<table>
<thead>
<tr>
<th>Title</th>
<th>Development of Activation Methods of Organotin Compounds Using Transmetalation and Their Application to Organic Synthesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Kiyokawa, Kensuke</td>
</tr>
<tr>
<td>Citation</td>
<td></td>
</tr>
<tr>
<td>Issue Date</td>
<td></td>
</tr>
<tr>
<td>Text Version</td>
<td>ETD</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/1906</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>
Development of Activation Methods of Organotin Compounds Using Transmetalation and Their Application to Organic Synthesis

（金属交換を利用した有機スズ化合物の効率的活性化手法の開発と有機合成への展開）

2011

Kensuke Kiyokawa

清川 謙介

Department of Applied Chemistry
Graduate School of Engineering
Osaka University
Preface and Acknowledgements

The work of this thesis has been performed (2006-2012) under the guidance of Professor Akio Baba at Department of Applied Chemistry, Graduate School of Engineering, Osaka University. The author would like to express his sincerest gratitude to Professor Akio Baba for his precise guidance, helpful suggestion, and hearty encouragement throughout this work.

The author also wishes to make a grateful acknowledgement to Associate Professor Makoto Yasuda for his intimate guidance, continuous advice, and kind encouragement.

The author is grateful to Assistant Professor Yoshihiro Nishimoto for his invaluable assistance, helpful suggestion, and stimulating discussion.

The author is also grateful to Dr. Srinivasarao Arulananda Babu, Dr. Takahiro Saito, and Dr. Nobuko Kanehisa for their invaluable assistance, helpful suggestion and stimulating discussion.

Furthermore, the author wishes to thank Mr. Itaru Suzuki and Ms. Nodoka Tachikake for their valuable discussion and active collaboration. The author also wishes to acknowledge to all the members of Baba Laboratory for their hearty encouragement, constant support and assistance.

The author would like to express his thanks for financial supports from the Global COE Program “Global Education and Research Center for Bio-Environmental Chemistry” of Osaka University and Shoshisha scholarship foundation.

Finally, the author would like to express his thanks to his respectable parents, Koichi Kiyokawa and Noriko Kiyokawa, and his younger sister, Atsuko Kiyokawa, for their understanding to his work, perpetual mental and financial support.

Kensuke Kiyokawa

Department of Applied Chemistry, Graduate School of Engineering, Osaka University 2-1 Yamadaoka, Suita, Osaka, 565-0871, JAPAN

January, 2012
List of Publications

1. **Radical Coupling of Iodocarbonyl Compounds with Butenylindium Generated by Transmetalation between Cyclopropylmethylstannane and Indium Halides**
 Makoto Yasuda, Kensuke Kiyokawa, Kenji Osaki, and Akio Baba

2. **Cyclopropylmethylation of Benzylic and Allylic Chlorides with Cyclopropylmethylstannane Catalyzed by Gallium or Indium Halide**
 Kensuke Kiyokawa, Makoto Yasuda, and Akio Baba

3. **Synthesis of Cyclopropane-Containing Phosphorus Compounds by Radical Coupling of Butenylindium with Iodophosphorus Compounds**
 Kensuke Kiyokawa, Itaru Suzuki, Makoto Yasuda, and Akio Baba

4. **Substituted Butenylindium Generated by Transmetalation of Cyclopropylmethylstannane with Indium Iodide: Synthesis and Characterization of Monobutenylindium**
 Kensuke Kiyokawa, Makoto Yasuda, and Akio Baba

5. **Direct Synthesis of Alkynylstannanes: ZnBr₂ Catalyst for the Reaction of Tributyltin Methoxide and Terminal Alkynes**
 Kensuke Kiyokawa, Nodoka Tachikake, Makoto Yasuda, and Akio Baba
General Introduction

Organometallic compounds are fundamental reagents in organic synthesis. Organolithium or organomagnesium compounds are representative reagents, but their applications have been limited from the viewpoint of functional group tolerance. In recent years, organotin, -silicon, -boron, and -zinc compounds, which have both high functional group compatibility and reasonable reactivity, have been widely used for organic synthesis. In particular, organotin compounds are one of the most useful organometallic reagents because of their comparable high availability and reactivity. Development of appropriate activation methods for those organometallic compounds has led to development of novel synthetic methods. In the case of organotin compounds, transmetalation method provides efficient protocol for organic synthesis. The transmetalation using organotin compounds effectively affords the corresponding active species in situ, and by-products in the transmetalation, alkyltin compounds or tin halides, does not affect the reaction system because of their low reactivity. For example, organolithium or organocopper reagents, which are readily prepared by the transmetalation of Sn-Li or Sn-Cu, respectively, have been used for many types of reactions. Transmetalation with metal halides such as SnCl₄, TiCl₄, or BBr₃, is also a useful method to provide the corresponding active metal species. Recently, the transmetalation with mild Lewis acids such as indium halides or tin(II) halides has been developed to generate the corresponding active nucleophiles with unique characters which have been applied to various chemo-, regio-, and stereoselective transformations. Transmetalation between organotin compounds and appropriate metal halides is expected to be a useful tool for the development of a new synthetic methodology. In this work, the transmetalation with cyclopropylmethylstannane or tin alkoxide, which have been rarely used due to their low reactivity, was applied to organic syntheses as noted in Chapters 1–3.

Chapter 1 describes that the generation of butenylindium species by the transmetalation between cyclopropylmethy1stannane and indium halides and their radical coupling reactions with α-iodocarbonyl compounds or iodo phosphorus compounds. The detail structure and reactivity of the butenylindium species were revealed.

Chapter 2 deals with the coupling reaction of cyclopropylmethylstannane with alkyl chlorides using indium or gallium halides as catalysts. It is found that the reaction proceeded in an ionic mechanism, and the unique reactivity of the butenylindium or butenylgallium species was unveiled.

Chapter 3 discloses the ZnBr₂-catalyzed direct synthesis of alkynylstannanes from tin methoxide and terminal alkynes. This system enabled the synthesis of various functionalized alkynylstannanes, which had been difficult to synthesis by precedent methods. Moreover, alkynylstannanes synthesized by this system were applicable to one-pot coupling reaction to give functionalized aryl alkyne compounds.

References

Chapter 1

Coupling Reaction of Cyclopropylmethylstannane with Iodocarbonyl Compounds or Iodo Phosphorus Compounds

1-1. Radical Coupling of Iodocarbonyl Compounds with Butenylindium Generated by Transmetalation between Cyclopropylmethylstannane and Indium Halides

1-1-1. Introduction

Cyclopropylmethylstannane has the potential to introduce a cyclopropyl ring to organic molecules through C–C bond formation. Although some examples using cyclopropylmethylstannane were reported by Young, only ring-opening reactions took place with inorganic reagents such as SO₂, Bronstead acid, or iodine. The lack of a suitable activation method creates difficulty in the control of cyclopropylmethylstannane for carbon–carbon bond formation. There are some examples of starting from a butenylmetal species instead of a cyclopropylmethyl compound to introduce cyclopropylmethyl groups in organic compounds. For example, there is the reaction of butenylstannane with acetals, acid chlorides, and aldehydes in the presence of Lewis acids to form cyclopropylmethylated products. In situ-generated butenylgallium, -indium, and -aluminum from butenyl Grignard reagents with metal halides are assumed, and they couple with α-halocarbonyls in the presence of Et₃B as a radical initiator. However, the reaction using cyclopropylmethylstannane for introduction of the cyclopropyl ring through C–C bond formation has never been reported as far as we know. In this paper, we report a radical coupling of cyclopropylmethylstannane with α-halocarbonyl compounds mediated by indium halides. In this system, no additional radical initiator was required. Effective transmetalation between the stannane and indium halides gives the butenylindium species, as confirmed by NMR spectroscopy and X-ray analysis. The use of the stannane is advantageous because it allows smooth and clean transmetalation, and the byproduct, halostannane, had no effect on the reaction system.

1-1-2. Results and Discussion

The reaction of cyclopropylmethylstannane 1 with phenyl 2-iodoacetate 2a in the presence of 0.5 equiv of InBr₃ gave the corresponding coupling product 3a in 73% yield in toluene and a nitrogen-flowing flask (Table 1, entry 1). Although a trace amount of the ring-opening product, which was not precisely identified, was observed, the effective introduction of a cyclopropyl group was accomplished. Without additives, there was no reaction (entry 2). Some solvents, such as Et₂O or MeCN, gave lower yields, and no reaction was observed in THF, probably due to strong solvent coordination (entries 4–6). Exposure to air improved the yield of 3a (entry 7). The other indium halides, InCl₃ or InI₃, gave lower yields (entries 8 and 9). GaCl₃ also gave a high yield of 3a (entry 10), but AlCl₃ afforded phenyl 4-iodohexanoate in 41% yield with a trace amount of 3a (entry 11). In the reaction using BF₃•OEt₂ as an additive, a low yield of 3a was obtained and the rearranged species, butenylstannane, was
confirmed after the reaction (entry 12). When ZnCl₂, TiCl₄, ZrCl₄, HfCl₄, or SnCl₂ was used as additive, satisfactory yields were not obtained (entries 13–17). The loading of a catalytic amount of galvinoxyl suppressed the reaction (entry 18), and thus the reaction proceeds via a radical mechanism.

Table 1. Optimization of Reaction Conditions

<table>
<thead>
<tr>
<th>entry</th>
<th>additive</th>
<th>solvent</th>
<th>yield/ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>InBr₃</td>
<td>toluene</td>
<td>73</td>
</tr>
<tr>
<td>2</td>
<td>none</td>
<td>toluene</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>InBr₃</td>
<td>CH₂Cl₂</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>InBr₃</td>
<td>Et₂O</td>
<td>42</td>
</tr>
<tr>
<td>5</td>
<td>InBr₃</td>
<td>MeCN</td>
<td>17</td>
</tr>
<tr>
<td>6</td>
<td>InBr₃</td>
<td>THF</td>
<td>0</td>
</tr>
<tr>
<td>7ᵇ</td>
<td>InBr₃</td>
<td>toluene</td>
<td>79</td>
</tr>
<tr>
<td>8</td>
<td>InCl₃</td>
<td>toluene</td>
<td>50</td>
</tr>
<tr>
<td>9</td>
<td>InI₃</td>
<td>toluene</td>
<td>57</td>
</tr>
<tr>
<td>10</td>
<td>GaCl₃</td>
<td>toluene</td>
<td>71</td>
</tr>
<tr>
<td>11</td>
<td>AlCl₃</td>
<td>toluene</td>
<td><5ᵇ</td>
</tr>
<tr>
<td>12</td>
<td>BF₃•OEt₂</td>
<td>toluene</td>
<td>9</td>
</tr>
<tr>
<td>13</td>
<td>ZnCl₂</td>
<td>toluene</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>TiCl₄</td>
<td>toluene</td>
<td>13</td>
</tr>
<tr>
<td>15</td>
<td>ZrCl₄</td>
<td>toluene</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>HfCl₄</td>
<td>toluene</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>SnCl₂</td>
<td>toluene</td>
<td>0</td>
</tr>
<tr>
<td>18ᵈ</td>
<td>InBr₃</td>
<td>toluene</td>
<td><5</td>
</tr>
</tbody>
</table>

a All entries were carried out at room temperature in solvent (1 mL) with 1.0 mmol of 1, 1.0 mmol of 2a, and 0.5 mmol of additive. *ᵇ* Exposure to air (15 min). *ᶜ* Phenyl 4-iodohexanoate was formed (41% yield). *ᵈ* Addition of galvinoxyl (0.1 mmol).

To gain a thorough understanding of the active species, the relationship between the loading ratio of InBr₃/1 and the product yield was investigated in the reaction of 1 with 2a, and the results are shown in Figure 1. As the ratio InBr₃/1 increased from 0.1 to 0.5, higher yields of 3a were obtained, and ca. 0.5 equiv of InBr₃ afforded the highest yield. It was curious that ca. 0.3 equiv of InBr₃ also gave a relatively high yield, while the yield was reduced when 1.0 equiv of InBr₃ was used. These results suggest generation of different active species as a result of varying the ratio of InBr₃/1.

As confirmation of the conclusion demonstrated by the results in Figure 1, we examined the three types of mixtures of InBr₃ and 1 with the ratios of 1/1, 1/2, and 1/3 (= InBr₃/1) using NMR spectroscopy (Figure 2). The 1/1 mixture of InBr₃/1 gave two types of butenyl-substituted species that were assumed
to be butenylindium dibromide 4 and dibutenylindium bromide 5 generated by transmetalation (spectrum a). One species that is reasonable for dibutenylindium bromide 5 was observed when mixed at a ratio of 1/2 (InBr3/1) (spectrum b). No other highly substituted species were found from the 1/3 mixture (InBr3/1), and only dibutenylindium species 5 and unreacted 1 were observed (spectrum c). The mass spectrum of the 1/2 mixture of InBr3/1 gave the molecular ion corresponding to the dibutenylindium species [calculated for (C8H14In), 225.0134; found for m/z, 225.0134]. The dibutenyl species 5 was more reactive than 4, as evidenced by more rapid consumption of 5 than of 4 when iodoester 2a was added to a mixture that included both 4 and 5 (see the Experimental Section). The amount of 4 remained nearly constant until 5 was completely consumed. Both butenyl groups on 5 were transferred to the product prior to transfer of the butenyl group on 4. The amount of the monobutenyl species 4 was decreased after 5 had disappeared (see the Experimental Section). The result that loading 1.0 equiv of InBr3 resulted in low efficiency, as shown in Figure 1, is consistent with the greater production of the less reactive monosubstituted indium species. Transmetalation of allylic stannane or hydrostannane with indium halides is widely reported, but this is the first example where transmetalation of cyclopropylmethylstannane results in a homoallylic building block.

To investigate the effect of air on the coupling reaction shown in Table 1, the InBr3-mediated reaction of 1 with 2a was performed in a nitrogen-filled glovebox (O2 < 5 ppm), as shown in Scheme 1. The reaction gave 3a in 20% yield after 4.5 h (19% yield even after 10 days). On the other hand, loading 10 mL of air through a syringe into the mixture of 1, 2a, and InBr3 prepared in the glovebox gave 3a in 81% yield after stirring for 4.5 h. These results suggest that oxygen plays an important role in the generation of radical species like the O2-Et3B system. In our system, use of another radical initiator is not necessary, as exposure to air is sufficient to initiate the coupling reaction. The in situ-generated butenylindium species acts as a radical initiator as well as an alkylating reagent. The conventional

![Figure 1](image_url). Relationship between amount of InBr3 and the yield of 3a in the reaction of 1 (1 mmol) with 2a (1 mmol) at rt for 4.5 h.
experimental bench procedure (not in a glovebox) using a nitrogen-flow system may have adequate oxygen to accelerate the reaction system.

\[
\text{InBr}_3 + \text{Bu}_3\text{Sn} \rightarrow \text{Br}_2\text{In} + \text{BrIn} + \text{Bu}_2\text{SnInBr}_2
\]

Figure 2. 1H NMR spectra of the reaction mixtures of InBr$_3$ and 1 with (a) 1/1, (b) 1/2, and (c) 1/3 ratios in toluene-d_8.

Scheme 1. Effect of Air on the Coupling Reaction

A plausible reaction mechanism is shown in Scheme 2. Transmetalation between 1 and InBr$_3$ gives butenylindium species A (other butenyl group and/or ligands are omitted on In). Oxygen-assisted radical initiation abstracts iodine from the iodonocarbonyl compound 2.9 The generated acylmethyl radical 6 is trapped by butenylindium to give the radical species 7. Species 7 cyclizes with elimination of the indium radical 8, which abstracts iodine from 2, and the acylmethyl radical 6 is regenerated. When the radical species 6 is trapped by dibutenylindium bromide 5, the resulting indium radical, butenylindium(II) bromide 8′, is generated via 7′. The species 8′ abstracts the iodine of 2 to give 6 and butenylbromoindium(III) iodide. Because the formed butenylbromoindium(III) iodide is close to radical 6, fast coupling between them takes place effectively.10 This mechanism is consistent with the
observation that both butenyl groups on dibutenylindium bromide 5 are preferentially consumed over the butenyl group on 4. Species 7 could abstract an iodine from 2 to afford an iodinated compound, which then cyclizes into product 3. However, this mechanism does not explain the rate difference between the butenyl groups on 5 and 4. Another interesting point is that the byproduct halostannane is not likely to affect the reaction system, and transmetalation starting from tin compounds is quite effective.

Scheme 2. Plausible Reaction Mechanism

Complexation of the active species in the reaction system by various ligands was examined to prove that butenylindium species were generated using X-ray analysis of isolated compounds. Among various ligands and indium sources employed, DPPE and InCl3 gave a crystal of dibutenylindium complex 9 that was suitable for X-ray analysis, as shown in Scheme 3.

Scheme 3. Isolation of Butenylindium Species
Figure 3. ORTEP drawing of molecular structure of dibutenylindium chloride–DPPE complex 9 (all hydrogens are omitted for clarity).

Figure 4. Molecular structure and its intermolecular contacts of dibutenylindium chloride–DPPE complex 9 (all hydrogens are omitted for clarity). Selected bond angles (deg) and lengths (Å): C(1)–In(1)–C(5) 146.6(3), C(1)–In(1)–Cl_{eq}(1) 106.5(3), C(5)–In(1)–Cl_{eq}(1) 105.93(17), P(1)–In(1)–Cl_{eq}(1) 169.95(2), P(1)–In(1)–Cl_{ax}(1) 88.73(3), In(1)–C(1) 2.145(11), In(1)–C(5) 2.148(6), In(1)–P(1) 2.9264(11), In(1)–Cl_{eq}(1) 2.5011(17), In(1)–Cl_{ax}(1) 2.9899(13).

The ORTEP drawing of the indium complex 9 and its intermolecular contacts are shown in Figures 3 and 4. The five-coordinated indium centers had two butenyl groups, a phosphorus in DPPE, and two chlorines. Each chlorine binds two indium centers by bridging. Although DPPE is often used as a bidentate ligand, each phosphine moiety in 9 independently coordinates to different indium centers. The indium center exhibited a distorted trigonal bipyramidal structure with bond angles of C–In–C (146.6°).
and C–In–Cl (106.5° and 105.9°), the sum of which was 359°. P–In–Cl exhibited bond angles of 169.95° and 88.73°. The lengths of the two In–C bonds were 2.145 and 2.148 Å. The lengths of the other three bonds around the indium, In–P, In–Cl_{eq}, and In–Cl_{ax}, were 2.926, 2.501, and 2.990 Å, respectively. This is the first example of X-ray crystallographic analysis of a butenylindium species. Because two In–Cl moieties interact with each other and the phosphines in DPPE independently coordinate to indium centers, the packing structure is clearly linear with a core (−Cl−In−Cl−P−C−C−P−In−)_n, as shown in Figures 5 and 6. The unit has a length of ca. 10 Å. The view along the c axis of the linear structure exhibits three types of atoms (P, In, Cl) in a linear arrangement at close distances. This arrangement appears promising for new materials, although applications of this compound have not yet been investigated.

Figure 5. Packing structure of dibutenylindium chloride–DPPE complex 9 (all hydrogens are omitted for clarity).

Figure 6. Part of a linear shaped structure of dibutenylindium chloride–DPPE complex 9 (In, P, and carbons of DPPE are shown only for clarity). Views along the a axis and c axis (with a slight deviation) are shown in (i) and (ii), respectively.
Table 2. Reaction of 1 with α–Iodocarbonyl Compounds 2a

<table>
<thead>
<tr>
<th>entry</th>
<th>iodocarbonyl</th>
<th>yield/ %</th>
<th>(under N₂)c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhO</td>
<td>2a</td>
<td>3a 79 (64)</td>
</tr>
<tr>
<td>2b</td>
<td>BnO</td>
<td>2b</td>
<td>3b 71 (56)</td>
</tr>
<tr>
<td>3</td>
<td>EtO</td>
<td>2c</td>
<td>3c 66 (62)</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>2d</td>
<td>3d 68 (50)</td>
</tr>
<tr>
<td>5</td>
<td>'BuO</td>
<td>2e</td>
<td>3e 11 (53)</td>
</tr>
<tr>
<td>6</td>
<td>BnO</td>
<td>2f</td>
<td>3f 48 (46)</td>
</tr>
<tr>
<td>7</td>
<td>PhO</td>
<td>2g</td>
<td>3g 47 (79)</td>
</tr>
<tr>
<td>8</td>
<td>EtO</td>
<td>2h</td>
<td>3h 65 (47)</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>2i</td>
<td>3i 80 (98)</td>
</tr>
<tr>
<td>10</td>
<td>PhO</td>
<td>2j</td>
<td>3j <5 (<5)</td>
</tr>
<tr>
<td>11b,d</td>
<td></td>
<td></td>
<td>15 (30)</td>
</tr>
<tr>
<td>12b,d</td>
<td>Et₂N</td>
<td>2k</td>
<td>3k 54 (62)</td>
</tr>
<tr>
<td>13</td>
<td>Ph</td>
<td>2l</td>
<td>3l 71 (67)</td>
</tr>
</tbody>
</table>

All entries were carried out at room temperature in solvent (1 mL) with 1.0 mmol of 1, 1.0 mmol of 2, and 0.5 mmol of InBr₃. Tin compound 1 was added to the mixture of 2 and InBr₃ in toluene. b Iodocarbonyl 2 was added to the mixture of 1 and InBr₃ in toluene that had been previously stirred at room temperature for 30 min. c Reactions were carried out on the bench using a nitrogen-flowing flask. d Reactions were carried out at 100 °C.

Table 2 shows the scope and limitations of using the reaction system for various substrates. The reactions were carried out with exposure to air through the CaCl₂ drying tube. Primary iodoesters 2a–d (entries 1–4) effectively gave the corresponding coupling products, the cyclopropylethyl carbonyl compounds 3a–d. Although the tert-butyl ester 2e gave a low yield, in the absence of air, the yield increased to 53% (entry 5). The coupling also proceeded with secondary substrates 2f–h in moderate to high yields (entries 6–8). A high yield was obtained for the reaction with iodolactone 2i (entry 9). The
reaction with the tertiary iodoester \textbf{2j} resulted in a low yield (entry 11). Instead of iodoesters, iodoamide \textbf{2k} and iodoketone \textbf{2l} gave the corresponding products in satisfactory yields (entries 12 and 13). A conventional reaction procedure, which used a nitrogen-flow flask on the bench whereby a very small amount of oxygen was introduced, gave yields that were nearly identical to those obtained under air, although in some cases lower yields were obtained.

1-1-3. Conclusion

The transmetalation of cyclopropylmethylstannane with indium halides to give dibutenylindium halide and butenylindium dihalide was described. This transmetalation can be applied to the reactions with iodoacylonyls to give coupling products that bear cyclopropyl groups. This reaction does not require a radical initiator. Open air conditions sometimes accelerated the radical reaction pathway. The generated dibutenylindium species was stabilized by a phosphine ligand, and the resulting complex was analyzed using X-ray crystallography. The butenylindium species was used as an alkylating reagent without a radical initiator. Transmetalation starting from the stannane proceeded in an effective and clean manner for the synthesis of interesting cyclopropylated carbonyl compounds.

1-1-4. Experimental Section

General Procedures. IR spectra were recorded as thin films or as solids in KBr pellets on a HORIBA FT-720 spectrophotometer. 1H and 13C NMR spectra were obtained with a 400 and 100 MHz spectrometer, respectively, with TMS as internal standard. 119Sn NMR spectra were obtained with a 150 MHz spectrometer with Me$_4$Sn as external standard. Mass spectra were recorded on a JEOL JMS-DS303. All reactions were carried out under nitrogen. Column chromatography was performed on silica gel (Merck C60). Recycle GPC was performed with CHCl$_3$ as the eluent. Bulb-to-bulb distillation (Kugelrohr) was accomplished in a Sibata GTO-250RS at the oven temperature and pressure indicated. Yields were determined by GLC or 1H NMR using internal standards.

Materials. Dehydrated toluene, dichloromethane, Et$_2$O, acetonitrile, and THF were purchased and used as obtained. The additives examined in Table 1 were also purchased from commercial sources. Cyclopropylmethyldiethylstannane \textbf{1} was prepared as previously described.\textbf{1a} All iodoarponyls \textbf{2a}–\textbf{l} were prepared according to the known method.\textbf{14} The spectral data of \textbf{2d},\textbf{15} \textbf{2e},\textbf{16} \textbf{2g},\textbf{17} \textbf{2h},\textbf{14} \textbf{2i},\textbf{18} \textbf{2k},\textbf{19} and \textbf{2l}\textbf{20} were in excellent agreement with the reported data. The spectral data of \textbf{2c} were in an excellent agreement with those obtained for the commercially available product. The synthetic procedure and spectral data of the other iodoacrylonyls \textbf{2a}, \textbf{2b}, \textbf{2f}, and \textbf{2j} are shown below. All other reagents were commercially available.

Cyclopropylmethyltributylstannane (1)21
To a stirred tributyltinmethoxide (330 mmol) was added poly(methylhydrosiloxane) (330 mmol). The mixture was stirred for 8 h at room temperature, and then purified by distillation under reduced pressure to give the product (85.9 g, 89%).

\[
\text{HO} \quad + \quad \text{PPh}_3 \quad + \quad \text{Cl}_3\text{C} - \text{C}_3\text{Cl} \quad \rightarrow \quad \text{Cl} \quad \text{Bu}_3\text{SnH} \quad \text{THF} \quad \rightarrow \quad \text{Sn} \quad \text{H} \quad \text{H}
\]

To a stirred hexachloro 2-propanone (600 mmol) at 0 °C was added triphenylphosphine (110 mmol) and the suspension was vigorously stirred for 5 min. To the suspension was added 1-cyclopropylmethanol (100 mmol) dropwise over 25 min. The mixture was warmed to room temperature and stirred for 16 h before flash distillation to collect a volatile product (7.9 g, 88%).

To a solution of n-butyllithium (1.6 M in hexane, 47 mL) in THF (80 mL) at 0 °C was slowly added diisopropylamine (75 mmol) and the mixture was stirred for 20 min. To the mixture was added tributylinhydride (75 mmol) dropwise within 30 min and the mixture was stirred for 15 min, and then added 1-chloro-1-cyclopropylmethane (70 mmol) dropwise within 30 min. The mixture was warmed to room temperature and stirred for 16 h, and then quenched by KF aq (10%, 200 mL). Ethylacetate (200 mL) was added and the organic layer was washed by the saturated NaCl aq (200 mL) and H₂O (200 mL), and then dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography [solvent; hexane (600 mL)] on silica gel and distillation under reduced pressure to give the product (9.4 g, 37%). bp: 78 °C/0.07 mmHg; IR: (neat) 2958, 2924, 1462 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 1.49 (m, 6H, 2'-H₂ x 3), 1.31 (tq, J = 7.2, 7.2 Hz, 6H, 3'-H₂ x 3), 0.96-0.69 (m, 18H, 4'-H₃ x 3, 1'-H₂ x 3, 1-H₂ and SnCH₂CH₂), 0.46 (m, 2H, H₃ x 2), -0.04 (m, 2H, H₃ x 2); ¹³C NMR: (100 MHz, CDCl₃) 29.4 (t, C-2', d, 2Jₛₙ-c = 19.7 Hz), 27.5 (t, C-3', d, 3Jₛₙ-c = 52.4 Hz), 15.0 (t, C-1', d, 1J₁₁₉Sₙ-c = 307.2, 1J₁₁₇Sₙ-c = 293.3 Hz), 13.8 (q, C-4'), 9.2 (d, SnCH₂CH₂, d, 2Jₛₙ-c = 19.7 Hz), 9.0 (t, C-1', d, 1J₁₁₉Sₙ-c = 312.1, 1J₁₁₇Sₙ-c = 299.0 Hz), 8.3 (t, two methylene groups in cyclopropyl ring, d, 3Jₛₙ-c = 34.4 Hz); ¹¹⁹Sn NMR: (150 MHz, CDCl₃) -15.6; MS: (EI, 70 eV) m/z 291 (39), 289 (86), 288 (31), 287 (59), 285 (28), 235 (57), 233 (57), 231 (37), 179 (94), 178 (29), 177 (100), 176 (34), 175 (70), 173 (22), 121 (31), 119 (24); HRMS: (EI, 70 eV) calcd for (C₁₂H₂₇⁺Sn) 291.1135 (M⁺ – CH₂C₃H₅) found m/z 291.1104, calcd for (C₁₂H₂₅⁺Sn) 289.0978 (M⁺ – Bu) found m/z 289.1048; Analysis: C₁₆H₁₄Sn (345.15) calcd for C, 55.68; H, 9.93 Found: C, 55.47; H, 9.91.

Phenyl 2-iodoacetate (2a)

\[
\begin{array}{c}
\text{O} \quad \text{Br} \quad \rightarrow \quad \text{CH}_3 \quad \text{CH}=\text{CH} _2 \quad \text{Br} \quad \text{Nal} \quad \rightarrow \quad \text{CH}_3 \quad \text{CH}=\text{CH} _2 \quad \text{I} \quad \text{Acetone}
\end{array}
\]

To a stirred solution of sodium iodide (135 mmol) in acetone (150 mL) was added phenyl bromoacetate (45 mmol). The mixture was stirred for 3 h, and then acetone was evaporated. Ethyl acetate (200 mL) was added and the organic layer was washed by Na₂S₂O₃ aq (10%, 200 mL) and water (200 mL x 2), and
then dried (MgSO₄). The solvent was evaporated and the residue was purified by recrystallization to give the product (10.5 g, 90%). mp: 65–67 °C; IR: (KBr) 1736 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.40 (dd, J = 8.0, 8.0 Hz, 2H, m), 7.25 (t, J = 8.0 Hz, 1H, p), 7.11 (d, J = 8.0 Hz, 2H, o), 3.90 (s, 2H, 2-H₂); ¹³C NMR: (100 MHz, CDCl₃) 167.5 (s, C-1), 150.5 (s, C-τ), 129.5 (d, C-ₘ), 126.2 (d, C-ₚ), 120.9 (d, C-ₒ), -6.0 (t, C-₂); MS: (EI, 70 eV) m/z 262 (M⁺, 8), 94 (100); HRMS: (EI, 70 eV) calcd for (C₆H₄IO₂) 261.9491 (M⁺) found m/z 261.9475; Analysis: C₆H₄IO₂ (262.04) Calcd: C, 36.67; H, 2.69; I, 48.43 Found: C, 36.68; H, 2.63; I, 48.70.

BenzyI 2-idoacetate (2b)

\[
\text{OCl} + \text{NaI} \rightarrow \text{acetone}
\]

To a stirred solution of sodium iodide (30 mmol) in acetone (60 mL) was added benzyI 2-chloroacetate (30 mmol). The mixture was stirred for 3 h, and then acetone was evaporated. Ethyl acetate (200 mL) was added and the organic layer was washed by Na₂S₂O₃ aq (10%, 100 mL) and water (100 mL x 2) and then dried (MgSO₄). The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product (6.7 g, 80%). bp: 75 °C/0.1 mmHg; IR: (neat) 1732 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.40-7.30 (m, 5H, Ar), 5.15 (s, 2H, C₆H₄CH₂), 3.71 (s, 2H, 2-H₂); ¹³C NMR: (100 MHz, CDCl₃) 168.5 (s, C-1), 153.0 (s, C⁻), 128.5 (d), 128.4 (d, C-ₚ), 128.2, (d), 76.7 (t, C₆H₄CH₂), -5.5 (t, C-₂); MS: (EI, 70 eV) m/z 276 (M⁺, 0.04), 149 (C₆H₄CH₂OCOCH₂⁺, 89), 107 (C₆H₄CH₂O⁻, 100), 91 (C₆H₄CH₂⁺, 90); HRMS: (EI, 70 eV) calcd for (C₆H₄IO₂) 275.9647 (M⁺) found m/z 275.9655; Analysis: C₆H₄IO₂ (276.07) Calcd: C, 39.16; H, 3.29; I, 45.97 Found: C, 39.07; H, 3.16; I, 45.96.

Benzyl 2-iodopropanoate (2f)

\[
\text{BrCO} + \text{Br} \rightarrow \text{pyridine} \rightarrow \text{CH₂Cl₂}
\]

To a stirred solution of benzyI alcohol (110 mmol) and pyridine (120 mmol) in CH₂Cl₂ (80 mL) at 0 °C was added the solution of 2-bromopropanoyl bromide (120 mmol) in CH₂Cl₂ (20 mL) dropwise within 25 min. The mixture was warmed to room temperature and stirred for 12 h, and then quenched by water (200 mL). Chloroform (200 mL) was added and the organic layer was washed by 1M HCl aq (200 mL) and saturated NaHCO₃ aq (200 mL), and then dried (MgSO₄). The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product (24.0 g, 87%). bp: 78 °C/0.05 mmHg.
To a stirred solution of sodium iodide (100 mmol) in acetone (100 mL) was added benzyl 2-bromopropionate (50 mmol). The mixture was stirred for 8 h, and then the solvent was evaporated. Ethyl acetate (200 mL) was added and the organic layer was washed by Na$_2$S$_2$O$_3$ aq (10%, 100 mL) and water (100 mL x 2), and then dried (MgSO$_4$). The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product (12.4 g, 82%). bp: 84 °C/0.06 mmHg; IR: (neat) 1736 (C=O) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 7.42-7.30 (m, 5H, Ar), 7.17 (m, 2H, C$_6$H$_5$CH$_3$), 4.51 (q, $J = 7.2$ Hz, 1H, CH$_2$), 1.97 (d, $J = 7.2$ Hz, 3H, 3-H$_3$); 13C NMR: (100 MHz, CDCl$_3$) 171.6 (s, C-1), 135.2 (s, i), 128.5 (d), 128.4 (d, p), 128.2 (d), 67.4 (t, C$_6$H$_5$CH$_2$), 23.2 (q, C-3), 12.8 (d, C-2); MS: (Cl, 200 eV) m/z 291 (M$^+$ + 1, 13), 91 (C$_6$H$_5$CH$_3$), 100; HRMS: (Cl, 200 eV) calc'd for (C$_{14}$H$_{12}$I$_2$O$_2$) 290.9882 (M$^+$ + 1) found m/z 290.9894; Analysis: C$_{10}$H$_{11}$O$_2$ (290.10) Calcd: C, 41.40; H, 3.82; I, 43.75 Found: C, 41.63; H, 3.78; I, 43.92.

Phenyl 2-iodo-2-methylpropanoate (2j)

![Structural diagram](image)

To a stirred solution of phenol (110 mmol) and sulfuric acid (95%, 0.3 mL) in toluene (65 mL) was added 2-bromo-2-methylpropionyl bromide (110 mmol). The mixture was heated to reflux for 5 h, and then cooled to room temperature and quenched by water (200 mL). Ethyl acetate (200 mL) was added and the organic layer was washed by KOH aq (10%, 200 mL) and water (200 mL), and then dried (MgSO$_4$). The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product (21.6 g, 81%). bp: 63 °C/0.04 mmHg

![Structural diagram](image)

To a stirred solution of sodium iodide (160 mmol) in acetone (80 mL) was added phenyl 2-bromo-2-methylpropanoate (40 mmol). The mixture was heated to reflux for 14 h, and then cooled to room temperature and acetone was evaporated. Ethyl acetate (200 mL) was added and the organic layer was washed by Na$_2$S$_2$O$_3$ aq (10%, 100 mL) and water (100 mL x 2), and then dried (MgSO$_4$). The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product (8.72 g, 75%). bp: 100 °C/0.6 mmHg; IR: (neat) 1747 (C=O) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 7.40 (dd, $J = 8.0, 8.0$ Hz, 2H, m), 7.25 (t, $J = 8.0$ Hz, 1H, p), 7.13 (d, $J = 8.0$ Hz, 2H, o), 2.20 (s, 6H, 3-H$_3$ and 2-Me); 13C NMR: (100 MHz, CDCl$_3$) 171.9 (s, C-1), 150.7 (s, i), 129.4 (d, m), 126.0 (d, p), 120.8 (d, o), 33.5 (q, C-3 and 2-Me); MS: (El, 70 eV) m/z 290 (M$^+$, 28), 197 (COCH$_3$), 48, 169 (C$_2$H$_5$I), 100, 163 (C$_6$H$_5$OCOC$_3$H$_3$), 76), 135 (64), 94 (85), 70 (COCH$_3$), 28), 69 (22), 41 (38); HRMS: (El, 70 eV) calcd for (C$_{10}$H$_{11}$I$_2$O$_2$) 289.9804 (M$^+$) found m/z 289.9822; Analysis: C$_{10}$H$_{11}$O$_2$ (290.10) Calcd: C, 41.40; H, 3.82; I, 43.75 Found: C, 41.65; H, 3.68; I, 43.59.
Procedure for Optimization of Coupling of Cyclopropymethylstannane 1 and Iodocarbyonyls 2 (Table 1). According to the next paragraph, the reactions were employed under the conditions noted in text.

