
Title
Design, Implementation and Evaluation of a 3D
Magic Lens Interface utilizing a Handheld Device
within an Immersive Virtual Environment

Author(s) Miranda Miranda, Miguel

Citation 大阪大学, 2009, 博士論文

Version Type VoR

URL https://hdl.handle.net/11094/1899

rights

Note

The University of Osaka Institutional Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

The University of Osaka

Design, Implementation and
Evaluation of a 3D Magic Lens

Interface utilizing a Handheld Device
within an Immersive Virtual

Environment

January 2010

Miguel MIRANDA MIRANDA

Design, Implementation and
Evaluation of a 3D Magic Lens

Interface utilizing a Handheld Device
within an Immersive Virtual

Environment

Submitted to
Graduate School of Information Science and Technology

Osaka University

January 2010

Miguel MIRANDA MIRANDA

ii

Abstract:
Virtual reality is used to simulate phenomena and environments that are di�cult

or impossible to experience in the real world. In the early days of the �eld, because
of its high cost, only a few applications took advantage of the possibilities o�ered
by virtual reality, and most such applications were dedicated to specialty training.
However, as the technology evolved, its costs have declined. Other devices such as
video games, cellular phones, three dimmensional (3D) movies and television have
begun including virtual reality concepts. This tendency can be expected to increase
in the future.

A key aspect of virtual reality is the interaction between the system and the user.
That is the modi�cation of the virtual environment according to input information
provided by the user. Real-time interaction enhances the sensation of immersion
in the virtual environment. The user interacts with the virtual environment with
the help of various interfaces. 3D interfaces present problems that are di�erents
to those experienced with two-dimensional (2D) interfaces, such as imperfect depth
cues, unstable mid-air hand placement, and others.

The present study investigates the problem of interaction in 3D. Speci�cally, it
addresses the selection and manipulation of virtual objects. A number of meth-
ods have been developed for interacting in virtual environments. However, it is
di�cult to provide a unique, generic interaction method that can be used under
di�erent conditions and in di�erent environments. Previous interfaces have shown
their e�ectiveness for particular tasks and applications. The study also addresses
the implementation of a magic lens interface using a handheld device. Magic lens
interfaces are widely used in many virtual reality systems. An e�ective implemen-
tation of magic lens uses a transparent plate as a prop for providing a real object
representing the lens and giving tactile feedback information. The study introduces
a new implementation method based on a handheld device and streaming software
technology that aims at enhancing interaction by providing an active prop that can
store and manipulate virtual objects through a previously captured view. Learning
to operate the interface is easy because the user is able to interact with the 3D
environment using the same resources normally provided by 2D interfaces, which
are present on the handheld device. Furthermore, it is �exible, because the 2D
interfaces are programmable. Besides the magic lens interface, an architecture for
implementing other 3D interfaces were developed in order to o�er the posibilities of
interaction methods.

In order to evaluate the usability of the proposed interface, three users studies
were conducted. The results showed that the magic lens interface provides ad-
vantages for selecting objects under conditions where other interfaces experience
di�culties. These include moving objects, or objects separated from the user by
long distance. During manipulation, the user found our interface very intuitive, but
its size and weight presented a serious drawback that must be resolved in order to
increase its performance.

Keywords: Immersive virtual environments, Magic-lens interface, Virtual ob-

iii

ject manipulation

v

Acknowledgments
This work was completed under the supervision of Professor Haruo Takemura of
the Graduate School of Information Science an Technology at Osaka University. I
would like to express profound gratitude to my advisor, Professor Haruo Takemura,
for giving me the opportunity of studying in his laboratory. Without the continuous
encouragement and advice of Professor Takemura, I could never have completed this
thesis. I would also like to thank Professor Kiyoshi Kiyokawa, who has also been a
wonderful source of support and guidance throughout the development of this work.

I am grateful to Professor Fumio Kishino, Professor Takao Onoye and Professor
Yasushi Yagi, as members of the thesis committee, for their insightful comments on
this research.

I express my sincere gratitude to the Ministry of Education, Culture, Sports,
Science and Technology of Japan (MEXT) for providing scholarship and academic
support throughout the doctoral program.

I have also bene�ted greatly through being able to meet and work with a number
of people during my doctoral work at the Osaka University. I want to thank to all the
members -sta� and students- of Takemura Laboratory for their help and support. I
also express my gratitude to those who have indirectly helped me in the completion
of this work.

I would like to acknowledge the enormous support from my family and to express
my sincere thanks to my parents for their understanding and support.

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Research Goal and Challenges . 2
1.3 Contributions. 7
1.4 Organization of the dissertation . 8

2 Background 9
2.1 Introduction . 9
2.2 Immersive Virtual Reality . 10
2.3 Input Devices for Implementing Immersive Virtual Environments . . 10

2.3.1 Handheld Devices . 11
2.3.2 Tracker Devices . 11

2.4 Output Devices for Implementing Immersive Virtual Environments . 11
2.4.1 Head Mounted Displays . 12
2.4.2 The CAVE . 13
2.4.3 Others Technologies . 14

2.5 Interaction in an Immersive Virtual Reality System 14
2.5.1 3D Interfaces . 16
2.5.2 Selection and Manipulation 16

2.6 Interaction Techniques for 3D Manipulation 17
2.6.1 Exocentric Metaphors . 17
2.6.2 Egocentric Metaphors . 18
2.6.3 The Magic Lens Metaphor . 21

2.7 Summary . 23

3 Architecture for Implementing a Magic lens Interface Using a
Handheld Device 25
3.1 Introduction . 25
3.2 Interface Requirements . 25
3.3 Interface Conceptual Design . 26
3.4 Communication Model . 27

3.4.1 Peer to Peer Model . 28
3.4.2 Client-Server Model . 28

3.5 Graphics Processing Distribution . 29
3.5.1 Control Distribution (Synchronized Execution) 29
3.5.2 Geometric Primitives Distribution 30
3.5.3 Pixels Distribution . 31

3.6 Prototype Implementation . 31
3.7 Design of the Server . 32

3.7.1 Networking layer . 33

viii Contents

3.7.2 Streaming Layer Based on JPEG 34
3.7.3 Streaming Layer Based on MPEG 35
3.7.4 Tracking Systems . 37
3.7.5 Tracking Information Handling 38
3.7.6 Virtual Reality Framework 39
3.7.7 VR Juggler Implementation 39

3.8 Design of the Client . 40
3.8.1 Visual Interfaces for Handheld Devices 41
3.8.2 Streamer on Handheld Device based on JPEG 41
3.8.3 Testing . 45
3.8.4 Streamer on Handheld Device based on MPEG 45
3.8.5 Interaction Information Channel 46
3.8.6 Testing . 47

3.9 Summary . 48

4 Architecture for Designing 3D Interactions 49
4.1 Introduction . 49
4.2 Implementation Goals . 50
4.3 Architecture Conceptual Design . 50
4.4 Interaction by Using the Handheld Device 52

4.4.1 Pen-Tablet Technique . 52
4.4.2 Selection using Handheld Device 52
4.4.3 Manipulation with the Handheld Device 53
4.4.4 Clipboard . 54
4.4.5 Virtual Cameras . 54
4.4.6 Virtual Map . 54
4.4.7 Text and Annotations . 54

4.5 Implementation of a Prototype . 54
4.5.1 Event Handling . 55
4.5.2 Graphic Representation . 56
4.5.3 Interaction Modules . 58
4.5.4 Implemented Interfaces . 58

4.6 Summary . 61

5 Interface Evaluation 63
5.1 Introduction . 63
5.2 Methodology . 63
5.3 Testbed Evaluation Approach . 64
5.4 Evaluation for Selection on the JPEG-based Streaming Interface . . 66

5.4.1 The Outsider Factors . 66
5.4.2 Performance Measures . 67
5.4.3 Testbed Evaluation . 67
5.4.4 Hypotheses . 68
5.4.5 Results . 68

Contents ix

5.4.6 Discussion . 68
5.5 Evaluation for Selection on the MPEG-based Streaming Interface . . 69

5.5.1 The Outsider Factors . 69
5.5.2 Performance Measures . 70
5.5.3 Testbed Evaluation . 71
5.5.4 Hypotheses . 71
5.5.5 Results . 72
5.5.6 Discussion . 74

5.6 Evaluation for Manipulation . 75
5.6.1 The Outsider Factors . 75
5.6.2 Performance Measures . 77
5.6.3 Testbed Evaluation . 77
5.6.4 Hypotheses . 78
5.6.5 Results for Selection . 80
5.6.6 Results for Manipulation . 83
5.6.7 Results for Task Completion 86

5.7 Discussion . 88
5.8 Summary . 89

6 Discussion 91
6.1 Introduction . 91
6.2 Conceptual Model . 91
6.3 Prototype implementation . 93
6.4 Future work . 95

6.4.1 Migration to a smaller device 95
6.4.2 Integration of virtual magic lenses 96
6.4.3 Automatic switching of metaphors 98
6.4.4 Integrating navigation . 98

6.5 Summary . 99

7 Conclusions 101

Bibliography 105

List of Figures

1.1 The magic-lens showing the see-through the lens e�ect. 5

2.1 A user wearing a head mounted display. 12
2.2 The physical setting of a CAVE system. 14
2.3 The CAVE system. 15
2.4 On the left, a spherical screen display. On the right, a personal-scale

spherical display . 15
2.5 On the left, the World-in-miniature interaction technique. On the

right an example applied to a virtual room [Stoakley 1995]. 17
2.6 The Go-Go interaction coordinate system [Poupyrev 1996]. 18
2.7 The Ray-casting interaction technique [Bowman 1999a]. 19
2.8 The user is able to select 3D objects using gestures sensed by a globe

[Pierce 1997]. 19
2.9 On the left, the user selects object using ray casting. On the right,

for the manipulation the interaction switch to a virtual hand with a
linear factor modifying the movement range. 20

2.10 The selection in HOMER relies on the ray-casting metaphor. 21
2.11 On the left a magic lens is used for exploring the structure of a house,

on the right combination of magic lenses are used to generate new
e�ects[Bier 1993]. 21

2.12 Two applications using a 3D Magic lens [Viega 1996]. 22
2.13 On the right, the tool palette. In the center, the window. The window

is divided into cells. In the small triangle in the upper part of every
cell, the border color indicates how the window is able to change
the properties of the object. The red pointer helps to validate the
modi�cation of the object. On the left, the result of applying the
operation on a portion of the circle [Bier 1993]. 22

2.14 The transparent prop consist of a plastic square with a tracking sensor
attached to it [Schmalstieg 1999]. 23

3.1 Architecture of the system . 28
3.2 Distribution data models . 30
3.3 Block diagram of the server . 32
3.4 Detail of the server architecture. 34
3.5 Architecture of the MPEG-based prototype 36
3.6 Block diagram of the client . 40
3.7 Two views of the �rst client prototype based on JPEG. On the left

the PDA with the tracker sensor attached at the upper part. On the
right a close up of the PDA's screen. 42

xii List of Figures

3.8 Graph of networking performance. The top shows the time for trans-
mitting a group of 16 frames, while the bottom shows the time for
receiving the same group of 16 frames on the PDA. 43

3.9 Graph of networking performance. The top shows the time for com-
pressing a group of 16 frames, while the bottom shows the time for
decompressing the same group of 16 frames at PDA. 44

3.10 Image of the second client prototype based on JPEG streaming. . . . 45
3.11 Image of the third client prototype based on MPEG streaming. . . . 46
3.12 Performance of the MPEG-based implementation 47

4.1 Diagram of the architecture. 51
4.2 Block diagram of Interaction Architecture 55
4.3 Scenegraph of the prototype . 57
4.4 UML diagram of interaction architecture. 58
4.5 The manipulation of objects is performed with a Go-Go interaction

technique. 59
4.6 On the left, is snapshot taken with our interface. On the right is an

object selected directly from the screen by use of a stylus. 60
4.7 Manipulating an object. On the left, a previously selected chair is

shown. Tacking advantage of the tracker attached to the handheld
device, the chair position changes according to the Go-Go interface
interaction technique. When the user decides the �nal position, the
chair's position is �xed after with a push of the button. On the right,
the scene after the user has copied the chair using the stored snapshot
is shown. 60

5.1 Diagram of 3D user interface testbed evaluation approach. Originally
published on [Bowman 1999b] . 65

5.2 On the left, the Sparse environment. On the right, a Dense environ-
ment. 68

5.3 Average selection time (in seconds). On the left, the Sparse environ-
ment. On the right, a Dense environment. 69

5.4 Trials performed by the user for this user study. Rows represents
the object movement. Columns represents the interfaces to be used.
Subjects are asked to perform all the possible combinations with both
large and small objects. 71

5.5 Empirical study con�guration. 72
5.6 Task completion time (seconds). On the left, static, large targets. On

the right, static, small targets . 72
5.7 Task completion time (seconds). On the left simple motion, large

targets. On the right simple motion, small targets in simple motion. 73
5.8 Number of errors. On the left, large targets in simple motion. On

the right, small targets in simple motion. 73

List of Figures xiii

5.9 Task completion time (seconds). On the left, large targets in random
motion. On the right, small targets in random motion. 74

5.10 Number of errors. On the left, large targets in random motion. On
the right, small targets in random motion. 74

5.11 User's answer about the interfaces. On the left, results to the ques-
tion: it was easy to select the interface. On the right, answer corre-
sponding to the question: I enjoyed using this interface. 75

5.12 Virtual room built to perform the evaluation of manipulation. 76
5.13 The user study setup. 78
5.14 Trials performed by the user for this user study. Rows represents

the arrangement between the insect and the box with respect to the
trial starting position. Columns represents the interfaces to be used.
Subjects are asked to perform all the possible combinations with both
simple and complex object movement. 79

5.15 Selection times for near objects. On the left, simple movement. On
the right, complex movement. 81

5.16 Selection errors for near objects. On the left, simple movement. On
the right, complex movement. 81

5.17 Walked distance for selecting near objects. On the left simple move-
ment. On the right complex movement. 82

5.18 Selection times for far objects. On the left, simple movement. On
the right, complex movement. 82

5.19 Selection errors for far objects. On the left, simple movement. On
the right, complex movement. 83

5.20 Walked distance for far objects. On the left simple movement. On
the right complex movement. 83

5.21 Manipulation time. On the left, near objects inserted into near boxes.
On the right, near objects inserted into far boxes. 84

5.22 Manipulation errors. On the left, near objects inserted into near
boxes. On the right, near objects inserted into far boxes. 84

5.23 Walked distances for manipulating objects. On the left near objects
inserted into near boxes. On the right near objects inserted into far
boxes. 85

5.24 Manipulation time. On the left, far objects inserted into near boxes.
On the right, far objects inserted into far boxes. 85

5.25 Manipulation errors. On the left, far objects inserted into near boxes.
On the right, far objects inserted into far boxes. 86

5.26 Walked distance for manipulating objects. On the left far objects
inserted into near boxes. On the right far objects inserted into far
boxes. 86

5.27 Task completion time. On the left, near objects inserted into near
boxes. On the right, near objects inserted into far boxes 87

5.28 Task completion time. On the left far objects inserted into near boxes.
On the right far objects inserted into far boxes. 87

xiv List of Figures

5.29 Graphs showing results from questionnaire. On the left, the percep-
tion of how easy was to select the object. On the right, the perception
of how easy was to manipulate the object. A one on the scale repre-
sents great di�culty, and a seven means great facility. 88

6.1 A rectangular magic lens . 96
6.2 A circular magic lens . 97
6.3 A �xed magic lens decoupled from the handheld device 97
6.4 Changing interaction technique. On the left, the magic lens

metaphor. On the right, when the user rotate the handheld device
180 degrees in Z-axis the interaction technique changes to ray casting. 98

Chapter 1

Introduction

1.1 Motivation
The number of available virtual reality applications has gradually increased, along
with the range of activities that make use of them. In the early days of the
�eld, because of high implementation costs, only users, such as the military
[Furness 1986, McCarty 1994] and space exploration [Fisher 1987] �elds, were able
to develop applications for providing realistic training in simulated extreme, high-
risk conditions.

However, overtime, as computer systems increased in power and new input and
output device technologies emerged, the prices related to implementing virtual real-
ity systems declined considerably [Lawton 2006]. Lower prices, and the attraction of
experiencing an enhanced level of immersion in 3D virtual worlds, has made possible
the applications of virtual reality to new �elds. In addition to traditional scienti�c,
medical, industrial, and academic areas, virtual reality concepts have diversi�ed to
art and entertainment [Burdea 2003]. An example of the wider presence of virtual
reality technologies is the Wii[Nintendo 2009] system, which is a video game console
that includes a controller for sensing 3D motion, that provides similar functions to
those o�ered by tracker devices in immersive virtual reality systems. In the future,
this expansion can be expected to continue and become further diversi�ed. The
integration of there new technologies into new apparatuses, such as mobile devices,
has resulted in a great variety of new applications integrating virtual and augmented
reality concepts [Schmalstieg 2002].

Working within 3D spaces is often considered to be more appealing than working
in 2D desktop environments. The experience of seeing 3D images and interacting
in 3D space resembles our real world, while adding the additional advantage of the
providing the capability of simulating environments and phenomena that are not
always possible to experience in reality. However, the creation of virtual reality ap-
plications is a complex task that requires the coordination of di�erent hardware and
software components. A virtual reality system captures and processes interaction
information provided by the user, after which, it provides simulated stimulus per-
ceptible by human senses. In order to provide a pleasant and credible experience,
the overall process must be accomplished in real-time.

Communication between human users and computers is established by means of
interfaces. The desktop metaphor o�ers an e�ective and easy to understand inter-
action model for 2D environments. Using a desktop, the user provides information,
by means of the mouse and a keyboard, to manipulate the controls and graphics

2 Chapter 1. Introduction

elements presented on the desktop screen. Since the user is able to see and �feel�
the activity she/he is performing, the tactile feedback information provided by the
mouse and keyboard enhance the interaction, The desktop provides a set of generic
interactions such as mouse clicks, drag-and-drop actions, and key presses, which
are interpreted in di�erent ways depending on the context in which they are per-
formed. The level of sophistication of 2D interfaces is a fundamental element that
has in�uenced the broad acceptance of computer systems in our society. Newcom-
ers intuitively learn the metaphor in a short period of time. Then, after the basic
interactions have been assimilated, these new users are able to interact with almost
any application, by means of the same set of interactions.

In virtual reality, the creation of interfaces for 3D spaces that have a level of
e�ectiveness and sophistication equivalent with the 2D desktop metaphor is a prob-
lem that has yet to be fully resolved. The diversity of input devices, technologies
for sensing movement in 3D space with six degrees of freedom, problems related
to depth clues, occlusion and other factors, all contribute to the complexity of 3D
interface development.

Several 3D interaction techniques have being proposed [Poupyrev 1998b,
Bowman 2006, Bowman 2001, Bowman 2008, Bowman 2005] along the evolution
of virtual reality technologies. However these interfaces have only proven to be ef-
fective in applications under speci�c and controlled conditions or environments, and
there is no current generic standard 3D interaction metaphor, that provides a level
of �exibility that is su�cient for use under di�erent environments and conditions.
In other words, an equivalent to the desktop metaphor for 3D environments does
not yet exist.

Interaction can be de�ned as all the activities taking place between a user and a
computer system that are necessary to accomplish a common task. For simpli�ca-
tion, the interaction tasks are studied separately here. Object selection, manipula-
tion and navigation are the most basic tasks. Selection provides the user the ability
to distinguish an individual object from among several other objects for the purpose
of manipulating it. Manipulation is de�ned as the ability to change the position of
an object. While navigation provides the ability to explore the environment. By
combining these three operations, an interface is able to o�er a basic set of interac-
tions that allow the user to explore and modify a virtual world. The interest of the
research described in this dissertation is focused on the selection and manipulation
of virtual objects in immersive virtual environments.

1.2 Research Goal and Challenges
The di�culty in establishing universal interaction methods in 3D spaces has lead
to the development of various interfaces, each with its own particular characteris-
tics. Each interface is designed to be suitable for speci�c tasks and/or conditions
in a virtual environment. However, the proliferation of interfaces has a potential
drawback, users must learn how to handle a speci�c individual interface for each

1.2. Research Goal and Challenges 3

separate activity. As activities become more complex and increase in number, users
can easily become confused since they are required to memorize di�erent techniques.

The research described in this dissertation conforms to the proposal of an in-
terface that can simplify interaction within 3D virtual environments. The proposed
interface is inspired by a metaphor called a magic lens, [Bier 1993, Pierce 1997,
Schmalstieg 1999] which is used extensively in virtual and augmented reality ap-
plications. However, this interface su�ers from limitations inherent to its imple-
mentation. The interface proposed in this dissertation not only tries to retain the
advantages o�ered by previous works, it also seeks to enhance its functions and
alleviate its limitations. The conditions the interface tries to ful�ll include:

• The interface is expected to be easy to learn and use: It should integrate
interaction metaphors that resemble familiar methods used in daily life, while
simultaneously considering the extension of capabilities necessary to overcome
the limitations imposed by reality. For example, a see-through lens metaphor
resembles a transparent glass window. If it is extended with an X-ray view, the
lens allows the user to explore the inner characteristics of objects. Therefore,
the adoption of familiar interaction techniques would reduce the time the
user expends learning how to use the interface and at the same time, would
encourage concentration on the task being performed, instead of manipulation
of the interface.

• The interface is expected to improve haptic sense feedback: As more senses
receive stimulus simultaneously, the feeling of immersion increases. Most
virtual reality systems o�er visual and sound immersion. If a handheld device
equipped with buttons and a touch screen is integrated into the system, the
tactile feedback information produced by physical contact with those elements
would provides additional clues to enhance interaction.

• The proposed interface is expected to improve manipulation accuracy: Some
previous 3D interaction techniques were noted for problems related to se-
lection and manipulation of small and distant objects [Poupyrev 1998b,
Bowman 1999a]. As the separation between the object and the user increases
visual clues tend to decrease, making the selection di�cult. Moving objects to
positions far away from the user results in the same problem. Capturing snap-
shots of the environment, which are then used to select objects such as this,
reduces the interaction space and increases accuracy. This idea is explored
in [Pierce 1997]. The user, wearing a glove, uses hand gestures for capturing
snapshots. Then, by manipulating the objects contained in the snapshot, the
user is able to manipulate the 3D object indirectly. However, since the manip-
ulation is performed in a 2D space, the di�culty of controlling the distance
relative to the user is a drawback of this technique. The partial occlusion of
a section of the environment by the snapshot is a minor disadvantage as well.

• The interface is expected to provide high resolution for detailed exploration:
On projector-based virtual reality systems such as the CAVE, small objects

4 Chapter 1. Introduction

are prone to lose detail due to the size of individual pixels, even though high-
resolution projectors are used. Developing a magic lens with a high resolution
display would provide close up details that are di�cult to perceive by most
projection technologies.

• The proposed interface is expected to o�er high �exibility: Handheld devices
are equipped with a processor, a storage unit, and a graphical display. Thus,
they provide a complete miniature computer system with characteristics simi-
lar to modest laptop computers. Such handheld devices are normally launched
with operating systems adapted to their hardware components, but they often
include programmable libraries for developing applications that are similar to
those developed for desktop computers. Therefore, developers should be able
to program sophisticated visual 2D interfaces and take advantage of all the
functions provided by the handheld devices by using familiar development
tools.

• The interface shall be developed with the goal o�ering set of interaction tech-
niques: By providing a set of basic generic functions that can be to be applied
in a wide range of environments and conditions, the proposed interface at-
tempts to simplify 3D interaction through the extension of 2D metaphors and
by combining 2D and 3D approaches.

• The interface is expected to o�er great extensibility: Since the handheld de-
vice is programmable, it will be possible to implement new functions. More-
over, because new handheld devices often include additional electronics com-
ponents such as accelerometers or the Global Positioning System (GPS),
which could be integrated for the creation of new interactions, it is possible
to program the new capabilities o�ered by handheld devices through soft-
ware libraries. As new 2D interactions are integrated into mobile devices,
and as users become accustomed to them, it will be desirable to extend their
application into 3D space.

• The interface is expected to be portable: Physical portability refers to the
size of the devices. The interface considers implementations for handheld
computers, Personal Digital Assistants (PDAs), and mobile devices that can
be carried in one hand. Software portability refers to the hardware and oper-
ating system's ability to support the interface. One important characteristic
the interface design would o�er is independence with respect to hardware
infrastructure and software platform.

