001 

                      0 =-A - 6E +=--6E 4-1/2-6 E (3.28)    -2 ~>Ool 3 0 H 2 001 2 001 

                              1 2                           0 ±
-Y26E - -;-zA - 6 E    -

2 rool 2 001 3 0 H J
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where A 0 is the spin-splitting of the valence bands at k= 0. Diagonalizing 

the above Hamiltonian matrix, one obtains, for the change in the energy 

difference between the conduciton and valence 'band at k =0 

1    A(E - E ) = -=A + 6 E + -±M E 
     • v2 3 0 H 2 001 

                      1 1 2 2 1/2    A(E - E ) = -=AO + 6E - ~~E
ool - ~EAO + A06EOOl + (1/4) (6EOOl)       • vl 6 H 4 

             1 1 1 2 2 1/2   A(E - E ) = AO+6E - -L6E +-yEA
O +AO6EOOl +(9/4)(ftool) I      • V3 6 H 4 001 

                                                               (3.29) 

For 6E 001 << A01. eq.(3.29) can be explained in power of 6E 001 /A 0 to give 

               1 1    A(E - E ) = - -~~AO + 6E + -:t6E 
     • v2 3 H 2 001 

               1 1 1 2    A(E - E ) = - _:_tA 0 + 6 E - VE 001 2 (6E /AO (3.30) 
     • vl 3 H 001 

              2 1 2    A(E - E ) = =-AO + 6E + -(6E /A 
     • v3 3 H 2 001 0 

                                3 3 It 
should be noted that since the state is not coupled by the stress                                              2'2 

to other two valence bands it has a linear stress dependence while the 

states with mi = 1/2 have a nonlinear stress dependence caused by the off-

diagonal term in eq.(3.28). From the unperturbed wave functions of the 

valence band state at k = 0, to the first order in a E- /A have been                                         0 001 0 

calculated to first order X 

            13,3               u -:->          v21_X 2 2 001 

           3 j>        u vl'X 2 001 + 1 a 0 (3.31)                              ,r2- 2'2 001 

                          1 Ot 1 b         u 
V3,X 2 001 + - 0 2'2 001                    V2 

It should be shown that the intensity of optical transition is proportional to
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                   I<T,I'e-'pIT 2>1 ' (3.32) 

where e is the unit polarizaiton vector of the electric field of the incident 

                                                               82,83 . 
radiaition and p is the linear momentum. For symmetry consideration, it 

can be shown that the only nonzero matix elements of p between r 25' and r 2-

are 

     P =< X+IP Ist> = <YtIP ISt> <ZtIP Ist> (3.33) 
               x y z 

with similar expressions for spin down. The p-matrix elements for zincblende-

and wurtzite-type crystals at k = 0 are shown in Table 2-1 in Chapter 2. 

From wavefunctions shown in eq.(3.31), selection rules and relative 

intensities for transition to P 2 have been calculated, as a function of X 

for light polarized parallel and perpendicular to the stress axis. These 

intensities-are given by 

                   2 2 2 3 2+            <cIP 11 IV,> = 3 P (1 + UO - VO 

                   2 1 2 3 2             <c IP-L IV 1 > = P (1 - 2a 0 +rO + 

           <cIP1IIv2> 2 = 0 (2
.34) 

                   2 1 2             <CIP-LIV 2 > = 2 P 
                          -2 1 2 3 2 

...            <c IP 11 IV 3 3 P (1-2a 0 + ro' 

          <CIPJ IV > 2 1 P 2 (l + a 3 2                    - 3 3 0- VO +*** 

      For a [111] stress, the analysis is almost identical to that for the 

stress along [001]. The strain components are given by 81) 

              e = e = e = (S + 2 S ) (--=-X) (3.35)              xx yy zz 11 12 3 
              e = e = e 1 1 (3.36)                 xy yz = (-f-S44) (--:=-X)                                zx 3 

where S 44 is an elastic compliance constant. The strain Hamailtonian of 

eq.(2.149) now has the form 

           H -a(S 11 +2S 12 )X- (6d/,F3-) 

            x [{L L } + fL L I + {L L 1 1( S X (3.37)                     X y Y z x z _2 4 4 _YX
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The problem of diagonalizing H. can be simplified if we make a 

transformation such that the [111] direction becomes z axis. For stress 

parallel to [111] direction it is convenient to make a rotation so that 

[111] direction becomes the z axis. The wave functions of the valence 

band then have the form8l) 

                   3 3 1 1/2 -                                 (i+i7Y)t > (3.38) 

                   12,1 1 1/2 [2Zt+ (i+ i7Y)~]> (3.39)                     2 1>111~1(-6) 

                   1 1 1 1/2 CK iY (3.40)                    12 'rlll~i(-3) 

where 

                      1 1/2                      X (-) (X - Y) (3 .41) 2 

                      1 1/2                     Y T (X+ Y- 2Z) (3.42) 

                     1 1/2                      z (-) (X+Y+Z) (3 .43) 3 

The stress independent wave functions have the same form as eq .(3.31) with 

a 
0 replaced by a 1 (=6E ill /A 0 ). Under this rotation the Hamiltonian matrix 

for this stress direction has the same form as the matrix for along the 

[0011 direction [eq.(3.28)], with the quantity 6E ill ~ (dlyr3-)S 44 X replacing 

6E 001* Therefore, from eqs.(3.30) and (3.34) one can write for enegry 

change between the conduction and valence bands,and the momentum matix 

elements for [111] stress to first order in stress as 

                        1 1                      A(E - E -:-t:A + 6 E - -:-t6 E + 
                  • vl 3 0 H 2 111 

                          1 1                 A(E - E -±A + 6E + -±M E + (3
.44)                  • V2) 7 3 0 H 2 111 

                        2 1                    A(E - E -t- A + 6 E + -±M E + 
                 • V3 3 0 H 2 111
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        !<CIP 111 vl> I I= 2 P2(,+Ot + 

                       2
= 1 2          <c I P-L I ve I t P (1-2a 1 +... 

2 

        I<CIP 111v2>1 = 0 

        I<CIP > 12= 1 2             -LIV 2 f P (3.45) 

                      12= 1 P2(l - 2ot + . . .         1<c'P 111v3> S 1 

                      2= P U +Ot +         I<C'P-Llv3>1 3 1 

       To first order in stress, the change in 6(w) can be expressed bY74) 

        A6 (W) X= AP + DE '~W (3.46)                 ax ap 
i i DW gi gi                              i=A

,B,C 

where P = MPM 2 is the squared p-matirx element and summation indi cate 
that contribution from three valence bands must included . The first term 

on the right-hand side of eq.(3.46) corresponds to the contribution f
rom 

the first order change in the squared p-matrix elements and interband 

transition energies, respectively. 

      Substitiuting eqs.(3.30) and (3.34) into eq .(3.46) and using the 

model dielectric constant of eq . (3.20), one obtains the expression of the~ 

photoelastic constant P P in the following expression: 77)                      11 12
:' 

                 C E 0 W 0 3/2         P 
11 P 12 = 

n 41-g(xo)+ 4 A 0 [f(x 0) - W OS f(xOs)1I 0 

                  + ex ex 0 1 ex 3 1                              +_1 +( 
                   n 4 (1- x 2 ) 2 A 0 1- x 2 E ex +A 0 1 _ x2 ]1+ D                        0 

ex ex exs 

                                                             (3.47) 
where g(x) are defined by [see Fig . 3-3] 

       g(x) = (1/x 2 )[2- (1+ x)-1/2 _ (1- X)-1/2 (3 .48)
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and 

       C = -(3m*/2) 3/2 P 2 bw -5/2 (3.49) 
                  e 0 

2        C 
ex = -3 (4TrNf 1 )b/E ex (3.50) 

      The photoelastic constant P 44 can be obtained by the same procedure 

in the case of P 11 - P 12 * Substituting eqs.(3.44) and (3.45) into eq.(3.46) 

and using model dielectric constant of eq.(3.20), one obtains the expression 

of the photoelastic constant P 44 in the following expression: 78) 

W 

          C 0 3/2      P 4 EO[f(
x f(x       447 n 4 -g(x) + A 0 0 W os OS 

0 

             exT ex 0 1 + ex 3 1           + - - + fl ]I+ D, (3.51)           4 2 2 
0 2 E +A 1-2               n 0 U - x 

ex) x ex ex 0 x exs 

where 

     C = -(3m; /2) 3/ 2 P 2 dw 0 -5/2 (3.52) 

2 

     C 
ex = -3(4TrNf 1 )d/E ex (3.53) 

In eqs.(3.47) to (3.53), we used the following notation;x 0 = riw/EO9 x O
s 

riw/(E 0 +A 0 ), x 
ex = liw/E xl' x exs= liw/(E xl + A 0 ) with liwo=E 0 and liw Os= E 0 +AOS 

16 the photon energy, A the spin-orbit splitting energy, E the ground-                     0 
xl 

state exciton energy, P the momentum matrix element, and -.N and f 1 are the 

number of molecules per unit volume and oscillator strength of the exciton 

respectively. The term D is the non-dispersive contribution arising from 

the El. E 1 +A 1 and E 2 gaps. Long-wavelength dielectric properties of 

semiconductors have been treated quite successfully by Van Vechten 84) 

with the Penn model, 80) a simple model of an insulator in which an 

average isotropic gap at the edge of spherical Brillouin zone is assumed. 

It is well known that 6 i (the imaginary part of the c) in zincblende 

materials has a strong peak (E 2 ) in the neighbourhood of which most of the
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optical density of state is concentrated. 85) The corresponding transition 

occur over a large number of the Brillouin zone, close to its boundaries. 

For the purpose of represent this fact Penn 80) suggested the model of non-

physical spherical Brillouin zone with an isotropic gap (w ) at its bounderies. 9 

Penn obtained with this model the static dielectric constant for a finite 

wavevector q. The result can be approximated by the analytic form. 85) 

                      W 2 W F 
q 1 2 2         E: (w = 0

, q) = 1 + ( W 11) F {1 + w k F (3.54) 
                     9 g F 

                            W 1 W 2 
with F = I - . g + - ( g (3.55) 

                           W F 3 w F 

In eq.(3.54) w 
p is the plasma frequency obtained for the density of 

valence electron and w F and k F the corresponding free electron Fermi 

energy and wave number. The dimensionless quantity F is usually close to 

one. Equation (3.54) yields two contribution to the change in E(O) due to 

the stress (X): One arises from the change in plasma frequency and the other 

from that in the Penn gap, as follows;. 

        1 dc 0 = 2( d lnw p d lnw 9) (3.56 
       F_ 0 dX dX dX 

The first term in the braket should not exist for pure shear stress. 

According to Vechten, 84) W for C, Ge, Si is proportional to (a -2.5 
                      9 0 

where a 0 is the lattice constant. If one makes the assumption that this 

law gives also the change in w 
9 with lattice constant for a given material 

when a stress.is applied one can calculate the volume dependence of 6 0 

                 1 dE: 0 = 2( 0 - d ln(X-2.5 ) =5/X (3.57) 

                   0 dx_ dX 

Equation (3.57) become the following relation 

            AE(O)/E(O) = 5 (3.58)
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where ~ and ~ are the static dielectric constant and strain tensors, 

respsctively. Using eq.(3.58) one obtains the non-dispersive photoelastic 

constan 78) 

                 D 5F-(O) for P P (3.59)-                    4 11 12 
                        n 0 

                  D'= 1 5 C(O) for P 44 (3.60)                    4 2 
                        n 0 

Equations (3.59) and (3.60) predict the correct sign for D and D but a 

magnitude which is several times too large. This is because the 

contribution of the EO$ Ell E 2 gaps to the photoelastic constant do not have 

the same signs. The effect of damping was taken into account by replacing 

fiw with riw +ir in the above equations of the photoelastic constant. 

      The piezobirefringence analysis of the wurtzite-type crystals is 

almost identical to the zincblende-type crystals. The'stress-induced 

changes in the band gap energies and squared p-matrix elements can be 

obtained by solving the eigenvalue problem as similar to those in the 

case of zincblende. We now present the component of dielectric tensor 

by taking into acount the exciton effect in the following form: 

                                        Cexa 
                         Ot a ij                    6 

ij (E) A 2 + f (xoot) (3.61) 

with exa 

                    A~ F a E (GE ) 3/2 /8 (3.62)                         ii ij ex ga 

and 
                           exa 3/2 a 4 

                       Cij = 8(GE 
ga ) /(F,jE ex) (3.63) 

Here a labels the three valence bands A,B, and C, F ij is the streigth 

parameter(eV 2 related to the oscillator strength, and G is the exciton 

binding energy. The first and second terms in the right-hand side of 

eq.(3.61) correspond to the cotributions from the discrete excitons and the
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 unbound continuum excitons transitons, respectively. 

 Case 1. PhotoeZastic Constant P - P for Wurtzite-Type CrystaZs                           11 21 

       Using the strain-orbital Hamiltonian of eq.(2.185) and three wave 

functions in valence bands of eqs.(2.173) to (2.178), the stress induced 

change in the band gap energys and strength parameters are obtained as 

follows (first order in stress X) 

                AE 
gA = [ E gA (X)- E gA(O) 0 (3.64a)                 

'AE gB = [ E gB (X)- E gB(O) 0 (3.64b) 

                AE
gC = [ E gC (X)- E gC (0) 0 (3 1 .64c) 

                                   2 2 

  AF A /F A (0) = [AF A _AF A I/FA (0) = 4( a -' + a C -)C (S -S )X , (3 .64d)     xy xx xx yy xx E BA E CA 5 11 12 

  AF B /F B (0) = [AF B -AF B ]/F B (0) = - -- 4 -C (S - S )X (3.64e)     xy xx xx yy xx E 5 11 12 
                                   BA 

   C C C C C 4   AF /F (0) = [AF -AF ] F (0) ----C, (S - S )X (3.64f)     xy xx xx yy xx E 
CA 5 11 12 

where C 5 is the deformation potential, E BA and E CA are defined in eq. (2.170) 

to eq. (2.172). Substituting eq. (3.64) into eq. (3.46), one obtains the 

expression of the photoelestic constant P (=I(P P in the                                   66 
2 11 12 

following form: 

1                P 
66 = 2 ( D 66 + C 5 F 66), (3.65) 

with 11 2 2 
                         a B a C A 1 B 1 C 

                 F = 2( + -)c - 2- c 2E- F- (3.66)                   66 E 
BA E CA xx E BA xx CA xx 

In eq.(3.65) D 66 is the non-dispersive contribution arising from the higher 

lying critical points. In accordance with the previous discussion , we can 

introduce the lifetime broadening effect in the calculation of the photo-

elastic constant by replacing E of eq.(3.61) by E +iF .
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Case 2. PhotoeZastic Constant P 44 for Wurtzite-Type CrystaZs 

      The photoelastic constant P 44 can be obtained by using the strain-

orbital Hamiltonian of eq.(2.185) and three wave functions in valence 

bands of eqs.(2.173) and (2.178), the stress induced change in the band 

gap energy and strength parameters are obtained as follows; 

               AE 
gA = [ E gA (X) - E gA(O) 0 (3.67a) 

              AE 
gB = [ E gB (X) - E gB(O) 0 (3.67b) 

               AE
gC = [ E gC (X) - E gB(O) 0 (3.67c)                                                            

~ 2 2 

               AF A /F A (0) = _I C T ( aC + aB (3.67d)                     xz xx r2- 6 E BA E CA 

2 
                 B B T a C 1                 AF /F (0) = C ( - - - (3.67e) 

                    xz xx E E                               Y2 6 a 2 BA CB B 
_ 2 

              AF C /F C (0) C T B + 1 (3.67f)                      xz xx ,r2- 6 a 2 E CA E CB 
C 

where C 6 is the shear deformation potential, and 

                    a 2 F B (0) 
              T B zz 1/2 1/2 (3.68) 

                  2a 2 F B (0) 2a 2 F C (0)                           C xx B xx 

3ubstituting eq.(1.67) into eq.(3.46), we obtain 

              P 1 ( D + C F (3.69)                44 
11 F- 33 44 6 44 

qhere 2 2 2 

         F T a C a A a C 1 B            44 E F- xx 2 2 -)E xx                2v72- iBA + CA a B E BA a B E CB 

2 
                     B 1 C (3

.70)                      2 + 2 )Exx 
                    aCE CA a C E CB
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In eq.(3.70), D 44 is the non-dispersive contribution arising from the higher 

lying gaps. 

