<table>
<thead>
<tr>
<th>Title</th>
<th>大腸菌B株の 60Co γ線照射による放射線耐性獲得の研究</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>青山, 喬</td>
</tr>
<tr>
<td>Citation</td>
<td>日本医学放射線学会雑誌. 20(3) P.505-P.520</td>
</tr>
<tr>
<td>Issue Date</td>
<td>1960-06-25</td>
</tr>
<tr>
<td>Text Version</td>
<td>publisher</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/11094/19123</td>
</tr>
<tr>
<td>DOI</td>
<td></td>
</tr>
<tr>
<td>rights</td>
<td></td>
</tr>
<tr>
<td>Note</td>
<td></td>
</tr>
</tbody>
</table>

Osaka University Knowledge Archive : OUKA

https://ir.library.osaka-u.ac.jp/

Osaka University
大腸菌 B 株の 60Co γ 線照射による放射線耐性獲得の研究

神戸医科大学放射線医学教室

青 山 妃

(昭和35年2月4日受付)

目 次

I 緒 言

1 実験方法及び実験成績

実験1 60Co γ 線照射による放射線耐性獲得菌株
の実験

1) 実験材料、方法及び成績

2) 小 括

実験2 BR strain の一般生物学的性状

1) 実験材料、方法及び成績

2) 小 括

実験3 BR strain の形態

1) 実験材料、方法及び成績

1) 細粉の顕微観察

2) 位相顕微鏡観察

3) 電子顕微鏡観察

2) 小 括

実験4 BR strain の成長曲線

1) 実験材料及び実験方法

2) 実験成績

1) W-L 増菌16時間増菌後菌を用いた場合

2) 普通分離培地24時間増菌需酸菌を用いた場合

3) 小 括

実験5 T系 Bacteriophage による実験

1) 実験材料及び方法

2) 実験成績

1) T+系 増菌実験

2) T系 増菌実験

3) 小 括

II 師著並びに考察

IV 結 論

I 緒 言

悪性腫瘍の電離放射線（以後放射線と略す）照射に対する耐性獲得の現象は、臨床医学の分野において、また動物の実験研究を用いた照射実験において、共にしばしば見られるところである。最初は放射線照射により反応する恶性腫瘍も、やがて放射線に対する反応が減じてくると言う印象は、実際、我々が悪性腫瘍の放射線治療を行う際にもこれを経験する。

この現象に対し、Nicó, Sturgis は、腫瘍の生物学的性状による説明を試みたが、一方悪性細胞が放射線の薬剤耐性の如く、放射線治療の目的の放射線の照射線に対する耐性、すなわち放射線耐性が存在すると言わんと断定されてよいと考えられている。Windholz 並びに Conger は、この放射線の耐性を説明しうる可能性のある転換として次のものを提出した。（1）最初的照射線を照射した全細胞を殺さず、heterogenous populationとして初めより僅かに存在した resistant tumour cell が生存した場合。（2）最初の照射が腫瘍細胞を resistant な方向の突然変異に誘導し、更にその後照射で選択された場合。（3）最初の照射が高る部分の側に静の変化を生ぜしめる（tumour bed change），それが腫瘍細胞に後照射時にあたかも resistant であるかの如き態度をとらせる場合（effective radioreisistance）。彼等はこれ等三者の（1）に於て腫瘍細胞中既に heterogenous に放射線に耐性を有する自然突然変異細胞が存在し、それが選択される場合の可能性を最も高く評価している。これは細菌の薬剤耐性説明法として Demerec 等が提唱したところと同一概念及び推測される。

実験研究における放射線耐性の研究は今日までに相当なる数を数えるが、成功例は少ないようである。Schubert は Ehrlich carcinoma での
成発例を報告したが、宮川(10)、長谷川(11)、小林(12)、金田(13)のblick肉腫、Conger等(17)のEhrlich carcinomaでは不成功に終わっている。

正常な生物体あるいは組織に対する研究もなされている。すなわち、小線量反覆照射が、後の大線量一時照射時に放射線耐性を増進すると言う一連の研究がそれである14,15,16,17,18,19,20,21,22,23。

これ等の研究では、山本(22)は耐性獲得は認められなかったと報告しているが、他のいずれも耐性獲得は可多様性高を伴う場合より著明な結果の報告である。徳山の研究(24)、Trautmanの方法に従い、家兔を用いてX線小線量反覆照射を行い、耐性の獲得を組織学的立証した後、さらにWarburg検査を用いてそれ等組織では酸性酵素が多くあると言う事実を見出した。しかしそれ等が耐性を獲得したかどうかを立証する為には、分裂の盛んな組織を使用して実験を行う事が意義がある。

細菌で放射線耐性の証明を行ったものとして、Wittmeyer(25)の非常に優れた、かつ、高価な生物学をあげなければならない。彼は大腸菌B株を用い、紫外線に耐性を有する変異株を用いて、それがX線にも同時に耐性を示し、その生産は安定し、かつ、遺伝子の事実を確認した。彼はWeed等(26)を有する少数の例外を含む下に大腸菌を培養、放射線耐性株とした。Schabinski等(27)は大腸菌に60Co γ線照射を行って抵抗性の相違を見た。しかし、Rubin(28)の細菌に対するX線大量照射及び2Pβ線照射、伊藤等(29)のTrichomonas vaginalis等への60Co γ線照射で耐性を認めなかったと言う報告もある。

放射線耐性は一方では立証され、他方では否定されているのが現状であると言ってよいかどうかはさておき。また、その真の耐性現象の宿主を至っては全く不明であって、今後の研究が期待されている。もし放射線耐性が実際存在するならば、放射線療法の防護装置の研究に新しい道を開き、また耐性を克服する事によって悪性腫瘍の放射線療法をさらに進めしめる等の少なくはない放射線療法への進歩に貢献するものと考えられる。著者等も大腸菌B株を用い、放射線耐性の存在を立証し、獲得状態並びにその機構も究明せんとして本実験を行ったのである。

なお、この論文では、放射線耐性とは、Radiation resistanceの事である。少なくともこの耐性の概念の中には、遺伝的及びその形質が次世代に伝ばれて行くと言う事を包括している。元来生物は放射線に対して同一態度をとらず、種、個体、器官、細胞の相違によって放射線感受性が異なり、同一細胞集団の中にも感受性の差（不均一性の差）32,32)があるが存在の有無である。その表現が低放射線感受性の場合もある。それと耐性を区別して用いた。すなわち、Conger等(17)の言葉を借りると、"照射を受けたもの、同線量に対する生存の差を示すもの、照射による生存率に高耐性を示すもの"と定義される。著者等のこの定義に基づて耐性と言う言葉を用いた。