• The interface is assumed to o�er real-time interaction response: An impor-
tant requirement of virtual reality systems is real-time interactivity which
contributes to the sensation of immersion. As new components are integrated
into the virtual reality infrastructure, the overall performance of the system
becomes prone to degradation. Therefore, mechanisms for reducing inter-

1.2. Research Goal and Challenges 5

communication delays and synchronizing activities among components are
essential design features.

• The interface is expected to o�er high adaptability: Since new handheld de-
vices appear continuously, an interface that can be migrated onto di�erent
devices while preserving the same basic interaction mechanism, is an advan-
tageous. At the same time, if the interface is capable of modifying individual
aspects of interaction through 2D interface programming, such interaction
could be adapted to new environments or conditions.

• It is assumed that the interface would be inexpensive: The equipment re-
quired for implementing the interface would consist of a handheld device and
an attached tracker system sensor. Thus, the price of a handheld system
would be just a fraction of the equipment costs of a complete virtual reality
system. Additionally, as the increasing use of powerful devices with graphic
interfaces and abundant processing power become more common in daily life,
any handheld device could be integrated into a virtual reality system to sup-
port interaction.

Figure 1.1: The magic-lens showing the see-through the lens e�ect.

Since the use of isolated interaction techniques limits the usability of the appli-
cations, a combination of several techniques are normally integrated to provide a
wide variety of interactions. The combination of interaction techniques stimulates

6 Chapter 1. Introduction

creativity in developers searching for novel forms of interaction. However, o�ering
an excessive number of interaction techniques tends to confuse the user. Therefore,
a set of fundamental interaction techniques that can be applied under di�erent con-
texts, while o�ering the same level of functionality, is desirable. In this research, the
use of the magic lens metaphor in combination with other interactions that minimize
its limitations is explored. Magic lenses have been extensively used in virtual and
augmented reality applications [Bier 1993, Brown 2006, Looser 2004, Stoev 2002].
The magic lens implementation proposed in this research enhances its functionality.

The overall goal of this research is to implement an interface based on the magic
lens metaphor using a handheld device. This goal is divided into the following three
sub-goals.

• The �rst short term sub-goal is to study the communication mechanism be-
tween the virtual reality system and the handheld device necessary for im-
plementing the magic lens e�ect [Bier 1993]. A previous study related to
computer graphics cluster technologies analyzes the possible rendering mod-
els for distributing rendering processing among cluster nodes [Chen 2001].
Although the study does not consider heterogeneous environments composed
of devices with varying performance or the capture of interaction information,
it provides important insight into the model type more suitable for the inter-
face. The distributed pixels model was selected for exchanging information
between the rendering computer and the handheld device, implemented as a
video stream. A study on distributing graphics by a stream is described in
[Lamberti 2003]. The interface proposed in this dissertation adds a synchro-
nization mechanism for providing real-time interaction.

• The second short term sub-goal is to create interactions with the �active�
magic-lens implemented on a handheld device. The term �active� refers
to the �exibility needed for attaching di�erent functions to the magic-lens
through programmed 2D interfaces displayed on the mobile display. Previous
works considered the use of dumb tablets [Szalavári 1997] or Plexiglas sheets
[Schmalstieg 1999] for implementing the magic lens e�ect. However, these
implementations only provide tactile feedback information to the user and
separate the tablet and 2D graphic interface, resulting in limited interaction.
One of the most remarkable limitations of previous interfaces, includ-
ing ray-casting [Bowman 1997b], Go-Go [Poupyrev 1996] and HOMER
[Bowman 1997b], is the loss of accuracy for small and distant objects
[Poupyrev 1998b, Bowman 1999a]. Since the interaction occurs in 3D space,
a hand movement used to manipulate an object will result in di�erent dis-
tance displacements depending on the distance between the object and the
user. For example, in ray casting, the user handles a ray. If the object is near
the user, a hand movement represents a small displacement. However, as the
distance between the user's hand and the object increases, the displacement
distance increases as well. For small object selection, the problem experi-

1.3. Contributions. 7

enced with previous interfaces is that the visual cues become more di�cult
to distinguish. The interface proposed in this work provides a more accurate
method for selection and manipulation by using snapshots.

• Finally, the third short term sub-goal is to build a set of generic interaction
techniques implemented around the magic lens metaphor. Obtaining maxi-
mum �exibility and extensibility are two concepts the interface considers in
its design.

1.3 Contributions.
The originality of the study is the implementation of the magic-lens metaphor
[Bier 1993] on a handheld device. The integration of several metaphors in the
interface make possible a novel exploration of 3D interfaces. Handheld devices
have been employed for providing text input, stroke-drawing [Ayatsuka 2000], con-
trol information [Kruij� 2003, Hartling 2005, Watsen 1999, Kukimoto 2005], and
for augmented reality [Schmalstieg 2002]. The personal interaction panel (PIP)
study [Szalavári 1997] provides a rich set of interaction techniques implemented
with �dumb� elements, such as a �at panel and a pen. The same study states that
by using a �pressure-sensitive �at display with pen�, such as handheld palmtops, the
interaction capabilities can be improved even more. However the study does not
expand on that concept.

Integration of a mobile device into a virtual reality system infrastructure provides
several advantages such as:

• Providing a programmable or �active� prop: The tactile feedback information
provided by a prop [Schmalstieg 1999, Szalavári 1997] enhances the interac-
tion since its adds additional stimulus. The proposed interface extended this
idea since the prop does not act passively as a transparent surface. It can
also display graphics, capture and process interaction information, and even
provide other stimulus, such as vibration.

• Improving accuracy: The interface provides for the selection and manipulation
of small and distant objects. It extends the concept proposed in the image-
plane interaction technique [Pierce 1997]. The selection is performed with
the support of snapshots. The original image-plane technique uses gestures
to capture snapshots, which are then presented in virtual reality in front of the
user, occluding the area covered by the snapshot. Implementing the snapshot
on the handheld device occludes the back part as well, but it is easier to
manipulate because it is contained inside a real object, not inside the virtual
space. Conceptually, the handheld device operates like a magic photographic
camera. The user takes a picture and the elements contained in the picture
are then subject to manipulation. Additionally, a camera is capable of storing
numerous pictures to be reviewed later. The same metaphor is used by the
handheld device that stores snapshots in a clipboard for future reference.

8 Chapter 1. Introduction

• Extending 3D interactions with the support of a handheld device: Previous
studies have explored the introduction of handheld devices for creating 3D
interaction [Ayatsuka 2000, Kruij� 2003, Hartling 2005]. However, the �exi-
bility o�ered by handheld devices have not been totally explored. The graphic
display, touch screen, sound, vibration, and networking, can all be combined
to build richer interaction techniques.

1.4 Organization of the dissertation
The rest of this dissertation is structured as follows. Chapter 2 presents the technolo-
gies used to implement immersive virtual reality systems, with a special emphasis
on input and output devices. A more detailed description of previous 3D interface
studies is provided as well.

Chapter 3 presents the proposed approach for implementing a magic-lens e�ect
with a handheld device. It starts with a description of di�erent models used for
distributing graphics processing between handheld device and the virtual environ-
ment rendering computer. Then, a description of an architecture used to provide the
magic-lens e�ect and capture the user's interaction information is presented. The
�nal part presents the evolution of an implementation with performance testing.

Chapter 4 describes an architecture used to create interaction metaphors for vir-
tual environments with the handheld device. The requirements for a software layer
that encapsulates a generic interaction task is discussed. Then, the architectural
design of a layer for creating interaction is presented. Finally, the implementation
of pevious well-known 3D interfaces, and the combination of interaction around the
magic-lens, are presented.

Chapter 5 comprises the evaluation of the interface using the developed proto-
typed, its discussion, and results.

Chapter 6 presents an overall discussion of the interface, its evaluation and
possible extensions.

Finally, conclusions and future work are summarized in Chapter 7.

Chapter 2

Background

2.1 Introduction

With virtual reality, it is possible to explore environments and phenomena that are
di�cult or even impossible to experience in the real world. The main appeal of
virtual reality is the possibility of experiencing alternative realities simulated by
computer systems. Hardware and software in collaboration with special devices
stimulate the user's sensory channels in order to emulate similar sensations which
the human brain is able to interpret as authentic stimulus obtained from the real
world. Similar to desktop computer systems, the special devices are classi�ed into
two categories. Input for devices capturing information to be processed by the com-
puter system and output for devices able to provide information to the user. Input
devices capture information to provide for the interaction of the user with the virtual
environment. The information is processed to modify the environment accordingly
and simultaneously generate new stimuli, produced by the output devices, which
re�ect the new environmental condition after the interaction took place. In order to
o�er a pleasant and realistic experience, the time elapse between the interaction and
the modi�cation of the environment must be near zero, instantaneously. Real-time
interactivity is a key element in virtual reality systems.

In addition to the input devices, the user requires supplementary communica-
tion channels which let them manipulate and control the simulated objects and
environment represented in the virtual reality system. The communication between
computer systems and humans is assisted by interfaces. Since there are more vari-
ables and factors to consider, the development, implementation, and evaluation of
interfaces for 3D environments is more complex and sophisticated than their 2D
counterparts. Although several 3D interfaces have been proposed, the de�nition of
a generic set of interfaces or methods of interaction does not exist. The creation of
3D interfaces is still a complex process.

This chapter describes the technologies employed for implementing immersive
virtual environments and their drawbacks. The methods proposed for interacting in
the environments represented by them. The e�orts for creating interfaces designed
for three dimensional spaces. And the kind of interactions that are possible with
those interfaces and their limitations.

10 Chapter 2. Background

2.2 Immersive Virtual Reality
Virtual reality is the computer technology which creates responsive synthetic worlds
that look like real ones. The simulated worlds are dynamic since the user is able to
modify the condition of the world based on interaction information provided through
input devices. The modi�cations in the arti�cial world occur in accordance with the
input information instantly, inducing on the user the sensation of being inserted in
the environment. The �nal goal of virtual reality technology is to produce on the user
the sensation of being totally immersed in a synthetic world [Sutherland 1965]. For
virtual reality applications, the term immersion refers to the state of consciousness
that the user experiences when he or she loses the self reference with the real world
to be substituted by a sense of presence in a arti�cially created world. To o�er total
immersion is still a goal virtual reality has not reached completely [Brooks 1999].
However, the ideas and concepts developed by virtual reality researchers have been
applied successfully regardless of its limitations. For example, most video games
rely on the real time interaction techniques employed in virtual reality. The player
feels like being part of the game, even though the user is seeing images displayed on
a TV screen or computer monitor, and using a joystick or other handheld control.
Other examples are the VRML [Carey 1997] and X3D [Brutdzman 2007] speci�ca-
tions, which represent attempts of creating virtual reality application through the
Internet. Although the two above mentioned examples are considered virtual reality
applications, since the user sees 3D images on a �at screen monitor and interacts
with the system through keyboard, mouse or joystick, the user still feels as if he/shes
is interacting with a computer, limiting the immersion feeling.

A system is considering immersive if it provides depth clues that stimulates the
perception of 3D spaces, if it is able to track 3D positions and create a correspon-
dence between virtual and real spaces, and if it provides supplementary stimulus
on others senses such as sound, touch, smell, and �avor. In addition to the techno-
logical aspects, the level of immersion is in�uenced by psychological and subjective
factors. But in this dissertation, the term immersion is restrained to systems capable
of o�ering visual immersion and able to track position in virtual space.

2.3 Input Devices for Implementing Immersive Virtual
Environments

Keyboards and mice are not restricted to 2D interaction. They can be used within
immersive virtual environment. However, their use is restricted to systems that o�ers
a �at surface where these input devices can be placed. They are not suitable for
immersive systems such as a head mounted display or CAVE which o�er freedom
to move and walk inside the system boundaries. Therefore, a di�erent kind of
input device is recommended for these systems. There are plenty of input devices
providing di�erent types of information such as joysticks, gloves, styluses, buttons
and so on. This diversity carries a drawback. Since each input device can be used to

2.4. Output Devices for Implementing Immersive Virtual Environments11

implement a di�erent set of interactions, if the application is complex and requires
more interactions than are included in a set, the user is forced to change the input
device, and a place where unused devices can be placed becomes necessary. A �exible
device able to alleviate this problem is a handheld device. It can be handled in one
hand, provides pen-tablet interaction, provides many functionalities, and with the
introduction of 2D interaction, some 3D task become easier to perform.

An important input device in immersive virtual environments is the tracking
system. This device senses the location and position of objects in 3D space.

2.3.1 Handheld Devices

An input device able to modify its properties according to the performed interaction
o�ers great �exibility for the implementation of interactions techniques. PDAs and
handheld PCs and other handheld devices provide a graphical touch screen, physical
buttons, sound, and networking. On top of that, they are able to perform computa-
tion and can store information by themselves. Previous works have introduced hand-
held devices for virtual reality systems [Ayatsuka 2000, Kruij� 2003, Hartling 2005,
Watsen 1999, Kukimoto 2005], and for augmented reality [Schmalstieg 2002]. How-
ever new interactions are able to be implemented using handheld devices in novel
ways. The work described in this dissertation explores the use of a handheld device
as a magic lens [Bier 1993, Viega 1996], extending the functionality of the original
proposal with the combination of the capabilities that mobile devices o�er.

2.3.2 Tracker Devices

The tracking system devices are equipment able to sense spatial three dimensional
positions and orientations. For their implementation several technologies have been
employed such as magnetic, acoustic, mechanics and optical.

After �xing an origin position, the tracking system is calibrated to set up a con-
trolled 3D coordinate system. Then, sensors register their position and orientation
with respect to the coordinate system at regular periods of times. Positions and ori-
entations are represented mathematically as 3D vectors and matrices respectively.
This information is sent to a computer in order to evaluate the future changes the
environment will su�er based on the information provided by the sensors. The prob-
lems and limitations of tracking devices depend on the technology employed, and
they will be discussed in the interface implementation.

2.4 Output Devices for Implementing Immersive Virtual
Environments

The Head Mounted Display [Sutherland 1968] and the CAVE [Cruz-Neira 1993] are
two examples of systems able to produce visual immersion.

12 Chapter 2. Background

2.4.1 Head Mounted Displays
There are several implementations of the head mounted display (HMD). The most
widely used consists of two miniature independent screens placed one in front of
each human eye. The screens are mounted in a structure similar to glasses or a
helmet in order to keep them in place. A computer system is in charge of generating
separate images for the left and right eyes simultaneously. With both images, the
human brain is able to generate three dimensional perception through a process
called stereopsis. The area of the brain specialized on vision compares the position
of the objects contained in both images. Then based on the di�erences, the brain is
able to make an interpretation of the distance or depth the object is located at with
respect to the position of the eyes. Therefore, near objects have a big di�erence
between both images, while far objects have small di�erence between both images.

Figure 2.1: A user wearing a head mounted display.

One tracking sensor is attached to the head mounted display in order to sense the
user's point of view and render the images accordingly. Rendering is the process of
generate synthetic three dimensional computer graphics images, generally employ-
ing special graphics cards in combination with graphics libraries such as OpenGL
[Shreiner 2004] or DirectX [Gray 2003].

Head mounted displays present some drawbacks which negatively impact the de-
sign of interactions. Visual clues produce discomfort and sometimes lead to depth
perception errors. The images are presented on both displays. The displays are

2.4. Output Devices for Implementing Immersive Virtual Environments13

separated from the eyes at a constant distance. Virtual objects are rendered accord-
ing to their location in the virtual reality which rarely coincides with the displays
position. Therefore, instead of focusing on to the object position, the eyes tend to
focus on the display. Another problem present in most head mounted displays is
narrow �eld of view. Field of view (FOV) refers to the angle of aperture that can
be seen on a display. The maximum �eld of view human eyes are able to perceive
is around 200 degrees, while a head mounted display o�ers a FOV between 30 and
60 degrees. Therefore, the head mounted display limits spatial perception, as only
a narrow portion of the environment can be seen at a time. With head mounted
displays the user is able to experience complete visual immersion. But, some head
mounted display occlude the real environment. Therefore, they are not suitable to
be used with a handheld device. See-through head mounted display designed to be
used for mixing real and virtual worlds represent an alternative that can work with
handheld device interaction.

2.4.2 The CAVE
The CAVE [Cruz-Neira 1993] is another technology which accomplishes the above
mentioned visual and spatial immersion. It consists of a small cube-shaped room.
Most implementations employ only four faces. The faces corresponding to the roof
and one wall are omitted. Projectors located on the back of every wall generate the
images which the user inside the CAVE is able to see. The �oor is the only face
where projection is generated from the front. For that reason the roof is omitted.
The other omitted face corresponds to the front wall which is used as an open door
for entering the room.

A tracker system is used inside the CAVE in order to sense the user's head and
objects. The total number of projectors depend on the technology employed and the
images' resolution. Two kind of projection technologies are widely used for creating
stereopsis: active and passive stereo. Active stereo projectors display right and left
images alternately at high refresh rate. Refresh rate is the speed a visual display
device updates the image. LCD shutter glasses are used for blocking and letting
pass light into the eyes in synch with which eye image the projector is displaying,
so when the left image is displayed only the left eye can see through the glass while
the right eye is blocked and vice versa. Passive stereo projectors use polarization or
spectral multiplexing for separating left and right images. In polarization, special
�lters mounted on the projectors are employed to modify the oscillations of light in
horizontal or vertical orientations. Then, special glasses let light pass through them
according to the kind of orientation each eye is assigned to. In spectral multiplexing,
the images are displayed simultaneously with di�erent colors. Color �lter glasses
cut out di�erent colors according to the �lter sensitivity.

Similar to the head mounted display, the CAVE has problems with visual depth
clues. Although the objects are projected according to their virtual position, the
user tends to focus on the CAVE's walls. Another problem is the resolution. Since
CAVEs are projector-based technologies, the area to be projected on is big compared,

14 Chapter 2. Background

Figure 2.2: The physical setting of a CAVE system.

for example, to a monitor screen. In order to cover the entire wall area, the pixel
size is increased, making them noticeable. With active stereo technologies, the
shutter glasses requires a synchronization signal in order to determine the open/close
sequence of each lens. If the signal is interrupted, occluding the sensor or the lens,
the 3D e�ect is lost.

2.4.3 Others Technologies
Workbench systems [Kruger 1994] provide an immersive experience with the aim
of o�ering augmented interaction. As the user is working on a table, the combina-
tion of virtual and real objects is more natural. Its use is recommended for tasks
where interaction with real elements is essential. Hemispherical display systems
[Shibano 2001] use special software and optics to display images onto curved sur-
faces. The images are adjusted or distorted by the system. The curvature of the
projection surface enhances the user's depth perception.

2.5 Interaction in an Immersive Virtual Reality System
An immersive virtual reality system requires special methods to provide interac-
tion. The system requires methods to de�ne how the user moves and walks in the
environment, how to perform a selection, movement and modi�cation of objects,

2.5. Interaction in an Immersive Virtual Reality System 15

Figure 2.3: The CAVE system.

Figure 2.4: On the left, a spherical screen display. On the right, a personal-scale
spherical display

16 Chapter 2. Background

and how to provide commands. The most intuitive approach is to emulate the in-
teraction methods employed in our real world. However, this approach can not be
applied most of the time due to the limitations imposed by the input and output
devices and the lack of perceptual information. For example, a user in a CAVE is
able to see objects in three dimensional space, but it is not possible to grab them
because they are merely projections. They do not have a physical existence. There
are research e�orts trying to simulate touch and force. However, haptic technologies
have not been reached miniaturized enough to implement in light, small size devices
able to be carried with comfort, without obstructing the interaction in the virtual
environment.

Even if the technology would emulate haptic forces, a system that only repli-
cates the interaction methods present in our real world would be limited to the
same restrictions. It is desirable to create �magic� interaction methods to augment
limitations present in reality. An interface o�ering good interaction techniques will
impact positively on the quality of the virtual environment applications. 3D inter-
faces represent an essential element for creating successful virtual reality systems.

2.5.1 3D Interfaces
There is no standard mechanism for interacting in a virtual reality system. Re-
searchers have proposed several methods, proving their e�ectiveness in particular
applications. However, there is no one set of interaction methods considered to be
fundamental. Researchers who design 3D interfaces are continuously searching for
�exible metaphors which provide the same generalization o�ered by a 2D desktop in
a 3D space. However, 3D spaces present more complexities. The user moves in three
dimensions, with six degrees of freedom. This freedom of movement represents an
advantage but on the other hand, it carries some inconveniences speci�cally when
manipulating an object with precision. The diversity in input systems is another
problem. The plethora of input information determines and in some cases limits the
kind of possible interactions, making their standardization di�cult. Depth percep-
tion and occlusion are other problems not present in 2D but they comes up in 3D
spaces.

2.5.2 Selection and Manipulation
The most basic operations to interact with an virtual environment are selection,
manipulation and navigation. Selection gives users the power of picking up objects
contained in the environment. It is the operation that identi�es and grab a spe-
ci�c object from a set of objects contained in an environment. Manipulation gives
the possibility to modify the object's position, its orientation or even its geometric
properties. In the real world, manipulation consists of handling the physical object
by hand. The properties of the object in�uence what kind of manipulation can be
applied on it. So a liquid or gas object requires a container while soft material
objects requires taking into account shape variation. In this dissertation, we narrow

2.6. Interaction Techniques for 3D Manipulation 17

the manipulation to rigid objects, or other words, objects that preserve their shape.
Navigation provides the capability of moving freely around the environment. Ma-
nipulation and navigation are closely related. Some navigation techniques can be
built using manipulation techniques. For example, grabbing the air and pulling with
the hand can represent the action of moving the view position toward the direction
of the hand. Some researchers consider manipulation a more fundamental task.

2.6 Interaction Techniques for 3D Manipulation

The creation of interfaces for 3D virtual environments has been a very active research
area. In order to study the similarities and di�erence among interfaces, several
classi�cations have been proposed. In [Poupyrev 1998b], interfaces are classi�ed in
two groups based on the position of the user respect to the virtual environment. In
the exocentric metaphor group, the user perceives the environment from the outside
like the view of God. In the egocentric metaphor group, the user interacts from
inside as being an element contained inside the environment.

2.6.1 Exocentric Metaphors

The most representative interface in this group is Worlds in Miniature (WIM)
[Stoakley 1995]. This interface provides a small scale 3D map view of the entire
virtual world (See Figure 2.5. Selection and manipulation are performed using the
scaled down object contained in the map. The WIM performance decrease as the
size of the environment increases. In other words, when the virtual environment is
large the scale map is so small that it is di�cult to distinguish small objects, preci-
sion of manipulation is also reduced because a small distance in the map represent
a long distance in the entire environment.

Figure 2.5: On the left, the World-in-miniature interaction technique. On the right
an example applied to a virtual room [Stoakley 1995].

18 Chapter 2. Background

2.6.2 Egocentric Metaphors
Two subgroups conforms to this metaphor: the virtual hand metaphors and the
virtual pointer metaphors. Go-Go hand [Poupyrev 1996] is the most signi�cant
example of the former. In Go-Go, the hand position is extended using a logarithmic
function. The interface prede�nes a threshold distance, around half the complete
extension of the arm. The Figure 2.6 shows this interaction technique.

Figure 2.6: The Go-Go interaction coordinate system [Poupyrev 1996].

When the user's hand is located inside this threshold the virtual hand moves as
a real hand does. But when the hand is extended outside the threshold distance,
a logarithmic factor is multiplied to the real hand position in order to extend the
virtual hand further. The main problem of the Go-Go interface is that its precision
decreases as the distance is elongated.

The mathematical expression of this behaviour is de�ned as

rv = F (rr) =

{
rr if rr ≤ D,
rr + α(rr −D)2 otherwise.

(2.1)

Ray-casting [Bowman 1997b] and Image-plane [Pierce 1997] are two examples of
the later sub group of metaphors. In ray-casting, a ray starting at the hand position
is extended along the tracker device orientation, representing a 3D pointer. When
this ray intersects an object the user is able to select the object using a button or a
gesture. The Figure 2.7 shows this interaction technique. Ray-casting is an e�ective
selection interface. However, it does not show good performance when high-precision
selection is required, for small or far away objects [Bowman 1999a, Poupyrev 1998b].
Manipulating objects with ray-casting is di�cult due to the restricted range of
movement provided by the interface.

The principle of the Image-plane interaction metaphor is to restrict the interac-
tion space from 3D into 2D space by using snapshots.

With this interface, the user is able to capture 2D views or snapshots from the
environment using gestures. Selection and manipulations are performed indirectly

2.6. Interaction Techniques for 3D Manipulation 19

Figure 2.7: The Ray-casting interaction technique [Bowman 1999a].