General Procedure for InBr3-Mediated Coupling of Cyclopropymethylstannane 1 and Iodocarbyonyls 2 (Table 2). To a suspension of InBr3 (0.5 mmol) and iodocarbyonyls 2 (1 mmol) in toluene (1 mL) was added (cyclopropymethyl)tributylstannane 1 (1 mmol) with a CaCl2 drying tube that was exposed to air. The reaction mixture was stirred at rt for 4.5 h. The mixture was quenched by addition of NH4F(aq) (10%, 10 mL) and extracted with diethyl ether (3 x 10 mL). The collected organic layer was dried over MgSO4 and concentrated in Vacuo. The procedures used for further purification of the new compounds are shown in the Product Data section. The reactions under nitrogen were performed using the same operation.

NMR Study of Transmetalation between 1 and 2 (Figure 2). Three mixtures with different ratios of InBr3/1 (= 1/1, 1/2, and 1/3) were prepared in toluene-d6. After mixing for ca. 2 h, the mixtures were transferred into NMR tubes, and the resulting spectra are shown in Figure 2.

Product Data. The spectral data of 3e26, 3f3, 3i4, 3k4, and 3l3 were in excellent agreement with the reported data. Spectral data for the products 3a, 3b, 3c, 3d, 3g, 3h, and 3j are shown below.

Phenyl 3-cyclopropylpropanoate (3a)21

To a suspended solution of InBr3 (2 mmol) in toluene (2 mL), phenyl iodoacetate (2 mmol), (cyclopropymethyl)tributylstannane (4 mmol), and Et3B (1.0 M in hexane, 0.5 mL) was added. The mixture was stirred and then additional Et3B (1.0 M in hexane, 0.5 mL) was added. The mixture was stirred for 22.5 h in total, then quenched by NH4F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO4). The solvent was evaporated and the residue was purified by column chromatography [solvent; hexane (400 mL) and hexane/ethyl acetate = 94/6 (400 mL)] on silica gel and distillation under reduced pressure. bp: 90 °C /0.07 mmHg; IR: (neat) 1759 (C=O) cm⁻¹; 1H NMR: (400 MHz, CDCl3) 7.38 (dd, J = 8.0, 7.2 Hz, 2H, m), 7.22 (t, J = 7.2 Hz, 1H, p), 7.08 (d, J = 8.0 Hz, 2H, o), 2.66 (t, J = 7.2 Hz, 2H, 2-H2), 1.66 (dt, J = 7.2, 7.2 Hz, 2H, 3-H2), 0.81 (ttt, J = 8.0, 7.2, 5.6 Hz, 1H, COCH2CH2CH), 0.49 (ddd, J = 8.0, 5.6, 4.8 Hz, 2H, Hb x 2), 0.13 (ddd, J = 5.6, 5.6, 4.8 Hz, 2H, Hb x 2); 13C NMR: (100 MHz, CDCl3) 172.1 (s, C-1), 150.7 (s, C-i), 129.3 (d, C-m), 125.7 (d, C-p), 121.5 (d, C-o), 34.5 (t, C-2), 30.0 (t, C-3), 10.4 (d, COCH2CH2CH), 4.5 (t, two methylene groups in cyclopropyl ring); MS: (EI, 70 eV) m/z 190 (M⁺, 37), 97 (COCH2CH2C₂H₅⁺, 34), 94 (100), 69 (CH₂CH₂CH₂H₅⁺, 44), 55 (CH₂C₃H₅⁺, 24); HRMS: (EI, 70 eV) calcd for (C12H14O2) 190.0994 (M⁺) found m/z 190.1000.
Benzyl 3-cyclopropylpropanoate (3b)

To a suspended solution of InBr₃ (5 mmol) in toluene (5 mL), benzyl iodoacetate (5 mmol), (cyclopropylmethyl)tributylstannane (7.5 mmol), and Et₃B (1.0 M in hexane, 0.5 mL) was added. The mixture was stirred for 4.5 h and then quenched by NH₄F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography [solvent; hexane (400 mL) and hexane/ethyl acetate = 95/5 (400 mL)] on silica gel and distillation under reduced pressure. bp: 77 °C /0.2 mmHg; IR: (neat) 1736 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.41-7.28 (m, 5H, Ar), 5.12 (s, 2H, C₆H₄CH₂), 2.46 (t, J = 7.2 Hz, 2H, 2-H₂), 1.54 (dt, J = 7.2, 7.2 Hz, 2H, 3-H₂), 0.70 (ttt, J = 8.0, 5.6, 7.2 Hz, 1H, COCH₂CH₂CH), 0.40 (ddd, J = 8.0, 5.6, 4.0 Hz, 2H, H⁻¹ x 2), 0.05 (ddd, J = 5.6, 5.6, 4.0 Hz, 2H, H⁻¹ x 2); ¹³C NMR: (100 MHz, CDCl₃) 173.5 (s, C-1), 136.1 (s, C-i), 128.5 (d, C-p), 66.1 (t, C₆H₄CH₂), 34.4 (t, C-2), 30.4 (t, C-3), 10.4 (d, COCH₂CH₂CH), 4.4 (t, two methylene groups in cyclopropyl ring); MS: (EI, 70 eV) m/z 204 (M⁺, 0.71), 104 (61), 91 (C₆H₄CH₂⁺, 100); HRMS: (EI, 70 eV) calcd for (C₁₃H₁₆O₂) 204.1150 (M⁺) found m/z 204.1139; Analysis: C₁₃H₁₆O₂ (204.26) Calcd: C, 76.44; H, 7.90 Found: C, 76.52; H, 7.71.

Ethyl 3-cyclopropylpropanoate (3c)

To a suspended solution of InBr₃ (2 mmol) in toluene (2 mL), ethyl iodoacetate (2 mmol), (cyclopropylmethyl)tributylstannane (4 mmol), and Et₃B (1.0 M in hexane, 0.5 mL) was added. The mixture was stirred and then additional Et₃B (1.0 M in hexane, 0.5 mL) was loaded after 5.5 h and 10 h. The mixture was stirred for 18.5 h in total, then quenched by NH₄F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography [solvent; hexane (400 mL) and hexane/ethyl acetate = 94/6 (400 mL)] on silica gel and distillation under reduced pressure. bp: 90 °C /20 mmHg; IR: (neat) 1739 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.13 (q, J = 7.2 Hz, 2H, CH₂CH₂OCO), 2.39 (t, J = 7.2 Hz, 2H, 2-H₂), 1.53 (dt, J = 7.2, 7.2 Hz, 2H, 3-H₂), 1.26 (t, J = 7.2 Hz, 3H, CH₃CH₂OCO), 0.71 (m, 1H, COCH₂CH₂CH), 0.43 (ddd, J = 8.0, 5.6, 4.0 Hz, 2H, H⁻¹ x 2), 0.05 (m, 2H, H⁻¹ x 2); ¹³C NMR: (100 MHz, CDCl₃) 173.7 (s, C-1), 60.1 (t, CH₂CH₂OCO), 34.5 (t, C-2), 30.1 (t, C-3), 14.2 (q, CH₂CH₂OCO), 10.4 (d, COCH₂CH₂CH), 4.3 (t, two methylene groups in cyclopropyl ring); MS: (EI, 70 eV) m/z 142 (M⁺, 15), 114 (CH₂CH₂OCOCH₂CH₂CH⁺, 70), 113 (OCOCH₂CH₂C₂H₅⁺, 20), 99 (CH₂OCOCH₂CH₂C₂H₅⁺, 32), 97 (COCH₂CH₂C₂H₅⁺, 64), 96 (21), 88 (96), 73 (CH₂CH₂OCO⁺, 42), 71 (27), 70 (32), 69 (CH₂CH₂C₂H₅⁺, 100), 68 (88), 67 (22), 61 (36), 60 (88), 55(CH₂C₂H₅⁺, 71), 54 (27), 42 (22), 41 (C₂H₅⁺, 74), 39 (31); HRMS: (EI, 70 eV) calcd for (C₈H₁₄O₂) 142.0994 (M⁺) found m/z 142.1010.
Allyl 3-cyclopropylpropanoate (3d)

![Chemical structure of allyl 3-cyclopropylpropanoate](image)

To a suspended solution of InBr₃ (2.5 mmol) in toluene (3 mL), allyl iodoacetate (3 mmol), (cyclopropylmethyl)tributylstannane (5 mmol), and Et₃B (1.0 M in hexane, 0.5 mL) was added. The mixture was stirred for 22.5 h and then quenched by NH₄F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography [solvent; hexane (400 mL) and hexane/ethyl acetate = 94/6 (400 mL)] on silica gel and distillation under reduced pressure. bp: 120 °C /30 mmHg; IR: (neat) 1739 (C=O), 1651 (C=C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 5.93 (ddt, J = 17.6, 10.4, 5.6 Hz, 1H, CH₂CH₂OCO), 5.32 (dd, J = 17.6, 3.2, 1.6 Hz, 1H, H¹⁻), 5.24 (ddd, J = 10.4, 3.2, 1.6 Hz, 1H, H⁶'), 4.58 (ddd, J = 5.6, 1.6, 1.6 Hz, 2H, CH₂CH₂OCO), 2.44 (t, J = 7.2 Hz, 2H, -CH₂-), 1.63 (dt, J = 7.2, 7.2 Hz, 2H, -CH₂-), 0.72 (ttt, J = 8.0, 5.6, 7.2 Hz, 1H, COCH₂CH₂CH₃), 0.43 (ddd, J = 8.0, 5.6, 4.0 Hz, 2H, H² x 2), 0.06 (ddd, J = 5.6, 5.6, 4.0 Hz, 2H, H²B x 2); ¹³C NMR: (100 MHz, CDCl₃) 173.4 (s, C-1), 132.3 (d, CH₂CH₂OCO), 118.1 (t, CH₂CH₂OCO), 65.0 (t, CH₂CH₂OCO), 34.4 (t, C-2), 30.1 (t, C-3), 10.5 (d, COCH₂CH₂CH₃), 4.4 (t, two methylene groups in cyclopropyl ring); MS: (CI, 200 eV) m/z 155 (M⁺ + 1, 100); HRMS: (CI, 200 eV) calcd for (C₃H₁₅O₂) 155.1072 (M⁺) found m/z 155.1080.

Phenyl 3-cyclopropyl-2-methylpropanoate (3g)

![Chemical structure of phenyl 3-cyclopropyl-2-methylpropanoate](image)

To a suspended solution of InBr₃ (1.5 mmol) in toluene (2 mL), phenyl 2-iodopropanoate (2 mmol), (cyclopropylmethyl)tributylstannane (3 mmol), and Et₃B (1.0 M in hexane, 0.2 mL) was added. The mixture was stirred and then additional Et₃B (1.0 M in hexane, 0.2 mL) was loaded after 13 h and 17 h. The mixture was stirred for 20 h in total, then quenched by NH₄F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography [solvent; hexane (400 mL) and hexane/ethyl acetate = 94/6 (400 mL)] on silica gel and distillation under reduced pressure. bp: 95 °C /0.15 mmHg; IR: (neat) 1759 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.38 (dd, J = 8.0, 7.2 Hz, 2H, m), 7.22 (t, J = 7.2 Hz, 1H, p), 7.08 (d, J = 8.0 Hz, 2H, o), 2.81 (tq, J = 7.2, 7.2 Hz, 1H, 2-H), 1.69 (ddd, J = 14.4, 7.2, 7.2 Hz, 1H, 3-H₄'), 1.53 (ddd, J = 14.4, 7.2, 7.2 Hz, 1H, 3-H₄B), 1.34 (d, J = 7.2 Hz, 3H, 2-Me), 0.82 (m, 1H, COCH(CH₃)₂CH₂CH₃), 0.50 (m, 2H, H² x 2), 0.13 (m, 2H, H²B x 2); ¹³C NMR: (100 MHz, CDCl₃) 175.1 (s, C-1), 150.7 (s, i), 129.3 (d, m), 125.5 (d, p), 121.4 (d, o), 40.2 (d, C-2), 38.6 (t, C-3), 16.9 (q, 2-Me), 8.8 (d, COCH(CH₃)₂CH₂CH₃), 4.6 (t, COCH(CH₃)₂CH₂CH₃H₂), 4.4 (t, COCH(CH₃)₂CH₂CH₂CH₂H₂); MS: (EI, 70 eV) m/z 204 (M⁺, 28), 111 (COCH(CH₃)₂CH₂CH₃⁺, 54), 94 (88), 83 (CH(CH₃)₂CH₂CH₃⁺, 70), 55 (CH₂CH₃H⁺, 100); HRMS: (EI, 70 eV) calcd for (C₁₃H₁₅O₂) 204.1150 (M⁺) found m/z 204.1145; Analysis: C₁₃H₁₅O₂ (204.26) Calcd: C, 76.44; H, 7.90 Found: C, 76.15; H, 7.74.
Ethyl 3-cyclopropyl-2-methylpropanoate (3h)

To a suspended solution of InBr₃ (1.5 mmol) in toluene (2 mL), ethyl 2-iodopropanoate (2 mmol), (cyclopropylmethyl)tributylstannane (3 mmol), and Et₃B (1.0 M in hexane, 0.2 mL) was added. The mixture was stirred and then additional Et₃B (1.0 M in hexane, 0.2 mL) was loaded after 5 h and 15.5 h. The mixture was stirred for 21 h in total, then quenched by NH₄F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography [solvent; hexane (400 mL) and hexane/ethyl acetate = 94/6 (400 mL) on silica gel and distillation under reduced pressure. bp: 100 °C /10 mmHg; IR: (neat) 1736 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.13 (q, J = 7.2 Hz, 2H, CH₃CH₂OCO), 2.53 (tq, J = 7.2, 7.2 Hz, 1H, 2-H), 1.53 (dd, J = 14.4, 7.2, 7.2 Hz, 1H, 3-H), 1.37 (dd, J = 14.4, 7.2, 7.2 Hz, 1H, 3-H), 1.26 (t, J = 7.2 Hz, 3H, CH₃CH₂OCO), 1.18 (d, J = 7.2 Hz, 3H, 2-Me), 0.69 (m, 1H, COCH₂CH₂CH), 0.43 (m, 2H, H₃ x 2), 0.04 (m, 2H, H₆ x 2); ¹³C NMR: (100 MHz, CDCl₃) 176.8 (s, C-1), 60.1 (t, CH₃CH₂OCO), 40.1 (d, C-2), 38.7 (t, C-3), 17.0 (q, 2-Me), 14.2 (q, CH₃CH₂OCO), 8.9 (d, COCH(CH₃)CH₂CH), 4.5 (t, COCH(CH₃)CH₂CHCH₃), 4.2 (t, COCH(CH₃)CH₂CHCH₃), MS: (EI, 70 eV) m/z 156 (M⁺, 14), 128 (CH₃CH₂OCOCH(CH₃)CH₂CH⁺), 102 (65), 87 (36), 83 (CH(CH₃)CH₂CH₂H⁺), 70, 74 (100), 55 (CH₂CH₃H⁺), 41 (C₃H₅⁺), 25; HRMS: (EI, 70 eV) calcd for (C₉H₁₀O₂) 156.1150 (M⁺) found m/z 156.1139.

Phenyl 3-cyclopropyl-2,2-dimethylpropanoate (3j)

To a suspended solution of InBr₃ (0.5 mmol) in toluene (1 mL), (cyclopropylmethyl)tributylstannane (1 mmol) was added. The mixture was stirred for 30 min, and then phenyl 2-ido-2-methylpropanoate (1 mmol) was added. The mixture was stirred for 4.5 h at 100 °C, and then cooled to room temperature and quenched by NH₄F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography [solvent; hexane (100 mL) and hexane/ethyl acetate = 94/6 (250 mL) on silica gel and gel permeation chromatography [solvent; chloroform]. IR: (neat) 1751 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.38 (dd, J = 8.0, 7.2 Hz, 2H, m), 7.22 (t, J = 7.2 Hz, 1H, p), 7.08 (d, J = 8.0 Hz, 2H, o), 1.63 (d, J = 7.2 Hz, 2H, 3-H), 1.36 (s, 6H, 2-Me), 0.79 (ttt, J = 8.0, 7.2, 4.8 Hz, 1H, COC(CH₃)CH₂CH), 0.50 (dd, J = 8.0, 5.6, 4.0 Hz, 2H, H₃ x 2), 0.13 (dd, J = 5.6, 4.8, 4.0 Hz, 2H, H₆ x 2); ¹³C NMR: (100 MHz, CDCl₃) 176.5 (s, C-1), 151.0 (s, i), 129.3 (d, m), 125.5 (d, p), 121.4 (d, o), 45.4 (t, C-3), 43.4 (s, C-2), 25.3 (q, 2-Me), 7.0 (d, COC(CH₃)CH₂CH), 4.5 (t, two methylene groups in cyclopropyl ring); MS: (EI, 70 eV) m/z 218 (M⁺, 3), 125 (COCH₃)CH₂CH₂H⁺, 50, 97 (C(CH₃)CH₂CH₂H⁺), 84, 96 (28), 94 (84), 81 (30), 55 (CH₂CH₃H⁺), 100; HRMS: (EI, 70 eV) calcd for (C₁₃H₁₈O₂) 218.1307 (M⁺) found m/z 218.1367.
In a glove box, to a suspended solution of InCl$_3$ (0.5 mmol) in toluene (1 mL) was added (cyclopropylmethyl)tributylstannane (1 mmol) at rt. The mixture was stirred for 2 h, and then 1,2-bis(diphenylphosphino)ethane (0.25 mmol) was loaded. The mixture was stirred for 1 h, and then the volatiles were evaporated to give a viscous liquid, which was then washed by hexane to give the product as a white solid (95mg, 42%). The product was recrystallized from dichloromethane/hexane for X-ray analysis. The data obtained from the measurement is really good and the analysis is completed to optimize the structure. Although some level A alerts still remain, this structure should be justified because of the excellent level of the data and structure refinement. 1H NMR: (400 MHz, CDCl$_3$) 7.47-7.31 (m, 20H, Ar), 5.89 (ddt, $J = 16.8$, 9.6, 6.4 Hz, 4H, H$_A$ x 4), 4.95 (dd, $J = 16.8$, 1.6 Hz, 4H, H$_B$ x 4), 4.88 (dd, $J = 9.6$, 1.6 Hz, 4H, H$_C$ x 4), 2.38 (dt, $J = 7.2$, 6.4 Hz, 8H, 2-H$_2$ x 4), 2.36 (m, 4H, PCH$_2$CH$_2$P), 1.11 (t, $J = 7.2$ Hz, 8H, 1-H$_2$ x 4); 13C NMR: (100 MHz, CDCl$_3$) 142.7 (C-3), 132.8 (o, d, 2J$_{P,C}$ = 15.6 Hz), 132.3 (i), 130.2 (p), 129.0 (m, d, 3J$_{P,C}$ = 8.2 Hz), 113.1 (C-4), 30.9 (C-2), 21.9 (PCH$_2$CH$_2$P, d, 1J$_{P,C}$ = 9.8 Hz), 20.4 (C-1).

Observation of the Reaction of Generated butenylindium species. A mixture of InBr$_3$/I (= 1/1 molar ratio) was prepared in toluene-d_8 to generate the butenylindium species 4 and 5 (Figure A, iodoester 2a; 0 equiv). To the mixture was added phenyl 2-iodoacetate 2a by small portions in several times from 0 to ca. 0.9 equiv. 1H NMR integrations of the butenyl groups on 5 and 4 are shown in Figure A. The 1H NMR integration of 3a based on cyclopropyl group is also included in Figure A.
Figure A. 1H NMR integration of butenyl groups on 5 and 4, and the integration of 3a based on cyclopropyl group; loading of iodoester 2a to the mixture of InBr$_3$ and 1 with 1/1 ratios in toluene-d_8.

1-1-5. References

(8) We examined the transmetalation of 1 with AlCl$_3$ but observed only butenylstannane as a rearranged product. GaCl$_3$ gave butenyllallium species in the reaction with 1.

(10) It might also be explainable that the iodoindium species has a high reactivity toward the carbonyl compound. The halogens on the indium center dramatically affect the reactivity of oxy-functionalized compounds; for example: Nishimoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2007, 9, 4931–4934. The iodine might supply high reactivity in this case.

(13) The conditions without air employed on the bench might have enough oxygen during the experimental process. A very small amount of oxygen resulted in high efficiency in this case.

(21) H^A and H^B are defined as hydrogens that are cis and trans to RCH-cyclopropyl, respectively.

1-2. Substituted Butenylindium Generated by Transmetalation of Cyclopropylmethylstannane with Indium Iodide: Synthesis and Characterization of Monobutenylindium

1-2-1. Introduction

Organoindium compounds are recognized as an important class of organometallic reagents in organic synthesis because of their characteristics: ease of handling, moisture stability, excellent functional group tolerance, etc.\(^1\) In particular, allylic indiums have been widely used for carboncarbon bond formations such as the allylation of carbonyl compounds.\(^1,2\) In addition, various types of other organoindium compounds (alkenyl, alkynyl, aryl, etc.) are also applicable to transition-metal-catalyzed cross-coupling reactions.\(^3\) Although the synthetic applications of organoindium compounds have been extensively studied, the structure of the active species is virtually unknown, and the nature of most organoindiums is still undefined.\(^2,4\) To solve these problems, our group has recently studied organoindium compounds such as alkenylindium\(^5\) (2-carbon unit) and allylindium\(^6\) (3-carbon unit). In addition, the higher homologue, the butenylindium (4-carbon unit) species, was investigated for radical and ionic reactivity, particularly dibutenylindium.\(^7,8\) However, the more basic monobutenyl derivative has not been investigated.\(^9\) Herein, we focus on the synthesis of the mono-butenylindium species. Fortunately, the employment of substituted cyclopropylmethylstannanes selectively afforded the monobutenylindium species, as determined by NMR spectros- copy and X-ray structural analysis (Scheme 1). A monobutenylindium species had not previously been isolated, while our group has previously reported the isolation of monobutenylgallium.\(^8\) Furthermore, the radical coupling between the substituted butenylindium species with an α-iodoester elucidated the importance of steric hindrance and the β-effect of indium.

Scheme 1. Synthesis of Monobutenylindium Species by Transmetalation between Substituted Cyclopropylmethylstannanes and InI\(_3\)

1-2-2. Results and Discussion

Initially, the reaction of 2,2-dimethylcyclopropylmethyltributylstannane (1a) and phenyl 2-iodoacetate (2) was conducted to investigate the effect of indium sources and solvents, in which the generation of the butenylindium species was followed by a reaction with 2 (Table 1). The treatment of InCl\(_3\) in toluene under open air conditions resulted in a low yield, and unreacted stannane 1a was
recovered (entry 1). This result indicates that the transmetalation between InCl\textsubscript{3} and 1a was not effective. When using InBr\textsubscript{3}, stannane 1a was completely consumed, and the yield of the desired product 3a was improved by as much as 56\% (entry 2). Finally, InI\textsubscript{3} was found to be the best choice to afford 3a (entry 3).10 In the presence of a radical inhibitor, the coupling reaction was inhibited, indicating that the reaction proceeds in a radical manner (entry 4). The reaction performed in hexane gave a slightly lower yield than that in toluene (entries 3 and 5). Coordinating solvents significantly suppressed the reactions (entries 6–8). Notably, no transmetalation proceeded in THF. Gratifyingly, the addition of a catalytic amount of Et\textsubscript{3}B as a radical initiator drastically improved the yield to 94\% (entry 9). The reaction in the absence of InI\textsubscript{3} did not give the coupling product (entry 10).

Table 1. Effect of Indium Sources and Solventsa

<table>
<thead>
<tr>
<th>entry</th>
<th>InX\textsubscript{3}</th>
<th>solvent</th>
<th>yield/ %b</th>
<th>recovery of 1a/ %b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>InCl\textsubscript{3}</td>
<td>toluene</td>
<td>25</td>
<td>44</td>
</tr>
<tr>
<td>2</td>
<td>InBr\textsubscript{3}</td>
<td>toluene</td>
<td>56</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>InI\textsubscript{3}</td>
<td>toluene</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>4c</td>
<td>InI\textsubscript{3}</td>
<td>toluene</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>5</td>
<td>InI\textsubscript{3}</td>
<td>toluene</td>
<td>54</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>InI\textsubscript{3}</td>
<td>Et\textsubscript{2}O</td>
<td>14</td>
<td>12</td>
</tr>
<tr>
<td>7</td>
<td>InI\textsubscript{3}</td>
<td>MeCN</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>InI\textsubscript{3}</td>
<td>THF</td>
<td>0</td>
<td>95</td>
</tr>
<tr>
<td>9d</td>
<td>InI\textsubscript{3}</td>
<td>toluene</td>
<td>94</td>
<td>0</td>
</tr>
<tr>
<td>10d</td>
<td>none</td>
<td>toluene</td>
<td>0</td>
<td>89</td>
</tr>
</tbody>
</table>

a Using 1.5 mmol of 1a, 1.0 mmol of 2, and 0.75 mmol of indium halide. b Determined by 1H NMR. c Galvinoxyl (0.1 mmol) was added. d Et\textsubscript{3}B (0.1 mmol) was added, and the reaction was carried out under N\textsubscript{2}.

To confirm the generation of the butenylindium species, the transmetalation between 1a and InI\textsubscript{3} was monitored by 1H NMR spectroscopy (Figure 1). The mixture of 1a and InI\textsubscript{3} (1a/InI\textsubscript{3} = 1:1) in toluene-\textit{d}\textsubscript{8} immediately produced a single product (4a) with a doublet of doublet signal at \(\delta\) 5.74 for the internal olefin proton, two doublets at \(\delta\) 4.94 and 4.82 for terminal olefin protons, a singlet at \(\delta\) 1.91 for methylene protons, and a singlet at \(\delta\) 0.98 for methyl protons (Figure 1i). 4a was most certainly a monobutenylindium diiodide, because using two equivalents of 1a provided two types of butenylindium species, perhaps mono-4a and dibutenylindium 5a, with a small amount of starting material 1a remaining (Figure 1ii). After the reaction mixture was stirred for a long enough period (13 h), stannane 1a was almost consumed, and dibutenylindium 5a was preferentially observed (Figure 1iii). These results show that the first transmetalation between 1a and InI\textsubscript{3}, giving monobutenylindium 4a, was quite fast, while
the second transmetalation, giving dibutenylindium 5a, was relatively slow probably because of the steric hindrance between butenyl substituents on the indium atom. This is the reason for the selective synthesis of monobutenylindium 4a from equimolar amounts of 1a and InI₃. This tendency is quite different from the transmetalation of non-substituted cyclopropylmethylstannane and InBr₃, in which the dibutenylindium was readily generated even before the complete consumption of the starting stannane.⁷

An investigation into the structure of the generated butenylindium 4a (5a) provided some insight into the mechanism of transmetalation. For efficient transmetalation, the π-Lewis acidity of indium halide provides an important interaction with the carbon-carbon bond of the cyclopropyl ring, which has a much higher p character than a normal carbon-carbon σ bond.¹¹ Since butenylindium 4a (5a) has two methyl groups at the β-position, the selective ring cleavage takes place at the less hindered carbon-carbon bond of 1a (6 vs 7) to produce butenylindium 9, rather than 8, as shown in Scheme 2. This proposed mechanism is supported by the fact that InI₃, which is a softer Lewis acid by comparison with either InCl₃ or InBr₃, gave the best results (see Table 1). In addition, suppression of the transmetalation in coordinating solvents by lowering the Lewis acidity of indium halide can be explained.

Next, to confirm the generation of a monobutenylindium species, isolation by complex formation was attempted using various combinations of stannanes (1a–d) (Figure 2) and phosphine ligands.⁷,⁸ Although some stable complexes were isolated, only the combination of stannane 1d and PPh₃ gave a colorless single crystal that was suitable for X-ray structural analysis (Scheme 3).¹²,¹³

Figure 1. ¹H NMR spectra of the reaction mixture of 1a and InI₃ with (i) 1/1 (5 min), (ii) 2/1 (5 min), and (iii) 2/1 (13 h) ratios in toluene-d₈.
Scheme 2. Plausible Mechanism for Transmetalation between 1a and Indium Iodide

Figure 2. Substituted cyclopropylmethylstannanes.

Scheme 3. Isolation of 2-Cyclohexen-1-ylmethylindium Diiodide–PPh₃ Complex 10

The ORTEP drawing of 2-cyclohexen-1-ylmethylindium diiodide–PPh₃ complex 10 is shown in Figure 3. As far as can be ascertained, this is the first example of the X-ray structural analysis of a monobutenylindium species. The coordination of one PPh₃ constructed a distorted tetrahedral structure with a four-coordinated indium center. In this complex, there was no intermolecular interaction through bridging by halogen atoms. The In1−C1 length at 2.165(9) Å was slightly shorter than the sum of the individual covalent radii (d_{In−C} = 2.18 Å). The In−C bond is comparable to a previously reported one in the dibutenylindium complex. The C3−C4 length of 1.33(2) Å indicates a double bond. Bond lengths of In1−I1 (2.7189(8) Å), In1−I2 (2.7252(8) Å), and In1−P1 (2.6341(14) Å) and bond angles between substituents at the indium atom were reasonable and were comparable to those reported for the InI₃−PPh₃ complex.
Figure 3. ORTEP drawing of 2-cyclohexen-1-ylmethylindium diiodide–PPh\textsubscript{3} complex 10 (30% thermal ellipsoids. All hydrogen atoms are omitted for clarity). Selected bond lengths (Å) and angles (deg): In1–C1 = 2.165(9), In1–I1 = 2.7189(8), In1–I2 = 2.7252(8), In1–P1 = 2.6341(14), C1–C2 = 1.484(11), C2–C3 = 1.51(10), C3–C4 = 1.33(2); I1–In1–I2 = 107.00(3), I1–In1–C1 = 124.8(3), I2–In1–C1 = 116.5(3), P1–In1–C1 = 106.03(18).

Scheme 4 shows a plausible mechanism for the radical coupling reaction of a butenylindium species with iodoester 2. First, monobutenylindium 4a is generated from the transmetalation between stannane 1a and InI\textsubscript{3}, and further transmetalation partly provides dibutenylindium 5a. The radical initiation step may be different from the case of an unsubstituted butenylindium species,7 because the present case needs the addition of Et\textsubscript{3}B (see Table 1). Therefore, two possibilities are proposed: (i) radical species 11 is generated from 2 assisted by Et\textsubscript{3}B with O\textsubscript{2}; or (ii) butenylindium 4a or 5a works as a radical initiator in the presence of a small amount of O\textsubscript{2} (or O\textsubscript{2}/Et\textsubscript{3}B), and the resultant radical species abstracts the iodo radical from 2 to produce the corresponding radical 11. The trap of 11 by the butenylindium species is followed by the cyclization of 12 into cyclopropyl product 3a along with an indium radical (other butenyl group and/or ligands are omitted on In). Finally, the generated indium radical abstracts the iodine from 2 to regenerate 11.

In order to investigate the reactivity of the substituted butenylindium species for radical coupling, the reactions of various cyclopropylmethylstannanes 1 and iodoester 2 mediated by InI\textsubscript{3} were conducted, as shown in Table 2. The corresponding cyclopropylmethylated product 3a was afforded in high yield with no byproduct (entry 1) when using 2,2-dimethylbutenylindium 13a from 1a. Other stannanes 1b, 1c, and 1e gave varying amounts of olefins. Among them, 1b, which generates 3-methylbutenylindium by transmetalation, gave the alkene product 14b predominantly (3b/14b = 32/68) (entry 2).18 This is probably because the cyclization of intermediate 15 is disturbed by the steric hindrance of the tertiary radical (Scheme 5). In addition, the β-effect of indium stabilizes radical intermediate 16 to accelerate the
isomerization from 15 to 16 through H-shift to give alkene 14b. Scheme 5 would also be a reasonable explanation for why mono- and nonsubstituted cyclopropylmethylstannanes 1c and 1e gave moderate (20%) and small (7%) selectivities of alkenes 14c and 14e along with major products of desired cyclopropyls 3c and 3e, respectively (entries 3 and 4). No β-hydrogen for an H-shift in intermediate 12 (Scheme 4) is perhaps the reason there was no alkene formation from dimethyl-substituted stannane 1a (entry 1). Unfortunately, the reaction of cyclic butenylindium 13d did not proceed due to steric hindrance at the reaction site (entry 5).

Scheme 4. Plausible Reaction Mechanism

![Scheme 4](image)

Table 2. Reactions of Cyclopropylmethylstannanes 1 with Iodoester 2

<table>
<thead>
<tr>
<th>entry</th>
<th>stannane 1</th>
<th>butenylindium 13</th>
<th>product 3</th>
<th>alkene 14</th>
<th>3/14</th>
<th>yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Bu$_3$Sn-</td>
<td>$^\text{In}_3$</td>
<td>R $^\text{In}$</td>
<td>Bu$_3$Sn-</td>
<td>PhO</td>
<td>n.d.</td>
</tr>
<tr>
<td>2</td>
<td>Bu$_3$Sn-</td>
<td>$^\text{In}_3$</td>
<td>R $^\text{In}$</td>
<td>Bu$_3$Sn-</td>
<td>PhO</td>
<td>n.d.</td>
</tr>
<tr>
<td>3a</td>
<td>Bu$_3$Sn-</td>
<td>$^\text{In}_3$</td>
<td>R $^\text{In}$</td>
<td>Bu$_3$Sn-</td>
<td>PhO</td>
<td>n.d.</td>
</tr>
<tr>
<td>4b</td>
<td>Bu$_3$Sn-</td>
<td>$^\text{In}_3$</td>
<td>R $^\text{In}$</td>
<td>Bu$_3$Sn-</td>
<td>PhO</td>
<td>n.d.</td>
</tr>
<tr>
<td>5c</td>
<td>Bu$_3$Sn-</td>
<td>$^\text{In}_3$</td>
<td>R $^\text{In}$</td>
<td>Bu$_3$Sn-</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
</tbody>
</table>

a Using 1.5 mmol of 1, 1.0 mmol of 2, 0.75 mmol of In$_3$, and 0.1 mmol of Et$_3$B. b Determined by 1H NMR. c Isolated yields (combined yields of 3 and 14). Values in parentheses are NMR-determined yields. d Et$_3$B was not added. e Open air.
Scheme 5. Plausible Mechanism for Alkene Formation

In conclusion, we have reported the facile preparation of substituted butenylindium species from substituted cyclopropylmethylstannanes and InI₃. The selective generation of monobutenylindium species was also confirmed by NMR spectroscopy and X-ray structural analysis. In transmetalation, the π-Lewis acidity of indium halide and the steric hindrance of the cyclopropyl ring are important factors for the effective and selective synthesis of monobutenylindium species. Substituted butenylindium species easily coupled with an iodoester to give the corresponding cyclopropane products and alkenes. The results of this radical coupling revealed a dependence on the substituent for the change in reactivity of the butenylindium species.

1-2-3. Conclusion

In conclusion, we have reported the facile preparation of substituted butenylindium species from substituted cyclopropylmethylstannanes and InI₃. The selective generation of monobutenylindium species was also confirmed by NMR spectroscopy and X-ray structural analysis. In transmetalation, the π-Lewis acidity of indium halide and the steric hindrance of the cyclopropyl ring are important factors for the effective and selective synthesis of monobutenylindium species. Substituted butenylindium species easily coupled with an iodoester to give the corresponding cyclopropane products and alkenes. The results of this radical coupling revealed a dependence on the substituent for the change in reactivity of the butenylindium species.

1-2-4. Experimental Section

General. New compounds were characterized by ¹H, ¹³C, ¹³C off-resonance techniques, HMQC, HMBC, IR, MS, HRMS, and elemental analysis. ¹H (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained with TMS as internal standard. ¹¹⁹Sn (150 MHz) spectra were obtained with Me₂Sn as external standard. ³¹P (160 MHz) spectra were obtained with 85 wt% D₃PO₄ in D₂O as external standard. IR spectra were recorded as thin films or solids in KBr pellets. All reactions were carried out under nitrogen. Column chromatography was performed on silica gel (MERK C60 or Fuji Silysia FL100DX). Recycle GPC was performed with CHCl₃ as the eluent. Bulb-to-Bulb distillation (Kugelrohr) was accomplished at the oven temperature and pressure indicated. Yields were determined by ¹H NMR using internal standard.

