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論　文　内　容　の　要　旨

[ 　題 　名 　 ]

Experimental and Theoretical Study on Density Oscillator.

（密度振動子の実験・理論的研究）

自然界には、心筋細胞の収縮リズムや月経サイクルなど、自発的にリズムを刻む系が多

く存在する。このような系は自励振動子と呼ばれ、系外からのエネルギーの供給によっ

て系固有の特性を持った自発的な振動が維持されるという特徴を有する。このような自

励振動子の中でも特に、遅い緩和過程と急激な移り変わりの過程の繰り返しによって振

舞いが特徴づけられる振動子は、緩和振動子と呼ばれる。緩和振動子は、生体などさま

ざまな系において見られるだけでなく、電気回路などテクノロジーの分野への応用も広

くなされており、その本質的かつ普遍的なメカニズムを理解することは、生物・医学・工

学などの広い分野において極めて重要な意義を持つと考えられる。

過去に報告されている研究において、緩和振動の振舞いは現象論的に記述されてきた

ものの、振動に最も本質的であると考えられる急激な移り変わりの過程がどのようにし

て起こるかについては詳細に議論されておらず、従って緩和振動が起こるメカニズムは

真の意味では明らかにはされてこなかった。振動のメカニズムの解明のためには、急激

な移り変わりの過程に注目し、ミクロな視点から振動の振舞いを明らかにすることが必

要であると思われる。

密度振動子は、緩和振動のメカニズムを探るための優れた実験系である。密度振動子

とは、底に管を取り付けた小さな容器を大きな容器に取り付け、小さな容器を重い流体

で、大きな容器を軽い流体でそれぞれ満たすと、重い流体の大きな容器への流出と軽い

流体の小さな容器への流入が周期的に繰り返される振動子である。その振舞いは、上向

き・下向きの流れそれぞれについては過去の報告においてよく理解されてきたものの、

流れの転換のメカニズムについては明らかにされてこなかった。本研究では、密度振動

子の流れの転換過程を実験・理論の両面から探ることで、緩和振動の急激な移り変わり

の過程に潜む普遍的なメカニズムを明らかにすることを目的とした。

実験では、水面の高さを測定すると同時に、管の内部を実体顕微鏡で観察した。その

結果、流れの転換は、次のようにして起こることが明らかになった。例えば、下向きか

ら上向きへの流れの転換過程の場合、まず軽い流体がわずかに侵入する。侵入した流体

は非常にゆっくりとした速度で成長を続けるが、その侵入距離がある閾値に達すると急

激に成長し始め、軽い流体が管の上端に達すると完全に流れが転換する。即ち、流れの

転換過程は、流体の侵入とその急激な成長によって特徴づけられる。さらに、この侵入

のタイミング及びその成長速度は流体の粘性率に大きく依存することが明らかになった。



このような実験結果を説明するために、流れの転換過程を取り込んだ密度振動のモデ

ルを構築した。モデルは、侵入した流体の先端部の単位体積要素に粘性応力 (F1)、静水

圧勾配及び重力 (F2)、そして管を通過した流体の加速による効果 (F3)という３つの力が

かかると考え、運動方程式を構築した。F1、F2、F3はそれぞれ、侵入した流体を引き戻

す働き (inhibiting factor)、侵入した流体を進ませる働き (promoting factor)、流体の管の

中への侵入を誘起する働き (triggering factor)を持っている。このモデルをもとにシミュ

レーションを行ったところ、上記実験結果を概ね再現することができた。そして、その

結果から、流体の侵入はF3によって引き起こされ、その急激な成長はF2の効果がF1の

効果に打ち勝つことによって引き起こされる、ということが明らかになった。

このように、密度振動子の振舞いは、流れの転換過程における３つの要因 (inhibiting

factor, promoting factor, triggering factor)を考えることによって、概ね理解することが

できる。この知見から、緩和振動子の急激な移り変わりの本質的なメカニズムは次のよ

うであると考えることができる。まず、triggering factorによって、急激な移り変わりの

前兆現象がゆっくりと進行する。そして promoting factorが inhibiting factorに打ち勝っ

た時に急激な移り変わりが引き起こされると考えられる。

本研究によって明らかになったこの緩和振動のメカニズムは、複数の緩和振動子が相

互作用する系（結合振動子系）の振舞いの解明や緩和振動の制御法の開発など、さまざ

まな応用研究に今後生かされると期待される。
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Chapter 1

Introduction

1.1 Self-oscillatory systems

Systems exhibiting regular rhythms spontaneously are abound in nature [1–14]. These

systems are called self-oscillatory systems [1,2,15,16], and have been extensively studied

in various fields. One of the well known example is a heart which beats regularly even

without will. This regular rhythm is known to be originated from the periodic activi-

ties of pacemaker cells in sinoatrial nodes [3]. Another example is menstrual cycle that

occurs in the females of several mammals including human beings [4]. Physiologically,

they are known to be caused by the rhythmic changes of secretions of hormones. On

the other hand, a plasmodial slime mold, which is an amoeboid multinucleated unicel-

lular organism, exhibits various oscillatory phenomena, such as oscillations in adenosine

triphosphate and Ca2+ concentrations, thickness of the plasmodium, and protoplasmic

streaming [5]. These are supposed to be generated by complicated mechanochemical reac-

tions among chemicals, actin, and intracellular organelles, and so on. The self-oscillatory

Figure 1.1: Scheme of limit cycle.
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Figure 1.2: (a) A person on a swing exhibits self-oscillation. (b) Mechanical swing whose length changes

according to a prescribed function of time, exhibits forced oscillation. Reproduced from Ref. [2] with

permission.

systems are also found in non-living systems. For example, in Belousov-Zhavotinski reac-

tion (BZ reaction), spontaneous rhythmic change of color of reactants is observed, which

is caused by complicated processes of chemical reactions [6, 7]. Another example is the

periodic cycle of El niño and La Niña phanomena, which is called El niño and southern

oscillation (ENSO). It is thought to be caused by a periodic change of the air pressure

and ocean current in the Pacific Ocean [8].

From physical and mathematical viewpoints, quite a few studies have been devoted

to capture common characteristics of these self-oscillatory systems [1, 2, 15, 16]. In these

studies, the self-oscillatory systems are considered as dynamical systems whose behaviors

are predetermined by a set of rules (algorithm), and the oscillatory phenomena are

described by simple differential equations with several degrees of freedom.

Such an approach began more than a century ago. Near the end of nineteenth century,

Lord Rayleigh, who is famous for fluid dynamics and optics, devoted his studies also to

oscillatory phenomena in acoustic systems [17]. In his famous treatise ‘The theory of

sound’, he noted that vibrations of several acoustic systems are maintained in connec-

tion with constant energy source, and described their behaviors by a simple nonlinear

equation. Although the significance of his discovery was not realized immediately, it was

developed by the studies of van der Pol in 1920s [18–22]. He studied intensively on elec-

tric generators, and found that their behaviors were described by an equation similar to

that Rayleigh derived. On the other hand, another development of mathematical study

was achieved by Poincaré at the end of nineteenth century [15, 23]. He found that a

dynamical system described by a couple of differential equations could exhibit a closed

orbit in the phase plane, towards which neighboring paths were attracted (Fig. 1.1). He

called this orbit as ‘(stable) limit cycle’.