Figure 2.8: The user is able to select 3D objects using gestures sensed by a globe
[Pierce 1997].

20 Chapter 2. Background

using those snapshots. Selecting objects from a 2D picture is less prone to ambigui-
ties than selecting directly from a 3D space because all movements are restricted to
two dimensions. Manipulations such as translations and rotations are easy as well.
A movement on the 2D projected object produces an equivalent movement in 3D
space. Because the Image-plane technique simulates direct touch, it is easy to use
and intuitive. However, it is di�cult to control the distance between the user and
the 3D object.

An interface which combines the interactions in the two above-mentioned sub-
groups is HOMER [Bowman 1997b]. HOMER stands for hand-centered object ma-
nipulation extending ray-casting, and it is a two step interaction technique. First
ray-casting is used for selection, then, the interface switches to a hand metaphor
mode for manipulating the object.

Figure 2.9: On the left, the user selects object using ray casting. On the right,
for the manipulation the interaction switch to a virtual hand with a linear factor
modifying the movement range.

On manipulation mode the hand's movement is determined by a linear factor,
proportional to the object distance divided by the hand distance with respect to the
user.

rv = αhrr (2.2)

where:

αh =
Do

Dh
(2.3)

Although selection on HOMER is very e�ective since it relies on ray-casting,
the manipulation su�ers clutching problems. When the object selected is near,
the manipulation factor is small, producing a short range of manipulation, and in
the opposite case, if the object is far, the factor would be big, and it is di�cult to
manipulate the object with precision. To overcome this problem, the user is required

2.6. Interaction Techniques for 3D Manipulation 21

to progressively manipulate the object two, three, or more times in order to modify
the manipulation factor and produce a manipulation movement that helps reach the
�nal position.

Figure 2.10: The selection in HOMER relies on the ray-casting metaphor.

2.6.3 The Magic Lens Metaphor
The Magic lens metaphor [Bier 1993, Viega 1996] does not fall in one of the above
mentioned classes, however, it has a central role in our development. The magic
lens metaphor o�ers the capability of exploring and manipulating virtual objects in
a very natural and intuitive form, emulating the interaction employed in the real
world with an augmented lens. With the lens the user is able to see di�erent view
of the environment. The Figure 2.11 shows two applications of magic lens.

Figure 2.11: On the left a magic lens is used for exploring the structure of a house,
on the right combination of magic lenses are used to generate new e�ects[Bier 1993].

22 Chapter 2. Background

Figure 2.12: Two applications using a 3D Magic lens [Viega 1996].

The interface comprises two elements: a transparent glass-like window and a
tool palette.

Figure 2.13: On the right, the tool palette. In the center, the window. The window
is divided into cells. In the small triangle in the upper part of every cell, the border
color indicates how the window is able to change the properties of the object. The
red pointer helps to validate the modi�cation of the object. On the left, the result
of applying the operation on a portion of the circle [Bier 1993].

Users explore or modify virtual objects by covering them with the window. The
window transparency lets the user see through it. The tool palette contains a set
of operations that can be applied onto the virtual objects. In order to perform a
modi�cation to some objects, the user �rst selects the desired operation from the
tool palette. Then, the glass-like window gets the capability to apply the selected
operation over the objects that are covered by it.

The magic lens metaphor, as is described in [Bier 1993], was originally imple-
mented as a virtual tool, in other words, the elements conforming the interface
are computer simulated objects contained inside the virtual world with the same
limitations such as visual clues, occlusion problems an so on. The usability of the

2.7. Summary 23

Figure 2.14: The transparent prop consist of a plastic square with a tracking sensor
attached to it [Schmalstieg 1999].

magic lens metaphor can be extended by implementing the glass-like window us-
ing a real transparent plastic window with a tracking sensor attached to it. This
method is called passive haptic feedback [Ho�man 1998] or props and consists of
matching virtual objects with real object counterparts that have similar shape and
appearance. A virtual reality system implemented with props induce on the user
the illusion of both seeing and �feeling� virtual objects. The personal interaction
panel [Szalavári 1997] is an interface employing a prop in combination with a Vir-
tual Table. A plastic tablet and a pen, both tracked by individual sensors, are used
for providing the haptic feedback. Controls and interaction information is projected
on the tablet surface, and the interaction is performed through the movements of
the pen over the controls. A similar approach employs a physical transparent glass
as a prop [Schmalstieg 1999]. Controls are displayed on the Virtual Table. The
limitation of both approaches is the use of dumb props. The tablet is designed to
provide exclusively passive haptic feedback. A much richer set of interactions is
possible replacing the prop with a programmable device.

2.7 Summary
The creation of computer simulated worlds opens up the opportunity for exploring
phenomena which are di�cult to accomplish in reality. Virtual reality is a powerful
tool that stimulates human curiosity and creativity.

This chapter describes the most widely used technologies for implementing im-
mersive virtual environments with the aim of identifying the drawbacks that impact
the design of interfaces.

Although these technologies are not able to produce a totally immersive ex-
perience, advances in visual 3D technologies and 3D tracking systems have made
possible the development of applications which the support activities of simulation,
research, training, and education.

24 Chapter 2. Background

The possible forms of interaction in an immersive virtual environment are more
diverse than their equivalents in 2D desktop systems. Movement in 3D space, visual
clues, occlusions, and the lack of physical touch are factors which make the design of
interfaces complex. The chapter mentions previous works that implement interfaces
for selection and manipulation of virtual objects, along with their advantages and
limitations.

The interfaces presented in this research attempt to alleviate the drawbacks and
limitations found in the works mentioned in this chapter.

Chapter 3

Architecture for Implementing a
Magic lens Interface Using a

Handheld Device

3.1 Introduction
Interaction between user and computer system requires the use of interfaces. Such
interfaces provide the communication channels through which the user and computer
exchange actions and reactions. To perform their role e�ciently, interfaces must be
stable, reliable, and have a rapid response time. To some degree, they should be
imperceptible in the sense that they must not interfere with the activity that the
interface is supporting. In other words, they should promote the concentration of
the user on the tasks she/he performs.

For 3D immersive virtual environment systems, the interfaces must face the
problem of handling a large set of complex input and output information. On early
virtual reality systems, this was the main restriction for obtaining a �realistic� e�ect
[Brooks 1999]. However, with the evolution of tracking technologies, capturing mo-
tion for real-time interaction in 3D has been made possible. A number of problems
remain unresolved. These include the presence of physical wires, the size and weight
of tracking sensors and input devices, and limitations in input/output technologies.

This dissertation explores the use of a magic lens that can enhance 3D interac-
tion. A handheld device is used for producing transparent window e�ect, displaying
the portion of the image that it covers on the screen. At the same time, the handheld
device captures the user's interaction information, which is send back to the virtual
reality computer system to be processed, all in real-time. With the introduction of
a handheld device, the lens becomes an active element. It takes advantage of the
full set of 2D interactions implemented on the handheld device, giving them new
purposes oriented toward 3D interaction.

This chapter describes the design and architecture of the magic lens e�ect used
for implementation of the interface.

3.2 Interface Requirements
The implementation of a magic lens interface using a handheld device requires the in-
tegration of several technologies: computer graphics rendering, virtual reality frame-
works, networking, and mobile interfaces design. The challenge is to integrate all

26
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

these components with a high level of stability and reliability, so that they can
operate in real-time. The requirements the interface should ful�ll are:

• Graphic resolution: The handheld device requires a graphics card powerful
enough to display color images at the highest possible resolution (480*640
and above). Lower resolutions would produce poor interface-environment
integration.

• Reliable and low latency tracking system: The interface requires the contin-
uous and accurate sensing of the handheld device's position with respect to
the virtual environment. Ultrasonic, magnetic, optical or other technology
can be employed. However, it is important to consider the restrictions that
the tracking system imposes on the handheld device. For example, a mag-
netic tracker can su�er from distortions produced by the metallic parts of the
handheld device itself.

• Wireless networking with low latency: Wired technologies do not provide a
good solution for implementing the networking layer because they restrict
freedom of movement. A technology that uses a software-streaming layer
should also provide low latency in order to produce the real-time streaming
and command exchange required for natural interaction.

• A touch screen with a �exible graphical interface development platform: The
commands issued by the user require a graphical interface implemented on
the handheld device. Familiar and natural interaction is possible by employ-
ing a touch screen. Physical contact with the display surface of the mobile
device provides feedback information that enhances interaction tasks, such as
selection.

• A �exible and extensible software layer for 3D interaction: The design of in-
terfaces is a process of successive stages of implementation and testing. A
software layer that synthesizes and o�ers a set of pre-programmed interac-
tion mechanisms would be a valuable tool for implementing and testing new
interfaces.

• Long battery life: Battery life is a secondary point of the design, but a primary
when the interface is used. For long interaction sessions, good battery support
avoids interruptions needed for recharging batteries.

3.3 Interface Conceptual Design
The design philosophy of the interface follows the concept design of a magic lens
[Bier 1993, Viega 1996] with several extensions. The user is able to see-through the
lens. The lens can modify its e�ect based on the object it covers. The group of
interactions the interface comprises are:

3.4. Communication Model 27

• The lens can modify visual properties of the environment, allowing for explo-
ration based on di�erent attributes, such the inner layer characteristics of the
objects.

• Selection of virtual objects through lens contact: Object selection is performed
on 2D images. If objects can been seen through the lens, the user can select
them using a �pinch� action.

• Selection using snapshots: Much like a came, the lens can capture snapshots of
the environment, after which, the user can select objects from the snapshots.

• Clipboard functionality: The snapshots are retained in memory storage for
future reference.

• A �exible 2D control interface: Because the lens o�ers several interactions,
a mechanism for changing functionality is necessary. This implementation of
the magic lens integrates 2D control together with the lens and allows for the
modi�cation of available functions depending on the interaction status.

• Intuitive object manipulation: Manipulation is performed in 3D space. After
an object is selected, the interface can manipulate the object in a wider area
than possible with actual manipulation. An interaction metaphor that adds
elongation is integrated to provide this characteristic.

• Additional tactile and audio feedback: Handheld devices normally provide vi-
bration and audio. These elements can be added to the interaction to provide
additional clues.

• Provides input text and annotations. Like [Poupyrev 1998a] the lens is able
to capture text and handwriting annotations.

• Attach and review additional non-graphical information: Small marks located
in the virtual space indicate the presence of additional information. By se-
lecting such marks with the device, the information is displayed on the screen.

• Multiple viewing angles: The lens can select strategic camera positions and
assign a virtual camera position. Then, the lens can switched to and remotely
manipulate any of the prede�ned cameras.

3.4 Communication Model

The lens and the virtual reality projection system are separate components.
They require compatible methods for communication and task assignment.
In terms of implementation, both elements are computers with di�erent ca-
pabilities. The lens is mounted on the handheld device (which has limited
resources) while the virtual reality system is implemented on a high perfor-
mance graphic computer.

28
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

3.4.1 Peer to Peer Model

In the peer-to-peer model, computers are grouped in order to share resources.
Every participant in a group can establish direct communication with all
other members belonging to the group, and, can become either a producer or
consumer of resources. The model has advantages for pervasive applications.
In virtual and augmented reality, it is used for collaborative environments
[Nobuyuki 2005, Henrysson 2005] that address communication among devices
with similar capabilities.

3.4.2 Client-Server Model

In this model, computers are separated into two groups, servers and clients.
Servers are computers able to provide services, while clients are computers
that make use of those services. Due to the asymmetric capabilities of the
handheld device and virtual reality computer equipment, this model is most
suitable for implementing the magic lens.

Figure 3.1 shows a diagram of the magic lens interface implemented on a
handheld device. The tracking sensor attached to the mobile device senses its
position and orientation relative to the virtual environment.

Figure 3.1: Architecture of the system

3.5. Graphics Processing Distribution 29

The position and rotation captured by the sensor is transformed into vector
and matrix representation. Then, this mathematical information is transmit-
ted to a computer that has the assigned role of a tracking system provider
or server. The tracker server runs a background process that receives sensor
information at prede�ned regular time intervals. The process is capable of
opening and managing network connection ports in order to distribute all the
sensor information to client computers. Using the matrix and vector describ-
ing sensor information, the render process is able to determine the handheld
device position and render the environment accordingly. In addition to its
position, the system require the physical dimensions of the handheld device.
Therefore, its size must be predetermined in order to determine the area
covered by the interface. The rendering system simultaneously creates two
di�erent rendered images, one for the virtual environment and the other for
the handheld device display. A dedicated connection is established between
the rendering system and the handheld device in order to exchange images
and interaction information captured by the handheld device. These include
touch screen selection, button pushing, and screen interface interaction.

3.5 Graphics Processing Distribution

The magic lens implemented on the handheld device provides an example of
a distributed system. This can be de�ned as two computers with di�erent
processing, storage and display capabilities working together to produce a
uni�ed application. The processing load balancing and task synchronization
are characteristics that impact the overall performance of distributed system.
The division and assignment of such activities can be seen as the �rst step in
the implementation of the interface. In [Chen 2001], a taxonomy of graphical
data distribution strategies is presented. The study describes the possible
strategies for distributing graphics work among nodes in a computer cluster.
The taxonomy of the study provides the design guidelines for implementa-
tion of the graphics layer of the interface. Figure 3.2 shows a diagram of the
strategies. The division in this taxonomy was established based on the assign-
ment of rendering processing among nodes, and on the data to be transmitted
between the components.
The following subsections describe the distribution methods in greater detail.

3.5.1 Control Distribution (Synchronized Execution)

In this model, there is a unique application stored in the memory of both
computers, together with the virtual reality geometry database, that allows
the execution to be performed simultaneously. The client captures events and
sends the interaction information to the server. Because the interchange of

30
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

Figure 3.2: Distribution data models

information in this model is minimal, it does not require high network band-
width. However, the storage and processing activities consume signi�cant
resources that limited handheld can not handle.

3.5.2 Geometric Primitives Distribution

In this model, the application is split into two sub-applications and the geom-
etry database is stored only on the server. The server application extracts a
portion of the geometry based on client demands, and the geometry descrip-
tion is transmitted over the network. The client (handheld device) stores a
light version of the graphical application so that when a graphical modi�ca-
tion is performed the client requests new geometry from the server. Then the
server sends 3D graphics primitives (vertex, matrices) over the network to
be processed and displayed by the client. The primitive distribution models
o�er a good method for graphic rendering load balancing. If the distribu-
tion is performed among PCs, it is possible to use OpenGL [Shreiner 2004].
Handheld devices incorporate light versions of the OpenGL graphics stan-
dard called OpenGL/ES [OpenGLES 2009], but, there are incompatibilities
between the two. Although new OpenGL/ES implementations on handheld
devices can render 3D geometry with textures, light sources, stencils and so
on, the polygons are not considered to be primitive elements in OpenGL/ES.
Therefore, it is necessary to preprocess the geometry in order for it to be
presented exclusively as triangles before its transmission to the handheld de-
vice. As the environment increases in complexity, the bandwidth requirement
increases as well. Chromium [Humphreys 2002] implements a graphic distri-

3.6. Prototype Implementation 31

bution framework among nodes in a cluster. The bottleneck in Chromium is
the networking layer, a situation that is alleviated by employing �ber optics
for increasing bandwidth. However, bandwidth is limited when using wireless
technologies.

3.5.3 Pixels Distribution

In this model, the server performs all of the graphic rendering and distributes
pixels through the network using a compression technology, such as JPEG or
MPEG. The model is simple and requires uniform bandwidth. In [Chen 2001],
the author reports that the best trade-o� between networking and processing
corresponds to the pixels distribution model. Another important considera-
tion is that handheld devices have evolved to the point of becoming complete
miniaturized computer systems. This makes possible the creation of more
complex applications, so that with time, it could be feasible to implement a
primitive or even a control distribution model on a mobile device. Further-
more, as handheld devices become more powerful, software technology tends
to unify the development process, making possible the transparent migration
of an application among various platforms. On the other hand, it is important
to implement technologies applied to limited resource devices because minia-
turization promotes the integration of processors into a broader category of
devices. After the appearance of PDAs, cellular telephones, and digital music
players, technology advancements worked to integrate daily life devices with
the aim of o�ering a more comfortable lifestyle to users. With hardware in-
tegration proceeding into even smaller devices, software must be adapted to
the context and limitations of those devices. These include, the low memory,
low power and limited processing capacity that are characteristics present
in the smallest computer devices. In conclusion, implementing technologies
oriented to devices with limited computer and memory resources increments
the portability of the application onto a wider number of handheld devices.
Because of this, the prototype presented in this dissertation follows a pixel
distribution model.

3.6 Prototype Implementation

Three prototype devices were built with the purpose of validating our concept
model. The di�erence between them is the technology used for implementing
video streaming. In the �rst, an easy JPEG based streamer was implemented
that produced high delay results. In the second, the JPEG and graphics
support were modi�ed with the aim of speeding up the application. Finally,
in the third, a MPEG based architecture that provides a low-delay video
transmission was created.

32
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

3.7 Design of the Server

During implementation of the magic lens interface, the server performs most
of the intensive processing activities. It reeives and processes input events,
generates renders for the virtual environment and handheld device, and syn-
chronizes the overall application. The server design is shown in Figure 3.3.
The design follows a layered structure in order to provide �exibility, and each
layer can be implemented with di�erent software technologies. (The tech-
nologies used for this implementation are shonw in parenthesis within the
�gure). On the bottom is the networking layer that handles the low level
communication aspect between the server and client. Using networking sup-
port, the stream encoding layer generates the video that is transmitted to the
client. The application layer consists of three basic components. The track-
ing system layer receives positions and orientations from sensors and provides
that information to the graphics layer. The graphics is a component that
relies on OpenGL for rendering all the images in the system. And �nally, the
application component is the module that handles the synchronization and
management of all the elements.

Figure 3.3: Block diagram of the server

3.7. Design of the Server 33

Every layer in the architecture was implemented using a specialized software
framework or library. The modular design allows for the use of various soft-
ware technologies for each layer. The selection of the software libraries was
made according to:

• Performance: libraries with e�cient algorithm and modular design,
showing good bench march results.

• Availability: open source projects o�ering ready to use libraries that
are available for most operating systems.

• Flexibility: library source code modi�cation and extension makes the
development process easier and more robust.

• Portability: a library or framework that can run on di�erent hardware
architectures without code modi�cations, o�ers the possibility of exe-
cuting applications on a more extended range of computer systems.

The following subsections explain the implementation of each layer in the
architecture. Object oriented programming was the programming paradigm
employed.

3.7.1 Networking layer

The use of distributing programming abstractions such as Remote Procedure
Calling (RPC) [Stevens 1998] or Common Object Request Broker Architec-
ture (CORBA) [Henning 1999] provide a uni�ed layer oriented to integrating
an application distributed across a computer network, as well as handling
and hiding the low level details of the implementation. CORBA is a complex
technology that o�ers mechanisms for distributing objects through the net-
work, and is capable of combining various programming languages in the same
application. The use of these technologies is attractive for the programmer
because it reduces development time, and the di�erences among hardware
and network technologies are handled by the distribution layer. On the other
hand, the hardware requirements for CORBA implementations make it dif-
�cult to use on devices with limited resources. For handheld devices, the
Fnorb [Fnorb 2009] python implementation of CORBA o�ers support for the
WindowsCE [Boling 2003] operating system utilized on Window-based PDA's
and mobile phones. Its performance is limited to implementing distributed
objects. However, graphics support is not considered in the implementa-
tion. A standard Internet socket stack is present on most handheld devices.
An advantage of this approach is that the application gains control over the
transmission/reception process, which is important to maintaining a low la-
tency over a network and, a key element to accomplishing real-time interac-
tion. Therefore, the interface was implemented by o�ering basic services for
UDP/IP and TCP/IP port creation and administration.

34
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

With the support of the network layer, the server applications open two ports
in anticipation of the handheld device connection. One port handles video
streaming while the other handles interaction commands. Outgoing commu-
nication transmits images and incoming communication receives control and
interaction information. UDP/IP is a fast and unreliable protocol that is
suitable for transmitting information that does not require con�rmation on
the reception side. The images displayed on the handheld device refresh con-
stantly at high speed. Although some images are lost by the network layer,
reducing latency in image refresh is the priority. Therefore, the application
can tolerate a certain level of loss on image transmission. When a small num-
ber of images are lost, they can be replaced by previous successfully delivered
images. In contrast, to guarantee the correct reception of interaction com-
mands, the server uses a reliable TCP/IP connection. Commands are de�ned
by small packets that are not sent as frequently as the images. Therefore,
even though it is not as fast as UDP, the reliability of delivery is the priority.
As a result, TCP/IP is considered most suitable. After a handheld device
establishes a connection to the server, the network layer assigns two threads
that handle all communication.

3.7.2 Streaming Layer Based on JPEG

For the image streaming the �rst prototype implemented was based on JPEG
[JPEG 2009] technology. Figure 3.4 shows a diagram of the architecture.

Figure 3.4: Detail of the server architecture.

A range between 20 and 30 frames per second is su�cient to produce a pleas-
ant feeling of movement [Brooks 1999]. Recent developments in graphics card
design have been marked by increasing frame rates and increased complex-

3.7. Design of the Server 35

ity continuously rendered geometry. However, technology for mobile devices
is generally not equal to technology for PCs. Thus, in order to produce a
stream that can be displayed on the handheld device, a mechanism for reduc-
ing or controlling the frame rate employed to create the sequence of images
is necessary.
The system implements a scheduler that is �xed against the computer clock.
At regular intervals of 1/24 seconds, the scheduler executes a thread that
captures the last rendered frame for storage in a circular list. A separate
thread takes the images contained in the list and feeds them to a JPEG com-
pression software module. The implementation of the circular list employs the
producer-consumer method to synchronize the operation of both threads. The
JPEG compression module is implemented using the open source Independent
JPEG [IJEP 2009] library along with a function that stores compressed im-
ages directly into memory. The compressed images are organized in a second
circular list. This second list is shared in a producer-consumer relationship
where the compression module acts as the producer and the thread with access
to the network transmission module takes the role of consumer. The design
of the server is based on a pipeline architecture. Rendering, compression and
transmission are performed in parallel.

3.7.3 Streaming Layer Based on MPEG

The JPEG implementation is simple and easy to use. However, because the
compression is a frame by frame process, and due to the low speed decom-
pression of some handheld devices, a delay time of about one second results.
With the intention of reducing the compression/decompression time in the ar-
chitecture, a second prototype based on MPEG technology was implemented.
The MPEG speci�cation is a set of standard methods for compressing and
combining audio and video digital data into one stream. It is widely employed
in DVD production, Internet video on demand, and multimedia applications.
The FFmpeg [FFmpeg 2009] library is an open source MPEG compliant im-
plementation that was selected for the interface development because it is
�exible, extensible, and has the ability to handle several open source codecs.
The interface employs the MPEG TS (Transport Stream) container over a
UDP/IP protocol as is described in [Lamberti 2007, Lamberti 2003]. Figure
3.5 shows the architecture of the implementation.
The previously described scheduler is used to support the capture and storing
of information produced by the OpenGL rendering module. At regular inter-
vals of 1/25 second a thread takes the image produced by the render module
and inserts it into an image circular list. Information regarding the frustum
and the handheld device position are stored in a separate data list. The image
circular list is read by the MPEG encoding module, implemented using FFm-
peg. The use of two lists facilitates the synchronization of interaction between

36
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

Figure 3.5: Architecture of the MPEG-based prototype

server and client. Images and data are stored in both lists, but they share
a time stamp. With the time stamp, the server is able to render the same
frame where the interaction took place again, thus avoiding the storage of ev-
ery frame in memory. In order to assign a consistent and reliable time stamp,
the implementation relies on the MPEG structure. To o�er a �exible trade-o�
between data transmitted and processing time, the MPEG format speci�ca-
tion de�nes three di�erent types of frames; P frames (Post), I Frames (Intra)
and B Frames (Bi-directional). The I-frames are complete frames correspond-
ing to one image. These I-frames are employed as base frames for calculating
the B-frames and P-frames, which are incomplete frames containing position
di�erences among elements present between frames. By increasing the in-
tervals between I-frames, or in other words, increasing the number of B and
P frames, we are able to reduce the bandwidth, with the negative e�ect of
increasing the bu�ering and processing time. Because the interface priority
is to o�er a close real-time experience, our application avoids the creation of
B and P frames and only produces I-frames. This allows our aplication to
receive the frame representing the exact position of every element contained
in the virtual environment, as well as to reduce the bu�ering and processing
time on the client.