Materials. Dehydrated hexane, toluene, acetonitrile, diethyl ether, and tetrahydrofuran were purchased and used as obtained. Indium halides examined in Table 1 were also purchased from commercial sources. Cyclopropylmethy1stannanes ₁b⁸ and ₁e⁷,⁸ was prepared by known method and these compounds were reported. Cyclopropylmethy1stannanes ₁a, ₁c, and ₁d were prepared by known method.⁸ Iodoester ₂ was
prepared by known method and this compound was reported.\(^7\) All other reagents were commercially available.

Preparation of 2,2-Dimethylcyclopropylmethyltributylstannane (1a)\(^8\)

![Diagram](https://via.placeholder.com/150)

To a flask containing magnesium (4.38 g, 180 mmol) in THF (150 mL), Bu\(_3\)SnCl (49.45 g, 152 mmol) was added. The reaction mixture was cooled to 0 °C, and then 1-chloro-3-methyl-2-butene (18.88 g, 181 mmol) was added. The reaction mixture was irradiated with ultrasound at 0 °C for 2 h and stirred at room temperature for 10 h, and then quenched by water (200 mL) at 0 °C. Hexane (200 mL) was added, and the organic layer was washed by water (100 mL), saturated NaCl aq (100 mL), and NH\(_4\)F aq (10%, 100 mL). After drying with MgSO\(_4\), the solvent was evaporated and the residue was purified by column chromatography [solvent; hexane] to give the product s1a (51.09 g, 94%).

![Diagram](https://via.placeholder.com/150)

To a solution of s1a (10.67 g, 30 mmol) in diethyl ether (40 mL), diethylzinc (1.0 M in hexane, 45 mL) was added. To the reaction mixture, the solution of diiodomethane (26.16 g, 98 mmol) in diethylether (30 mL) was added dropwise within 30 min. The reaction mixture was stirred for 3 h at room temperature, and then quenched by saturated NH\(_4\)Cl aq (100 mL). Hexane (200 mL) was added, and the organic layer was washed by saturated NH\(_4\)Cl aq (100 mL), saturated NaCl aq (100 mL), and NH\(_4\)F aq (10%, 100 mL). After drying with MgSO\(_4\), the solvent was evaporated and the residue was purified by column chromatography [solvent; hexane] to give the product 1a (10.83 g, 98% yield, >99% purity (a small portion was analyzed by \(^1\)H NMR using an internal standard)). IR: (neat) 2927 cm\(^{-1}\); \(^1\)H NMR (400 MHz, CDCl\(_3\)) 1.59-1.39 (m, 6H, 2'-H\(_2\) x 3), 1.36-1.25 (m, 6H, 3'-H\(_2\) x 3), 1.02 (s, 3H, Me\(^A\)), 1.01 (s, 3H, Me\(^B\)), 0.95-0.67 (m, 17H, 4'-H\(_3\) x 3, 1'-H\(_2\) x 3, and 1-H\(_2\)), 0.66-0.54 (m, 1H, SnCH\(_2\)CH\(_2\)), 0.40 (dd, \(J = 8.0, 4.8\) Hz, 1H, H\(^\beta\)), 0.25 (dd, \(J = 4.8, 4.8\) Hz, 1H, H\(^\alpha\)); \(^{13}\)C NMR (100 MHz, CDCl\(_3\)) 29.3 (t, C-2', d by \(^2\)J\(_{Sn-C}\) = 19.6 Hz), 27.5 (t, C-3', d by \(^3\)J\(_{Sn-C}\) = 52.4 Hz), 27.4 (q, Me\(^A\)), 22.9 (d, SnCH\(_2\)CH\(_2\)), d by \(^2\)J\(_{Sn-C}\) = 19.6 Hz), 22.5 (t, CH\(_2\)CH\(_2\)CH\(_2\)), d by \(^3\)J\(_{Sn-C}\) = 27.8 Hz), 19.5 (q, Me\(^B\)), 17.1 (s, 14.8, CH\(_2\)CH\(_2\)CH\(_2\)Me\(_2\)), 13.7 (q, C-4'), 9.0 (t, C-1', d by \(^1\)J\(_{119Sn-C}\) = 304.8, \(^1\)J\(_{117Sn-C}\) = 292.5 Hz), 8.9 (t, C-1', d by \(^1\)J\(_{119Sn-C}\) = 310.5, \(^1\)J\(_{117Sn-C}\) = 297.4 Hz); \(^{119}\)Sn NMR: (150 MHz, CDCl\(_3\)) −14.1; MS: (EI, 70 eV) \(m/z\) 317 (Bu\(_3\)Sn\(_{120}\)SnC\(_5\)H\(_{11}\)\(^+\) – Bu, 15), 291 (63), 290 (22), 289 (48), 287 (28), 235 (68), 224 (23), 233 (52), 231 (31), 179 (100), 178 (29), 177 (92), 176 (31), 175 (60), 121 (25); HRMS: (EI, 70 eV) calcd for (C\(_{13}\)H\(_{29}\)\(_{120}\)Sn) 317.1291 (M\(^+\) – Bu) found \(m/z\) 317.1292; Analysis: C\(_{13}\)H\(_{38}\)Sn (373.20) Calcd: C, 57.93; H, 10.26 Found: C, 57.78; H, 10.16.
To a flask containing magnesium (4.38 g, 180 mmol) in THF (150 mL), Bu\textsubscript{3}SnCl (48.34 g, 149 mmol) was added. The reaction mixture was cooled to 0 °C, and then crotyl chloride (cis- and trans- mixture, contains ca. 25% 3-chloro-1-butene) (15.91 g, 176 mmol) was added. The reaction mixture was irradiated with ultrasound at 0 °C for 2 h and stirred at room temperature for 2 h, and then quenched by water (200 mL) at 0 °C. Hexane (200 mL) was added, and the organic layer was washed using water (100 mL), saturated NaCl aq (100 mL), and NH\textsubscript{4}F aq (10%, 100 mL). After drying with MgSO\textsubscript{4}, the solvent was evaporated and the residue was purified by column chromatography [solvent; hexane] to give the product s\textsubscript{1c} (34.30 g, 67%).

To a solution of s\textsubscript{1c} (10.80 g, 31 mmol) in diethyl ether (40 mL), diethylzinc (1.0 M in hexane, 45 mL) was added. To the reaction mixture, the solution of diiodomethane (25.39 g, 95 mmol) in diethylether (30 mL) was added dropwise within 30 min. The reaction mixture was stirred for 6 h at room temperature, and then quenched by saturated NH\textsubscript{4}Cl aq (100 mL). Hexane (200 mL) was added, and the organic layer was washed using water (100 mL), saturated NaCl aq (100 mL), and NH\textsubscript{4}F aq (10%, 100 mL). After drying with MgSO\textsubscript{4}, the solvent was evaporated and the residue was purified by column chromatography [solvent; hexane] to give the product 1c (ca. 60:40 mixture of cis and trans isomer) (10.96 g, 97% yield, 99% purity (a small portion was analyzed by 1H NMR using an internal standard)).

IR: 3059, 2908 cm-1; 1H NMR: (400 MHz, CDCl\textsubscript{3}) 1.60-1.39 (m, 2'-H\textsubscript{2}), 1.37-1.24 (m, 3'-H\textsubscript{3}), 1.02 (d, \(J = 5.6\) Hz, Me), 1.00 (d, \(J = 5.6\) Hz, Me'), 0.95-0.60 (m, 4'-H\textsubscript{3}, 1'-H\textsubscript{2}, and 1-H\textsubscript{2}), 0.50-0.39 (m), 0.50-0.39 (m), 0.29-0.23 (m), 0.15-0.07 (m), 0.41-0.50 (m); 13C NMR: (100 MHz, CDCl\textsubscript{3}) 29.3 (t, d by \(J_{\text{Sn-C}} = 19.7\) Hz), 27.5 (t, d by \(J_{\text{Sn-C}} = 52.4\) Hz), 19.0 (q), 18.1 (d, d by \(J_{\text{Sn-C}} = 19.7\) Hz), 16.9 (t, d by \(J_{\text{Sn-C}} = 37.7\) Hz), 16.3 (d, d by \(J_{\text{Sn-C}} = 32.8\) Hz), 14.8 (t, d by \(J_{\text{Sn-C}} = 25.4\) Hz), 14.5 (t, d by \(J_{119\text{Sn-C}} = 305.5, J_{117\text{Sn-C}} = 293.3\) Hz), 13.74 (q), 13.71 (t), 12.7 (q), 11.4 (d, d by \(J_{\text{Sn-C}} = 38.5\) Hz), 9.0 (t), 8.9 (t), 7.4 (t); 119Sn NMR: (150 MHz, CDCl\textsubscript{3}) −12.3, −16.5; MS: (EI, 70 eV) \textit{m}/\textit{z} 303 (Bu\textsubscript{3}SnC\textsubscript{3}H\textsubscript{5} – Bu, 53), 301 (40), 299 (23), 291 (51), 289 (39), 287 (23), 235 (71), 234 (24), 233 (55), 231 (32), 179 (100), 178 (30), 177 (96), 176 (31), 175 (61), 121 (27), 119 (21); HRMS: (EI, 70 eV) calcd for (C\textsubscript{13}H\textsubscript{27}^{120}\text{Sn}) 303.1135 (M+ – Bu) found \textit{m}/\textit{z} 303.1137; Analysis: C\textsubscript{13}H\textsubscript{30}Sn (359.18) Calcd: C, 56.85; H, 10.10 Found: C, 56.58; H, 10.30.
Preparation of (2-Tributylstannyl)bicyclo[4.1.0]heptane (1d)8

![Diagram](image)

To a solution of Pd(PPh$_3$)$_4$ (3.51 g, 3 mmol) in benzene (250 mL), 1,3-cyclohexadiene (12.83 g, 160 mmol) was added. To the reaction mixture, the solution of Bu$_3$SnH (30.16 g, 104 mmol) in benzene (50 mL) was added dropwise within 1 h. After the reaction mixture was stirred for 2 h at room temperature, the solvent was evaporated and the residue was purified by column chromatography [solvent: hexane/diethyl ether = 85/15] to give the product s1d (34.15 g, 89%).

![Diagram](image)

To a solution of s1d (3.83 g, 10 mmol) in diethyl ether (20 mL), diethylzinc (1.0 M in hexane, 20 mL) was added. To the reaction mixture, the solution of diiodomethane (10.82 g, 40 mmol) in diethylether (10 mL) was added dropwise within 30 min. The reaction mixture was stirred for 2 h at room temperature, and then quenched by saturated NH$_4$Cl aq (50 mL). Hexane (100 mL) was added, and the organic layer was washed using saturated NH$_4$Cl aq (50 mL), saturated NaCl aq (50 mL), and NH$_4$F aq (10%, 50 mL). After drying with MgSO$_4$, the solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product 1d (3.531 g, 76% yield, 85% purity (a small portion was analyzed by 1H NMR using an internal standard)). Further purification by distillation under reduced pressure improved the purity of 1d to 99%. IR: (neat) 2927 cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 1.88-1.71 (m, 2H), 1.62-1.41 (m, 8H), 1.40-1.22 (m, 8H), 1.15-1.02 (m, 1H), 0.96-0.72 (m, 17H), 0.58 (ddd, J = 8.8, 8.8, 4.8 Hz, 1H, 3-H8), 0.08 (ddd, J = 4.8, 4.8, 4.8 Hz, 1H, 3-H0); 11C NMR: (100 MHz, CDCl$_3$) 29.3 (t, C-2’, d by 2J$_{Sn-C} = 19.7$ Hz), 27.5 (t, C-3’, d by 3J$_{Sn-C} = 51.6$ Hz), 26.7 (t, C-7, d by 2J$_{Sn-C} = 16.4$ Hz), 23.7 (t, C-5), 23.0 (t, C-6, d by 3J$_{Sn-C} = 52.4$ Hz), 22.7 (d, C-1), d by 1J$_{198Sn-C} = 339.2$ Hz, 1J$_{117Sn-C} = 323.6$ Hz), 13.7 (q, C-4’), 13.5 (d, d by 3J$_{Sn-C} = 7.4$ Hz), 13.1 (t, C-3, d by 3J$_{Sn-C} = 36.1$ Hz), 10.7 (d), 8.4 (t, C-1’), d by 1J$_{198Sn-C} = 299.9$ Hz, 1J$_{117Sn-C} = 286.7$ Hz), 119Sn NMR: (150 MHz, CDCl$_3$) -14.7; MS: (EI, 70 eV) m/z 329 (Bu$_3^{120}$SnC$_7$H$_{11}^+$ – Bu, 50), 327 (37), 325 (22), 291 (32), 289 (24), 235 (91), 234 (30), 233 (68), 232 (25), 231 (39), 179 (100), 178 (29), 177 (86), 176 (29), 175 (53), 121 (22), 95 (34); HRMS: (EI, 70 eV) caleld for (C$_{15}$H$_{30}^{120}$Sn) 329.1291 (M$^+$ – Bu) found m/z 329.1292.

Typical procedure for the reaction of cyclopropylmethylstannane 1a with iodoacetate 2 (Table 1). To a suspended solution of InX$_3$ (0.75 mmol) in toluene (1 mL), 2,2-dimethylcyclopropylmethyltributylstannane (1a) (99% purity) (1.50 mmol) was added. The mixture was stirred for 20 min. Then phenyl iodoacetate (2) (1.00 mmol) was added. The reaction mixture was stirred for 4.5 h, and then quenched by NH$_4$F aq (10%, 10 mL). The obtained white precipitate was filtered off and the filtrate was extracted with diethyl ether (10 mL x 3). The collected organic layers
were dried (MgSO₄). The evaporation of the ether solution gave the crude product which was analyzed by NMR. The detail of further purification was described in Product Data.

NMR study of transmetalation between cyclopropylmethylstannane 1 and InI₃. The mixture of cyclopropylmethylstannane 1 and InI₃ (1/InI₃ = 1:1 or 2:1) was prepared in toluene-d₈ in a nitrogen-filled glove box. After mixing at room temperature, the mixture was transferred into NMR tube, and the resulting spectra are shown.

Figure S1. ¹H NMR spectra of the reaction mixtures of InI₃ and 1b in toluene-d₈.

Figure S2. ¹H NMR spectra of the reaction mixtures of InI₃ and 1c in toluene-d₈.
Figure S3. 1H NMR spectra of the reaction mixtures of InI$_3$ and 1d in toluene-d_8.

Experimental procedure of the isolation of butenylindium complex 10 (Scheme 3). In a nitrogen-filled glove box, to a suspended solution of InI$_3$ (0.102 g, 0.21 mmol) in toluene (1 mL), (2-tributylstannyl)bicyclo[4.1.0]heptane (1d) (99% purity) (0.079 g, 0.21 mmol) was added at room temperature. The mixture was stirred for 20 min, and then triphenylphosphine (0.053 g, 0.20 mmol) was loaded. The mixture was stirred for 10 min, and then the volatiles were evaporated to give a viscous liquid, which was then washed by hexane to give the product as a white solid (0.125 g, 84%). The product was recrystallized from dichloromethane/hexane to give the suitable crystal for X-ray analysis.

Product data

Phenyl 3-(2,2-dimethylcyclopropyl)propanoate (3a)

According to the typical procedure, InI$_3$ (0.371 g, 0.75 mmol), 2,2-dimethylcyclopropylmethyltributylstannane (1a) (99% purity) (0.567 g, 1.52 mmol), phenyl iodoacetate (2) (0.260 g, 0.99 mmol), and Et$_3$B (1.0 M in hexane, 0.1 mL) gave the crude product. Purification by flash column chromatography [solvent; hexane/ethyl acetate = 95/5, column length; 11 cm] gave the product 3a (0.175 g, 81%). Further purification was performed by distillation under reduced pressure to give the product 3a (0.150 g, 69%). bp: 115 °C /0.18 mmHg; IR: (neat) 1759 (C=O) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 7.39 (dd, J = 8.0, 8.0 Hz, 2H, m), 7.23 (t, J = 8.0 Hz, 1H, p), 7.11 (d, J = 8.0 Hz, 2H, o), 2.65 (dd, J = 8.0, 8.0 Hz, 2H, 2-H$_2$), 1.86 (ddt, J = 14.4, 6.4, 6.4 Hz, 1H, 3-H3), 1.71 (ddt, J = 14.4, 6.4, 6.4 Hz, 1H, 3-HB), 1.11 (s, 3H, Me4), 1.08 (s, 3H, MeB), 0.62 (dddt, J = 8.0, 6.4, 6.4, 4.8 Hz, 1H, COCH$_2$CH$_2$CH$_2$), 0.47 (dd, J = 8.0, 4.8 Hz, 1H, HB), –0.02 (dd, J = 4.8, 4.8 Hz, 1H, HD); 13C NMR: (100 MHz, CDCl$_3$) 172.1 (s, C-1), 150.7 (s, C-i),
Phenyl 3-(1-methylcyclopropyl)propanoate (3b) and Phenyl 4-methyl-5-hexanoate (14b)

According to the typical procedure, InI₂ (0.376 g, 0.76 mmol), 1-methylcyclopropylmethyltributylstannane (1b) (91% purity) (0.602 g, 1.53 mmol), phenyl iodoacetate (2) (0.262 g, 1.00 mmol), and Et₃B (1.0 M in hexane, 0.1 mL) gave the crude product. Purification by flash column chromatography [solvent; hexane/ethyl acetate = 95/5, column length; 11 cm] gave the mixture of 3b and 14b (0.148 g, 72%, 3b:14b = 32:68). Further purification was performed by gel permeation chromatography [solvent; chloroform] to give products (3b and 14b).

Phenyl 3-(1-methylcyclopropyl)propanoate (3b)

IR: (neat) 1759 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.37 (dd, J = 7.2, 7.2 Hz, 2H, m), 7.22 (t, J = 7.2 Hz, 1H, p), 7.08 (d, J = 7.2 Hz, 2H, o), 2.68-2.61 (m, 2H, 2-H₃), 1.74-1.67 (m, 2H, 3-H₂), 1.09 (s, 3H, Me), 0.39-0.28 (m, 4H); ¹³C NMR: (100 MHz, CDCl₃) 172.4 (s, C-1), 150.7 (s, C-i), 129.4 (d, C-m), 125.7 (d, C-p), 121.5 (d, C-o), 34.6 (t, C-3), 32.3 (t, C-2), 22.3 (q, Me), 15.0 (s, COCH₂CH₂C) 13.0 (t, two methylene groups in cyclopropyl ring); MS: (EI, 70 eV) m/z 204 (M⁺, 17), 111 (M⁺ – OPh, 56), 94 (100), 69 (M⁺ – PhOCOCH₂, 24), 55 (M⁺ – PhOCOCH₂CH₂, 30); HRMS: (EI, 70 eV) calced for (C₁₃H₁₆O₂) 204.1150 (M⁺) found m/z 204.1148.

Phenyl 4-methyl-5-hexanoate (14b)

IR: (neat) 1763 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.38 (dd, J = 7.2, 7.2 Hz, 2H, m), 7.22 (t, J = 7.2 Hz, 1H, p), 7.07 (d, J = 7.2 Hz, 2H, o), 5.69 (ddd, J = 17.6, 10.4, 7.2 Hz, 1H, 5-H), 5.04 (d, J = 17.6 Hz, 1H, 6-H⁸), 5.01 (d, J = 10.4 Hz, 1H, 6-H⁹), 2.63-2.48 (m, 2H, 2-H₂), 2.24 (qtd, J = 7.2, 7.2, 7.2 Hz, 1H, 4-H), 1.86-1.67 (m, 2H, 3-H₂), 1.07 (d, 3H, Me); ¹³C NMR: (100 MHz, CDCl₃) 172.3 (s, C-1), 150.7 (s, C-i), 143.3 (d, C-5), 129.4 (d, C-m), 125.7 (d, C-p), 121.5 (d, C-o), 113.9 (t, C-6), 37.6 (d, C-4), 32.3 (t, C-2), 31.3 (t, C-3), 20.2 (q, Me); MS: (EI, 70 eV) m/z 204 (M⁺, 4), 111 (M⁺ – OPh, 49), 94 (100), 69 (M⁺ – PhOCOCH₂, 21), 55 (M⁺ – PhOCOCH₂CH₂, 59); HRMS: (EI, 70 eV) calced for (C₁₃H₁₆O₂) 204.1150 (M⁺) found m/z 204.1149.
Phenyl 3-(2-methylcyclopropyl)propanoate (3c) and Phenyl 5-methyl-5-hexenoate (14c)

According to the typical procedure, InI$_3$ (0.372 g, 0.75 mmol), 2-methylcyclopropymethyltributylstannane (1c) (99% purity) (0.539 g, 1.50 mmol), and phenyl iodoacetate (2) (0.260 g, 0.99 mmol) gave the crude product. Purification by flash column chromatography [solvent; hexane/ethyl acetate = 95/5, column length: 11 cm] gave the mixture of 3c (50:50 mixture of cis and trans isomer) and 14c (0.092 g, 45%, 3c/14c = 80/20). Further purification was performed by gel permeation chromatography [solvent; chloroform] to give products (3c (59:41 mixture of cis and trans isomer) and 14c)

Phenyl 3-(2-methylcyclopropyl)propanoate (3c)

IR: (neat) 1759 (C=O) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 7.37-7.06 (m, Ar), 7.37-7.06 (m, Ar’), 2.71-2.58 (m, 2-H$_2$), 2.71-2.58 (m, 2’-H$_2$), 1.87-1.55 (m, 3-H$_2$), 1.87-1.55 (m, 3’-H$_2$), 1.07 (d, J = 6.4 Hz, Me), 1.04 (d, J = 6.4 Hz, Me’), 0.89-0.73 (m, COCH$_2$CH$_2$CH and C’HMe), 0.67 (ddd, J = 8.0, 8.0, 4.0 Hz, COCH$_2$CHCHHH), 0.58-0.46 (m, COCH$_2$CH’H and C’HMe), 0.28 (ddd, J = 8.0, 4.0, 4.0 Hz, COCH$_2$CHCH’H), 0.22 (ddd, J = 8.0, 4.0, 4.0 Hz, COCH$_2$CHCH’H), –0.21 (ddd, J = 4.8, 4.8, 4.0 Hz, COCH$_2$CHCH’H); 13C NMR: (100 MHz, CDCl$_3$) 172.2 (s, C-1), 150.7 (s, C-i), 129.4 (d, C-m), 125.7 (d, C-p), 121.6 (d, C-o), 34.9 (t, C-2), 34.6 (t, C-2’), 29.6 (t, C-3’), 24.1 (t, C-3), 19.2 (d, COCH$_2$CH$_2$), 18.9 (q, Me’), 15.0 (d, COCH$_2$CHC’H), 13.1 (q, Me), 13.0 (t, COCH$_2$CHCH’H), 12.8 (d, C’Me), 11.9 (t, COCH$_2$CHCH$_2$), 9.6 (d, CMe); Two mass spectra were obtained from the mixture of cis and trans isomer. MS: (EI, 70 eV) m/z 204 (M$^+$, 27), 111 (M$^+$ – OPh, 41), 94 (100), 69 (M$^+$ – PhOCOCH$_2$, 28), 55 (M$^+$ – PhOCOC$_2$H$_2$, 39); HRMS: (EI, 70 eV) calcd for (C$_{13}$H$_{16}$O$_2$) 204.1150 (M$^+$) found m/z 204.1140; MS: (EI, 70 eV) m/z 204 (M$^+$, 23), 111 (M$^+$ – OPh, 40), 94 (100), 69 (M$^+$ – PhOCOC$_2$H$_2$, 26), 55 (M$^+$ – PhOCOC$_2$H$_2$, 39); HRMS: (EI, 70 eV) calcd for (C$_{13}$H$_{16}$O$_2$) 204.1150 (M$^+$) found m/z 204.1153.

Phenyl 5-methyl-5-hexenoate (14c)

1H NMR: (400 MHz, CDCl$_3$) 7.38 (dd, J = 7.2, 7.2 Hz, 2H, m), 7.23 (t, J = 7.2 Hz, 1H, p), 7.08 (d, J = 7.2 Hz, 2H, o), 4.81-4.76 (m, 1H, 6-H3), 4.76-4.72 (m, 1H, 6-H3), 2.57 (t, J = 7.2 Hz, 2H, 2-H$_2$), 2.15 (t, J = 7.2 Hz, 2H, 4-H$_2$), 1.91 (tt, J = 7.2, 7.2 Hz, 2H, 3-H$_2$), 1.75 (s, 3H, Me); 13C NMR: (100 MHz, CDCl$_3$) 172.1 (s, C-1), 150.7 (s, C-i), 144.6 (s, C-5), 129.4 (d, C-m), 125.7 (d, C-p), 121.5 (d, C-o), 110.9 (t, C-6), 37.0 (t, C-4), 33.7 (t, C-2), 22.7 (t, C-3), 22.2 (q, Me); MS: (CI, 200 eV) m/z 205 (M$^+$ + 1, 100); HRMS: (CI, 200 eV) calcd for (C$_{13}$H$_{17}$O$_2$) 205.1229 (M$^+$ + 1) found m/z 205.1222.

Phenyl 3-cyclopropylpropanoate (3e) and Phenyl 5-hexenoate (14e)

According to the typical procedure, InI$_3$ (0.372 g, 0.75 mmol), cyclopropymethyltributylstannane (1e) (92% purity) (0.570 g,
1.51 mmol), and phenyl iodoacetate (2) (0.261 g, 1.00 mmol) gave the crude product. Purification by flash column chromatography [solvent; hexane/ethyl acetate = 95/5, column length; 11 cm] gave the mixture of 3e and 14e (0.146 g, 77%, 3e/14e = 93/7). Further purification was performed by distillation under reduced pressure to give the mixture of 3e and 14e (0.144 g, 76%, 3e/14e = 93/7). The analytical data for these compounds were in excellent agreement with the reported data.\(^7\)**\(^1** The GC mass spectrum of the mixture gave the two signals corresponding to the 3e and 14e [calculated for (C\(_\text{12}\)H\(_\text{14}\)O\(_\text{2}\)), 190.0994; found for m/z 190.0990 (3e) and 190.0991 (14e)]. Analysis: C\(_\text{12}\)H\(_\text{14}\)O\(_\text{2}\) (190.24) Calcd: C, 75.76; H, 7.42 Found: C, 75.58; H, 7.27.

Cyclohexenylmethylindium diiodide triphenylphosphine complex (10)

1H NMR: (400 MHz, CDCl\(_3\)) 7.63-7.44 (m, 15H, Ar), 5.58-5.51 (m, 1H, 4-H), 5.51-5.43 (m, 1H, 3-H), 2.59-2.43 (m, 1H, 2-H), 1.94-1.15 (m, 8H, 1-H\(_5\), 5-H\(_5\), 6-H\(_2\), and 7-H\(_2\)); \(^{13}\)C NMR: (100 MHz, CDCl\(_3\)) 133.8 (d, d by \(J_{P,C} = 12.2\) Hz), 133.5 (d, C-3), 132.0 (d, C-p, d by \(J_{P,C} = 1.7\) Hz), 129.5 (d, d by \(J_{P,C} = 10.7\) Hz), 126.9 (d, C-4), 125.7 (s, C-i, d by \(J_{P,C} = 38.5\) Hz), 34.5 (d, C-2), 33.2 (t), 30.0 (t, C-1), 25.0 (t), 21.4 (t); \(^{31}\)P NMR: (160 MHz, CDCl\(_3\), external standard = 85 wt% D\(_3\)PO\(_4\) in D\(_2\)O) -2.33.

1-2-5. **References**

(10) The reactions using BF₃·OEt₂ or AlCl₃ instead of InI₃ did not give the product 3a at all.
(12) The reaction of 1b or 1c with InI₃ (1/InI₃ = 1:1) in toluene gave monobutenylindium along with a
small amount of dibutenylindium. The second transmetalation could be relatively fast because the steric hindrance of substituents of 1b (1c) are smaller than those of 1a and 1d.

(13) The generation of 4d as a single product was observed by NMR spectroscopy.

(14) The data obtained from the measurement was good, and the analysis was completed to optimize the structure. Although some level A alerts still remain, this structure should be justified because of the excellent level of the data and structure refinement.

(15) Monoalkylindiums from the reaction of alkenes, InBr3, and ketene silyl acetal were isolated, see: Nishimoto, Y.; Ueda, H.; Inamoto, Y.; Yasuda, M.; Baba, A. Org. Lett. 2010, 12, 3390–3393.

(18) The reaction of 1b with 2 was examined at 0 ºC and gave the products in 86% yield and ratio of 3b/14b = 37/63. This result indicates that the ratio of 3/14 does not depend on a reaction temperature.

(20) We assume that butenylindiums 13a–c with substituents are relatively stable to oxygen, so a radical initiator (Et3B) or an open air condition is required in a radical initiation step to facilitate the efficient reaction. On the contrary, because nonsubstituted 13e easily generates a radical species (not fully determined) assisted by oxygen, an additional radical initiator is not required.

1-3. Synthesis of Cyclopropane-Containing Phosphorus Compounds by Radical Coupling of Butenylindium with Iodophosphorus Compounds

1-3-1. Introduction

Phosphonates have been recognized as highly valuable compounds in medicinal chemistry because of their potential biological activities.\(^1\) Moreover, in the field of organic synthesis, they are widely used as important intermediates in the Horner–Wadsworth–Emmons (HWE) reaction.\(^2\)–\(^4\) Therefore, development of a synthetic method for more functionalized phosphonates is an important subject. An α-iodo phosphonate is a good functionalized candidate for radical coupling with an organometallic species.\(^5\) However, its synthetic applications have been restricted to radical addition to alkenes or alkynes,\(^6\) and no example of radical coupling reactions for α-iodo phosphonates with organometallic reagents has been reported, as far as we know. To develop this type of reaction, a new type of organometallic species is required. Recently, we found that a butenylindium species generated from the transmetalation between a (cyclopropylmethyl)stannane\(^7\) and an indium halide was a useful reagent for radical coupling with α-iodocarbonyl compounds to afford cyclopropylmethylated carbonyl compounds.\(^8\)

Herein, we report the unprecedented radical coupling of the butenylindium species with iodo phosphorus compounds such as iodo phosphonate, iodo phosphane oxide, or iodo phosphonothioate (Scheme 1). This is also a useful route to produce phosphorus compounds bearing a cyclopropyl ring,\(^9,\)\(^10\) which has the potential for pharmacological utility.\(^11\)

Scheme 1. Radical Coupling of Iodophosphorus Compound with Butenylindium Generated by Tin-Indium Transmetalation

1-3-2. Results and Discussion

To optimize reaction conditions, the effects of additives and solvents were investigated by employing the reaction of cyclopropylmethylstannane 1 and diethyl iodomethylphosphonate (2a) in a nitrogen-flowing flask (Table 1). First, we examined a coupling reaction using InBr\(_3\) in toluene at room temperature, which are considered the optimal conditions for radical coupling with α-iodocarbonyl compounds,\(^8\) but the yield was low (entry 1). Raising the reaction temperature improved the yield to 48% (entry 2). When hexane was used instead of toluene, the best results were obtained, furnishing 3a in a 74% yield (entry 3).\(^12,\)\(^13\) Unfortunately, a catalytic amount of InBr\(_3\) gave only a trace amount of 3a (entry 4). The reactions in 1,2-dichloroethane or acetonitrile decreased the yields (entries 5 and 6). The use of InI\(_3\) instead of InBr\(_3\) resulted in a lower yield (entry 7). In the reaction with alkyl chlorides, gallium trichloride was a good catalyst,\(^14\) but it was less effective for this coupling (entry 8). Other group 13
Lewis acids (BF₃•OEt₂ and AlCl₃) were not effective at all (entries 9 and 10). The loading of TEMPO (2,2,6,6-tetramethylpiperidine-1-oxyl) as a radical inhibitor completely suppressed the coupling (entry 11). When the reaction was carried out under severely restricted conditions — free of oxygen — in a nitrogen-filled glovebox (O₂ < 0.1 ppm), the coupling was significantly depressed (entry 12). These results indicate that this reaction proceeded in a radical mechanism and was promoted by a considerably small amount of O₂. It is assumed that the in situ-generated butenylindium species acts as a radical initiator as well as an alkylating reagent.

Table 1. Reaction of Cyclopropylmethylstannane 1 with Diethyl Iodomethylphosphonate (2a)*

<table>
<thead>
<tr>
<th>entry</th>
<th>additive</th>
<th>solvent</th>
<th>yield/%</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>InBr₃</td>
<td>toluene</td>
<td>18</td>
</tr>
<tr>
<td>2d</td>
<td>InBr₃</td>
<td>toluene</td>
<td>48</td>
</tr>
<tr>
<td>3</td>
<td>InBr₃</td>
<td>hexane</td>
<td>74</td>
</tr>
<tr>
<td>4e</td>
<td>InBr₃</td>
<td>hexane</td>
<td><5</td>
</tr>
<tr>
<td>5</td>
<td>InBr₃</td>
<td>ClCH₂CH₂Cl</td>
<td>57</td>
</tr>
<tr>
<td>6</td>
<td>InBr₃</td>
<td>MeCN</td>
<td>15</td>
</tr>
<tr>
<td>7</td>
<td>InI₃</td>
<td>hexane</td>
<td>57</td>
</tr>
<tr>
<td>8</td>
<td>GaCl₃</td>
<td>hexane</td>
<td>28</td>
</tr>
<tr>
<td>9</td>
<td>BF₃•OEt₂</td>
<td>hexane</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>AlCl₃</td>
<td>hexane</td>
<td>0</td>
</tr>
<tr>
<td>11f</td>
<td>InBr₃</td>
<td>hexane</td>
<td>0</td>
</tr>
<tr>
<td>12g</td>
<td>InBr₃</td>
<td>hexane</td>
<td>8</td>
</tr>
</tbody>
</table>

*Unless otherwise noted, reactions were carried out in a nitrogen-flowing flask using 1.6 mmol of 1, 0.8 mmol of 2a, and 0.8 mmol of additive. b Determined by ¹H NMR. c At room temperature. d At 80 °C. e InBr₃ (0.08 mmol) was used. f TEMPO (0.08 mmol) was added. g In a nitrogen-filled glovebox (O₂ < 0.1 ppm).

Oshima et al. have reported a radical reaction of α-halo carbonyl compounds with the butenylindium species prepared by transmetalation between 3-butenylmagnesium bromide (4) and indium halide.¹⁵ However, application to the coupling with 2a failed, and most of the unreacted 2a was recovered (Scheme 2). The low yield was probably caused by the magnesium salt (MgBr₂) generated in situ. In fact, the addition of MgBr₂ to the optimized tin/indium system (Table 1, Entry 3) decreased the yield from 74 to 8%.¹⁶ The preparation of a butenylindium species by tin/indium transmetalation, where the by-product Bu₃SnBr is inert to the reaction system due to its low Lewis acidity, is essential for successful coupling with α-iodo phosphonates.
Scheme 2. Reaction of Butenylindium Species Prepared by Grignard Reagent and InBr₃

<table>
<thead>
<tr>
<th>Entry</th>
<th>Iodophosphorus Compound</th>
<th>Product</th>
<th>Yield/ %ᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R' = H 2a</td>
<td>3a</td>
<td>74 (60)</td>
</tr>
<tr>
<td>2</td>
<td>Me 2b</td>
<td>3b</td>
<td>68 (50)</td>
</tr>
<tr>
<td>3</td>
<td>Et 2c</td>
<td>3c</td>
<td>57 (32)</td>
</tr>
<tr>
<td>4</td>
<td>2d</td>
<td>3d</td>
<td>35 (22)</td>
</tr>
<tr>
<td>5</td>
<td>2e</td>
<td>3e</td>
<td>78 (68)</td>
</tr>
<tr>
<td>6</td>
<td>2f</td>
<td>3f</td>
<td>67 (58)</td>
</tr>
<tr>
<td>7</td>
<td>2g</td>
<td>3g</td>
<td>75 (52)</td>
</tr>
<tr>
<td>8</td>
<td>2h</td>
<td>3h</td>
<td>31 (21)</td>
</tr>
</tbody>
</table>

ᵃ All entries were carried out in a nitrogen-flowing flask using 1.6 mmol of 1, 0.8 mmol of 2, and 0.8 mmol of InBr₃.
b Determined by ¹H NMR. Values in parentheses indicate isolated yields after column chromatography.