II 実験方法及び実験結果

実験1 60Co γ線照射による耐性獲得菌株の作製

1) 実験材料、方法及び成績

供試菌：大阪大学微生物病研究所より分与された大腸菌B株を用いた。

培地：保存、平板培養にはDifco nutrient agarを、60Co γ線照射にはWeed、Longfellow agar20)に従って、次の他方の合成培地を用いた。

<table>
<thead>
<tr>
<th>試薬</th>
<th>重量g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Na2HPO4</td>
<td>16.5</td>
</tr>
<tr>
<td>KH2PO4</td>
<td>2.0</td>
</tr>
<tr>
<td>(NH4)2PO4</td>
<td>2.5</td>
</tr>
<tr>
<td>20% MgSO4·7H2O</td>
<td>1.0</td>
</tr>
<tr>
<td>1% CaCl2</td>
<td>1.0</td>
</tr>
<tr>
<td>1% FeSO4·7H2O</td>
<td>0.5</td>
</tr>
</tbody>
</table>

以上を蒸溜水100mlに溶解し、pH7.4に調整、使用時に3mg/mlの濃度に菌液を加えて使用した。（以後この培地をW-L培地と記載）

60Co γ線照射条件：装置鳥津製 RT-2000型
60Co γ線治療装置、線源試料間隔34cm、分レントゲン87.7r。

放射線実験に使用した試験管は、内径9mm、厚さ
昭和35年 6月25日

0.5mm 深さ8cmの小試験管。

大腸菌3株の保存株より Difco普通寒天培地に
移植し、24時間培養後、その1白金耳を更に W-L
培地に移植し、15時間前培養した後、この菌を使
用した。

60Co γ線に対する耐性菌種菌株の作製には、細
菌学の領域におけるいわゆる「training method
」（3035）に従った。

a) 第1次 60Co γ線照射

前述の15時間前培養の菌液0.1mlをW-L培
地2mlを入れた小試験管に均等に浮遊させ、全
20本の中17本を照射実験に供し、3本を対照とし
た。対照の1本は滅菌後ただちに37℃で培養、他
の1本は 60Co γ線照射前の培養がすべて終了
するのを待って、対照群と共に37℃で培養を行っ
た。なお、対照の残りの1本は菌種を移行し
ないW-L培地のみの試験管で、汚染の判定に供し
た。

17本の菌を移植した試験管を一括して、60Co γ
線を照射、30分毎に1本宛抜きとり、室温に保
存、17本目、照射開始後3時間30分（44,710r）
の照射をもって終了、この17本目の照射完了と共
に全照射試験管を37℃で培養した。

培養後4時間、照射群の1から4本目までの
試験管及び対照管中移植したものを2本に菌増殖を
認め、168時間後、7本目に菌の増殖を認めた。
その後のいずれの試験管にも菌増殖を認めな
かった。それを普通寒天培地に移植し、大腸菌の集
落である事を確認した上でさらに保存培地に移植し
た。

b) 第2次 60Co γ線照射

第1次照射実験で生存した7本目の試験管の菌
（18410r照射に耐えた。これを実験の便宜上か
かりに a strain と名付けた）を1次γ線に比較的
低強度を有する菌株と考為、この a strain に第
1次照射と同様の方法によ り、更に21,040、
27,390、31,560rの照射を行った。対照には各
線量に非照射株菌2本を採った。

その結果、21,040rに対しては a strain は
照射した8本の中1本を除きすべてに増殖
を認め、27,390rでは8本中4本に菌の増殖を
見た。31,560rでは増殖を観たものはなかった。
対照では21,040r照射に耐え、菌の増殖を
見えたものが1本あったが、他はすべて増殖不可能
であった。

c) 第3次 60Co γ線照射

第2次 60Co γ線照射で27,390rに耐えた4
本の a strain（これを b-1, -2, -3, -4 strain
と表現する）に対し27,300、31,900、42,080、
49,970rを照射した。

照射の結果は、27,300rでは b-1, b-2 が,
34,190rでは b-1, b-4 が増殖し、42,060rでは
増殖を見たものではなく、49,670rでは b-1 のみ
生存した。なお、対照の中27,300r照射に耐
えたものが2本中1本存在したが、それ以外で增
殖を見た試験管はなかった。

d) 第4次 60Co γ線照射

第3次照射で49,970rに耐えたb-1 (c strain
と表現する)、31,900rに耐えた b-4 (d strain
と表現する)に今回に更に52,600r照射した。

この52,600r照射の結果は c strain の中1
本に菌の増殖を観たのみであった。

この菌株に対して、それらの実験の再現性を確認
するため、さらに4ヶ月後に31,560、42,080、
52,300rの照射を行ったが、この菌株はどの線
量にも耐える事を示し、対照の非照射株の生
存はどの照射線量においても見られなかった。

e) 耐性菌株の安定性と耐γ線線量の限界的
確認

4次にわたる 60Co γ線照射によって52,600r
に耐える菌株を分離したが、これはいちおうγ線
に対する耐性を有していると考えられる。この
耐性菌株の安定性と耐γ線線量の限界を知るため
に、1年5カ月後、1年6カ月後の2回、更に
33,400, 48,000、57,000, 96,000, 115,200r
の照射を行った。この間に 60Co γ線発生装置
の線頭を変換し、照射方法に若干の改良を加えたの
で、線源試料間距離が23.5cmと短縮され、分割
トゲン 320rに増加した。他照射条件、方法に
変更はない。

この結果、耐性菌株は、1年5カ月後の照射では96,000 rまで耐え、1年6カ月後の照射では115,200 rにも耐える事を示した。対照として用いた非照射菌株は38,400 rまでは増殖を認めたが、それ以上の線量には耐ええる事が確認された
2) 小括
（1）60Co γ線耐性獲得菌株の分離
大腸菌B株に対し、いわゆる "training method"に従って60Co γ線の第1次照射で18,410 rに耐える菌株を選び、さらにその中より第2次照射で27,300 rに耐える菌株をえた。それより第3次照射で49,970 rに耐えた。この菌株中にはさらに第4次照射の52,600 rに耐える菌株が存在する事を認めた。