The synchronization mechanism between the server and client consists of re-
lating every image with the time stamp produced by the FFmpeg library.
Every frame in MPEG includes two time stamps; the Decoding Time Stamp
(DTS) and the Presentation Time Stamp (PTS). The former stamp registers
the sequence of time each frame should be decoded and the later registers
the time every frame should be displayed or presented to the user. The im-
plementation takes advantage of the PTS, which is the continual sequence of
integer numbers assigned to every frame by the codi�er. These numbers are
recovered after decoding at the client and determine the sequence the frames
are rendered in the handheld device. When the user performs a selection of

3.7. Design of the Server 37

objects on the images displayed on the mobile device, the PTS is captured and
sent back to the server to request re-rendering of the frame. The data circular
list mentioned above registers the frustum and handheld device position for
every image destined to the handheld device. The encoder assigns PTS to
the images, and their corresponding frustum and handheld device position.
On the client side, when the stream arrives, we decode and check the PTS for
every frame. When the user performs an interaction, the client collects the
image PTS, the command to be performed, and the touched screen position.
Then, it builds a packet that is sent to the server using a TCP/IP connection.
Finally, when an interaction packet arrives at the server, the server checks for
the PTS contained in the packet. Then, using this time stamp, the server
searches for the corresponding frustum and user's viewpoint on the data cir-
cular list to be used when rendering the image again in a background process,
and performs the interaction requested.
The server is responsible of storing and handling the information related to
the generation of the 2D projection based on the handheld device position.
Then, when an interaction event is captured on the mobile display, the time
stamp indicates what images should be re-rendered again in order to apply
the interaction requested on the correct frame. The server does not store
every frame produced by the render module, instead the system re-renders
the frames where the interaction occurred.

3.7.4 Tracking Systems

The prototype was tested with four di�erent tracker technologies, depending
on the facilities o�ered by the immersive system where it was tested. On
a CAVE system located at Osaka University a magnetic ascension Flock of
Birds (FOB) system equipped with four sensors and a wand was employed.
The magnetic tracker uses a low frequency magnetic �eld emitted by a trans-
mitter device, after which small sensors receive and determine their position
and orientation relative to the magnetic source. Metals and magnets distort
the magnetic �eld generated by the transmitter, resulting in inaccurate infor-
mation, so it is important to isolate the tracker components from materials of
this type. The FOB tracking range is 3.05 m, and the system updates track-
ing information at 144 Hz. The tracker uses a serial RS-232 connection to
the computer to send the information at a baud rate of 115,200. The latency,
which is the time that the system takes to report a change in the sensors, is
11.5 ms.
Using a Head Mounted Display Olympus MW601 system and an optical
HiBall-3000 tracker system [Welch 2001] equipped with four cameras that
provide the positions and orientations. In the HiBall system, the cameras are
calibrated by aligning their relative position with an array of LEDs mounted
on the ceiling. The LEDs emit light in a high-speed prede�ned sequence.

38
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

When the camera captures the light from the LEDs, camera position can be
calculated by triangulation. The disadvantage of HiBall is occlusion. It is not
possible to rotate the camera in the x-axis more that 90 degrees because the
camera will no longer be able to detect the LEDs. The size (7.3 cm tall and
5.4 cm diameter) and weight (about 300 grams) of the camera are factors that
can lead to user fatigue. The tracking range is de�ned by the ceiling mounted
LED array. In the laboratory where the prototype was tested, the tracking
volume comprises an area 3 m square and 2 m high. The update rate is 500
Hz for each camera. The tracker employs an Ethernet network connection to
provide information to the computer. The latency of the tracker is less than
1 ms.
An optional tracking system employed with the Head Mounted display was
the optical OptiTrack FLEX 100 system that consists of six cameras. Each
camera lens is surrounded by an infra-red light ring and small highly re�ective
spheres are used as markers. The cameras senses the infrared light re�ected
from the markers and by performing computer vision algorithms, is able to
calculate the position and rotation of the markers. The cameras can capture
100 images per second and are connected to a USB 2.0 port. The tracking
range depends on the size of the marker and placement of the cameras. The
maximum range is 7 m. The latency this of tracker technology is 10 ms.
Finally, for a portable version of the interface, a magnetic Polhemus 3Space
Fastrak tracker with three sensors was employed on a tiled display system.
The update rate of this tracker system is 120 Hz with a latency of 4 ms. The
system is connected to a computer using the RS-232 serial port or IEEE-488
parallel port at a maximum baud rate of 115,200. The tracking range is small,
at around 76 cm, but it can be increased to 3 m with a reduction in accuracy.

3.7.5 Tracking Information Handling

Tracking systems are connected to computer system that collects the infor-
mation provided by the sensors. A software driver is responsible for read-
ing and organizing this information. If each tracker system utilizes its own
driver, a common speci�cation or software interface is necessary in order to
de�ne a unique development platform. Most tracking system manufactur-
ers have relied on Virtual Reality Peripheral Network (VRPN), which is a
�exible and extensible library created to handle information provided by dif-
ferent tracker technologies. VRPN [Taylor 2001] is an open source library
that can be installed on most widely used operating systems. The library
includes pre-installed drivers for many commercial tracker devices, including
the four types listed in the previous section. Furthermore, if a driver is not
available, the library o�ers easily extensible generic drivers that can provide
the same function. VRPN o�ers a server background process (daemon) to
accept connection requests and to distribute the tracking information to sev-

3.7. Design of the Server 39

eral computers simultaneously through a network using the TCP/IP protocol.
VRPN is implemented in C and the library o�ers a complete set of functions
to integrate tracking information directly into C or C++ code. Applications
using VRPN have the advantage of easy migration, �exibility, extensibility,
and uniformity.

3.7.6 Virtual Reality Framework

The diversity of input and output devices when implementing virtual reality
systems has contributed to the proliferation of drivers and libraries and that
are di�cult to integrate into uni�ed applications. Moreover, after the creation
of a successful application, migrating to a di�erent hardware or software ar-
chitecture can be a time consuming task. For these reasons, researchers have
tried to develop frameworks that o�er generic development foundations that
minimizes the di�erences in hardware and operating systems, while providing
a unique development platform to the developer. Examples of such frame-
works are Cavelib [Mechdyne 2009], OpenTracker [Reitmayr 2005], DIVERSE
[Kelso 2002], SVE [Kessler 2000] and VR Juggler [Bierbaum 2001].

3.7.7 VR Juggler Implementation

The development of the prototype magic lens interface was implemented in
one such framework, VR Juggler. The selection was made on the basis of the
�exibility and portability that VR Juggler o�ers. The platform is based on
a set of independent software components that can be integrated according
to the particular application requirements. VR Juggler is an object oriented
framework programmed in C++. It is divided into eight modules.
VR Juggler kernel: Each application must be registered to and launched in
this kernel in order to be executed. The kernel is an event-driven background
process that organize the computation of the virtual reality applications. In
this module the graphics subset is integrated as well. VR Juggler is able to
interact with OpenGL [Shreiner 2004] or scene graphs such as SGI Performer,
OpenSceneGraph [Martz 2007] and OpenSG [Reiners 2002] for rendering.

• Gadgeteer: This device management system provides the drivers, and
the generic platform for managing all the information provided by the
input devices.

• JCCL: Supports controlling the con�guration �les for de�ning the input
and output devices.

• VPR: Provides platform-independent abstractions for low-level pro-
gramming elements as threads, sockets, processes, clocks and so on.

• Sonix: Support audio. This is the module that integrates APIs such as
OpenAL into VR Juggler.

40
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

• Tweek: CORBA, Java and JavaBeans provide the support necessary to
build GUIs based on the distributed Model View Controller. This mod-
ule allows the integration of Java and C++ applications in a distributed
model under the CORBA speci�cation.

• PyJuggler: A module for supporting Python programming.

• VRJ.NET: A module for integrating VR Juggler with .NET technolo-
gies.

Because we are developing a system for use in a heterogeneous environment,
the prototype was tested on three di�erent operating systems, Linux (Debian
and Ubuntu distributions), Windows (XP and Vista) and SGI IRIX, all with
di�erent hardware architectures.

3.8 Design of the Client

Figure 3.6 shows the architecture for the client implemented on the mobile de-
vice. Like the server architecture, the client provides networking, and stream-
ing layers. The actions of these layers are performed in inverse order to those
of the server. While the server creates a video stream from the images cap-
tured from OpenGL and builds packets that are transmitted through the
network, the client unpacks packets and decodes the video stream in order
to extract the images that are displayed on screen. In contrast to the server,
the client provides a 2D interface layer that presents the video on screen and
captures interaction information. There is also a layer for transmitting the
interaction information using a TCP/IP connection.

Figure 3.6: Block diagram of the client

3.8. Design of the Client 41

3.8.1 Visual Interfaces for Handheld Devices

Handheld devices are provided with a preinstalled operating system. The
controls and interaction events are determined by the set of libraries included
in the operating system. Those libraries are programmed in a high level pro-
gramming language such as C, or C++ while imposing a programming style.
For the prototype, three di�erent handheld devices were employed, a Win-
dows Vista handheld computer and two PDAs, one with WindowsCE and the
other with Linux Lineo. The libraries employed were all implemented in C
or C++. The evolution of the interface implementation required the substi-
tution of software technology in a speci�c layer according to the availability
and performance of the handheld device employed. The result was a set of
interchangeable layers with di�erent performance characteristics.

3.8.2 Streamer on Handheld Device based on JPEG

The �rst client prototype was a WindowsCE based PDA. It was selected
because of its size and processing characteristics. The libraries used for im-
plementing the server were available for mobile technologies such as Win-
dowsCE. Therefore, the Independent JPEG library and OpenGL/ES o�ered
the development platform for implementing the decoder and the 2D inter-
face layer respectively. Because the Independent JPEG library includes both
compression/decompression algorithms, the library was simpli�ed by elimi-
nating the functions for compression in order to reduce memory footprint.
Although the client only has to draw pixels, the prototype was implemented
on OpenGL/ES to take advantage of the graphics driver provided by the PDA.
The OpenGL/ES Utility Toolkit implementation for WindowsCE was used to
capture the interaction events and provide the display window. OpenGL/ES
is an OpenGL library speci�cally designed for handheld devices that does not
o�er all the functionalities present in OpenGL. For example, the commands
ReadPixels and WritePixels for reading and writing directly from and to the
frame bu�er are not present in OpenGL/ES. The display of images is accom-
plished by creating textures from images and applying them on surfaces built
with two triangle stripes that form a square.
Threads and networking support were implemented using the native Win-
dowsCE API. The networking layer was similar to the server layer described
above. The pipeline mechanism was implemented in the same way as the
server, but in the reverse order. First, the client requests a TCP/IP con-
nection to the server and simultaneously opens a UDP/IP port for receiving
JPEG compressed images. A �rst thread, which reads packets from the UDP
port, stores the images in a short list. We restrict the storing space to only
two compressed images in the list because of memory limitations. A second
thread takes images from the list and feeds them to the decompression algo-

42
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

Figure 3.7: Two views of the �rst client prototype based on JPEG. On the left the
PDA with the tracker sensor attached at the upper part. On the right a close up of
the PDA's screen.

rithm that produces the image. Finally, the OpenGL/ES library transforms
the image into a texture that is applied to the square described with two
triangles. The creation of textures in OpenGL/ES is limited to sizes that are
multiples of two. For that reason the system, only processes images with a
resolution of 256*256 pixels. The OpenGL/ES interface detects interaction
events that are inserted on an event list that is read by a third thread which
transmits to the server using the TCP/IP connection previously established.
Figure 3.7 shows the prototype.

A second prototype with the same PDA was implemented with the aim of
reducing the delay and processing time. This prototype replaces the graphic
support with a native graphics library that has direct access to the PDA's
frame bu�er. The name of the library is Game API (GAPI) and it is most
commonly used for implementing video games on mobile architectures. GAPI
makes it possible to switch the graphics operation of the PDA from aWindows
environment to direct frame bu�er memory access, thus giving the program
full responsibility of the display creation. To access the GAPI library, the
JPEG decompression layer requires a signi�cant amount of modi�cation in
order to reduce the memory required for decompressing images. Compres-
sion and decompression algorithms in JPEG process one image line at a time.
With direct access to frame bu�er memory, the application has two advan-
tages: First, the application is able to draw to screen immediately as a line
is decompressed, thus saving time. Second, in terms of memory usage, it is
only necessary to store one line of the image for decompression because after
the line is decompressed, it is immediately moved into the frame bu�er and
the process is repeated for the next line. The Figure 3.10 shows the second
prototype.

3.8. Design of the Client 43

Figure 3.8: Graph of networking performance. The top shows the time for trans-
mitting a group of 16 frames, while the bottom shows the time for receiving the
same group of 16 frames on the PDA.

44
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

Figure 3.9: Graph of networking performance. The top shows the time for com-
pressing a group of 16 frames, while the bottom shows the time for decompressing
the same group of 16 frames at PDA.

3.8. Design of the Client 45

Figure 3.10: Image of the second client prototype based on JPEG streaming.

3.8.3 Testing

For both prototypes, the server application was tested on Linux and Windows
XP using a Pentium 4 3.2 GHz desktop computer with 1 GB memory. A
Toshiba Genio e830 with an XScale PXA263 CPU with 128 MB memory was
tested as the PDA device. IEEE802.11g was used for the wireless connection.
For the tracking system, HiBall systems were used.
For the �rst prototype, the performance was poor. It displayed 256*240 24-bit
color images at around six frames per second. The delay in the interface was
about two seconds. This was not considered suitable for interaction.
The second prototype displayed 256*240 24-bit color images at around 12
frames per second with a delay of about 1 second. Figures 3.8 and 3.9 show
graphs of the compression and decompression times and the transmission
reception times between computer and handheld device. The decompression
step was identi�ed as the bottleneck of the application.

3.8.4 Streamer on Handheld Device based on MPEG

To alleviate the bottleneck on the client, the next prototype substituted the
JPEG layer for MPEG streaming technology. Server and client were then
re-implemented. For the client, the implementation was made according to
[Lamberti 2007, Lamberti 2003]. At �rst, because of incompatibilities with
WindowsCE based technology, the PDA was replaced by a Linux Lineo based
PDA. The library FFmpeg was compiled and tuned for Linux. The FFmpeg

46
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

Figure 3.11: Image of the third client prototype based on MPEG streaming.

library itself includes networking support for video reception and synchroniza-
tion. As images are decompressed and displayed on the PDA's screen, the time
stamp number is veri�ed. When an interaction event such as a screen touch
is produced, the client application creates a network packet that includes the
time stamp and the interaction information that is then transmitted to the
server.
The interaction information is captured in the native PDA platform Qt
[Qt 2009]. An additional advantage of implementing in Qt is the portabil-
ity of the system. After a test with the Linux based PDA, it was found that
the chip does not support intensive MPEG streaming in real-time so the ap-
plication was migrated to a handheld PC without any modi�cation in code.
The handheld PC prototype increased the display area to 800*600 pixels. The
Figure 3.11 presents a view of the prototype.

3.8.5 Interaction Information Channel

The interaction information is captured on the handheld device and sent to
the server for interpretation, and �nally to modify the environment accord-
ingly. The architecture de�nes an interaction packet protocol that establishes
a uniform mechanism of communication between the server and client. The
client is responsible for generating packets following this protocol. The client
2D interface captures events such as pressing buttons or selection on the touch
screen, generates the corresponding packet and then delivers it to the network
layer for transmission. On the server side, when the packet arrives, the server
relates the packet with a table of possible interaction events to determine the

3.8. Design of the Client 47

action that must be performed. Finally, an event that is to be delivered to
the internal VR Juggler kernel is generated in order to execute the operation
required by the interaction information.

3.8.6 Testing

The server application has been tested on Linux and Windows using a Pen-
tium 4 3.2GHz desktop computer with 1GB memory. A CAVE system using
a Windows XP cluster with 17 nodes (Xeon 1.60GHz/1066MHz/Dual core,
GPU ATI FireGL 7350/1GB Memory) has also been tested. A VAIO VGN-
UX72 Intel Centrino Core 2 Solo, 1 GB memory computer with a display of
1024*600 running Windows Vista was tested for the client side. IEEE802.11g
was used as the wireless connection. For the tracking system, FOB and Hi-
Ball systems were used. With this equipment, the handheld device displayed
800*600 24-bit color images at 25 frames per second with a mean delay time
of 127.8 ms. Figure 3.12 shows an example �uctuation of latency over about
20 minutes, measured as the time di�erence between frame transmission at
the server and reception of the corresponding acknowledge packet.

Figure 3.12: Performance of the MPEG-based implementation

48
Chapter 3. Architecture for Implementing a Magic lens Interface Using

a Handheld Device

3.9 Summary

A distributed system based on a client-server architecture was developed in
order to implement the magic lens e�ect on a handheld device. A tracking
sensor attached to the mobile device helps to determine its position relative
to the virtual environment. The server generates all the images for the virtual
environment, including the images corresponding to the portion of the area
that the handheld device covers in the environment. The images correspond-
ing to the handheld devices are collected for building a video stream that is
transmitted over the network. Then, the mobile device displays the video
stream and simultaneously captures interaction information provided by the
user. In order to provide the illusion of immersion, real-time interaction is an
important feature in virtual environments. For that reason, the architecture
evolved from a JPEG based streaming technology to MPEG based streaming.
Network delay led to this evolution. The architecture was implemented on a
virtual reality framework that o�ers input-output device independence, scal-
ability and con�guration �exibility. The result is an implementation that is
able to migrate from PC desktop computers to visualization cluster systems.

Chapter 4

Architecture for Designing 3D
Interactions

4.1 Introduction

The characteristics of the input devices in�uence the design of the interac-
tion techniques. The diversity of input devices for immersive virtual reality
provides a rich set of possibilities for creating interactions. However, exces-
sive diversity makes it more di�cult to establish a set of generic interaction
techniques. From the programmer's perspective, this diversity carries other
problems. Each input device comes with a driver or a software module to
read and provide input data to applications. This means a programmer must
create code speci�c to every device. There are several research e�orts o�er-
ing libraries and frameworks that work to alleviate this problem, by o�er-
ing a generic development platform: CaveLib [Mechdyne 2009], DIVERSE
[Kelso 2002], SVE [Kessler 2000] and VR Juggler [Bierbaum 2001]. Applica-
tions programmed using these frameworks gain the advantage of easy migra-
tion onto di�erent hardware platforms. However, 3D interface development
does not take signi�cant advantage of these software architectures because the
interface programming occurs in an upper layer above input data handling.
In other words, for an interface developer, it is not especially important to
worry about whether the application will run on one hardware platform or
another. Instead, it is more important to know what the characteristics of the
input devices are. This includes, for example how many buttons they have,
what kind of gestures they can identify, how many degrees of freedom they
have, and so forth.
With a handheld device, a standardized set of 2D interfaces are introduced
providing 2D interaction metaphors that can be extended into 3D. Moreover,
as the handheld device is attached to a tracking sensor device, the device
can also be used as a wand device capable of implementing 3D interactions.
Numerous software layers are available to handle the available interaction
techniques. Choosing the most suitable metaphor, according to the context
the handheld device is applied in, provides more �exibility in the overall sys-
tem. This chapter describes an architecture based on a set of generic modules
that when combined, provides a full range of interaction techniques along with
their management.

50 Chapter 4. Architecture for Designing 3D Interactions

4.2 Implementation Goals

The architecture described in Chapter 3 accomplished the goal of o�ering an
implementation of the magic lens metaphor on a handheld device. The inter-
face was tested on di�erent hardware and software con�gurations and showed
similar performance on all of them. With the introduction of the handheld
device, a full set of 2D interactions was modi�ed to provide an extended ver-
sion for 3D interactions. Since the tasks are implemented following the same
mechanisms o�ered by the 2D version, one advantage of this approach is that
the users can easily learn how to use the interface. Furthermore, in order to
take full advantage of the handheld device potential, the system combines the
magic lens metaphor with other 3D interactions techniques. For the correct
combination of interactions, the system requires a software layer that handles
the di�erent metaphors, switching between them according to the context in
which they are applied. This layer provides more �exibility and extensibility
to the interface. The same layer can be used for implementing interfaces with
di�erent input devices during the interface evaluation process.
Interfaces implemented with this architecture take advantage of:

• Flexibility: Some interfaces extend the interaction of other interfaces.
For example, HOMER uses ray-casting as a selection tool and later
switches to a hand manipulation behavior like Go-Go, but with a dif-
ferent extension factor. Therefore, establishing the basic operations in
the form of modules makes it possible to combine them freely. As a
result, a complex interaction technique can be formed as a set of more
basic interaction elements.

• Reusability: Basic building blocks can be reused, creating complex in-
teraction by integrating basic interactions.

• Performance: Programming highly e�cient building blocks would im-
pact positively on the applications because all interactions techniques
would rely on the same set of modules.

4.3 Architecture Conceptual Design

A previous study combining interaction techniques is Chasm [Wingrave 2008,
Ray 2007], which describes an architecture for implementing several
metaphors using di�erent input devices. The architecture proposed in this
study is a concept-oriented design, which presents interfaces as combinations
of reusable function chunks (concepts) organized in tiers. Chasm has been
used for implementing evaluation test beds that employ several interaction
techniques in one application, thus o�ering greater �exibility. However, since
the development of the interface proposed in this proposal focuses on a single

4.3. Architecture Conceptual Design 51

Figure 4.1: Diagram of the architecture.

input device (the handheld device), as opposed to the goal Chasm is pursu-
ing, the use of Chasm was not considered in the development of our interface.
Chasm represents a complex infrastructure focusing on describing interactions
through a set of rules that are mapped onto input devices. Instead of using
Chasm, a thinner, generic layer was built that provides direct access to input
information and their e�cient distribution to modules implementing the in-
teractions. The modules worked as building blocks for creating interactions
that are more complex.

Figure 4.1 shows a block diagram of the concept design. In this architecture,
the input distribution module delivers the input information to the current
active interaction. As illustrated in the �gure by the solid arrow joining the
input distribution module with interaction module 2 only one interaction can
be active at a given time. The dot arrows show references to deactivated
interaction modules. The input distribution module captures the input infor-
mation and simultaneously checks for the current status. The status de�nes
how the input information is interpreted, whether as control or as interaction
information. Then, depending on the active interaction, the intermediate
module delivers the information to the corresponding interaction module for
processing. The interaction modules are able to call to the rendering module
directly in order to provide visual support, such as a graphical representation
of the interface, object intersection, etc. Since the rendering process employs
the interaction information when creating the images, the rendering module
is the best candidate to be the module responsible for updating the status
information. The term input information refers to the information produced
by the user as a result of its interaction. Input information can be generated

52 Chapter 4. Architecture for Designing 3D Interactions

by the 2D interface or the tracking system. When the information is gener-
ated by the handheld device, actions such as selecting a button on the display
screen are interpreted by the handheld device, which then builds a packet
with the input information to be sent to the server. When the packet arrives
at the server, the input distribution module delivers information captured at
the handheld device to the corresponding interaction module. As such, 2D
input information is processed by the handheld device. The layer is small,
and easy to extend. Every time a new interaction is added, a new module is
registered in the input distribution module. The new interaction module is
then able to receive input information.

4.4 Interaction by Using the Handheld Device

The use of a handheld device provides additional input/output information to
the virtual environment system, extending the possible forms of interaction.
Most handheld devices are designed to be manipulated with both hands in
an asymmetric interaction arrangement. The non-dominant hand grasps the
device while the dominant hand manipulates the device controls and touch
screen. A click on the touch screen can be performed with bare �ngers or
using a pen-like stylus. The interaction with a handheld device resembles the
action of writing with a pen on a tablet while providing support with the
other hand. This is known as the pen-tablet technique.

4.4.1 Pen-Tablet Technique

The pen-tablet technique o�ers several advantages to the design of interfaces
for immersive virtual environments.

• Reduces the DOF of interaction from 3D to 2D.
• O�ers passive haptic feedback.
• Manipulation task can be performed with more precision because the

interaction is performed with a static image on a 2D limited surface.

The pen-tablet technique sets up constrains to 3D interaction, limiting the
interaction space into a more comfortable and easy to handle 2D environment
captured on the tablet display area. Since the user manipulates a real object
(the handheld device) as the interaction tool, the user receives passive haptic
feedback that enhance the immersion experience.

4.4.2 Selection using Handheld Device

The interface proposes two options for selecting an object:

4.4. Interaction by Using the Handheld Device 53

• Direct pointing: When the object is visible on screen, the user is able
to select it directly using the touch screen. This method is e�ective for
selecting static objects that can be identi�ed without ambiguity.