With the optimized system in hand, couplings with various types of iodo phosphorus compounds succeeded (Table 2)¹⁷. Methyl- and ethyl-substituted secondary iodo phosphonates 2b and 2c effectively gave the corresponding products 3b and 3c, respectively (Entries 2 and 3). In the case of iodo phosphonate 2d, which contains an olefin moiety, the coupling reaction selectively proceeded at the iodo site to afford the desired product 3d (Entry 4). The coupling with butenylindium overcame the difficulty of the selective synthesis of 3d, for instance, by a sequential allylation/cyclopropanation route to 2d. This coupling reaction was hardly affected by the alkoxy groups on the phosphorus atom. For example,
стерически demanding isopropyl-substituted phosphonate 2e furnished the product 3e in high yield (Entry 5). In addition, phosphonate 3f, bearing a cyclic alkoxy moiety, was also obtained (Entry 6). Iodo phosphane oxide 2g and iodo phosphonothioate 2h were both viable reagents (Entries 7 and 8).

Interestingly, cyclopropylmethylation occurred even with β-iodo phosphonate 5 to give the corresponding product 6, although a radical initiator was required as shown in Scheme 3.18,19 This result expands the scope of the synthesis of cyclopropane-containing phosphorus compounds. When 1-iodoundecane was used instead of 5, no product was obtained. This result indicates that the phosphonate moiety of 5 is involved in the stabilization of the β-radical.

Scheme 3. Cyclopropylmethylation of β-Iodophosphonate 5

![Scheme 3](image)

In order to investigate the transmetalation step under optimal conditions, a mixture of 1 and InBr3 (1/InBr3 = 2:1) in hexane was monitored by NMR spectroscopy (Scheme 4, see the Experimental Section). When the transmetalation was carried out at room temperature for 30min, small signals corresponding to dibutenylindium bromide (7) appeared as a single product, and most of 1 did not react.20 This result strongly indicates a predominant formation of the dibutenylindium species over the monobutenylindium species. Meanwhile, transmetalation at 70 °C was completed within 30 min to give 7 quantitatively. Dibutenylindium 7 was stable enough under the reaction conditions (70 °C), and with no decomposition it should contribute to the radical coupling.

Scheme 4. Transmetalation between 1 and InBr3

![Scheme 4](image)

A plausible reaction mechanism is shown in Scheme 5. Transmetalation between (cyclopropylmethyl)stannane 1 and InBr3 affords dibutenylindium bromide (7). In the radical initiation step, a small amount of radical species 8 (structure not fully determined) generated from 7 with O2 abstracts an iodo radical from iodo phosphonate 2a to produce the α-phosphonyl radical 9.21,22 The fast trapping of 9 by dibutenylindium compound 7 is followed by intramolecular cyclization to give cyclopropylmethylated product 3a along with the eliminated indium radical. This indium radical reacts with 2a to regenerate the phosphonyl radical 9, which completes the radical chain reaction. Decomposition of the indium species generated in the final step may be the reason for the catalytic cycle
not being achieved (see Table 1, Entry 4). In addition, the effective trapping of the unstable radical requires the participation of the reactive dibutenylindium species, but not of the monobutenyl species.

Scheme 5. Plausible Reaction Mechanism

For this radical coupling reaction, we successfully applied a photochemical method (Scheme 6). UV irradiation of 1 with iodo phosphonate 2a at room temperature afforded 3a in a 62% yield, and the coupling reaction was completed within 4 h. Isopropyl-substituted 3e and cyclic phosphonate 3f were also obtained in satisfactory yields in a shorter reaction period compared with reactions under heating conditions.

Scheme 6. Photochemical Cyclopropylmethylation

Finally, the synthetic use of cyclopropylmethylated phosphonate 3a as a precursor of functionalized olefins is demonstrated in Scheme 7. Phosphonate 3a was treated with Lawesson’s reagent, and the resulting phosphonothioate 3h underwent Horner–Wadsworth–Emmons-type reactions. The deprotonation of 3h with sBuLi was followed by a reaction with benzophenone to produce trisubstituted alkene 10 without cleavage of the cyclopropyl ring. The aliphatic ketone cyclohexanone was also converted into the corresponding alkene 11 in 75% yield. This is a useful and reliable method for the
synthesis of alkenes bearing a cyclopropane moiety, which can be easily transformed to further functionalized compounds.

Scheme 7. Synthesis of Alkenes by HWE-type Reaction

\[
\begin{align*}
\text{Ph} & \quad 10 \quad 67\% \\
\text{EtO} & \quad 11 \quad 75\% \\
\end{align*}
\]

\[3a \xrightarrow{a.} 3h\]

Reaction conditions: (a) Lawesson’s reagent, toluene, reflux. (b) s-BuLi, PhCOPh, THF, -78 °C to rt. (c) s-BuLi, cyclohexanone, THF, -78 °C to rt.

1-3-3. Conclusion

We have developed a radical coupling reaction of the butenylindium species with α- or β-iodophosphorus compounds to give the corresponding cyclopropylmethylated products, which are an important class of functionalized compounds for pharmaceutics, biological chemistry, and organic synthesis. To promote this radical coupling, tin/indium transmetalation is indispensable for the preparation of the butenylindium species.

1-3-4. Experimental Section

General. New compounds were characterized by 1H, 13C, 13C off-resonance techniques, HMQC, HMBC, IR, MS, HRMS, and elemental analysis. 1H (400 MHz) and 13C NMR (100 MHz) spectra were obtained with TMS as internal standard. 119Sn (150 MHz) spectra were obtained with Me$_4$Sn as external standard. 31P (160 MHz) spectra were obtained with 85 wt% D$_3$PO$_4$ in D$_2$O as external standard. IR spectra were recorded as thin films or solids in KBr pellets. All reactions were carried out under nitrogen. Column chromatography was performed on silica gel (MERK C60 or Fuji Silysia FL100DX). Bulb-to-Bulb distillation (Kugelrohr) was accomplished at the oven temperature and pressure indicated. Yields were determined by 1H NMR using internal standard.

Materials. Dehydrated hexane, toluene, acetonitrile, and tetrahydrofuran were purchased and used as obtained. 1,2-Dichloroethane was distilled from P$_2$O$_5$. The additives examined in Table 1 were also purchased from commercial sources. Cyclopropylmethylstannane 8,14 was prepared by known method and this compound was reported. Starting iodophosphorus compounds 2b,27 2e,6b 2g,6b and 5b were prepared by known methods and these compounds were reported. Iodophosphorus compounds 2c,27 2d,27 2f,27 and 2h,28 were prepared by known methods. Diethyl iodomethylphosphonate (2a), benzophenone, and cyclohexanone are commercially available. All other reagents were commercially available.
Preparation of cyclopropylmethyltributylstannane (1)\(^{31}\)

To a flask containing magnesium (230 mmol) in THF (150 mL) was added Bu\(_3\)SnCl (200 mmol). The mixture was cooled to 0 °C, and then allyl chloride (230 mmol) was added. The mixture was irradiated with ultrasound at 0 °C for 1 h and stirred. After 2 h, the reaction was quenched by water (200 mL), and then organic layer was separated. Hexane (200 mL) was added, and the organic layer was washed using water (100 mL), saturated NaCl aq (100 mL), and NH\(_4\)F aq (10%, 100 mL). After drying with MgSO\(_4\), the solvent was evaporated and the residue was purified by column chromatography [solvent; hexane] on silica gel to give the product (57.2 g, 86% yield).

To a solution of tributylallylstannane (30 mmol) in diethyl ether (40 mL), diethylzinc (1.0 M in hexane, 43 mL) was added. To the mixture was added the solution of diiodomethane (90 mmol) in diethylether (30 mL) dropwise within 1 h. The reaction mixture was stirred for 4 h at room temperature, and then quenched by saturated NH\(_4\)Cl aq (100 mL). Hexane (200 mL) was added, and the organic layer was washed using saturated NH\(_4\)Cl aq (100 mL), saturated NaCl aq (100 mL), and NH\(_4\)F aq (10%, 100 mL). After drying with MgSO\(_4\), the solvent was evaporated and the residue was purified by column chromatography [solvent; hexane] to give the product (9.63 g, 85% yield, 84% purity (a small portion was analyzed by \(^1\)H NMR using an internal standard)), which was used in the cyclopropylmethylation reaction without further purification. The analytical data for this compound matched that previously reported.

Diethyl (1-iodoethyl)phosphonate (2b)\(^{27}\)

To the mixture of diisopropylamine (25.2 mmol, 2.56 g) and THF (40 mL) at -78 °C was slowly added n-BuLi (1.6 M in hexane, 15.2 mL). After stirring for 5 min, diethyl ethylphosphonate (10.0 mmol, 1.67 g) in THF (20 mL) was added over 15 min and Me\(_3\)SiCl (11 mmol, 1.19 g) in THF (20 mL) was rapidly added. The mixture was allowed to warm slowly to room temperature, which was stirred for 15 min and cooled again to -78 °C. Iodine (2.80 g, 11 mmol) in THF (20 mL) was then added slowly to the mixture and left to warm to 0 °C. After stirring for 15 min, EtOLi (1.0 M in ethanol, 20 mL) was added to the reaction mixture, which was quenched by HCl aq (1.0 M, 20 mL). The reaction mixture was extracted with ethyl acetate (3 x 30 mL) and the collected organic layer was washed with brine (2 x 30 mL) and water (2 x 30 mL), then dried (MgSO\(_4\)). The solvent was evaporated and the residue was purified by column chromatography [hexane/ethyl acetate = 70/30], giving the pure product as a yellow liquid (1.60 g, 54%). The analytical data for this compound matched that previously reported.

Diethyl (1-iodopropyl)phosphonate (2c)

To the mixture of diisopropylamine (26 mmol, 2.62 g) and THF (40 mL) at -78 °C was slowly added n-BuLi (1.6 M in hexane, 15 mL). After stirring for 5 min, diethyl propylphosphonate (9.6 mmol, 1.79 g) in THF (20 mL) was added over 15 min and
Me₃SiCl (12.8 mmol, 1.40 g) in THF (20 mL) was rapidly added. The mixture was allowed to warm slowly to room temperature, which was stirred for 15 min and cooled again to -78 °C. Iodine (2.80 g, 11 mmol) in THF (20 mL) was then added slowly to the mixture and left to warm to 0 °C. After stirring for 15 min, EtOLi (1.0 M in ethanol, 20 mL) was added to the reaction mixture, which was quenched by HCl aq (1.0 M, 20 mL). The reaction mixture was extracted with ethyl acetate (3 x 30 mL) and the collected organic layer was washed with brine (2 x 30 mL) and water (2 x 30 mL), then dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography [hexane/ethyl acetate = 70/30], giving the pure product as a yellow liquid (2.5 g, 82%). IR (neat): 1254 (P-O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 5.05 (d, J = 10 Hz, 1H, PCHICO₂); 1.90 (m, 1H, PCHICH²), 1.36 (t, J = 7.0 Hz, 6H, CH₃CH₂O x 2), 1.10 (t, J = 7.0 Hz, 3H, PCHCH₂CH₃); ¹³C NMR: (100 MHz, CDCl₃) 63.5 (t, JCP = 6.5 Hz), 63.4 (t, JCP = 6.6 Hz), 20.3 (d, JC = 154 Hz), 16.3 (q, JCP = 5.8 Hz), 15.0 (q, JCP = 13.2 Hz); ³¹P NMR: (160 MHz, CDCl₃, external standard = 85 wt% D₃PO₄ in D₂O) 36.4; MS: (EI, 70 eV) m/z 306 (M⁺, 15), 179 (M⁺ – I, 65), 151 (27), 123 (100), 109 (52), 81 (31); HRMS: (EI, 70 eV) calcd for (C₇H₁₀O₃P) 303.9882 (M⁺) found m/z 303.9885.

Preparation of diethyl (1-iodopent-4-enyl)phosphonate (2d)

The mixture of 5-bromo-1-pentene (29 mmol, 4.32 g) and P(OEt)₃ (31 mmol, 5.17 g) was heated to 150 °C and stirred for 21 h. The volatiles were evaporated and the residue was purified by distillation under reduced pressure to give the product s2 (2.86 g, 48%). bp: 120 °C /0.20 mmHg. The analytical data for this compound matched that previously reported.⁶

To the mixture of diisopropylamine (27 mmol, 2.75 g) and THF (40 mL) at -78 °C was slowly added n-BuLi (1.6 M in hexane, 16 mL). After stirring for 5 min, diethyl pent-4-enylphosphonate s2 (10.4 mmol, 2.16 g) in THF (20 mL) was added over 15 min and Me₃SiCl (12.8 mmol, 1.40 g) in THF (20 mL) was rapidly added. The mixture was allowed to warm slowly to room temperature, which was stirred for 30 min and cooled again to -78 °C. Iodine (2.80 g, 11 mmol) in THF (20 mL) was then added slowly to the mixture and left to warm to 0 °C. After stirring for 1 h, EtOLi (1.0 M in ethanol, 20 mL) was added to the reaction mixture, which was quenched by sodium thiosulfate aq (20 mL). The reaction mixture was extracted with ethyl acetate (3 x 30 mL) and the collected organic layer was washed with brine (2 x 30 mL) and water (2 x 30 mL), then dried (MgSO₄). The solvent was evaporated and the residue was purified by column chromatography [hexane/ethyl acetate = 50/50]. Further purification was conducted by distillation under reduced pressure to give the product as a yellow liquid (2.09 g, 63%). bp: 110 °C /0.20 mmHg; IR (neat): 1254 (P-O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 5.73 (m, 1H, HC=CH₂), 5.13-5.05 (d, J = 17 Hz, 1H, HC=CHH), 5.02-5.00 (d, J = 10 Hz, 1H, HC=CHH), 4.24-4.16 (m, 4H, CH₂OP x 2), 3.77 (ddd, J = 10, 5 Hz, ²JPH = 5
Preparation of diisopropyl (1-iodoethyl)phosphonate (2e)30

To a mixture of diisopropyl phosphite (3.32 g, 20.0 mmol) and paraformaldehyde (0.65 g, 22 mmol) was added triethylamine (0.23 g, 2.3 mmol). The mixture was heated to 110 °C for 4 h and evaporated to give the product (3.68 g, 94%).31 The analytical data for this compound matched that previously reported.30

\[
\text{O} \begin{array}{c}
\text{P} \\
\text{OH}
\end{array} \quad \text{O} \begin{array}{c}
\text{P} \\
\text{OTs}
\end{array}
\]

To a solution of diisopropyl hydroxymethanephosphonate (3.68 g, 18.8 mmol) in pyridine (10 mL) was added \textit{p}-toluenesulfonyl chloride (4.13 g, 20.0 mmol) at 0 °C over 1 h. The mixture was allowed to warm to room temperature and stirred for 10 h, which was quenched by HCl aq (1M, 50 mL) and extracted with ethyl acetate (3 x 30 mL). The collected organic layer was dried (MgSO\textsubscript{4}) and the solvent was evaporated to give the product (4.99 g, 76%). The analytical data for this compound matched that previously reported.30

\[
\text{O} \begin{array}{c}
\text{P} \\
\text{I}
\end{array} \quad \text{O} \begin{array}{c}
\text{P} \\
\text{I}
\end{array}
\]

To a solution of diisopropyl \{(\textit{p}-toluenesulfonyl)oxy\}methanephosphonate (4.99 g, 14.2 mmol) in acetone (60 mL) was added sodium iodide (8.65 g, 57.7 mmol). The mixture was heated to 75 °C for 24 h and then quenched by saturated sodium thiosulfate aq (100 mL), which was extracted with ethyl acetate (3 x 100 mL). The collected organic layer was dried (MgSO\textsubscript{4}) and evaporated. The crude product was purified by distillation under reduced pressure to give the pure product as a colorless liquid (2.6 g, 59%). The analytical data for this compound matched that previously reported.

Preparation of 2-(1-iodoethyl)-5,5-dimethyl-1,3,2-dioxaphosphorinan-2-one (2f)

The mixture of ethyl phosphinic dichloride (19.9 mmol, 2.93 g) and 2,2-dimethyl-1,3-propanediol (20.4 mmol, 2.12 g) was stirred for 15 min at room temperature and heated at 50 °C for 1 h. Then saturated NaHCO\textsubscript{3} aq (100 mL) was added to the mixture, which was extracted with dichloromethane (3 x 100 mL). The collected organic layer was dried (MgSO\textsubscript{4}) and the solvent was evaporated to give the product as a white solid (2.95 g, 83%).32 The analytical data for this compound matched that previously reported.32
To a solution of sec-BuLi (1.0 M in hexane, 10 mL) in THF (60 mL) was slowly added 2-ethyl-5,5-dimethyl-1,3,2-dioxaphosphorinane-2-one (1.76 g, 10 mmol) in THF (30 mL). After 30 min, Me$_2$SiCl (2.72 g, 11.3 mmol) in THF (20 mL) was rapidly added. Then, the mixture was allowed to warm slowly to room temperature, which was stirred for 30 min and cooled again to -78 °C. Iodine (2.80 g, 11 mmol) in THF (20 mL) was then added slowly to the mixture and left to warm to 0 °C. After stirring for 1 h, EtOLi (1.0 M in ethanol, 20 mL) was added to the reaction mixture, which was quenched by saturated sodium thiosulfate aq (20 mL). The reaction mixture was extracted with ethyl acetate (3 x 30 mL) and the collected organic layer was washed with brine (2 x 30 mL) and water (2 x 30 mL), then dried (MgSO$_4$). The solvent was evaporated and the residue was washed with diethyl ether, which gave the pure product as a white solid (0.59 g, 20%). mp: 200-202 °C; IR (KBr): 1265 (P=O) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 4.28-4.24 (m, 2H, two protons of 4-H and/or 6-H), 4.03-3.94 (m, 3H, two protons of 4-H and/or 6-H and PCH), 2.06 (dd, 3H, $J = 7.7$ Hz, 3J$_{PH} = 17$ Hz, PCHCH$_3$), 1.15 (s, 3H, 5-Me3), 1.07 (s, 3H, 5-Me3); 13C NMR: (100 MHz, CDCl$_3$) 79.5 (t, 4-C or 6-C, d by 2J$_{CP} = 5.6$ Hz), 76.8 (t, 4-C or 6-C, d by 2J$_{CP} = 6.6$ Hz), 33.1 (s, 5-C, d by 3J$_{CP} = 6.5$ Hz), 22.0 (q, 5-Me), 21.8 (q, PCHCH$_3$, d by 2J$_{CP} = 4.1$ Hz), 21.7 (q, 5-Me), 4.6 (d, PCH, d by 1J$_{CP} = 153$ Hz); 31P NMR: (160 MHz, CDCl$_3$, external standard = 85 wt% D$_3$PO$_4$ in D$_2$O) 32.7; MS: (EI, 70 eV) m/z 304 (M$^+$, 39), 177 (M$^+$ – 1, 100), 149 (M$^+$ – CHICH$_3$, 48), 109 (52), 69 (91), 56 (26), 41 (38); HRMS: (EI, 70 eV) calcd for (C$_{14}$H$_{14}$O$_3$P)$_2$ 303.9725 (M$^+$) found m/z 303.9712; Analysis: C$_{14}$H$_{14}$O$_3$P (304.06) Calcd: C, 27.65; H, 4.64; I, 41.74; O, 15.79; P, 10.19 Found: C, 27.82; H, 4.35; I, 41.46.

Preparation of diphenyl iodomethyl phosphine oxide (2g)

To a mixture of HCl (37.8 mL) and aqueous formaldehyde (37.8 mL, 37 wt%) was added diphenyl chlorophosphine (21.0 mmol, 4.61 g). The reaction mixture was heated to 100 °C for 18 h, which was neutralized with aqueous NaHCO$_3$, and the aqueous layer was extracted with CH$_2$Cl$_2$ (3 x 30 mL). The collected organic layer was dried (MgSO$_4$) and the solvent was evaporated to give the crude product, which was washed with hexane to obtain the pure product as a white solid (3.50 g, 71%).35 The analytical data for this compound matched that previously reported.35

To a solution of diphenyl (hydroxymethyl)phosphine oxide (14.4 mmol, 3.35 g) in CH$_2$Cl$_2$ (50 mL) was slowly added triethylamine (16.6 mmol, 1.68 g) at 0 °C. The reaction mixture was stirred for 30 min at room temperature and cooled again to 0 °C. Then, p-tosyl chloride (16.0 mmol, 3.30 g) was added. The reaction mixture was kept at 0 °C for 30 min and stirred for 4 h at room temperature, which was quenched by water (50 mL) and extracted with CH$_2$Cl$_2$ (3 x 30 mL). The collected organic layer was dried (MgSO$_4$) and the solvent was evaporated. The crude product was recrystallized (CH$_2$Cl$_2$/Et$_2$O, 1:9) to give the pure product as a white solid (3.93 g, 71%).36 The analytical data for this compound matched that previously reported.36

48
To a solution of diphenylphosphinoymethyl p-toluenesulfonate (10.0 mmol, 3.86 g) in acetone (200 mL) was added sodium iodide (40.0 mmol, 5.99 g). The mixture was heated to 75 °C for 24 h and then quenched by saturated sodium thiosulfate aq (100 mL), which was extracted with ethyl acetate (3 x 100 mL). The collected organic layer was dried (MgSO₄) and the solvent was evaporated. The crude product was washed with hexane to give the pure product as a white solid (3.0 g, 88%). The analytical data for this compound matched that previously reported.

O,O’-Diethyl iodomethylphosphonothioate (2h)

To a mixture of diethyl iodomethylphosphonate (2.99 mmol, 0.832 g) and toluene (15 mL) was added Lawesson’s reagent (1.75 mmol, 0.707 g), and the reaction mixture was stirred at 120 °C for 8 h. The solvent was evaporated to give the crude product. It was purified by distillation under reduced pressure to give the product as a colorless liquid (0.70 g, 80%). bp: 100 °C /0.14 mmHg; IR (neat): 1022 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.25-4.09 (m, 4H, CH₂OP x 2), 3.34 (d, 2J₋₋₋P = 7.5 Hz, 2H, PCH₂), 1.35 (t, 6H, CH₃ x 2); ¹³C NMR: (100 MHz, CDCl₃) 63.9 (t, CΗ₂OP, d by 2J₋₋₋C = 7 Hz), 16.0 (q, CH₃, d by 3J₋₋₋C = 6 Hz), -3.8 (t, PCH₂, d by 1J₋₋₋C = 119 Hz); ³¹P NMR: (160 MHz, CDCl₃, external standard = 85 wt% D₃PO₄ in D₂O) 99.2; MS: (EI, 70 eV) m/z 294 (M⁺, 17), 167 ((CH₃CH₂O)₂PSCH₂, 100), 111 (41); HRMS: (EI, 70 eV) calcd for (C₅H₁₁O₂PSI) 293.9340 (M⁺) found m/z 293.9337; Analysis: C₅H₁₂O₂PSI (294.09) Calcd: C, 20.42; H 4.11 Found: C, 20.48; H, 3.93.

Diethyl (2-iodoethyl)phosphonate (5)^(ab)

To a solution of diethyl (2-bromoethyl)phosphonate (2.45 g, 10.0 mmol) in acetone (160 mL) was added sodium iodide (6.01 g, 40.1 mmol). The mixture was heated to 75 °C for 24 h and then quenched by saturated sodium thiosulfate aq (100 mL), which was extracted with ethyl acetate (3 x 100 mL). The collected organic layer was dried (MgSO₄) and evaporated to give the product as a colorless liquid (2.86 g, 98%). The analytical data for this compound matched that previously reported.

Typical procedure for the reaction of cyclopropylmethylstannane 1 and diethyl iodomethylphosphonate 2a (Table 1, entry 3). To a suspended solution of InBr₃ (0.8 mmol) and hexane (1 mL) was added cyclopropylmethylstannane 1 (1.6 mmol) and the mixture was stirred for 30 min at room temperature. Iodophosphonate 2a (0.8 mmol) was added with heating at 70 °C. After stirring for 24 h, NH₄F aq (10%, 20 mL) was added to the reaction mixture, which was extracted with diethyl ether (3 x 20 mL). The collected organic layers were dried (MgSO₄). The evaporation of the ether solution gave the crude product which was analyzed by NMR. The detail of further purification was described in Product Data.

Experimental procedure for the reaction of cyclopropylmethylstannane 1 and diethyl iodomethylphosphonate 2a under the oxygen free condition (Table 1, entry 12). A side-necked
sealable tube was brought into the nitrogen-filled glove box, along with a screw-cap. In the glovebox, cyclopropylmethylstannane 1 (1.6 mmol) was added to a suspended solution of InBr₃ (0.8 mmol) and hexane (1 mL), and the mixture was stirred at room temperature. After stirring for 30 min, iodophosphonate 2a (0.8 mmol) was added to the reaction mixture. The reaction tube was sealed with a screw-cap. Outside the glovebox, the sealed reaction tube was heated to 70 °C. After stirring for 24 h, NH₄F aq (10%, 20 mL) was added to the reaction mixture, which was extracted with diethyl ether (3 x 20 mL). The collected organic layer was dried (MgSO₄). The evaporation of the ether solution gave the crude product which was analyzed by NMR.

Experimental procedure for the reaction of (1-methylcyclopropyl)methyltributylstannane and diethyl iodomethylphosphonate 2a. According to the typical procedure, InBr₃ (0.8 mmol, 0.284 g), (1-methylcyclopropyl)methyltributylstannane² (91% purity) (1.6 mmol, 0.630 g), and diethyl iodomethylphosphonate 2a (0.8 mmol, 0.228 g) gave the crude product which was analyzed by NMR as shown below.

![Experimental procedure diagram]

Experimental procedure for the reaction of butenylindium species prepared by Grignard reagent and InBr₃ (Scheme 2). Butenylmagnesium bromide (1.0 M in THF) was prepared by mixing magnesium (4 mmol) and 4-bromo-1-butene (4 mmol) in THF (4 mL) at room temperature for 30 min. To a solution of InBr₃ (1.6 mmol) and THF (1 mL) was added butenylmagnesium bromide (4) (1.6 mmol) and the mixture was stirred for 30 min at room temperature. Iodophosphonate 2a (0.8 mmol) was added with heating at 66 °C. After stirring for 24 h, water was added to the reaction mixture, which was extracted with diethyl ether (3 x 20 mL). The collected organic layer was dried (MgSO₄). The evaporation of the ether solution gave the crude product which was analyzed by NMR.

NMR study of transmetalation between cyclopropylmethylstannane 1 and InBr₃ (Scheme 4). The mixture of cyclopropylmethylstannane 1 and InBr₃ (the ratio of 1/InBr₃ = 2:1) was prepared in hexane in nitrogen-flowing flask. After mixing at room temperature or 70 °C, the mixture was transferred into NMR tube (benzene-d₆ as an external standard), and the resulting spectra is shown below (Figure S1). The spectra were referenced against n-hexane, 0.89 ppm (t, CH₃) for ¹H NMR spectroscopy, and 14.32 ppm (CH₃) for ¹³C NMR spectroscopy.
The NMR spectra of 7 after replacing hexane with toluene-d_8 matched that previously reported. When the transmetalation was carried out at 70 °C, 1 was completely consumed within 30 min and 7 was produced in 96% yield (determined by NMR spectroscopy using bromoform as an internal standard) (Very small amount of monobutenylindium dibromide was detected.).

Experimental procedure for the reaction of cyclopropylmethylstannane 1 and diethyl iodomethylphosphonate 2a under UV irradiation condition (Scheme 6). To a suspended solution of InBr$_3$ (0.8 mmol) and hexane (1 mL) was added cyclopropylmethylstannane 1 (1.6 mmol) and the
mixture was stirred for 2 h at room temperature. Diethyl iodomethylphosphonate 2a (0.8 mmol) was added to the mixture and placed at a distance of ~10 cm from a 300 W high-pressure mercury lamp for 4 h. NH₄F aq (10%, 20 mL) was then added to the reaction mixture, which was extracted with diethyl ether (3 x 20 mL). The collected organic layer was dried (MgSO₄) and evaporated to give the crude product which was analyzed by NMR. Purification by column chromatography [hexane/ethyl acetate = 70/30] gave the product 3a.

Typical procedure for the synthesis of alkene by Horner-Wadsworth-Emmons (HWE)-type reaction (Scheme 7). To a solution of O,O'-diethyl (2-cyclopropylethyl)phosphonothioate 3h (0.23 mmol) in THF (2 mL) was slowly added s-BuLi (1.0 M in hexane, 0.30 mL) at -78 °C and the mixture was stirred for 15 min. Benzophenone (0.24 mmol) in THF (2 mL) was slowly added to the mixture, which was allowed to warm to room temperature and stirred for 18 h. Then, saturated NH₄Cl aq (10 mL) was added and the reaction mixture was extracted with diethyl ether (3 x 10 mL). The reaction mixture was dried (MgSO₄) and the solvent was evaporated to give the crude product, which was purified by column chromatography [hexane (200 mL)], giving the product 10.

Preparation of O,O'-Diethyl (2-cyclopropylethyl)phosphonothioate (3h) with Lawesson’s reagent (Scheme 7).

To a mixture of diethyl (2-cyclopropylethyl)phosphonate 3a (0.66 mmol, 0.136 g) and toluene (3 mL) was added Lawesson’s reagent (0.39 mmol, 0.157 g), and the reaction mixture was stirred at 125 °C for 4 h. The solvent was evaporated to give the crude product. It was purified by distillation under reduced pressure to give the product 3h as a colorless liquid (0.077 g, 53%).

Product Data.

Diethyl 2-cyclopropylethylphosphonate (3a)

According to the typical procedure, InBr₃ (0.80 mmol, 0.283 g), cyclopropymethylstannane 1 (84% purity) (1.55 mmol, 0.637 g), and diethyl iodomethylphosphonate 2a (0.80 mmol, 0.224 g) gave the crude product. Purification by flash column chromatography [hexane/ethyl acetate = 70/30] gave the product 3a (0.100 g, 60%). Further purification was performed by distillation under reduced pressure. bp: 90 °C/0.2 mmHg; IR (neat): 1250 (P=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.16-4.02 (m, 4H, CH₂OP x 2), 1.89-1.80 (m including Jᵢₓᵧ = 18 Hz, 2H, PCH₂), 1.54-1.45 (m, 2H, PCH₂CH₂), 1.32 (t, J = 7.2 Hz, 6H, CH₃ x 2), 0.81-0.71 (m, 1H, PCH₂CH₂CH₂), 0.47-0.42 (m, 2H), 0.08-0.05 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) 61.2 (t, CH₂OP, d by Jᵧₓ = 7 Hz), 27.5 (t, PCH₂CH₂, d by Jᵧₓ = 7 Hz), 25.5 (t, PCH₂, d by Jᵧₓ = 7 Hz), 16.3 (q, CH₃, d by Jᵧₓ = 6 Hz), 11.6 (d, PCH₂CH₂CH₂, d by Jᵧₓ = 7 Hz), 4.4 (t, two methylene groups in the cyclopropyl ring); ³¹P NMR: (160 MHz, CDCl₃, external standard = 85 wt% D₂PO₄ in D₂O) 46.8; MS: (EI, 70 eV) m/z 206 (M⁺, 10), 191 (M⁺ - CH₃, 60), 179 (32), 178 (M⁺ – C₂H₄,
Purification by flash column chromatography [hexane/ethyl acetate = 50/50] gave the product 3b (0.082 g, 50%). Further purification was performed by distillation under reduced pressure to give the product 3b as a colorless liquid (0.050 g, 31 %). bp: 75 °C /0.22 mmHg; IR (neat): 1238 (P=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.14-4.05 (m, 4H, CH₂OP x 2), 2.04-1.88 (m, 2H, PCH₂), 1.62-1.52 (m, 1H, PCH₂CHH), 1.47-1.35 (m, 1H, PCHCH₂), 1.32 (t, 6H, CH₃CH₂OP x 2), 1.25 (dd, J = 18 Hz, J = 7.0 Hz, 3H, PCHCH₃), 0.85-0.75 (m, 1H, PCHCH₂CH), 0.55-0.38 (m, 2H), 0.15- -0.01 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) 61.4 (t, (CH₂CH₂O)₃P), d by ²JCP = 6.6 Hz), 61.3 (t, (CH₂CH₂O)₃P), d by ²JCP = 6.6 Hz), 35.1 (d, PCHCH₂, d by ²JCP = 3.3 Hz), 31.6 (d, PCH₂, d by ¹JCP = 141 Hz), 16.5 (q, CH₃CH₂OP, d by ³JCP = 5.7 Hz), 13.3 (q, PCHCH₂, d by ²JCP = 5.7 Hz), 9.2 (d, PCHCH₂CH, d by ³JCP = 16 Hz), 5.7 (t, two methylene groups in the cyclopropyl ring), 3.8 (t, two methylene groups in the cyclopropyl ring); ³¹P NMR: (160 MHz, CDCl₃), external standard = 85 wt% D₃PO₄ in D₂O) 49.4; MS: (EI, 70 eV) m/z 220 (M⁺, 47), 205 (M⁺-CH₃, 43), 192 (M⁺-CH₂CH, 25), 179 (M⁺-C₃H₅, 30), 177 (27), 166 (68), 165 (M⁺-CH₃CH₂H₃, 35), 152 (28), 149 (46), 147 (25), 139 (50), 138 ((CH₂CH₂O)₂PO⁺, 96), 123 (29), 111 (100), 110 (37), 109 (60), 82 (M⁺-(CH₂CH₂O)₂PO⁺, 54), 81 (36), 67 (31), 65 (24), 55 (CH₂CH₂H₃, 40), 41 (C₃H₅, 24); HRMS: (EI, 70 eV) calced for (C₁₀H₂₁O₃P): 220.1228 (M⁺) found m/z 220.1217.

Purification by flash column chromatography [hexane/ethyl acetate = 70/30] gave the product 3c (0.060 g, 32%). Further purification was performed by distillation under reduced pressure to give the product 3c as a colorless liquid (0.040 g, 21 %). bp: 85 °C /0.2 mmHg; IR (neat): 1238 (P=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.16-4.03 (m, 4H, CH₂OP x 2), 1.89-1.72 (m, 1H, 1-H), 1.89-1.61 (m, 2H, 2-H₂), 1.61-1.36 (m, 2H, PCHCH₂), 1.31 (t, J = 7.3 Hz, 6H, CH₃CH₂OP x 2), 1.03 (t, J = 7.2 Hz, 3H, 3-H₃), 0.92-0.82 (m, 1H, PCHCH₂CH), 0.52-0.41 (m, 2H), 0.12-0.030 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) 61.3 (t, (CH₂CH₂O)₃P), d by ²JCP = 7 Hz), 61.2 (t, (CH₂CH₂O)₃P), d by ²JCP = 6 Hz), 38.2 (d, C-1, d by ¹JCP = 137 Hz), 32.9 (t, PCHCH₂, d by ²JCP = 3 Hz), 21.2 (t, C-2, d by ³JCP = 5 Hz), 16.4 (q, CH₂CH₂OP, d by ³JCP = 6 Hz), 12.2 (q, C-3, d by ³JCP = 9 Hz), 9.5 (d, PCHCH₂CH, d by ³JCP = 13 Hz), 5.3 (t, two
methylene groups in the cyclopropyl ring), 4.6 (t, two methylene groups in the cyclopropyl ring); 31P NMR: (160 MHz, CDCl$_3$, external standard = 85 wt% D$_2$PO$_4$ in D$_2$O) 49.3; MS: (EI, 70 eV) m/z 234 (M$^+$, 20), 219 (M$^+$ – CH$_3$, 100), 205 (M$^+$ – CH$_2$CH$_3$, 28), 193 (M$^+$ – CH$_3$H, 12), 191 (35), 180 (22), 179 (M$^+$ – CH$_2$C$_2$H$_5$, 75), 177 (26), 165 (44), 163 (36), 138 (47), 137 ((CH$_2$CH$_2$O)$_2$PO$^+$, 32), 111 (36), 109 (36), 81 (22), 55 (CH$_2$C$_2$H$_5$, 32), 41 (CH$_3$, 16); HRMS: (EI, 70 eV) calcd for (C$_{11}$H$_{25}$O$_3$P) 234.1385 (M$^+$) found m/z 234.1382.