（2）60Co γ線耐性獲得菌株の安定性と命名
60Co γ線62,600 r照射に耐える菌株を選び出し、さらに1年6カ月後の115,200 r照射にも耐える事を確認した。よって、この性質は安定したものであると考えた。この115,200 rのγ線照射に耐え、しかも、1年3ヶ月間の鮫期にその性質を変えない安定な菌株に対し、Escherichia Coli BR strain と名付けた。Escherichia Coli BR strain（以後BR strainと略す）の命名は、Witkin が得た紫外線照射とX線耐性大腸菌にB/rと名付けているに鑑み、またそれ等とγ線耐性である点を区別するためにBR strainとしたものである。

（3）BR strainと原株の60Co γ線照射に対する耐性の差
第1次照射では18,410 rにしか耐えなかったものが、照射線量の増加に従って耐性増強の程度も増す事は、細菌の毒物に対する耐性増強が毒物濃度に比例する30)のとよく似似している。
この実験において、対照として用いた非照射菌株の中には12次照射で27,300, 38,400 rに耐える菌が出現した事を注目すべきであろう。しかし、この数回の照射実験により、以前に一度もγ線に曝された歴史をもたない原株には、それ以上に線量に耐えたものは存在しない様である。
原株集団の60Co γ線照射に対する耐性の限界は27,300 乃至38,400であるに反し、BR strainのそれは96,000 乃至115,200 rである約3倍の照射線量に耐える事が考えられる。
実験2 BR strainの一般生物学的性状
実験1で原株の約3倍のγ線照射に耐える耐性菌株BR strainを分離した。この様に、新しい菌株を分離した時、それがいかなる菌であるかを決定する手段としての決定は、菌の形態、生物学的性状、培養所見、代謝、血清学的性状、抗酸、耐塩性等の検査である。そこで、BR strainについても、最も重要な変化が期待される生物学的性状の観察を先ず行った。

1) 実験材料、方法及び成績
供試菌：実験1で作製したBR strainを用い対照として原株を選んだ。
実施方法：実施方法はすべて伝染病研究所学友会編「細菌学実習要領30」に従った。要項は次の如くである。
a) 炭水化物の利用能
利用能を検した炭水化物は、単糖類：glucose, galactose, arabinose, xylose, rhamnose, 二糖類：Sucrose, maltose, lactose, 多価アルコール類：adonitol, dulcitol, mannitol, sorbitol, inositol, 照射体：Salicin, 培地は変法Barksiekcwの培地。ただし指示菌として0.2％BTB溶液を用いた。黄色に変色すれば陽性、12日間培養するも変化のないものは陰性とした。
b) IMV IC systemによる検査
Indol 藻生：供試菌をペプトン水で培養し、Ehrlich-Böhme の方法により判定した。
Methy1 red 試験及び Voges-Proskauer の反応：供試菌を蒸留水を含む培地を培養して37℃で3日間培養し。前者に塩酸デンプン液と等量の10％苛性カリ液を加えて一夜放置。培養を有する桃色を呈すれば陽性、後者はMethyl red使用にて赤色を呈すれば陽性と判定した。
Sodium citrate 試験（Koser）：Sodium citrate合成培地を用い、菌の増殖の有無により判定
した。
c) 尿素分解
Cheristensen の尿素培地を用いた。
d) 硫化水素の発生
Kligler の塗地を用いた。せんし線にそって黒変すれば陽性とした。
e) 運動性
位相変顕微鏡によった。実験 3 参照。
f) 分離培地における性状
遠藤及び Salmonella-Shigella 寒天平板を用いた。
g) 普通寒天平板における性状
Difco nutrient agar の普通寒天平板を用いた。
実験成績:
a) 炭水化物の利用能
BR strain と原株の間の炭水化物利用能の差異を鑑定したが、著者の行った定性的試験における限り、両者の間に差異を認めなかった。諸種炭水化物に対する両者の利用能は第 1 表の如くである。
b) IMV iC system による検索
この試験に用知の如く、大腸菌を Coli type (Escherichia) と Aerogenes type (Aerobacter) 及びこれの中間に位する Intermediate type に分類鑑別する際に用いられている。検索の結果は次の如くであった。
Indol 産生は IMV iC system の一つとして重視されているが、同時に tryptophan 分解を観察する事でもある。これについては、両者ともに陽性であった。Methyl red 及び Voges-Proskauer の反応も両者ともに前者は陽性、後者は陰性で、Sodium citrate 試験も両者ともに陰性の成績を得た。
以上、IMV iC system による検索の結果から、BR s:rain, 原株と共に E. Coli I 型に属している事が確認された。
c) 尿素の分解
BR strain, 原株と共に尿素の分解は認めなかった。
d) 硫化水素の発生
本試験は Indole 産生と共に細菌のアミノ酸利用能を検するものである。菌が cystein 或いは cystine に対する利用能を有していれば硫化水素が産生される。試験の結果は BR strain, 原株と共に硫化水素の発生を認めなかった。
e) 運動性
一般に大腸菌は peritrichous flagella をもち、運動性を有するものの多いと言われている。しかし、著者が 位相変顕微鏡で観察した結果は、BR strain, 原株と共に運動性を認めなかった。
f) 分離培地における性状
遠藤寒天平板では BR strain も原株も普通培地を用いたが、菌落は良好でない。Salmonella-Shigella 寒天平板では菌落とも増殖を認めなかった。
g) 普通寒天平板における性状
BR strain, 原株と共に普通寒天平板における菌落の性状は、一般に発育良好な、白色、浸潤、均等な菌落で、周辺は微細な波状をあらわしてくる（培養24時間後於て明瞭）。
これは大腸菌集落として上記に記載されているところと大差がない。しかし、BR strain と原株の間には培養時間によって微妙な nuanceの相違が見られるように思われる。また菌代を重ね
第2表 落水化物利用能以外の生物学的諸性状

<table>
<thead>
<tr>
<th>性</th>
<th>BR strain</th>
<th>原株</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indole 産生</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Methyl red 試験</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Voges-Proskauer 反応</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sodium Citrate 試験</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>尿素</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>H₂S</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>運動性</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>速溶寒天平板</td>
<td>両者とも発育するが、良好ではない</td>
<td></td>
</tr>
<tr>
<td>Salmonella-Shigella 寒天</td>
<td>両者とも発育を認めない</td>
<td></td>
</tr>
<tr>
<td>普通寒天平板</td>
<td>集落の形態外観上の差異を認めない？</td>
<td></td>
</tr>
</tbody>
</table>