• Using a snapshot: It is possible to store a snapshot and then to select
an object from it. This process is similar to taking a picture of the
scene and then performing the selection on that picture. This selection
method o�ers more stability and precision.

4.4.3 Manipulation with the Handheld Device

The pen-tablet technique is used for selecting objects. After selection, the
role of the handheld device is modi�ed and it becomes in a 3D manipulator
device. During object manipulation, the handheld device becomes an actual
proxy for the virtual selected object. Wherever the handheld device is moved,
the virtual object will move to the corresponding position in the virtual en-
vironment. This easy-to-understand metaphor has the same limitations that
real object manipulation has, so several extended approaches can be used:

• Ray casting for interaction. During object manipulation, the distance
between the handheld device position and the selected object is pre-
served. This manipulation method o�ers a simple manipulation tech-
nique that is useful when the relationship between user and object does
not change signi�cantly.

• Using a �shing-reel [Bowman 1997a] approach. An additional 2D slide
control included on the handheld device display helps in manipulating
the distance between the handheld device and the virtual object. The
drawback of this approach is that the manipulation action is separated
into two di�erent controls, decreasing the performance of the interface.

• Using HOMER-like manipulation. The handheld device is manipulated
as a stylus on a HOMER interface. When an object is selected with
HOMER, two distances are calculated, the distance between the user
and handheld device and the distance between the mobile device and
virtual object. Using both distances, the interface calculates a linear
extension factor. Then, when the object is manipulated, the interface
applies the calculated linear factor to the object in order to deter-
mine the �nal movement. This method presents the same problem as
HOMER: That is, clutching. If after a near object is selected, the user
wants to move it to a distant location, the factor is so small that it
requires several steps to accomplish the task.

• Using a Go-Go manipulation style. After selection, the object is at-
tached to the handheld device. If the handheld device is inside a
threshold zone, the object will have the same position the handheld

54 Chapter 4. Architecture for Designing 3D Interactions

device does. However, when the handheld device is outside the thresh-
old, the object position is multiplied by a logarithm factor that extends
the separation between handheld device and the object.

4.4.4 Clipboard

The interface stores all of the snapshots taken in a clipboard tool for future
reference. Previous snapshots can be used to create a history view of the
environment, or to refer to an old object arrangement. Advanced functions
include the undo operation, which restores the environment to the state shown
in the snapshot.

4.4.5 Virtual Cameras

The magic lens interface can be thought of as a virtual camera. The mobile
device screen shows the user images that are generated from the handheld
device view point just as a camera does. If the user �nds a position in the
3D environment that o�ers a suitable point of view for a speci�c task, that
position can be stored, and a virtual camera appears in the environment
indicating its position. The screen interface on the handheld device allows
the user to switch views to any of the virtual cameras, transfer such views to
the real handheld device, and perform interaction tasks from those viewpoints.

4.4.6 Virtual Map

To support navigation, a view of the entire virtual environment is represented
as a map. The user is able to change position by selecting a new location on
the map. This interface will be extended to o�ering object manipulation as
is possible in world in miniature interface.

4.4.7 Text and Annotations

Annotations, controls, and text can be integrated on the handheld device as
shown in previous studies [Poupyrev 1998a].

4.5 Implementation of a Prototype

To verify the feasibility of the architecture, a prototype was developed. The
architecture is programmed on top of the VR Juggler framework. Figure 4.2
shows the block diagram of the interaction architecture.
The next subsection gives an explanation of the blocks.

4.5. Implementation of a Prototype 55

Figure 4.2: Block diagram of Interaction Architecture

4.5.1 Event Handling

Virtual reality frameworks are based on an event-driven programming
paradigm. On VR Juggler, a kernel software module is responsible for con-
trolling the loading and execution of applications. When an application is
executed, the kernel provides a control loop that continuously calls software
methods in a prede�ned sequence. In order to create an application, the de-
veloper must provide source code for the software methods that are called
by the control loop. The number of software methods to be implemented
depends on the graphics library employed. There are di�erent software meth-
ods for OpenGL [Shreiner 2004], OpenSceneGraph [Martz 2007] and OpenSG
[Reiners 2002]. Regardless of the graphics library employed, every application
must implement three fundamental methods: preframe, draw and postframe.
These correspond, respectively, to the software method called before, during,
and after frame rendering.
In order to render the virtual environment according to the user's point of
view, VR Juggler requires the user position and all the interaction information
provided by input devices. For that reason, all input information is captured
by the preframe method, before the rendering is performed.
Although the prototype uses a VRPN client module for receiving informa-
tion from the tracking system, it is not implemented using the VRPN library.
Instead, the prototype relies on VR Juggler to acquire input information.
VR Juggler implements proxy [Gamma 1995] functions to create a uniform

56 Chapter 4. Architecture for Designing 3D Interactions

and �exible mechanism for communicating with di�erent device drivers. The
proxies are classi�ed into seven categories depending on the type of informa-
tion the devices provides: analog, digital, command, glove, keyboard-mouse,
position, and string. Classi�cation is made depending on the type of captured
information. For example a digital proxy registers an on/o� event, position
registers a vector containing a 3D position and a matrix containing rotation.
The programmer integrates the proxy function into the program and the VR
Juggler framework handles the connection with the corresponding input de-
vice driver. VR Juggler provides drivers for several input devices and libraries,
one of which is VRPN. A VR Juggler layer called Input Manager attaches the
proxy with its corresponding device driver at run time. The advantage of
this separation is that proxies can be con�gured for connection with di�erent
drivers. The proxy con�guration is performed with a �exible XML �le format
called JCCL.
The prototype extends the preframe method in order to capture the informa-
tion provided by the proxy. Then, the prototype checks for the interaction
status in order to propagate the input information to the corresponding inter-
action module. The propagation mechanism is implemented by using dynamic
pointers. All of the interaction modules are registered to the application,
which includes a stored pointer table. The application allows only one active
interaction module at a time. When the interaction metaphor is changed, the
interaction module is located in the pointer table and the application then
switches to it. The interaction status determines the method called in the
interaction module.
The interaction status determines the interpretation of the input events. For
example, if a user is using a stylus with one button, the action performed
by pushing the button changes according to the task the user is performing.
If the user is selecting an object, when the button is pushed, the object in
the current position is selected, but if the user is starting a trial, pushing the
button starts a new trial. The possible interpretations of an input event are
predermined, and the interaction modules provide methods for each possible
interpretation. Then, when rendering is performed and the interaction status
is checked, the correct method is called. In the prototype, the classi�cation has
two groups: control and interaction. Control refers to the events that provide
commands or switch the interaction mode. Interaction refers to events that
directly help the interaction.

4.5.2 Graphic Representation

All rendering activity relies on OpenGL. However, describing complex geome-
tries in a structured representation with only raw OpenGL is cumbersome. A
more suitable approach is to employ a scenegraph. Scenegraphs o�er a hier-
archical representations of geometry. They separate modeling from rendering

4.5. Implementation of a Prototype 57

Figure 4.3: Scenegraph of the prototype

by using intermediate �le representations. For scenegraph implementation,
e�cient rendering algorithms necessary for good performance. Therefore, for
the prototype, virtual environment geometry was created in a software mod-
eler and was imported into a scenegraph using OpenSG [Reiners 2002]. Inside
the VR Juggler kernel loop, the draw method calls OpenSG rendering meth-
ods in order to perform the render. Figure 4.3 shows the diagram of the
scene graph. The scene graph classi�es the objects in the virtual environment
into two groups, non-grabbable and grabbable objects. The former cannot be
selected, These include, for example walls, �oor, ceiling etc. The latter are
objects that can be manipulated. OpenSG represents every geometry in the
scene as an individual node in a parent-child relationship.
When a hierarchy is used, operations over geometric elements become more
e�cient. For example, for intersection testing, the prototype ignores the
branch corresponding to non grabbable objects in order to traverse and test
only the group of objects that are grabbable.
Some 3D interfaces require a geometric representation, for example ray casting
requires a long line representing a ray. Go-Go requires a hand. These represen-
tations are created in the scenegraph and are included in the non-grabbable
branch. Since the interface representations correspond to individual graph
nodes, it is easy to modify or change their properties and geometries.
The graphical representations of the interfaces, text, virtual cameras, and
other sources are stored as independent branches since they are considered to
be support elements with di�erent characteristics not virtual objects.

58 Chapter 4. Architecture for Designing 3D Interactions

Figure 4.4: UML diagram of interaction architecture.

The rendering module o�ers a set of methods to directly manipulate the
scenegraph. Such basic operations include add, delete nodes, modify color
attributes, intersection testing, and so on. The interaction modules calls
these methods in order to manipulate geometry.

4.5.3 Interaction Modules

The codes for implementing the interactions are programmed as individual
classes grouped into modules. Each interaction must be registered in the
VR Juggler preframe method in order to receive events and to be able to
call the graphics methods o�ered by the graphics layer. After registration, a
3D interface can be built by using the interaction modules, and the graphics
module automatically propagates the input device data into the interaction
module for processing. In this way, each interaction module is responsible for
the interpretation of input data.
This class independence among the 3D interfaces provides a great deal of
�exibility to the system because complex interfaces can be created as a com-
bination of basic interactions.

4.5.4 Implemented Interfaces

The prototype implements four interfaces with the architecture. They are
direct, Ray-casting, Go-Go, and magic lens.
Direct interface requires one unique interaction module that performs a search
for an object intersecting the user's hand when a button in the stylus is
pushed.

4.5. Implementation of a Prototype 59

Figure 4.5: The manipulation of objects is performed with a Go-Go interaction
technique.

Ray-casting interface is implemented with one interaction module. This mod-
ule relies on the methods provided by the scenegraph to create a line. Then,
when a button is pressed, a possible object intersection is searched for in the
scenegraph.
The Go-Go interface consists of an interaction module. The module applies a
scale factor when the user's hand is outside the prede�ned threshold, at which
time the user's hand movement is elongated.
The HOMER interface is implemented as a combination of two interaction
modules. Object selection employs the ray-casting interaction module at
which time later the Go-Go interaction module is applied with a di�erent
elongation factor.
Finally, the magic lens interface is implemented as a combination of a speci�c
interaction module that handles object selection. Figure 4.6 (right) shows
the selection of an object. Figure 4.6 (left) shows a snapshot taken from
the environment. The user can select any object contained in the snapshot.
After object selection, a Go-Go interaction module is used to manipulate the
object. From the Figure 4.5 the mathematical expression that de�nes the
�nal position of the virtual object is:

rv = F (rr) =

{
rr if rr ≤ D,
rr + α(rr −D)2 otherwise.

(4.1)

When used with a carefully selected extension factor, the Go-Go method
provides good performance.
Clutching is necessary when the user wants to move the object to a remote

60 Chapter 4. Architecture for Designing 3D Interactions

Figure 4.6: On the left, is snapshot taken with our interface. On the right is an
object selected directly from the screen by use of a stylus.

Figure 4.7: Manipulating an object. On the left, a previously selected chair is
shown. Tacking advantage of the tracker attached to the handheld device, the chair
position changes according to the Go-Go interface interaction technique. When the
user decides the �nal position, the chair's position is �xed after with a push of the
button. On the right, the scene after the user has copied the chair using the stored
snapshot is shown.

location. However, as the object moves further from the user, its size decreases
proportionally. As a result, it can become di�cult to see.

Figure 4.7 (left) shows the manipulation of a previously selected object. Fig-
ure 4.7 (right) shows how the object position is determined after being ma-
nipulated with our interface. The object rotation is controlled using the Vir-
tual Sphere [Chen 1988] approach. Rotation is produced by sliding a �nger or
styles across the handheld device screen. An extra support, a slide control was
added for rotating objects over the Z-axis. This control was added to avoid
forcing the user to perform uncomfortable movements, such as attempting a
180 angle rotation by grabbing the handheld device with both hands.

The implementation of the clipboard function is divided into two components,
which are distributed to the server and client respectively. On the server, the
system stores a clipboard list that includes the information required for ren-

4.6. Summary 61

dering the image. This information was previously stored when the handheld
device images were generated. On the client, the clipboard is implemented as
a graphic interface showing the snapshots taken with the interface. The hand-
held device stores every snapshot taken, together with its DTS timestamp,
which is provided by the streamer layer. When a snapshot is requested, the
handheld device sends the DTS timestamp. The server then searches for the
corresponding DTS rendering information in order to re-render the snapshot.
A very important consideration for using the magic lens interface in an immer-
sive virtual environment is the projection technology. The interaction with
a handheld device is possible in a CAVE system and with a head-mounted
display that o�ers a see-through the lens display. A low latency and correct
tracker calibration are necessary for matching the images presented on the
virtual environment and the handheld device. Real world occlusive head-
mounted displays cannot be used with this interface.

4.6 Summary

The development of 3D interfaces lacks development frameworks and libraries
to implement interactions. Generally, virtual reality developers program in-
teractions for every application from scratch. Additionally, the implemen-
tation of interfaces requires su�cient �exibility to mix several components.
This chapter describes an architecture for building basic, generic interaction
techniques, on top of which, developers can implement complex interfaces.
A prototype was implemented on top of the VR Juggler framework. Direct
manipulation, ray-casting, Go-Go, and HOMER were programmed with this
architecture. With the support of the described architecture, the magic lens
interface implements the manipulation of objects.
Since handheld devices o�er multiple functions such as a touch screen and
programmable visual 2D interfaces, the module that oversees a magic lens
provides a wide range of functions for supporting interactions. The interface
applies the pen-tablet technique in combination with props metaphors. In
order to provide physical feedback, stimulus is important for enhancing in-
teraction. Performing the selection of objects from 2D snapshots provides
more additional precision and control for small and moving objects. Hand-
held devices are small computer systems equipped with memory, processors,
graphic displays, and libraries that o�er applications for implementing visual
interfaces. All these elements conform to a �exible development platform,
which, in combination with virtual reality toolkits, make feasible the creation
of multiple 3D interaction techniques.

Chapter 5

Interface Evaluation

5.1 Introduction

Interface evaluation is the process of measuring its usability. The term usabil-
ity is used in broad sense, considering all the aspects which take part when
a person uses an interface. The interaction with 3D interfaces deals with a
bigger and more complex set of variables than traditional 2D interfaces, as a
result, there is not a standard method of evaluation. Evaluation methods are
designed considering multiple aspects such as, the type of activity, the virtual
environment, the conditions where the interface will be applied, the input and
output devices used, the user's experience with virtual reality systems and so
on. Equally, it is important to reduce and, if it is possible, to eliminate factors
that could in�uence negatively the evaluation. Factors such as fatigue, symp-
toms of sickness, failures on tracking system, system delays circumstances
which breaks the sensation of immersion as crossing by accident in front of
the subject and so on.
Important steps on evaluation are the establishment of the metrics in order
to de�ne what properties will be measured, the design of a controlled envi-
ronment for experimentation and the analysis of results. Since the use of an
interface involves psychological factors as well, preferences, opinions, sugges-
tions, subjective information are compiled by means of questionnaires.
This chapter describes the method employed for the evaluation of the inter-
face, and its application on the prototypes. The evaluation provided valuable
feedback information which helped to identify drawbacks on the design and
implementation.

5.2 Methodology

The evaluation of a 3D interface faces more complexities than 2D interfaces,
The number of variables considered for the evaluation is bigger (3D space, 6
DOF, virtual environment space), technologies employed to implement virtual
reality are more prone to in�uence the results (input and output devices, delay,
wires), human factors are more noticeable (fatigue, symptoms of sickness).
Several evaluation methods have been proposed for 3D interfaces, in
[Bowman 2002] a survey explores them. The survey proposes a classi�cation

64 Chapter 5. Interface Evaluation

based on the identi�cation of three characteristics which help to distinguish
the type of evaluation.

• The involvement of users: Separates the methods requiring user for its
evaluation and methods that do not.

• the context of evaluation: Identi�es the methods that can be applied in
generic contexts and the methods that only can be applied in speci�c
application contexts.

• the type of results produced: Identi�es the evaluation methods that
produce qualitative or quantitative results.

As a demonstration of the feasibility of the classi�cation, the same study
[Bowman 2002] compares two representative evaluation methods, the testbed
evaluation approach described in [Bowman 1999b], against the sequential
evaluation approach described in [Gabbard 1999]. Analyzing the evaluation
methods through the three above mentioned characteristics, the result is that
both methods have similarities and di�erences, and they can be combined in
order to complement each other.
The evaluation of the interface follows the mixed approach. Sequential evalu-
ation was used on the development of the prototype, since it does not require
of a user to be tested, it is applied in generic context (no particular envi-
ronment) and produce quantitative results (networking delay). In the other
hand, testbed evaluation is applied to evaluate the manipulation with the
interface. It requires of subjects, controlled 3D environments, and qualita-
tive and quantitative information is compiled and analyzed. The sequential
evaluation method was used for calculate delays time on the three prototypes
describe in the chapter 3.

5.3 Testbed Evaluation Approach

The testbed evaluation approach is described in [Bowman 1999b]. The dia-
gram 5.1 shows the components and its relationship.
Initial evaluation comprises the analysis of the interaction to be implemented
and the search of previous developed methods which accomplish the same or
similar interaction.
The taxonomy describes the interactions as tasks build as combination of
indivisible subtasks.
The outside factors correspond to the considerations to be taken to avoid the
equipment and the real environment in�uence negatively on the performance
of the interface.
The performance metrics de�ne the information that the system will register
for comparing quantitatively the interfaces.

5.3. Testbed Evaluation Approach 65

Figure 5.1: Diagram of 3D user interface testbed evaluation approach. Originally
published on [Bowman 1999b]

Testbed evaluation is the design of a generic and general experimental envi-
ronment, the participation of subjects on the user study, the compilation of
observations and interaction information.

Results of testbed evaluation are produced after the analysis of the data cap-
tured on testbed evaluation. The results represent a quantitative measure of
the interface's performance under the conditions described by the outside fac-
tors. The result information is structured with the aim of o�ering heuristics
and guidelines for future improvements.

In order to apply interface evaluations in early stages of the development, and
for reducing the complexity of the analysis as well, the testbed evaluation was
divided in two parts, selection and manipulation. Since the testbed evaluation
was applied for every prototype implementation the next sections presents the
results on its chronological order.

66 Chapter 5. Interface Evaluation

5.4 Evaluation for Selection on the JPEG-based
Streaming Interface

Selection was evaluated with both implementations of the interface, with
JPEG and MPEG streaming technology. Although the �rst implementation
of the interface resulted in a delay time no suitable for implementing interac-
tion, its evaluation was performed with the intention of verifying its feasibility
and, at the same time, to establish guidelines for the next development stage.

5.4.1 The Outsider Factors

The independent variables is conformed by the interfaces to be compared
in the evaluation: Direct, Ray-Casting and Magic Lens. The selection of
independent variables is according to the taxonomy developed during the
implementation stage. For the selection of virtual objects previous studies
[Bowman 1997a] have shown that ray-casting is an interface that is easy to
understand and e�ective. Direct is an orthodox direct manipulation interface
(virtual hand) which represents the case that resemble reality selection, it is
o�ers an interesting parameter since is like the selection in our real world.
Since the conditions of the virtual environment in�uences the performance
of the interfaces, the testbed is designed with the aim of controlling the fac-
tors that take part on the evaluation process. The factors that can in�u-
ence the comparison can be classi�ed into four characteristics according to
[Bowman 1999b]

• Task: A simple targeting task was designed in which a subject had to
select a green virtual cube among a cluster of red cubes aligned in a
grid. The virtual environment is de�ned in a virtual room of 3 x 3 x 2.5
m. Each cube is 10cm on each side. The green target cube is chosen at
random for each trial.

• Environment characteristics: The lowest row of the grid is located 40cm
above the �oor. Two types of layouts, Sparse and Dense are used.
Sparse contains 6 x 4 x 3 cubes with a separation of 30cm between
cubes, while Dense contains 12 x 7 x 6 cubes with a separation of
10cm. The background of the environment was blue in order to pro-
duce a noticeable contrast among the objects. Figure 5.2 shows the
environment. The system provides visual and audio feedback informa-
tion in every event. For example for Direct and Ray-casting, when the
subject collocates the stylus in a position where the interface is able to
select a cube, the cube's edges change color to bright yellow indicating
that the cube is able to be selected. When subject success on select-
ing the target, the system produces a sound message �that's good� and

5.4. Evaluation for Selection on the JPEG-based Streaming Interface67

an error on selection produces the corresponding audio message �that's
bad�.

• User characteristics: The evaluation considers subjects with previous
experience with virtual environments systems.

• System characteristics: A see-through head mounted display Olympus
was used with a HiBall 3000 optical tracking system presenting a delay
of 1 ms. The server application was tested on Linux Debian using a
Pentium 4 3.2 GHz desktop computer with 1 GB memory, graphic card
NVIDIA GeForce 6800. A Toshiba Genio e830 with XScale PXA263
CPU with 128 MB memory was tested as the PDA device. IEEE802.11g
was used for the wireless network. The PDA displayed 256x240 24-bit
color images at around 12 frames per second. The weight of the PDA
was 198 g. and 300 g. for the tracker sensor, for a total of 498 g.
For implementing the Direct and Ray-casting interfaces a stylus with a
button device was used. The frame rate produced by the graphic card
for building the environment was 40 fps.

5.4.2 Performance Measures

Task completion time from the appearance of the target to its selection and
number of errors per selections are recorded for each trial.
The subject was asked to �ll in a questionnaire in order to collect subjective
data. The questions were formulated to be answered given a scale marked from
1 to 7 asking for the impressions that interfaces produces on the subject:

• It was easy to select the object
• I understand easily how to use the interface
• Selecting objects with this interface is natural

And two questions for knowing the impression about the virtual environment:

• Virtual world seems real.
• It is easy to identify the target.

The �nal question was to ranking all the interfaces in subject preference order.

5.4.3 Testbed Evaluation

For this �rst evaluation each subject performed three trials using all of the
three selection techniques in both Dense and Sparse layouts (in total, six dif-
ferent conditions). The order of presentation to the subject was randomized.
In order to start a trial the application asks to the subject to push a button,
this pause gives the chance of taking a rest between trials. The application

68 Chapter 5. Interface Evaluation

Figure 5.2: On the left, the Sparse environment. On the right, a Dense environment.

de�nes a limit time for the trial, if within 2 minutes the subject is not able
to select the target cube the application considers the trial as an error and
�nishes it.

5.4.4 Hypotheses

For the selection of objects in Sparse environment, the hypotheses was that
Magic-lens would has the same performance as Ray-casting. For Dense envi-
ronment, the capability of selecting objects by using snapshots would repre-
sent an advantage over Ray-casting.

5.4.5 Results

9 subjects aged in their twenties and with previous experience in virtual reality
tried the evaluation. Figure 5.3 shows average task completion times in Sparse
and Dense layouts. Due to the small number of trials (three per subject) and
very large standard deviations, statistical analysis gives no meaningful results.
On the other hand, average task completion times for Direct and Ray-casting
are relatively stable.
In the Dense layout, a higher performance was expected on the Magic Lens
interface compared to Ray-casting, since occlusions would make Ray-casting
based selection more di�cult, while only a fraction of the target needs to
appear in the Magic Lens two-step selection. The results do not support this
hypothesis. There are not meaningful di�erence in number of errors either.

5.4.6 Discussion

Observation suggests that the Magic Lens interface was most di�cult to use
at �rst, but soon it became very easy to use. This can be con�rmed by Figure

5.5. Evaluation for Selection on the MPEG-based Streaming Interface69

Figure 5.3: Average selection time (in seconds). On the left, the Sparse environment.
On the right, a Dense environment.

5.3. In the Sparse layout, average task completion time of the �rst trial is
56.1 sec. but is drastically reduced to 12.4 and 13.1 sec. in the second and
third trials.

5.5 Evaluation for Selection on the MPEG-based
Streaming Interface

With a new improvement on networking layer, the new prototype based on
MPEG streaming was evaluated applying the same testbed methodology. The
user study focus on testing the conditions were other interfaces shows limita-
tions.