Case 3. PhotoeZastic Constant P 31 for Wurtzite-Type CrystaZs 

      According to the Brillouin scattering scattering geometry for LA mode 

phonons, non-zero strain component is only e xx (we can replace e xx +e yy 

withe 
xx without any loss of generality) and the other components vanish. 

Using the strain-orbital Hamiltonian of eqs.(2.184) and (2.185) and three 

wave functions in valence bands of eqs. (2.173) and (2.178), the stress 

induced change in the band gap energy and strength patameters are obtained 

as follows: 

                               + C le                   AE 
gA = (C2 - d 2 4 xx (3.71a) 

                 AE = (C - d + a 2 C ]e (3.71b) 
                  gB 2 2 B 4 xx 

                 AE
gC = (C - d + a 2 C ]e (3.71c)                           2 2 C 4 xx 

                 AF A A (0) = 0 (3.72a) 
                       xx xx 

2 

                 AF B /F B (0) = -2 c B (3.72b) 
                      xx xx 4 E CB 

2 

                 AF C /FC (0) = 2 C aC (3.72c) 
                      xx xx 4 E CB 

Substituting eq.(3.71) into eq.(3.46), we obtain the expressio n of the 

photoelastic constant p 31 in the following form: 

          P D + C F (A) + (C d )F (B) (3.73)            31 
33 C 33 31 4 31 2 2 31 

where 2 B C A B 
C 

       F (A)= _2 a B'xx - aC, xx + aE xx + a 2 xx + a 2 xx (3.74)        31 E 
CB ~E gA B DE gA C 3E gC 

            ac 36 B DE: C         (B) 
xx xx xx       F 

31 = (3E 
gA + aE gB + aE gC (3.75)



                              91 

          Ot 

where :Lj is the first derivative of the dielectic function E a by the       ~E 

ga ij 
energy gap E

g. and given by the following equation: 

                            C exct (3-x 
                    B CX { ij exot g(x (3 .76)               DE 

got x 2 2 ~Oct 
with exa 

            B01 = _F Ot (GE 3/2 /16 (3.77)            ij ii 
got 

In eq.(3.73), D 31 is the nondispersive contribution arising from the 

higher-lying gap transitions. 

      Next we consider the relation between the Brillouin-scattering cross 

section and the photoelastic constant. From the result of Nelson et. al.46) 

we find the power ratio of the scattered light P(P to the incident light P(P 

as 

  (p w 4 01 AP (n(V )3cos6 (cos66)T(pTO   P 
= -D D 

2 4 2 -1d (p ) eff d 0 b a 2 A _r (P T 6 (3.78)  P 6 32,a c pv sinO 
s mImnkl n k 11 CYB'D OD 

where the notation ; is the same as used by Nelson et al., 46) and k B T is 

replaced by (D. In the present strudy we used three types of acoustic 

waves, Tl- , T2- and LA modes as defined in Chapter 2.2. The relation 

between the Brillouin scattering cross section for the three modes of 

acoustic waves are 

                CY (Tl) = A n 6 W 4 (P P 2 (3.79)                B 1 0 11 12 

                Cr (T2) = A n 6 W 4 P 2 (3.80)                B 2 0 44 

for the zincblende-type crystals, and 

                        6 4 2                 or 
B (Tl) = B 1 n 0 w (P 11 P 12) (3.81) 

                CY (T2) = B n 3 n 3 w 4 P 2 (3.82)                   B 2 o e 44
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a (LA) = B n 3 n 3 w 4 P 2 B 3 
e e 31 (3.83)

for the wurtzite or polytype crystals, where A 
i and B i are frequency 

independent factors involved in eq.(3.78)..Using these relations we are 

to compare the wavelength dependence of the Brillouin-scattering cross 

sections with that of photoelastic constants determined from the piezo-

birefringence measurements.

able
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      CHAPTER 4 

EXPERIMENTAL TECHNIQUE

                         4.1 Introduction 

      We have largely concerned ourselves up to this point in the 

dissertation, with the theoretical aspect of the Brillouin scattering and 

piezobirefringence. In this chapter, we discuss the experimental aspects 

of our work. The intense phonon domains amplified by acoustoelectric 

instabilities are very useful to investigate the dispersion spectra of 

the resonant Brillouin scattering near the fundamental absorption edge of 

semiconductors. They consists of intense ultrasonic waves with various 

frequency components from 0.1 to 4 GHz, concentrated §patially with about 

0.5 mm width. 86- 88) The acoustic waves in domains are amplified by a 

         6 9 f
actor of 10 to 10 above thermal equilibrium value. These amplified 

waves consists of piezoelectrically active shear waves in a narrow cone 

(<10') along the direction of the electron drift. The wide frequency 

range and high energy density provide great advantages in investigating 

phonon-phonon interaction, electron-phonon-photon interaction in semi-

conductors. The generation of acoustic domains , however, are restricted 

to piezoelectric semiconductors such as GaAs, 89) CdS, 90) GaSb, 91) CdSe, 92) 

and ZnO. 93) To overcome this restriction, acoustic domain injection method 

is introduced in which the acoustic domains are injected from CdS to other 

semiconducters or insulators. , This acoustic domain injection technique 

has also successfully extended by us to semiconductors such as ZnS and 

layered compound HgI 2* In these experiments, the incident photon 

energies, however, were restricted to the region in which the samples



- 94 -

were transparent due to the strong absorption near the band gap. Therefore 

it has been difficult to obtain the dispersion of the Brillouin scattering 

cross section in the opaque region (above the fundamental absoption edge 

when we use a conventional light source (Xe flash lamp) and transmission 

type of experiment. To overcome this limitation, we employed the 

reflection scattering geometry and a high intensity Ar ion laser between 

457.9 and 514.5 nm. It should be noted that we investigated the Brillouin 

scattering not by ripple mechanism but by the elasto~optic mechanism. The 

Brillouin scattering by the ripple mechanism, which is caused by the 

dynamic corrugation on the surface, show no dispersion. However the 

Brillouin scattering by the elasto-optic mechanism, which is caused by the 

change in the dielectric constant by the phonons, shows dispersion. 

Our main interest of the present study is the latter mechanism (elasto-

optic mechanism) in the opaque region of the materials.-

      As is shown in the previous Section, Brillouin scattering cross 

section is proportional to the relevant photoelastic constant. Therefore 

we can obtain the dispersion of the photoelastic constant by the Brillouin 

scattering experiment. It is impossible, however, to determine the absolute 

value of the photoelastic constant only by the Brillouin scattering 

experiment. In order to determine the sign and absolute value of the photo-

elastic constants, we performend the piezobirefringence measurements. 

      In section 4.2 we present some of the physical poperties of the 

materials used in the present study and sample preparation method. In 

Section 4.3, we discuss the Brillouin scattering technique below and above 

the fundamental absorption edge. In Section 4.4, we discuss the piezo-

birefringence technique. In Section 4.5, we describe the acoustic domain 

injection method.
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               4.2 Material and Sample Preparation 

      In the present study we used bulk single crystals, CdS, ZnS, and 

HgI 2* The CdS crystals used were ultra-high purity (UHP grade) and 

purchased from Eagle Picher Company. We used two kinds of ZnS 

crystals; i) synthesized by melt-grown at Eagle Picher Company (UHP grade) 

ii) grown by 1 2 chemical transport method. The melt-grown ZnS contains 

= 10 % stacking faults along the c-direction of the axis , while ZnS grown 

by 1 2 chemical transport is pure cubic and shows no optical anisotropy. 

The HgI 2 crystals were grown by the DMSO (dimethylsulfoxide) solution 

growth. In Table 4-1 are listed the crystal structure, growth method, 

electrical properties for each crystal. 

      All the samples used in the present study were cut in the form of 

rectangular parallelepipeds with typical dimensions of about 0.7x 1.5x 6.0 

3 
mm . The crystal orientation of sample was determined by means of light 

figure method 94,95) with the accuracy of one degree. They were lapped 

on a glass plate using 3000 grit Cr 2 0 3 powder, and subsequently polished 

by 8000 grit Al 2 0 3* Final optical polishing was done by using 0.3 pm 

Al 3 0 2 powder and polish-etched by Syton for 10 minutes. The optical flat 

surfacesoflayered compound HgI 2 were obtained by cleavage with Cellotape 

and used for the measurement without any additional treatment. In order 

to obtain ohmic-contacts, indium is deposited,by evaporation on the both 

ends of the samples at % 10-6 Torr and copper wires are soldered on them. 

The ZnS samples (polytype and cubic) used in the piezobirefringence 

experiments were parallelepiped of typical dimensions of 1.2x 1.3x 6.0 mm 3 

cut from the same crystals used in the Brillouin scattering .experiments.
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              4.3 Brillouin Scattering Technique 

4.3.1 Transmission-Type Experiment 

       The experimental setup of the Brillouin scattering for transmission 

type of experiment is shown Fig. 4-1. The arrangement was used in the 

measurements in the photon energy region where the photon energy is below 

the fundamental absorption edge. Experimental technique in the opaque region 

by using Ar ion laser are touched upon in the next subsection 4 .3.2. 

      A high intensity light source of a continuous spectrum is obtained 

from a Xe-flash tube (Sunpack Strobo GTPRO 4011). The light source enabled 

us to measure Brillouin scattering signal in the wide spectral range from 

300 nm to 900 nm. The spectrometer is a conventional monochromator (JASCO 

CF-50), 50 cm focal length system. We used gratings blazed for 750 nm 

and 300 nm (1200 lines per mm). This was calibrated with the emission 

lines from a mercury arc and a He-Ne laser line. The resolution is about 

0.5 - 1 nm in the range of the present experiment. The incident light 

dispersed with the monochrometer was polarized by a Gran-Thompson prism 

(P 1 ) and collimated by lens (L 1 ) and then focused into the sample. The 

typical size of light spot at the surface of the specimens was about 

0.5 mm in diameter. The scattered beam was analyzed by a .film polarizer 

(Polaroid HN 32 for visible wavelength region, HNB'P for ultra-vio.16t 

region). The scattered light was detected by a photomultiplier tube . 

We used at present a photomultiplier tube with an S-20 cathod (RCA-

7265), which has approximately 20 % quantum efficiency at 400 nm 

wavelength and drops to appriximately 2 % q .e. at 720 nm, The detected 

signal was displayed on a storage oscilloscope (Tecktronics 7623A) . A 

typical Brillouin scattering signal and current wave form in the sample 

are shown in Figs. 4-2 and 4-3. The experimental configurations of



 ~4 
 co 

 co 
 ~4 

 4-J 

 4~) 
4J 
 Cc 

0 

PCI 

 (3) 
 Iz 
41 

p 
0 

t4-4 

U) 

 .Lj 
 (U 

 cc 
4J 

~4 

a)

a) 
Iz ca 
41 -1 

   Cd 
44 -H 
0 ~4 

   ca 

ca (W 
.H 4 
ro 41 

CL) 4-4 
-H 0 
41 
Cd r. 

0

rZ4

98

    (3.) 

0 
u 
  U) 

(Do 
0)-l 

0 u 
4-) C/) 
U) C)

  C114 
0-

U L-
-40 
4- :~: 
0 (1) 
073

- - i - 1%

/

4-J

- - -~ -.1- - - -4. k-

 C~4 
I

L-
0 

E 
0 

0 
c 
0 
E

(D 0 
cl)(/) 
0-4 
4- =3 L-
- CIO 
0 4-J 
> CD 0  

1 L- S--
C- 0 a) 
0) =3 

-4 cr 
C- U) 0)

"0 L
-

(D 
>1 
00)

 C--
cn 
0 

4- Q 
E



一99一

ー

(
〉
嗣
℃
＼
b
自
O
O
H
)

目
く
渚
O
H
QQ

曲∪
客
H
国
口
]い臼
"<
⇔
QQ

之
H
h
FO
]
　口
　H
国
ρ⇒

(
〉
唱

＼
<
H
)

臼
渚
国
国
国
⇔
Q

i

ジ 」α喩候1 王1
・『2噂

津絹回 匙
}

1一 「
.聖"○' 7 '『奪甥r..

一 一
.'『 「フ

}

}㌃
ξ

{

}

業㌻ 1∫ ・
、葦農 ∴ ∴猛2 L『 ∫ 一}

`ジ ・

ぞ

ノ
「1塗 一・

'-}

「

郷晶
..-.1穿十

F 白 臼 臼
;、■ 畠

ll,ll
∫ 『

lHl H IH ll

_年 噌
ll ll i了}H.

」

∫ 壬 ・.
丁

{

ン 「L』晦:ゴ..藤 ∴:r'

弊.

㌔1 1
レ旨 駿 一 」墨

.旨
琶ご‡謹, }

;℃ ∵㍉

●`■ ● o免'● ● .● ● ● 亀

.』 一 ケ.
▲

噛 ● 隼9 `■o● ● ● ● ・ ■

・
.50伽 瞬 ・

響ゴ. _一 囚「

(
⇒
刺
℃
＼
b
日
O
O
H
)

.【〈
乞
o
H
QQ

O
客
H
餌
国
臼
臼
く
U
QQ

客
H
鳥
C
臼
日
H
函
ρ自

(
〉
唱

＼
<
H
)

臼
客
国
国
函
⇒
O

1)

T工ME(2psec/div)

Fig.4-2. Sometypicalexampleoft:hecurrent-oscillation

pattern・(1・wertrace)・ndBri11・uinscattering

signals(upPertrace)fortwodifferentpulse

width;(a)4.6μs,(b)>g玉 」s.



一100一

(
〉
も

＼
<
H
)

臼
乞
国
国
属
⇔
O

(
〉
咽
℃
＼
〉
自

O
崎
)

日
ぐ
㌶
O
H
QQ

O
乞
H
国
国
][臼
く
O
Qら

客
H
h
FO
ρ
.H
H
函
凶

(諸

ミ

〈
H
)

臼
乞
国
属
国
φ
O

「

I

1

1

ー

ー

1

†

　

諭
_一

1ψ 『 ・馳t

工..

」

4μ5 画1
一

100・ …

∫i・

.oo魯 ㌔ ・ デ7〒饗早『『:、
工 ・…

一

一

●身o・=

一

●●o●

繭
● ● ● ●

一

〇●■●

藤r

逡

嬉

}
}

離

…

麟

㍉

90
一「-

墨1' 、工

曝蟹 賦延夢 敏・瀬 傘欝 ・、.」 ;翼,毒 擁 …編 繍

一 ゴ

辮..
』 一 ・

∴轡t

」 工
.…..

.;
工1

き1 鞭 魂繊 1,ゴ、擢 瑚 一 」P 、譲き蛙 一1・まサ

「 ド 圭 『

一i r

「 し.。、
、」

ρ 一

≦⊥.濫、ヅ ㌧工-「

、雪 ㌧ ・
幽 ヒ

∬ ■ .㌔

、,0%・ 一ポ ・ ● o●.●9・
.◎麗

〆「∵`
工.・

9験
,b:・

..工 ∵

● ● ● ● ○㌧o・,
.

9」`● go.曾 ヒ

'
、}線 :1駒

卸 羨;・嘗'=

,伽 貿髄ぎ
=.'、 、、

ゴ ー

▼ 一 噌『

工 、

、工 三ン

一

!'