この影響も無視できない、これらの点については更に追求せねばならないと考えている。

2) 小括
実験1で作製したBR strainに対し、一般細菌学的生物学的諸性状の検索を行い、原株との差異を比較検討した。

（1）BR strainと原株の間に、定性的な一般細菌学的生物学的諸性状の検索では、差異を認めなかった。しかし、両者の共通した特性として、以下の記す如くである。

（2）落水化物に対しては、glucoseをはじめlactose等広範囲の利用能を有していた。

（3）アミノ酸利用はtryptophanは可能であるが、cystein、cystineは不可能であった。

（4）IMViC systemによる検索により、E. Coli I型に属することが確認された。

（5）尿素は両者共に分解しなかった。

（6）運動性は共に認められなかった。

（7）普通寒天平板上の集落は、E. Coli communisとして仮名に記載された如くであった。

実験2、BR strainの形態（主として電子顕微鏡による観察）

BR strainと原株の間に、一般生物学的性状についての差異は見られなかった。形態的には、何等かの変化が認められるか否か、これが決定は興味のあるところである。よって、次に形態的変化を追究した。

1）実験材料、方法及び成績

写真1 原株の電子顕微鏡像（7,500倍）

写真2 BR Strain電子顕微鏡像（7,500倍）

供試菌：実験1に作製したBR strain、対照として原株、単染色標本及び電顕顕微鏡による観察には、W-L培地24時間培養のもの、電子顕微鏡による観察には普通寒天斜面24時間培養のも
のを用いた。

（1）単染色標本所見
Löffler メチレン青単染色標本，倍率 90倍，油浸鏡検。

BR strain，核体は共に外形は柱状を呈し，菌体側面はほぼ直軸，側面は平行で，両端はまるく，配列は個々に散在しているが，短い細菌，染色性は一様であった。同者の相違点は長さであった，すなわち，BR strain に比え，原株より短小であった。また原株は一般に短い細菌をなしているものが多いために反し，BR strain は細菌を呈するものが殆んど見られなかった。

（2）位相差顕微鏡検
倍率 900倍，油浸鏡検（対物レンズ千代田Dark Contrast Medium）。

これによると，細菌を生きた状態のままだて観察し，若干の利点がある。運動性は実験 2 に記した如く認められなかった。菌体の長さも単染色標本の観察結果より短縮の差が観察されるように思われ，BR strain は原株よりも短小で，また菌体の中間部にやや透明の部分が見られるように思われたが明確ではない。原株は長く，細菌を呈するものが多いのは単染色標本の場合と同様であった。また内部は全く均等であった。

（3）電子顕微鏡検
日立 HS-HE 型，50Kv，直接倍率 4,000 ～ 5,000 倍，倍率倍率 3 ～ 5 倍，蒸発し塩化亜鉛を覆い，均等な顕微鏡液をつくり，その一白金耳をつけてルームバーレの下にセットしたシートマンツシユにのせ，自然乾燥するのを待って蒸発装置でクローム shadowing を行い，それを電子顕微鏡の観察に供した。

電子顕微鏡による観察結果も，BR strain は原株に比し短いであった。peritrichious flagella は見られなかった。これは，位相差顕微鏡で運動性の認められなかった事実を裏書きしているとと思われる。内部構造に関しては顕著な差異は見出されなかった。 （写真 1 及び写真 2 ）電子顕微鏡による観察の結果，原株の細菌を呈するものは殆んど見られなかったが，これは途中の操作に原因があったのかかもしれない。

BR strainが原株に比し短小である事は前述の如くであるが，著者は更に推計学的にその事を確認した。

24時間培養後の菌を用い，無作為的的に 各標本（この場合標本は BR strain，原株共に 5 個作準備した）毎に引伸倍率を含めて 10,000 倍の電子顕微鏡写真を 3 枚ずつとり，その中の菌体の長さを計測，第 3 表の如き分布表を作成した。各級の中心は 1 mm，菌体が重ったり欠損等で計測不可能である

<table>
<thead>
<tr>
<th>菌体の長さ (mm)</th>
<th>BR strain</th>
<th>原株</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.0 ～ 5.9</td>
<td>1</td>
<td>3.8</td>
</tr>
<tr>
<td>6.0 ～ 6.9</td>
<td>4</td>
<td>3.2</td>
</tr>
<tr>
<td>7.0 ～ 7.9</td>
<td>6</td>
<td>4.8</td>
</tr>
<tr>
<td>8.0 ～ 8.9</td>
<td>10</td>
<td>8.0</td>
</tr>
<tr>
<td>9.0 ～ 9.9</td>
<td>15</td>
<td>12.0</td>
</tr>
<tr>
<td>10.0 ～ 10.9</td>
<td>14</td>
<td>11.2</td>
</tr>
<tr>
<td>11.0 ～ 11.9</td>
<td>22</td>
<td>17.6</td>
</tr>
<tr>
<td>12.0 ～ 12.9</td>
<td>16</td>
<td>12.8</td>
</tr>
<tr>
<td>13.0 ～ 13.9</td>
<td>9</td>
<td>7.2</td>
</tr>
<tr>
<td>14.0 ～ 14.9</td>
<td>4</td>
<td>3.2</td>
</tr>
<tr>
<td>15.0 ～ 15.9</td>
<td>7</td>
<td>5.6</td>
</tr>
<tr>
<td>16.0 ～ 16.9</td>
<td>7</td>
<td>5.6</td>
</tr>
<tr>
<td>17.0 ～ 17.9</td>
<td>4</td>
<td>3.2</td>
</tr>
<tr>
<td>18.0 ～ 18.9</td>
<td>2</td>
<td>1.6</td>
</tr>
<tr>
<td>19.0 ～ 19.9</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>20.0 ～ 20.9</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>21.0 ～ 21.9</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>22.0 ～ 22.9</td>
<td>1</td>
<td>0.8</td>
</tr>
<tr>
<td>計</td>
<td>125</td>
<td>100.0</td>
</tr>
</tbody>
</table>

第 1 図 菌体の長さの分布曲線

<table>
<thead>
<tr>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>35</td>
</tr>
</tbody>
</table>

55.
る以外はすべて計測した。

BR strain、膿体大々の全計測菌数を100とし、各級の観測菌数を百分率で表し、分布曲線を加く、第1図の如くなる。

第3表、第1図の如く、**BR strain** は、最短の5.5〜5.9mmの範に含まれる膿体から最大の22.5〜25nnmの範までの膿体を含むが、分布曲線が14.5mmを界として、11.5〜15.9mmの範をpeakとする膿体の短い群と15.5〜16.5mmの範をpeakとする膿体の長い群に分ける事ができ、大部分は前者に含まれる事は明らかである。