About twenty years later than the discovery of van der Pol, a great contribution to
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the oscillation theory was made by Andronov [15]. He noticed the inter-relation between

Poincaré’s limit cycles [23] and the periodic oscillations of the electronic generators stud-

ied by van der Pol [18–22]. As is the case in the van der Pol’s electric generators, some

automonous systems were known to exhibit undamped oscillations with taking energy

from nonperiodic sources.1 He called this type of oscillation ‘self-oscillation’, and showed

that the orbit of the self-oscillation was attracted to a stable limit cycle in the phase

plane, which indicated that the dynamical behavior of the self-oscillatory system did not

depend on the initial condition but on the property of the system itself. Later, the defini-

tion of the self-oscillation was slightly extended by Landa [1]. In the extended definition,

self-oscillatory systems need not be autonomous. When an oscillation is maintained with

taking energy from a source but the frequency spectrum of the oscillation is independent

(or weakly dependent) of that of the energy source, it is generally called ‘self-oscillation’.

Importantly, self-oscillation is discriminated from so called ‘forced oscillation’, in which

the oscillation is maintained by a periodic external force and the period of the oscillator

is in accordance with it. For clarity, let us consider the following example. Figure 1-

2(a) shows the oscillation of swing [1, 2]. The oscillation of the swing is maintained if

a person sits down when the swing approaches the left- and rightmost positions, and

stands up when it passes the bottom of the swing. In this case, the source of energy

here is muscular power of the person, because the movement of the center of gravity

supplies energy to the swing. On the other hand, Fig. 1.2(b) shows the mechanical swing

whose length is periodically changed by a mechanical force. In this case, the rhythm of

the swing becomes in accordance with that of the mechanical force. Although these two

systems seem to be similar, there is a crucial difference between them. In the former

case, the movement of the person occurs in accordance with the position of the swing,

i.e., autonomous, and the period is determined by the property of the swing itself. On

the other hand, in the latter case, the change of the length is in accordance with some

given periodic rhythm, i.e., non-automonous, and the period is determined by that of the

external force. Thus, we can conclude that the former is self-oscillation and the latter is

forced oscillation.

Synchronization is one of the most important properties of self-oscillatory systems [2,

25]. Synchronization is a phenomenon that several oscillators adjust their own frequencies

and behave cooperatively when the oscillators are coupled to each other or subjected

to a periodical external field. Indeed, synchronization is a well known phenomenon in

nature. For example, thousands of male fireflies living in southeast Asia emit light pulses

synchronously in order to attract females [26]. In a concert hall, rhythmic applause of

audience becomes sometimes synchronized [2]. Snowy tree crickets are able to synchronize

1‘automonous system’ means that the system is not driven by a force which explicitly depends on time.
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Figure 1.3: Electrical circuit that exhibits relaxation oscillation. It consists of a neon lamp Ne, a

condenser C, a resistance R, and a batery E.

their chirps by responding to the preceding chirps of their neighbors [2]. Quite a few

scientists have devoted their studies to such synchronization phenomena. Especially,

the emergence of the cooperative behavior of coupled oscillators has been studied from

analogy to the second order phase transition [25]. Recently, the coupled oscillator systems

are not only studied to understand their principle but also engineered based on the

obtained principle [27–30]. For example, the mechanism of coupled oscillators is used in

the field of robotics [27].

1.2 Relaxation oscillation

Relaxation oscillation is a particular type of self-sustained oscillation, which was first

proposed by van der Pol in 1926, before Andronov proposed a definition of self-oscillation

[19]. He devoted his study to electronic generators [18–22], and described their behaviors

by the following equation which is now famous for ‘van der Pol equation’:

v̈ − ε(1− v2)v̇ + v = 0. (1.1)

While nearly sinusoidal solution is obtained when ε ¿ 1 is satisfied, he found that

periodic solution is obtained even in the case of ε À 1, where the system is highly

nonlinear and dissipative. He pointed out that the latter condition is actually satisfied in

the electrical system called ‘multivibrator’ that was introduced by Abraham and Bloch

in 1919 [19].

Van der Pol noticed that the oscillatory behavior at ε À 1 was found to be absolutely

different from that at ε ¿ 1. Firstly, the waveform deviates considerably from a sinu-

soidal function and contains many higher harmonics. Indeed, in the case of ε À 1, the

6
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Figure 1.4: Scheme of relaxation oscillation. When a switch is ‘on’, the system approaches an equilibrium

state A. However, before it reaches the equilibrium state, the switch is turned ‘off’, and the system

approaches the other equilibrium state B. Before it reaches the equilibrium state, the switch is turned

‘on’ again in the similar manner.

value of v evolves in the following way: v increases slowly at first, and when v reaches

a certain threshold, it jumps abruptly to a larger value. Then, v decreases slowly, and

when v reaches another threshold, it jumps abruptly to a smaller value. In this way,

the oscillation is characterized by the slow and fast processes. Secondly, the period of

oscillation is characterized by a relaxation time of the system. Actually, from a simple

analysis, the period of the multivibrator introduced by Abraham and Bloch is estimated

to be the product of the capacitance and resistance, which corresponds to the relaxation

time of the system. Van der Pol named the oscillation showing these characteristics as

‘relaxation oscillation’.

Later, he showed another example of electric circuit which exhibited relaxation oscilla-

tion (Fig. 1.3) [2,20,22]. It consists of a battery, a capacitor, a resister, and a neon tube

which conducts electric current only when the voltage reaches a certain critical level.

First, the capacitor is being slowly charged. When the voltage reaches the threshold,

the neon tube begins to conduct electric current. As a result, the capacitor quickly

discharges with its voltage dropping and the neon tube becomes nonconductive again.

Then, the process repeats again and again. Notice that also in this case, the period of

the oscillation is characterized by the relaxation time of the charge of the capacitor, that

is the product of the capacitance and resistance.

In general, relaxation oscillation is intuitively understood in the following way: Suppose

that the dynamics of a system is determined by a certain ‘switch’ (Fig. 1.4). When the

switch is ‘on’, the system approaches an equilibrium state. On the other hand, when the

switch is ‘off’, the system approaches another one. Thus, if we turn on or off the switch,

the state to which the system relaxes will change. Relaxation oscillator is considered as

a system that the mechanism that controls the switch is inherent in the system itself.

When the system relaxes to one of the equilibrium states to some extent, the switch is
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Figure 1.5: Mechanical model of a relaxation oscillator. (a) Water fills a vessel slowly until the surface

of the water reaches the threshold level. (b) Water flows out through a trap so that its level in the vessel

quickly goes down. Reproduced from Ref. [2] with permission.

turned automatically and the system relaxes to the other equilibrium state. Actually,

the examples shown by van der Pol can be considered in this way. While the durations of

‘on’ and ‘off’ states are equivalent in the system described by Eq. (1.1), it is considered

in the system of Fig. 1.3 that the duration of ‘on’ state (conductive at the neon tube) is

extremely shorter than ‘off’ state (nonconductive at the neon tube).

Van der Pol predicted in his paper that the relaxation oscillation was a common phe-

nomenon in nature [22]. For example, he considered that heart beat was a typical

example of the relaxation oscillation, and reproduced its behavior by using the system

of three coupled oscillators, each of which was composed of the electric circuit shown in

Fig. 1.3 [22].

The relaxation oscillations are nowadays extremely well known and extensively studied

in various fields [1–6,8,9,11–14]. One of the examples is shown in Fig. 1.5 [2]. The main

element of the system is a vessel being slowly filled with water. Then, when the water

level reaches a threshold, the vessel empties quickly and a new cycle begins. Another

example is found in endogenous circadian rhythms in plants performing crassulacean acid

metabolism (CAM) [11]. In these plants, the transport of malate between the cytoplasm

and vacuole is regulated by the property of the tonoplast of the vacuole. When the

concentration of malate in the vacuole is low, the influx of malate occurs. At the critical

concentration, the property of the tonoplast changes, and then the efflux of malate begins.