　 匿 層

},「_r一 一 ゴ

一

TIME(lpsec/div)

Fig.4-3. (a)Sometypicalexa1nplesoft:heacoustic

current-oscillationpatternsforfourdifferent

apPliedvoltages・(b)Brillouinscatteringsignal

byanacousticdomaininCdS.



u 
.r-l 
,Q (3) 
:1 4 
U 4-J 

4-4 0 
0 4.1

 0 4-) 0 

4J -1 
 C) cc 

    Cd 

 4-1 W 

0 
 4-1 4-J 

0 0 

 CO 4-4 
~> 0 

    to 

    co 
I 

 -41 
      4-) 

 4j r1o 4-4 
p ~4 0 

    co 
   bo 0 

0 

.r4 4-1 

.H ~4 
>4 -r4 
co 0 10 
I C 

 U 4-3 -
    ~i 

E-4 M

11-1 
ca

- 101 -

Ww

          r-4

W

 ca ca

N 
r-I

-4 r-i ca

 ca 
I

 ca

W 
4 
   0 x 
        r-i M

          w w 

            Cd Cd co

IC'4 
p

C'4 
E-,~

r-~ 
P-1

1-1 
Cd 

 41 04 
 .r4 ;>1 

N 
  4-) 

0

(L)

4J 
     ro 

-4 r4 
0 

   ca 

  ~4 
4-J Cd 
Cd -4 
u 0 

to 
-H 0 

     4-) 
41 Cd

0 

 Cd 4-J 
u co 

-r-4 N 
4.J -r~ 
CD p 
=$ CTJ 

 0 r--l 
u 0 

r-4 0 
 cd -r-I 

 C.) 4-J 
-r-I co 
4-J W 
ril Cd 
0 P. 
0 0 

4J 

0 10 
u 0 

     4-J 

LO 

u cl)

4J 

 cd 
(3) 
 r:3 CTj 

      4-J 
to a) 
0 ~>, 

-r-q p 
~4 U 
(3) 

2 
 4-J 

ca r~ 
Q N 
U) 

0 >1 
I-i --q 
r-~ 0 

pq p 

'a cu 
4-J 4-J 

0 -W 
4-4 p 

0 
-H 
4-1 
cd cl 
~4 
:~ e-, 
to (3) 

-r4 10 
4-4 

0 r-4 

ca -ri 

(31 u

C4 

1 Cd 
p



                                           - 102 

 Brillouin scattering measurement for Tl-, T2- and LA-mode phonons for 

 zincblende and wurtzite crystals are listed in Table 4-2. In order to 

 obtain the strong signals, synchronization of optical and electrical pulses 

 was employed to measure the scattering from traveling acoustic domain when 

 the pulsed light source was at the peak intensity. The acoustical domains 

was generated by an application to the high voltage pulse of 0.61"1.5 kV 

 with several psec duration. The high-voltage pulses were generated from 

 a Velonex, Model 350, high power pulse generator. 

4.3.2 RefZection-Type Experiment 

       For the purpose of studying the resonant Brillouin scattering above the 

 fundamental absorption edge in CdS, we employed reflection type of experiment 42,43) 

 that extends measurement into the region where the sample is opaque. The 

difference between the transmission and reflection type'experiments is shown 

in Fig. 4-4. It should be noted that in the case of reflection type of 

experiment only the k component parallel to the scattering surface is conserved 

because the interaction between phonon and photon is localized within the 

penetration depth ( = a -1 ). We used the single line mode of Ar ion laser 

 (NEC GIG 3200) in which we may select eight-different available operating 

wavelenghts, with different output power levels for each wavelength. These 

wavelength, and the maximum power available at each wavelength are: 

                   514.5 nm (2.410 eV) 800 mW 

                   501.7 nm (2.471 eV) 150 mW 

                   496.5 nm (2.497 eV) 300 mW 

                   488.0 nm (2.541 eV) 700 mW 

                   476.5 nm (2.602 eV) 330 mW 

                   472.7 nm (2.623 eV) 50 mW 

                   465.8 nm (2.662 eV) 30 mW 

                   457.9 nm (2.708 eV) 140 mW
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Figure 4-5 shows the schematic diagram of the experimental setup used in 

the Brillouin scattering in the Opaque region. The Ar ion laser light was 

polarized by a Gran-Thompson or-Rochon prism and focused onto the scattering 

surface by lens. We would like to point out here that the good SIN ratio 

of scattering light depends strongly on the surface condition of the sample. 

In order to obtain a reliable data we polished the scattering surface by 

Syton for 10 minutes. We find that Syton etching is a excellent method 

to obtain a optically flat surface for the measurement of the reflection 

scattering configuration. t The scattering light was detected by a photo-

multiplier (RCA-7265) without using a Fabry-Perot interferometer. We 

used same detection system as was used in the transmission type of 

experiments. 

             4.4 Piezobirefringence Technique. 

      Piezobirefringence spectra were measured with standerd optical and 

phase-sensitive electronic detection thchnique. The block diagram of the 

system is shown in Fig. 4-6. The optical system consists of a halogen 

lamp, double spectrometer, chopper, crossed polarizers, and detector. 

The light source was a tungsten-filament halogen lamp. Measurements were 

performed in the wavelength region 900 nm to the absorption edge of 

material. Polaroid HNP'B sheet polarizers were used as polarizer and 

anlyzer. Monochromatic light was obtained by Spex 1401 double spectro-

meter with a 1200 line/mm reflection gratings blazed at 500 nm. We 

widened the slits to give a resolution 0.5 A since high resolution was not 

0

t Very recently, Aspnes and Studna reported that bromine-methanol is better 
agent than Syton in Ge, Si and some III-V compounds, for removing oxide and 
residual amorphous layer from the surface. [D. E. Aspnes and A. A. Studna: 
Appl. Phys. Lett. 39(1981)316.1
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usually required for the measurement of the piezobirefringence. The light 

was chopped at = 200 Hz and the signal detected with a PAR model 126 lock-

in amplifier. The output from the lock-in was applied to the x input of 

an xt recorder (YEW type 3056 vertical penrecorder), while the marker output 

from double spectrometer (100 cm-1 ) was conected to the recorder. The 

samples were alined by light-figure method as described in Section 4.3 to 

0 better than 2 and cut to dimensions approximately 1.2x 1.3 x6 mm. After 

cutting, the samples were polished, etched, and mounted on the stress 

appratus. The sample was placed between two pushing pistons and uniaxial 

stress was applied from a spring which was compressed by means of rotating 

the nob of the micrometer-head. The compression of the spring was 

measured by the scale of the micrometer-head and uniaxial up to 1.0 kbar 

was used.     

. Th
e polarizer was oriented so that the beam incident on the sample 

was polarized at 450 to the stress axis (shown in Fig. 4-7). Under these 

condition, the light components polarized parallel and perpendicular to the 

stress are equal. The measurements were carried out at room temperature.

        4.5 Acoustic Domain Injection Method 

      In this-section we will discuss the acoustic domain injection method. 

Figure 4-8 is a schematic illustration of the experimental configulation 

of acoustic injection from CdS to ZnS. The two specimens are bonded 

together through the vacuum evaporated thin film of indium. The intensity 

of the acoustic waves of the domain excited in CdS and those transmitted to 

ZnS are estimated by the Brillouin scattering thechnique mentioned in the 

previous Section 4.3. Note that the acoustic phonon intensity is 

proportional to the Brillouin scattering efficiency, if the light i
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 wavelength, optical path and scattering solid angle are constant . Therefore 

 we can estimate the acoustic energy from the Brillouin efficiency 
at a 

 wavelength, for example , using a He-Ne laser of several mW intensit
y. 

      We considered a case of CdS-ZnS, shown in Fig . 4-8, to estimate the 

 transmission efficiency. For simplicity we neglected the indium layer 
at 

 the bounded surface. It is well known that the acoustic waves amplified 

 in CdS through acoustoelectric effect travel in a direction parallel to 

 the c-plane with atomic displacement parallel to the c-axis . In Fig. 4-8, 

 therefore, the excited acoustic waves are the transverse waves with the 

atomic displacement parallel to the [110] axis and wave vector along the 

 [001] direction. The transmission efficiency T P is given by 35) 

                    [P I 4(pC ) 1/2 (P'C' ) 1/2 
                T ad T 44 44 (4 .1)                P 1P ac I I {(PC 44) 1/2 +(P'C ~4)1 /21 

where p and C 44 are crystal mass dens 
- ity and elastic stiffness constant in 

CdS and the corresponding values with prime are for other samples bonded 

to CdS. Here [P 
ac I T and [P ac I I are acoustic Pointing vector for 

transmittited and incident waves, respectively . We oftain from eq.(4.1) 

TP =0.94 for CdS-ZnS, TP= 0.94 for CdS-ZnSe and TP =0.95 for CdS-ZnTe which 

are appreciably high. The experimental value of the transmission efficiency 

can be measured by the Brillouin scattering, as stated in ref.96. We 

measured the Brillouin scattering intensity in CdS and bonded specimen ZnS as 

function of position and the intensity at the bonded surface was estimated 

by extrapolation. In Fig. 4-9 , we show an example of the oscilloscope 

display of the Brillouin scattering signal by the injected acoustic domains 

obtained from the CdS-ZnS system (upper trace). The current waveform 

exhibitting the acoustical instability is also shown in the lower trace 

of the figure. The Brillouin scattering signal P 1 is produced by the 

injected forward-traveling acoustic domain, while the signal P 2 is 

produced by the reflected domain at the end surface of the injected crystal.
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 The experimental transmission efficiency was obtained using the 

 extrapolated values, which are shown in Fig. 4-10 by solid circles for 

 CdS-ZnS. Similar experiments were carried out for CdS- ZnTe and CdS-ZnSe 

 and the results are also shown in Fig. 4-10., We find that the efficiency for 

 CdS-ZnS sample is about 85 %. at the frequency f= 0.35 GHz. and decreases 

with the increase infrequency of acoustic waves. The decrease in efficiency 

 at higher frequencies is mainly due to the acoustic mismatch of the waves in 

 the three layer structure CdS-In-ZnS. 

       The attenuation coefficient of the transmitted acoustic waves can be 

obtained from the measurement of the Brillouin scatteirng intensity as a 

function of probing position. The acoustic frequency dependence of the 

attenuation coeffient is given by:ot Loc f 1.45 in ZnSe and ot L - f 1.2 in ZnTe ?5,96) 

Experimental results show that the frequency dependence of attenuation 

coefficient depends strongly on the intensity of the acoustic waves 

transmitted in the bonded specimen. In the frequency region used in the 

present experiments, attenuation is dominated by Akhieser loss and expected 

to be given by the relation a L - f 2 . 97-99) The departure from the f 2_ ~ 

dependence seems to reflect nonlinear phonon-phonon interaction of the high 

intensity phonons. 97,98) In the presnt method th . e acoustic energy density 

of transmitted waves in the samples is about 10 6 to 10 9 times higher than 

the thermal equilibrium value and thus the nonliear interaciton exists . 

Such a non-linear interaction of phonons is clearly seen in the case of the 

CdS-ZnS system (Fig. 4-11) where we found a complicated spectral dependence 

of the transmitted acoustic waves. Attenuation of the lower frequency 

phonons (0.37 - 0.56 GHz) becomes slow in the latter stage of propagation, 

while higher frequency phonons shows steeper attenuation a lt that stage. 

The results suggest that phonons of frequency f are converted to lower 

sub-harmonic phonons of frequencies, f/2, f/4, and so on, by strong 

non-linear effects (parametric effect).
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                             4.6 Summary 

      Experimental arrangement and sample construction used in the present 

work are presented. We have shown the Brillouin scattering technique by 

employing the acoustoelectrically amplified phonon domains and piezo-

birefrinfence technique. We found that in order to obtain the Brillouin 

scattering signal where the incident photon energy is higher than that of the 

band gap, one must use reflection scattering geometry with high intensity 

light source. The acoustic domain injection method is also discussed and 

found this technique provides high transmission efficiency from CdS to other 

materials such as non-piezoelectric semiconductors, insulators and layered 

compounds.
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                        CHAPTER 5 

                    EXPERIMENTAL RESULTS 

                           5.1 Introduction 

       Chapter 5 deals with the experimental results and discussions of the 

resonant Brillouin scattering and piezobirefringence in GaAs , CdS, ZnS and 

HgI 2* Present measurements are performed by the transmission type of experi-

ment, where the incident photon energy is lower than that of the fundamental 

absorption edge. Brillouin scattering study above the fundamental absorption 

edge will be discussed in the following chapter. The main features of the pre-

sent results are following. Steep resonant enhancement in scattering cross 

section is observed just below the fundamental absorption edge. Also the 

structure of resonant cancellation is found in the scattering cross section by 

transverse acoustic phonons, while a weak resonant cancellation is found by 

longitudinal acoustic phonons in CdS. In layered compound HgI 2 , we found that 

the contribution of higher gaps plays an important role in the dispersion of the 

scattering cross seciton. It is found in comparison with the theory that the 

structures of resonant enhancement and cancellation are well explained by the 

theoretical treatment of the resonant scattering. The scattering cross sections 

are analyzed by the piezobirefringence theory and the dispersion of the photo-

elastic constants are determined. In Section 5.2, we shall analyze the 

scattering cross sections of GaAs. In Section 5.3, we describe the experimental 

results of the resonant Brillouin sc"attering in ZnS. In Section 5.4, the 

results of the resonant Brillouin scattering by T2- and LA-phononsin CdS are 

discussed. In Section 5.5, the results of the resonant Brillouin scattering in 

HgI 2 are discussed. In Section 5.6, We show the acoustic figure of merits.
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      5.2 Analysis of Resonant Brillouin Scattering in GaAs 

       In this section we anal yze the Brillouin scattering cross sections in 
                                                               100) 

GaAs by using the Brillouin scattering theory and piezobirefringence theory. 

The main purpose of the present section is to explain the resonant 

cancellation and resonant enhancement observed in the experiment of Garrod 

and Bray. 29) 

5.2.1 BriZZouin Scattering Cross Section 

      Figures 5-1 and 5-2 show the experimental dispersion of the Brillouin 

scattering cross sections for T2- and Tl-mode phonons in GaAs, 

respectively. 29) The scattering cross sections by T2-mode phonons show 

a resonant cancellation (898 nm) near the fundamental absorption edge. 

The cancellation point by Tl-mode phonons, on the other hand, is not found 

                                                               29,101) in the measured wavelenght region. The piezobirefringence measurements, 

however, reveal that a cancellation occurs at 976 nm which is relatively 

far from the fundamental absorption edge as compared with the results for 

T2-mode phonons. 

      The theoretical curves shown by dashed and solid lines in Figs. 5-1 and 

5-2 are calculated from eq.(2.140)(E B= O;without exciton model) and 

eq.(2.140) (E = 4.2 meV;with exciton model), respectively. The numerical B 

parameters used in the calcualtions are listed in Table 5-1. Non-vanishing 

values of the matrix elements '-~ ~
Ot for the deformation potential scattering 

are as follows:[See, eqs. (2-167) and (2-168)] 

                    • 
AB~ d =-4.59 eV 

                  • 
CB= dIV2-= -3.25 eV for T2-mode (5.1) 

                  • 
AC = Y/6/2 = -5.62 eV 

and 

                           = '3-b = -3. 05 eV 
                                               for Tl-mode (5 .2) 

                    -CB = v6b= -4.31 eV
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Table 5-1. Parameters used in the calculation of 

Brillouin scattering cross section cr 
B and photoelastic constants P 

11- P 12' and P 
44 for GaAs at 295 K.

symbol numerical value

E 
gA 

E 
gC 

A 0 

F A 
 xx 

F B 
 xx 

F C 
 xx 

E B 

a 0 

p 

b 

d

   E 
gB ) (eV) 

       (eV) 

       (eV) 

       (eV 2 ) 

       (eV 2 ) 

       (eV 2 ) 

        (meV) 

0 

      (A)

(eV) 

(eV)

1,422 a 

1.736 a,b 

0.341 b 

7.5 x 10-4 c 

22 x 10-4 C 

12 x 10-4 c 

4.4 d 

e 133 

0.0564 f 

-1 .76 ± 0.19 

-4 .59± 0.25g

a R
eference 

b R
eference 

C R
eference 

d R
eference 

e R
eference 

f R
eference 

gReference

102. 
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where the numerical values are estimated by using the deformation potential 

b and d reported in ref. 107. The matrix elements P 
cto and P 00 are obtained 

from ref. 104. 

      The resonant cancellation is explained phenomenologically as follows. 

The scattering cross-section is proportional to the square of IR i s +R 0 
where R 

is is the resonant contribution arising from the fundamental 

absorption edge and R 0 is the non-resonant contribution from the far-off 

critical points in the band structures. When the term R 0 is opposite in 

sign to R i s' the resonant cancellation occurs under the condition.IR is +Rol 
 =0. We see in Figs. 5-1 and 5-2 that the theoretical curves calcualted 

from both model (free electron-hole and exciton models) show good agreement 

with the experimental data, and that there is no appreciable difference 

between the theoretical curves because of the small value of the exciton 

Rydberg constant. The experimental data for Tl-mode phonons by Garrod and 

Bray are limitted to a narrow range of wavelength and thus the cancellation 

is not apparent. The present analysis, however, predicts a cancellation at 

about 970 nm as shown in Fig. 2-2. Such a prediction is found to be 

consistent with the observation of the sign reversal in the photoelastic                                                   

. 101) constant at 976 nm reported by Ferdman and Horowicz and Higgnbotham et 

al. 74) as will mentioned later. 