Diethyl (1-cyclopropymethyl)pent-4-enyl]phosphonate (3d)

According to the typical procedure, InBr$_3$ (0.80 mmol, 0.283 g), cyclopropylmethylstannane 1 (88% purity) (1.59 mmol, 0.623 g), and diethyl (1-iodopent-4-enyl)phosphonate 2d (0.85 mmol, 0.282 g) gave the product 3d (0.661 g, 22%). Further purification was performed by distillation under reduced pressure to give the product 3d as a colorless liquid (0.022 g, 8%). bp: 100 °C /0.30 mmHg; IR (neat): 1261 (P=O), 1643 (C=O) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 5.79 (ddt, J = 17.0, 10.0, 7.0 Hz, 1H, 4-H), 5.08-5.01 (m, including 3J$_{HH}$ = 17.0 Hz, 1H, 5-HB), 5.01-4.97 (m, including 3J$_{HH}$ = 10.0 Hz, 1H, 5-HA), 4.14-4.05 (m, 2H, 3-H$_2$), 1.95-1.76 (m, 2H, 1-H and PCHCHH), 1.72-1.54 (m, 2H, 2-HA and PCHCHH), 1.48-1.34 (m, 1H, 2-HB), 1.32 (t, J = 7.0 Hz, 6H, CH$_3$ x 2), 0.95-0.82 (m, 2H, PCHCH$_2$H), 0.53-0.42 (m, 2H), 0.12-0.033 (m, 2H); 13C NMR: (100 MHz, CDCl$_3$) 138.1 (d, C-4), 115.0 (t, C-5), 61.3 (t, CH$_2$OP, d by 2J$_{CP}$ = 6 Hz), 35.9 (d, PCH, d by 1J$_{CP}$ = 138 Hz), 33.5 (t, C-2, d by 2J$_{CP}$ = 3.3 Hz), 31.7 (t, C-3, d by 3J$_{CP}$ = 9.1 Hz), 27.5 (t, PCHCH$_2$H, d by 3J$_{CP}$ = 4 Hz), 16.5 (q, CH$_3$, d by 3J$_{CP}$ = 6 Hz), 9.4 (d, PCHCH$_2$CH, d by 3J$_{CP}$ = 12 Hz), 5.41 (t, two methylene groups in the cyclopropyl ring), 4.67 (t, two methylene groups in the cyclopropyl ring); 31P NMR: (160 MHz, CDCl$_3$, external standard = 85 wt% D$_2$PO$_4$ in D$_2$O) 49.0; MS: (EI, 70 eV) m/z 260 (M$^+$, 5), 219 (M$^+$ – C$_3$H$_5$, 100), 206 (33), 205 (M$^+$ – CH$_2$CH$_2$H, 30), 191 (27), 165 (39), 163 (38), 149 (20), 109 (36), 81 (22); HRMS: (EI, 70 eV) calcd for (C$_{13}$H$_{25}$O$_3$P) 260.1541 (M$^+$) found m/z 260.1539.

Diisopropyl (2-cyclopropylethyl)phosphonate (3e)

According to the typical procedure, InBr$_3$ (0.81 mmol, 0.287 g), cyclopropylmethylstannane 1 (84% purity) (1.54 mmol, 0.632 g), and diisopropyl iodomethylphosphonate 2e (0.81 mmol, 0.251 g) gave the crude product. Purification by flash column chromatography [hexane/ethyl acetate = 70/30] gave the product 3e (0.130 g, 68%). Further purification was performed by distillation under reduced pressure to give the product 3e as a colorless liquid. bp: 85 °C /0.25 mmHg; IR (neat): 1250 (P=O) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 4.69-4.58 (m, 2H, (CH$_3$)$_2$CH x 2), 1.83-1.74 (m including 3J$_{PH}$ = 18 Hz, 2H, PCH$_2$H), 1.50-1.42 (m, PCH$_2$CH$_2$H), 1.32 (dd, J = 8.2 Hz, 4J$_{PH}$ = 1.9 Hz, 12H, (CH$_3$)$_2$CH x 2), 0.81-0.71 (m, 1H, PCH$_2$CH$_2$CH), 0.46-0.42 (m, 2H), 0.08-0.04 (m, 2H); 13C NMR: (100 MHz, CDCl$_3$) 69.6 (d, (CH$_3$)$_2$CH, d by 2J$_{CP}$ = 6.6 Hz), 27.7 (t, PCH$_2$CH$_2$, d by 2J$_{CP}$ = 5 Hz), 26.9 (t, PCH$_2$CH$_2$, d by 1J$_{CP}$ = 143 Hz), 23.9 (q, (CH$_3$)$_2$CH, d...
by \(^3J_{CP} = 6\) Hz), 11.6 (d, PCH\(_2\)CH\(_2\)CH\(_2\)), d by \(^3J_{CP} = 21\) Hz), 4.5 (t, two methylene groups in the cyclopropyl ring); \(^{31}\)P NMR: (160 MHz, CDCl\(_3\), external standard = 85 wt\% D\(_2\)PO\(_4\) in D\(_2\)O) 44.8; MS: (CI, 200 eV) \(m/z\) 235 (M\(^-\) + 1, 100), 193 (M\(^-\) - 41, 6), 191 (M\(^-\) - 43, 1); HRMS: (CI, 200 eV); calc'd for (C\(_{11}\)H\(_2\)O\(_3\)P) 235.1463 (M\(^-\) + 1) found \(m/z\) 235.1456; Analysis: C\(_{11}\)H\(_2\)O\(_3\)P (234.27) Calcd: C, 56.39; H, 9.90; O, 20.49; P, 13.22 Found: C, 56.12; H, 9.61.

2-(1-Methyl-2-cyclopropylethyl)-5,5-dimethyl-1,3,2-dioxaphosphorinan-2-one (3f)

According to the typical procedure, InBr\(_3\) (0.80 mmol, 0.283 g), cyclopentymethylstannane 1 (75% purity) (1.62 mmol, 0.748 g), and 2-(1-iodoethyl)-5,5-dimethyl-1,3,2-dioxaphosphorinan-2-one 2f (0.80 mmol, 0.243 g) gave the crude product. Purification by flash column chromatography [hexane/ethyl acetate = 70/30] gave the product 3f (0.130 g, 58%). Further purification was performed by distillation under reduced pressure to give the product 3f as a colorless liquid (0.070 g, 38%), bp: 130 °C/0.47 mmHg; IR (neat): 1268 (P=O) cm\(^{-1}\); \(^1\)H NMR: (400 MHz, CDCl\(_3\)) 4.21 (dd, J = 11 Hz, \(^3J_{PH} = 6\) Hz, 2H, two protons of 4-H and/or 6-H), 3.67 (dd, \(^3J_{PH} = 17\) Hz, J = 11 Hz, 2H, two protons of 4-H and/or 6-H), 2.08-1.95 (m, 1H, PCH\(_2\)), 1.64-1.54 (m, 1H, PCH\(_2\)CH\(_2\)), 1.43-1.33 (m, 1H, PCHCH\(_3\)), 1.25 (dd, \(^3J_{PH} = 19\) Hz, J = 7.5 Hz, 3H, PCH\(_2\)CH\(_3\)), 1.11 (s, 5-Me), 0.87 (s, 5-Me), 0.82-0.71 (m, 1H, PCH\(_2\)CH\(_2\)CH\(_2\)), 0.50-0.33 (m, 2H), 0.11-0.06 (m, 2H); \(^{13}\)C NMR: (100 MHz, CDCl\(_3\)) 73.9 (t, 4-C or 6-C, d by \(^3J_{CP} = 5.8\) Hz), 73.8 (t, 4-C or 6-C, d by \(^3J_{CP} = 5.8\) Hz), 34.5 (t, PCH\(_2\)CH\(_2\)), 23.2 (s, 5-C, d by \(^3J_{CP} = 5.7\) Hz), 30.3 (d, PCH, d by \(^1J_{CP} = 137\) Hz), 21.8 (q, 5-Me), 21.2 (q, 5-Me), 12.8 (q, PCH\(_2\)), d by \(^3J_{CP} = 5.8\) Hz), 9.0 (d, PCH\(_2\)CH\(_2\)), d by \(^3J_{CP} = 17\) Hz), 5.4 (t, cyclopropyl methylene), 3.7 (t, cyclopropyl methylene); \(^{31}\)P NMR: (160 MHz, CDCl\(_3\), external standard = 85 wt\% D\(_2\)PO\(_4\) in D\(_2\)O) 110.5; MS: (EI, 70 eV) \(m/z\) 232 (M\(^-\) + 55), 217 (M\(^-\) - CH\(_3\)H, 51), 191 (M\(^-\) - C\(_3\)H\(_2\), 48), 178 (59), 177 (M\(^-\) - CH\(_2\)CH\(_2\)H, 37), 164 (31), 163 (36), 150 (39), 149 (M\(^-\) - CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)), 147 (46), 136 (23), 123 (51), 111 (82), 110 (36), 109 (28), 97 (21), 83 (CH\(_2\)CH\(_2\)CH\(_2\)CH\(_2\)), 82 (99), 81 (50), 71 (27), 69 (98), 68 (71), 67 (56), 57 (40), 56 (52), 55 (CH\(_2\)CH\(_2\)H, 78), 43 (20), 41 (C\(_3\)H\(_2\), 100); HRMS: (EI, 70 eV) calc'd for (C\(_{11}\)H\(_2\)O\(_3\)P) 232.1228 (M\(^+\) + 1) found \(m/z\) 232.1225.

(2-Cyclopropylethyl)diphenyolphosphate oxide (3g)

According to the typical procedure, InBr\(_3\) (0.80 mmol, 0.285 g), cyclopentymethylstannane 1 (84% purity) (1.61 mmol, 0.660 g), and diphenyl iodomethylphosphonic oxide 2g (0.80 mmol, 0.272 g) gave the crude product. Purification by flash column chromatography [hexane/ethyl acetate = 60/40] gave the product 3g as a white solid (0.140 g, 52%). mp: 95 °C; IR (KBr): 1438, 1172, 698 cm\(^{-1}\); \(^1\)H NMR: (400 MHz, CDCl\(_3\)) 7.76-7.71 (m, 4H, o), 7.53-7.43 (m, 6H, m and p), 2.42-2.35 (m including \(^2J_{PH} = 11\) Hz, 2H, PCH\(_2\)), \(^1\)C NMR: (100 MHz, CDCl\(_3\)) 133.05 (d, C-i, d by \(^1J_{CP} = 98\) Hz), 131.5 (d, C-p, d by \(^3J_{CP} = 2.5\) Hz), 130.6 (d, C-o, d by \(^3J_{CP} = 9\) Hz), 128.4 (d, C-m, d by \(^3J_{CP} = 11\) Hz), 29.6 (t, PCH\(_2\)), d by \(^1J_{CP} = 72\) Hz),
26.5 (t, PCH₂CH₂, d by ²JCP = 3 Hz), 11.9 (d, PCH₂CH₂CH₂, d by ¹JCP = 17 Hz), 4.6 (t, two methylene groups in the cyclopropyl ring); ³¹P NMR: (160 MHz, CDCl₃, external standard = 85 wt% D₃PO₄ in D₂O) 46.7; MS: (EI, 70 eV) m/z 270 (M⁺, 34), 269 (28), 215 (M⁺ − CH₂CH₂H₂, 33), 255 (32), 201 (M⁺ − CH₂CH₂CH₂H₂, 100), 186 (34), 77 (C₅H₅, 23); HRMS: (EI, 70 eV) calecd for (C₁₇H₁₉OP) 270.1174 (M⁺) found m/z 270.1169; Analysis: C₁₇H₁₉OP (270.30) Caled: C, 75.54; H, 7.08; O, 5.92; P, 11.46 Found: C, 75.70; H, 6.89.

O,O'-Diethyl (2-cyclopropylethyl)phosphonothioate (3h)

According to the typical procedure, InBr₃ (0.81 mmol, 0.286 g), cyclopropylmethylstannane 1 (84% purity) (1.64 mmol, 0.675 g), and O,O'-diethyl iodomethylphosphonothioate 2h (0.85 mmol, 0.250 g) gave the crude product. Purification by flash column chromatography [hexane/ethyl acetate = 70/30] gave the crude product. Purification by flash column chromatography [hexane/ethyl acetate = 50/50] gave the product 3h (0.040 g, 21%). Further purification was performed by distillation under reduced pressure to give the product 3h as a colorless liquid (0.020, 11%). bp: 130 °C /0.2 mmHg; IR (neat): 1033 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.18-4.02 (m, 4H, CH₂CH₂ x 2), 2.10-2.02 (m, ²JPH = 7.5 Hz, 2H, PCH₂), 1.57-1.48 (m, 2H, PCH₂CH₂ x 2), 1.29 (td, J = 7.0 Hz, ⁴JPH = 1.0 Hz, 6H, CH3 x 2), 0.80-0.70 (m, 1H, PCH₂CH₂CH₂), 0.47-0.42 (m, 2H), 0.10-0.06 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) 62.1 (t, CH₂CH₂OP, d by ³JCP = 7.4 Hz), 34.6 (t, PCH₂, d by ¹JCP = 111 Hz), 28.0 (t, PCH₂CH₂, d by ²JCP = 3.3 Hz), 16.1 (q, CH₃, d by ³JCP = 6.6 Hz), 11.4 (d, PCH₂CH₂CH₂, d by ¹JCP = 23 Hz), 4.5 (t, two methylene groups in the cyclopropyl ring); ³¹P NMR: (160 MHz, CDCl₃, external standard = 85 wt% D₃PO₄ in D₂O) 113.9; MS: (EI, 70 eV) m/z 222 (M⁺, 51), 194 (M⁺ − CH₂CH₂, 41), 154 ((CH₃CH₂O₂)₂PS⁺, 29), 150 (25), 125 (23), 121 (100), 97 (45), 93 (50), 69 (M⁺ − (CH₃CH₂O₂)₂P(S), 21), 65 (33); HRMS: (EI, 70 eV) calecd for (C₉H₁₀O₂PS) 222.0843 (M⁺) found m/z 222.0842; Analysis: C₉H₁₀O₂PS (222.28) Caled: C, 48.63; H, 8.62; O, 14.40; P, 13.93; S, 14.43 Found: C, 48.40; H, 8.33.

Diethyl (3-cyclopropylpropyl)phosphonate (6)

According to the typical procedure, InBr₃ (0.80 mmol, 0.283 g), cyclopropylmethylstannane 1 (86% purity) (1.60 mmol, 0.644 g), diethyl 2-idoethylphosphonate 5 (0.79 mmol, 0.232 g), and AIBN (0.08 mmol, 0.013 g) gave the crude product. Purification by flash column chromatography [hexane/ethyl acetate = 70/30] gave the product 6 (0.032 g, 18%). Further purification was performed by distillation under reduced pressure. bp: 80 °C /0.26 mmHg; IR (neat): 1246 (P=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.17-4.03 (m, 4H, CH₂OP x 2), 1.82-1.65 (m, 4H, PCH₂ and PCH₂CH₂), 1.42-1.26 (m, 2H, PCH₂CH₂CH₂), 1.33 (t, J = 7.0 Hz, 6H, CH3 x 2), 0.69-0.60 (m, 1H, PCH₂CH₂CH₂CH₂), 0.44-0.40 (m, 2H), 0.07-0.01 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) 61.3 (t, CH₂OP, d by ³JCP = 6.6 Hz), 35.4 (t, PCH₂CH₂CH₂, d by ¹JCP = 17 Hz), 25.4 (t, PCH₂, d by ¹JCP = 141 Hz), 22.4 (t, PCH₂CH₂, d by ²JCP = 5 Hz), 16.4 (q, CH₃, d by ³JCP = 6.6 Hz), 10.3 (d, PCH₂CH₂CH₂CH₂), 4.3 (t, two methylene groups in the cyclopropyl ring); ³¹P NMR: (160 MHz, CDCl₃, external standard = 85 wt% D₃PO₄ in D₂O) 47.3; MS: (EI, 70 eV) m/z 220 (M⁺, 14), 191
(M⁺ – CH₂CH₂, 23), 165 (M⁺ – CH₂C₃H₅, 53), 152 (M⁺ – CH₂CH₂C₂H₅, 100), 147 (31), 138 ((CH₂CH₂O)₂PO⁺, 71), 125 (65), 124 (23), 111 (64), 110 (23), 109 (31), 108 (21), 97 (52), 96 (26), 82 (CH₂CH₂CH₂C₃H₅⁺, 31), 81 (38), 41 (C₃H₅⁺, 23); HRMS: (EI, 70 eV) calcd for (C₁₀H₂O₃P) 220.1228 (M⁺) found m/z 220.1221.

1,1-Diphenyl-3-cyclopropyl-1-propene (10)

According to the typical procedure, O,O'-diethyl (2-cyclopropylethyl)phosphonothioate 3h (0.23 mmol, 0.050 g), s-BuLi (1.0 M in hexane, 0.30 mL), and benzophenone (0.24 mmol, 0.043 g) gave the crude product. Purification by flash column chromatography [hexane (200 mL)] gave the product 10 as a colorless liquid (0.030 g, 57%). IR (neat): 1493, 1442, 822, 702 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.38-7.16 (m, 10H, Ar x 2), 6.19 (t, J = 7.0 Hz, 1H, 2-H), 2.02 (dd, J = 7.0, 7.0 Hz, 2H, 3-H₂), 0.83-0.73 (m, 1H, C=CH₂CH₂), 0.46-0.41 (m, 2H), 0.088-0.050 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) 142.7 (s, i), 141.4 (s, C-1), 140.2 (s, i), 129.9 (d), 129.1 (d), 128.1 (d), 128.0 (d), 127.2 (d), 126.8 (d), 126.7 (d), 34.5 (t, C-3), 11.1 (d, C=CH₂CH₂), 4.2 (t, two methylene groups in the cyclopropyl ring); MS: (EI, 70 eV) m/z 234 (M⁺, 46), 205 (100), 193 (M⁺ – C₃H₅, 37), 191 (22), 180 (35), 178 (M⁺ – CH₂C₃H₅, 25), 165 (24), 115 (48), 91 (42); HRMS: (EI, 70 eV) calcd for (C₁₈H₁₈): 234.1409 (M⁺) found m/z 234.1404; Analysis: C₁₈H₁₈ (234.34) Calcd: C, 7.74; H, 9.26 Found: C, 7.66; H, 9.12.

(2-Cyclopropylethylidene)cyclohexane (11)

According to the typical procedure, O,O'-diethyl (2-cyclopropylethyl)phosphonothioate 3h (0.17 mmol, 0.038 g), s-BuLi (1.0 M in hexane, 0.20 mL), and cyclohexanone (0.23 mmol, 0.023 g) gave the crude product. Purification by flash column chromatography [hexane (200 mL)] gave the product 11 as a colorless liquid (0.012 g, 51%). IR (neat): 1666 (C=C), 1446, 1014, 849, 818 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 5.16 (t, J = 7.0 Hz, 1H, C=CH), 2.12-2.07 (m, 4H), 1.92 (dd, J = 7.0, 7.0 Hz, 2H, 2-H₂), 1.55-1.43 (m, 6H), 0.74-0.64 (m, 1H, 2-CH(CH₂)₂), 0.41-0.37 (m, 2H), 0.07-0.03 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) 139.8 (s, C=CH), 120.1 (d, C=CH), 37.2 (t), 31.6 (t, C-2), 28.8, 28.7, 27.9, 27.0, 11.3 (d, CH(CH₂)₂), 3.95 (t, two methylene groups in the cyclopropyl ring); MS: (EI, 70 eV) m/z 150 (M⁺, 38), 121 (31), 109 (M⁺ – C₃H₅, 53), 107 (46), 94 (27), 93 (31) 81 (52), 79 (56), 68 (50), 67 (100), 55 (29), 41 (C₃H₅, 21); HRMS: (EI, 70 eV) calcd for (C₁₈H₁₈): 150.1409 (M⁺) found m/z 150.1406.

1-3-5 References

(4) For a review, see: Boutagy, J.; Thomas, R. Chem. Rev. 1974, 74, 87–99.
(12) A trace amount of the ring-opening product, which was not precisely identified, was observed.
(13) The reaction using (1-methylocyclopropyl)methyltributylstannane instead of 1 gave the mixture of cyclopropane-containing product (33%) and ring-opening product (14%). See the Experimental Section for details.
(17) The corresponding reductive products were also obtained as by-products.
(19) When the reaction was carried out in the absence of AIBN, the yield of product 6 was decreased to 27%.
(20) The transmetalation (1/InBr₃ = 2:1) took over 2 hrs for completion, in which no formation of monobutenylindium was observed (See the Experimental Section for details). In addition, the transmetalation of equal molar amount of 1 and InBr₃ (1/InBr₃ = 1:1) in hexane at room temperature also
gave 7 as a single product. These results are different from the transmetalation in toluene, where the mixture of mono- and dibutenylindium species was obtained, see: ref 8.

(23) The reaction using 1 (0.8 mmol), 2a (0.8 mmol), and InBr₃ (0.4 mmol) resulted in a lower yield (44%).

(24) We have reported that dibutenylindium species is more reactive than monobutenylindium species, see: ref 8.

Chapter 2

Cyclopropylmethylation of Benzylic and Allylic Chlorides with CyclopropylmethyIstannane Catalyzed by Gallium or Indium Halide

2-1. Introduction

Cyclopropane functional compounds are versatile synthetic intermediates because of their unique reactivity. Moreover, cyclopropyl rings also exist in many natural compounds that show biological activity. For their preparation, the Simmons-Smith reaction and transition-metal-catalyzed cyclopropanation with diazo compounds have been widely used. Although butenyl metal species are useful reagents for construction of cyclopropyl ring systems, their low nucleophilicity has limited their synthetic applications. Only a few examples have been reported. For example, an equimolar amount of TiCl₄ promoted the coupling of butenyltrimethylsilane and acid chlorides. Similar types of reactions have been achieved using butenyltributylstannanes in the presence of Lewis acids. In addition, in situ generated butenylgallium, -indium, and -aluminum species from butenyl Grignard reagents have been coupled with α-halocarbonyl compounds in a radical manner. Recently, we confirmed the generation of active indium species by transmetalation between cyclopropylmethylstannane and indium halide and its radical coupling reaction with α-iodocarbonyl compounds, although a catalytic trial failed. In this communication, we report the GaCl₃- or InBr₃-catalyzed cyclopropylmethylation of alkyl chlorides, which are readily available but less reactive than iodides or bromides, with cyclopropylmethylstannane (Scheme 1). Contrary to our previous report, this reaction proceeded by an ionic mechanism, which apparently enabled the catalytic coupling. In addition, the generated butenylgallium intermediate was isolated and confirmed by its complexation with a phosphine ligand.

Scheme 1. Reactivity of Butenylgallium or Butenylindium Species

ref 12; catalytic
NOT catalytic

2-2. Results and Discussion

First, we chose the reaction of 1-chloro-1-(4-methylphenyl)ethane (2a) with cyclopropylmethylstannane 1 for the investigation of the catalysts (Table 1). No reaction took place without catalyst loading (entry 1). Use of 5 mol % of InBr₃ in CH₂Cl₂ effectively promoted the coupling
reaction to afford the cyclopropylmethylated product 3a in 81% yield along with 19% yield of the ring-opening product 4a (entry 2). Other indium halides, InCl₃ or InI₃, gave yields lower than that of InBr₃ (entries 3 and 4). Hydrocarbon solvents such as hexane and toluene were also effective (entries 5 and 6), whereas no reaction was observed in MeCN, perhaps because the interaction between the indium catalyst and the substrates was disturbed by its strong coordination ability (entry 7). In addition, it was found that gallium halide was also an efficient catalyst (entries 8 and 9). The reactions were not affected by the addition of a radical inhibitor, such as TEMPO or galvinoxyl, which had completely disturbed the reactions with α-haloesters, as previously reported¹² (entries 10–13). These data strongly indicated that the reaction proceeded in an ionic manner. All previous reactions of organic halides with organoindium species proceed via a radical mechanism. For example, the reduction by indium hydride¹⁴ and the coupling between α-halocarbonyl compounds with vinyl-, allyl-, or alkynylindium species¹⁵ are both known to be radical reactions.¹⁶ Organogallium species⁹,¹⁵,¹⁷ also reacted with organic halides in a radical manner. An ionic reaction with organic halides has never been reported for either the organoindium or the organogallium species, as far as we know.

Table 1. Reaction of 1-Chloro-1-(4-methylphenyl)ethane (2a) with Cyclopropylmethylstannane 1a

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>solvent</th>
<th>3a yield/ %</th>
<th>4a yield/ %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>none</td>
<td>CH₂Cl₂</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>InBr₃</td>
<td>CH₂Cl₂</td>
<td>81</td>
<td>19</td>
</tr>
<tr>
<td>3</td>
<td>InCl₃</td>
<td>CH₂Cl₂</td>
<td>69</td>
<td>18</td>
</tr>
<tr>
<td>4</td>
<td>InI₃</td>
<td>CH₂Cl₂</td>
<td>58</td>
<td>19</td>
</tr>
<tr>
<td>5</td>
<td>InBr₃</td>
<td>hexane</td>
<td>59</td>
<td>26</td>
</tr>
<tr>
<td>6</td>
<td>InBr₃</td>
<td>toluene</td>
<td>52</td>
<td>19</td>
</tr>
<tr>
<td>7</td>
<td>InBr₃</td>
<td>MeCN</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>GaCl₃</td>
<td>CH₂Cl₂</td>
<td>57</td>
<td>14</td>
</tr>
<tr>
<td>9</td>
<td>GaBr₃</td>
<td>CH₂Cl₂</td>
<td>55</td>
<td>14</td>
</tr>
<tr>
<td>10</td>
<td>InBr₃</td>
<td>CH₂Cl₂</td>
<td>55</td>
<td>15</td>
</tr>
<tr>
<td>11</td>
<td>InBr₃</td>
<td>CH₂Cl₂</td>
<td>73</td>
<td>20</td>
</tr>
<tr>
<td>12</td>
<td>GaCl₃</td>
<td>CH₂Cl₂</td>
<td>45</td>
<td>13</td>
</tr>
<tr>
<td>13</td>
<td>GaCl₃</td>
<td>CH₂Cl₂</td>
<td>71</td>
<td>21</td>
</tr>
</tbody>
</table>

a All entries were carried out at 0 °C for 2 h using 1.0 mmol of 1, 1.0 mmol of 2a, and 0.05 mmol of catalyst. b Determined by ¹H NMR. c TEMPO (0.05 mmol) was added. d Galvinoxyl (0.05 mmol) was added.
Table 2. GaCl₃ or InBr₃-Catalyzed Cyclopropylmethylation of Various Alkyl Chlorides

![Chemical structure diagram](image)

<table>
<thead>
<tr>
<th>entry</th>
<th>2</th>
<th>temp/ °C</th>
<th>product</th>
<th>catalyst</th>
<th>yield/ %ᵇ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PhPhCl</td>
<td>2b</td>
<td>3b</td>
<td>GaCl₃</td>
<td>72</td>
</tr>
<tr>
<td>2</td>
<td>PhPhCl</td>
<td>0</td>
<td>3b</td>
<td>InBr₃</td>
<td>79</td>
</tr>
<tr>
<td>3</td>
<td>PhPhCl</td>
<td>2c</td>
<td>3c</td>
<td>GaCl₃</td>
<td>82</td>
</tr>
<tr>
<td>4</td>
<td>PhPhCl</td>
<td>0</td>
<td>3c</td>
<td>InBr₃</td>
<td>78</td>
</tr>
<tr>
<td>5</td>
<td>PhPhCl</td>
<td>2d</td>
<td>3d</td>
<td>GaCl₃</td>
<td>59</td>
</tr>
<tr>
<td>6</td>
<td>PhPhCl</td>
<td>rt</td>
<td>3d</td>
<td>InBr₃</td>
<td>trace</td>
</tr>
<tr>
<td>7</td>
<td>PhPhCl</td>
<td>2e</td>
<td>3e</td>
<td>GaCl₃</td>
<td>56</td>
</tr>
<tr>
<td>8</td>
<td>PhPhCl</td>
<td>80</td>
<td>3e</td>
<td>InBr₃</td>
<td>trace</td>
</tr>
<tr>
<td>9</td>
<td>PhPhCl</td>
<td>2f</td>
<td>3f</td>
<td>GaCl₃</td>
<td>63</td>
</tr>
<tr>
<td>10</td>
<td>PhPhCl</td>
<td>0</td>
<td>3f</td>
<td>InBr₃</td>
<td>73</td>
</tr>
<tr>
<td>11</td>
<td>PhPhCl</td>
<td>2g</td>
<td>3g</td>
<td>GaCl₃</td>
<td>73</td>
</tr>
<tr>
<td>12</td>
<td>PhPhCl</td>
<td>0</td>
<td>3g</td>
<td>InBr₃</td>
<td>80</td>
</tr>
<tr>
<td>13</td>
<td>PhPhCl</td>
<td>2h</td>
<td>3h</td>
<td>GaCl₃</td>
<td>45</td>
</tr>
<tr>
<td>14</td>
<td>PhPhCl</td>
<td>rt</td>
<td>3h</td>
<td>InBr₃</td>
<td>15</td>
</tr>
<tr>
<td>15ᶜ</td>
<td>PhPhCl</td>
<td>2i</td>
<td>3i</td>
<td>GaCl₃</td>
<td>36</td>
</tr>
<tr>
<td>16ᶜ</td>
<td>PhPhCl</td>
<td>80</td>
<td>3i</td>
<td>InBr₃</td>
<td>70</td>
</tr>
<tr>
<td>17ᵈ</td>
<td>PhPhCl</td>
<td>0</td>
<td>3j</td>
<td>GaCl₃</td>
<td>40</td>
</tr>
<tr>
<td>18ᵈ</td>
<td>PhPhCl</td>
<td>0</td>
<td>3j</td>
<td>InBr₃</td>
<td>0</td>
</tr>
</tbody>
</table>

² All entries were carried out with 1.0 mmol of 1, 1.0 mmol of 2a, and 0.05 mmol of catalyst. ᵇ Determined by ¹H NMR. ᶜ 1.5 mmol of 1 and 0.75 mmol of catalyst were used. ᵈ 0.5 mmol of catalyst was used.

We next explored the scope of this system using either InBr₃ or GaCl₃ catalyst (Table 2). Various secondary benzylic chlorides furnished cyclopropylmethylated products in moderate to high yields (entries 1–12). In the case of 2c and 2e, which bear two types of chlorine atoms, selective coupling was achieved at benzylic positions. 3-Chlorocyclohexene (2h) was also transformed to the corresponding product 3h (entries 13 and 14). Primary benzylic chloride, p-chlorobenzyl chloride (2i), gave the product 3i.
when an equimolar amount of metal halide was used (entries 15 and 16). GaCl₃ catalyzed the reaction with β-chloro ester 2j to afford the ester 3j, while the starting ester was recovered in the case of InBr₃ (entries 17 and 18).

To confirm the active gallium species, a mixture of an equimolar amount of GaCl₃ and 1 was monitored by ¹H NMR. Similar signals were observed with two doublets for the vinylic protons (a), two triplets for the allylic protons (c), and two singlets for the methyl protons (b) (Figure 1ii). On the basis of the reported facts,¹² they were assigned the designations of mono- and dibutenylgallium species 5a and 6a. The integration ratio of the peaks was ~2.5:1, and the product ratio of 5a/6a was ~5:1. On the other hand, a 1:2 mixture of GaCl₃/1 preferentially gave 6a (integration ratio of 5a/6a ≈ 1:10) with no other highly substituted species (see the Experimental Section). The integration ratio was somewhat different in the case of InBr₃ (5b/6b ≈ 1:1) (Figure 1iii). The addition of benzhydryl chloride (2b) to the stirred mixture of 1 and GaCl₃ (1/GaCl₃ = 1:1) for 30 min in dichloromethane-d₂ gave the coupling product in 86% yield (InBr₃, 71% yield). These results demonstrated that the active species in the reaction was a mono- and dibutenyl metal species.¹²

Furthermore, we attempted to isolate the butenylgallium species by complexation using external ligands. The addition of DPPE to a 1:1 mixture of GaCl₃/1 in CH₂Cl₂ gave a crystal, which was determined by X-ray crystal structural analysis to be butenylgallium complex 7 (Scheme 2). The structure is shown in Figure 2. The four-coordinated gallium center had a butenyl group, a phosphorus in DPPE, and two chlorines. Each phosphine moiety in DPPE coordinated to the other molecule’s gallium centers. The angles for Cl₁–Ga–Cl₂ (107.02°) and C–Ga–Cl (115.58° and 113.48°) indicated that the

Figure 1. ¹H NMR spectra of (i) 1, (ii) the mixture of GaCl₃ and 1, and (iii) the mixture of InBr₃ and 1 in CD₂Cl₂.

Furthermore, we attempted to isolate the butenylgallium species by complexation using external ligands. The addition of DPPE to a 1:1 mixture of GaCl₃/1 in CH₂Cl₂ gave a crystal, which was determined by X-ray crystal structural analysis to be butenylgallium complex 7 (Scheme 2). The structure is shown in Figure 2. The four-coordinated gallium center had a butenyl group, a phosphorus in DPPE, and two chlorines. Each phosphine moiety in DPPE coordinated to the other molecule’s gallium centers. The angles for Cl₁–Ga–Cl₂ (107.02°) and C–Ga–Cl (115.58° and 113.48°) indicated that the
gallium center exhibited a distorted tetrahedral structure. This stable structure was different from 12 that of TBP of the indium species.

Scheme 2. Complexation and Isolation of the Butenylgallium Species

Figure 2. The X-ray structure of 7 (all hydrogens are omitted for clarity).

Scheme 3. Plausible Reaction Mechanism
A plausible reaction mechanism is shown in Scheme 3. Transmetalation between 1 and GaCl₃ gives butenylgallium species. Then the resulting gallium species activates alkyl chloride by formation of an intermediate 9, perhaps via the alkyl cation species. Finally, cyclization takes place with the release of gallium chloride to form a cyclopropyl ring. When the isomerization from 9 to 10 via a hydride shift occurs, the ring-opening product is formed.⁷a,b,19 The interaction of the butenylgallium species and alkyl chloride may be a key step in this ionic mechanism to complete the catalytic cycle. The reaction using InBr₃ as a catalyst proceeds in a similar manner.

Finally, this reaction system was applied to the direct use of alcohol instead of chloride, as shown in Scheme 4. Using alcohols as substrates would be ideal for synthetic organic chemistry because alcohols are plentiful and readily available. The reaction of 1 with benzhydrol (12) in the presence of InBr₃ and trimethylsilyl chloride furnished corresponding cyclopropylmethylated product 3b in 49% yield. It is assumed that a reaction using trimethylsilyl chloride chlorinated alcohol in the presence of InBr₃,²⁰,²¹ followed by coupling with cyclopropylmethylstannane, would proceed in the manner discussed above.

Scheme 4. Cyclopropylmethylation of Alcohol

2-3. Conclusion

In conclusion, we have developed GaCl₃- or InBr₃-catalyzed cyclopropylmethylation of benzylic and allylic chlorides with cyclopropylmethylstannane. NMR spectroscopy and X-ray crystal structural analysis revealed the generation of butenylgallium and -indium species.

2-4. Experimental Section

General. New compounds were characterized by ¹H, ¹³C, ¹³C off-resonance techniques, HMQC, HMBC, IR, MS, HRMS, and elemental analysis. ¹H (400 MHz) and ¹³C NMR (100 MHz) spectra were obtained with TMS as internal standard. ¹¹⁹Sn (150 MHz) spectra were obtained with Me₃Sn as external standard. IR spectra were recorded as thin film. All reactions were carried out under nitrogen. Column chromatography was performed on silica gel (MERK C60 or Fuji Silysia FL100DX). Recycle GPC was performed with CHCl₃ as the eluent. Bulb-to-Bulb distillation (Kuglrohr) was accomplished at the oven temperature and pressure indicated. Yields were determined by ¹H NMR using internal standard.

Materials. Dehydrated dichloromethane, hexane, toluene, and acetonitrile were purchased and used as obtained. 1,2-dichloroethane was distilled from P₂O₅. The catalysts examined in Table 1 were also
purchased from commercial sources. Cyclopropylmethylstannane 1 was prepared and the experimental
detail is described below (This preparation method was not optimized.). Starting chlorides, 2a, 2e, 2f, 2g, and 2j were prepared by known methods and these compounds were reported. All other starting chlorides and starting alcohol 12 are commercially available. All other reagents were commercially available.