At another critical concentration, the property of the tonoplast changes again, and thus

the influx begins. In this way, oscillation will continue.

The relaxation oscillators are also applied to the technology. Particularly, those made

by electric circuit [13] have been applied to produce square or sawtooth waves, the former

of which is suitable for triggering synchronous logic circuits at precisely determined

8



intervals, while the latter is used for raster scan of televisions or monitors.

1.3 Density oscillator

Density oscillator is known as a typical example of relaxation oscillator [31–54]. It

consists of an inner container with a thin pipe or a small orifice at the bottom, which

is held within an outer container (Fig. 1.6). The inner container is filled with heavy

fluid, while outer one is filled with light fluid. When the surfaces of both fluids are

initially set at nearly the same height, the heavy fluid starts to flow downward through

the pipe, owing to the gradient of hydrostatic pressure. At a critical height, the flow

loses the stability and flow reversal occurs, which causes the light fluid to flow upward

through the pipe. At another critical height, the flow loses the stability again, causing

flow reversal and leading the heavy fluid to flow downward. In this way, the oscillation

continues for more than several tens of cycles.

Density oscillator was first investigated in 1970 by Martin, a geophysist [31]. He found

that a variety of straight tubes such as funnels and hypodermic syringes when filled with

salt water and partially submerged in a beaker of fresh water exhibited oscillations of a

finite amplitude. He named this phenomenon as ‘salt oscillation’. He not only performed

the detail experiments using hypodermic syringes, but also analyzed each up- and down-

flow according to Poiseuille’s law [55], and derived their dynamical behaviors theoretically

at two limiting cases: viscous damping regime and non-linear damping regime. The

experimental results were generally well explained by his analysis. However, he could

not describe the oscillatory behavior because the mechanism of the flow reversal was not

well understood.

The study of density oscillator was developed by Yoshikawa and his colleagues [32–34].

They founded the basis for the density oscillator as a relaxation oscillator, and formulated

the oscillatory behavior by combining the equations for up- and down-flow derived by

Martin. By using several approximations, they concluded that the oscillatory behavior

was phenomenologically described by the same equation as that Rayleigh described in

early days [17], now called ‘Rayleigh equation’. Recently, Okamura and Yoshikawa per-

formed a simulation based on fundamental equations of fluid dynamics, and found that

the oscillatory behavior was still described by Rayleigh equation even when Poiseuille’s

law was not assumed [35]. Moreover, they found through the simulation that the poten-

tial energy of the fluid was the source of energy, which was dissipated by the effect of

viscosity. This fact confirmed that the density oscillator had a typical characteristic of

relaxation oscillator.

Synchronization of density oscillators has been also extensively studied [33,36–39,45].

9



pipe

outer container

inner container

Figure 1.6: An example of density oscillator.

When several inner containers are held within one outer container, synchronization occurs

due to mutual interaction of oscillators through the height of the fluid surface of the

outer container (Fig. 1.7). Nakata et al . found that the ratio of the surface area of the

outer container to that of the inner container characterized the coupling strength [36].

Miyakawa and Yamada reported a system consisting of two oscillators coupled with each

other through the window of the partition wall, and found that in-phase synchronization

occurred at certain parameter region, although only anti-phase synchronization occurred

when the partition wall did not exist [38]. Yoshikawa and Fukunaga [33] investigated the

coupling among three oscillators, and found that the oscillators were synchronized with

their phases differed from each other equidistantly, which is now called ‘splay state’ [56,

57]. On the other hand, Miyakawa and Yamada [37] reported the coupling among more

than three oscillators. They found that the oscillators were not fully synchronized for

a large number of oscillators, while the splay or two-cluster state occurred when the

number of the oscillators was not so large.

From an electrochemical viewpoint, the oscillation of electrical potential, which occurs

when a couple of electrodes are placed in the light and heavy fluids, has been also

extensively studied from an analogy to electrical phenomena associated with oscillation

of biological membranes [34, 44, 46, 47, 50, 52]. The cause of the oscillation of electrical

potential has long been in controversy. Noyes considered that it was caused by the

change in junction potential generated at the interface between two fluids [44]. Yoshikawa

et al . considered that not only junction potential but also streaming potential, which
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Figure 1.7: Scheme of coupled oscillators. Several inner containers are held within a large container.

generated when electrical double layer formed at the pipe and fluid was violated owing

to the flow of the fluid, contributes to the oscillation [34]. Upadhyay et al . performed

the detail experiments in order to confirm whether the junction potential or streaming

potential was essential for the electrical oscillation, and concluded that the latter was

essential [50]. Later, it was also suggested that the oscillation of streaming potential

in density oscillator mimicked the sensing mechanism of taste [48]. On the other hand,

Cervellati and Solda suggested that the oscillation of electrical potential could be applied

to alternating voltage batteries [52]. Thus, research field of density oscillator has grown

with various kinds of applicable possibility.

1.4 Unsolved problem

As described in Sec. 1.2, mathematical models of relaxation oscillations show the

general behavior of the repetitive slow relaxation process and fast jumping process phe-

nomenologically [18, 19, 21, 22]. However, when we look into more detailed mechanisms,

we have noticed that such models do not correctly answer a fundamental question why

relaxation oscillators oscillate. While harmonic oscillators oscillate due to their restoring

forces, relaxation oscillators maintain their oscillations owing to the supply of energy

from the sources at the jumping process, which corresponds to the process that the

‘switch’ is turned on or off [1, 15]. Thus, the following questions may naturally arise:

“what mechanism causes the turn of the ‘switch’?” “How does the jumping process

initiate?” Indeed, they must be the most essential questions for the mechanism of

relaxation oscillation.

The density oscillator is an excellent system to investigate the essential mechanism

of relaxation oscillation because of the simplicity of its experimental setup. In a den-

sity oscillator, the relaxation process corresponds to each up- and down-flow, while the

11



jumping process corresponds to the flow reversal. Hence, understanding how the flow-

reversal process occurs is an absolutely important problem from the above context. As

described in the previous section, the behavior of the density oscillator has been already

described phenomenologically [32–34]. However, the essential cause of the flow reversal

has not been fully discussed. Martin considered that the flow reversal occurred due to

Rayleigh-Taylor instability [31], in which perturbation at a static interface between fluids

grew, when a heavy fluid was located above a light fluid [58]. However, the dynamical

process of the flow reversal cannot be understood in terms of Rayleigh-Taylor instability,

because the spatiotemporal dynamics during flow reversal are extremely complex: In

down- to up-flow, for instance, the flow reversal initiates from an intrusion of light fluid

along the inner wall of the pipe. After some time, the intrusion begins to grow rapidly

and climbs to the upper end of the pipe, and then the flow reverses completely (see

Fig. 4.3) [31, 40,41].

Steinbock et al . approached this problem from a hydrodynamic viewpoint [40]. They

analyzed the stability of the down-flow inside the pipe, and derived the critical height

for the instability of the flow. The critical height thus obtained was in good agreement

with their experiment, when either the density of heavy fluid or the pipe length was

varied. However, they did not take into account the effect of the flow after it passes

through the pipe. In addition, the temporal evolution of the dynamical behavior during

the flow-reversal process was not considered, since the steady-state approximation was

employed in their analysis. Thus, the mechanism of the flow reversal is still not truly

understood.