5.2.2 PhotoeZastic Constant 

      We have already shown that Brillouin scattering can be treated from 

a phenomenological aspect by incorporating the photoelastic constant. 

There are following relations between them given in eqs.(3.79) and (3.80) 

                crB(Tl) = A n 6 w 4 (P - P ) 2 (5.3)                        1 0 11 12 

                 a (T2) = A n 6 4 2, (5.4)                  B 2 ow P44
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 By using the above relations the theoretical results will be compared with 

 the resonant Brillouin scattering cross-section reported by Garrod and 

Bray 29) The values of parameters used for the calculation of photoelastic 

 constant are also given in Table 5-1. Figure 5-3 shows the theoretical 

dispersion of the photoelastic constant P 44 calculated from eq.(3.51) 

along with the experimental data. We compared the theoretical curve 

with the square root of the dispersion of resonant Brillouin scattering 

observed by T2-mode phonons according to the relation of eq.(5.4). 

Figure 5-3 shows that a sign reversal exists at 898 nm which coincides with 

the cancellation point in the Brillouin scatteing cross section. We present 

in Fig. 5-4 the theoretical dispersion of the photoelastic constant P 
11 - P 12' 

where P 11 - P 12 is related to the square root of the Brillouin scattering 

cross section by Tl-mode phonons. From the analysis a sign reversal of the 

photoelastic constant P - P can be expected to occur at 976 nm although                          ~11 12 

the experimental data of the resonant Brillouin scattering in the wavelength 

region are lacking. However, as mentioned earlier Ferdman and Horowicz 101) 

and Higginbotham et al. 74) reported a sign reversal of the piezobirefringence 

coefficient relevant to the photoelastic constant P 11- P 
12 at 976 nm. in 

GaAs, which is in good agreement with the presnt analysis. 

      The exciton transitions in III-VI compounds are relatively weaker 

than those in II-VI compounds such as CdS , ZnSe, ZnTe, etc. F or example 

the exciton Bohr radius (a 0 ) and exciton Rydberg constant (ecxi
,ton binding 

0 energy; E B ) are 45 A and 10 meV for ZnTe , and 51 AO and 19 meV for ZnSe. 

On the other hand, they are 133 A6 105) and 4 .2 meV for GaAs. 103) 

      It follows from these condition that we can neglect the effect of the 

discrete exciton, on the dispersion of the photoelastic constant in GaAs 

and thus the assumption of zero Rydberg (E 
B= 0) seems to be reasonable. 

Such an assumption has been made by Higginbotham et al . for the analysis
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   of piezobirefringence. In*conclusion, the resonant Brillouin scattering 

  data obtained by Garrod and Bray are well explained by the present analysis 

  upon the light scattering and piezobirefringence theory. 

                  5.3 Resonant Brillouin Scattering 

                       and Piezobirefringence in ZnS 

         In Section 5.3, we present the results of the resonant Brillouin 

   scattering in cubic and polytype ZnS at 300 K and 77 K for the two types 

   of transverse acoustic waves 73,110,111) by using the acoustic domain 

   injection method. 35,108) Also the measurements of the piezobirefingence 

   have been performed to obtain dispersion of the photoelastic constants 

   in the same crystals. The main purpose of the present section is to compare 

   the spectral dependence between cubic and polytape ZnS. In Section 5.3.1 

   we shall discuss br'iefly about the crystal structure in cubic, wurtzite 

  and polytype ZnS. In Section 5.3.2 we shall discuss the results of the 

  Brillouin scattering cross section inthe region below the fundamental 

  absorption edge. In Section 5.3.3 we shall,present the dispersionof the 

  photoelastic constant derived by the present Brillouin scattering experiment 

  and piezobirefingence experiment. 

 5.3.1. CrystaZ Structure and OpticaZ Properties of ZnS 

        The crystal structure of the 11-VI compounds consists of two types 

  of structures. One is zincblende and other is wurtzite structure. Both 

  structures are characterized by tetragonal coordination (sp 3 ) and the 

  zincblende structure can be distinguished easily from the wurtzite structure 

  by the structual periodicity along the <111> or <0001> axis ( Miller index 

  (hkl) stands for the cubic system, while (hkjl) represents the hexagonal



- 126 -

system); the zincblende (cubic) structure has a three-layer stacking (3C) 

as ABCABC and wurtzite structure (hexagonal) has a two layer stacking (2H) 

as ABAB of the closed-packed plane along the <111> or <0001> direction. 

All of the II-VI compounds, for example, ZnSe, ZnTe, ZnS, CdS form crystals 

with zincblende arrangement. Some of the II-VI compounds such as ZnS, CdS 

and CdSe also crystallize in the wurtzite arrangement. Figure 5-5 shows 

the arrangement of group II metal atoms and group VI non-metal atoms in a 

(a) zincblende and (b) wurtzite form. The zincblende structure is based 

                      2 11 VI 
on the cubic space group T d . There are four molecules A B in a unit 

cell. The wurtzite structure is based on the hexagonal space group C 4                                                       6
v 

and there are two molecules in the hexagonal units cell. 

      It is well known that ZnS crystallizes in both zincblende and wurtzite 

structures. There exists a wide variety of polytypes with stacking faults 

in which twinned layer of cubic alternates with wurtzite layer. 111,112) 

Birman 113) has performed calculation to determine the band structure of 

wurtzite and zincblende. Though he did not deal explicitely with ZnS 

polytypes, it can be concluded from his work, that the band gap will vary 

smoothly with a. The percentage of hexagonality of the structure Ot has to 

be defined as the percentage of close-packed planes which are in a 

hexagonal nearest neighbor environment. For example, if.the three possible 

positions of the close packed planes are denoted by A, B, C, 

respectively, 114) then the 4H polytype is . ABACABAC---, the B's and C's are 

in hexagonal environments and thus 50 %. Eventually a= 100 % for wurtzite 

and a =0 % for zincblende. For a polytype mH with m >6, knowledge of the 

layer sequence is essential for the determination of a. The value of ot is 

proportional to the magnitude of the birefringence of a crystal 6n and given 

by a =6n/6nol where 6n 0 is the birefringence of wurtzite. 115,116) In Fig. 

5-6.(a), the degree of birefringence 6n, is plotted as a function of at.
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The degree of birefringence An= n e- n031 where n e and n 0 are the extreme 

value of the refractive index was determined at 546 nm by Brafman and 

Steinberger. 115) In Fig. 5-6 (b) and (c), the absorption position versus 

a are presented. They defined the absorption position edge as that 

                                                                    -1 
wavelength X031 from which the absorption coefficient is 6 cm . Both X Oil 

and X Ol refer, respectively, to polarization parallel and perpendicular 

to the optical axis. It is seen that An, X Oil and X O
-L are linear function of 

a. It follows that the linear relation of Fig. 5-6, if the magnitude of 

birefringence An is known, the band gap energies of any polytypes can be 

determined by linear interpolation. 

      Most of the ZnS crystals grown from the melt shows stacking faults 

along the c-axis. These stacking faults arise during the grouth of 

crystals. 117) Stacking faults in ZnS have been investigated many times 

by the method of I x-ray crystallography 118-120) and electron 

          121-123) microscopy. It has been shown that they occur as flat, practically 

two-dimentional formation in the <111> and <0001> plane of, respectively, 

the cubic and hexagonal structures. 

      For the purpose of determining the hexagonality and band gap energy 

of the polytype ZnS, we performed the natural birefringence experiment. 

Figure 5-7 shows a photograph of the polytype ZnS platelet placed between 

two crossed polarizers. The surface of the sample are parallel to the 

c-axis. The integer m of the stripes indicate the order of interference. 

Using the relations given in eqs.(3.11) and (3.13) the magnitude of the 

birefringence An and hexagonality a are determined. The relations between 

An and a are listed in Table 5-2. Figure 5-8 shows the recorded spectra 

of the transmitted intensity of the ZnS sample placed between two crossed 

polarizers. (a) and (b) indicate the measured positions of the sample 

shown in Fig. 5-7. From these spectra, the dispersion of the birefringence
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Table 5-2. Relations among m, An, and a. 
            (d= 1.79 mm, X= 650 nm.)

m An x 10- 3 Ot

5 

6 

7 

8 

9 

10 

11

1.8 

2.2 

2.5 

2.9 

3.3 

3.6 

4.0

 7.6 

 9.1 

10.6 

12.2 . 

13.7 

15.2 

16.7

can be determined by using the relation given in eqs.(3.11) and (3.13). 

In cubic crystals (a= 0) the valence bands are degenerate r 8 and spin-orbit 

split off r 7 bands, whereas in wurtzite (ot = 1) the three valence bands 

(r91r P r 7 ) are completely separated. In polytipes, the band gap energies 

are estimated by the linear dependence of the band gap energies to the 

haxagonality a. The results are showin in Fig. 5-9. The numerical values 

used to determine the location of the band gaps are listed in Table 5-3. 

5.3.2. BriZZouin Scattering Cross Sections 

      In the present experiment, we performed the acoustic doamin injection 

method, where phonon domains amplified through acoustoelectric effect in CdS 

are injected into end-bonded ZnS. We used two kind of ZnS, i) synthesized 

by melt-grown at Eagle Picher Company (UHP grade) and ii) grown by 1 2 

chemical transport method, as described in Section 4.2. 

      Figure 5-10 shows experimental data of the transmission efficiency 

of the acoustic domain from CdS into ZnS samples in the frequency range of 

0.3 - 1.0 GHz ( 90 % efficiency is achieved at 0.3 GHz in one of the
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samples). Theoretical value T P (eq.(4.1)) of the efficiency in the higher 

 frequency region is mainly due to the acoustic mismatch of the waves in 

 the three layer structure CdS-In-ZnS. 109) 

       The mode of the acoustic waves excited in ZnS by the acoustic domain 

injection method are determined by the crystal orientation as described 

in Chapter 4. The identification of the acoustic mode can be made by 

measuring the velocities of the injected acoustic waves. The slope of 

the curves in Fig. 5-11 give the sound velocities which are v(Tl)= 2.1 x 

10 3 m/sec and v(T2)= 3.4x 10 3 m/sec in cubic ZnS, and the corresponding 

values in polytype ZnS are v(Tl)= 2.8x 10 3 M/sec and v(T2) = 2.7 x 10 3 

m/sec. The values of the measured velocities are in good agreement with 

those calculated from the elastic constant reported by Berlincourt et 

al. 124) and Cline et al. 125) as listed in Table 5-3. 

       Figure 5-12 shows wavelength dependence of the-Brillouin scattering 

cross section Cr B for 0.3 GHz Tl-mode phonons at 77 K and room temperature 

                      73,109)' f
or cubic and polytype ZnS. From the configuration for the 

scattering by Tl-mode phonons we find that optical anisotropy (natural 

birefringence and dichroism in polytype crystal ) does not take part in and 

therefore the Brillouin scattering cross seciton a B is propartional to 

I s /it, where I s and I t stand for the light intensities s cattered and 

transmitted through the sample. The Brillouin scattering cross sections 

represent a deep monimum (resonant cancellation) at around 366 nm in the 

cubic and 360 nm (352 nm at 77 K) in the polytype at room tenperature. At 

shorter wavelengths we find a resonant enhancement in polytype crystal. 

We have to point out here that no resonant enhancement in cubic ZnS in 

contrast to the case of the polytype ZnS. The disappearance of the resonant 

enhancement in the cubic ZnS can be ascribed to a strong absorption of the 

light in this region due to iodine impurities. Iodine impurities
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have been found to be about 300 ppm in the ZnS crystal prepared by the 

chemical transport method and measurement of optical transmission shows a 

strong absorption in the region below 370 nm. When we use thinner specimen 

( =0.3 mm), a resonant enhancement is observed as in the case of Brillouin 

scattering by T2-mode phonon which will be mentioned later. It is 

very interesting to point out in Fig. 5-12 that the Brillouin scattering 

cross section show a decrease as the wavelength increases. Such a decrease 

arises from the w 4 dependence of the scattering cross section in eqs. (3.79) 

to (3.83). 

     In order to examine more precisely the w 4 dependence in the dispersion 

of the Brillouin scattering cross sections, we extended the measured 

wavelength region to the longer wavelength region. Figure 5-13 shows the 

dispersion curves of the Brillouin scattering cross secitons for 0.3 GHz 

Tl-mode phonons for 320 nm to 650 nm. We can see a decrease of the 

scattering cross section explicitely in the longer wavelength region. 

So far as our knowledge is concerned such a wavelength dependence has not 

been observed because earlier works are restricted to a narrow range of 

wavelengths. The cross section given by eq. (2.78) has an w s 1w i factor 

appearing in the classical light scattering theory. An explicit w 3 W.                                                                                s I 

dependende can be obtained by using E-r coupling instead of p . A in the 

Hamiltonian.130) Therefore we take into account the w 4 dependence in the 

following calculations. In other words, we calculated R is using eq. (2.134) 

and evaluated a B from eq. (2.141) including w 4 dependence in C. Parameters 

used in the present calculation of the Brillouin scattering cross sections are 

listed in Table 5-4. The results are represented by the solid curves in 

Fig. 5-13. 

      Figure 5-14 shows the resonant Brillouin scattering cross section a B 

for 0.3 GHz T2-mode phonons at 77 K and 300 K for polytype and cubic ZnS.



- 139 -

Table 5-4. Parameters used in 

cross section and 

valueslat 77 K are

 the calcualtion of the 

photoelastic constants 
 given in the brackets)

Brillouin 
of ZnS at

 scattering 
300 K (the

Cubuc (77K) Polztype(a=O. 1) (77K) Wurtzite

E 
9A (eV)

E 
gB W)

E 
gC W)

E B (meV) 

A 
so (meV)

3.66 

3.68 a

3.66

3.68 a

.76

3.752 a 

31 c 

72 d

0 d

(3.826 b )

(3.826 b )

(3.891 b )

3.688

3.691

3.764

31 - 34 c 

74 d

A 
cr (meV) 

a 0 (A)

11

aB

a C

23.8 d 

0.18 d

2b = -1.06 e W) 

2b = -3.4 b W) 

2b = -1.5 f (eV) 
 r-

,'3 = -2.14' (eV)

3 c 

23.8 d 
d 

0.18

0.58

0.814

(3.289c)

(3.833c)

(3.902 c )

C 3 = 0. 72 9 (eV) 

C 4 = -1.07 9(eV) 

C 5 = 1. 09 9 (eV) 

C 6 = 1. 5 7 9 (eV)

3.74 a

3.78 a

3.88 a

3.87 a

92 d 

55 d

0.691

0.723

(Ell c)

(E I c)

(E c) 

(E c)

d/

C, = 2.5 f W) 

C 2 = 2.25-f(eV)

a R
eference 126. b 

Reference 127. 
c Refe

rence 116. d 
Reference 128. e 
Referenee 129. f 
Reference 72. g
We evaluated this 

eq.(4) in ref. 127.
values by using b= -0.75 f (eV), d=- 3.7 e (eV) and
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The angles of the incident and scattered light were calculated using eqs. 

(2.15) and (2.16). In order to obtain the scattering cross section we have 

to make a correction due to the absorption as pointed by Ando and Hamaguchi. 30) 

In the present work we measured the transmitted light intensity I til -

and I t
-L for the light polarizaiton parallel and perpendicular to the c-axis 

and the scattering cross section was obtained from I 1YrI -..-I . The resonant                                               s t1i ti 

feature observed here is essentially the same as that for the case of the 

scatteringby the Tl-mode phonon domains. The cancellation points are 360 nm 

at 300 K and 352 nm at 77K in the polytype ZnS, while in cubic ZnS 

cancellation occurs at 355 nm at 300 K and thus a slight shift of the 

cancellation point toward the energy gap exists. We find a decrease in a B 

at larger wavelengths due to the w 4 dependence as in the case of the Tl-mode 

phonons.(See Fig. 5-15) Theoretical curves of eqs. (2.134) and (2.141) are 

fitted to the experimental data by taking into account the w 4 dependence. 