Preparation of (1-methylcyclopropyl)methyltributylstannane (1).

To a flask containing magnesium (180 mmol) in THF (150 mL) was added Bu3SnCl (150 mmol). The mixture was cooled to 0 °C, and then 3-chloro-2-methylprop-1-en (170 mmol) was added. The mixture was irradiated with ultrasound at 0 °C for 1 h and stirred. After 2 h, the reaction was quenched by water (200 mL), and then organic layer was separated. Hexane (200 mL) was added, and the organic layer was washed using water (100 mL), saturated NaCl aq (100 mL), and NH4F aq (10%, 100 mL). After drying with MgSO4, the solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product (47.4 g, 92%): bp 82 °C/0.05 mmHg. The analytical data for this compound matched that previously reported.

To a solution of 2-methyl allylstannane (30 mmol) in diethyl ether (40 mL), diethylzinc (1.0 M in hexane, 35 mL) was added. To the mixture was added the solution of diiodomethane (70 mmol) in diethylether (30 mL) dropwise within 30 min. The reaction mixture was stirred for 2 h at room temperature, and then quenched by saturated NH4Cl aq (100 mL). Hexane (200 mL) was added, and the organic layer was washed using saturated NH4Cl aq (100 mL), saturated NaCl aq (100 mL), and NH4F aq (10%, 100 mL). After drying with MgSO4, the solvent was evaporated and the residue was purified by column chromatography [solvent; hexane] on silica gel to give the product (83% yield, 93% purity (a small portion was analyzed by 1H NMR using an internal standard)), which was used in the cyclopropylmethylation reaction without further purification. IR: (neat) 3066, 2954, 2850, 1462 cm⁻¹; 1H NMR: (400 MHz, CDCl3) 1.57-1.40 (m, 6H, 2'-H2 x 3), 1.36-1.25 (m, 6H, 3'-H2 x 3), 1.04 (s, 3H, Me at cyclopropyl ring), 0.95-0.76 (m, 17H, 4'-H3 x 3, 1'-H2 x 3, and 1-H3), 0.36-0.29 (m, 2H), 0.26-0.20 (m, 2H); 13C NMR: (100 MHz, CDCl3) 29.3 (t, C-2', d, 2J119Sn-C = 19.6 Hz), 27.5 (t, C-3', d, 3J119Sn-C = 53.2 Hz), 26.7 (q, Me at cyclopropyl ring), 22.2 (t, C-1, d, 1J119Sn-C = 308.9, 1J117Sn-C = 294.1 Hz), 16.5 (t, two methylene groups in cyclopropyl ring, d, 2J119Sn-C = 34.4 Hz), 14.8 (s, SnCH2C(CH3), d, 2J119Sn-C = 19.7 Hz), 13.7 (q, C-4'), 9.6 (t, C-1', d, 1J119Sn-C = 308.7, 1J117Sn-C = 295.7 Hz); 119Sn NMR: (150 MHz, CDCl3) -15.5; MS: (EI, 70 eV) m/z 303 (88), 302 (33), 301 (64), 300 (24), 299 (39), 291 (23), 235 (67), 234 (20), 233 (51), 231 (31), 179 (100), 177 (100), 176 (32), 175 (68), 121 (24); HRMS: (EI, 70 eV) calef for (C13H27Sn) 303.1135 (M⁺ – Bu) found m/z 303.1133.
1-chloro-1-(4-methylphenyl)ethane (2a)

To a stirred solution of BiCl₃ (2 mmol) and 1-(4-methylphenyl)ethanol (40 mmol) in dichloromethane (10 mL) was slowly added trimethylsilyl chloride (48 mmol) at room temperature. The mixture was stirred for 2 h, and then quenched by water (50 mL). The mixture was extracted with diethyl ether (50 mL x 3). The collected organic layer was washed with brine (100 mL) and then dried (MgSO₄). The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product (5.4 g, 87%): bp 110 °C/3 mmHg. The analytical data for this compound matched that previously reported.

1-chloro-1-(4-chlorophenyl)ethane (2e)

To a stirred solution of BiCl₃ (1.5 mmol) and 1-(4-chlorophenyl)ethanol (30 mmol) in dichloromethane (10 mL) was slowly added trimethylsilyl chloride (36 mmol) at room temperature. The mixture was stirred for 2 h, and then quenched by water (50 mL). The mixture was extracted with diethyl ether (50 mL x 3). The collected organic layer was washed with brine (100 mL) and then dried (MgSO₄). The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product (4.5 g, 84%): bp 130 °C/3 mmHg. The analytical data for this compound matched that previously reported.

1-chloro-1,2,3,4-tetrahydronaphthalene (2f)

To a stirred solution of BiCl₃ (1.5 mmol) and 1,2,3,4-tetrahydronaphthalene-1-ol (30 mmol) in dichloromethane (10 mL) was slowly added trimethylsilyl chloride (36 mmol) at room temperature. The mixture was stirred for 2 h, and then quenched by water (50 mL). The mixture was extracted with diethyl ether (50 mL x 3). The collected organic layer was washed with brine (100 mL) and then dried (MgSO₄). The solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product (4.5 g, 91%): bp 95 °C/0.2 mmHg. The analytical data for this compound matched that previously reported.

2-(1-chloroethyl)naphthalene (2g)

To a stirred solution of BiCl₃ (1.5 mmol) and 2-naphthyl-1-ethanol (30 mmol) in dichloromethane (10 mL) was slowly added trimethylsilyl chloride (36 mmol) at room temperature. The mixture was stirred for 2 h, and then quenched by water (50 mL). The mixture was extracted with diethyl ether (50 mL x 3). The collected organic layer was washed with brine (100 mL) and then dried (MgSO₄). The solvent was evaporated to give a solid, which was then washed by hexane to give the product as a white solid (3.3 g, 58%). The analytical data for this compound matched that previously reported.
Ethyl 2-chloro-2-phenylpropanoate (2j)

To a mixture of InCl₃ (0.1 mmol), benzil (2 mmol) and ethyl 3-hydroxy-3-phenyl-propanoate (2 mmol) in dichloromethane (4 mL) was added chlorodimethylsilane (HSiMe₂Cl) (2.2 mmol). The reaction mixture was stirred for 0.1 h at room temperature. The resulting mixture was poured into aqueous NaHCO₃ (50 mL) and extracted with EtOAc (50 mL). The organic layer was dried (MgSO₄) and the solvent was evaporated and the residue was purified by distillation under reduced pressure to give the product: bp 80 °C/ 0.11 mmHg. The analytical data for this compound matched that previously reported.

Typical procedure for the reaction of cyclopropylmethylstannane 1 with alkyl chlorides 2 (Table 1, entry 2). To a solution of InBr₃ (0.05 mmol) in dichloromethane (1 mL), cyclopropylmethylstannane 1 (1 mmol) was added. The mixture was stirred for 10 min at room temperature. To the reaction mixture was added the solution of alkyl chlorides (1 mmol) in dichloromethane (3 mL) dropwise over 20 min at the temperature described in the text, and then the mixture was stirred for 2 h at same temperature. The reaction mixture was quenched by NH₄F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO₄). The evaporation of the ether solution gave the crude product which was analyzed by NMR. The detail of further purification was described in Product Data.

Experimental procedure for the reaction of cyclopropylmethylstannane 1 with 4-chlorobenzyl chloride (2i) (Table 2, entries 15 and 16). To a solution of either GaCl₃ (0.75 mmol) or InBr₃ (0.75 mmol) in 1,2-dichloroethane (2 mL), cyclopropylmethylstannane 1 (1.5 mmol) was added. The mixture was stirred for 10 min at room temperature. To the reaction mixture was added 4-chlorobenzyl chloride 2i (1 mmol), and then the mixture was stirred for 2 h at 80 °C. The reaction mixture was quenched by NH₄F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO₄). The evaporation of the ether solution gave the crude product which was analyzed by NMR. The detail of further purification was described in Product Data.

Experimental procedure for the reaction of cyclopropylmethylstannane 1 with 3-chloro-3-phenylpropanoate (2j) (Table 2, entries 17 and 18). To a mixture of cyclopropylmethylstannane 1 (1 mmol) and ethyl 3-chloro-3-phenylpropanoate 2j (1 mmol) in dichloromethane (3 mL) was added either GaCl₃ (0.5 mmol) or InBr₃ (0.5 mmol). The mixture was stirred for 2 h at room temperature, and then quenched by NH₄F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO₄). The evaporation of the ether solution gave the crude product which was analyzed by NMR. The detail of further purification was described in Product Data.
NMR study of transmetalation between 1 and GaCl$_3$ or InBr$_3$ (Figure 1). A mixture of cyclopropylmethyistannane 1 and GaCl$_3$ or InBr$_3$ (the ratio of 1/GaCl$_3$ = 1:1, 1/InBr$_3$ = 1:1) was prepared in dichloromethane-d_2. After mixing for 30 min, the mixture was transferred into NMR tube, and the resulting spectrum is shown in Figure 1. The mixture of 1 and GaCl$_3$ (the ratio of 1/GaCl$_3$ = 2:1) was prepared in dichloromethane-d_2. After mixing for 30 min, the mixture was transferred into NMR tube, and the resulting spectrum is shown below (Figure A).

![Figure A. 1H NMR spectra of the reaction mixtures of GaCl$_3$ and 1 with (a) 1/1 and (b) 1/2 ratios in CD$_2$Cl$_2$.](image)

Isolation of butenylgallium species (7) (Scheme 2). To a mixture of GaCl$_3$ (0.0885 g, 0.50 mmol) in dichloromethane (1 mL) was added cyclopropylmethyistannane 1 (93% purity) (0.2017 g, 0.52 mmol) at room temperature. The mixture was stirred for 1.5 h, and then 1,2-bis(diphenylphosphino)ethane (0.0957 g, 0.24 mmol) was loaded. The mixture was stirred for 1 h, and then the volatiles were evaporated to give a viscous liquid, which was then washed by hexane to give the product as a white solid (0.246 g) with a small amount of impurity. The product was recrystallized from dichloromethane/hexane for X-ray analysis.

Experimental procedure for the reaction of cyclopropylmethyistannane 1 with benzhydrol (12) (Scheme 4). To a mixture of InBr$_3$ (0.05 mmol), cyclopropylmethyistannane 1 (1 mmol), and benzhydrol 12 (1 mmol) in dichloromethane (3 mL) was added trimethylsilyl chloride (1.1 mmol). The mixture was stirred for 3 h at room temperature, and then quenched by NH$_4$F aq (10%, 10 mL). The mixture was extracted with diethyl ether (10 mL x 3). The collected organic layers were dried (MgSO$_4$). The evaporation of the ether solution gave the crude product which was analyzed by NMR.
1-(1-methylcyclopropyl)-2-(4-methylphenyl)propane (3a)

According to the typical procedure, InBr3 (0.0175 g, 0.049 mmol), cyclopropylmethylstannane 1 (91% purity) (0.4012 g, 1.02 mmol), and 1-chloro-1-(4-methylphenyl)ethane 2a (0.1523 g, 0.98 mmol) gave the crude product (99% 3a:4a = 81:19). Purification by flash column chromatography [solvent; hexane] on silica gel afforded the product (0.137 g, 74% 3a:4a = 81:19). Further purification was performed by gel permeation chromatography [solvent; chloroform]. IR: (neat) 3070, 2962, 2877, 1516, 1454, 1381, 1014, 818 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.09-7.06 (m, 4H, aroma), 2.99 (qdd, J = 7.2, 7.2, 7.2 Hz, 1H, 2-H), 2.30 (s, 3H, Me at aromatic ring), 1.67 (dd, J = 13.6, 7.2 Hz, 1H, H³), 1.30 (dd, J = 13.6, 8.0 Hz, 1H, H²), 1.24 (d, J = 7.2 Hz, 3H, 3-H₃), 1.00 (s, 3H, Me at cyclopropyl ring), 0.28 (ddd, J = 9.6, 4.2, 4.2 Hz, 1H), 0.22 (ddd, J = 9.6, 4.2, 4.2 Hz, 1H), 0.05 (ddd, J = 9.6, 4.2, 4.2 Hz, 1H), 0.00 (ddd, J = 9.6, 4.2, 4.2 Hz, 1H); ¹³C NMR: (100 MHz, CDCl₃) 145.7 (s, i), 135.1 (s, p), 128.9 (d, m), 126.8 (d, o), 48.2 (t, C-1), 37.7 (d, C-2), 22.8 (q, Me at cyclopropyl ring), 22.2 (q, C-3), 21.0 (q, Me at aromatic ring), 14.0 (s, CH(CH₃)CH₂C(CH₃)), 13.5 (t, CH(CH₃)CH₂C(CH₃)), 12.8 (t, CH(CH₃)CH₂C(CH₃)); MS: (EI, 70 eV) m/z 188 (M⁺, 6), 132 (21), 119 (M⁺ – C₅H₁₀, 100), 69 (C₆H₅⁺, 2); HRMS: (EI, 70 eV) calcd for (C₁₉H₂₀) 188.1565 (M⁺) found m/z 188.1565.

2-(1-methylcyclopropyl)-1,1-diphenylethane (3b)

According to the typical procedure, InBr₃ (0.0170 g, 0.048 mmol), cyclopropylmethylstannane 1 (92% purity) (0.4085 g, 1.05 mmol), and benzhydryl chloride 2b (0.1977 g, 0.98 mmol) gave the crude product (99% 3b:4b = 80:20). Purification by flash column chromatography [solvent; hexane] on silica gel afforded the product (0.192 g, 83% 3b:4b = 83:17). Further purification was performed by gel permeation chromatography [solvent; chloroform]. IR: (neat) 3059, 3028, 2924, 1492, 1450, 752, 702 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.29-7.19 (m, 8H, aroma), 7.17-7.10 (m, 2H, p), 4.12 (t, J = 7.2 Hz, 1H, 1-H), 2.04 (d, J = 7.2 Hz, 2H, 2-H₂), 0.98 (s, 3H, Me at cyclopropyl ring), 0.08-0.00 (m, 4H); ¹³C NMR: (100 MHz, CDCl₃) 145.7 (s, i), 128.3 (d), 127.9 (d), 125.9 (d, p), 49.4 (d, C-1), 45.2 (t, C-2), 23.2 (q, Me at cyclopropyl ring), 14.2 (s, Ph₂CHCH₂CMe), 13.2 (t, two methylene groups in cyclopropyl ring); MS: (EI, 70 eV) m/z 236 (M⁺, 4), 180 (32), 168 (22), 167 (M⁺ – C₅H₁₀, 100), 165 (24), 69 (C₆H₅⁺, 5); HRMS: (EI, 70 eV) calcd for (C₁₈H₂₀) 236.1565 (M⁺) found m/z 236.1561; Analysis: C₁₈H₂₀ (236.35) Calcd: C, 91.47; H, 8.53 Found: C, 91.45; H, 8.64.

1-(4-chlorophenyl)-1-phenyl-2-(1-methylcyclopropyl)ethane (3c)

Purification was performed by flash column chromatography [solvent; hexane] on silica gel and gel permeation chromatography [solvent; chloroform]. IR: (neat) 3070, 2920, 1493, 1091, 1014, 818 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.28-7.13 (m, 9H, aroma), 4.10 (dd, J = 7.2, 7.2 Hz, 1H, 1-H), 2.05 (dd, J =
13.6, 7.2 Hz, 1H, 2-H\(^b\)), 1.98 (dd, \(J = 13.6, 7.2\) Hz, 1H, 2-H\(^b\)), 0.98 (s, 3H, Me at cyclopropyl ring), 0.11-0.01 (m, 4H); \(^{13}\)C NMR: (100 MHz, CDCl\(_3\)) 145.2 (s, \(i\)), 144.2 (s, \(i'\)), 131.6 (s, \(p'\)), 129.3 (d), 128.38 (d), 127.8 (d), 126.2 (d, \(p\)), 48.7 (d, C-1), 45.1 (t, C-2), 23.2 (q, Me at cyclopropyl ring), 14.1 (s, CH\((\text{C}H\text{C}_3\text{H}_2\text{C}(\text{CH}_3)\text{C}\text{H}_3)\)), 13.3 (t, CH\((\text{C}H\text{C}_3\text{H}_2\text{C}(\text{CH}_3)\text{C}\text{H}_3)\)) 13.1 (t, CH\((\text{C}H\text{C}_3\text{H}_2\text{C}(\text{CH}_3)\text{C}\text{H}_3)\)) MS: (EI, 70 eV) \(m/z\) 272 (M\(^+\) + 2, 2), 270 (M\(^+\), 5), 235 (M\(^+\) - Cl, 5), 216 (9), 214 (27), 203 (M\(^+\) + 2 - C\(_6\)H\(_4\)), 201 (M\(^+\) - C\(_6\)H\(_5\) - Cl, 35), 165 (51), 69 (C\(_6\)H\(_5\)), 23; HRMS: (EI, 70 eV) cale for C\(_{19}\)H\(_{19}\)Cl 270.1175 \(M^+\) found \(m/z\) 270.1178; Analysis: C\(_{19}\)H\(_{19}\)Cl (270.80) Calcd: C, 79.84; H, 7.07; Cl, 13.09 Found: C, 79.60; H, 6.79; Cl, 13.07.

1-(1-methylcyclopropyl)-2-phenylpropane (3d)

According to the typical procedure, GaCl\(_3\) (0.0093 g, 0.053 mmol), cyclopentylmethylstannane 1 (91% purity) (0.3968 g, 1.01 mmol), and 1-chloro-1-phenylethylamine 2d (0.1430 g, 1.02 mmol) gave the crude product (80% 3d:4d = 74:26). Purification by flash column chromatography [solvent; hexane] on silica gel afforded the product (0.087 g, 49% 3d:4d = 74:26). Further purification was performed by gel permeation chromatography [solvent; chloroform]. IR: (neat) 3066, 2970, 2908, 1604, 1454, 1381, 1014, 760, 698 cm\(^{-1}\); \(^1\)H NMR: (400 MHz, CDCl\(_3\)) 7.27-7.23 (m, 2H, \(m\)), 7.22-7.13 (m, 3H, \(o\), \(p\)), 2.93 (qdd, \(J = 7.2, 7.2, 7.2\) Hz, 1H, 2-H\(^b\)), 1.68 (dd, \(J = 13.6, 7.2\) Hz, 1H, 1-H\(^3\)), 1.34 (dd, \(J = 13.6, 7.2\) Hz, 1H, 1-H\(^3\)), 1.26 (d, \(J = 7.2\) Hz, 3H, 3-H\(_3\)), 1.01 (s, 3H, Me at cyclopropyl ring), 0.30-0.20 (m, 2H), 0.04 (ddd, \(J = 9.6, 4.8, 4.8\) Hz, 1H), -0.03 (ddd, \(J = 9.6, 4.8, 4.8\) Hz, 1H); \(^{13}\)C NMR: (100 MHz, CDCl\(_3\)) 148.4 (s, \(i\)), 128.2 (d, \(m\)), 127.0 (d, \(o\)), 125.7 (d, \(p\)), 48.2 (t, C-1), 38.2 (d, C-2), 22.8 (q, Me at cyclopropyl ring), 22.1 (q, C-3), 14.0 (s, CH\((\text{C}H\text{C}_3\text{H}_2\text{C}(\text{CH}_3)\text{C}\text{H}_3)\)), 13.4 (t, CH\((\text{C}H\text{C}_3\text{H}_2\text{C}(\text{CH}_3)\text{C}\text{H}_3)\)) 12.7 (t, CH\((\text{C}H\text{C}_3\text{H}_2\text{C}(\text{CH}_3)\text{C}\text{H}_3)\)) MS: (EI, 70 eV) \(m/z\) 174 (M\(^+\), 3), 118 (29), 106 (22), 105 (M\(^+\) - C\(_6\)H\(_5\)), 69 (C\(_6\)H\(_5\))\(^+\)); HRMS: (EI, 70 eV) cale for C\(_{19}\)H\(_{18}\)Cl 174.1409 (M\(^+\)) found \(m/z\) 174.1411; Analysis: C\(_{13}\)H\(_{18}\)Cl (174.28) Calcd: C, 89.59; H, 10.41 Found: C, 89.32; H, 10.24.

1-(1-methylcyclopropyl)-2-(4-chlorophenyl)propane (3e)

Purification was performed by flash column chromatography [solvent; hexane] on silica gel and gel permeation chromatography [solvent; chloroform]. IR: (neat) 2962, 2916, 1493, 1092, 1014, 825 cm\(^{-1}\); \(^1\)H NMR: (400 MHz, CDCl\(_3\)) 7.23 (d, \(J = 8.8\) Hz, 2H, \(m\)), 7.11 (d, \(J = 8.8\) Hz, 2H, \(o\)), 2.91 (qdd, \(J = 7.2, 7.2, 7.2\) Hz, 1H, 2-H\(^b\)), 1.60 (dd, \(J = 13.6, 7.2\) Hz, 1H, 1-H\(^3\)), 1.35 (dd, \(J = 13.6, 7.2\) Hz, 1H, 1-H\(^3\)), 1.23 (d, \(J = 7.2\) Hz, 3H, 3-H\(_3\)), 0.99 (s, 3H, Me at cyclopropyl ring), 0.28-0.19 (m, 2H), 0.05 (ddd, \(J = 9.6, 4.8, 4.8\) Hz, 1H), -0.05 (ddd, \(J = 9.6, 4.8, 4.8\) Hz, 1H); \(^{13}\)C NMR: (100 MHz, CDCl\(_3\)) 146.8 (s, \(i\)), 131.2 (s, \(p\)), 128.4 (d), 128.3 (d), 48.1 (t, C-1), 37.6 (d, C-2), 22.8 (q, Me at cyclopropyl ring), 22.2 (q, C-3), 13.9 (s, CH\((\text{C}H\text{C}_3\text{H}_2\text{C}(\text{CH}_3)\text{C}\text{H}_3)\)), 13.3 (t, CH\((\text{C}H\text{C}_3\text{H}_2\text{C}(\text{CH}_3)\text{C}\text{H}_3)\)) 12.9 (t, CH\((\text{C}H\text{C}_3\text{H}_2\text{C}(\text{CH}_3)\text{C}\text{H}_3)\)) MS: (EI, 70 eV) \(m/z\) 210 (M\(^+\) + 2, 1), 208 (M\(^+\)), 173 (M\(^+\) - Cl, 3), 155 (M\(^+\) + 2 - C\(_6\)H\(_5\)), 154 (18), 153 (M\(^+\) - C\(_6\)H\(_7\)), 152 (52), 141 (M\(^+\) + 2 - C\(_6\)H\(_5\)), 139 (M\(^+\) - C\(_6\)H\(_5\)), 103 (26), 69 (C\(_6\)H\(_5\))\(^+\), 14, 55 (C\(_6\)H\(_7\)), 2); HRMS: (EI, 70 eV)
calcd for (C₁₃H₂₁Cl) 208.1019 (M⁺) found m/z 208.1028; Analysis: C₁₃H₂₁Cl (208.73) Calcd: C, 74.81; H, 8.21; Cl, 16.99 Found: C, 74.71; H, 8.02; Cl, 16.85.

1-(1-methylcyclopropyl)methyl-1,2,3,4-tetrahydronaphthalene (3f)

According to the typical procedure, InBr₃ (0.0175 g, 0.049 mmol), cyclopropylmethylstannane 1 (91% purity) (0.3990 g, 1.01 mmol), and 1-chloro-1,2,3,4-tetrahydronaphthalene 2f (0.1622 g, 0.97 mmol) gave the crude product (90% 3f:4f = 81:19). Purification by flash column chromatography [solvent; hexane] on silica gel afforded the product (0.153 g, 78% 3f:4f = 82:18). Further purification was performed by gel permeation chromatography [solvent; chloroform]. IR: (neat) 3070, 2931, 2866, 1450, 1011, 764 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.17-7.00 (m, 4H, aroma), 2.99 (dddd, J = 9.6, 4.8, 4.8, 1H, a), 2.76-2.72 (m, 2H, d), 2.05-1.98 (m, 1H, H⁴), 1.94-1.82 (m, 2H, b), 1.82-1.65 (m, 2H, c), 1.15-1.09 (m, 1H, CH(CH₃)₂), 1.13 (s, 3H, Me at cyclopropyl ring), 0.42-0.32 (m, 2H), 0.23-0.19 (m, 1H, 0.16-0.11 (m, 1H); ¹³C NMR: (100 MHz, CDCl₃) 141.9 (s), 136.9 (s, e), 129.0 (d), 128.7 (d), 125.4 (d), 125.3 (d), 46.2 (t, CHCH₂(CH₃)), 35.8 (d, a), 29.8 (t, d), 26.9 (t, b), 22.7 (q, Me at cyclopropyl ring), 19.3 (t, c), 14.1 (t, CHCH₂(CH₃)C₆H₄), 13.8 (s, CHCH₂(CH₃)), 12.1 (t, CHCH₂(CH₃)C₆H₄); MS: (EI, 70 eV) m/z 200 (M⁺, 6), 144 (26), 131 (M⁺-C₃H₉, 100), 69 (C₃H₆⁺, 3); HRMS: (EI, 70 eV) calcd for (C₁₃H₂₀) 200.1565 (M⁺) found m/z 200.1563.

1-(1-methylcyclopropyl)-2-(2-naphthyl)propane (3g)

According to the typical procedure, InBr₃ (0.0172 g, 0.049 mmol), cyclopropylmethylstannane 1 (91% purity) (0.4025 g, 1.02 mmol), and 2-(1-chloroethyl)naphthalene 2g (0.1906 g, 1.00 mmol) gave the crude product (99% 3g:4g = 81:19). Purification by flash column chromatography [solvent; hexane] on silica gel afforded the product (0.171 g, 76% 3g:4g = 80:20). ¹H NMR spectrum is shown below. Further purification was performed by gel permeation chromatography [solvent; chloroform]. IR: (neat) 3055, 2958, 2912, 2843, 1601, 1508, 1454, 1381, 1014, 818, 748 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.82-7.70 (m, 3H), 7.60 (s, 1H, J), 7.44-7.35 (m, 2H), 7.33 (d, J = 7.2 Hz, 1H), 3.10 (qdd, J = 8.0, 7.2, 7.2 Hz, 1H, 2-H), 1.77 (dd, J = 13.6, 7.2 Hz, 1H, H⁴), 1.42 (dd, J = 13.6, 8.0 Hz, 1H, H⁵), 1.33 (d, J = 7.2 Hz, 3H, 3-H₃), 1.03 (s, 3H, Me at cyclopropyl ring), 0.29 (dd, J = 9.6, 4.8, 4.8 Hz, 1H, 0.23, (dd, J = 9.6, 4.8, 4.8 Hz, 1H), 0.05-0.05 (m, 2H); ¹³C NMR: (100 MHz, CDCl₃) 145.8 (s, a), 133.6 (s), 132.1 (s), 127.7 (d), 127.6 (d), 127.5 (d), 126.0 (d), 125.7 (d), 125.03 (d), 124.97 (d), 48.0 (t, C-1), 38.3 (d, C-2), 22.9 (q, Me at cyclopropyl ring), 22.2 (q, C-3), 14.1 (s, CH(CH₃)CH₂CH₂(CH₃)), 13.5 (t, CH(CH₃)CH₂CH₂CH₂(C₆H₄)), 12.9 (t, CH(CH₃)CH₂CH₂CH₂(C₆H₄)); MS: (EI, 70 eV) m/z 224 (M⁺, 29), 156 (35), 155 (M⁺-C₃H₉, 100), 69 (C₃H₆⁺, 2); HRMS: (EI, 70 eV) calcd for (C₁₇H₂₀) 224.1565 (M⁺) found m/z 224.1560; Analysis: C₁₇H₂₀ (224.34) Calcd: C, 91.01; H, 8.99 Found: C, 90.90; H, 8.89.
3-[(1-methylcyclopropyl)methyl]cyclohexene (3h)

Purification was performed by flash column chromatography [solvent; hexane] on silica gel and gel permeation chromatography [solvent; chloroform]. IR: (neat) 3070, 3016, 2924, 2839, 1651 (C=C), 1450, 1011, 926, 671 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 5.71-5.60 (m, 2H, 1-H and 2-H), 2.36-2.25 (m, 1H, 3-H), 2.02-1.91 (m, 2H, 6-H₂), 1.90-1.81 (m, 1H, 4-H), 1.74-1.65 (m, 1H, 5-H), 1.59-1.46 (m, 1H, 5-H), 1.32 (dd, J = 13.6, 7.2 Hz, 1H, H), 1.21-1.19 (m, 1H, 4-H₂), 1.15 (dd, J = 13.6, 8.8 Hz, 1H, H), 1.04 (s, 3H, Me at cyclopropyl ring), 0.27-0.21 (m, 4H); ¹³C NMR: (100 MHz, CDCl₃) 141.4 (s, CHCH₂), 131.2 (s, C(CH₃), 129.7 (d, CHCH₂), 128.3 (d, CH₃), 126.4 (d, C-1), 45.9 (t, CH₃), 33.6 (d, C-3), 29.6 (t, C-4), 25.4 (m, C-6), 22.6 (q, Me at cyclopropyl ring), 21.5 (t, C-5), 13.4 (s, CH₂CH₃(CH₃)), 13.3 (t, CH₂CH(CH₃)CH₃), 13.1 (t, CH₂CH(CH₃)CH₃); MS: (EI, 70 eV) m/z 150 (M⁺, 4), 135 (22), 95 (M⁺ – C₆H₅, 22), 94 (47), 81 (M⁺ – C₆H₅), 79 (30), 69 (C₆H₅, 32), 55 (C₄H₇⁺, 6); HRMS: (EI, 70 eV) calced for (C₁₁H₁₈O)⁺ m/z 150.1409 (M⁺) found m/z 150.1404; Analysis: C₁₁H₁₈ (150.26) Calcd: C, 87.93; H, 12.07 Found: C, 87.64; H, 11.97.

2-(1-methylcyclopropyl)-1-(4-chlorophenyl)ethane (3i)

According to the procedure, InBr₃ (0.5935 g, 0.744 mmol), cyclopropylmethylstannane 1 (91% purity) (0.5935 g, 1.50 mmol), and 4-chlorobenzyl chloride 2i (0.1620 g, 1.01 mmol) gave the crude product (84% 3i:4i = 83:17). Purification by flash column chromatography [solvent; hexane] on silica gel afforded the product (0.115 g, 59% 3i:4i = 71:29). Further purification was performed by gel permeation chromatography [solvent; chloroform]. IR: (neat) 3070, 2935, 2862, 1493, 1092, 1014, 806 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.21 (d, J = 8.8 Hz, 2H, m), 7.08 (d, J = 8.8 Hz, 2H, o), 2.66-2.62 (m, 2H, 1-H₂), 1.50-1.46 (m, 2H, 2-H₂), 1.08 (s, 3H, Me at cyclopropyl ring), 0.28-0.21 (m, 4H); ¹³C NMR: (100 MHz, CDCl₃) 141.4 (s, i), 131.2 (s, p), 129.7 (d, o), 128.3 (d, m), 41.6 (t, C-2), 32.8 (t, C-1), 22.6 (q, Me at cyclopropyl ring), 15.4 (s, CH₂CH₂CH₂(CH₃)), 13.1 (t, two methylene groups in cyclopropyl ring); MS: (EI, 70 eV) m/z 196 (M⁺ + 2, 3), 194 (M⁺, 9), 159 (M⁺ – Cl, 4), 141 (M⁺ + 2 – C₂H₅, 7), 140 (35), 139 (M⁺ – C₆H₅, 19), 138 (100), 127 (M⁺ + 2 – C₆H₅, 30), 125 (M⁺ – C₆H₅, 78), 69 (C₆H₅, 21); HRMS: (EI, 70 eV) calced for (C₁₂H₁₃Cl) 194.0862 (M⁺) found m/z 194.0868; Analysis: C₁₂H₁₃Cl (194.70) Calcd: C, 74.03; H, 7.77; Cl, 18.21 Found: C, 73.97; H, 7.73; Cl, 18.12

ethyl 4-(1-methylcyclopropyl)-3-phenylbutanoate (3j)

Purification was performed by flash column chromatography [solvent; hexane] on silica gel and gel permeation chromatography [solvent; chloroform]. IR: (neat) 1736 cm⁻¹ (C=O); ¹H NMR: (400 MHz, CDCl₃) 7.29-7.24 (m, 2H, m), 7.22-7.15 (m, 3H, o, p), 4.00 (q, J = 7.2 Hz, 2H, CH₂CH₂O), 3.34 (dddd, J = 8.8, 8.0, 6.4, 6.4 Hz, 1H, 3-H), 2.74 (dd, J = 15.2, 6.4 Hz, 1H, H₄), 2.52 (dd, J = 15.2, 8.8 Hz, 1H, H₅), 1.62 (dd, J = 13.6, 8.0 Hz, 1H, H₆), 1.53 (dd, J = 13.6, 6.4 Hz, 1H, H₇), 1.11 (t, J = 7.2 Hz, 3H, CH₂CH₂O), 1.00 (s, 3H, Me at cyclopropyl ring), 0.26-0.17 (m, 2H), 0.02 (ddd, J = 9.6, 4.8, 4.8 Hz, 1H), 73

(13) The reaction using unmethylated cyclopropylmethylstannane failed. An equimolar use of indium halide was required. The reaction of unmethylated cyclopropylmethylstannane (2 mmol) with benzhydryl chloride (1 mmol) in the presence of InBr$_3$ (1 mmol) in dichloromethane gave cyclopropylmethylated product in 58% yield (ring-opening product, 28% yield).

(18) Benzyllic bromides were also applicable in a similar range to the chlorides. For example, the reaction of 1-bromo-1-phenylethane (1 mmol) with 1 (1 mmol) in the presence of GaCl$_3$ (0.05 mmol) in dichloromethane gave 3d (62%) and 4d (22%).

(21) Chlorination of alcohols using trimethylsilyl chloride catalyzed by BiCl$_3$ has been reported, see: Labrouille’ re, M.; Roux, C. L.; Gaspard- Iloughmane, H.; Dubac, J. *Synlett* **1994**, 723–724.

Chapter 3

Direct Synthesis of Alkynylstannanes: ZnBr$_2$ Catalyst for the Reaction of Tributyltin Methoxide and Terminal Alkynes

3-1. Introduction

A carbon–carbon triple bond is a highly valuable and versatile functional group in many natural products, bioactive compounds,1 and organic materials.2 Alkynylstannanes, which have high stability, reactivity, and functional group tolerance, are important reagents for introducing an alkynyl moiety into organic molecules.3 In particular, the Migita–Kosugi–Stille coupling using alkynylstannanes is widely used for the construction of C(sp)–C(sp2) bonds in the synthesis of aryl alkynes or conjugated enynes.4 Transmetalation between an organotin halide and an alkynyllithium or alkynylmagnesium compound is the most common route to alkynylstannanes [Eq. (1), Scheme 1].5 However, the method using those alkynylmetals has some drawbacks such as poor functional group tolerance and the production of an equimolar amount of metal salts. The direct reaction of a tin amide with a terminal alkyne is also employed for the synthesis of alkynylstannanes, but its substrate scope is narrow because of the strong basicity of a tin amide and the production of basic amine by-products [Eq. (2), Scheme 1].6 In contrast, the direct condensation reaction between a tin alkoxide and a terminal alkyne is regarded as a promising process that is mild because no strong base is required and an alcohol is the only by-product. Only

Scheme 1. Synthetic methods for alkynylstannanes.

General procedure

Bu$_3$SnCl \quad + \quad R$'$SnBu$_3$ \quad \(\text{Mt} = \text{Li or Mg}\) \quad \(\text{MtCl}\)

Direct method

Bu$_3$SnNR$'_2$ \quad + \quad R'OH \quad HNR$'_2$

Bu$_3$SnOR* \quad + \quad EWG \quad heat \quad R'OH \quad EWG

This study

Bu$_3$SnOMe \quad + \quad R\quad cat. ZnBr$_2$ \quad MeOH

room temperature via Sn-Zn transmetalation
alkynes bearing electron-withdrawing groups (EWGs), however, have been reported to react under reaction conditions requiring heat thus far [Eq. (3), Scheme 1]. Activation of alkynes by Lewis acids, instead of EWGs, was expected to achieve this direct coupling under milder reaction conditions as a way to develop a more versatile synthetic method of alkynylstannanes with various types of functional groups. We report herein our serendipitous discovery that a catalytic amount of ZnBr$_2$ effectively promoted a coupling reaction between Bu$_3$SnOMe and terminal alkynes at room temperature; the ZnBr$_2$ was transmetalated with Bu$_3$SnOMe rather than acting as a Lewis acid [Eq. (4), Scheme 1]. This reaction system is applicable to various types of aliphatic and aromatic terminal alkynes. In addition, the mild reaction conditions, in which methanol is the only waste, enables the one-pot synthesis of aryl alkynes by the Migita–Kosugi–Stille coupling.