1.5 Aim of the research

In the present thesis, I aim to clarify the mechanism of the jumping process of relaxation

oscillators by investigating the flow-reversal process in a density oscillator experimentally

and theoretically. In the previous experimental studies on the density oscillator [31–54],

the flow-reversal process has not been quantitatively evaluated because only the height

of the heavy fluid surface or electric potential between the electrodes has been measured.

In the present thesis, I will investigate the flow inside a pipe by using a stereomicroscope

quantitatively, which is crucial for understanding the microscopic mechanism of the flow-

reversal process.

From a hydrodynamic point of view, fluid dynamics in a system consisting of two

viscous fluids has been an intriguing problem [59, 60]. Interestingly, the dynamics are

known to be extremely sensitive to the viscosities of the fluids. One of the well-known

examples is Saffman-Taylor instability, where an interface between two fluids tends to
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become unstable when less viscous fluid is forced into more viscous fluid in a porous

medium or a Hele-Shaw cell, while it remains stable in the opposite case [59]. Thus,

it is strongly expected that even in a density oscillator, the dynamical behavior inside

the connecting pipe will be largely affected by the viscosities of the fluids. Hence, I

will investigate the essential mechanism of the flow reversal by focusing mainly on the

viscosities of the fluids.

It is quite difficult to solve the flow-reversal process analytically. Actually, the analysis

of flow that has passed through a pipe, has been one of difficult problems for hydro-

dynamicists. Hence, I aim to construct a simple model which not only describes the

general aspect of oscillatory behaviors but also contains the essential mechanism of the

flow-reversal process. Then, by considering the mechanism of the flow reversal based on

the constructed model, I will discuss how the jumping process is initiated in relaxation

oscillators.

The present thesis is organized as follows: In Chap. 2, we review the theoretical studies

on density oscillator. Chap. 3 is devoted to experimental procedures and preliminary

experiment on the flow-reversal process. In Chap. 4, the results obtained from quan-

titative measurements of the flow-reversal process with changing viscosity of fluids are

shown. Chap. 5 is devoted to the modeling of the dynamics of density oscillation, taking

essential mechanisms of the flow reversal into account. In Chap. 6, other factors which

relate to the oscillatory behavior including the flow-reversal process, such as the geom-

etry of a pipe, the density of the fluid, and the materials of the fluids are investigated.

Finally, discussion and future prospects are described in Chap. 7.
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Chapter 2

Theoretical background

In this chapter, I will review the theories proposed so far to explain the phenomenon

of density oscillation.

2.1 Analysis of up- and down-flow

In this section, the analysis of each up- and down-flow studied by Martin [31] is de-

scribed. Now consider the case where the pipe length d is much larger than the pipe

radius a, and the flow inside a pipe is parallel to the axis of the pipe which is placed

vertical to the ground. Cylindrical coordinate is used, where z axis is taken to coincide

with the axis of the pipe and r denotes the radial coordinate. The origin of the z coor-

dinate is set at the lower end of the pipe, and the upper direction is taken as positive.

Then, z component of Navier-Stokes equation is given as follows:

ρ
∂u

∂t
= −∂P (z)

∂z
− ρg +

µ

r

∂

∂r

(
r
∂u

∂r

)
, (2.1)

where u is z component of the velocity of the flow, P (z) is the hydrostatic pressure, and

ρ and µ are the density and viscosity of the fluid, respectively. If a space inside a pipe

is assumed to be completely occupied by the heavy or light fluid during the down- or

up-flow, respectively, the following equation is obtained by integrating Eq. (2.1) over the

space inside the pipe:

ρj
∂ū

∂t
= −P (d)− P (0)

d
− ρjg +

2µj

a

∂u

∂r

∣∣∣∣∣
r=a

, (2.2)

where the suffix j is given as H or L, and ρH and ρL are the average densities of the fluids

in the inner and outer containers, while µH and µL are their viscosities, respectively (see

Fig. 2.1). Although ρH, ρL, µH and µL depend on the time due to inflow of the heavy

fluid into the outer container and that of the light fluid into the inner container, only
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h
dx

2a

ρH, µH

ρL, µL

Figure 2.1: Definition of the parameters. a and d are the radius and length of a pipe, while x and h are

the heights of the heavy and light fluid surfaces, respectively. ρH and ρL are the densities of the heavy

and light fluids, while µH and µL are the viscosities of the heavy and light fluids, respectively.

ρH is assumed to be a function of time while the other three are constants, since the

time dependence of the latter three are not essentially important. ū denotes the average

velocity defined as

ū =
2

a2

∫ a

0
u(r, t)rdr. (2.3)

Because the flow inside the pipe is almost regarded as Hagen-Poiseuille flow, which is

known as the steady flow of a incompressible fluid through a straight pipe of circular

cross section (see Appendix A), the following relation should hold (see Eq. (A.4)):

∂u

∂r

∣∣∣∣∣
r=a

= −4ū

a
. (2.4)

On the other hand, the hydrostatic pressure should satisfy

P (0)− P (d) = ρLgh− ρH(t)g(x− d)− 3

4
ρjū|ū|, (2.5)

where x and h are the heights of the heavy and light fluid surfaces, respectively. The

first and second terms in the right hand side of Eq. (2.5) are the difference of hydrostatic

pressure derived simply from the height of the fluid surface, while the third term denotes

the loss of pressure at the passage of a pipe, which is called ‘head loss’. Here, x and h

have the following relation,

h− h
(i)
de = −R(x− x

(i)
de ), (2.6)

where R ≡ S/Sout. Although it was assumed that the surface area of the outer container

Sout was sufficiently larger than that of the inner container S in the theory derived

by Martin [31], here his theory is extended to the case where this assumption is not

necessary. Thus, in the limit of R → 0, the above relation is equivalent to that in his

theory. x
(i)
de and h

(i)
de are the heights of the heavy and light fluid surface at the hydrostatic
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equilibrium where a pipe is filled with heavy fluid at ith cycle1 (see Fig. 2.2). Here, the

term ‘cycle’ is defined as a sequence of down- and up-flow. In addition, it is obvious from

the condition of continuity as

ẋ =
a2π

S
ū. (2.7)

By substituting Eqs. (2.4)-(2.7) into Eq. (2.2), the following equations are obtained:

S

a2π
ẍ +

3S2

4da4π2
ẋ2 +

8νLS

a4π
ẋ +

g

d

(
ρH(t)

ρL

+ R

)
x =

g

d

(
h

(i)
de + Rx

(i)
de

)
+

ρH(t)− ρL

ρL

g, (2.8)

for up-flow and

S

a2π
ẍ− 3S2

4da4π2
ẋ2 +

8νH(t)S

a4π
ẋ +

ρL

ρH(t)

g

d

(
ρH(t)

ρL

+ R

)
x =

ρL

ρH(t)

g

d

(
h

(i)
de + Rx

(i)
de

)
, (2.9)

for down-flow, where νH(t) ≡ µH/ρH(t) and νL ≡ µL/ρL are the kinematic viscosities of

the heavy and light fluids, respectively.

Equations (2.8) and (2.9) can be further simplified through the following considerations.

First, ρH(t), which decreases as the number of cycles increases owing to inflow of the light

fluid, is derived in the following way: Since ρH(t) does not depend on the time during

the down-flow, let ρH(t) be defined as

ρH(t) = ρ
(i)
H , (2.10)

for the ith down-flow. On the other hand, because the light fluid accumulates above the

heavy fluid in the inner container during the up-flow, ρH(t) should satisfy the following

relation for the ith up-flow:

ρH(t)(x− d) = ρ
(i)
H (x

(i)
de − d) + ρL(x− x

(i)
de ). (2.11)

Second, from the balance of the hydrostatic pressure at the hydrostatic equilibrium where

the pipe is filled with heavy fluid, the following relation should hold (see Fig. 2.2):

ρ
(i)
H x

(i)
de = ρLh

(i)
de . (2.12)

Third, the non-dimensionalized variables x̃ and t̃ are introduced as follows:

x̃ =
x− xde

(δρ(i)/ρL)d
, (2.13)

t̃ =
4νLβ

a2σ1/2
t, (2.14)

where β2 = ga6π/(16Sν2
Ld) and σ = 3Sδρ(i)/(2a2πρL) with δρ(i) = ρ

(i)
H − ρL.