これに反し、原株は14.5mmをpeakとする一峰型の曲線であった。

このような細菌の長さ等の分布は一般に正规型をとるものと予想される。故に、両者の分布の母集団の型が正常型であるかどうかを調べた場合、第1図で示された短さ短いものと長いものとの二群に分けるような**BR strain**の分布は当然正規型でないことが想像される。第4表と第2図の如く、最も簡単な方法である正規確率紙を用いて検定する**BR strain**の分布は、原株の分布はほぼ正規型を示していると言えるが、**BR strain**の分布は14.5mmを界として直線の傾斜が異なり、正規型とは言えないと考えてよいのである。

次に各者の菌体の長さの平均値の比較を行った。

前述のように**BR strain**の菌体の長さは短いものが大部分を占めるとすれば、平均値は当然原株より小となる。実際、原株の平均は16.1（実際の菌体の平均の長さは1.6μ）に対して、**BR strain**のそれは12.0（1.2μ）と小であつた。これが推計学的に見て有意と言えるかどうかを検討したが、第5表の如く1%以下の危険率で両者の平均値には有意の差があると言えた。

以上より、**BR strain**は菌体の長さから考察すると、菌体の短い群と長い群に分かれ、しかも、菌体の長い群がたええ含まれていても、平均値を原株と比較すれば明らかに短い事から、大部分は菌体の短い群に属していると推察的に言える成績えた。

BR strain を第1図にやつて14.5mmを界とし
第5表 BR strain、原株の菌体・長さの平均値の検定

<table>
<thead>
<tr>
<th>実験菌類</th>
<th>資料数</th>
<th>自由度</th>
<th>平均</th>
<th>偏差平方和</th>
<th>(\bar{x}^2)</th>
<th>(\omega)</th>
<th>(\frac{\bar{x} \cdot \bar{y}}{\omega})</th>
<th>(t_b)</th>
<th>自由度の (t) 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>原株</td>
<td>156</td>
<td>155</td>
<td>16.12</td>
<td>1573.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.45</td>
</tr>
<tr>
<td>BR strain</td>
<td>125</td>
<td>124</td>
<td>11.39</td>
<td>133.25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>13.23</td>
</tr>
<tr>
<td></td>
<td></td>
<td>279</td>
<td>4.13</td>
<td>2916.81</td>
<td>10.45</td>
<td>3.23</td>
<td>1.28</td>
<td>10.62</td>
<td>2.58 < (t) < 2.62</td>
</tr>
</tbody>
</table>

第6表 BR strain（長さ部）、原株の菌体・長さの平均値の検定

<table>
<thead>
<tr>
<th>実験菌類</th>
<th>資料数</th>
<th>自由度</th>
<th>平均</th>
<th>偏差平方和</th>
<th>(\bar{x}^2)</th>
<th>(\omega)</th>
<th>(\frac{\bar{x} \cdot \bar{y}}{\omega})</th>
<th>(t_b)</th>
<th>自由度の (t) 0.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>BR strain（長さ部）</td>
<td>26</td>
<td>25</td>
<td>17.08</td>
<td>101.82</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>17.58</td>
</tr>
<tr>
<td>原株</td>
<td>156</td>
<td>155</td>
<td>16.12</td>
<td>1573.56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>180</td>
<td>0.96</td>
<td>1675.08</td>
<td>9.31</td>
<td>3.05</td>
<td>0.31</td>
<td>1.44</td>
<td>2.58 < (t) < 2.62</td>
</tr>
</tbody>
</table>

\[
\bar{x}^2 = \frac{S_1^2 + S_2^2}{(n_1 - 1) + (n_2 - 1)} \\
t_b = \frac{\bar{x} \cdot \bar{y}}{\omega} \sqrt{\frac{n_1 \cdot n_2}{n_1 + n_2}}
\]

の如く、両者の平均値が等しいと言う仮説は否定できなかった。しかし、これをもって、直ちに両者は同一親株間で属するとは断定できないが、逆向きの変異、原株の汚染等の可能性も存すると想像できる。

2）小括

実験1で作製した BR strain に対し、単染色標本、位相差顕微鏡、電子顕微鏡による観察を行ない原株と比較した。

（1）単染色標本、位相差顕微鏡、電子顕微鏡いずれの観察によっても、BR strain は原株に比し短かった。

（2）電子顕微鏡写真で菌体の長さを計測し、その分布を調べると、BR strain は菌体の短い群と長い群に分けられた。しかし大部分は短い方に属していた。原株にはそのような点は観察されなかった。

（3）BR strain の菌体の長い群の長さの平均値と、原株のそれを比較すると、振幅学的に両者の平均値が等しいと言うことを否定できなかった。

（4）この実験の培養条件では、原株は一定に短幅を呈する傾向が見られたのに反し、BR strain では見られなかった。

（5）両者共に運動性を有せず、peritrichous flagella も認められなかった。

実験4 BR strain の成長曲線

実験3において、BR strain は原株に比し短小である事を見た。菌体の長さが菌の成長の phase によって異なる事が知られているから、このことは菌の成長の“ずれ”に起因したものであったかかもしれない。また定性的には一般生物学的性状に変化はなかったものの、菌体の短小であることより見て、定量的な水準の変化の差が菌の成長（分裂速度等）に現われてくる可能性もある。特に Within の細胞分裂と放射線耐性の関係を観察している。以上の知り理由から両者の成長曲線を比較検討した。

1）実験材料及び実験方法

供試菌：実験1にて作製した BR strain、対照として原株。前培養は M-L 培地及び普通寒天斜面を用い、培養時間は16時間及び24時間。
培地及び培養法：W-L 培地で、37℃発酵培養。\[\text{菌数測定法：平板培養法}^{38}\text{]}

2）実験成績

(1) W-L 培地16時間培養菌を用いた場合

第7表 第3図の如く、BR strain、脳株と共の実験条件では明瞭な lag phase を認め得る事が出来なかった。強いて言うならば、両者の成長曲線は培養開始後約3時間で logから logarithmic