5.3.3 PhotoeZastic Constants 

      In this subsection we state that the stress-induced birefringence 

(piezobirefringence) n11-nLis related to the photoelastic constants. In 

the presnet study we carried out the piezobirefringence measurement for the 

uniaxial stress in the [111] and [100] directions in cubic ZnS and in the 

[1120] direction in polytype ZnS. 

      Figure 5-16 shows the recorded spectra of the piezobirefringence 

experiment in polytype ZnS (a= 0.1). In this experiment, uniaxial stress 

perpendicular to the c-axis is applied to the sample with X= 0.5 kbar and 

1.0 kbar. The vertical arrow indicate the positon (359.3 nm) of the 

isotropic point of the piezobirefringence. From this spectra photoelastic 

constant P 11- P 12 on polytype ZnS is determined from piezobirefringence 

with uniaxial stress parallel fo the c-axis and the natural and piezo-
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birefringence of polytype ZnS are shown in Fig.5-17. As seen in Fig. 5-17 

the compression along the c-axis of polytype ZnS reduced the magnitude of 

the birefringence. 131) From the piezobirefringence experiments we deduced 

P 11 - P 12 in both cubic and polytype ZnS and P 44 in cubic ZnS. The results 

are shown in Fig. 5-18 where we find that the photoelastic constants are 

negative at longer wavelengths, approaching zero at shorter wavelengths, 

and sign reversal occurs near the absorption edge. The spectral position 

of the isotropic point of the piezobirefringence corresponds to the 

wavelength at which photoelastic constnat becomes zero. The positions are 

365 nm (by extrapolation) for P 11- P 12 and 365 nm for P 44 in cubic ZnS, 

while the value is 359.4 nm for P 11- P 12 in polytype ZnS. Theoretical values 

of P - P and P in cubic can be calculated from eq.(3.47) by adjusting    11 12 44 

the parameters C, C ex~ D and the results are shown by the solid curves in 

Fig. 5-18. The energy gaps given in Table 5-3 are used in the calculations 

and the best fitting parameters are shown in Table 5-4. Equations.(3.66) 

and (3.70) reduce to eqs. (3.47) and (3.51), respectively, in the limit 

E 
gA = E gB* In the polytypes ZnS with a small a the energy separation between 

the A and B valence bands is quite~ small (3 m'eV for ot=0.1). Therefore we 

can evaluate the value of P 11- P 12 . for polytype ZnS (cc= 0.1) from eqs. 

(3.47), and (3.51), and the result is shown by the solid curve in 

Fig. 5-19, where the best-fitting parameters given in Table 5-4 are used in 

the calcualtion. 

      Figures 5-20 and 5-21 show the dispersion curves of the photoelastic 

constantsP 11 - P 12 and P 44' respectively, deduced from the present Brollouin 

scattering measurements by using eqs.(3.79) to (3.83), where the theoretical 

values are adjusted to the experimental values at 460 nm in Fig. 5-19. In 

the analysis the dispersion of the refractive indices and w 4 dependence are 

taken into account. Theoretical curves were calculated by eqs.(3.47)(for
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P 11 - P 12 ) and eq. (3.52)(for P 44 ), which are shown by solid curves, where 

the parameters used in the calcualtion are shown in Table 5-4. In all 

cases we find a good agreement between the experimental and calculated 

results. Fig 5-21 and 5-22 show the dispersion curves of the photoelastic 

constants P 11- P 12' and P 44' respectively, for 77 K and 300 K, deduced 

from the present Brillouin scattering measurements by using eqs.(3.79) 

and (3.83). Theoretical curves are calculated by same method as described 

in Figs. 5-20 and 5-21. 

      Piezobirefringence experiment to deduce P 44 in polytype ZnS was not 

performed in the present study and therefore the magnitude of the photo-

elastic constant P is unknown. The value of P in thepolytype crystal               44 44 

is estimated in the folowing way on the basis of the quasi-cubic model. It 

is convenient to describe atomic positions in zincblende (space group T 2 d 

in terms of a Cartesian set of axis coinciding with the cubic x, y, z axis; 

in wurtzite (space group C 4 ) or pblytype (crystal symmetry C ) hexagonal                                6v 3,v 

axis are defined as hexagonal x' y' z'axis. The relations between these 

different system are z =fill], y =[fill, x =[01-1-1.113) The photoelastic 

constants referred to the hexagonal axis are then obtained , by 

                P (P P +P (5.5)                   44 11- 12 44 

                      .1(p P +4P (5 .6)             P;l - Pl'2 3 il- 12 44 

where P' P I and P are photoelastic constants referred to the hexagonal      11 12 ~4 
axis and P 11- P 12 and P 44 are those referred to the cubic axis. In order to 

check the validity of the quasi-cubic model we calculated P' - P I from eq.                                                 11 12 

(5.6) and obtained P' - P -0.12 at 460 nm which is resonable agreement                 11 12 

with the measured value -0.11. The value P 44 estimated at 460 nm from
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eq. (5.5) is -0.040. This value is used to obtain spectral dependence of 

P 44 for the polytype in Figs. 5-19 and 5-22. As mentioned in the case of 

P 11 - P 125 Theoretical value of P 44 can be calculated by eq. (3.51), which 

is shown by the solid curve in Fig. 5-19 and 5-22 (parameters used are 

shown in Table 5-5). 

      All the experimental data of the Briilouin scattering experiments are 

found to be in good agreement with the piezobirefringence theory as shown 

in Figs. 5-18 to 5-22.

              5.4 Resonant Brillouin Scattering 

                    by T2- and LA-mode in CdS 

      In this section we will discuss the resonant Brillouin scattering in 

CdS by two kinds of phonons. In 5.4.1, dispersion of the Brillouin 

scattering by T2-mode pho I nons and photoelastic constant P 44 is presented.. 

In 5.4.2, dispersion of Brillouin scattering by LA-mode phonons and 

photoelastic constant P 31 is presented. 

5.4.1 Resonant BriZZouin Scattering by T2-mode Phonons in CdS 

      The spectral dependence of the Brillouin scatteing cross sections for 

the acoustoelectrically amplified T2-mode phonon domains in CdS measured at 

room temperature and 77 K are shown in Fig. 5-23. The phonon frequency is 

selected to be 0.3 GHz. The incident and scattering angle related to the 

appropriate phonon frequency were obtained from eqs.(2.15) and (2.16), 

using the data of refractive indices 132) and natural birefringence. 133) 

      In the case of T2-mode phonons, the absorption coefficient of the 

scattered light is different from that of the incident light because the
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scattered and incident light have different polarization (e ilic-axis and e s 

  c-axis ). Hence in order to deduce the Brillouin scattering cross 

section, we have to take into account a dichroism correction of absorption 

of light. This was first made by Ando and Hamaguchi. 30) They obtained the 

following relation near the fundamental absorption edge: 

          I a B dQ b 

                       a n sn, exp( cose,             0 i s s 

                                      n s b 
                xf 1 exp [- (ot i- a 

s n ) -~O -Se , D (5.7)                               i 1 

where ot. and a are the absorption coefficents for the incident and 
        1 s 

scattered light, respectively, and b is the width of the sample in the 

scattering plane. The refractive indices n i and n d refer to 

the values of -the incident and scattered light, and the incident angle 

e and the scattered angle e9= (0'- 0') are defined in Section 2.2. The                            d s i 

experimental data shown in Fig. 5-23 are obtained from dichroism correction 

using the absorption coefficient of Dutton. 134) The experimental data show 

resonant cancellation at 560 nm (room temperature) and 550 nm (77 K). 

Above the cancellation point steep resonant enhancement is observed. 

The shift of the cancellation point by changing the temperature of sample 

corresponds to the shift of the band gap energy. The theoretical dispersions 

of the Brillouin scattering efficiency were calculated by using eq. (2.134) 

and (2.140). The numerical values used in the present calcualtion is 

listed in Table 5-6 . The solid curves are theoretical ones taking into 

account the real part of the Brillouin tensor. Imaginary part of the 

Brillouin tensor,which plays an important role in the region very close to 

the fundamental absorption edge, is omitted because the imaginaly part is 

negligible in the region far from the fundamental absorption edge (See
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Table 5-6. Parameters used 

scattering cross 
in CdS

in the calculation of the 

 sections and photoelastic

Brillouin 

 constants

Symbol Numerical value

E 
gA 

E 
gB 

E 
gC 

E B 

f A 
 xx 

f B 
 xx 

f C 
 xx 

C 2 

C 4 

C 6

a B 

a c

 (eV) 

 (eV) 

 (eV) 

 (meV) b 

 f A c 
  zz 

 f B c 
  z z 

 f C c 
  z z 

 (eV) d 

 (eV) d 

 (eV) d

2.452 

2.466 

2.525

4

(295K) 

(295K) 

(295K)

.14 x 10 

.82 x 10 

.38 x 10

-3 

-3 

-3

28

  2.9 

- 1.5 

- 2 .4 

  0.75 

  0.66

2.531 (77K) 

2.545 (77K) 

2.604 (77K)

0 

3.64 x 10-3 

6.97 x 10- 3

a R
eference 

b R
eference 

c R
eference 

d R
eference

135. 

70. 

136. 

72.

1,
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Chapter 6). The experimental data show a maximum in the region very close 

to the fundamental absorption edge. We presume, however, this maximum 

arises from the experimental difficulty because both the transmitted and 

scattered light suffer from strong absorption. Brillouin scattering cross 

section is proportional to I s /I t, where I s refers to the scattered 

light intensiry and I t the transmitted light intensity. Near the 

fundamental absorption edge, the magnitude of I S and I t change considerably 

( a factor of 10 2 or more). In the strong absorption region , the SIN 

ratio of the factor I /I t becomes bad. We conclude that this maximum 

of the dispersion curves comes from the low SIN ratio of the signal 

and no maximum peak exsists in the resonant enhancement region. 

     --Figure-5-24 shows the dispersion of the photoelastic constant P 44 

deduced from the present Brillouin scattering measurement by using 

eq.(3.82), where the theoretical values are best fitted to the experimental 

values. The absolute value and sign are fitted to the value of P 44~ 

-0.075at 630 nm obtained by Yu and Cardona. 78) In the analysis the 

dispersion of the refractive indices and w 4 dependence are neglected 

because the measured region of the incident light is narrow range. 

Theoretical curves were calculated by eq. (3.69), which are shown by solid 

curves ,,, where the parameters used in the calcualtion are shown in Table 5-6. 

In both cases for 295 K and 77 K, we find a good agreement between 

experimental and theoretical results.~ 

5.4.2 Resonant BriZZouin Scattering by LA Phonons in CdS 

      In this subsection, we present dispersion curves of resonant Brillouin 

scattering by LA (logitudinal acoustic) mode in CdS at room temperature, 

and an analysis of the resonant behaviour by the theory based upon the 

Brillouin scattering theory and piezobirefringence theory. 154)
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         Since the first observation of the resonant Brillouin scattering 

   in GaAs, 29) similar measurements have been carried out in various semi-

   conductors. The measured data, however, are limitted to tansverse acoustic 

  phonons (Tl- and T2-mode phonons). Pine 27) observed a weak resonant 

  enhancement for the scattering from LA phonons, where the scattering cross 

  section was measured by thermally tuning the fundamental absorption edge 

  in CdS through the incident radiation at 514.5 nm. 

         We report here a novel technique to observe the resonant behavior 

  for the Brillouin scattering from LA phonons with the propagation direction 

  and atomic displacement perpendicular to the c-axis. 

         The present measurement was made at room temperature by using the 

  mode converted LA phonons which were generated by reflection of the acoustic 

  domains at the anode of the sample. The dimensions of the sample are 

  1.3 mm wide, 3.9 mm thick and 6.8 mm long. We found ~hat thicker specimens 

  are suitable for generation of the mode converted LA phonons. This seems 

  to be the fact that the amplified acoustelectric domains propagate with a 

  cone angle of about 10 . Therefore various component of mode converted 

0 

  phonons are generated from the off axis components of the domains in 

  thicker specimens. Polarization of the incident and scattered light are 

  parallel to the c-axis and,thus the correspondi ng photoelastic constant 

  is P 31* 

        The identification of the LA phonons was made by the sound velocity 

  v v7C-.. _,/P = 4.34 x 10 5 cm/sec and the selection rule of the light   LA 11 

  polarizations. In this configuration the optical anisotropy does not take 

  part in and therefore the Brillouin scattering cross section is 

  proportional to I s /I t where I s and I t stand for the scattered and transmitted 

  intensities of the light. Scattering cross sections a 
B thus obtained are 

  plotted in Fig 5-25 along with the values estimated from the data of Tell
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et al. 26) for the purpose of comparison, where the latter data are obtained 

from Raman-Nath experiment. We find a fairly good agreement in the data 

between the two different methods, and both exhibit a weak resonant 

enhancement near the fundamental absorption edge. It should be noted here-

that resonant cancellation as observed in the case of TA phonons 28-38) 

is not found in the photon energy range investigated. From the similar 

anlysis as made by Ando and Hamaguchi 30) we find that the transition of 

the intermediate holes between the B valence band predominates in the 

process and thus two band theory is possible. We evaluated the scattering 

cross section using the relation given in eq.(2.134) and (2.141). The 

result is shown by the solid curve, where we find a good agreement with 

the experimental data. In the analysis we find that a sign reversal of 

R 
is +R 0 occurs at wavelengthX = 750 nm and that the non-dispersive component 

R 0 is very weak compared with that of transverse acoustic waves. We 

applied the piezobiref -ringence analysis to the present data and the results 

are shown in Fig. 2-26, where the photoelastic constant P 31 is estimated 

using the relation given in eq.(3.83). 

      We find in Fig. 2-26 that the theoretical curve obtained from 

piezobirefringence analysis shows a good agreement with the experimental 

dispersion where the theoretical curves is adjusted to give the experimental 

value of P 31~ -0.041 atX = 633 nm. 137) Since the present expe . riment does 

not provide the absolute value of P 31' the experimental values are 

normalized at 550 nm so that the experimental values are best fitted to the 

theoretical curve by the method of least mean squares. The analysis 

reveals that the most dominant contribution comes from the excitation of 

holes in the B valence band and that the sign reversal of the photoelastic 

constant occurs at the wavelength about 750 nm. These results are 

consistent with the resonant Brillouin scattering analysis mentioned above.
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      In conclusion, the observed resonant behavior of the Brillouin 

scattering by LA phonons is explained by the theories of resonant Brillouin 

scattering and piezobiref ringence theory when we assume the non-dispersive 

component has the different sign from the dispersive component.

            5.5 Resonant Brillouin Scattering in HgI 2 

       In this section, we shall discuss the observation and an analysis of 

 resonant Brillouin scattering in the layered type semiconductor HgI by 2 

 the pure-transverse (PT) acoustical phonons at room temperature in the 

 photon energy of 1.45- 2.2 eV. We performed the resonant Brillouin 

 scattering measurement by employing the amplified acoustical domain injection 

method. 

5.5.1. OpticaZ Properties of Hg12 

       The layered semiconductor HgI 2 gives rise to a strong anisotropic 

behavior of the physical properties due to the singularities of the 

 crystal structure. At room temperature, HgI 2 occurs as red tetragonal 

crystal (D 15 ) which changes to a yellow orthorombic form on heating 400 K.138)          4h 

Red tetragonal HgI 2 cleaves easily to give crystallographic plane 

perpendicular to the crystal c-axis. The absorption edge of HgI 2 is 

characterized by the direct optical transition from three p-like valence 

bands, which are split due to spin orbit interaction and crystal field 

perturabation, to an s-like conduction band. Normal incidence reflectivity 

measurement at 4.2 K (Ellc-axis, q_Lc-axis) shows three sharp exciton 

peaks at A(2.339eV), B(2.538eV), C(3.35eV), peak A being at the absorption 

threshold. 139) A group theoretical analysis of the band structure of the 

tetragonal HgI 2 in the r-point of the Brillouin zone has shown that the
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conduction band has the symmetr r + and the valence band has its origin                            y 6 

in p-orbitals of iodine and is split by the spin-orbit coupling and crystal 

field into three valence bands with symmetries r 7' r 6 and r 6 * 140) The 

reflection maxima A, B, and C coinside with the optical transitions into the 

corresponding exciton series, respectively. This band structure in the r 

point is very similar to those of wurtzite crystals such as CdS,CdSe and ZnS. 