Using Eqs. (2.10)-(2.14), Eqs. (2.8) and (2.9) are written in the non-dimensional form

as follows:

d2x̃ (i)

d̃t2
+

2σ1/2

β


dx̃ (i)

d̃t
+

βσ1/2

4

(
dx̃ (i)

d̃t

)2

 + σ[(1 + R)x̃− 1] = 0, (2.15)

1In the present thesis, superscript (i) is omitted when it is not essentially important.
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for up-flow and

d2x̃ (i)

d̃t2
+

2σ1/2

β


ν

(i)
H

νL

dx̃ (i)

d̃t
− βσ1/2

4

(
dx̃ (i)

d̃t

)2

 + σ(1 + DR)x̃ = 0, (2.16)

for down-flow, where D = ρL/ρ
(i)
H and ν

(i)
H = µH/ρ

(i)
H . Note that β < 1 and σ > 3/2

should be satisfied so that an oscillation occurs, which is found experimentally.

Thus, Eqs. (2.15) and (2.16) are the fundamental equations describing each up- and

down-flow. As is expected, if we take the limit of R → 0, these equations correspond to

those derived by Martin (see Eqs. (18) and (17) in [31]). Here, it is found that Eqs. (2.15)

and (2.16) finally asymptotes to x̃(i) = 1/(1 + R) and x̃(i) = 0, which correspond to

x = x
(i)
de + δρ(i)d/[(1 + R)ρ

L
] and x = x

(i)
de in the dimensional form. Because these

asymptotic values should correspond to the hydrostatic equilibrium where a pipe is filled

with the light and heavy fluid at the ith cycle (Fig. 2.2), respectively, let x(i)
ue be defined

as x(i)
ue ≡ x

(i)
de + δρ(i)d/[(1 + R)ρ

L
].

Although Eqs. (2.15) and (2.16) are not solved analytically in general cases, they can

be solved in the two limiting cases, 1) the case where the inertia and non-linear terms are

neglected (viscous damping regime), and 2) the case where the viscous damping terms

are neglected (nonlinear damping regime).

Viscous damping regime

When βσ1/2 ¿ 1 is satisfied, it is expected that the contributions of the inertia and

nonlinear terms in Eqs. (2.15) and (2.16) are extremely smaller than that of the vis-

cous term. Thus, the inertia and nonlinear terms are thought to be neglected. Then,

Eqs. (2.15) and (2.16) become

2σ1/2

β

dx̃ (i)

d̃t
= −σ[(1 + R)x̃− 1], (2.17)

2σ1/2

β

ν
(i)
H

νL

dx̃ (i)

d̃t
= −σ(1 + DR)x̃. (2.18)

Equations (2.17) and (2.18) are easily solved, and the solutions are given in the dimen-

sional forms as follows:

x = −Cue
−t/τu + x(i)

ue , (2.19)

for up-flow and

x = Cde
−t/τd + x

(i)
de , (2.20)

for down-flow, where Cu and Cd are positive constants, and τu and τd are given as follows:

τu =
8SdµL

(1 + R)ga4πρL

, (2.21)
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xde xue

(a) (b)

Figure 2.2: Two hydrostatic equilibria for a pipe filled with (a) heavy fluid and (b) light fluid. xde and

xue are defined as the heights of the heavy fluid surface at (a) and (b), respectively.

τd =
8SdµH

(1 + DR)ga4πρ
(i)
H

. (2.22)

Note that it is actually valid to neglect the inertia and nonlinear terms in Eqs. (2.15) and

(2.16) in the case of βσ1/2 ¿ 1 (which automatically satisfies β ¿ 1 since σ > 3/2 should

be satisfied), because it is found from Eqs. (2.17) and (2.18) that an order of each term

in Eqs. (2.15) and (2.16) is estimated as d2x̃/d̃t2 ∼ (β2σ/4)x̃ , (2σ1/2/β)(dx̃/d̃t) ∼ σx̂

and (2σ1/2/β)(βσ1/2/4)(dx̃/d̃t)2 ∼ (β2σ2/8)x̃ under the assumptions of D ∼ 1, R ∼ 1

and νH/νL ∼ 1, which confirms that the contribution of the viscous term is much larger

than those of the inertia and nonlinear terms.

Nonlinear damping regime

In the case of βσ1/2 À 1, viscous terms, i.e., the second terms in the left hand side of

Eqs. (2.15) and (2.16), are thought to be neglected. Then, by defining Φ(x̃) = (dx̃/d̃t)2,

the following relations are derived:

Φ′(x̃) + σ[Φ(x̃) + 2(1 + R)x̃− 2] = 0, (2.23)

for the up-flow, and

Φ′(x̃)− σ[Φ(x̃)− 2(1 + DR)x̃] = 0, (2.24)

for the down-flow. Here, Φ′(x̃) means the derivative of Φ(x̃) with regard to x̃. Now

consider the case of the down-flow, and suppose that dx̃/d̃t=0 and x̃ = 1 at t̃ = 0.

Then, Eq. (2.24) is solved analytically as

Φ(x̃) =

(
dx̃

d̃t

)2

= 2(1 + DR)
(

1

σ
+ x̃

)
− 2(1 + DR)

(
1

σ
+ 1

)
e−σ(1−x̃). (2.25)
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Here, since β < 1 should be satisfied so that an oscillation occurs, σ À 1 should be

satisfied. Thus, Eq. (2.25) is approximated as

Φ(x̃) =

(
dx̃

d̃t

)2

≈ 2(1 + DR)x̃. (2.26)

From Eq. (2.26), the duration of the down-flow in the dimensional form td is roughly

estimated as

td ∼
(

4νLβ

a2σ1/2

)−1 ∫ 1

0

∂x̃√
(dx̃/d̃t)2

=
√

3
S

a2π

(
dδρ(i)

gρL(1 + DR)

)1/2

. (2.27)

The duration of the up-flow can be derived from Eq. (2.23) in the same way.

It is confirmed that it is actually valid to neglect the viscous term in Eq. (2.16) in the

case of βσ1/2 À 1 from the following consideration: From Eq. (2.26), it is found that

(dx̃/d̃t) ∼ 1 if D ∼ 1 and R ∼ 1 are satisfied. Hence, the contribution of the nonlinear

and viscous terms in Eq. (2.16) can be simply estimated from the coefficient of each

term. Thus, in the present case, the contribution of the nonlinear term is much larger

than that of the viscous term. In the same manner, it is also confirmed that the viscous

term in Eq. (2.15) can be actually neglected.

2.2 Phenomenological model of density oscillator

In the previous section, the dynamical behaviors of up- and down-flow are theoretically

described. However, the oscillatory behavior cannot be described by the theory, because

the flow reversal, i.e., switching between Eqs. (2.15) and (2.16), is not considered. In

this section, a phenomenological model for the whole oscillatory behavior derived by

Yoshikawa et al. [32–34] is described.