第7表 W-L 培地16時間前培養の場合の培養時間に対する菌数の変化

<table>
<thead>
<tr>
<th>時間</th>
<th>菌数</th>
<th>BR strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(4.0 \times 10^4)</td>
<td>(8.5 \times 10^4)</td>
</tr>
<tr>
<td>3</td>
<td>(1.7 \times 10^9)</td>
<td>(1.8 \times 10^8)</td>
</tr>
<tr>
<td>6</td>
<td>(1.8 \times 10^8)</td>
<td>(1.2 \times 10^7)</td>
</tr>
<tr>
<td>10</td>
<td>(4.9 \times 10^9)</td>
<td>(3.7 \times 10^8)</td>
</tr>
<tr>
<td>16</td>
<td>(4.5 \times 10^9)</td>
<td>(2.7 \times 10^8)</td>
</tr>
<tr>
<td>20</td>
<td>(4.0 \times 10^9)</td>
<td>(3.2 \times 10^8)</td>
</tr>
<tr>
<td>24</td>
<td>(5.9 \times 10^9)</td>
<td>(1.1 \times 10^8)</td>
</tr>
<tr>
<td>28</td>
<td>(4.4 \times 10^9)</td>
<td>(6.4 \times 10^7)</td>
</tr>
</tbody>
</table>

第3図 W-L 培地16時間前培養の場合の成長曲線

phase に入り、両者同じ傾斜で約20時間で stationary phase に達することが観察されたと言えよう。また lag phase と考える時期では BR strain の方の菌数が多いにかわりず、4時間半頃より原株が逆に凌駕し、以後 stationary phase までその状態が持続され、stationary phase に

途すると再び BR strain が多くなったと言える。

更に厳密に言うならば、第3図の如く片対数方程式に培養時間に対して菌数をとると、logarithmic phase は直線となり、それ以前の曲線部分はすべて lag phase と考えれるから、原株の lag phase は培養開始後約3時間、BR strain のそれは約6時間で、3時間の“ずれ”が見られる。しかし、BR strain の lag phase の傾斜は原株よりゆるやかであったと言えよう。

しかしながら、前述の如くいずれも明瞭な lag phase として観察されていないから、このような

第8表 普通寒天培地24時間前培養の場合の温育時間に対する菌数の変化

<table>
<thead>
<tr>
<th>時間</th>
<th>菌数</th>
<th>BR strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(2.0 \times 10^9)</td>
<td>(1.9 \times 10^9)</td>
</tr>
<tr>
<td>2</td>
<td>(2.1 \times 10^9)</td>
<td>(1.4 \times 10^9)</td>
</tr>
<tr>
<td>3</td>
<td>(1.9 \times 10^9)</td>
<td>(1.9 \times 10^9)</td>
</tr>
<tr>
<td>4</td>
<td>(2.6 \times 10^9)</td>
<td>(2.5 \times 10^9)</td>
</tr>
<tr>
<td>8</td>
<td>(6.0 \times 10^9)</td>
<td>(5.4 \times 10^9)</td>
</tr>
<tr>
<td>10</td>
<td>(2.7 \times 10^9)</td>
<td>(4.8 \times 10^9)</td>
</tr>
<tr>
<td>14</td>
<td>(3.0 \times 10^9)</td>
<td>(3.6 \times 10^9)</td>
</tr>
<tr>
<td>20</td>
<td>(5.0 \times 10^9)</td>
<td>(7.2 \times 10^9)</td>
</tr>
<tr>
<td>24</td>
<td>(4.6 \times 10^9)</td>
<td>(3.5 \times 10^9)</td>
</tr>
<tr>
<td>28</td>
<td>(6.0 \times 10^9)</td>
<td>(5.8 \times 10^9)</td>
</tr>
</tbody>
</table>

第4図 普通寒天培地24時間前培養の場合の成長曲線
断定的な結論を下すことは壁面できない。
（2）普通寒天培地において、BR strain, 原培地に明瞭な lag phase を観察した。すなわち、第3表第4欄の如く、lag phase は両者共に培養開始より約3時間であった。

この間、原培地では菌數の増減が殆ど見られなかったが、BR strain はいずれも著しく減少を示した。しかし、これは測定誤差範囲を出ないものと思われる。logarithmic phase すなわち培養開始後約3時間より約14時間間では、両者の間に頗著な差異を認めなかった。

（1）の実験条件では logarithmic phase は約17時間であったが、今回の実験条件では約11時間に短縮された。Stationary phase において、BR strain の菌数が差を示す所を僅かではあるが急激に減じていたのは（1）と同様である。しかし、これも測定誤差範囲を出ないと考えられる。

3）小括
実験1で作製した BR strain 及び原培地の成績を比較観察したが、著しい差異を認めなかった。

（1）W-L 培地16時間前培養菌を用いた場合、両者共に明瞭な lag phase は観察されなかったが、感情で言えば、原培地は培養開始後約3時間の lag phase を経過 logarithmic phase に入り、約20時間で stationary phase に達するが、BR strain はそれより3~4時間の遅れがあった、logarithmic phase における傾斜を差はなかった。

（2）普通寒天培地4時間前培養菌を用いた場合、両者共に lag phase は明瞭に観察された。また、原培地 lag phase は培養開始後約3時間まで、logarithmic phase は約14時間で終了、stationary phase に達した。phase の“ずれ” logarithmic phase と傾斜等の差は観察されなかった。

実験5 T系 Bacteriophage による実験
Bacteriophage（以後 phage と略す）は独立して増殖することは不可能である。藤谷④は相違を G系と M系に分類し、独立して自己増殖を喫むには少なくとも両系の相違の存在が必要と考えた。故に phage の如く自個なる自己増殖系は他の自己増殖系（宿主）と共存せずに増殖することができないと言う。この藤谷の提出した仮説が根本的には理解しやすいと思われる。

この考えを拡張すると、phage は自己増殖を可能にするその phage に適した宿主細胞を要すると言えよう。実際、1938年 Craigie, Yen が Salmmonella typhi の菌型決定に VI-phage を用いて以来、菌型決定に phage が盛んに用いられるようになった。

これを逆に利用して、phage 宿主間の関係が既知である phage で、分離された変異株に対するその phage の感染態度を追求することによって、それの相違系統の変化を知ることができる。これが本実験を行う理由である。