5.5.1 The Outsider Factors

The user study considered the same set of interfaces used by previous study
as independent variables: Direct, Ray-casting and Magic Lens. The factors
that can in�uence the comparison in the evaluation are:

• Task: the evaluation considers a target selection task. In an empty
virtual room of 3m by 3m by 2m (height), each subject is asked to
select a target red cube per trial. The target cubes can either be:

• static: the target cube remains in the same location
• simple motion: the target cube moves in one of two possible

patterns lineal or sinusoidal
• pseudorandom motion: the target cube moves in a trajectory

described in base of perlin noise function [Perlin 1985].
The dimensions of the cubes are either 4.5cm (large) or 2.25cm (small)

• Environment characteristics: The model of the virtual environment was
modeled with the aim of o�ering a trade-o� between visual quality and

70 Chapter 5. Interface Evaluation

fast rendering. Over the room's walls, textures were applied in order
to give the impression of black stone bricks. The �oor was textured
with a grass-like pattern, The �nal result is that the room resembles
a backyard. The red cubes targets contrast noticeably with the walls.
With Ray-casting and Magic Lens interfaces the subject was asked to
stay standing up at the same location on the �oor during the trial.
(1.5m in x axis and 2.7m in z axis, Figure 5.5) shows the con�guration.
In the other hand, subjects could move freely when they were using
Direct interface. Two di�erent distances were considered to present the
target. Tacking the trial starting subject's position as point of reference,
in Far distance the target appears at 2.25 m and in Near the distance
was 1 m. The system provides visual and audio feedback information in
every event, in similar form that previous study evaluating the JPEG-
based interface.

• User characteristics: The evaluation considers subjects with previous
experience with virtual environments systems.

• System characteristics: The user study was performed with the server
and virtual reality equipment previously mentioned on JPEG-based in-
terface. The only modi�cation was the handheld device employed. An
ultra mobile personal computer (UMPC) VAIO VGN-UX72 (Intel Cen-
trino Core 2 Solo, 1 GB memory, 1024x600 display on Windows Vista)
was used for implementing the magic lens interface. The handheld de-
vice displays 800 x 600 24-bits color images at 25 frames per second
with a mean delay time of 127.8 msec. The weight of the PC was 532
g. and for the tracker sensor 300 g. for a total of 832 g. The frame rate
produced by the graphic card for building the environment was 40 fps.

5.5.2 Performance Measures

The user study registers two parameters. The task completion time measured
as the time elapsed from the appearance of the target until its successful
selection, and number of errors represented by the number of failed selection
targets.
At the end of the study the subject was asked to �ll in a questionnaire in order
to collect subjective data. The questions were formulated to be answered given
a scale marked from 1 to 7 asking for the impressions that interfaces produces
on the subject:

• I understand easily how the interface works
• It was easy to select the object
• I enjoyed using this interface

And two questions for knowing the impression about the virtual environment:

5.5. Evaluation for Selection on the MPEG-based Streaming Interface71

Figure 5.4: Trials performed by the user for this user study. Rows represents the
object movement. Columns represents the interfaces to be used. Subjects are asked
to perform all the possible combinations with both large and small objects.

• Virtual wold seems real.
• It is easy to identify the target.

The �nal question was to ranking all the interfaces in subject preference order.

5.5.3 Testbed Evaluation

In each of 9 interface-motion combinations, the large target cube was used at
a distance of 1 m. from the subject in the �rst 10 trials, and the small target
cube at 2.25 m. from the subject in the last 10 trials. Figure 5.4 summarizes
the trials performed by subjects.
If the subject could not select the cube in 90 seconds, the trial is terminated
and registered as a failure trial.
Previous to the user study starting the subject is able to learn and adapt to
the interface by practicing with three trials without time limit.
Before each trial starts the application displaying a message asking for clicking
a button on the input device to proceed to the next trial. Then user are able
to take a rest between trials.

5.5.4 Hypotheses

The hypothesis formulated for this user study was that selecting an object
using the handheld device based Magic-lens interface will be faster and more
accurate than using Direct and Ray-casting interfaces in di�cult situations
(e.g. the object is small, distant, or moving).

72 Chapter 5. Interface Evaluation

Figure 5.5: Empirical study con�guration.

Figure 5.6: Task completion time (seconds). On the left, static, large targets. On
the right, static, small targets

5.5.5 Results

6 persons, 2 women and 4 men, participated in this user study. Figure
5.6 (left) shows average task completion time with static, large targets. In
this case, one-way ANOVA found a signi�cant di�erence (F (2, 177) = 9.68,
p < 0.001). With Bonferroni correction found that Ray-casting interface was
by far the fastest. Figure 5.6 (right) shows average task completion time with
static, small targets. In this case, one-way ANOVA found a signi�cant di�er-
ence (F (2, 177) = 5.76, p < 0.01). It was found that Ray-casting was faster
than Direct, but no signi�cant di�erence was found between Ray-casting and
Magic-lens interfaces.
Figure 5.7 (left) shows average task completion time with large targets in
simple motion. In this case, one-way ANOVA found a signi�cant di�erence
(F (2, 177) = 24.21, p < 10−9). Using Bonferroni correction again, it was
found that Ray-casting interface was the fastest, and no signi�cant di�erence
was found between Ray-casting and Magic-lens interfaces. Figure 5.7 (right)

5.5. Evaluation for Selection on the MPEG-based Streaming Interface73

Figure 5.7: Task completion time (seconds). On the left simple motion, large targets.
On the right simple motion, small targets in simple motion.

Figure 5.8: Number of errors. On the left, large targets in simple motion. On the
right, small targets in simple motion.

shows average task completion time with small targets in simple motion. In
this case, one-way ANOVA found a signi�cant di�erence (F (2, 177) = 10.71,
p < 10−4). It was found that Ray-casting was faster than Direct, but no sig-
ni�cant di�erence was found between Ray-casting and Magic-lens interfaces.

Figures 5.8 and 5.8 show average number of errors per trial with large and
small targets in simple motion, respectively. One-way ANOVA found signi�-
cant di�erences for these cases (F (2, 177) = 27.91, p < 10−10 for large targets,
F (2, 177) = 32.38, p < 10−11 for small targets). Further analysis found that
number of errors is the fewest in Magic-lens interface, followed by Ray-casting
interface.

Figure 5.9 5.9 shows average task completion time with large and small tar-
gets in random motion. One-way ANOVA found signi�cant di�erences (F (2,
177) = 17.18, p < 10−8 for large targets, F (2, 177) = 4.92, p < 0.01 for small
targets). In these cases, further analysis found that Direct interface was by far
the slowest and that there was no signi�cant di�erence between Ray-casting
and Magic-lens interfaces. When the target is in complex motion, bene�ts
of Ray-casting interface disappear and Magic-lens interface becomes one of
the best. Figure 5.10 shows the number of errors produced in Magic-lens in-

74 Chapter 5. Interface Evaluation

Figure 5.9: Task completion time (seconds). On the left, large targets in random
motion. On the right, small targets in random motion.

Figure 5.10: Number of errors. On the left, large targets in random motion. On the
right, small targets in random motion.

terface was about 7 to 12% of that in Ray-casting interface and 1 to 5% of
that in Direct interface. Magic-lens interface was again the easiest to perform
selection regardless of target size.
Figure 5.11 shows the user's perception about the interfaces. Five out of six
users considered that Magic-lens was the best, while only one considered that
beam was better. All people coincide in the opinion that direct interface was
the worst.

5.5.6 Discussion

When the target is static and large enough, Ray-casting interface seemed to
be the best, though its relative bene�t to Magic-lens interface is reduced when
the target gets smaller. Regarding number of errors, no signi�cant di�erence
was found except that Direct interface was most inaccurate among three for
static, large targets.
When the target is in simple motion and large enough, Ray-casting interface
seemed to be the best, though its relative bene�t to Magic-lens interface is
reduced when the target gets smaller. Regarding number of errors, no signif-
icant di�erence was found except that Direct interface was most inaccurate

5.6. Evaluation for Manipulation 75

Figure 5.11: User's answer about the interfaces. On the left, results to the ques-
tion: it was easy to select the interface. On the right, answer corresponding to the
question: I enjoyed using this interface.

among three for static, large targets.
When a target is in motion, Magic-lens interface is the easiest to perform
selection regardless of target size.

5.6 Evaluation for Manipulation

A more complete evaluation was performed for manipulation. Since manip-
ulation is a more complex task than selection, this evaluation analyzes the
manipulation task by subdividing it in two subtasks: �rst, the object selection
and second the object manipulation which comprises the object transporta-
tion and its release into new position.

5.6.1 The Outsider Factors

The independent variables are conformed by the set of interfaces to be com-
pared in the evaluation: Direct, Go-Go, HOMER and Magic Lens. Since
Go-Go [Poupyrev 1996] and HOMER [Bowman 1997b] represent two of the
most extensively studied 3D interfaces they o�er a good comparison reference
frame. Direct represents the case that resemble the reality of grabbing and
manipulating an object.

• Task: The task consisted on collecting virtual insects. The application
recreates a virtual student dormitory room with various objects such
as bed, table, chairs, computer etc. An insect �ying around the room
appears when a trial is started. The size of this insect is of 10 cm
height, 10 cm long. The insect is able to �y following the three di�erent
movement patterns:

• simple motion: The insect �ies in one of two possible trajectories
lineal or sinusoidal.

76 Chapter 5. Interface Evaluation

Figure 5.12: Virtual room built to perform the evaluation of manipulation.

• pseudorandom motion: The insect �ies in a trajectory speci�ed
by a perlin noise function [Perlin 1985]

A semitransparent red box containing a second insect is presented to
the subject. The purpose of the second insect is to show the correct
position the insect should be collocated in the box. When both insects
positions match, the trial is considered successful.

• Environment characteristics: A 3D software modeler was used for creat-
ing the virtual room and the geometry is exported as wavefront obj �le
format. Then the application imports the description �le for building
the OpenSG scene graph. The virtual object dimensions correspond
to real object ones. Image textures are used on some object surfaces,
but the model does not pretend to be realistic since the graphics card
performance is limited. Object colors were carefully selected for distin-
guishing them easily. Figure 5.12 shows the environment.
The system provides visual and audio feedback. On selection, the visual
feedback is similar to the described in previous user studies with the
di�erence that when an object is able to be selected the color for the
edges was changed to blue. After a successful selection the edges' color
changes to yellow and remains until the subject releases the insect. The
audio feedback for a successfully select the insect was changed to an
�yahoo� and the failure for an �ouch� sound. When the subject release

5.6. Evaluation for Manipulation 77

the insect an audio feedback is produced. If the insect is inserted into
the box in correct orientation a sound �that's good� can be heard, if it
is not correct the sound produced is �that's bad�.

• User characteristics: The evaluation considers subjects with previous
experience with virtual environments systems.

• System characteristics: The user study was performed with the same
server, client and virtual reality equipment mention on the second eval-
uation.

5.6.2 Performance Measures

More information was collected for this user study. The registered metrics
were:

• the time to select the insect
• the time to manipulate the insect
• the number of errors for selection and manipulation
• the subject's hand and head trajectories
• angular error after manipulation

The subject was asked to �ll in a questionnaire in order to collect subjective
data. The questions were formulated to be answered given a scale marked from
1 to 7 asking for the impressions that interfaces produces on the subject:

• I understand easily how the interface works
• It was easy to select the object
• It was easy to put the insect inside the box
• I enjoyed using this interface

And two questions for knowing the impression about the virtual environment:

• Virtual wold seems real.
• I understood easily the task to do.

The �nal question was to ranking all the interfaces in subject preference order.

5.6.3 Testbed Evaluation

Figure 5.13 shows a diagram of the user study setup. At a trial start, the sub-
ject stands up at a prede�ned starting point. This initial point was designed
in base of the tracking system covering area. The starting point is located on
the �oor (0 meters y-axis), 1.5 meters in x-axis and 1 meter z-axis. From this

78 Chapter 5. Interface Evaluation

Figure 5.13: The user study setup.

point the subject is able to see the entire virtual environment. The testbed
was designed to let analyze the manipulation under di�erent conditions.
The manipulation is directly in�uenced for the disposition between the se-
lected object (the insect), the red box and the subject. From the subject's
starting point the distance for the insect and the box in two groups were
grouped. Near distance represents a separation of 50 cm. Far distance rep-
resents a separation of 3.5 meters. Near distance is under the tracking area,
therefore the four interfaces can be applied with this condition, but for far
distance the Direct interface cannot be applied. On the testbed evaluation
the user was asked to perform the task with the next conditions,

• The insect is near and the box is near.
• The insect is near and the box is far.
• The insect is far and the box is near.
• The insect is far and the box is far.

Additionally the testbed splits the insect distance cases in two groups, one for
simple movement (on straight or sinusoidal line) and the other for complex
movement (on a pseudo random trajectory). The subject was asked to per-
form 3 trials per condition for a total of 78 trials in a counter-balanced order.
Figure 5.14 shows the combination of condition the subject performed on the
experiment.

5.6.4 Hypotheses

The hypotheses regarding the usability of the interface were divided in selec-
tion and manipulation.

5.6. Evaluation for Manipulation 79

Figure 5.14: Trials performed by the user for this user study. Rows represents the
arrangement between the insect and the box with respect to the trial starting posi-
tion. Columns represents the interfaces to be used. Subjects are asked to perform
all the possible combinations with both simple and complex object movement.

For selection:

• For near distance HOMER would perform the best. The Magic lens
interface would perform as well as HOMER does, because when the
user would see the target through the interface the target would occupy
a great portion of the screen making possible its direct selection with a
pinch on the screen.

• For far distance Magic lens interface would perform the best. Selection
of small object in movement could be di�cult with ray-casting. The
capability of taking snapshot and performing selection on them would
give an advantage to Magic lens interface over HOMER.

For manipulation:

• A near object into a near box: HOMER would perform the best, be-
cause the factor that modi�es the object position is almost linear for
the proximity between the object and the box. Magic lens interface
would perform the same as HOMER because the box and the object
position would be close enough that would require few manipulations.

• A near object into a far box: Magic lens interface would perform the
best. The manipulation in far distance would be easier because the
user could reach the target position in one single movement. HOMER

80 Chapter 5. Interface Evaluation

would present a clutching problem because when the user selects a near
object the moving factor is setting almost to a linear relationship.

• A far object into a near box: This case would be very similar to the
previous one. Magic lens interface would perform the best. HOMER
would present the clutching problems.

• A far object into a far box: Magic lens interface would perform the
best. The selection distance would be close to the box position, for
instance with a small movement would be possible to reach the box
target. On HOMER the problem would be lost of the precision pro-
duced by the multiplication factor. Far object selection produces a
big factor, that extends the object reach distance losing the precision.
Go-Go and HOMER could perform at the same level.

5.6.5 Results for Selection

Eight subjects, one female and seven males, participated in the user study.
The information was split into two groups: selection and manipulation. In
both cases variance analysis testing (ANOVA) was applied for searching sig-
ni�cant di�erences among results, and Bonferroni test for verifying those dif-
ferences.

• Near objects
• Simple movement. Figure 5.15 (left) shows the time for select-

ing an insect. On selection time ANOVA gives (F (3,143) =
9.201669), p < 10−5), with average for HOMER of 6.51 sec.,
followed by Magic lens interface 15.48 sec. Bonferroni test
found a signi�cant di�erence among four interfaces. Consider-
ing the number of errors ANOVA shows (F (3,143) = 8.124883),
p < 10−5), HOMER with an average of 0.16 is the best suited
followed by the Magic lens 0.64, although Bonferroni did not �nd
a signi�cant di�erence between them. Figure 5.16 (left) shows
these results. For the trajectories the user walk for selecting an
object. Figure 5.17 (left) shows the results. The ANOVA found
(F (3,144) = 11.66193), p < 10−7), HOMER reporting an av-
erage movement of 1.1 meters, followed by Magic lens interface
with 1.44 meters. Bonferroni did not �nd a signi�cant di�erence
between them.

• Complex movement. Figure 5.15 (right) shows the result for se-
lection time. ANOVA found (F (3, 143) = 6.1217), p < 0.01).
HOMER average was 7.62 sec., followed by Go-Go with 12.72
sec. but Bonferroni did not verify a signi�cant di�erence be-
tween them. On number of errors ANOVA indicates (F (3,
143) = 9.6885), p < 10−6), HOMER with an average of 2.19,

5.6. Evaluation for Manipulation 81

Figure 5.15: Selection times for near objects. On the left, simple movement. On
the right, complex movement.

Figure 5.16: Selection errors for near objects. On the left, simple movement. On
the right, complex movement.

followed by handheld magic lens with 3.26. Bonferroni did not
show signi�cant di�erence between them. Figure 5.15 (right)
shows the result for errors. Figure 5.17 (right) shows the trajec-
tory results. ANOVA found (F (3, 143) = 11.66193), p < 10−7),
HOMER with an average of 1.10 m., followed by Magic Lens with
1.4 m. Bonferroni veri�ed a signi�cant di�erence between them.

• Far objects
• Simple movement. Figure 5.18 (left) shows the results for time.

ANOVA found (F (3, 116) = 16.86204), p < 10−7), Magic Lens
with an average of 12.399 sec., followed by HOMER interface.
However Bonferroni did not verify a signi�cant di�erence between
them. Figure 5.19 (left) shows the results for errors. ANOVA
found (F (3, 116) = 18.6204), p < 10−8), Magic Lens get less er-
rors with an average of 1.5476 followed by HOMER with 4.52381.
But Bonferroni did not show signi�cant di�erence between them.
For trajectory ANOVA found (F (2, 116) = 66.3391), p < 10−20),

82 Chapter 5. Interface Evaluation

Figure 5.17: Walked distance for selecting near objects. On the left simple move-
ment. On the right complex movement.

Figure 5.18: Selection times for far objects. On the left, simple movement. On the
right, complex movement.

Magic lens interface got the best position with 0.7 meters followed
by HOMER with 2.43 meters, although Bonferroni did not verify
a signi�cant di�erence between them. Figure 5.20 (left) shows
these results.

• Complex movement. Figure 5.18 (right) shows the selection time.
ANOVA found (F (2, 109) = 21.874), p < 10−8), the best time
was for HOMER 7.44 sec. followed by Magic lens interface 10.01
sec. although Bonferroni did not verify a signi�cant di�erence be-
tween them. Figure 5.19 (right) shows the errors. On number of
errors ANOVA indicates (F (2, 123) = 36.08), p < 10−13), Magic
lens interface was the best suited with an average of 0.33 followed
by HOMER with 3.54. Figure 5.20 (right) shows the trajectory
results. ANOVA found (F (2, 109) = 93.43492), p < 10−25),
Magic lens reports an average distance of 0.54 m. followed by
HOMER with 1.03 m. However Bonderroni did not verify a sig-
ni�cant di�erence between them.

5.6. Evaluation for Manipulation 83

Figure 5.19: Selection errors for far objects. On the left, simple movement. On the
right, complex movement.

Figure 5.20: Walked distance for far objects. On the left simple movement. On the
right complex movement.

5.6.6 Results for Manipulation

The manipulation time represents the time the user moved the object around
the space in order to insert the insect into the box. The time, the number of
errors, and the trajectory walked by the subjects were registered.

• Near object, near box. Figure 5.21 (left) shows the manipulation time.
ANOVA indicates (F (3,238) = 60.0849), p < 10−29). The best interface
was Go-Go with 3.2 sec. followed by Direct 3.48 sec. But Bonferroni did
not provide a signi�cant di�erence among Go-Go, Direct and HOMER.
Figure 5.22 (left) shows the number of errors. ANOVA did not indi-
cate a signi�cant di�erence among four interfaces (F (3,164) = 2.1320,
p < 0.09). On trajectory ANOVA did not �nd a signi�cant di�erence.
Figure 5.23 (left) shows the distance walked by the user. ANOVA �nd

84 Chapter 5. Interface Evaluation

Figure 5.21: Manipulation time. On the left, near objects inserted into near boxes.
On the right, near objects inserted into far boxes.

Figure 5.22: Manipulation errors. On the left, near objects inserted into near boxes.
On the right, near objects inserted into far boxes.

(F (3,238) = 3.1118), p < 0.028), Magic lens with 0.9634 m. followed
by HOMER with 1.17 m. However Bonferronin did not provide a sig-
ni�cant di�erence among four interfaces.

• Near object, far box. Figure 5.21 (right) shows the manipulation time.
ANOVA found (F (2,192) = 47.669), p < 10−17). The best interface
was Go-Go with 6.85 sec. followed by HOMER 7.64 sec., however
Bonferroni did not validate this di�erence. The number of errors is
shown in Figure 5.22 (right. ANOVA indicates a signi�cant di�erence
(F (2,123) = 3.5389, p < 0.03) the Magic lens interface got the best
average value 1.11 followed by Go-Go, but Bonferroni did not support
the di�erence. Figure 5.23 (right) shows the trajectory results. ANOVA
found (F (2,192) = 14.92137), p < 10−06), Magic lens whit a distance
of 1.5 m followed by Go-Go with 2.72 m. However Bonferroni did not
very the di�erence between both.

5.6. Evaluation for Manipulation 85

Figure 5.23: Walked distances for manipulating objects. On the left near objects
inserted into near boxes. On the right near objects inserted into far boxes.

Figure 5.24: Manipulation time. On the left, far objects inserted into near boxes.
On the right, far objects inserted into far boxes.

• Far object, near box. Figure 5.24 (left) shows the graphs for manip-
ulation time. ANOVA indicates a signi�cant di�erence (F (2,163) =
24.9699, p < 10−10), Go-Go was the best interface with 4.04 sec. fol-
lowed by HOMER with 7.5 sec. However Bonferroni did not verify the
di�erence between both. Figure 5.25 (left) errors. ANOVA indicates a
signi�cant di�erence (F (2,163) = 4.7914, p < 0.0099), Magic lens with
an average of 0.9285 errors, followed by Go-Go with 1.071. However
Bonferroni did not verify this di�erence. For trajectory ANOVA did not
�nd signi�cant di�erences. Figure 5.26 (left) shows the results for the
walked distance. ANOVA did not �nd di�erences (F (2,163) = 3.3478,
p < 0.0385).

• Far object far box. Figure 5.24 (right) shows the time manipula-
tion. ANOVA indicates a signi�cant di�erence (F (2,163) = 44.5027,
p < 10−15). Go-Go was the best interface with 5.19 sec. followed by

86 Chapter 5. Interface Evaluation

Figure 5.25: Manipulation errors. On the left, far objects inserted into near boxes.
On the right, far objects inserted into far boxes.

Figure 5.26: Walked distance for manipulating objects. On the left far objects
inserted into near boxes. On the right far objects inserted into far boxes.

HOMER with 7.37 sec, but Bonferroni did not support this di�erence.
In number of errors ANOVA did not �nd a signi�cant di�erence among
the three interfaces (F (2,123) = 0.4952, p < 0.4952). Figure 5.25
(right) shows these results. Figure 5.26 (right) shows the trajectory
results. ANOVA did not �nd signi�cant di�erence (F (2,123) = 0.195,
p < 0.823).

5.6.7 Results for Task Completion

Considering the complete task which comprises selection and manipulation.
Measuring the time the results are as follows:

• Near object near box. ANOVA indicates (F (3,135) = 11.41307, p <

10−6). The best interface was HOMER with 19.48 sec. followed by
Go-Go with 21.42 sec. Bonferroni did not �nd a signi�cant di�erence
between Go-Go and HOMER but there are di�erences among the others

5.6. Evaluation for Manipulation 87

Figure 5.27: Task completion time. On the left, near objects inserted into near
boxes. On the right, near objects inserted into far boxes

Figure 5.28: Task completion time. On the left far objects inserted into near boxes.
On the right far objects inserted into far boxes.

interfaces. Figure 5.27 (left) shows these results.
• Near object far box. ANOVA did not �nd a signi�cant di�erence among

the interfaces (F (3,135) = 1.7962, p < 0.1736). Figure 5.27 (right)
shows the results.

• Far object near box. Figure 5.28 (left) shows the completion task
time. ANOVA did not �nd signi�cant di�erence among interfaces
(F (3,135) = 1.328, p < 0.2709).

• Far object far box. ANOVA indicates a signi�cant di�erence among
the interfaces (F (3,135) = 7.2212, p < 0.001). HOMER performs the
best with 22.12 sec. followed by Magic lens with 28.9821 sec. Figure
5.28 (right) shows the results.

All subjects answered a questionnaire at the end of the user study. Figure
5.29 registers the perception generated by each interface on the subjects.

88 Chapter 5. Interface Evaluation

Figure 5.29: Graphs showing results from questionnaire. On the left, the perception
of how easy was to select the object. On the right, the perception of how easy was
to manipulate the object. A one on the scale represents great di�culty, and a seven
means great facility.