3-2. Results and Discussion

Initially, the addition of weak Lewis acids, which were expected to characteristically interact with alkynes, was examined in the reaction of Bu$_3$SnOMe with 1-dodecyne (1a), as partially summarized in Table 1. Only a trace amount of the product 2a was formed in the absence of a catalyst even when heated (Table 1, entry 1). In the presence of the transition metal catalysts PdCl$_2$ and CuBr, 2a was obtained in modest yields (Table 1, entries 2 and 3). While soft Lewis acids like BiBr$_3$ and InBr$_3$ did not improve the yields (Table 1, entries 4 and 5), Zn(OTf)$_2$ produced a high product yield (Table 1, entry 6). In the search for more efficient catalysts, we were delighted to find that inexpensive ZnBr$_2$ was the most practical catalyst employed (Table 1, entries 7 and 8). At ambient temperature, 5 mol % of ZnBr$_2$ afforded the desired alkynylstannane 2a in 68% yield.

Table 1. Effect of catalysts.a

<table>
<thead>
<tr>
<th>entry</th>
<th>catalyst</th>
<th>yield/ %b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1c</td>
<td>none</td>
<td><5</td>
</tr>
<tr>
<td>2</td>
<td>PdCl$_2$</td>
<td>14</td>
</tr>
<tr>
<td>3</td>
<td>CuBr</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>BiBr$_3$</td>
<td><5</td>
</tr>
<tr>
<td>5</td>
<td>InBr$_3$</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>Zn(OTf)$_2$</td>
<td>68</td>
</tr>
<tr>
<td>7</td>
<td>ZnCl$_2$</td>
<td>42</td>
</tr>
<tr>
<td>8</td>
<td>ZnBr$_2$</td>
<td>68</td>
</tr>
</tbody>
</table>

a Reaction conditions: Bu$_3$SnOMe (1.2 mmol), 1a (1 mmol), catalyst (0.05 mmol), THF (1 mL), RT, 3 h.

b Determined by 1H NMR. c Reaction was performed at 60 °C.
Under the optimized reaction conditions, reactions with various terminal alkynes were carried out. As summarized in Table 2, a wide range of functional groups were compatible with the reaction.

Table 2. Catalytic synthesis of alkynylstannanes 2 from Bu$_3$SnOMe and terminal alkynes 1.

<table>
<thead>
<tr>
<th>entry</th>
<th>alkyne 1</th>
<th>product 2</th>
<th>yield/ %b</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1a</td>
<td>2a</td>
<td>68 (61)</td>
</tr>
<tr>
<td>2</td>
<td>Ph</td>
<td>1b</td>
<td>78 (70, 97c)</td>
</tr>
<tr>
<td>3d</td>
<td></td>
<td>1c</td>
<td>72 (75)</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>1d</td>
<td>73 (77)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>1e</td>
<td>68 (39, 79c)</td>
</tr>
<tr>
<td>6</td>
<td>Cl</td>
<td>1f</td>
<td>75 (62)</td>
</tr>
<tr>
<td>7</td>
<td>MeO</td>
<td>1g</td>
<td>56 (46, 92c)</td>
</tr>
<tr>
<td>8</td>
<td>PhOCO</td>
<td>1h</td>
<td>76 (47)</td>
</tr>
<tr>
<td>9</td>
<td>HO</td>
<td>1i</td>
<td>2i n.d.</td>
</tr>
<tr>
<td>10</td>
<td>X = H</td>
<td>1j</td>
<td>75 (77)</td>
</tr>
<tr>
<td>11</td>
<td>4-MeO</td>
<td>1k</td>
<td>79 (80)</td>
</tr>
<tr>
<td>12d</td>
<td>4-tBu</td>
<td>1l</td>
<td>78 (72)</td>
</tr>
<tr>
<td>13</td>
<td>3-Me</td>
<td>1m</td>
<td>80 (69, 94c)</td>
</tr>
<tr>
<td>14</td>
<td>3-Cl</td>
<td>1n</td>
<td>84 (61, 84c)</td>
</tr>
<tr>
<td>15</td>
<td>2-F</td>
<td>1o</td>
<td>88 (74)</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>1p</td>
<td>72 (74, 92c)</td>
</tr>
<tr>
<td>17</td>
<td></td>
<td>1q</td>
<td>80 (79)</td>
</tr>
<tr>
<td>18d</td>
<td>MeO$_2$C</td>
<td>1r</td>
<td>84 (58, 77c)</td>
</tr>
<tr>
<td>19de</td>
<td>Me$_3$Si</td>
<td>1s</td>
<td>65 (49)</td>
</tr>
</tbody>
</table>

a Reaction conditions: Bu$_3$SnOMe (1.2 mmol), 1 (1 mmol), ZnBr$_2$ (0.05 mmol), THF (1 mL), rt, 3 h. b Yields of crude products determined by 1H NMR. Values in parentheses are isolated yields. c Purity of the products. d MeCN was used instead of THF. e Bu$_3$SnOMe (1 mmol) and 1s (2 mmol) were used.
conditions. Aliphatic terminal alkynes, including base-labile ones bearing a cyano or carbonyl group, afforded the corresponding products 2a–2e in high yields (Table 2, entries 1–5). The products 2f, 2g, and 2h were also obtained effectively from propargyl chloride (1f), the propargyl ether 1g, and propargyl ester 1h, respectively (Table 2, entries 6–8). Unfortunately, the reaction of propargyl alcohol (1i) was suppressed, probably because of the hydroxy proton (Table 2, entry 9). This method was also applicable to aromatic alkynes bearing an electron-donating or electron-withdrawing group (Table 2, entries 10–15). Heteroaromatic compounds 1p and 1q gave high yields, as well (Table 2, entries 16 and 17). In addition, alkynes directly connected by ester and silyl moieties are suitable for coupling to produce the corresponding alkynylstannanes 2r and 2s, respectively (Table 2, entries 18 and 19).

The synthesis of tributyl(3-bromopropynyl)stannane (2t) was examined, because the general reaction using ethyl magnesium bromide, propargyl bromide (1t), and Bu₃SnCl resulted in a mixture of 2t (29%) and 3 (25%) even under controlled reaction conditions (Scheme 2). The generation of 3-bromo-1-propynylmagnesium bromide and propargyl magnesium bromide in the first step led to the formation of the mixture. However, our method provided the desired reaction and produced 2t in 89% yield with no side reactions. One possible reason might have been that the catalytic amount of ZnBr₂ was sufficient and no base stronger than Bu₃SnOMe appeared in the system.

Scheme 2. Synthesis of tributyl(3-bromopropynyl)stannane (2t). Yields were determined by ¹H NMR. The value in parenthesis is the isolated yield.

To gain insight into the reaction mechanism, a mixture of Bu₃SnOMe and ZnBr₂ was monitored by ¹³C NMR spectroscopy (Figure 1). When ZnBr₂ and 2 equivalents of Bu₃SnOMe were mixed in THF-d₈ at room temperature, the generation of Bu₃SnBr (5; δ(¹³C) = 30.0, 27.6, 18.3, and 13.8 ppm) and the complete consumption of the starting Bu₃SnOMe were observed (Figure 1b). These results indicate that transmetalation between Bu₃SnOMe and ZnBr₂ occurred to give Zn(OMe)₂ (4; δ = 56.5 ppm; Figure 1b). The addition of phenylacetylene (1j) to the mixture furnished the corresponding alkynylstannane 2j (Figure 1c). In contrast, when Zn(OTf)₂ instead of ZnBr₂ was treated with Bu₃SnOMe, no transmetalation was observed (see the Experimental Section). Apparently, an alternative mechanism should be considered.

On the basis of the NMR study, a plausible reaction mechanism is shown in Scheme 3. First, the transmetalation between Bu₃SnOMe and ZnBr₂ gives the zinc methoxide 6, which should be Zn(OMe)₂

79
because Bu₃SnOMe is in large excess of ZnBr₂ in the reaction mixture. Next, an abstraction of the terminal proton from alkyne 1 by 6 provides the alkynylzinc species 7. Finally, the reaction of 7 with Bu₃SnOMe affords the alkynylstannane 2 with the regeneration of 6. The mechanism using a Zn(OTf)₂ catalyst may be the usual one (Table 1, entry 6), whereby the reaction would be started from the activation of the alkyne 1 by coordination to Zn(OTf)₂.

Figure 1. ¹³C NMR spectra in THF-d₈: a) Bu₃SnOMe. b) The mixture of ZnBr₂ and 2 equivalents of Bu₃SnOMe. c) Just after the addition of alkyne 1j (2.5 equiv) to the mixture (b). See the Experimental Section for the experimental details.

Scheme 3. Plausible reaction mechanism.

This catalytic method allowed the one-pot synthesis of various functionalized aryl alkynes by the Migita–Kosugi–Stille coupling (Scheme 4). The ZnBr₂-catalyzed formation of alkynylstannanes 2 was
directly followed by palladium-catalyzed coupling with aryl bromides to furnish the corresponding aryl alkynes 8 in good to high yields.\(^{19}\) In most cases, the yields of coupling products 8 paralleled those of alkynylstannanes 2, as shown in Table 2. These results indicate that in situ generated alkynylstannanes were fully converted into coupling products without suppression by a zinc catalyst or the by-products MeOH and Bu\(_3\)SnBr.

Table 3. One-pot synthesis of aryl alkynes via Migita-Kosugi-Stille coupling.\(^{a}\)

<table>
<thead>
<tr>
<th>Bu(_3)SnOMe (1.2 equiv) + ZnBr(_2) (5 mol %)</th>
<th>Pd(_2)(dba)(_3) (1.5 mol %)</th>
<th>P((\text{Bu}))(_3) (3.3 mol %)</th>
<th>Aryl bromide (1 equiv)</th>
<th>R</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>THF or MeCN rt, 3 h</td>
<td>THF or MeCN rt, 3 h</td>
<td>THF or MeCN rt, 3 h</td>
<td>Ar</td>
<td>R</td>
<td>8</td>
</tr>
<tr>
<td>8a 74% (62%)</td>
<td>8b 79% (47%)</td>
<td>8c 88% (66%)</td>
<td>8d 76% (69%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8e 76% (61%)</td>
<td>8f 49% (48%)</td>
<td>8g 86% (78%)</td>
<td>8h 80% (74%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8i 84% (75%)</td>
<td>8j 61% (55%)</td>
<td>8k 71% (56%)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\(^{a}\) See the Supporting Information for experimental details. Yields were determined by \(^{1}\)H NMR. Values in parentheses are isolated yields.

To further expand the utility of this reaction, the synthesis of a diyne compound was investigated.\(^{20}\) After the ZnBr\(_2\)-catalyzed reaction of Bu\(_3\)SnOMe with 1e, the resulting 2e (unpurified) was subjected to the coupling with the aryl bromide 9 bearing a terminal alkyne moiety to give the corresponding product 10 in 51% yield (Scheme 5). On the contrary, when 1e was treated with 9 under the standard Sonogashira conditions, no product 10 was obtained (Scheme 6).\(^{21,22}\) The zinc-catalyzed synthesis of alkynylstannanes/Migita–Kosugi–Stille coupling sequence is expected to be a helpful tool in the synthesis of more elaborate molecules.

\[
\begin{align*}
&\text{Bu₃SnOMe} & (1.2 \text{ equiv}) \\
&\text{1e} & \xrightarrow{\text{ZnBr}_2 (5 \text{ mol } \%)} \\
&\text{THF, rt, 3 h} & \rightarrow \text{SnBu}_3 \\
&\text{2e} & \\
&\text{Br} & \\
&\text{O} & \\
&\text{Bu}_3 & \\
&\text{3} & \\
&\text{Sn} & \\
&\text{OMe} & \\
&\text{10} & : 51\% (33\%) \text{ yield}^a
\end{align*}
\]

\[\text{Br} \quad \text{O} \quad \text{Bu}_3 \quad \text{SnOMe} (1.2 \text{ equiv}) + \text{ZnBr}_2 (5 \text{ mol } \%) \xrightarrow{\text{THF, rt, 3 h}} \text{SnBu}_3 \]

\[\text{1e} \quad \xrightarrow{\text{Pd}_2(\text{dba})_3 (1.5 \text{ mol } \%), \text{P}()_3(\text{Bu})_2 (3.3 \text{ mol } \%)} \text{THF, rt, 1 h} \]

\[\text{9 (0.7 equiv)} \quad \text{Br} \quad \text{O} \quad \text{SnBu}_3 \]

\[\text{10: 51\% (33\%) yield}^a\]

^a Yield was determined by ^1H NMR. The value in parenthesis is the isolated yield.

Scheme 5. Sonogashira reaction of 1e with 9.

\[
\begin{align*}
&\text{1e} & \xrightarrow{\text{PdCl}_2(\text{PPh}_3)_2 (4 \text{ mol } \%), \text{CuI} (4 \text{ mol } \%), \text{NEt}_3 (3 \text{ equiv})} & \text{MeCN, 80 °C, 24 h} & \rightarrow \text{complicated} \\
&\text{9} & \xrightarrow{} & \text{10} : 0\%
\end{align*}
\]

3.3. Conclusion

In summary, the ZnBr$_2$-catalyzed synthesis of alkynylstannanes with a wide range of functional group compatibility was achieved. As far as can be ascertained, this is the first example of the versatile synthesis of alkynylstannanes from Bu$_3$SnOMe and terminal alkynes under very mild reaction conditions. The transmetalation between Bu$_3$SnOMe and ZnBr$_2$ to generate Zn(O Me)$_2$ is proposed as a key process to complete the catalytic cycle. Moreover, aryl alkynes were synthesized using a one-pot protocol that included the Migita–Kosugi–Stille coupling.

3.4. Experimental Section

General. New compounds were characterized by ^1H, ^{13}C, ^{119}Sn off-resonance techniques, COSY, HMQC, HMBC, IR, MS, HRMS, and elemental analysis. ^1H (400 MHz) and ^{13}C NMR (100 MHz) spectra were obtained with TMS as an internal standard. ^{119}Sn (150 MHz) spectra were obtained with Me$_4$Sn as an external standard. IR spectra were recorded as thin films or solids in KBr pellets. All reactions were carried out under nitrogen. Column chromatography was performed on silica gel (MERK C60 or Fuji Silysia FL100DX). Bulb-to-Bulb distillation (Kugelrohr) was accomplished at the oven temperature and pressure indicated. Yields were determined by ^1H NMR using internal standard.
Materials. Dehydrated acetonitrile, tetrahydrofuran, dichloromethane, and ethanol were purchased and used as obtained. Catalysts examined in Table 1 were also purchased from commercial sources. Tributyltin methoxide was purchased from commercial sources and used after distillation. Alkynes 1a–1d and 1f–1t were purchased from commercial sources. Alkyne 1e was prepared by known method and this compound was reported.23 Aryl bromide 9 was prepared by known method and this compound was reported.24 All other reagents were commercially available.

Typical procedure for the reaction of tributyltin methoxide with alkyne 1a (Table 1) To a solution of catalyst (0.05 mmol) and 1-dodecyne (1 mmol) in THF (1 mL), Bu₃SnOMe (1.2 mmol) was added. The mixture was stirred for 3 h at room temperature, and then quenched by H₂O (10 mL). The mixture was extracted with diethyl ether (3 x 10 mL). The collected organic layers were dried (MgSO₄), and evaporation of volatiles gave the crude product which was analyzed by ¹H NMR.

Typical procedure for the reaction of tributyltin methoxide with alkynes 1 (Table 2): To a solution of ZnBr₂ in THF (0.05 M, 1 mL) and alkyne 1 (1 mmol) was added Bu₃SnOMe (1.2 mmol). The mixture was stirred for 3 h at room temperature, and then quenched by H₂O (10 mL). The mixture was extracted with diethyl ether (3 x 10 mL). The collected organic layers were dried (MgSO₄), and evaporation of volatiles gave the crude product, which was analyzed by ¹H NMR. The crude product was diluted with AcOEt (30 mL) and washed by NH₄F (aq) (10%, 20 mL). The obtained white precipitate was filtered off, and the filtrate was dried (MgSO₄). Evaporation of volatiles gave the product.

Experimental procedure for Scheme 2: To a solution of propargyl bromide (0.237 g, 2.00 mmol) in THF (2 mL), EtMgBr in THF (1M, 2 mL) was added dropwised at -78 ºC. After the mixture was stirred for 30 min at -78 ºC, Bu₃SnCl (0.651 g, 2.00 mmol) was added, then the mixture was warmed to room temperature. The mixture was stirred for 3 h and then quenched by H₂O (10 mL). The mixture was extracted with diethyl ether (3 x 10 mL). The collected organic layers were dried (MgSO₄), and evaporation of volatiles gave the crude product, which was analyzed by ¹H NMR.

Experimental procedure for NMR study of transmetalation between Bu₃SnOMe and ZnBr₂ (Figure 1): The mixture of Bu₃SnOMe (0.095 g, 0.30 mmol) and ZnBr₂ (0.032 g, 0.14 mmol) was prepared in THF-d₅ (0.5 mL) in a nitrogen-filled glove box. After mixing at room temperature for 30 min, the mixture was transferred into NMR tube. The resulting ¹³C NMR spectrum is shown in Figure 1b. ¹¹⁹Sn NMR spectrum is shown below (Figure S2a). Phenylacetylene (0.042 g, 0.41 mmol) was added to the mixture. The resulting ¹³C NMR spectrum is also shown in Figure 1c.

Experimental procedure for NMR study of transmetalation between Bu₃SnOMe and Zn(OTf)₂: When Bu₃SnOMe (0.097 g, 0.30 mmol) was mixed with Zn(OTf)₂ (0.052 g, 0.14 mmol) in THF-d₅ (0.5 mL), the signals of Bu₃SnOMe were little changed as shown below (Figure S1a and b). ¹¹⁹Sn NMR
spectrum is also shown below (Figure S2b). These results indicate that the transmetalation between Bu$_3$SnOMe and Zn(OTf)$_2$ did not occur. The addition of phenylacetylene 1j (0.039 g, 0.38 mmol) to the mixture (b) afforded the corresponding alkynylstannane 2j (Figure S1c).

![Figure S1. 13C NMR spectra in THF-d_8: a) Bu$_3$SnOMe. b) The reaction mixture of Bu$_3$SnOMe (2 equiv) and Zn(OTf)$_2$. c) Just after the addition of alkyne 1j to the mixture (b).]

![Figure S2. 119Sn NMR spectra in THF-d_8: a) The mixture of ZnBr$_2$ and Bu$_3$SnOMe (2 equiv). b) The mixture of Zn(OTf)$_2$ and Bu$_3$SnOMe (2 equiv). c) Bu$_3$SnOMe. d) Bu$_3$SnBr.]
Typical procedure for one-pot synthesis of aryl alkynes (Table 3): To a solution of ZnBr₂ in THF (0.05 M, 1 mL) and alkyne (1 mmol) was added Bu₃SnOMe (1.2 mmol). After the mixture was stirred for 3 h at room temperature, o-bromotoluene (1 mmol), P(tBu)₃ in THF (0.1 M, 0.33 mL), and Pd₂(db)₃ (0.015 mmol) was added sequentially. The mixture was stirred for 3 h at room temperature, and then quenched by NH₄F (aq) (10%, 10 mL). The mixture was extracted with diethyl ether (3 x 10 mL). The collected organic layers were dried (MgSO₄), and evaporation of volatiles gave a crude product, which was analyzed by ¹H NMR. Purification by flash column chromatography gave the product.

Experimental procedure for Scheme 4: To a solution of ZnBr₂ in THF (0.05 M, 1 mL) and 5-hexyn-2-one (80% purity) (0.127 g, 1.05 mmol) was added Bu₃SnOMe (0.391 g, 1.22 mmol). The mixture was stirred for 3 h at room temperature, and then quenched by H₂O (10 mL). The mixture was extracted with diethyl ether (3 x 10 mL). The collected organic layers were dried (MgSO₄). The solvent was evaporated to give a crude product, which was used in the Migita-Kosugi-Stille coupling without purification. To a solution of the crude 6-(tributyltin)-5-hexyn-2-one in THF (1 mL), was added 1-bromo-2-(prop-2-ynyl)benzene (0.136 g, 0.70 mmol), P(tBu)₃ in THF (0.1 M, 0.3 mL), and Pd₂(db)₃ (0.0139 g, 0.015 mmol) sequentially. The mixture was stirred for 1 h at room temperature, and then quenched by NH₄F (aq) (10 mL). The mixture was extracted with diethyl ether (3 x 10 mL). The collected organic layers were dried (MgSO₄). The evaporation of the ether solution gave the crude product, which was analyzed by ¹H NMR. Purification by flash column chromatography [solvent; hexane/ethyl acetate = 80/20, column length; 11 cm] gave the product as a pale yellow oil (0.049 g, 33%).

Experimental procedure for Scheme 5: To a solution of 1-bromo-2-(prop-2-ynyl)benzene (0.101 g, 0.52 mmol), 5-hexyne-2-one (80% purity) (0.064 g, 0.53 mmol), and NEt₃ (0.151 g, 1.49 mmol) in MeCN (3 mL), PdCl₂(PPh₃)₂ (0.014 g, 0.02 mmol) and CuI (0.0036 g, 0.019 mmol) was added. The mixture was heated to 80 ºC and stirred for 24 h. The solvent was evaporated, and the residue was analyzed by ¹H NMR.

Product data

Tributyl(1-dodecynyl)stannane (2a) According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 1-dodecyn (0.160 g, 0.96 mmol), and Bu₃SnOMe (0.378 g, 1.18 mmol) gave the product as a colorless oil (0.264 g, 61% yield). IR: (neat) 2900, 2148 (C≡C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 2.24 (t, 2H, J = 14.0 Hz, 3-H₂), 1.66-1.19 (m, 28H), 1.13-0.83 (m, 18H); ¹³C NMR: (100 MHz, CDCl₃) 112.0 (s, C-2, d by ²JSn-C = 69.6 Hz), 81.2 (s, C-1, d by ¹J₁₁₀S¹⁻¹¹Sn-C = 372.5 Hz, ¹J₁₁₁S¹⁻¹¹Sn-C = 357.2 Hz), 31.9 (t), 29.6, 29.3, 29.2, 29.1, 28.9, 28.8, 27.0 (t, C-γ), d by ¹J₁₁₀S¹⁻¹¹Sn-C = 59.0 Hz), 22.7 (t), 20.1 (t, C-3), 14.1, 13.6 (C-δ), 10.9 (t, C-α, d by ¹J₁₁₀S¹⁻¹¹Sn-C = 384.2 Hz, ¹J₁₁₁S¹⁻¹¹Sn-C = 365.4 Hz); ¹¹⁹Sn NMR: (150 MHz, CDCl₃) –70.0; MS: (EI, 70 eV) m/z
456 (M⁺, 0.46), 400 (20), 399 (M⁺ – Bu, 100), 398 (39), 397 (73), 396 (30), 395 (40); HRMS: (EI, 70 eV) calcd for (C₂₄H₄₈Sn) 456.2778 (M⁺) found m/z 456.2781

Tributyl(3-phenyl-1-propynyl)stannane (2b)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 3-phenyl-1-propyne (0.119 g, 1.02 mmol), and Bu₃SnOMe (0.394 g, 1.22 mmol) gave the product as a yellow oil (0.301 g, 70% yield, 97% purity (A small portion was analyzed by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard in order to determine the purity.)). IR: (neat) 2900, 2152 (C≡C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.37 (d, 2H, J = 8.0 Hz, o-H₂), 7.30 (t, 2H, m-H₂), 7.25-7.19 (m, 1H, p-H), 3.69 (s, 2H, 3-H₂ with d by ¹J₃–Sn-C = 10.4 Hz), 1.67-1.46 (m, 6H, β-H₂ x 3), 1.39-1.29 (m, 6H, γ-H₂ x 3), 1.07-0.97 (m, 6H, α-H₂ x 3), 0.90 (t, 9H, J = 8.0 Hz, δ-H₃ x 3); ¹³C NMR: (100 MHz, CDCl₃) 137.1 (s, C-α), 128.2 (d, C-γ), 127.8 (d, C-β), 126.3 (d, C-p), 108.3 (s, C-2, d by ¹J₂–Sn-C = 64.7 Hz), 84.5 (s, C-1), 28.9 (t, C-β, d by ¹J₁–Sn-C = 23.7 Hz), 26.9 (t, C-γ, d by ¹J₁–Sn-C = 60.6 Hz), 26.4 (s, C-3), 13.6 (q, C-δ), 11.0 (t, C-α, d by ¹J₁₁–Sn-C = 382.5 Hz, ¹J₁₁₁–Sn-C = 366.2 Hz); Sn NMR: (150 MHz, CDCl₃) –68.6; MS: (EI, 70 eV) m/z 406 (M⁺, 0.4), 349 (M⁺ – Bu, 100), 348 (37), 347 (75), 346 (29), 345 (42), 235 (30), 233 (22); HRMS: (EI, 70 eV) calcd for (C₂₁H₃₂Sn) 406.1682 (M⁺) found m/z 406.1663

Tributyl(1-cyclohexen-1-ylethynyl)stannane (2c)

According to the typical procedure, ZnBr₂ in MeCN (0.05 M, 1 mL), 2-ethyl-1-cyclohexene (0.106 g, 1.00 mmol), and Bu₃SnOMe (0.383 g, 1.19 mmol) gave the product as a yellow oil (0.298 g, 75% yield). The analytical data for this compound were in excellent agreement with the reported data.³b

Tributyl(5-cyanopent-1-ynyl)stannane (2d)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 5-cyano-1-pentyne (0.091 g, 0.98 mmol), and Bu₃SnOMe (0.402 g, 1.21 mmol) gave the product as a colorless oil (0.307 g, 77% yield). The analytical data for this compound were in excellent agreement with the reported data.³b

Tributyl(5-oxo-1-hexynyl)stannane (2e)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 5-hexyn-2-one (0.092 g, 0.96 mmol), and Bu₃SnOMe (0.389 g, 1.21 mmol) gave the product as a colorless oil (0.145 g, 39% yield, 79% purity (A small portion was analyzed by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard in order to determine the purity.)). IR: (neat) 2900, 2152 (C≡C), 1720 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 2.67 (t, 2H, J = 8.0 Hz, 4-H₂), 2.50 (t, 2H, J = 8.0 Hz, 3-H₂), 2.17 (s, 3H, 6-H₃), 1.66-1.43 (m, 6H, β-H₂ x 3), 1.39-1.23 (m, 6H, γ-H₂ x 3), 1.04-0.93 (m, 6H, α-H₂ x 3), 0.90 (t, 9H, J = 7.5 Hz, δ-H₃ x 3); ¹³C
NMR: (100 MHz, CDCl₃) 207.0 (s, C-5), 109.2 (s, C-2), 84.5 (s, C-1), 43.1 (t, C-4), 29.9 (q, C-6), 28.8 (t, C-β, d by ²J_Sn-C = 22.9 Hz), 27.0 (t, C-γ, d by ³J_Sn-C = 60.6 Hz), 14.9 (t, C-3), 13.6 (q, C-δ), 10.9 (t, C-α, d by ¹J_{119Sn-C} = 384.2 Hz, ¹J_{117Sn-C} = 367.0 Hz); ¹¹⁹Sn NMR: (150 MHz, CDCl₃) –69.5; MS: (Cl, 200 eV) m/z 387 (M+ + 1), 386 (22), 385 (42), 383 (82), 291 (20), 97 (100); HRMS: (Cl, 200 eV) calcd for (C₁₅H₁₅SnOSn) 387.1710 (M+ + 1) found m/z 387.1707

Tributyl(3-chloro-1-propynyl)stannane (2f)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), propargyl chloride (0.081 g, 1.09 mmol), and Bu₃SnOMe (0.381 g, 1.19 mmol) gave the product as a colorless oil (0.245 g, 62% yield). IR (neat): 2900, 2156 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.16 (s, 2H, 3-α, d by 4J_{Sn-H} = 9.6 Hz), 1.67-1.47 (m, 6H, β-H₂ x 3), 1.38-1.29 (m, 6H, γ-H₂ x 3), 1.10-0.97 (m, 6H, α-H₂ x 3), 0.96-0.87 (m, 9H, δ-H₂ x 3); ¹³C NMR: (100 MHz, CDCl₃) 104.0 (s, C-2, d by ²J_Sn-C = 53.3 Hz), 91.2 (s, C-1), 31.3 (t, C-3, d by ³J_Sn-C = 7.4 Hz), 28.8 (t, C-β, d by ²J_Sn-C = 23.8 Hz), 26.9 (t, C-γ, d by ³J_Sn-C = 59.8 Hz), 13.6 (q, C-δ), 11.1 (t, C-α, d by ¹J_{119Sn-C} = 382.4 Hz, ¹J_{117Sn-C} = 365.4 Hz); ¹¹⁹Sn NMR: (150 MHz, CDCl₃) –64.9; MS: (EI, 70 eV) m/z 307 (M+ – Bu, 100), 306 (35), 304 (22), 303 (35), 251 (M+ – Bu₂ + 1, 19), 249 (M+ – Buᵢ – 1, 14), 193 (29), 191 (22), 177 (22), 159 (27), 157 (29), 155 (57), 153 (40), 67 (71), 41 (20); HRMS: (EI, 70 eV) calcd for (C₁₁H₂₀ClSn) 307.0275 (M⁺ – Bu) found m/z 307.0273

Tributyl(3-methoxy-1-propynyl)stannane (2g)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), methyl-propargyl-ether (0.089 g, 1.27 mmol), and Bu₃SnOMe (0.391 g, 1.22 mmol) gave the product as a colorless oil (0.229 g, 46% yield, 92% purity (A small portion was analyzed by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard in order to determine the purity.)). IR (neat): 2900, 2148 (C=O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 4.11 (s, 2H, 3-α, d by 4J_{Sn-H} = 8.8 Hz), 3.39 (s, 3H, OMe), 1.66-1.45 (m, 6H, β-H₂ x 3), 1.39-1.29 (m, 6H, γ-H₂ x 3), 1.03-0.96 (m, 6H, α-H₂ x 3), 0.93-0.87 (m, 9H, δ-H₂ x 3); ¹³C NMR: (100 MHz, CDCl₃) 105.6 (s, C-2), 89.8 (s, C-1), 60.6 (t, C-3), 57.2 (q, OMe), 28.8 (t, C-β, d by ²J_Sn-C = 22.9 Hz), 26.9 (t, C-γ, d by ³J_Sn-C = 60.6 Hz), 13.6 (q, C-δ), 11.0 (t, C-α, d by ¹J_{119Sn-C} = 381.8 Hz, ¹J_{117Sn-C} = 365.5 Hz); ¹¹⁹Sn NMR: (150 MHz, CDCl₃) –67.3; MS: (EI, 70 eV) m/z 360 (M⁺, 0.7), 303 (M⁺ – Bu, 100), 302 (34), 301 (75), 300 (27), 299 (42), 247 (21); HRMS: (EI, 70 eV) calcd for (C₁₅H₁₅SnOSn) 360.1475 (M⁺) found m/z 360.1480

Tributyl(3-benzoyloxy-1-propynyl)stannane (2h)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), propargyl benzoate (0.160 g, 1.00 mmol), and Bu₃SnOMe (0.393 g, 1.22 mmol) gave the product as a colorless oil (0.209 g, 47% yield). IR (neat): 2900, 2160 (C=C), 1728 (C=O), 1269 (C–O) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 8.08 (d, 2H, J =
7.2 Hz, o-H x 2), 7.57 (t, 1H, J = 7.4 Hz, p-H), 7.44 (t, 2H, J = 7.7 Hz, m-H x 2), 4.94 (s, 2H with d by \(^4J_{Sn-H} = 8.2 \) Hz), 1.66-1.47 (m, 6H, \(\beta-H_2 \times 3 \)), 1.38-1.29 (m, 6H, \(\gamma-H_2 \times 3 \)), 1.10-0.95 (m, 6H, \(\alpha-H_2 \times 3 \)), 0.94-0.86 (m, 9H, \(\delta-H_3 \times 3 \)); \(^{13}\)C NMR: (100 MHz, CDCl\(_3\)) 165.8 (s, C-5), 133.0 (d, C-p), 129.8 (s, C-i), 129.7 (t, C-o), 128.2 (t, C-2), 103.4 (s, C-2, d by \(^2J_{Sn-C} = 55.6 \) Hz), 91.1 (s, C-1, d by \(^1J_{Sn-C} = 306.4 \) Hz, \(^1J_{117Sn-C} = 291.7 \) Hz), 53.5 (t, C-3), 28.7 (t, C-\(\beta \)), d by \(^2J_{Sn-C} = 22.1 \) Hz), 26.9 (t, C-\(\gamma \), d by \(^3J_{Sn-C} = 59.8 \) Hz), 13.6 (q, C-\(\delta \)), 11.0 (t, C-\(\alpha \)), d by \(^1J_{119Sn-C} = 384.2 \) Hz, \(^1J_{117Sn-C} = 364.6 \) Hz); \(^{119}\)Sn NMR: (150 MHz, CDCl\(_3\)) –65.9; MS: (EI, 70 eV) \(m/z \) 393 (M\(^+\) – Bu, 100), 392 (38), 391 (74), 390 (29), 389 (42), 241 (63), 239 (47), 237 (27), 105 (75), 77 (20); HRMS: (EI, 200 eV) calcd for (C\(_{22}\)H\(_{33}\)O\(_2\)Sn) 451.1659 (M\(^+\) + 1) found \(m/z \) 451.1656

Tributyl(phenylethynyl)stannane (2j)

According to the typical procedure, ZnBr\(_2\) in THF (0.05 M, 1 mL), phenylacetylene (0.104 g, 1.02 mmol), and Bu\(_3\)SnOMe (0.388 g, 1.21 mmol) gave the product as a colorless oil (0.307 g, 77% yield). The analytical data for this compound were in excellent agreement with the reported data.\(^{3b}\)

Tributyl(4-methoxyphenylethynyl)stannane (2k)

According to the typical procedure, ZnBr\(_2\) in THF (0.05 M, 1 mL), 4-methoxyphenylacetylene (0.134 g, 1.02 mmol), and Bu\(_3\)SnOMe (0.408 g, 1.27 mmol) gave the product as a colorless oil (0.344 g, 80% yield). The analytical data for this compound were in excellent agreement with the reported data.\(^{3b}\)

Tributyl(4-\textit{tert}-butylphenylethynyl)stannane (2l)