1）実験材料及び方法
供試菌：実験1にて作製した E. coli BR strain, 対照として原培地。
T系 phage：京都大学ウイルス研究所より提供された Tα+, Tα phage。
培地 phage 感染実験には pepton glucose medium を、Infective center の算出には pepton glucose agar 平皿を用いた。
実験方法：Adams 3の方法を従い、One-step 増殖実験を行った。
phage の増殖は吸収、侵入、菌体内増殖、溶菌による新生 phage の放出の過程をとる。しかしこの通常の培養実験では菌と phage を混合してもすべての菌が感染を受けず、未感染菌もそのまま増殖し、第1次の溶菌により放出された新生 phage の感染を受ける。この過程を繰返すことにより全菌が溶菌されるのであるが、この反復される過程を1回に戻り行わせようとするのが One-step 増殖実験である。

2）実験成績
（1）Tα+（One-step）増殖実験
One-step 増殖実験により、感染菌1個あたり
第9表

第5図

の新生 phage 放出数 Burst size を観察する と、第4表、第5図に示すように BR strain、原株共に
T_{60}+ 増殖は起こるが、両者の Burst size には差
が認められた。すなわち、原株のそれは 1.0×10^4 で
あったのに反し、BR strain では 3～4 であった。

(1) BR strain は T_{60} に対して、原株と同様に sensitive であったが、Burst size は少なかった。

(2) BR strain は、T_{60} phage に対して原株と異なり resistant であった。

III 総括並びに考按

大腸菌B株を用い、W-L 培地に前培養15時間
行った菌液 0.1ml を同培地 2ml に浮遊させたも
ので、いわゆる "training method" に従って
Co γ線を照射し、第4表の照射に 52,600 r に
耐える菌株を分離した。1年6ヶ月間選抜したが
その性質は変わりず、原株の約3倍の量を
115,200 r の照射にも耐えたので、著者はそれを
E. Coli BR strain と名付け、形態学的、生物学
的性質を観察した。

"training method" は細菌学の観点において
て、細菌の菌種に対する耐性を示すものにしば
しば用いられた方法であるが、この場合の training
とは生存菌の数を増やすと濃度を増やした菌を
増すことである。これによって細菌は更に耐性
の増しに抵抗性を獲得した菌が分離される。
これは薬剤を含まない培地に極小入植濃度で
も耐性を存続するので、遺伝的変化であると言わ
れる。

γ線耐性が薬剤耐性と同じ機転で発現するかは
断定は出来ない。その過程を明らかにした結果のみを
議論する。ここに示される "個体変異" の
理論から、放射線の照射効果が直ちに遺伝的でな
い場合、細胞に適応の余裕を与え、この観点から
放射線耐性を考えようとしている。しかし、これ
は放射線の量毒が細菌の生存率に無関係であると
言う報告40と一見矛盾するように思われる。

耐性増加の原因がやはり突然変異であることを
示唆する重要な観察が多く報告されている。

薬剤耐性において、薬物に曝された歴史を持た
ない集団には少数ながら耐性菌の出現する場合
がある。これは薬剤耐性発現が突然変異による
とする証拠の一つとされている。著者もγ線照射
の歴史を持たない原株中に、一製鉄的に 27,300
r，38,400 rに耐える菌の出現を観察した。しかし，夏に大量の菌株に一斉的に耐えた菌株はえられなかった。従って，一段階の照射による実験の最大耐性値は38,400 rあたりではないであろうかと想像される。

WitkinらはLuria, Delbrückに従って，遺伝学的にB/rのOriginは原株全体に放射線耐性を有する自然突然変異がすでに存在しており，これが1の放射線照射により選択されたものであることを証明した。悪性腫瘍の場合の自然突然変異の選択誤のある体験においてもすでに述べておいた。著者の実験そのものは適応であるか，突然変異であるかいずれとも断定する決定的証拠は出てこない。BR strainが1年6か月間隔をつけてその性質を変えず安定である事は，Witkin等も指摘する如くと，はなんだ突然変異を暗示する有力な証拠だと考えなければならない。

一般細胞学的生物学的遺伝性の変化行った結果は原株とBR strainの間に差異を見出しかつった。Weed等は少なくも銅イオンを含んだ培地で大腸菌を培養し，原株と形態的に変化を生じている変異株をえて，これにCopper organismと名付ける。同時に，放射線に耐性を有している生物的遺伝性は一般大腸菌の特徴であるmicrocolonyは3％まで減少した。彼等の言うmicrocolonyとは正常の1/10~1/100である。著者のBarsikowの成績を観察では，定性的にlactoseの利用能に差はなかった。BR strain及び原株の集落は一般大腸菌のものとして細菌に配列されているところを異ならないが，培養時間によって微妙なnuanceの相違があり，両者の差異に関して追求の余地はあるようと思われる。

ロフラーの染色法，位相差顕微鏡，電子顕微鏡を用いても，BR strainは原株に比しみかけであつた。しかし，電子顕微鏡により更に詳しく調べると，BR strainの集団は大部分を占める菌体の短い様と，偏かであるが原株菌体より長い様から成ることが観出された。内部構造には著変を見なかったが，これも染色法を工夫するか，超薄切片の電子顕微鏡による観察の余地が残されていると考えられる。また原株は顕状を呈する傾向があるに反し，BR strainはすべて単細胞に存在した。顕状を呈すること自体，大腸菌一般によく見られる現象でさほど重大な事柄でないが，clumpingの程度は細菌に放射線を照射した場合の生存曲線に及ぼす影響を及ぼすことが報告されているから，BR strainが全く顕状を呈さない証であると比較の上で意味があるのかもしれない。

Witkinらは放射線に感受性の高い大腸菌は紫外線照射を受けると一時的に細胞内に多数の核を含む空室の形態をとことで，B/rのlag phaseが原株より25％短い（hardier division），B/rがPenicillin，Sodium sulfadiazineに耐性をもつ等から，細胞分裂と放射線耐性的関連性を疑問している。しかし著者のBR strainと原株の成長曲線を観察し，両者の間に著しい差を認めることはできなかった。

著明な差異を認めめたのは，形態においてであり，BR strainが原株より短小であることが成長phaseの“ずれ”によって起こったものではない点で意義を認めなければならない。

以上の如く，BR strainの生物学的性状が原株と大差のないことは，種々の因子の欠陥をも含む変異株よりも，かならずしも放射線の効力に対し抵抗する力が弱いと言うことにはならぬ。一般生物学的な定性的な観察ではその差異が顕著されていない可能性を充分あけて，形態的に短いであると，phaseの感受性差に異常のあることからそれらが暗示されている。phaseの実験から示された如く，BR strainに核酸系をも含む変異の蛋白質の変化があるとすれば，酵素の水準ではおそらく差異が存在すると予想される。