5.7 Discussion

For selection, the results support the hypothesis that HOMER is a very ef-
fective interface for selecting objects that are close to the user. It was found
that HOMER performs very well for object with complex movement contrary
to the original hypothesis. Subjects using the Magic lens interface takes time
to select the object with the handheld device for two reasons:

• they tried to follow the object position with the handheld device or
• they wait in a static position along the path waiting for the moving

object to appear inside the screen.

It is very important to consider the relationship between the distance of the
object with its size. An object that is the size of the handheld device in a
near distance covers entirely the mobile display, the user is forced to separate
from the object in order to capture it in the screen.
For far objects the performances of HOMER and the Magic lens interface were
similar. The size of the target are big enough to be selected with HOMER
even when it is moving in a chaotic pattern. However there is a big di�erence
considering the number of errors. With HOMER the subjects found it di�cult
to select the target with only one shot. Subjects tried a lot of times until
the correct object could be selected. Most of the time consumed by the
subject with the Magic lens interface was on taking the snapshot. For objects
moving in a simple pattern taking the snapshot was very easy but in complex
movement sometimes the object suddenly went out of the screen area.
Contrary the original hypothesis, although is not statistically well supported,
it seems that Go-Go shows a little advantage for manipulation on both pre-

5.8. Summary 89

vious cases. The user found it very di�cult to select objects with Go-Go
but easy to manipulate them. With HOMER the problem was related with
clutching. When the user selects a close object for later inserting it into a far
box the factor applied to the manipulation was so small that the subject must
release the object, select it again and repeat until the object could reach the
box. On the far object the case was vice versa, the factor was so big that the
user could not manipulate it correctly in close distances. The weight and size
was a factor that the subjects complain about.
On these cases again, although is not statistically supported Go-Go has shown
a small advantage. Go-Go again represents di�culties for selecting objects
but, after the selection, manipulation was very comfortable. Reviewing the
results of the completion task times, Magic lens interface could not perform
as well as was expected. Subjects found the device too big and heavy, and
they get tired very quickly on manipulation. Another less noticeable problem
was the delay. The interface has a delay of around 150 milliseconds pro-
ducing a small di�erence between the position sensing and rendering on the
device screen, and it varies according to the complexity of the scene. When
the subject was manipulating the object in far distances this delay produced
confusion for determining the current object position.

5.8 Summary

There is not a standard evaluation method for 3D interface development be-
cause many factors in�uence the e�ectiveness of an interface. It is di�cult
to design experiments that controls all the aspects related the performance
of an interface. However, previous research have provided guidelines to cre-
ate experimental testbeds which can be used to evaluate the performance of
an interface by comparing it against similar interfaces. In this research this
testbed approach was applied. The three prototypes developed along this
research were compared with well-known previous interfaces.
For the �rst prototype, a magic lens implemented in PDA using JPEG video
stream mechanism, the interface to compare with were Direct and Ray-
casting. Because the evaluation was performed on an early stage of the in-
terface development, only selection of objects was evaluated. A combination
of sparse and dense static object environments were built and used in the
evaluation. The results of the �rst evaluation shown that the interface o�ers
a good performance for selecting objects. The capability of selecting object
from snapshots provide more accuracy.
The second prototype improved the JPEG video stream mechanism. New
environment conditions were tested. Static and moving objects located at
two di�erent distances and with di�erent sizes provided a di�erent set of
conditions. Previous interfaces have shown limitations for selecting tiny and

90 Chapter 5. Interface Evaluation

far away objects. The magic lens interface shown a similar performance to
Ray-casting for large objects, and advantage for small objects located at far
distance from user.
On the third prototype, the PDA was replaced by an ultra mobile PC. More-
over the video stream mechanism was replace for MPEG technology. A more
complete user study with a complex environment were developed. Selection
and manipulation of virtual objects were considered with this prototype. Di-
rect, Go-Go and HOMER interfaces were compared against the magic lens
approach. The task consisted on select �ying insects and then, put them into
a box. Di�erent separation distances were tested among the insect, box and
user. The results con�rmed that magic lens approach has similar performance
that Ray-casting for selecting objects near the user, and it shows a better per-
formance for tiny and objects located at far positions from user. However for
manipulation the result shown that Go-Go was the best interface. The delay
combined with the technology employed to implement the prototype could im-
pact negatively the performance of the magic lens. More experimentation is
necessary in order to analyze the performance in manipulation and implement
new prototypes with smaller and lighter technologies.

Chapter 6

Discussion

6.1 Introduction

This Chapter comprises a discussion about the concept of the interface, its
originality, the problems that still faces, the possible improvements and future
work.

6.2 Conceptual Model

With magic lenses it is possible to see di�erent views of the environment.
They works as magnifying lenses do in reality, the characteristics of the lenses
modi�es the visual perception of the objects behind of them. By modeling
virtual lenses it is possible to freely de�ne their properties, form and char-
acteristics. In [Bier 1993] the lens is modeled as a rectangular transparent
window and it changes its properties with the support of a tool pallete. The
user selects a functionality from the pallete and immediately the lens gain the
capability of modify the view according to the selected functionality. This
mechanism o�ers a broad the gamma of di�erent views, that additionally
can be combined. The lenses are not restricted to rectangular 2D windows.
In [Viega 1996] lenses are implemented as a 3D virtual cube able to explore
volumetric data.
Virtual lenses o�ers the �exibility of changing and combining multiples views,
however as any virtual element they su�er of the same limitations: incorrect
depth cues, occlusion problems, no physical feedback.
Other approach to implement the magic lens metaphor is proposed in
[Schmalstieg 1999]. The inclusion of a physical prop that represents the lens
provides physical stimulus that enhance the interaction. In this implemen-
tation a Plexiglas tablet with a tracker sensor attached to it represents the
�real� part of the lens. The system calculates the area covered by the lens and
it draws an interface on that area representing the �virtual� part of the lens.
Then, the user can interact with the interface by touching the tablet using a
pen that has a tracker sensor attached to it. The advantage of this approach
are:

• the user manipulates the lens using a �real� object

92 Chapter 6. Discussion

• the interaction is supported by virtual controls. The controls are manip-
ulated by touching the tablet with the pen. This mechanism provides
important physical touch stimulus.

• The properties of the lens are modi�ed by pushing the controls repre-
sented in the virtual interface.

• Integration of image-plane interaction technique [Pierce 1997] with the
support of the tablet and the pen.

This approach carries several advantages over the original magic lens ap-
proach, however the tablet provides exclusively a �real� representation of the
glass and touch feedback. The interface and controls are still virtual objects
integrated inside the virtual environment, limiting the interaction.
The originality of the work presented in this dissertation is to separate com-
pletely the lens and controls from the virtual environment, for implementing
them totally in a handheld device. We consider that this approach gives more
�exibility for creating new interactions and provides the next advantages:

• The interface forms an unit. The lens, controls and visual interface are
implemented inside the handheld device.

• The interface is easily manipulated because is implemented in a real
object, the handheld device.

• The handheld device o�ers �real� physical controls (buttons) and a
touch screen that provides touch feedback stimulus.

• With the handheld device, the lens is able to take snapshots, manipulate
and stored them for future reference.

• With the handheld device it is possible to implement the image-plane
interaction techniques directly as the props does, but with the extension
of using snapshots. This mechanism improves the accuracy for some
task such as object selection.

• The handheld device o�ers a �exible development platform. It is pos-
sible to create interfaces with controls represented on the handheld
device's screen and furthermore with touch screen support.

• Some handheld devices o�er other kind of stimulus that can be inserted
in interactions such as accelerometer, sound, vibration.

• Easy integration of 2D interaction tasks into 3D spaces such as text
writing and reading, hand drawing, Internet sur�ng and so on.

The implementation of the magic lens in the handheld device provides a �real�
touchable magic lens for interacting within virtual environments. A full set
of 2D interactions provided by the handheld device are easily integrated into
3D virtual environments. And as HOMER [Bowman 1997b], it is possible to
combine two or more interactions for creating new ones. One example of this

6.3. Prototype implementation 93

characteristic was described at Chapter 4 for manipulating virtual objects.
First, an image-plane interaction technique using snapshot is used for selecting
the virtual object and then a Go-Go interaction movement provides the object
manipulation.

6.3 Prototype implementation

Three prototypes of the magic lens interface were built along this research.
They are described in Chapters 3 and 4. The main drawback that lead to the
development of the three prototypes was network latency. By changing hard-
ware and software components the initially 2 s. latency was reduced to 127
ms. Latency was measured by taking the time between the event of sending
an image from the server machine and the event of receiving an acknowledge
packet produced by the client when it receives that image. Last implemen-
tation, showing the best performance, employs MPEG streaming technology
using a ultra micro PC as handheld device. 25 fps with resolution of 800*600
24-bit color images provides a pleasant magic lens e�ect for exploring virtual
environments.
In order to extend the magic lens for using it as a selection and manipulation
interface a software architecture was designed and implemented. Then, user
studies were performed, changing the environmental conditions in each one.
For investigating the selection of virtual objects, �rst, an environment with
static objects in a sparse and dense layout was implemented. The intention
was to determine if the interface is e�ective under occlusion and imperfect
depth cues problems. The Figure 5.3 shows the results of comparing the
magic lens interface againts virtual hand and ray casting interfaces. For sparse
layout the magic lens interface got a poor performance at the beginning, but
after the second trial it becomes the better one. By observing the subjects
performing the �rst trial, we noticed that they faced di�culties to select the
�rst object. The button for taking snapshots was confused easily. However
on the second trial subjects learned how to use correctly the interface, and
the results re�ects the improvement on time. For dense environment, the
latency of 2 s. together with the poor 6 fps rate were big drawbacks that lead
the subjects took many unsuitable snapshots for selecting the object. This
problem was reduced in the second and third implementations.
The second user study was oriented to test the performance of the interface
for selecting objects with di�erent size, distance relative to the subject and
object movement. The Figures 5.6 through 5.11 showed the result of the user
study, con�rming that the magic lens interface performs better for selecting
object of small size, located distant from the subjects and in movement. The
selection from the snapshot produce noticeable less errors, and provides more
acurracy. When the object was near the subject the best performance was for

94 Chapter 6. Discussion

the ray-casting interface, the magic lens interface could not perform at the
same level because when the object is clearable identi�able pointing it with
ray-casting is quicker than searching it with handheld device's screen.
The third user study was designed to con�rm the previous selection results and
at the same time to test the object manipulation task. A new environment and
task were created with this purpose as was described in Chapter 5. Results
were separated in two groups for easier analysis. The Figures from 5.15 to 5.20
showed the results for selection meanwhile the �gures from 5.21 to 5.26 showed
the results for manipulation. On selection the tendency showed by the second
user study repeated. Magic lens is a good approach for selecting objects
located far away from subjects and specially following a random trajectory.
But when the object is near the subject the ray-casting (HOMER) is the
best interface. For selecting a near object with the magic lens the subject
took long time for capturing a suitable snapshot. Then, the relationship
between the size of the target and the size of the handheld device has a big
in�uence on the number of failed snapshots. The �eld of view of the handheld
device is too narrow to capture near objects that lead to the need of taking
great number of snapshots. The next section discuss a possible method for
alleviate this problem. On manipulation although the magic lens is based on
Go-Go interaction technique the result showed that it performs below Go-Go
itself. Because the interaction mechanism was implemented using the same
software components and with exactly the same physical movement approach,
by analyzing the di�erences the result could be in�uenced that:

• The network latency. 127 ms. can be good enough for exploring ob-
jects and even for selecting them. However, as the third user study
was designed for setting the object in a �xed position and orientation
the manipulation required higher level of accuracy. Under this environ-
mental characteristics the limitations of magic lens interface became
evident. Outside the threshold line a small movement on the hand-
held device is ampli�ed, situation that increase as the object is located
farther away from subject. Then, the delay of 127 ms. produces unac-
currate location for the object because the tracker sensor registered a
position and the mobile display shows the 127 ms. image in the past.

• The �eld of view. When the object is near the subject it was di�cult to
capture the target with the handheld device. Two possible solutions for
this problems are: �rst, the possibility of adding a zoom in and zoom
out capability to the handheld device view. The second, to combine
the handheld device magic lens virtual magic lens with a wider �eld of
view.

• The size and weight of the handheld device. Unfortunately the design
of the user study does not consider to measure muscular tension or
other biometric information to establish the relation of the weight of

6.4. Future work 95

the device with the physical e�ort. But many subject complaint at
the end of the user study about the weight of the interface, 832 g.
represents a heavy device to be carried for long period of time. The
solution to this problem is to implement the interface using more light
components.

• Handling the interface with both hands. This problem is closely related
with the previous one. In the original design the magic lens can be car-
ried with one hand, giving freedom to the other hand to select elements
or controls inserted in the interface. In the third implementation the
device was so heavy that the original interface was modi�ed to carry
the device with both hands. The result was that the subjects found
di�culty to select the virtual object because there was no free hand.

• Head mounted display image mismatch. For the three user studies a
see-through head mounted display was employed. Images are generated
in front of the subjects eyes, and through the lens the subjects was
able to see the images on the handheld device screen. The mentioned
network latency produced the undesirable e�ect of image mismatching,
most noticeable when the mobile devices was suddenly moved, making
di�cult the selection and manipulation. By reducing the latency this
problem would tend to disappear, however di�erences on resolution
and color can continue. The de�nitive solution to this problem is to
use a di�erent technology for create the virtual environment. By using
CAVE or other projection based technology system, this problem is not
present.

6.4 Future work

The analysis of result and the di�erent discussions lead to the proposal of
several improvements. They are compiled as future work.

6.4.1 Migration to a smaller device

New tendencies in cellular phones and music players present continuously
smaller and lighter devices, including more powerful graphic capabilities. For
example, iPhone cellular phone weight is 135 g. capable of play MPEG-4
video at 30 fps and a wireless network 802.11b/g and additionally o�ering
accelerometer, GPS and proximity and ambient light sensors. The size of
the display area is smaller (115*62 mm) but this limitations can be handle
by using virtual magic lenses that complement the narrow �eld of view. On
tracker devices the optical technology is becoming more robust. The OptiTrak
FLEX 100 tracker device provides a latency on tracking of 10 ms. in a range
of 7 meters using 6 cameras. Tracker cameras search for plastic metallic color
trackers that are very light.

96 Chapter 6. Discussion

6.4.2 Integration of virtual magic lenses

Tacking advantage of the tracker sensor attached to the handheld device, a
virtual magic lens attached the handheld device can be created. The virtual
magic lens will represent an extension of the device' screen. The Figure 6.1
shows a diagram of the design. The size and properties will be adjustable.
The form of the virtual lens will be not limited to rectangular areas.

Figure 6.1: A rectangular magic lens

The Figure 6.2 shows a circular virtual magic lens.
By creating a virtual magic lens the limitation of the original magic lens comes
up again. The user does not have any tactile feedback. In order to solve this
problems the interface can implement two solutions.

• To establish a scale correspondence between the handheld device screen
and the virtual magic lens. In this approach the screen on the handheld
display will represent a smaller scale version of the entire virtual magic
lens. The disadvantage is the accuracy will be lost as the size of the
virtual magic lens becomes bigger.

• To decouple the virtual magic lens when the user wants to perform a
selection or manipulation for using the handheld device as a magic lens
over the virtual magic lens. This can be a good solution, however it has
a drawback, the level of redundancy can lead to confusion on the users.
With an extra support of a 2D interface to grab the virtual magic lens
and manipulate it, this proposal can become the best one. The Figure
6.4 shows a virtual magic lens decoupled from the handheld device.

6.4. Future work 97

Figure 6.2: A circular magic lens

Figure 6.3: A �xed magic lens decoupled from the handheld device

98 Chapter 6. Discussion

6.4.3 Automatic switching of metaphors

Other extension for the interface would be to modify the behavior of the in-
terface according to the orientation of the handheld device. When the mobile
device is facing to the user is clear that she/he wants to use handheld as a
magic lens. However, if the handheld is rotated 180 degrees in Z-axis becom-
ing the handheld device screen upside-down, then, because the screen can not
be seen the handheld can be used as a stylus pointer, and the interaction can
be switched to a ray-casting or Go-Go. By pushing the touch screen the user
can represent pussing button action in a normal stylus.
The orientation of the handheld device can be used to establish di�erent
manipulation metaphors as well. For example, in manipulation, the prede�ned
interaction technique to be used would be Go-Go. But if the mobile device is
rotated 90 degrees the interaction can be changed to virtual hand for a more
controlled and accurate movement. Far away located object can bene�t of
the automatic creation of a virtual magic lens displaying a zoom in view of
the manipulation space.

Figure 6.4: Changing interaction technique. On the left, the magic lens metaphor.
On the right, when the user rotate the handheld device 180 degrees in Z-axis the
interaction technique changes to ray casting.

6.4.4 Integrating navigation

In order to o�er the most basic interaction functionalities in an immersive
virtual environment, the interface should provide navigation. By implement-

6.5. Summary 99

ing the World in Miniature, the user will view a smaller version of the entire
environment in the handheld device screen. By scrolling and slicing, the user
would be able to zoom in, zoom out and navigate the environment as using a
map in Internet. When the user �nds the location that she/he wants to go, by
touching the place on the handheld device's screen the user will be teleported
to that location in the virtual environment.
The user would be able to select and manipulate virtual object using the
objects shown in the miniature environment presented on the handheld device.

6.5 Summary

This chapter complements the evaluation of the interface presented in Chapter
5. It remarks the originality of the research which consists on giving more re-
alism to the implementation of a magic lens using a handheld device. Previous
studies proposed its implementation by using pure virtual components and a
mixure of real-virtual elements. Moreover, the chapter compiles observations,
comments and suggestions related to the concept, design, implementation and
evaluation of the interface. The network latency has been the main problem
that had led the development of three di�erent implementations. However,
more improvements should be made in order to o�er an e�ective interface for
manipulating virtual objects. The weight and size of the interface are two
other drawbacks. Using a more modern lighter handheld device and tracker
sensor could resolve this problem. The �eld of view of a smaller device can
be compensated employing virtual lenses.
Magic lenses implemented in mobile device o�er the �exibility of integrate
2D and 3D interaction techniques within virtual environments and it can
represents a good approach for standarizing 3D interfaces.

Chapter 7

Conclusions

The objective of the present study was to develop a 3D magic lens interface
with the aim of providing new methods of interaction within virtual reality
environments. The novelty of the study consists of proposing a new interface
design implemented on a handheld device. The touch screen, graphic dis-
play, programmable 2D interfaces, networking, sound, vibration and all the
other device functions are integrated into the development of new 3D inter-
actions. Using this approach, the handheld device becomes a �exible and
powerful interaction tool by combining, extending and giving new de�nitions
to previously isolated 2D and 3D metaphors.
The interface takes advantage of the familiarity levels resulting form the use
of mobile technologies. PDA's and cellular phones are, in modern life, de-
vices employed in daily activities. People are, therefore, �accustomed� to the
interactions and capabilities they provide. The interface applies the 2D in-
teractions user have previously mastered, to the creation of 3D interactions.
Taking snapshots and storing them on a clipboard resembles the use of a
digital camera. The selection of the object from a snapshot is similar to se-
lecting a telephone number from the screen of a handheld device, and so on.
The use of 2D interactions for performing 3D activities minimizes the inter-
action space and operations requiring high precision. For example, selecting
an object from a snapshot is easier than trying to select it directly from 3D
space. Furthermore, the mixture of 2D and 3D interaction provides a more
comprehensive set of functions that complement each other. So for example,
in situations where manipulation in 3D environments requires more freedom
of movement, the 2D interface expands this capability. In these situation, an
elongation metaphor provides a greater range of movement.
Several 3D interactions have been developed previously. However their appli-
cation is limited to speci�c conditions resulting in the proliferation of inter-
faces and input devices. This study pursues the creation of an interface that
o�ers a generic set of interaction techniques that can be used in a wide range
of environments and conditions. The study moves in the direction of searching
for a generic method of interaction in 3D environments. The interface facil-
itates the application of basic interaction tasks as fundamental operations,
which are then used as the foundations for more complex interactions.
This study proposed an architecture for implementing the magic lens
metaphor using a handheld device. The design involves the sharing of a

102 Chapter 7. Conclusions

computing task between the handheld device and virtual environment gen-
erator computer system, the integration of a tracking sensor for calculating
the handheld device position, and the communication infrastructure required
to exchange images and interaction information. After considering the dif-
ferences in processing and storage speci�cations between several handheld
devices, and with the aim of o�ering a imminently portable architecture to
a wide number of mobile technologies, the distribution of the task proposed
utilizes the pixel distribution approach. In this approach, the virtual environ-
ment render machine generates all the images used by the system, including
the images displayed on the handheld device. Ater which, a client server ar-
chitecture is implemented where the render machine has the role of server and
the handheld device assumes the role of client. The server senses the position
of the handheld device with the tracking sensor, then it calculates the portion
of the image the handheld device is covering in the environment. A scheduler
captures images at prede�ned intervals of time in order to generate a video
stream that is sent to the client. The client captures interactions provided
by the touch screen, buttons, and 2D interfaces, and transmits them to the
server in order to evaluate the captured information for the modi�cation of
the environment.

Three prototypes were fabricated to validate the feasibility of the proposal:

• a JPEG based streaming prototype with the support of OpenGL/ES
for 2D interface design.

• a JPEG based streaming prototype with the support of GAPI for 2D
interface design.

• and a MPEG based streaming prototype with the support of Qt for 2D
interface design.

A performance test, applied to the prototypes, showed that the last prototype,
employing MPEG technology, was the most suitable for implementing real-
time interactions. The results for measuring the delay was an average of 127.8
m. transmitting images of 800*600 24-bits color at 25 fps.

After the design of the basic magic lens interaction, an architecture for im-
plementing 3D interactions that possessed the �exibility required for mixing
and integrating them around the magic lens metaphor, was implemented.
The architecture neccessitated the creation of a software layer to distribute
the input information to specialized interaction modules based on the con-
text of the interaction. The same input information can perform di�erent
actions depending on the task the user is performing at a certain determined
time. Pushing a button can mean, for example, select an object or to change
the color of an object. The architecture implements the di�erent de�nitions
separately and redirects the input to the corresponding processing module for

103

correct interpretation. The result is a �exible software layer that can be easily
extended in order to support di�erent interface types.
A prototype implementing the proposed architecture was fabricated. The
prototype was implemented on top of the existing magic lens prototype. In-
terfaces such as virtual hand, ray-casting, Go-Go and HOMER were imple-
mented with the architecture. The magic lens interaction was mixed with a
Go-Go interaction technique in order to improve the manipulation of virtual
objects in 3D space. This architecture was found to help integrate di�erent
interaction methods, o�ering an environment suitable for experiments with
interface combination and extensions.
During the design of the interface, interaction evaluation were performed.
For the �rst prototype, a user study suggested that the interface is easy to
use for selection and that selection accuracy is markedly improved. For the
second prototype, the user study revealed that the interface is considerably
easier to use when selecting an object, compared to the ray casting technique,
when the target object is in motion. This is because there is no need to accu-
rately track the moving target with our interface. Instead, the user only has
to capture a snapshot of a large portion of the environment that includes the
moving target. Due to the pen-tablet technique based interaction, the size of
the object does not matter for precise selection. Finally, in the third proto-
type, the user study con�rmed that the interface has good object selection
performance, speci�cally when those objects are moving and are distant from
the user. During manipulation, the primary problems with the interface were
its weight and size. A new prototype implemented with tracker device that
is smaller in size and a mobile component lighter in weight will be fabricated
and evaluated in future work. Based on the user study results, applying the
Go-Go in combination with the magic lens appears to be a good approach for
manipulating objects. However more user studios must be conducted in order
to con�rm or refute this contention.
In the future, the interfaces will integrate the World in Miniature interaction.
It is expected that the use of the handheld device for displaying a miniature
version of the environment would o�er a more �exible form of interactions.
The use of maps for localize an address is an actual metaphor the interface
is trying to o�er in 3D virtual environments. Navigation by using previous
marked locations stored in the clipboard can be used for creating a path to
interesting view that the user could immediately return to by making a se-
lection on the mobile display. Accelerometers, which are included in some
handheld devices, can be integrated to automatically switch the metaphor
employed. When the mobile device is facing directly to the user's face, it
could inidcate the user wants to use the magic-lens e�ect. When the screen
points away from the user, it could mean the user wants to use another in-
teraction technique, such as ray casting or HOMER. The overall goal of the
interface is to o�er an interaction mechanism easy to understand and apply

104 Chapter 7. Conclusions

by integrating handheld device as tool for generating meaningful interaction
techniques. The vision governing the application of this interface is that the
user should be able to interact immediately within an immersive virtual envi-
ronment while supported only a handheld device and a tracker sensor. In this
vision the user intuitively would discover the functions o�ered by the interface
without requiring long training periods. Thus, the interface will function as
an important tool for the environment the user perceives virtually.