According to the typical procedure, ZnBr\(_2\) in CH\(_3\)CN (0.05 M, 1 mL), \(\textit{tert} \)-butylphenylacetylene (0.150 g, 0.95 mmol), and Bu\(_3\)SnOMe (0.390 g, 1.21 mmol) gave the product as a colorless oil (0.307 g, 72% yield). IR (neat): 2900, 2137 (C=\(\equiv \)) cm\(^{-1}\); \(^1\)H NMR: (400 MHz, CDCl\(_3\)) 7.38 (d, 2H, \(J = 8.2 \) Hz, \(o-H \) x 2), 7.29 (d, 2H, \(J = 8.2 \) Hz, \(m-H \) x 2), 1.70-1.51 (m, 6H, \(\beta-H_2 \times 3 \)), 1.42-1.32 (m, 6H, \(\gamma-H_2 \times 3 \)), 1.23 (s, 9H, rBu), 1.13-0.96 (m, 6H, \(\alpha-H_2 \times 3 \)), 0.95-0.87 (m, 9H, \(\delta-H_3 \times 3 \)); \(^{13}\)C NMR: (100 MHz, CDCl\(_3\)) 150.9 (s, C-p), 131.6 (d, C-p), 125.0 (d, C-2), 121.1 (s, C-i), 110.2 (s, C-2, d by \(^2J_{Sn-C} = 63.9 \) Hz), 92.0 (s, C-1, d by \(^1J_{119Sn-C} = 339.2 \) Hz, \(^1J_{117Sn-C} = 324.4 \) Hz), 34.6 (s, C(CH\(_3\))), 31.1 (q, C(CH\(_3\))), 28.9 (t, C-\(\beta \), d by \(^2J_{Sn-C} = 22.9 \) Hz), 26.9 (t, C-\(\gamma \), d by \(^3J_{Sn-C} = 59.0 \) Hz), 13.7 (q, C-\(\delta \)), 11.1 (t, C-\(\alpha \), d by \(^1J_{119Sn-C} = 384.2 \) Hz, \(^1J_{117Sn-C} = 366.2 \) Hz); \(^{119}\)Sn NMR: (150 MHz, CDCl\(_3\)) –65.9; MS: (EI, 70 eV) \(m/z \) 448 (M\(^+\), 0.26), 392 (27), 391 (M\(^+\) – Bu, 100), 390 (43), 389 (74), 388 (32), 387 (39), 277 (37), 275 (27); HRMS: (EI, 70 eV) calcd for (C\(_{22}\)H\(_{40}\)Sn) 448.2152 (M\(^+\)) found \(m/z \) 448.2149
Tributyl(3-methylphenylethynyl)stannane (2m)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 3-ethynyltoluene (0.117 g, 1.01 mmol) and Bu₃SnOMe (0.397 g, 1.24 mmol) gave the product as a colorless oil (0.281 g, 69% yield, 94% purity (A small portion was analyzed by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard in order to determine the purity.)). IR: (neat) 2900, 2129 (C≡C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.32-7.22 (m, 2H, 2'-H and 6'-H), 7.16 (t, J = 8.0 Hz, 1H, 5'-H), 7.07 (d, J = 8.0 Hz, 1H, 4'-H), 2.31 (s, 3H, ArMe), 1.71-1.50 (m, 6H, β-H₂ x 3), 1.44-1.25 (m, 6H, γ-H₂ x 3), 1.14-0.97 (m, 6H, α-H₂ x 3), 0.96-0.76 (m, 9H, δ-H₃ x 3); ¹³C NMR: (100 MHz, CDCl₃) 137.7 (s, C-3’), 132.5 (d, C-2’), 129.0 (d), 128.7 (d), 128.0 (d, C-5’), 123.8 (s, C-1’), 110.2 (s, C-2, d by ²JSn-C = 59.8 Hz), 92.7 (s, C-1), 28.9 (t, C-β, d by ²JSn-C = 23.9 Hz), 27.0 (t, C-γ, d by ³JSn-C = 60.1 Hz), 21.2 (q, ArMe), 13.7 (q, C-δ), 11.2 (t, C-α, d by ¹J₁₁₉Sn-C = 385.2 Hz, ¹J₁₁₇Sn-C = 376.1 Hz); ¹¹⁹Sn NMR: (150 MHz, CDCl₃) –66.0; MS: (EI, 70 eV) m/z 406 (M⁺, 0.27), 350 (23), 349 (M⁺ – Bu, 100), 348 (41), 347 (75), 346 (32), 345 (41), 293 (M⁺ – Bu₂ + 1, 15), 291 (M⁺ – Bu₂ – 1, 11), 235 (50), 233 (36); HRMS: (EI, 70 eV) calced for (C₂₁H₃₄Sn) 406.1682 (M⁺) found m/z 406.1678

Tributyl(3-chlorophenylethynyl)stannane (2n)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), m-chlorophenylacetylene (0.140 g, 1.02 mmol), and Bu₃SnOMe (0.385 g, 1.20 mmol) gave the product as a colorless oil (0.296 g, 61% yield, 84% purity (A small portion was analyzed by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard in order to determine the purity.)). In a different batch reaction, further purification was performed by flash column chromatography (hexane) on silica gel to give the product as a colorless oil (0.092 g, 23%). IR: (neat) 2140 (C≡C) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.43 (s, 1H, 2-H), 7.32 (d, J = 7.2 Hz, 1H, 6-H), 7.24 (d, J = 8.0 Hz, 1H, 4-H), 7.19 (dd, J = 8.0, 7.2 Hz, 1H, 5-H), 1.73-1.50 (m, 6H, β-H₂ x 3), 1.47-1.28 (m, 6H, γ-H₂ x 3), 1.16-0.97 (m, 6H, α-H₂ x 3), 0.93 (t, J = 7.2 Hz, 9H, δ-H₃ x 3); ¹³C NMR: (100 MHz, CDCl₃) 133.8 (s, C-3), 131.7 (d, C-5), 129.9 (d, C-2), 129.3 (d, C-6), 128.0 (d, C-4), 125.6 (s, C-1), 108.3 (s, CCSn, d by ²JSn-C = 58.2 Hz), 95.2 (s, CCSn, d by ¹J₁₉₃Sn-C = 308.0 Hz, ¹J₁₇₃Sn-C = 295.8 Hz), 28.8 (t, C-β, d by ²JSn-C = 23.1 Hz), 26.9 (t, C-γ, d by ³JSn-C = 59.2 Hz), 13.6 (q, C-δ), 11.1 (t, C-α, d by ¹J₁₉₃Sn-C = 383.6 Hz, ¹J₁₇₃Sn-C = 375.3 Hz); ¹¹⁹Sn NMR: (150 MHz, CDCl₃) –64.5; MS: (EI, 70 eV) m/z 371 (36), 370 (23), 369 (M⁺ – Bu, 100), 368 (38), 367 (24), 366 (24), 365 (34), 313 (27), 257 (39), 255 (63), 254 (20), 253 (42); HRMS: (EI, 70 eV) calced for (C₁₄H₂₃ClSn) 369.0432 (M⁺ – Bu) found m/z 369.0431; Analysis: C₂₀H₃₁ClSn (425.62) Calced: C, 56.44; H, 7.34 Found: C, 56.47; H, 7.37
Tributyl(2-fluorophenylethynyl)stannane (2o)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 2-Fluorophenylethynylthiophene (0.107 g, 0.99 mmol), and Bu₃SnOMe (0.387 g, 1.21 mmol) gave the product as a yellow oil (0.316 g, 74% yield). IR: (neat) 2900, 2140 cm⁻¹ (C=C), 1241 (ArF) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 8.54 (d, J = 8.0 Hz, 1H, 6'), 7.19 (m, 1H, 4'), 7.26-7.19 (m, 1H, 4'-H), 7.09-6.98 (m, 2H, 3'-H and 5'-H), 1.71-1.53 (m, 6H, β-H₂ x 3), 1.42-1.33 (m, 6H, γ-H₂ x 3), 1.16-0.99 (m, 6H, α-H₂ x 3), 1.12-0.85 (m, 9H, δ-H₁ x 3); ¹³C NMR: (100 MHz, CDCl₃) 127.0 (s, C-2'), d by ¹J_{CF} = 250.7 Hz), 133.9 (d, C-6', d by ³J_{CF} = 1.6 Hz), 129.4 (d, C-4', d by ³J_{CF} = 8.2 Hz), 123.6 (d), 115.3 (d), 112.6 (s, C-1'), d by ²J_{CF} = 16.5 Hz), 102.5 (s, C-2, d by ²J_{Sn-C} = 59.9 Hz), 99.7 (s, C-1, d by ¹J_{119Sn-C} = 310.3 Hz, ¹J_{117Sn-C} = 297.9 Hz, d by ⁴J_{Sn-C} = 3.3 Hz), 28.8 (t, C-β, d by ³J_{Sn-C} = 22.9 Hz), 26.9 (t, C-α, d by ³J_{Sn-C} = 59.8 Hz), 13.6 (q, C-δ), 11.2 (t, C-α, d by ¹J_{119Sn-C} = 381.8 Hz, ¹J_{117Sn-C} = 364.6 Hz); ¹¹⁹Sn NMR: (150 MHz, CDCl₃) –63.8, ¹⁹F NMR: (372 MHz, CDCl₃) 112.4; MS: (CI, 200 eV) m/z 411 (M⁺ + 1, 0.39), 353 (M⁺ – Bu + 1, 25), 291 (100), 290 (34), 289 (41), 288 (27), 287 (42); HRMS: (CI, 200 eV) caled for (Cs₀H₁₂F₂Sn) 411.1510 (M⁺ + 1) found m/z 411.1498

Tributyl(3-thienylethynyl)stannane (2p)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 3-ethynylthiophene (0.107 g, 0.99 mmol), and Bu₃SnOMe (0.385 g, 1.20 mmol) gave the product as a yellow oil (0.314 g, 74% yield, 92% purity (A small portion was analyzed by ¹H NMR using 1,1,2,2-tetrachloroethane as an internal standard in order to determine the purity.)). The analytical data for this compound were in excellent agreement with the reported data.³b

Tributyl(2-pyridylethynyl)stannane (2q)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 2-ethynlypyridine (0.105 g, 1.02 mmol), and Bu₃SnOMe (0.382 g, 1.19 mmol) gave the product as a yellow oil (0.318 g, 79% yield). IR: (neat) 2900 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 8.54 (d, J = 4.8 Hz, 1H, 6'-H), 7.61 (td, J = 8.0, 1.8 Hz, 1H, 4'-H), 7.42 (d, J = 8.0 Hz, 1H, 3'-H), 7.21-7.15 (m, 1H, 5'-H), 1.73-1.50 (m, 6H, β-H₂ x 3), 1.43-1.27 (m, 6H, γ-H₂ x 3), 1.12-0.99 (m, 6H, α-H₂ x 3), 0.96-0.85 (m, 9H, δ-H₁ x 3); ¹³C NMR: (100 MHz, CDCl₃) 149.6 (d, C-6'), 143.5 (s, C-2'), 135.8 (d, C-4'), 127.1 (d, C-3'), 122.3 (d, C-5'), 108.6 (s, C-2, d by ²J_{Sn-C} = 53.4 Hz), 94.9 (s, C-1, d by ¹J_{119Sn-C} = 296.6 Hz, ¹J_{117Sn-C} = 281.4 Hz), 28.7 (t, C-β, d by ³J_{Sn-C} = 22.9 Hz), 26.9 (t, C-γ, d by ³J_{Sn-C} = 61.4 Hz), 13.5 (q, C-δ), 11.1 (t, C-α, d by ¹J_{119Sn-C} = 381.8 Hz, ¹J_{117Sn-C} = 364.6 Hz); ¹¹⁹Sn NMR: (150 MHz, CDCl₃) –64.6; MS: (CI, 200 eV) m/z 395 (20), 394 (M⁺ + 1, 100), 393 (41), 392 (77), 391 (31), 390 (42); HRMS: (CI, 200 eV) caled for (Cs₀H₁₃₂N₂Sn) 394.1557 (M⁺ + 1) Found m/z 394.1560
Tributyl(3-methoxy-3-oxo-1-propynyl)stannane (2r)

According to the typical procedure, ZnBr2 in MeCN (0.05 M, 1 mL), methyl propionate (0.097 g, 1.15 mmol), and Bu3SnOMe (0.375 g, 1.17 mmol) gave the product as a colorless oil (0.250 g, 58% yield, 77% purity (A small portion was analyzed by 1H NMR using 1,1,2,2-tetrachloroethane as an internal standard in order to determine the purity.)). IR: (neat) 2900, 2148 (C=O), 1712 (C=O) cm\(^{-1}\); 1H NMR: (400 MHz, CDCl\(_3\)) 3.75 (s, OMe), 1.63-1.48 (m, 6H, β-H\(_2\) x 3), 1.36-1.26 (m, 6H, γ-H\(_2\) x 3), 1.15-0.97 (m, 6H, α-H\(_2\) x 3), 0.92-0.84 (m, 9H, δ-H\(_3\) x 3); 13C NMR: (100 MHz, CDCl\(_3\)) 153.2 (s, C-3 d by \(\delta_{J_{Sn-C}} = 8.2\) Hz), 99.1 (s, C-2, d by \(\delta_{J_{Sn-C}} = 32.8\) Hz), 96.6 (s, C-1, d by \(\delta_{J_{119Sn-C}} = 208.1\) Hz, \(\delta_{J_{117Sn-C}} = 198.3\) Hz), 52.3 (q, OMe), 28.7 (t, C-β, d by \(\delta_{J_{Sn-C}} = 23.8\) Hz), 26.9 (t, C-γ, d by \(\delta_{J_{Sn-C}} = 61.4\) Hz), 13.5 (q, C-δ), 11.3 (t, C-α, d by \(\delta_{J_{119Sn-C}} = 377.7\) Hz, \(\delta_{J_{117Sn-C}} = 361.3\) Hz); 119Sn NMR: (150 MHz, CDCl\(_3\)) –56.9; MS: (EI, 70 eV) m/z 374 (M\(^+\), 0.8), 317 (M\(^+\) – Bu, 100), 316 (34), 315 (75), 314 (28), 313 (43), 261 (M\(^+\) – Bu\(_2\) + 1, 24), 151 (24); HRMS: (EI, 70 eV) calcd for (C\(_{16}\)H\(_{30}\)O\(_3\)Sn) 374.1268 (M\(^+\)) Found m/z 374.1276

Tributylstannyl-trimethylsilyl-acetylene (2s)

According to the typical procedure, ZnBr2 in MeCN (0.05 M, 1 mL), trimethylsilylacetylene (0.192 g, 1.95 mmol), and Bu3SnOMe (0.320 g, 1.00 mmol) gave the product as a colorless oil (0.190 g, 49% yield). The analytical data for this compound were in excellent agreement with the reported data.\(^{25}\)

Tributyl(3-bromo-1-propynyl)stannane (2t)

According to the typical procedure, ZnBr2 in THF (0.05 M, 1 mL), propargyl bromide (0.117 g, 0.98 mmol), and Bu3SnOMe (0.394 g, 1.23 mmol) gave the product as a colorless oil (0.299 g, 74% yield). IR: (neat) 2900, 2152 (C=O) cm\(^{-1}\); 1H NMR: (400 MHz, CDCl\(_3\)) 3.95 (s, 2H, 3-H\(_2\) with d by \(\delta_{J_{Sn-H}} = 9.2\) Hz), 1.67-1.45 (m, 6H, β-H\(_2\) x 3), 1.38-1.29 (m, 6H, γ-H\(_2\) x 3), 1.06-0.96 (m, 6H, α-H\(_2\) x 3), 0.94-0.87 (m, 9H, δ-H\(_3\) x 3); 13C NMR: (100 MHz, CDCl\(_3\)) 104.3 (s, C-2, d by \(\delta_{J_{Sn-C}} = 55.7\) Hz), 92.0 (s, C-1, d by \(\delta_{J_{119Sn-C}} = 299.9\) Hz, \(\delta_{J_{117Sn-C}} = 285.9\) Hz), 28.7 (t, C-β, d by \(\delta_{J_{Sn-C}} = 24.6\) Hz), 26.9 (t, C-γ, d by \(\delta_{J_{Sn-C}} = 60.6\) Hz), 15.5 (t, C-3), 13.6 (q, C-δ), 11.0 (t, C-α, d by \(\delta_{J_{119Sn-C}} = 383.4\) Hz, \(\delta_{J_{117Sn-C}} = 365.4\) Hz); 119Sn NMR: (150 MHz, CDCl\(_3\)) –64.7; MS: (EI, 70 eV) m/z 408 (M\(^+\), 1), 353 (M\(^+\) + 2 – Bu, 62), 351 (M\(^+\) – Bu, 100), 347 (25), 295 (29), 237 (21), 201 (33), 199 (51), 197 (34), 177 (21), 159 (31), 157 (26), 121 (21), 95 (34), 67 (98), 57 (27); HRMS: (EI, 70 eV) calcd for (C\(_{16}\)H\(_{30}\)BrSn) 408.0475 (M\(^+\)) found m/z 408.0464

1-(2-Methylphenyl)dodec-1-yne (8a)

According to the typical procedure, ZnBr2 in CH\(_3\)CN (0.05 M, 1 mL), 1-dodecene (0.167 g, 1.00 mmol), Bu3SnOMe (0.385 g, 1.20 mmol), o-bromotoluene (0.166 g, 0.97 mmol), P(tBu)3 in THF (0.1 M, 0.33 mL), and Pd\(_2\)(dba)\(_3\) (0.013 g, 0.014 mmol) gave a crude...
product. Purification by flash column chromatography [solvent; hexane, column length; 11 cm] gave the product (0.159 g, 62%). IR: (neat) 2927, 2233 (C≡N) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.36 (d, 1H, J = 8.0 Hz, 6'-H), 7.18-7.06 (m, 3H, 3'-H and 4'-H and 5'-H), 2.44 (t, J = 7.2 Hz, 2H, 3-H₂), 2.41 (s, 3H, ArMe), 1.61 (m, 2H, 4-H₂), 1.51-1.42 (m, 2H, 5-H₂), 1.38-1.19 (m, 12H), 0.88 (t, 3H, 12-H₃); ¹³C NMR: (100 MHz, CDCl₃) 139.9 (s, C-2'), 131.7 (d, C-6'), 129.2 (d), 127.4 (d), 125.3 (d), 123.8 (s, C-1’), 94.4 (s, C-2), 79.4 (s, C-1), 31.9 (t), 29.6, 29.3, 29.2, 28.9, 22.7 (s), 20.7 (q, ArMe), 19.53 (t), 14.1 (q, C-12); MS: (EI, 70 eV) m/z 256 (M⁺, 60), 171 (M⁺ – C₆H₁₃, 24), 158 (28), 157 (M⁺ – C₆H₁₅, 52), 143 (M⁺ – C₅H₁₇, 30), 131 (100), 129 (M⁺ – C₆H₁₉, 50), 128 (38), 105 (22); HRMS: (EI, 70 eV) calcd for (C₁₉H₂₈) 256.2191 (M⁺) found m/z 256.2189; Analysis: C₁₉H₂₈ (256.43) Calcd: C, 88.99; H, 11.01 Found: C, 88.71; H, 10.95

2-(3-Phenyl-1-propynyl)toluene (8b)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 3-phenyl-1-propyne (0.111 g, 0.96 mmol), Bu₃SnOMe (0.391 g, 1.22 mmol), o-bromotoluene (0.171 g, 1.00 mmol), P(tBu)₃ in THF (0.1 M, 0.33 mL), and Pd₂(dba)₃ (0.013 g, 0.014 mmol) gave the crude product. Purification by flash column chromatography [solvent; hexane, column length; 11 cm] gave the product (0.093 g, 47%). The analytical data for this compound were in excellent agreement with the reported data.²⁶

2-(1-Cyclohexenylethynyl)toluene (8c)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), 2-ethyl-1-cyclohexene (0.109 g, 1.03 mmol), Bu₃SnOMe (0.385 g, 1.20 mmol), o-bromotoluene (0.175 g, 1.02 mmol), P(tBu)₃ in THF (0.1 M, 0.33 mL), and Pd₂(dba)₃ (0.013 g, 0.014 mmol) gave the crude product. Purification by flash column chromatography [solvent; hexane, column length; 11 cm] gave the product (0.133 g, 66%). The analytical data for this compound were in excellent agreement with the reported data.²⁷

6-(2-Methylphenyl)hex-5-ynenitrile (8d)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), hex-5-ynenitrile (0.091 g, 0.98 mmol), Bu₃SnOMe (0.384 g, 1.20 mmol), o-bromotoluene (0.172 g, 1.01 mmol), P(t-Bu)₃ (0.1 M, 0.33 mL), and Pd₂(dba)₃ (0.013 g, 0.015 mmol) gave the crude product. Purification by flash column chromatography (hexane/ethyl acetate = 80/20) on silica gel gave the product (0.124 g, 69%). IR: (neat) 2248 (C≡N) cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.28 (d, 1H, J = 8.0 Hz, 6'-H), 7.14-7.07 (m, 2H, 3'-H and 4'-H), 7.07-7.00 (m, 1H, 5'-H), 2.55 (t, J = 7.2 Hz, 2H, 4-H₂), 2.47 (t, J = 7.2 Hz, 2H, 2-H₂), 2.32 (s, 3H, ArMe), 1.87 (tt, J = 7.2, 7.2 Hz, 2H, 3-H₂); ¹³C NMR: (100 MHz, CDCl₃) 139.8 (s, C-2’), 131.7 (d, C-6’), 129.3 (d, C-3’), 127.9 (d, C-4’), 125.4 (d, C-5’), 122.8 (s, C-1’), 119.1 (s, C-1), 90.7 (s, C-5), 81.1 (s, C-6), 24.6 (t, C-3), 20.6 (q, ArMe), 18.5 (t, C-4), 16.0 (t, C-2); MS: (EI, 70 eV) m/z 183 (M⁺, 100),
182 (97), 141 (24), 129 (72), 128 (69), 127 (23), 115 (ArCC, 23); HRMS: (EI, 70 eV) calcd for (C_{13}H_{13}N) 183.1048 (M^+), found m/z 183.1046; Analysis: C_{13}H_{13}N (183.25) Calcd: C, 85.21; H, 7.15; N, 7.64 Found: C, 84.93; H, 6.93; N, 7.71

6-(2-Methylphenyl)hex-5-yn-2-one (8e)

According to the typical procedure, ZnBr$_2$ in THF (0.05 M, 1 mL), hex-5-yn-2-one (80% purity) (0.119 g, 0.98 mmol), Bu$_3$SnOMe (0.390 g, 1.21 mmol), o-bromotoluene (0.175 g, 1.02 mmol), P(t-Bu)$_3$ in THF (0.1 M, 0.33 mL), and Pd$_2$(db)$_3$ (0.014 g, 0.015 mmol) gave the crude product. Purification by flash column chromatography [solvent; hexane/ethyl acetate = 80/20, column length; 11 cm] gave the product (0.112 g, 61%). IR: (neat) 2900, 2229 (C≡C), 1720 (C=O) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 7.33 (d, 1H, J = 8.0 Hz, 6'-H), 7.19-7.13 (m, 2H, 3'-H and 4'-H), 7.13-7.05 (m, 1H, 5'-H), 2.76 (t, J = 7.2 Hz, 2H, 3-H$_2$), 2.70 (t, J = 7.2 Hz, 2H, 4-H$_2$), 2.38 (s, 3H, ArMe), 2.20 (s, 3H, 1-H$_3$); 13C NMR: (100 MHz, CDCl$_3$) 206.6 (s, C-2), 139.9 (s, C-2'), 131.7 (d, C-6'), 129.2 (d), 127.6 (d), 125.3 (d, C-5'), 123.2 (s, C-1'), 92.3 (s, C-5), 79.7 (s, C-6), 42.6 (t, C-3), 29.8 (q, C-1), 20.6 (q, ArMe), 14.1 (t, C-4); MS: (EI, 70 eV) m/z 186 (M$^+$, 81), 185 (38), 171 (M$^+$ – CH$_3$, 83), 143 (M$^+$ – CH$_2$CO, 36), 129 (M$^+$ – CH$_3$COC$_2$H$_4$, 31), 128 (100), 127 (23), 115 (M$^+$ – CH$_3$COC$_2$H$_4$, 29), 43 (24); HRMS: (EI, 70 eV) calcd for (C$_{13}$H$_{14}$O) 186.1045 (M$^+$) found m/z 186.1047

2-(3-Methoxy-1-propynyl)toluene (8f)

According to the typical procedure, ZnBr$_2$ in THF (0.05 M, 1 mL), 3-methoxy-1-propyne (0.072 g, 1.03 mmol), Bu$_3$SnOMe (0.373 g, 1.16 mmol), o-bromotoluene (0.172 g, 1.01 mmol), P(t-Bu)$_3$ (0.1 M, 0.33 mL), and Pd$_2$(db)$_3$ (0.013 g, 0.015 mmol) gave the crude product. Purification by flash column chromatography [solvent; hexane/ethyl acetate = 97/3, column length; 11 cm] gave the product (0.080 g, 48%). The analytical data for this compound were in excellent agreement with the reported data.28

2-(4-Methoxyphenylethynyl)toluene (8g)

According to the typical procedure, ZnBr$_2$ in THF (0.05 M, 1 mL), 4-methoxyphenylacetylene (0.132 g, 1.00 mmol), Bu$_3$SnOMe (0.386 g, 1.20 mmol), o-bromotoluene (0.176 g, 1.03 mmol), P(tBu)$_3$ in THF (0.1 M, 0.33 mL), and Pd$_2$(db)$_3$ (0.014 g, 0.015 mmol) gave the crude product. Purification by flash column chromatography [solvent; hexane/ethyl acetate = 93/7, column length; 11 cm] gave the product (0.172 g, 78%). The analytical data for this compound were in excellent agreement with the reported data.29
2-(3-Chlorophenylethynyl)toluene (8h)

According to the typical procedure, ZnBr$_2$ in THF (0.05 M, 1 mL), m-chlorophenylacetylene (0.125 g, 0.91 mmol), Bu$_3$SnOMe (0.378 g, 1.18 mmol), o-bromotoluene (0.163 g, 0.95 mmol), P(t-Bu)$_3$ (0.1 M, 0.33 mL), and Pd$_3$(dba)$_3$ (0.0132 g, 0.014 mmol) gave a crude product. Purification by flash column chromatography [solvent; hexane, column length; 11 cm] gave the product (0.152 g, 74%). IR: (neat) 2221 (C=C) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 7.53-7.46 (m, 2H, 2'-H and 6'-H), 7.40 (d, 1H, $J = 7.2$ Hz, 6'-H), 7.33-7.20 (m, 4H, 4'-H and 5'-H and 4'-H and 5'-H), 7.17 (t, $J = 7.2$ Hz, 1H, 5'-H), 2.50 (s, 3H, Me); 13C NMR: (100 MHz, CDCl$_3$) 140.2 (s), 131.4 (s), 131.9 (d), 131.3 (d), 129.6 (d), 129.5 (d), 129.5 (d), 128.6 (d), 128.4 (d), 125.6 (d), 125.2 (s), 122.5 (s), 91.8 (s, C-1), 89.5 (s, C-2), 20.7 (q, Me); MS: (EI, 70 eV) m/z 228 (M$^+$ + 2, 30), 226 (M$^+$, 100), 191 (M$^+$ – Cl, 75), 189 (42); HRMS: (EI, 70 eV) calcd for (C$_{15}$H$_{11}$Cl) 226.0549 (M$^+$) found m/z 226.0546

3-Thienyl-o-tolylethyn (8i)

According to the typical procedure, ZnBr$_2$ in THF (0.05 M, 1 mL), 3-thienylacetylene (0.103 g, 0.95 mmol), Bu$_3$SnOMe (0.385 g, 1.20 mmol), o-bromotoluene (0.173 g, 1.01 mmol), P(t-Bu)$_3$ in THF (0.1 M, 0.33 mL), and Pd$_3$(dba)$_3$ (0.014 g, 0.015 mmol) gave a crude product. Purification by flash column chromatography [solvent; hexane/ethyl acetate = 90/10, column length; 11 cm] gave the product (0.141 g, 75%). IR: (neat) 2980, 2202 (C=C) cm$^{-1}$; 1H NMR: (400 MHz, CDCl$_3$) 7.50-7.45 (m, 2H), 7.29-7.25 (m, 1H), 7.23-7.11 (m, 4H), 2.49 (s, 3H, Me); 13C NMR: (100 MHz, CDCl$_3$) 140.0 (s, C-2'), 131.7(d), 129.8 (d), 129.4 (d), 128.2 (d), 128.2 (d), 125.5 (d), 125.3 (d), 122.9 (s), 122.5 (s), 98.3 (s), 87 (s), 20.7 (q, Me); MS: (EI, 70 eV) m/z 198 (M$^+$, 100), 197 (77), 165 (32); HRMS: (EI, 70 eV) calcd for (C$_{15}$H$_{10}$S) 198.0503 (M$^+$) found m/z 198.0496; Analysis: C$_{15}$H$_{10}$S (198.28) Calcd: C, 78.75; H, 5.08; S, 16.17; Found: C, 78.47; H, 5.12; S, 16.02

p-(2-Fluorophenylethynyl)nitrobenzene (8j)

According to the typical procedure, ZnBr$_2$ in THF (0.05 M, 1 mL), 2-fluorophenylacetylene (0.128 g, 1.06 mmol), Bu$_3$SnOMe (0.398 g, 1.24 mmol), p-bromonitrobenzene (0.205 g, 1.01 mmol), P(t-Bu)$_3$ in THF (0.1 M, 0.33 mL), and Pd$_3$(dba)$_3$ (0.014 g, 0.015 mmol) gave a crude product, which was washed with hexane to give the product as a blown solid (0.130 g, 55%). IR: (KBr) 2221 cm$^{-1}$ (C=C), 1516 cm$^{-1}$ (N=O), 1342 cm$^{-1}$ (Ar-NO$_2$); 1H NMR: (400 MHz, CDCl$_3$) 8.23 (d, 2H, $J = 8.0$ Hz, o-H x 2), 7.70 (d, 2H, $J = 8.0$ Hz, m-H x 2), 7.55 (td, $J = 8.0$ Hz, 2J$_{FH} = 1.6$ Hz, 1H, 6'-H), 7.42-7.36 (m, 1H, 4'-H), 7.19-7.12 (m, 2H, 3'-H and 5'-H); 13C NMR: (100 MHz, CDCl$_3$) 162.8 (s, C-2'), d by 13CF = 256.8 Hz), 147.2 (s, C-i), 133.5 (d, C-6'), 132.4 (d, C-m), 131.1 (d, C-4', d by 3J$_{CF} = 8.3$ Hz), 129.8 (s, C-p), 124.2 (d, C-5', d by 4J$_{CF} = 3.3$ Hz), 123.6 (d, C-o), 115.7 (d, C-3', d by 2J$_{CF} = 19.7$ Hz), 110.9 (d, C-1', d by 2J$_{CF} = 17.3$ Hz), 92.3 (s, C-1, d by 4J$_{CF} = 3.2$ Hz), 87.9 (s, C-2); 19F NMR: (372 MHz, CDCl$_3$) 44.0; MS: (EI,
70 eV) m/z 241 (M⁺, 100), 211 (M⁺ – NO, 20), 195 (M⁺ – NO₂, 20), 194 (44); HRMS: (EI, 70 eV) calcd for (C₁₃H₃FNO₂) 241.0539 (M⁺) found m/z 241.0534

9-(2-Phenylethylnyl)anthracene (8k)

According to the typical procedure, ZnBr₂ in THF (0.05 M, 1 mL), phenylacetylene (0.097 g, 0.95 mmol), Bu₃SnOMe (0.402 g, 1.25 mmol), 9-bromoanthracene (0.258 g, 1.00 mmol), P(tBu)₃ in THF (0.1 M, 0.33 mL), and Pd₂dba (0.013 g, 0.014 mmol) gave the crude product, which was washed with methanol to give the product as a solid (0.1408 g, 56%) including a small amount of starting material 9-bromoanthracene (<9%). Further purification (not optimized) was performed by flash column chromatography [solvent; hexane, column length; 11 cm] gave the product (0.041 g, 16%). The analytical data for this compound were in excellent agreement with the reported data.³⁰

6-[2-(Prop-2-ynyl)phenyl]hex-5-yn-2-one (10)

IR: (neat) 1716 (C=O), 2121, 2229 (C≡C), 3294 cm⁻¹; ¹H NMR: (400 MHz, CDCl₃) 7.55 (d, 1H, J = 8.0 Hz, 3'-H), 7.36 (d, 1H, J = 8.0 Hz, 6'-H), 7.28 (t, 1H, J = 8.0 Hz , 4'-H), 7.18 (t, J = 8.0 Hz, 1H, 5'-H), 3.72 (d, J = 3.2 Hz, 2H, CH₂CCH), 2.78 (t, 2H, J = 8.0 Hz, 3-H₂), 2.71 (t, 2H, J = 8.0 Hz, 4-H₂), 2.21 (s, 3H, 1-H₃), 2.20 (t, 1H, J = 3.2 Hz, CCH); ¹³C NMR: (100 MHz, CDCl₃) 206.5 (s, C-2), 137.7 (s, C-2'), 131.8 (d, C-6'), 128.1 (d, C-4'), 127.7 (d, C-3'), 126.6 (d, C-5'), 122.5 (s, C-1'), 93.8 (s, C-5), 81.5 (dt, CCH), 78.7 (s, C-6), 70.7 (d, CCH), 42.5 (t, C-3), 29.9 (q, C-1), 23.6 (t, CH₂CCH), 14.1 (t, C-4); MS: (EI, 70 eV) m/z 210 (M⁺, 9), 209 (23), 195 (M⁺ – CH₂, 32), 167 (M⁺ – CH₂CO, 100), 166 (29), 165 (66), 152 (M⁺ – CH₃COCH₂, 87), 43 (24); HRMS: (EI, 15eV) calcd for (C₁₅H₁₄O) 210.1045 (M⁺) found m/z 210.1041

3-5. References

(10) Zn(OTf)₂ was used for the silylation of terminal alkynes as a catalyst, where an excess amount of base was required, see: (a) Jiang, H.; Zhu, S. Tetrahedron Lett. 2005, 46, 517. (b) Rahaim, R. J. Jr.; Shaw, J. T. J. Org. Chem. 2008, 73, 2912.

(11) The products, alkynylstannanes 2, were decomposed during the isolation by column chromatography.

(12) Even though nBuLi or NaH was used instead of EtMgBr, the yields of 2t were very low (nBuLi: 17% and NaH: 13%). The by-products have not been fully identified.

(14) The generation of Bu₃SnBr was also confirmed by ¹¹⁹Sn NMR spectroscopy (See the Experimental Section).

(16) We used Zn(OMe)₂, which was prepared according to the literature (Mehrotra, R. C.; Arora, M. Zeitschrift Anorg. Allg. Chemie 1969, 370, 300.), as a catalyst instead of ZnBr₂ in the reaction of Bu₃SnOMe with phenylacetylene 1j. The corresponding product 2j was obtained in 11% yield. This result supports the catalytic cycle in Scheme 3 including Zn(OMe)₂. The solid of zinc species employed was not soluble in the reaction mixture, and it might be a reason for the low yield. In situ generated
Zn(OMe)$_2$ may have high reactivity owing to low aggregation. The detail of the zinc species will be investigated.

(17) The generation of 6 has not been directly observed yet. The detail investigation of the mechanism is now underway.

(18) Zn(OTf)$_2$ is an effective catalyst for the synthesis of alkynylzinc species, and the mechanism via an activation of an alkyne by the coordination to Zn(OTf)$_2$ has been proposed, see: Fassler, R.; Tomooka, C. S.; Frantz, D. E.; Carreira, E. M. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 5843.

(22) Although the reaction of 1e with 9 was also carried out under copper and amine-free Sonogashira conditions (1e (0.5 mmol), 9 (0.5 mmol), Pd$_2$(dba)$_3$ (2 mol %), Bu$_4$NOAc (1.5 mmol), DMF (2 mL), rt, 24 h.), product 10 was not obtained. 2-Allenyl bromobenzene (9%) was obtained as a by-product: Urgaonkar, S.; Verkade, J. G. J. Org. Chem. 2004, 69, 5752.

Conclusion

This research investigates the transmetalation between less reactive organotin compounds with weak Lewis acid metal halides, and their application to organic synthesis. This work contributes to expanding the utility of organotin compounds for organic synthesis. The results obtained from the present work are summarized as follows.

In chapter 1, the radical couplings of iodocarbonyl compounds or iodo phosphorus compounds with butenylindium species generated by the transmetalation between cyclopropylmethylstannane and indium halide were achieved. Butenylindium was found to be an effective radical reagent, which works not only as an alkylating reagent but also a radical initiator in the presence of a small amount of oxygen. Tin halides generated by the transmetalation had no affect to the reaction system because of their inertness. Employing Sn-In transmetalation was essential for achieving the coupling reactions. The X-ray structural analysis of the mono- and dibutenylindium species succeeded.

In chapter 2, InBr$_3$- or GaCl$_3$-catalyzed coupling reaction of cyclopropylmethylstannane with alkyl chlorides was accomplished. It was found that in situ generated butenylindium or butenylgallium species reacted with alkyl chlorides in an ionic mechanism. This is the first finding of the ionic reactivity of organoindium or -gallium compounds.

The results in chapter 1 and 2 show the unique reactivity, radical and ionic reactivity, of the butenylindium and butenylgallium species.

In chapter 3, the catalytic and direct synthesis of alkynylstannanes from tin methoxide and terminal alkynes using a catalytic amount of ZnBr$_2$ was achieved. The transmetalation between ZnBr$_2$ and tin methoxide provides zinc methoxide, which promotes the reaction in mild conditions, and thus a wide range of functionalized terminal alkynes were applicable to this reaction system. Moreover, various functionalized aryl aklyne compounds were synthesized in one-pot protocol that included the zinc catalyzed synthesis of alkynylstannanes and the Migita–Kosugi–Stille coupling.