      We have deduced the real and imaginary part of the dielectric constant 

by means of the conventional Kramers-Kronig analysis 141) of the 

reflection data of Kanzaki and Imai. 139) The procedure used for the 

extrapolation of R(E) from 6 eV to infinite energies has been described 

in ref.141. It is clear from Fig. 5-27 to Fig. 5-30 that the optical 

transitions are direct and three sharp exciton peaks are shown near the 

fundamental absorption edge. Various parameters related to the fundamental 

absorption edge is listed in Table 5-7. Figure 5-30 shows the combined 

density of state calculated from the data of Fig. 5-27. It should be 

noted that the back ground peak is very close to the fundamental absorption 

edge. Such a structure is in contrast to those found in III-V or II-VI 

compound. We assume that the background peak at around 3.5 eV of the combined 

density of state (E 2 E 2 ) corresponds to direct transitions at higher bands al-

though the characteristic of the transition is unknown. Thus it is interest-

ing to compare the Brillouin scattering cross sections between II-VI (III-V) 

compounds and layered compounds since the Brillouin scattering cross section 

strongly depends on the band structure and density of state in higher energy 

region. We shall present a simple microscopic model to calculate the 

contribution of the broad peak to the Brillouin scattering cross sections. 

5.5.2 SampZe Preparation and ExperimentaZ Procedure 

      The HgI 2 crystal used in the presnt experiment was grown
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from the solution growth by using dimethylsulfoxide (DMSO) solvent. 142) 

The sample is cleaved along the c-plane and used without further treatment. 

The sample is bonded to the end-bonded surface of the CdS single crystals 

through a cyanoacrylate resin (Aron Alpha) and high intensity acoustic 

domain was injected into the Hg12. We found that cyanoacrylate resin 

is suitable material for bonding thinner or layered crystals to CdS. The 

HgI 2 crystal was cut and cleaved in the form of parallelepiped with 

dimensions of about 2 mm wide, 5 mm long, and 0.54 mm thick. The acoustical 

domain injected into the layered-type specimen travels in the direction 

perpendicular to the c-axis with shear polarization perpendicular to the 

c-axis (i.e. PT phonon domains). The identification of the injected domain 

was made by the sound velocity. The slope of the line in Fig. 5-31 gives 

the sound velocity which is v PT =1.46x 10 3 (m/sec). Theoretical value of 

the sound velocity is calcualted by using the existing data of the 

elastic constants and density of HgI 2' 143), Using the formula VPT = 

AC 11- C 12 ) /2p = 1. 468 x 10 3 (m/sec), where C 11 = 3.303 x 10 11 (dyn-cm- 2 

C 12 = 0.559 xlO 11 (dyn-cm- 2 ) and p 6.354 (g-cm- 3 ). We find that the 

experimental and theoretical results show a good agreement. 

5.5.3 Brillouin Scattering Cross Sections 

      Figure 5-32 shows the spectral dependence of the Brillouin scattering 

cross sections for pure transverse acoustic phonons in HgI 29 obtained at 

room temperature in the region of transparency. The following scattering 

configurations were used in the present measurements by taking into account 

                                                73) - _* _* _+ their polarization selection rules e i1c , e sl c and e iies, where e i and 

e 
s are the unit vector in polarization direction of the incident and 

scattered light, respectively. The frequency of the acoustical domains has 

been selected to be 0.4 GHz by properly setting the incident and scattered
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In order to calculate the Brillouin scattering cross section we have 

introduced the non-resonant or non-dispersive element R 0 arising from the 

higher gaps. The solid curve in Fig. 5-32 is calcualted from eq. (5.8). 

The symmetry of the F band in HgI 2 is same as that of the wurtzite crystals. 

Therefor the selection rules of the r point of both the momentum matrix 

elements Po~ and P.0 , and deformation potemtial matrix elements are exactly 

same as those in the case of the Brillouin scattering by Tl-mode phonons in 

wurtzite materials. In the present PT-mode phonons, virtual A, B, and C 

excitons (or excitation of holes in A, B, and C valence bands) are excited. 

There exist two interband preocesses, namely A to B, A to C, B to A, C to A 

process. On the other hand intraband process is forbidden from selection 

rule. We used w 0 = 3.5 (eV), A = 127.2 (arb. units), R 0 = 7.5 (arb. units). 

The relarive value of R is = 1.18 (arb. units) at 600 nm, and R is = 0.48 

(arb. units) at 700 nm. According to this model given in eq. (5.8) we find 

that the contribution of higher band transition is not negligible and the 

decrease of the Brillouin scattering cross sections in the longer wavelength 

region is well interpreted as due to the contribution from higher lying gaps 

near 3.5 eV. 

                5.6 Acoustic Figure of Merit (M2) 

       It is well known that the light scattering by ultrasonic waves is 

applied to the acousto-optic devices such as light modulator and scanner. 

This means that it is possible in principle to control light by the action 

of ultrasonic waves as an information carrying signal in optical data-

processing devices. The great successes in recent years of applied reserch 

in acoustic optics have clearly shown that it is pracrically applied to a 

number of functionable devices, for communication system, signal processing
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 and other system. Therefore in order to design such an acousto-optic 

 devices we have to take into account the precise dispersion of the photo-

 elastic constant of the material used in the devices because the Brillouin 

 scattering intensity is proportional to the photoelastic constant. In -

 particular, there exsists resonant cancellation in the vicinity of the 

 fundamental absorption edge. Dixon 137) has pointed out, however, that 

 the photoelastic dispersion appears to be much less important consideration 

 for modulator design than was initialy expected. Gordon 147) has shown that 

 for acoustic modulator there are at least three different criteria judging. 

 a material's usefulness; the center frequency f02 the dynamic width Af, 

 and the scattering parameter q (the fractional light power scattered is 

 sin 2 T1 1/2 ) are under a wide variety of circumstances related by 

               f 0 AfTIIZ~9(n 7 p 2 /pv)(XO 3 h cosO O)_1 P 
a ' . (5.11) 

 in which n and p are the refractive index and photoelastic constant, 

 respectively, X 0 is the optical wavelength in air, e 0 is the scattered angle, 

 P a is the acoustic power, and h is the acoustic-beam height. Assuming that 

 the acoustic-beam height is held constant, the combination of material 

 parameter M 1 = n 7 p 2 /pv constitutes a "figure of merit" by which materials 

 for use as acoustic modulation may be compared in the usual situation in 

which both bandwidth and diffracted intensity are important. Since the 

parameter n is given by 148) 

                      6 2 3)(X 2 h 
cos 2 0 _1 W P (5.1 . 2)                 5 (n P / Pv 0 0) 0 

a 

where W 0 is the acoustic beam width. If only the scattered light intensity 

                                                    6 2 3 
were important and appropriate figure of merit would be M 2 n p /pv 

According to the eq. (5.12) it follows that if we wish to reduce the 

 electrical power consumed by the device we must use a material
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                        CHAPTER 6 

                   Resonant Brillouin Scattering 

                   in the Opaque Region of CdS 

                         6.1 Introduction 

       We have studied the resonant Brillouin scattering in several 

semiconductors by means of transmission type of experiments. In these 

experiments, however, the incident light was restricted to the transparent 

region because the experimental conditions that the transmitted light signal 

were measured. Therefore, it is difficult to obtain the dispersion of 

Brillouin scattering cross seciton in the opaque region due to the strong 

absorption. To overcome this restriction we have empolyed the reflection 

scattering configuration (See Chapter 4) and we have observrd resonant 

enhancement in the opaque side of the fundamental absorption edge. 148) 

                     6.2 Experimental Procedure 

       The samples used in the present study are single crystals (purchased 

from Eagle Pitcher Company, UHP grade) with = 20 ohm-cm resistivity and 

with the scattering surface of optical flat mechanically polished and finally 

polish-etched by Syton. We used several lines of Ar ion laser between 

457.9 nm and 514.5 nm operation at = 200 mW CW as the incident light source 

for experiment. This laser provided light polarized vertically, and when 

horizontally polarized light was required, this was obtained by means of-

using a Rochon prism. The scattered light polarization was analyzed by 

placing a sheet polaroid material between the photomultiplier and sample. 

The reflection scattering geometry used in the present study is shown in 

Fig. 4-4 (b). The T2-mode phonons amplified through acoustoelectric effect
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 propagate in the direction perpendicular to the c-axis with shear polarization 

parallel to the c-axis. The laser light beam is incident on a polished 

 surface parallel to the c-axis (e i lic-axis) and the scattered plane was 

perpendicular to the c-axis (e s I c-axis). Also we measured in the scattering 

where the incident light polarization is perpendicular to the c-axis 

 (e i I c-axis) and the scattered plane was parallel to the c-axis (e 
slic-axis). 

       The interaction length between phonon and photon is comparable to the 

penetration depth (ot-l- 0.1 Um) and restricted to the surface region because 

                                                                              5 -1 in the region above the fundamenatal absorption edge ot is = 10 cm . Here 

the Brillouin scattering process produces a scattering light out of the 

propagation direction of the reflected beam. The light scattered by the 

ripple mechanism shows no rotaion of the polarization , but the scattering by 

the elasto-optic mechanism is rotated 90*. Our main interest in the present 

study is the latter mechanism in the opaque region. Therefore , we choose 

the polarization direction of the scattered light perpendicular to the 

incident light. It is important to point out that SIN ratio of the 

scattering signal is strongly dependent upon the surface condition of the 

sample. While the CdS is pure (UHP grade) some trouble was had in obtaining 

good CdS surface. The best results were obtained from Syton-etched surface, 

but the Rayleigh scattered light, which comes from the surface defect, causes 

the Brillouin scattering signal noisy. To reduce the effect o f the noise , 

we measured the data several times and averaged thses data. The crystals were 

held at room temperature, but some heating of the scattering surface was 

inevitable. It is estimated that this heating should not have exceeded 

about 30 K. 

      The identification of the acoustic waves was made by the sound velocity 

v(T2) = -- (1.80± 0.05)x 10 5 cm/sec and selection rules of the light       "'C44/p = 

polarization (See Fig. 4-4 (b)).
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                   6.3 Experimental Results , 

       In Fig. 6-1, we show the experimental results obtained from the presnt 

 study. The scattering intensity (I s ) was normalized by the incident light 

 intensity (1 0 ). This figure shows the spectral dependence of the Brillouin 

 scattering efficiency for 0.5 GHz T2-mode phonons at room temperature. Open 

 circles show the data obtained by choosing the incident light poralization 

 parallel and the scattered light polarization perpendicular to the c-axis 

(e i 11c-axis, e s i-c-axis), while the closed circles show the data obtained 

by choosing the incident light polarization perpendicular and the scattered 

light parallel to the c-axis (e -Lc-axis, e 11 c-axis). Very recently, 
                           i s 

Chang et al. have reported the resonant Brillouin scattering efficiency in 

the opaque region by employing a Fabry-Perot interferometer, which are 

also shown in the figure. They obtained the signal by using the acousto-

                                                      42) electrically amplified phonon domains with 524 MHz T2,-mode phonons. These 

two independent data were plotted by normalizing at 496.5 nm. It should be 

noted that these data show good agreement in spite of using different kind 

of instruments. The experimental data show a peak at around 500 nm and a 

clear resonant enhancement in the opaque region of CdS. 

       We have already shown that in the transparent region resonant 

Brillouin scattering cross section has resonant enhancement and resonant 

cancellation below the gap. These resonant features have been successfully 

explained by the Brillouin scattering theory. Thus it is interesting to 

consider whether the resonant enhancement in the opaque region is explained 

by the same theory with same parameters used in the calculation in the 

transparent region. 

       Fugure 6-2 shows the theoretical curves of the real and imaginary part 

of the Brillouin tensor R is for T2-mode acoustical phonons in CdS at room 

temperature. We calculated these curves by using eqs. (2.134) and (2.140).
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The numerical parameters used in the present calculation is listed in Table 

5-6. In the present calculation, the contribution from t                                                                  -he A. B and C 

valence bands is taken into account. Below the fundamental absorption 

edge, real part of R 
is dominates the imaginary part. These facts indicate 

that only virtual electronic state can take place in the long wavelength 

region. Near the band gap, both the real and imaginaty part of R 
is show 

strong resonant enhancement. In particular, the imaginary part shows a 

resonant peak at around 512 nm. This position corresponds to that of the 

ground state exciton energy associat I ed with the A valence band (E ex = 

2.424 eV = 511 nm). This strong peak of the imaginary part of R 
is shows 

the fact that the incident and scattered photons resonate with electron 

states. Above the band gaps, both the real and imaginary part of R is I 

decrease steeply and approach zero when we neglect the contribution from the 

higher energy critical points. The total light scattering cross section 

a B is proportional to the square of R i
s + R 0 as follows: 

          - JR
,s + RO 12 = I(R rs + iRis) + (R r + iR i )1 2 (6.1)          B i i 0 0 

where R R r + iR i ) is the non-resonant term of the Brillouin tensor      0 0 0 

arising from the far off critical points in the band structure and has an 

opposite sign to R is . The resonant cacellation (a B = 0) occurs when R is + 

R 0 becomes zero. The spectral position of the resonant cancellation is 

shown at the cross point of -R 0 and the real part of R is' 

      Figure 6-3 shows wavelength dependence of the Brillouin scattering 

cross section G B (in arbitray units) for 0.5 GHz T2-mode phonons at room 

temperature, where open circles with error bars are obtained by the reflected 

light scattering geometry and the solid circles are experimental data 

obtained by the transmission light scattering geometry. These two 

independent data were plotted by comparing with the theoretical curves.
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According to the theory for surface elasto-optic scattering in isotropic 

opaque materials, 149) the cross seciton varies with absorption coefficient 

                  2 -1 42) 
ot, as [1 +(aX/27Tn) For CdS at room temperature, The refractive 

                                                   5 -1 
index n =2.8 and a is nearly constantlulO cm , for 450 nm < X< 500 nm. 

In the region, the measured Brillouin scattering cross section is reduced 

by less than!--5 %. 42) Therefore absorption correction can be neglected. We 

find in Fig. 6.3 a clear resonant enhancemt in the opaque region, where 

the three absorption edges 506 nm, 503 run, and 491 nm exist. The resonant 

features (resonant cancellation and resonant enhancement ) in the transparent 

region have been already explained by the Brillouin scattering theory. It 

is interesting to check whether the resonant enhancement in opaque region 

is explained by the same theory with same parameters. In order to clarify 

this problem, we calculated two kind of theoretical curves. One is 

calculated by using eq.(6.1), where both the imaginary'and real part of R is 

are taking into account. The other is calculated by using the following 

relation; 

              ,R~ + r 2                    s Rol (6.2)              B I 

in which only the real part of the Brillouin tensor is considered. A solid 

curve is calculated by eq.(6.1) including both the imaginary and real part 

of R,s and R 0* On the other hand, a dashed curve is calculated by taking 

into account the real part only by eq.(6.2). The experimental data show a 

good agreement with the former results but poor agreement with the latter 

calculation. We measured the Brillouin scattering intensity by tuning the 

energy gap thermally at 514,5 nm and we find no change in the intensity. 

Therefore we conclude that a minimum does not exist near the band gap. 

From these results, we conclude that the imaginary part of R is plays an 

important role, in particular, in the region of the absorption.edge. 

      Figure 6.4 shows the dispersion curves of the Brillouin scatteirng
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cross sections ontained by thermally tuning band gaps. We showed 

here four different theoretical curves. The experimental data show a 

good agreement with the theoretical curves when we choose damping facter 

as =35 meV. The physical meaning of the damping factor will be discussed 

in Section 6.4. 

      It has been shown that the Brillouin scatteirng cross section is 

analyzed from phenomenological aspect by incorporating the piezobirefringence 

theory. In Fig. 6.5, we show the dispersion curves of the photoelastic 

constant P determined by the relation a - 1pr i 12, where the         44 B 44+ 'P44i 

subscript r and i indicate the real and imaginary part of P respectively.                                               44' 

Since the present method does not give sign and absolute values of the 

photoelastic constant but relative values. they are adjusted to the values 

of Yu and Cardona, P r = -0.054 at 630 nm. 77) The theoretical curves of                44 

the absolute value of P OP r +iP i obtained from piezobirefringence                 44 44 441) 

analysis shows a good agreement with the experimental data in the region 

investigated. This indicates again that the imaginary part of the photo-

elastic constant plays an important role to determine the dispersion and 

thus the dispersion of the Brillouin scattering cross section in the resonant 

enhancement region. 