Bibliography

[Ayatsuka 2000] Y. Ayatsuka, N. Matsushita and J. Rekimoto. HyperPalette:
a hybrid computing environment for small computing devices. In CHI
'00 extended abstracts on Human factors in computing systems, pages
133�134, 2000. 7, 8, 11

[Bier 1993] E. Bier, M. Stone, K. Pier, B. Buxton and T. DeRose. Tool-
glass and Magic Lenses: The See-Through Interface. In Proc. of SIG-
GRAPH'93, pages 73�80, 1993. xi, 3, 6, 7, 11, 21, 22, 26, 91

[Bierbaum 2001] A. Bierbaum, C. Just, P. Hartling, K. Meinert, A. Baker and
C. Cruz-Neira. VR Juggler: A Virtual Platform for Virtual Reality
Application Development. In Proceedings of the Virtual Reality 2001
Conference (VR'01), pages 89�96, 2001. 39, 49

[Boling 2003] D. Boling. Windows CE .NET. Microsoft Press, 2003. 33
[Bowman 1997a] D. Bowman and L. Hodges. An Evaluation of Techniques

for Grabbing and Manipulating Remote Objects in Immersive Virtual
Environments. In Proc. of the 1997 ACM Symposium on Interactive
3D Graphics (I3D'97), pages 35�38, 1997. 53, 66

[Bowman 1997b] D. Bowman, D. Koller and L. Hodges. Travel in Immersive
Virtual Environments: An Evaluation of Viewpoint Motion Control
Techniques. In Proc. of the 1997 IEEE Virtual Reality Annual Inter-
national Symposium (VRAIS'97), pages 45�52, 1997. 6, 18, 20, 75,
92

[Bowman 1999a] D. Bowman, D. Johnson and L. Hodges. Testbed Evaluation
of VE Interaction Techniques. In Proc. of the 1999 ACM Symposium
on Virtual Reality Software and Technology (VRST'99), pages 26�33,
1999. xi, 3, 6, 18, 19

[Bowman 1999b] D.A. Bowman and L. Houges. Formalizing the Design,
Evaluation, and Application of Interaction Techniques for Immersive
Virtual Environments. Journal of Visual Languages and Computing,
vol. 10, pages 37�53, 1999. xii, 64, 65, 66

[Bowman 2001] D. Bowman, E. Kruij�, J. J. LaViola Jr. and I. Poupyrev.
An Introduction to 3D User Interface Design. Presence, vol. 10, no. 1,
pages 96�108, 2001. 2

[Bowman 2002] D. Bowman, J.L. Gabbard and D. Hix. A Survey of Usability
Evaluation in Virtual Environments: Classi�cation and Comparison
of Methods. Presence: Teleoperation. Virtual Environments, vol. 11,
no. 4, pages 404�424, 2002. 63, 64

[Bowman 2005] D.A. Bowman, E. Kruij�, J.J. LaViola Jr. and I. Poupyrev.
3D User Interfaces. Theory and Practice. Addison-Wesley, 2005. 2

106 Bibliography

[Bowman 2006] D.A. Bowman, J. Chen, C.A. Wingrave, J.F. Lucas, A. Ray,
N.F. Polys, Q. Li, Y. Haciahmetoglu, J. Kim, S. Kim, R. Boehringer
and T. Ni. New Directions in 3D User Interfaces. International Journal
of Virtual Reality, vol. 5, no. 2, pages 3�14, 2006. 2

[Bowman 2008] D.A. Bowman, S. Coquillart, B. Froehlich, M. Hirose, Y. Ki-
tamura, K. Kiyokawa and W. Stuerzlinger. 3D User Interfaces: New
Directions and Perspectives. IEEE Computer Graphics Applications,
vol. 28, no. 6, pages 20�36, 2008. 2

[Brooks 1999] F.P. Brooks. What's Real About Virtual Reality? IEEE Com-
puter Graphics Applications, vol. 19, no. 6, pages 16�27, 1999. 10, 25,
34

[Brown 2006] L.D. Brown and H. Hua. Magic Lenses for Augmented Virtual
Environments. IEEE Computer Graphics Applications, vol. 26, no. 4,
pages 64�73, 2006. 6

[Brutdzman 2007] D. Brutdzman and L. Daly. X3D: Extensible 3d graphics
for web authors. Morgan Kaufmann, 2007. 10

[Burdea 2003] G.C. Burdea and P. Coi�et. Virtual reality technology. Wiley-
Interscience, 2nd édition, 2003. 1

[Carey 1997] R. Carey and G. Bell. The annotated VRML 2.0 reference man-
ual. Addison-Wesley Professional, 1st édition, 1997. 10

[Chen 1988] M. Chen, S.J. Mountford and A. Sellen. A Study in Interac-
tive 3-D Rotation using 2-D Control Devices. In Proc. of the 15th
annual conference on Computer graphics and interactive techniques
(SIGGRAPH '88), pages 121�129, 1988. 60

[Chen 2001] H. Chen, Y. Chen, A. Finkelstein, T. Funkhouser, K. Li, Z. Liu,
R. Samanta and G. Wallace. Data distribution strategies for high-
resolution displays. Computers Graphics, vol. 25, no. 5, pages 811�
818, October 2001. 6, 29, 31

[Cruz-Neira 1993] C. Cruz-Neira, D.J. Sandin and T. A. DeFanti. Surround-
Screen Projection-Based Virtual Reality: The Design and Implementa-
tion of the CAVE. In Proc. of the SIGGRAPH '93 Computer Graphics
Conference, pages 135�142, 1993. 11, 13

[FFmpeg 2009] FFmpeg. FFmpeg. http://�mpeg.org, November 2009. 35
[Fisher 1987] S.S. Fisher, M. McGreevy, J. Humphries and W. Robinett. Vir-

tual environment display system. In Proc. of the 1986 workshop on
Interactive 3D graphics (SI3D '86), pages 77�87, 1987. 1

[Fnorb 2009] Fnorb. Fnorb The pure Python CORBA ORB.
http://fnorb.sourceforge.net, November 2009. 33

[Furness 1986] T.A. Furness. The Super Cockpit and its Human Factors Chal-
lenges. In Proc. of the Human Factors Society, pages 48�52, 1986. 1

Bibliography 107

[Gabbard 1999] J.L. Gabbard, D. Hix and J.E. Swan. User-Centered Design
and Evaluation of Virtual Environments. IEEE Computer Graphics
and Applications, vol. 19, no. 6, pages 51�59, 1999. 64

[Gamma 1995] E. Gamma, R. Helm, R. Johnson and J.M. Vlissides. De-
sign patterns. elements of reusable object-oriented software. Addison-
Wesley Professional, 1995. 55

[Gray 2003] K. Gray. Microsoft DirectX 9 programmable graphics pipeline.
Microsoft Press, 2003. 12

[Hartling 2005] P. Hartling and C. Cruz-Neira. Tweek: A Framework for
Cross-Display Graphical User Interfaces. In ICCSA (3), pages 1070�
1079, 2005. 7, 8, 11

[Henning 1999] M. Henning and S. Vinoski. Advanced CORBA programming
with c++. Addison-Wesley Professional, 1999. 33

[Henrysson 2005] A. Henrysson, M. Billinghurst and M. Ollila. Face to Face
Collaborative AR on Mobile Phones. In Proc. of the 4th IEEE/ACM
International Symposium on Mixed and Augmented Reality (ISMAR
'05), pages 80�89, 2005. 28

[Ho�man 1998] H. Ho�man, A. Hollander, K. Schroder, S. Rousseau and
T. Furness. Physically touching and tasting virtual objects enhances
the realism of virtual experiences. Virtual Reality, vol. 3, no. 4, pages
226�234, December 1998. 23

[Humphreys 2002] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ahern,
P.D. Kirchner, J. Klosowski and T. James. Chromium: a stream-
processing framework for interactive rendering on clusters. ACM,
Transaction on Graphics, pages 693�702, 2002. 30

[IJEP 2009] IJEP. Independent JPEG Group. http://www.ijg.org, November
2009. 35

[JPEG 2009] JPEG. JPEG. http://www.jpeg.org, November 2009. 34
[Kelso 2002] J. Kelso and L.E. Arsenault. DIVERSE: A Framework for Build-

ing Extensible and Recon�gurable Device Independent Virtual Environ-
ments. In IEEE Virtual Reality (VR'2002), pages 183�190, 2002. 39,
49

[Kessler 2000] G.D. Kessler, D.A. Bowman and L.F. Hodges. The Simple Vir-
tual Environment Library: An Extensible Framework for Building VE
Applications. In Presence: Teleoperators and Virtual Environments,
pages 187�208, 2000. 39, 49

[Kruger 1994] W. Kruger and B. Frohlich. The Responsive Workbench. IEEE
Computer Graphics and Applications, vol. 14, no. 3, pages 12�15,
1994. 14

[Kruij� 2003] E. Kruij�, S. Conrad and A. Mueller. Flow of Action in Mixed
Interaction Modalities. In Proc. of HCI International 2003, pages 706�
715, 2003. 7, 8, 11

108 Bibliography

[Kukimoto 2005] N. Kukimoto, J. Nonaka, Y. Ebara and K. Koyamada. Sci-
enti�c Visualization in Collaborative Virtual Environment with PDA-
Based Control and 3D Annotation. JSME International Journal Series
B Fluids and Thermal Engineering, vol. 48, no. 2, pages 252�258, 2005.
7, 11

[Lamberti 2003] F. Lamberti, C. Zunino, A. Sanna, A. Fiume and
M. Maniezzo. An Accelerated Remote Graphics Architecture for PDAs.
In Proc. of the eighth international conference on 3D Web technology
(Web3D'03), pages 55�61, 2003. 6, 35, 45

[Lamberti 2007] F. Lamberti and A. Sanna. A Streaming-Based Solution for
Remote Visualization of 3D Graphics on Mobile Devices. IEEE Trans-
actions on Visualization and Computer Graphics, vol. 13, no. 2, pages
247�260, 2007. 35, 45

[Lawton 2006] G. Lawton. Making Virtual Reality more Accessible. Com-
puter, pages 12�15, June 2006. 1

[Looser 2004] J. Looser, M. Billinghurst and A. Cockburn. Through the look-
ing glass: the use of lenses as an interface tool for Augmented Reality
interfaces. In Proc. of the 2nd international conference on Computer
graphics and interactive techniques in Australasia and South East Asia
(GRAPHITE '04), pages 204�211, 2004. 6

[Martz 2007] P. Martz. OpenSceneGraph quick start guide. pmartz, 2007.
39, 55

[McCarty 1994] W.D. McCarty, S. Sheasby, P. Amburn, M.R. Stytz and
C. Switzer. A Virtual Cockpit for a Distributed Interactive Simula-
tion. IEEE Computer Graphics and Applications, vol. 14, no. 1, pages
49�54, 1994. 1

[Mechdyne 2009] Mechdyne. CAVELib. http://www.mechdyne.com/integratedSolutions/
software/products/CAVELib/CAVELib.htm1, November 2009. 39,
49

[Nintendo 2009] Nintendo. Wii. http://www.nintendo.com/wii, November
2009. 1

[Nobuyuki 2005] K. Nobuyuki, N. Jorji, E. Yasuo and K. Koji. Scienti�c
Visualization in Collaborative Virtual Environment with PDA-Based
Control and 3D Annotation(<Special Issue>Advanced Fluid Informa-
tion). JSME international journal. Ser. B, Fluids and thermal engi-
neering, vol. 48, no. 2, pages 252�258, 2005. 28

[OpenGLES 2009] OpenGLES. OpenGL ES.
http://www.khronos.org/opengles, November 2009. 30

[Perlin 1985] K. Perlin. An Image Synthesizer. SIGGRAPH Computer
Graphics, vol. 19, no. 3, pages 287�296, 1985. 69, 76

Bibliography 109

[Pierce 1997] J. Pierce, M. Forsberg, M. Conway, S. Hong, R. Zeleznik and
M. Mine. Image Plane Interaction Techniques in 3D Immersive En-
vironments. In Proc. of the 1997 ACM Symposium on Interactive 3D
Graphics (I3D'97), pages 39�44, 1997. xi, 3, 7, 18, 19, 92

[Poupyrev 1996] I. Poupyrev, M. Billinghurst, S. Weghorst and T. Ichikawa.
The Go-Go Interaction Technique: Non-linear Mapping for Direct Ma-
nipulation in VR. In Proc. of the 1996 ACM Symposium on User In-
terface Software and Technology (UIST'96), pages 79�80, 1996. xi, 6,
18, 75

[Poupyrev 1998a] I. Poupyrev, N. Tomokazu and S. Weghorst. Virtual
Notepad: Handwriting in Immersive VR. In Proc. of the Virtual Re-
ality Annual International Symposium, pages 126�132, 1998. 27, 54

[Poupyrev 1998b] I. Poupyrev, S. Weghorst, M. Billinghurst and T. Ichikawa.
Egocentric Object Manipulation in Virtual Environments: Empirical
Evaluation of Interaction Techniques. vol. 17, no. 3, pages 41�52,
1998. 2, 3, 6, 17, 18

[Qt 2009] Qt. Qt. http://qt.nokia.com, November 2009. 46
[Ray 2007] A. Ray and D.A. Bowman. Towards a system for reusable 3D

interaction techniques. In VRST '07: Proceedings of the 2007 ACM
symposium on Virtual reality software and technology, pages 187�190,
2007. 50

[Reiners 2002] D. Reiners. OpenSG: A Scene Graph System for Flexible and
E�cient Realtime Rendering for Virtual and Augmented Reality Ap-
plications. PhD thesis, Vom Fachbereich Informatik der Technischen
Universitat Darmstadt, 2002. 39, 55, 57

[Reitmayr 2005] G. Reitmayr and D. Schmalstieg. OpenTracker: A �exi-
ble software design for three-dimensional interaction. Virtual Reality,
vol. 9, no. 1, 2005. 39

[Schmalstieg 1999] D. Schmalstieg, M. Encarnaçäo and Z. Szalavari. Using
Transparent Props for Interaction with the Virtual Table. In Proc. of
the 1999 ACM Symposium on Interactive 3D Graphics (I3D'99), pages
147�154, 1999. xi, 3, 6, 7, 23, 91

[Schmalstieg 2002] D. Schmalstieg, A. Fuhrmann, G. Hesina, Z. Szalavári,
L.M. Encarnaçäo, M. Gervautz and W. Purgathofer. The Studier-
stube Augmented Reality Project. Presence: Teleoperation and Virtual
Environments, vol. 11, no. 1, pages 33�54, 2002. 1, 7, 11

[Shibano 2001] N. Shibano, P.V. Hareesh, M. Kashiwagi, K. Sawada and
H. Takemura. Development of VR Experiencing System with Hemi-
Spherical Immersive Projection Display for Urban Environment De-
sign. In Proc. of the Seventh International Conference on Virtual
Systems and Multimedia (VSMM '01), pages 499�505, 2001. 14

110 Bibliography

[Shreiner 2004] D. Shreiner, M. Woo, J. Neider and T. Davis. OpenGL pro-
gramming guide. Addison Wesley, 4th édition, 2004. 12, 30, 39, 55

[Stevens 1998] W.R. Stevens. UNIX network programming, volume 2: Inter-
process communications. Prentice Hall, 2nd édition, 1998. 33

[Stoakley 1995] R. Stoakley, M. Conway and R. Paush. Virtual Reality on
a WIM: Interactive Worlds in Miniature. In Proc. of the 1995 ACM
Conference on Human Factors in Computing Systems (CHI'95), pages
265�272, 1995. xi, 17

[Stoev 2002] S.L. Stoev and D. Schmalstieg. Application and Taxonomy of
Through-the-lens Techniques. In Proc. of the ACM symposium on
Virtual reality software and technology (VRST'02), pages 57�64, 2002.
6

[Sutherland 1965] I. Sutherland. The Ultimate Display. In Proc. of IFIP
Congress 65, pages 506�508, 1965. 10

[Sutherland 1968] I. Sutherland. A Head-Mounted Three Dimensional Dis-
play. In Proc. of the December 9-11, 1968, fall joint computer confer-
ence, part I. AFIPS '68 (Fall, part I), pages 757�764, 1968. 11

[Szalavári 1997] Z. Szalavári and M. Gervautz. The Personal Interaction
Panel - a Two-Handed Interface for Augmented Reality. Computer
Graphics Forum, vol. 16, no. 3, 1997. 6, 7, 23

[Taylor 2001] R.M. Taylor, T.C Hudson, A. Seeger, H. Weber, J. Juliano and
A.T. Helser. VRPN: a device-independent, network-transparent VR
peripheral system. In Proc. of the ACM symposium on Virtual reality
software and technology (VRST '01), pages 55�61, 2001. 38

[Viega 1996] J.C. Viega, M.J. Conway, G. Williams and R. Pausch. 3D Magic
Lenses. In Proc. of the 9th annual ACM symposium on User interface
software and technology (UIST '96), pages 51�58, 1996. xi, 11, 21, 22,
26, 91

[Watsen 1999] K. Watsen, R.P. Darken and M.V. Capps. A Handheld Com-
puter as an Interaction Device to a Virtual Environment. In Proc. of
the Third Immersive Projection Technology Workshop, 1999. 7, 11

[Welch 2001] G. Welch, G. Bishop, L. Vicci, S. Brumback, K. Keller and
D. Colucci. High-Performance Wide-Area Optical Tracking: The Hi-
Ball Tracking System. Presence: Teleoperators Virtual Environments,
vol. 10, no. 1, pages 1�21, 2001. 37

[Wingrave 2008] C.A. Wingrave and D.A. Bowman. Tiered Developer-
Centric Representations for 3D Interfaces: Concept-Oriented Design
in Chasm. In IEEE Virtual Reality Conference 2008 (VR 2008), pages
193�200, 2008. 50

Bibliography 111

List of Publications

Journals Papers

1. Miranda Miranda Miguel, Kiyokawa Kiyoshi and Takemura Haruo. Im-
plementation and Evaluation of a Magic lens Interface Using a Handheld
Device in an Immersive Virtual Environment. The Journal of the Insti-
tute of Image Information and Television Engineers. pp. 816-821. Vol.
63, No. 6, 2009.

International Conference Papers

3. Miranda Miranda Miguel, Kiyokawa Kiyoshi and Takemura Haruo. A
PDA-based See-through Interface within an Immersive Environment. In
Proc. Int. Conf. on Arti�cial Reality and Telexistence (ICAT). pp.
113-118,.Esbjerg Denmark, November 2007.

4. Miranda Miranda Miguel, Kiyokaya Kiyoshi, Takemura Haruo. Interac-
tion within immersive virtual environments through a See-Through in-
terface implemented on a PDA. In Proc. of the Int. Workshop on Ubiq-
uitous Virtual Reality 2008. Session 8, pp 1-14, Jan.2008 Osaka Japan.
January 2008.

Domestic Conference Papers

5. Miranda Miranda Miguel, Ogawa Takefumi, Kiyokawa Kiyoshi and Take-
mura Haruo. A PDA-based See-through Interface for Extending Interac-
tion Functionality in a CAVE Display. In Proc. of Institute of Electron-
ics, Information and Communication Engineers, pp. A-16-24, Nagoya
Japan. March 2007.

6. Miranda Miranda Miguel, Kiyokawa Kiyoshi and Takemura Haruo. A
PDA-based See-through Interface within an Immersive Environment. In
Proc. of Institute of Electronics, Information and Communication Engi-
neers, Vol.107, No.80 pp. 37-42. Tokyo Japan, June 2007.

7. Miranda Miranda Miguel, Kiyokawa Kiyoshi and Takemura Haruo. A
PDA-based See-through User Interface within an Immersive Environ-
ment. In Proc. of the Virtual Reality Society of Japan, pp. 2A2-6.
Fukuoka Japan, September 2007.

112 Bibliography

8. Kiyokawa Kiyoshi, Miranda Miguel, Nozaki Kazunori, Yasufuku Ken-
saku, Itoh Kazuo, Iwata Yasunori. HOPE - Development of a High-
de�nition Immersive Projection Display. In Proc. of the Virtual Reality
Society of Japan, Fukuoka Japan, September 2007.

9. Miranda Miranda Miguel, Kiyokawa Kiyoshi and Takemura Haruo. A
PDA-based See-through Interface within an Immersive Environment. In
Proc. Int. Conf. on Arti�cial Reality and Telexistence (ICAT), pp.
113-118,.Esbjerg Denmark, November 2007.

10. Miranda Miranda Miguel, Kiyokaya Kiyoshi, Takemura Haruo. Interac-
tion within immersive virtual environments through a See-Through in-
terface implemented on a PDA. In Proc. of the Int. Workshop on Ubiq-
uitous Virtual Reality 2008. Session 8, pp 1-14, Jan.2008 Osaka Japan.
January 2008.

11. Miranda Miranda Miguel, Kiyokaya Kiyoshi, Takemura Haruo. Imple-
menting a See-through the lens interface for enhancing interaction in a
CAVE. In Proc of Human Interface Symposium 2008. Osaka Japan.
September 2008.

12. Miranda Miranda Miguel, Kiyokawa Kiyoshi, Takemura Haruo. Imple-
mentation and Evaluation of a See-through the lens interface in an Im-
mersive Virtual Environment. In Proc. of Institute of Electronics, Infor-
mation and Communication Engineers, Vol. 108, No. 226 pp.27-32.-A
Kushiro Japan. October 2008.

Demonstrations
13. Supercomputing 2008. Austin Texas. November 15-20, 2008.

	Introduction
	Motivation
	Research Goal and Challenges
	Contributions.
	Organization of the dissertation

	Background
	Introduction
	Immersive Virtual Reality
	Input Devices for Implementing Immersive Virtual Environments
	Handheld Devices
	Tracker Devices

	Output Devices for Implementing Immersive Virtual Environments
	Head Mounted Displays
	The CAVE
	Others Technologies

	Interaction in an Immersive Virtual Reality System
	3D Interfaces
	Selection and Manipulation

	Interaction Techniques for 3D Manipulation
	Exocentric Metaphors
	Egocentric Metaphors
	The Magic Lens Metaphor

	Summary

	Architecture for Implementing a Magic lens Interface Using a Handheld Device
	Introduction
	Interface Requirements
	Interface Conceptual Design
	Communication Model
	Peer to Peer Model
	Client-Server Model

	Graphics Processing Distribution
	Control Distribution (Synchronized Execution)
	Geometric Primitives Distribution
	Pixels Distribution

	Prototype Implementation
	Design of the Server
	Networking layer
	Streaming Layer Based on JPEG
	Streaming Layer Based on MPEG
	Tracking Systems
	Tracking Information Handling
	Virtual Reality Framework
	VR Juggler Implementation

	Design of the Client
	Visual Interfaces for Handheld Devices
	Streamer on Handheld Device based on JPEG
	Testing
	Streamer on Handheld Device based on MPEG
	Interaction Information Channel
	Testing

	Summary

	Architecture for Designing 3D Interactions
	Introduction
	Implementation Goals
	Architecture Conceptual Design
	Interaction by Using the Handheld Device
	Pen-Tablet Technique
	Selection using Handheld Device
	Manipulation with the Handheld Device
	Clipboard
	Virtual Cameras
	Virtual Map
	Text and Annotations

	Implementation of a Prototype
	Event Handling
	Graphic Representation
	Interaction Modules
	Implemented Interfaces

	Summary

	Interface Evaluation
	Introduction
	Methodology
	Testbed Evaluation Approach
	Evaluation for Selection on the JPEG-based Streaming Interface
	The Outsider Factors
	Performance Measures
	Testbed Evaluation
	Hypotheses
	Results
	Discussion

	Evaluation for Selection on the MPEG-based Streaming Interface
	The Outsider Factors
	Performance Measures
	Testbed Evaluation
	Hypotheses
	Results
	Discussion

	Evaluation for Manipulation
	The Outsider Factors
	Performance Measures
	Testbed Evaluation
	Hypotheses
	Results for Selection
	Results for Manipulation
	Results for Task Completion

	Discussion
	Summary

	Discussion
	Introduction
	Conceptual Model
	Prototype implementation
	Future work
	Migration to a smaller device
	Integration of virtual magic lenses
	Automatic switching of metaphors
	Integrating navigation

	Summary

	Conclusions
	Bibliography