Now consider the case of D ≈ 1 and ν̃H = ν̃L ≡ ν̃, and assume that ρ
(i)
H and x̃(i) do not

depend on the number of cycles i. Then, both Eqs. (2.15) and (2.16) are combined into

one equation as follows:

d2x̃ ′

d̃t2
= −A1

(
dx̃ ′

d̃t

) ∣∣∣∣∣
dx̃ ′

d̃t

∣∣∣∣∣− A2

(
dx̃ ′

d̃t

)
− A3(1 + R)x̃ ′ +

A3

2
sgn

(
dx̃ ′

d̃t

)
, (2.28)

where x̃′ = x̃ − 1/[2(1 + R)], A1 = σ/2, A2 = 2σ1/2/β, and A3 = σ. Because dx̃ ′/d̃t ,

(dx̃ ′/d̃t)|dx̃ ′/d̃t |, and sgn(dx̃ ′/d̃t) are odd function of dx̃ ′/d̃t , the right hand side of

Eq. (2.28) is approximated to the third order of dx̃ ′/d̃t to describe the oscillatory behavior

in the following way:

d2x̃ ′

d̃t2
= B1

(
dx̃ ′

d̃t

)
− B2

(
dx̃ ′

d̃t

)3

− A′
3x̃
′, (2.29)
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2a0
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w

Figure 2.3: Two-dimensional geometry for a rectangular pipe. y and z components of the velocity of

the flow are denoted as v and w, respectively.

where B1 and B2 are positive constants, and A′
3 = A3(1+R). Equation (2.29) is known as

Rayleigh equation, which Rayleigh described for the vibrations in acoustic systems [17].

In this way, Eq. (2.29) has become one of the most common qualitative descriptions of

density oscillation. Indeed, Eq. (2.29) well describes the behavior of relaxation oscillation,

although the oscillatory behavior is not introduced in Eq. (2.28) (details are shown in

Appendix B). Moreover, behaviors of coupled oscillators can be also described by adding

a coupling term to Eq. (2.29) (see Appendix C). However, the present model has a

crucial problem that the flow-reversal process is not correctly described owing to the

approximation made to derive Eq. (2.29) from Eq. (2.28).

2.3 Analysis of flow stability

In the above theories, the flow-reversal process is not described explicitly either from a

phenomenological or microscopic standpoint. On the contrary, Steinbock et al . focused

on the flow-reversal process [40]. In the following, their stability analysis of the down-flow

inside a pipe will be shown. Although it was assumed that the surface area of the outer

container Sout was sufficiently larger than that of the inner container S in their analysis,

here their theory is extended to the case where this assumption is not necessary.

Now consider a pipe with a two-dimensional rectangular cross section, and let y and

z denote the horizontal and vertical coordinates, respectively (see Fig. 2.3). The pipe

length d is assumed to be much larger than the diameter 2a. One-fluid model is applied

where the density of the fluid is described as ρ = ρH − δρΘ, with Θ the function of

space and time. The aim of the analysis is to find the condition that the down-flow loses

stability when an intrusion of light fluid exists steadily at y = z = 0. Using the steady

state approximation and Boussinesq approximation, Navier-Stokes equation is described
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as

w∂zw + v∂yw = −g +
δρg

ρH

Θ− 1

ρH

∂zP + νH(∂2
zw + ∂2

yw), (2.30)

w∂zv + v∂yv = − 1

ρH

∂yP + νH(∂2
zv + ∂2

yv), (2.31)

where P is the hydrostatic pressure, and v and w are the y and z components of the

velocity of flow, respectively. ∂z and ∂y are abbreviations of ∂/∂z and ∂/∂y, respectively.

The condition of continuity is given as

∂zw + ∂yv = 0. (2.32)

On the other hand, diffusion equation is given as

w∂zΘ + v∂yΘ = Df (∂
2
zΘ + ∂2

yΘ), (2.33)

where Df is a diffusion constant. Equations (2.31)-(2.33) are written in the non-dimensionalized

forms as follows:

Reε
′(w̄∂z̄w̄ + v̄∂ȳw̄) = λΘ− κ− ∂z̄P̄ + ε′2∂2

z̄ w̄ + ∂2
ȳw̄, (2.34)

Reε
′3(w̄∂z̄v̄ + v̄∂ȳv̄) = −∂ȳP̄ + ε′4∂2

z̄ v̄ + ε′2∂2
ȳ v̄, (2.35)

∂z̄ū + ∂ȳv̄ = 0, (2.36)

ε′(w̄∂z̄Θ + v̄∂ȳΘ) = −Df

Q
(ε′2∂2

z̄Θ + ∂2
ȳΘ). (2.37)

where z̄ = d/z, ȳ = y/2a, w̄ = 2wa/Q, v̄ = vd/Q, P̄ = 8Pa3/(ρHdνHQ), Re = Q/νH,

κ = 8a3g/(νHQ), λ = 8ga3δρ/(νHQρH), and ε′ = 2a/d ¿ 1. Q is the flow rate through a

pipe. Because the flow inside the pipe is nearly regarded as two-dimensional Poiseuille

flow (see Appendix A) [55], Q is derived as

Q =
∫ 2a

0
wdy

= − 2a3

3µH

(
ρHg(x− d)− ρLgh

d
+ ρHg

)
. (2.38)

Let a stream function Ψ(ȳ, z̄) be defined so that w̄ = ∂ȳΨ(ȳ, z̄) and v̄ = −∂z̄Ψ(ȳ, z̄) are

satisfied. Note that Eq. (2.36) is automatically fulfilled by defining the stream function.

The boundary conditions are given with using Ψ as ∂ȳΨ = 0 (no slip) and −∂z̄Ψ = 0

(no penetration of the vertical walls) at ȳ = 0 and 1. If Ψ = 0 at ȳ = 0 is assumed,

Ψ|ȳ=1 =
∫ 1
0 dȳ w̄ =

∫ 2a
0 dyw/Q = 1 should be satisfied. In addition, since the heavy fluid

flows downward while an intrusion of the light fluid exists steadily at y = z = 0, the

boundary condition of Θ is given as Θ = 1 at z̄ = ȳ = 0 and Θ = 0 at ȳ = 1. Using these

conditions, Eqs. (2.34), (2.35), and (2.37) are solved at the zeroth order of ε′ as follows:

Θ0(ȳ, z̄) = θ0(z̄)(1− ȳ), (2.39)

Ψ0(ȳ, z̄) = 3ȳ2 − 2ȳ3 +
λ

24
θ0(z̄)(1− ȳ2)ȳ2, (2.40)
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where θ0(0) = 1 should be satisfied.

Then, the condition that the down-flow loses its stability is given by ∂ȳw̄|ȳ=z̄=0 =

∂2
yΨ|ȳ=z̄=0 > 0. This condition is derived from Eq. (2.40) as λ > −72. Then, using

Eqs. (2.6) and (2.38), this condition is found to be equivalent to

x− x
(i)
de <

1

6

δρ(i)d

ρ
(i)
H + ρLR

. (2.41)

Notice that when we take the limit of R → 0, Eq. (2.41) corresponds to the equation

derived by Steinbock et al. (see Eq. (12) in [40]).