                 6.4 Lifetime Broadening Effect 

      The damping energy F depends strongly on the temperature. In general 

the damping factor can be expressed by a sum of three independent 

contribution as follows-, 150) 

            r(T) = r 0 + r 
ac (T)+ r LO (T) (6.3) 

where r 0 is an independent part of temperauture T arising from the foreign 

nature defects, r 
ac (T) is a contribution from acoustic phonons (proportional
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to T for the thermal phonons), and F LO is a contribution from LO phonons 

(proportional to [exp(liwLO/k B T)- 11 where TiWLO is the LO phonon energy). 

Bleil and Gay measured the temperature dependence of r and shows that 

the dominant contribution to r at room temperature comes from LO phonons. 

From their results, r = 30'u5O meV at room temperature and r= 5 meV at 

77 K. This value shows a resonable agreement with that obtaied from the 

present Brillouin scattering measurement in the opaque region ( r = 35 meV). 

      Theoretical expression of the energy dependence near the fundamental 

absorption edge is proposed by Hopfield as follows: 152,153) 

                            r W> W 

                 r(W) = (6.4) 

                          r 
e exp{C(Iiw e- liw)} , W<W e 

in which fiw and r are the energy and broadening factor at an 
             e e 

absorption edge, respectively, and C is a constant related to the Urbach 

rule. When we use a resonablt value r e = 38 meV, estimated from the half-

width of exciton absorption 136) and emission 151) lines at room temperature, 

it turns out that r is very small in the transparent region. Wasa et al. 

obtained that r = 0.5 meV (300 K), r = 0.6 meV (310 K) and r = 1.2 meV 

(350K) at 560 nm. 153) On the other hand near the band I gap it is obvious 

that r becomes large and F is nearly constant value (r = 38 meV). Therefore 

we conclude that near the fundamental absorption edge lifetime broadening 

factor r is nerly constant and the main contribution of r comes from LO 

phonons.

      We have observed the 

region of CdS by making use

 6.5 Summary 

Brillouin scattering cross secitons in the opaque 

of the reflection scattering configuration. It
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turns out that the Brillouin scattering cross section shows clear resonant 

enhancement above the fundamental absorption edge. The resonant enhancement 

in the opaque region is well explained by the Brillouin scattering theory 

and piezobirefringence theory when we choose same parameters used in the 

analysis in the transparent region of the scattering cross section. It was 

also found that the imaginary part of the Brillouin tensor (or photoelastic 

constant) is important in determining the dispersion curves near the band 

gap. Life time broadening factor is determined by the presnet work and 

found that this value (r = 35 meV) is nearly equal to that of the LO phonon 

energy.
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                      CHAPTER 7 

                          Conclusions 

       The results and conclusions obtained in the present work are 

summarized as follows: 

1) Theoretical expression of the Brillouin scattering cross section was 

derived by the time-dependent third order perturbation theory. We showed 

that the resonant enhancement and cancellation are well explained by the 

resonant Brillouin scattering theory. We also presented that the Coulomb 

interaction causes a strong asmmetry in the Brillouin efficiency with respect 

to the band gap, a strong resonance occurs at the photon energy of the 

ground state exciton level. It also turns out that the role of the imaginary 

part of Brillouin tensor is of significant importance for the scattering 

mechanism in the vicinity of the band gap. 

2) We have derived the expressions of the photoelastic constants P 11 - P 123' 

P 44 in zincblende, and P li- P 12' P 44 and P 31 in wurtzite materials by using 

the model dielectric functions. We showed these formulations can be extended 

to the region where the incident photon energy is higher than that of the 

band gap energy and imaginary part of the dielectric constant plays an 

important role in determining the complex photoelastic constants. A simple 

model is also shown to explain the non-dispersive term of the photoelastic 

constants by using the Penn model. 

3) We showed acoustic domain injection method provides great advantages in 

investigating phonon-phonon or electron-phonon-photon interaction, in non-

piezoelectric semiconductors, insulators and layered compounds.
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4) It is established that the reflection scattering configuration in the 

Brillouin scattering experiment with a high intensity laser provides resonant 

light scattering signal in the opaque region, above the fundamental absorption 

edge. 

5) Resonant Brillouin scattering in GaAs by the transverse acoustical phonons 

has been analyzed by the Brillouin scattering theory and piezobirefringence 

theory. The resonant enhancement and cancellation are found to be well 

interpreted in terms of the sign reversal of the Brillouin (or photoelastic 

constant). A good agreement was found between the experimental data and the 

theoretical calculation. We found in GaAs that the effect of the discrete 

exciton on the dispersion of the Brillouin scattering cross seciton and 

photoelastic constant is negligible because the exciton Rydberg energy is 

small (4.2 meV) as compared to other II-VI compounds. We also predicted a 

cancellation of the Brillouin scattering at 976 nm for the scattering by 

the slow transverse (TI) acoust4C mode n-honor.s. 

6) Observed dispersion spectra of the Brillouin scattering by TA-mode 

phonons show sharp resonant enhancement near the fundamental absorption 

edge in CdS, cubic and polytype ZnS. These resonant features are explained 

as follows: The contribution to Brillouin tensor (or photoelastic constant) 

from the lowest direct gap and that from higher bands have opposite sign 

and thus cancell at a certain energy below the gap. 

7) Observed dispersion spectra of the Brillouin scattering cross sections in 

CdS by LA-mode acoustic phonons show only the resonant enhancement in the 

measured region. We have analyzed the data by the Brillouin scattering 

theory and piezobirefringence theory and find a good agreement between 

experimental data and theories. In the analysis, it turns out that a sign 

I
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reversal of Brillouin tensor (or photoelastic constant) occurs at wavelength 

X =750 nm and that the non-dispersive component R is very weak compared 0 

with that of transverse acoustic waves. 

8) The resonant Brillouin scattering in cubic and polytype ZnS has been 

investigated in the photon energy region 1.8 to 3.7 eV using two different 

transverse acoustic waves excited by acoustoelectric domain injection method. 

The results show a resonant cancellation and enhancement near the fundamental 

absorption edge and are in good agreement with the resonant light scattering 

theory. It is found that the scattering cross sections exhibit W 4 dependence 

as expected from the classical light scattering theory. 

9) Measurements of the stress-induced birefringence have been carried out 

to obtain spectral dspendence of the elasto-optical constants (photoelastic 

constnats) in ZnS. The results show a good agreement*with the photoelastic 

constants estimated from the resonant Brillouin scattering data. From the 

present work we find that the magnitude and sign of the photoelastic constants 

can be determined in a wide range of photon energies when we combine the 

resoannt Brillouin scatteing with the piezobirefringence measurements. 

It is difficult to elucidate the absolute value of the photoelastic constants 

only from the Brillouin scattering experiments. This difficulty may be 

removed by using the present method. 

10) Resonant Brillouin scatteirng in HgI 2 has first been investigated at 

room temperature by making use of the acoustic domain injection method. The 

experimental data show a resonant cancellation only in the lower side of the 

photon energy region, while no resonant enhancement has been observed. 

The spectral dependence of the cross seciton has a good agreement with the 

theoretical expression when we take into account the higher direct transiton.
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It was also found that the contribution of higher band transiton is strong 

and the decrease of the Brillouin scattering cross section in the longer 

wavelength region is interpreted as due to the contribution from higher 

gaps near 3.5 eV. 

11) The precise dispersion and absolute values of the acoustic figure of 

merit (M 2 ) was found to be important factor for designing acousto-optic 

devices. We showed the dispersion of acoustic figure of merit in ZnS, CdS 

and GaAs. 

12) We have determined the Brillouin scattering cross sections in the opaque 

region of CdS by employing the reflection scattering geometry. It turns out 

that the Brillouin scattering cross section clearely shows resonant 

enhancement above the fundamental absorption edge. The resonant enhancement 

is successfilly explained by the Brillouin scattering-theory and piezo-

birefringence theory when we choose same parameters used in the analysis in 

the transparent region of the scattering cross section. It was also found 

experimentally that the imaginary part of the Brillouin tensor is important 

in determining the dispersion curves near the band gap. Life time broadening 

factor is determined by the present work and found that this value (r= 35 meV) 

is nearly equal to that of the LO phonon energy.



- 197 -

LIST OF REFERENCES

1. 

2. 

3. 

4. 

5. 

6.

7. 

8. 

9. 

10. 

ii.

12. 

13. 

14. 

15.

16. 

17. 

18.

19. 

20. 

21.

22.

 R. Loudon, Adv. Phys. 13 (1964) 423. 

 M. Cardona (ed.), Light Scattering in SoZids, Topics in Applied Physics ,  V
ol. 8 (Springer, Berlin, Heidelberg, New York , 1975). 

 L. Brillouin, Ann. Phys. (Paris) 17 (1922) 88. 

 A. Smekal, Naturwiss 11 (1923) 873. 

 C. V. Raman, Ind. J. Phys. 2 (1928) 387. 

 G. Lansberg and L. Mandelstam, Naturwiss 16 (1928) 57. 

 E. Gross, Nature 126 (1930) 603. 

 E. H. L. Meyer and W. Ramm, Physik. Z 33 (1932) 270. 

 P. Debye and F. W. Sears, Proc. Nat. Acad. Sci. 18 (1932) 409. 

 R. Lucas and P. Biquard, J. Phys. Radium 3 (1932) 464 . 

 J. P. Russell, Appl. Phys. Letters 6 (1965) 223. 

 J. H. Parker Jr., D. W. Feldman and M. Ashkin, Phys. Rev. 155 (1967) 
 712. 

 J. R. Sandercock, Phys. Rev. Letters 28 (1972) 237. 

 R. C. C. Leite and S. P. S. Porto, Phys. Rev. Letters 17 (1966) 10. 

 J. M. Ralston, R. L. Wadsock, R. K. Chang, Phys.Rev. Letters 25 (1970) 
 814. 

 A. Pinczuk and E. Burstein, Phys. Rev. Letters 21 (1968) 1073. 

 R. C. C. Leite and J. F. Scott, Phys. Rev. Letters 22 (1969) 130. 

 F. P. SchHfer(ed.), Dye Lasers, Topics in Applied Physics Vol. 1, 
 (Springer -Verlag, Berlin, Heidelberg, New York, 1977). 

 Y. M. Yarborough, Appl. Phys. Letter 24 (1974) 629. 

 M. A. Renucci, J. B. Renucci, R. Zeyher and M. Cardona , Phys. Rev. 
B 10 (1974) 4309. 

 J. B. Renucci, R. N. Tyte and M. Cardona, Phys. Rev. B 11 (1975) 
3885. 

J. M. Calleja, K. Kuhl and M. Cardona, Phys. Rev. B 17 (1978) 876.



23. 

24. 

25. 

26.

27. 

28. 

29.

30. 

31. 

32. 

33.

34.

35. 

36. 

37. 

38. 

39. 

40. 

41. 

42.

43. 

44. 

45.

- 198 -

R. Trommer and M. Cardona, Phys. Rev. B 17 (1978) 1865. 

R. L. Schmidt, B. D. McCombe and M. Cardona, Phys. Rev. B 11 (1975) 
746. 

J. M. Calleja and M. Cardona, Phys. Rev. B 16 (1977) 3753. 

B. Tell, J. M. Worlock and R. J. Martin, Appl. Phys. Letters 6 (1965) 
123. 

A. S. Pine, Phys. Rev. B 5 (1972) 3003. 

D. K. Garrod and R. Bray, Phys. Rev. B 6 (1972) 1314. 

D.K. Garrod and R. Bray, Proc. 11th Intern. Conf. on the Physics of 
Semiconductors, Warsaw 1972 (p. 1167). 

K. Ando and C. Hamaguchi, Phys. Rev. B 11 (1975) 3876. 

U. Gerbart and A. Many, Phys. Letters A 43 (1973) 329. 

R. Berkowicz and T.Skettrup, Phys. Rev. B 11 (1975) 2316.' 

K. Yamamoto, K. Misawa, H. Shimizu ans K. Abe, J. Phys. Chem. Solids 
37(1976) 181. 

K. Ando, K. Yamabe, S. Hamada and C. Hamaguchi, J. Phys. Soc. Jpn. 
41 (1976) 1593. 

K. Yamabe, K, Ando and C. Hamaguchi. Jpn. J. Appl. Phys. 16 (1977) 747. 

S. Adachi and C. Hamaguchi, J. Phys. Soc. Jpn. 43 (1977) 1637. 

S. Adachi and C. Hamaguchi, J. Phys. Soc. Jpn. 44 (1978) 343. 

S. Adachi and C. Hamaguchi, J. Phys. Soc. Jpn. 45 (1978) 505. 

M. Yamada, C. Hamaguchi amd J. Nakai, Solid State Commun. 17(1975) 879. 

S. Adachi and C. Hamaguchi, Physica B 97(1979) 187. 

S. Adachi and C. Hamaguchi, J. Phys Soc. Jpn. 48 (1980) 1981. 

W. C. Chang, S. Mishra and R. Bray, Proc. 15th Intern. Conf. on Physics 
of Semiconductors-$ Kyoto 1980; J. Phys. Soc. Jpn. 59 (1980) Suppl. A, 
p. 711. 

S. Mishra, G. H.Holah and R. Bray, Proc. 3rd Inter. Conf. on Light 
Scattering, Campinas, Brazil (ed. by Balkanski, Leite and Porto), 
Flammarion, Paris (1976) p. 198. 

G. B. Benedek-and K. Fritsch, Phys. Rev. 149 (1966) 647. 

M. Born and K. Huang, DynamicaZ Thory of CrystaZ Lattices,(Clarendon 
Press, Oxford, 1954) Section 50.



46. 

47. 

48. 

49. 

50.

51. 

52. 

53. 

54.

55. 

56. 

57. 

58.

59. 

60. 

61.

62. 

63. 

64. 

65. 

66.

67. 

68. 

69. 

70.

                              - 199 -

D. F. Nelson, P. D. Lazay and M. Lax, Phys. Rev. B 6 (1972) 3109. 

L. L. Hope, Phys. Rev. 166 (1968) 883. 

C. Hamaguchi, J. Phys. Soc. Jpn. 35 (1973) 832. 

R. Loudon, Proc. Roy. Soc. A 275 (1963) 218; J. Phys. 26 (1965) 677. 

A. K. Ganguly and J. L. Birman, Phys. Rev. 162 (1967) 806. 

L. N. Ovander, Fiz. Tverd. Tela 6 (1964) 361. 

D. L. Mills and E. Burstein, Phys. Rev. 188 (1969) 1465. 

B. Bendow and J. L. Birman, Phys. Rev. B 1 (1970) 1678. 

B. Bendow, Phys. Rev. B 2 (1970) 5051. 

B. Bendiw, Phys. Rev. B 4 (1971) 552. 

R.P. Martin, Phys. Rev. B 10 (1974) 2620. 

R.Zeyher, C. Ting and J. L. Birman, Phys. Rev. B 10 (1974) 1725. 

K. Peuker, F. Bechstedt and R. Enderlein, Proc. Inter. Conf. on 
Physics of Semiconductors,Stuttgart, 1974, (Teubner-Verlag, Stuttgart, 
1974) p.468. 

F. Bechstedt, R. Enderlein, A. Kolpakov and K. Peuker, Phys. Stat. Sol. 
b 73 (1976) 141. 

R. Loudon, Adv. Phys. 13 (1964) 423. 

W. Heitler, The Quantum Theory of Radiation, ( Clarendon Press, Oxford 
1954) p.189. 

K. P. Jain and G. Choudhury, Phys. Rev. B 8 (1973) 676. 

A.Messiah, Quantum Mechanics, (Wiley, New York, 1965), Vol. II, p. 807. 

A. Messiah, in ref. 63, p. 828. 

R. Elliott, Phys. Rev. 108 (1957) 1384. 

See, e.g., M. Abramowitz and I. A. Stegun, Handbook of Mathematical 
functions, (Dover, New York, 1970). 

See, e.g., C. Kittel, Quantum Theory of Solid, (John Wiley and Sons 
Inc. New York, 1963). 