T系phaseによる観察において，著者はBR strainと原株の間に顕著な差異を見出した。BR strain，原株共にT+に対し感受性を有するがBurst sizeには著しい差をみ，またT3は原株に

- 41 -
おいて塩剤にかかわらず BR strain においては増殖を全く見なかった。

著者が分離したような放射線耐性菌に対し行われた phage の実験については、今まで大腸菌による Weed 等の報告以外は少なく、しかも Weed 等の実験目的は分離された変異株が大腸菌であることを証明するもので、Tmや、TtK で原株同様塩濃度をみると言うに留まっている。

放射線が、紫外線やマスタード類と同様に、生体の DNA 合成に著しい影響（DNA 合成の低下）を持つことに近年明らかとなった 38,39) その放射線がもたらした変化が細胞的生精巣の原因（直接作用）であるか、化学的な変化作用（間接作用）であるかはまだ確論のところであるが 40) より、むしろ放射線の生きた細胞に対する作用は、物理的または化学的変化作用によって考え DNA に変化が起こるとしても生命現象の面を通じて拡大され達に細胞を死に至らしめる上がり 41) と考えるべきだと言われて来ており、一方、実験においても述べた如く、phage 感染そのものは増殖変化があることに細菌の耐放射性を推定し変化のあることを予想せしめる。殊に改変の菌株である phage の特異性有機に、phage DNA の特異性は機能的には蛋白質を介して、変形される RNA を介して解読されるとは 38) その菌株は放射線の生きた細胞に対する作用機構として最近推定されているところと同じ次元のものであると言って良いものであろう。

故に著者が見出したこれ等 phage に関する実験事実に、phage 増殖の研究に興味ある一方見を提供すると考えられると共に、少なくとも核酸系もしくは特異的な蛋白質が放射線耐性の発現、維持の機構に関与していると言う示唆を我々が与えると言えよう。

これ以上に推論する為には更に多くの実験成績の集積を持たねばならないが、Caspersson 39) によって脱出されたところの核が蛋白合成の中心であると言う仮説に始まり DNA が RNA を mediator として細胞質の蛋白合成を支配すると言う特異性伝達機構に関する Speculation 39) から、飯本、渡辺等 50) のように放射線照射によってひき起こされる遺伝的変異株の発現について核酸と蛋白質間の相互的関係を模型として示することは可能であろう。しかし放射線耐性と言う形態の発現あるいは維持の機構としては不充分と言わざるを得ない。

さらに著者が推論に至られるならば、細胞の放射線耐性は一般に酸素呼吸によって影響され 38,44) その、また放射線に対する有効な保護物質は生体内に低酸素を生ずることが実証また推定されているから、38) 細胞内酸素濃度の低下するも放射線の影響を受けるのに細胞内に存在する SH 基である SH 基に固定 SH 基（Fixed SH-groups）としての SH 酵素、蛋白質や細胞分裂にたずさわる SH 基の機能が放射線生物作用を考える上で重要である。いずれにせよ、酸素と蛋白質（酵素）の相互通性性を常に念頭におおくべきだと考える。

放射線耐性を論ずる場合の複雑さは、放射線の生物作用は言うまでもなく、生物体の発生発達を観ると、放射線耐性の変化により、組織の耐放射性を高めることが可能である。しかし著者は大腸菌 B 株で原株の 3 倍量の Tm照射に耐える安定な菌株を分離し、耐性の存在を立証し、放射線耐性を観察し、定性的な実験結果で生物発生の化学的性質において菌株とその差異を認めなかったが、phage の実験から放射線は蛋白質変形の変化があることが予想され、さらに核酸と酵素の相互通性性の変化、細胞内 SH 基の重要な役割を推測した。これ等のことは、この研究の今後の発展の方向と、著者のこの実験で未だ観察されていない酸素・放射線の水溶性の研究が進まなければならないことを示していると考えられる。

IV 結論

大腸菌 B 株を用い、放射線耐性の存在を立証し、発現の状態並びにその機構を究明すんとして実験を行い次の成績をえた。す
1）大腸菌 B 株に対し、細菌の放射耐性で言う
昭和53年8月25日

“training method”に従い、4次にわたる^{60}Co γ線照射により115,200 rに耐える耐性菌株を分離した。

2 1年6ヶ月の選抜によってもその耐性を維持され、安定なものと考えられたので、この菌株にEscherichia Coli BR strainと名付けた。

3 この菌株は原株に比し約3倍の照射線量に耐えることが判明した。

4 この菌株と原株の間に定性的な一般細菌学的生物学的性質の差異を認めなかった。

5 單色酵素、位相差顕微鏡、電子顕微鏡いずれの観察によっても、この菌株は原株に比し短小であった。

6 この菌株はBacteriophage T2抵抗に対し原株が同様sensitiveであったが、Burst sizeは小で、T3に対しては原株と異なりresistantであった。

本論文の要旨は第3回日本アイソトープ会議において発表した。

藻を終に臨み、指導御懇請の御指導を賜り、御教官を慕った御師妹教授並びに木村教授に深志の感謝を捧げ、また心よりphageを提供下さった京大大学ラジオアイソトープ研究所指導教授並びに実験に尽力された木村講師、鷹名開博士、細菌学研究に尽力されたに御師妹教授、細菌学研究に尽力された木村講師、鷹名開博士に感謝の意を表す。

文 献

Studies on the Resistance to Irradiation by 60Co γ ray of Escherichia Coli B.

By

Takashi Aoyama

Department of Radiology, Kobe Medical College

(Director: Professor K. Narabayashi, M.D.)

Studies on the resistance of Escherichia Coli B to irradiation by 60Co γ-ray have been undertaken. The results were summarized as follows.

1) A resistant strain to 60Co γ-ray irradiation, designated Escherichia Coli BR in our laboratory, has been isolated from the original strain by means of "the training method".

2) The resistance of the strain to radiation was stable on subculture for one year and a half.

3) The strain could survive after exposure of 115,200 r, which was three times the minimum lethal dose of the original strain.

4) Morphologically, the cell size of this strain was shorter in length than the original. This fact was proved microscopically on the stained cells or by electron-microscopic measurement.

5) To T2 r+ phage, the strain was as sensitive as the original one, despite the smaller burst size of this strain, while, to T3 phage, the BR strain was resistant, in contrast to the original strain.

6) With regard to the fermentation of sugars or the other routine biological characteristics, no difference was detected between the resistant and the original strain.