Complementary explanation

Let us consider the physical meaning of the result by the analysis of Steinbock et al.,

Eq. (2.41). From Eq. (2.12), ρ
(i)
H x

(i)
de = ρLh

(i)
de should be satisfied. In the same way,

ρ
(i)
H (x(i−1)

ue − d) = ρL(h(i−1)
ue − d) with h(i)

ue ≡ h
(i)
de − R(x(i)

ue − x
(i)
de ) should be satisfied for

the hydrostatic equilibrium where a pipe is filled with light fluid (see Fig. 2.2). From

these, we find that the difference between the heights of the fluid surfaces at the two

hydrostatic equilibrium δx(i) is given as

δx(i) = x(i−1)
ue − x

(i)
de =

δρ(i)d

ρ
(i)
H + ρLR

. (2.42)

Thus, Eq. (2.41) is rewritten with an extremely simple form as

x− x
(i)
de =

1

6
δx(i). (2.43)

Equation (2.43) suggests that the critical height for the flow instability is expressed

only by difference between the heights of the fluid surfaces at the two hydrostatic equi-

libria. However, I will show in the following chapters that the critical height depends

significantly on experimental parameters such as the viscosities of the fluids. Thus, the

modification of this theoretical model is inevitable.
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Chapter 3

Experiment

3.1 Experimental setup

3.1.1 Overview

The experimental setup is shown in Fig. 3.1. The density oscillator employed here

consisted of an inner and an outer container, where the lower part of the outer container

was immersed in a constant-temperature chamber and fixed with a magnet. A glass pipe

was attached at the bottom of the inner container. The inner container was filled with

heavy fluid, while the outer container with light fluid. The outer container was covered

with an aluminum plate to prevent the fluid from evaporating. A laser displacement

meter (Hokuyo, PDA-03KT) was fixed at the inner container, and connected to a digital

multimeter. A stereomicroscope equipped with an Olympus DP70 digital camera was

set outside the constant-temperature chamber in order to observe the lower part of the

glass pipe, which was illuminated by a halogen lamp set at the other side of the chamber.

3.1.2 Containers and a pipe

Both inner and outer containers were made of acryl resin (Fig. 3.2). The bottom of the

latter was attached to a stainless steel plate, so that it was fixed by the magnet attached

at the bottom of the constant-temperature chamber. The surface areas of the inner and

outer containers were 7.70 ×10−4 m2 and 5.34 ×10−2 m2, while their heights were 0.15

m and 0.32 m, respectively.

A glass pipe (PYREX) was attached vertically at the bottom of the inner container.

The inner diameter and length of the pipe were 0.73 mm and 70 mm, respectively. As

shown in Fig. 3.3, the cross section of the glass pipe was smooth, and the inner diameters

at the upper and lower ends of the pipe were almost identical.
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Figure 3.1: Overview of the experimental setup.

3.1.3 Fluids

Although salt water and pure water have been often used as the heavy and light fluids

in the previous studies, they are not plausible for the present experiments, because

it is needed to change the viscosities of fluids over a wide range. Thus, mixtures of

water, 1-propanol, and glycerin were used for both the heavy and light fluids, where

water mixed into the fluids was boiled before use in order to remove air bubbles. The

viscosities of the fluids could be varied by changing their composition with their densities

maintained, as shown in Fig. 3.4. The densities of the heavy and light fluids were set at

(1.057± 0.003)×103 kg ·m−3 and (0.996± 0.003)×103 kg ·m−3, respectively, and hence

the difference in densities between the fluids was (0.061 ± 0.004)×103 kg ·m−3. From

these conditions, it is found that βσ1/2/4 = 3.34× 10−2, and thus the experiments were

performed in the viscous damping regime1.

3.1.4 Temperature control

Since the temperature of the fluid relates to the viscosity of the fluid, the temperature

of the fluids was regulated at 25.0 ± 0.5oC by immersing the lower part of the outer

container in a constant-temperature chamber. Although the upper part of the outer

container was not immersed in it, the temperature of the fluid near the pipe was well

controlled.

1Although βσ1/2 ¿ 1 had to be satisfied so that the viscous damping regime was employed in the theory previously

reported [31], it is obvious that it can be employed as far as βσ1/2/4 ¿ 1 is satisfied, because in this case the non-linear

terms are negligibly small compared with the viscous terms in Eqs. (2.15) and (2.16).
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Figure 3.2: Inner and outer containers. Overview is shown in the upper picture. Magnified view of the

bottom of the inner container is shown in the lower picture. A glass pipe is attached vertically at the

bottom of the inner container.
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Figure 3.3: Cross section of a glass pipe observed by a stereomicroscope. The cross section is smooth

and the distortion is not found. The internal diameter of the pipe is 0.73 mm.
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Figure 3.4: The composition curve of 1-propanol, glycerin and water to give a constant density of (a)

1.057×103 kg ·m−3 and (b) 0.996×103 kg ·m−3. The horizontal and vertical axes denote the ratio of

the weight of 1-propanol and glycerin to that of the summation of the three materials, respectively.

26



stirrer

thermocouple
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Figure 3.5: Scheme of the constant-temperature chamber. The temperature was controlled by a ther-

mostat heater, in which the switch of the heater was regulated by sensing the temperature measured

by a thermocouple. Water in the chamber was always stirred, and the chamber was covered with an

heat-insulating material except for the pathway of the halogen lamp.

The scheme of the constant-temperature chamber was shown in Fig. 3.5. The tem-

perature was controlled by a thermostat heater, in which the switch of the heater was

regulated by sensing the temperature measured by a thermocouple. Water in the chamber

was always stirred in order to avoid the inhomogeneity of the temperature. Moreover, the

chamber was covered with a heat-insulating material except the pathway of the halogen

lamp.

3.1.5 Laser displacement meter

The height of the heavy fluid surface was measured by a laser displacement meter

(Hokuyo, PDA-03KT), in which the displacement of an object is measured by detecting

the light reflected from an object by a position sensitive detector (PSD). Because PSD

did not detect the light reflected from the fluid surface, a white acrylic plate was floated

on the heavy fluid. The spatial resolution of the laser displacement meter was 1 µm.

In order to know the relation between the actual displacement and the output of the

digital multimeter to which data was transmitted from the laser displacement meter, the

following procedure was employed. A container was filled with water, and the height of

the water level was measured by the laser displacemant meter. Then the change of the

output of the digital multimeter, which was in the unit of volt (V), was measured when
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Figure 3.6: Relation between the actual displacement of the fluid surface and the output of the digital

multimeter. A container was filled with water, and the height of the water level was measured by the

laser displacemant meter. The change of the output of the digital multimeter, which was in the unit

of volt (V), was measured when the water level was changed by 0.48 mm using a micropipet. The

horizontal axis denotes the output, while the vertical axis denotes the ratio of the actual displacement

to the change of the output. When the output lies within a range of 0.70-1.70 V, the ratio is found to

be approximately 5.10 mm/V.

the water level was changed by 0.48 mm using a micropipet. Figure 3.6 shows the ratio

of the actual displacement to the change of the output. At the output of 0.70-1.70 V,

the relation is found to be approximately 5.10 mm/V. Thus, all of the experiments were

performed so that the output was within the range of 0.70-1.70 V, and the displacement

in the unit of mm was calculated by multiplying 5.10 to the output in the unit of V.

3.1.6 Stereomicroscope

The lower part of the pipe was observed through a stereomicroscope. The interface

of the two fluids was clearly observed owing to the difference in their refractive indices.