G. E. Picus and G. L. Bir, Fiz. Tverd. Tela 1 (1959) 154. 

L.I.Schiff, Quantum Mechanics, _ (McGraw-Hill, New York, 1955). 

D. G. Thomas and J. J. Hopfield, Phys. Rev. 116 (1959) 573.



71. 

72. 

73. 

74.

75. 

76. 

77.

78. 

79.

80. 

81. 

82. 

83.

84. 

85. 

86. 

87.

88. 

89.

90. 

91. 

92. 

93.

                              - 200 -

J. J. Hopfield, J. Phys. Chem. Solids 15 (1960) 97. 

D. W. Langer, R. N. Euwema, K. Era and T Koda, Phys. Rev. B 2 (1970) 
4005. 

Y. Itoh, M. Fujii, C. Hamaguchi and Y. Inuishi, J. Phys. Soc. Jpn. 
48 (1980) 1972. 

C. W. Higginbotham, M. Cardona and F. H. Pollak, Phys. Rev. 184 (1969) 
821. 

M. H. Grimsditch, E. Kisela and M. Cardona, J. Opt. Soc. Am. (to be 
published). 

J. F. Nye, PhysicaZ Properties of CrystaZs _, (Clarendon Press, Oxford, 
1960). 

P. Y. Yu and M. Cardona, J. Phys. Chem. Solids 34 (1973) 29. 

P. Y. Yu, M. Cardona and F. H. Pollak, Phys. Rev. B 3 (1971) 340. 

M. Cardona, SoZid State Physics, NucZear Physics and Particze Physics, 
ed. I. Saavedra, (Benjamin, New York, 1968) p737. 

D. Penn, Phys. Rev. 128 (1962) 2093. . 

F. H. Pollak and M. Cardona, Phys. Rev. 172 (1968) 816. 

G. D. Dresselhaus, A. F. Kip and C Kittel, Phys. Rev. 98 (1955) 368. 

E. 0. Kane, Physics of =-V Compounds, ed. by R. K. Willardson and 
A. C. Beer, (Academic Press Inc, New York 1966), Vol..l, p. 75. 

J. A. Van Vechten, Phys. Rev. 182 (1969) 891. 

M. Cardona, J. Res. of the NBS, 74A (1970) 253. 

N. J. Meyer and M. H. JOrgensen, FestkorprobZeme X, Adv. in SoZid State 
Physics, (Pergamon, 1970), p. 21. 

R. Bray, Proc. 10th Intern. Conf. Physics of Semiconductors, Cambridge, 
Mass, (US, AEC, 1970), p. 705. 

R.Bray, IBM J. Res. Develop. 13 (1969) 487. 

C. Hervouet, J. Lebailly, P. L. Hugon and R. Veulex, Solid State Commun. 
3 (1965) 413. 

R. W. Smith, Phys. Rev. Letters 9 (1962) 87. 

P. 0. Sliva and R. Bray, Phys. Rev. Letters 14 (1965) 372. 

M. Kikuchi, Jpn.J. Apple.Phys. 2 (1963) 807; 2 (1963) 812; 3 (1964) 448. 

J. H. McFee, J. Apple. Phys. 34 (1963) 1548.



94. 

95. 

96. 

97.

98. 

99. 

100. 

101.

102. 

103. 

104.

105. 

106. 

107. 

108.

109. 

110.

ill.

112. 

113. 

114. 

115.

116

117

                              - 201 -

G. H. Schwuttke, J. Electrochem. Soc. 106 (1959) 315. 

J. W. Edwards, Semiconductor Products, (1963, May) p. 30. 

C. Hamaguchi, K. Yamabe, K. Ando and S. Adachi, Proc. Intern. Conf. 
IFUAS 1977, Tokyo., (Univ. Tokyo Press, Tokyo). 

K.Tsubouchi, S. Kameoka and T. Arizumi, J. Phys. Soc. Jpn. 37 (1974) 
1305. 

K. Tsubouchi and N. Mikoshiba, Jpn. J. Appl. Phys. 14 (1975) 309. 

U. Gerbart and A. Many, Phys. Rev B 7 (1973) 2713. 

Y. Itoh, S. Adachi and C. Hamaguchi, Phys. Stat. Sol. b 93 (1979) 381. 

A. Feldman and D. Horowicz, J. Appl. Phys. 39 (1968) 5597. 

C. D. Thurmond, J. Electrochem. Soc. 122 (1975) 1133. 

D. E. Aspnes and A. A. Studna, Phys. Rev. B 7 (1973) 4605. 

P. .Lawaetz, Phys. Rev. B 4 (1971) 3460. 

M. D. Sturge, Phys. Rev. 127 (1962) 768. 

S. Wang and M. Matsuura, Phys. Rev. B 10 (1974) 3330. 

M.Chandrasekal and F. H. Pollak, Phys. Rev. B 15 (1977) 2127. 

Y. Itoh and C. Hamaguchi, Jpn. J. Appl. Phys. 20 (1981) Suppl. 20-3, 
p. 259. 

Y. Itoh, M. Fujii, S. Adachi and C. Hamaguchi, Proc. Phonon Scattering 
in Condensed Matter, ed. by Humphery J. Maris, (Plenum, 1980) p. 433. 

C. Hamaguchi, S. Adachi and Y. Itoh, Solid State Electronics 21 (1978) 
1585. 

See, for example, II-VI Semiconducting Compounds, ed. by D. G. Thomas 
(Benjamin, New York, 1967). 

G. C. Trigunayat and G. K. Chadha, Phys. Stat. Sol. a 4 (1971) 9. 

J. L. Birman, Phys. Rev. 115 (1959) 1493. 

L. S. Ramsdell, Am, Mineralogist 32 (1947) 64. 

0. Brafman and I. T. Steinberger, Phys. Rev. 143 (1966) 501. 

G. L. Bir, G. E. Pikus, L. G. Suslina, D. L. Fedorov and E. B. Shadrin, 
Fiz. Tverdogo Tela 13 (1971) 3551. 

G. V. Anan'eva, K. K. Dubenskii, A. I. Ryskin and G. I. Khil'ko, Fiz. 
Tverdogo Tela 10 (1968) 1800.



118. 

119. 

120. 

121.

122.

123. 

124.

125. 

126. 

127.

128. 

129. 

130. 

131.

132. 

133. 

134. 

135. 

136.

137. 

138. 

139.

                               - 202 -

 H. Jagodzinski, Acta. Cryst. 2 (1949) 298. 

 H. Hartmann, Kristall und Technik. 1 (1966) 27. 

 H. Hartmann, Phys. Stat. Sol.2 (1962) 585. 

 H. Blank, P. Delavignette, R. Gevers and S. Amelinckx, Phys. Stat. 
 Sol. 7 (1964) 747. 

 L. T. Chadderton, A. F. Fitzgerald and A. D. Yoffe, Phil. Mag. 8 
 (1963) 167. 

 L. T. Chadderton, A. F. Fitzgerald and A. D. Yoffe, J. Appl. Phys. 
35 (1964) 1582. 

 D. Berlincourt, H. Jaffe and L. R. shiozawa, Phys. Rev. 129 (1963) 
1009. 

 C. F. Cline, H. L. Dunegan and G. H. Henderson, J. Apple. Phys. 38 
 (1967) 1944. 

 M. Cardona and G. Harbeke, Phys, Rev. 137 (1965) A1468. 

 G. L. Bir, G. E. Picus, L. G. Suslina and D. L. Fedorov, Fiz. Tverdogo. 
Tela 12 (1970) 3218. 

M. Aven and J. S. Prener, Physics and Chemistry of II-VI Compounds 
 (North-Holland, Amsterdam, 1967). 

 A. Gavini and M.Cardona, Phys. Rev. B 1 (1970) 672. 

 R. Zeyher, H. Bilz and M. Cardonan, Solid State Commun. 19 (1976) 57. 

 V. B. Kulakovskii, V. I. Grinev and M. P. Kulakov, Fiz. Tverdogo.Tela. 
19 (1977) 600. 

 J. M. Bieniewski and S. J. Czyzak, J. Opt. Soc. Am. 53 (1963) 496. 

M. Nawrocki, J. A. Gaj and J. iuk, Phys. Stat. Sol. b 68 (1975) K181. 

D. Dutton, Phys. Rev. 112 (1958) 785. 

M. Cardona, K. L. Shaklee and F. H. Pollak, Phys. Rev. 154 (1967) 696. 

 E. Gustsche and J. Voigt, II-VI Semiconducting Compounds, ed. by 
D. G. Thomas, (Benjamin, New York, 1967) p.337. 

R. W. Dixon, J. Appl. Phys. 38 (1967) 5149. 

B. L. Evans, Optical and Electrical Properties, Vol. 4, ed. by P. A. Lee 
 (D. Reidel Publishing Company, Dordrecht, Holland, 1976) p.61. 

K. Kanzaki and I. Imai, J. Phys. Soc. Japan. 32 (1972) 1003.



- 203 -

140.

141. 

142.

143. 

144. 

145.

146. 

147. 

148.

149. 

150.

151. 

152.

153. 

154.

I. Akopyan, B. Novikov, S. Permogorov, A. Selkin and V. Travnikov, Phys. 
Stat. Sol. b 70 (1975) 353. 

M. Cardona and D. L. Greenaway, Phys. Rev. 133 (1964) A1685; Equation 
(5) in this reference contains a typographica~ error. The term of the 
series expansion should by devided by (2r +1) see ref. 126. 

R. C. Carlston, M. M. Schieber and W. F. Schnepple, Mat. Res. Bull. 
11 (1976) 959. 

S. HaussUhl and H. Scholz, Fristall und Technik, 10 (1975) 1175. 

A. Anedda and E. Fortin, Phys. Stat. Sol. b 84 (1977) K87. 

F. Sakuma, H. Fukutani and G. Kuwabara, J. Phys. Soc. Jpn. 45 (1978) 
1349. 

M. Sieskind, J. B. Grun and S. Nikitine, J. Phys. Radium 22 (1961) 777. 

E. I. Gordon, Appl. Opt. 5 (1969) 1629. 

Y. Itoh, C. Hamaguchi and Y. Inuishi, J. de Physique (to be published). 

R. Loudon, J. Phys. C, Solid State Phys. 11 (1978) 2623. 

B. Segall, Proc. 9th Intern. Conf. Physics of Semiconductors, 
Moscow 1968 (p. 425). 

C. E. Bleil and J. Voigt, II-VT semiconducting Compounds, ed. D. G. 
Thomas (Benjamin, New York, 1967) p. 360. 

J. J. Hopfield, J. Phys. & Chem. Solids 22 (1961) 63. 

K. Wasa, T. Akiyama, K. Tsubouchi, M. Yamanishi and N. Mikoshiba, J. 
Phys. Soc. Jpn. 49 (1980) 589. 

Y. Itoh, K. Yamabe, S. Adachi and C. Hamaguchi, J. Phys. Soc. Jpn 46 
(1979) 542.


	053-00001.pdf
	053-00002.pdf
	053-00003.pdf
	053-00004.pdf
	053-00005.pdf
	053-00006.pdf
	053-00007.pdf
	053-00008.pdf
	053-00009.pdf
	053-00010.pdf
	053-00011.pdf
	053-00012.pdf
	053-00013.pdf
	053-00014.pdf
	053-00015.pdf
	053-00016.pdf
	053-00017.pdf
	053-00018.pdf
	053-00019.pdf
	053-00020.pdf
	053-00021.pdf
	053-00022.pdf
	053-00023.pdf
	053-00024.pdf
	053-00025.pdf
	053-00026.pdf
	053-00027.pdf
	053-00028.pdf
	053-00029.pdf
	053-00030.pdf
	053-00031.pdf
	053-00032.pdf
	053-00033.pdf
	053-00034.pdf
	053-00035.pdf
	053-00036.pdf
	053-00037.pdf
	053-00038.pdf
	053-00039.pdf
	053-00040.pdf
	053-00041.pdf
	053-00042.pdf
	053-00043.pdf
	053-00044.pdf
	053-00045.pdf
	053-00046.pdf
	053-00047.pdf
	053-00048.pdf
	053-00049.pdf
	053-00050.pdf
	053-00051.pdf
	053-00052.pdf
	053-00053.pdf
	053-00054.pdf
	053-00055.pdf
	053-00056.pdf
	053-00057.pdf
	053-00058.pdf
	053-00059.pdf
	053-00060.pdf
	053-00061.pdf
	053-00062.pdf
	053-00063.pdf
	053-00064.pdf
	053-00065.pdf
	053-00066.pdf
	053-00067.pdf
	053-00068.pdf
	053-00069.pdf
	053-00070.pdf
	053-00071.pdf
	053-00072.pdf
	053-00073.pdf
	053-00074.pdf
	053-00075.pdf
	053-00076.pdf
	053-00077.pdf
	053-00078.pdf
	053-00079.pdf
	053-00080.pdf
	053-00081.pdf
	053-00082.pdf
	053-00083.pdf
	053-00084.pdf
	053-00085.pdf
	053-00086.pdf
	053-00087.pdf
	053-00088.pdf
	053-00089.pdf
	053-00090.pdf
	053-00091.pdf
	053-00092.pdf
	053-00093.pdf
	053-00094.pdf
	053-00095.pdf
	053-00096.pdf
	053-00097.pdf
	053-00098.pdf
	053-00099.pdf
	053-00100.pdf
	053-00101.pdf
	053-00102.pdf
	053-00103.pdf
	053-00104.pdf
	053-00105.pdf
	053-00106.pdf
	053-00107.pdf
	053-00108.pdf
	053-00109.pdf
	053-00110.pdf
	053-00111.pdf
	053-00112.pdf
	053-00113.pdf
	053-00114.pdf
	053-00115.pdf
	053-00116.pdf
	053-00117.pdf
	053-00118.pdf
	053-00119.pdf
	053-00120.pdf
	053-00121.pdf
	053-00122.pdf
	053-00123.pdf
	053-00124.pdf
	053-00125.pdf
	053-00126.pdf
	053-00127.pdf
	053-00128.pdf
	053-00129.pdf
	053-00130.pdf
	053-00131.pdf
	053-00132.pdf
	053-00133.pdf
	053-00134.pdf
	053-00135.pdf
	053-00136.pdf
	053-00137.pdf
	053-00138.pdf
	053-00139.pdf
	053-00140.pdf
	053-00141.pdf
	053-00142.pdf
	053-00143.pdf
	053-00144.pdf
	053-00145.pdf
	053-00146.pdf
	053-00147.pdf
	053-00148.pdf
	053-00149.pdf
	053-00150.pdf
	053-00151.pdf
	053-00152.pdf
	053-00153.pdf
	053-00154.pdf
	053-00155.pdf
	053-00156.pdf
	053-00157.pdf
	053-00158.pdf
	053-00159.pdf
	053-00160.pdf
	053-00161.pdf
	053-00162.pdf
	053-00163.pdf
	053-00164.pdf
	053-00165.pdf
	053-00166.pdf
	053-00167.pdf
	053-00168.pdf
	053-00169.pdf
	053-00170.pdf
	053-00171.pdf
	053-00172.pdf
	053-00173.pdf
	053-00174.pdf
	053-00175.pdf
	053-00176.pdf
	053-00177.pdf
	053-00178.pdf
	053-00179.pdf
	053-00180.pdf
	053-00181.pdf
	053-00182.pdf
	053-00183.pdf
	053-00184.pdf
	053-00185.pdf
	053-00186.pdf
	053-00187.pdf
	053-00188.pdf
	053-00189.pdf
	053-00190.pdf
	053-00191.pdf
	053-00192.pdf
	053-00193.pdf
	053-00194.pdf
	053-00195.pdf
	053-00196.pdf
	053-00197.pdf
	053-00198.pdf
	053-00199.pdf
	053-00200.pdf
	053-00201.pdf
	053-00202.pdf
	053-00203.pdf
	053-00204.pdf
	053-00205.pdf
	053-00206.pdf
	053-00207.pdf
	053-00208.pdf
	053-00209.pdf
	053-00210.pdf
	053-00211.pdf
	053-00212.pdf
	053-00213.pdf
	053-00214.pdf
	053-00215.pdf
	053-00216.pdf
	053-00217.pdf
	053-00218.pdf
	053-00219.pdf
	053-00220.pdf
	053-00221.pdf
	053-00222.pdf