The stereomicroscope was movable by setting it on a couple of laboratory jacks which

were placed on a plate equipped with several beads whose diameters were about 12 mm,

and the plate was fixed with magnet bases (see Fig. 3.7). A halogen lamp was used as an

illuminating source and set at the other side of the constant-temperature chamber. The

location of the halogen lamp and the stereomicroscope were adjusted so that the image

of the pipe was not blurred.
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Figure 3.7: A stereomicroscope equipped with an Olympus DP70 digital camera. The stereomicroscope

was movable by setting it on a couple of laboratory jacks which were placed on an acryl plate with

several beads. The acryl plate was fixed with magnet bases.
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3.2 Experimental procedure

Firstly, the fluids were prepared for the experiment. Appropriate amounts of water,

1-propanol, and glycerin were mixed and well stirred. Then, the heavy fluid was put

into a flask and was immersed in the constant-temperature chamber for more than thirty

minutes so that the temperature of the fluid becomes 25.0± 0.5oC. The light fluid was

poured into the outer container, and was also immersed in the constant-temperature

chamber. Meanwhile, a small amount of the prepared fluids were used to measure the

densities and viscosities, which were measured by using a volumetric flask and an Ostwald

viscometer, respectively.

Next, the heavy fluid was poured into the inner container, which was set in the outer

container. In this step, great care was taken so that air bubbles did not generate. The

heights of the heavy and light fluid surfaces were first set to be nearly equal, so that

the oscillation began with down-flow. Although the fluid in the outer container was

somewhat disturbed when we set the inner container, such disturbance diminished until

the first flow reversal occurred. After the setting of the inner container, the white acrylic

plate in which water-repellency treatment was performed was floated on the heavy fluid

and the laser displacement meter was fixed to the inner container with gummed tape.

Here, the inner container was almost completely covered with the gummed tape, so that

the evaporation of the heavy fluid did not occur. Then, the height of the heavy fluid

surface was recorded at an interval of more than 500 ms, and for more than 6 cycles. An

Olympus DP70 digital camera was equipped with the stereomicroscope, and the pictures

were taken at an interval of more than 1 s, where the interval was determined by the

period of oscillation.
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Chapter 4

Results and analyses

4.1 General trend

4.1.1 Height of a fluid surface

First, let us see the general trend of the temporal evolution of the height of the heavy

fluid surface measured by the laser displacement meter. Figure 4.1 shows the case where

the viscosities of the heavy and light fluids are not extremely large compared with pure

water. In the present experimental condition, the pipe diameter and length are 0.73 and

70 mm, and the densities of the heavy and the light fluid are 1.057×103 kg ·m−3 and

0.997×103 kg ·m−3, respectively. It is found that the fluid surface moves up and down

regularly, and the average height shows a slow but continuous increase. This is because

the accumulation of the light fluid into the inner container causes a periodic decrease in

the density of the heavy fluid. Thus, as the number of cycles increases, the outputs of the

laser displacement meter get out of its measurement range, i.e., 0.7-1.7 V (Fig. 4.1(a)).

Figure 4.2 shows the durations of up- and down-flow and the amplitude of oscillation

plotted against the number of cycles. It is clearly seen that both durations and amplitude

are kept almost constant for the first about 10 cycles. However, as the number of cycles

increases, the amplitude decreases gradually, whereas the durations do not vary signif-

icantly. This is probably not only because the outputs of the laser displacement meter

get out of its measurement range, but also because the average difference in densities

decreases as the number of cycles increases. Although the oscillatory behavior more than

28 cycles is not quantitatively measured, it is considered that the amplitude continues

to decrease. Then, the oscillation finally stops.

Next, let us turn our attention to each up- and down-flow. As is expected from Eqs.

(2.19) and (2.20), the temporal evolution for each flow between two adjacent flow reversals

can be expressed by an exponential function, although it slightly deviates from the
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Figure 4.1: Temporal evolution of the height of the heavy fluid surface. µH = 2.64 × 10−3 Pa · s, and

µL = 1.98×10−3 Pa · s, ρL = 0.997×103 kg ·m−3, and δρ = 0.062×103 kg ·m−3. The pipe diameter and

length are 0.73 and 70 mm, respectively. (a) Long time behavior of oscillation. The fluid surface moves

up and down regularly, and the average height shows a slow but continuous increase. In the gray region,

the outputs of the laser displacement meter are out of its measurement range, and hence the obtained

data is inaccurate. (b) Magnified view of (a). Each branch for up- and down-flow is well fitted by an

exponential curve (dashed line). The definition of the parameters for the ith cycle is also shown. The

dashed-and-dotted lines denote the heights at which the flow reverses from the ith up- to the (i + 1)th

down- and from the ith down- to the ith up-flow. In the present graph, i = 2. (c) magnified view of

(b) at the flow reversal from down- to up-flow. An arrow denotes the height of the heavy fluid surface

when the intrusion length becomes 1 mm.
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(a)

(b)

Figure 4.2: The durations of up- and down-flow and the amplitude of oscillation versus number of

cycles. (a) The duration of up-flow (red circle) and down-flow (black square). (b) The amplitude. µH =

2.64×10−3 Pa · s, and µL = 1.98×10−3 Pa · s, ρL = 0.997×103 kg ·m−3, and δρ = 0.062×103 kg ·m−3.

The pipe diameter and length are 0.73 and 70 mm, respectively.
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Figure 4.3: Microscopic images of the intrusion in the time course of down-flow ((a)→(b)→(c)→(d)).

Upper and lower images show the side and front views, respectively. An intrusion of light fluid is clearly

seen (arrows). Glucose solution and water are used as the heavy and light fluids, respectively, with

ρL = 0.997×103 kg ·m−3, δρ = 0.067×103 kg ·m−3, µH = 1.42×10−3 Pa · s and µL = 0.89×10−3 Pa · s.
Although the experimental condition employed in this figure is slightly different from that employed in

the present chapter, the difference is not crucial, as the behavior observed is almost identical.

exponential function before the flow reversal (Fig. 4.1(c)). The time constants of the

exponential functions fitted to the up- and down-flows are found to be 1.99× 103 s and

1.58×103 s in the average of the 2nd to 5th cycles, which are in good agreement with the

values obtained from Eqs. (2.19) and (2.20), 1.97× 103 s and 1.57× 103 s, respectively.

Moreover, the difference between the asymptotic values of the two adjacent exponential

functions is found to be 4.10 mm in the average of the 2nd to 5th cycles, which is in good

agreement with the difference between the two hydrostatic equilibria, 4.03 mm, that is

calculated from Eq. (2.42). Thus, since the exponential curves are characterized by the

time constants and their asymptotic values, it is found that each up- and down-flow is

well described by Eqs. (2.19) and (2.20).

4.1.2 Flow-reversal process inside a pipe

Although each up- and down-flow exhibits an exponential response as described above,

the flow reverses before the fluid surface reaches the asymptotic value of the exponential
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function (Fig. 4.1). To investigate the mechanism of the flow reversal in detail, its

process is observed by a stereomicroscope. Figure 4.3 shows an example at the flow

reversal from the down- to up-flow. At first, the heavy fluid flows downward, as shown

in Fig. 4.3(a) (In the following, we call this process as “process A”). After a while, an

intrusion of the light fluid into a pipe is observed and grows upwards along the pipe wall

rather slowly (Fig. 4.3(b)) (“process B”). When the intrusion length measured from the

bottom of the pipe grows to some extent, it suddenly starts to grow rapidly (Figs. 4.3(c)

and (d)) (“process C”). Although we cannot evaluate the intrusion length quantitatively

when it becomes larger than 8mm because of the limitation of the visual field of the

stereomicroscope, the intrusion becomes accelerated as it approaches the upper end of

the pipe, and finally the flow reverses when it reaches the upper end of the pipe. It is

noted that the deviation from an exponential function in the height of the fluid surface

occurs at the process C (see Fig. 4.1(c)). The flow reversal from up- to down-flow occurs

in the same way as that from down- to up-flow.

4.2 Viscosity dependence

When the viscosity of the fluid is varied, the oscillatory behavior changes drastically.

Figure 4.4 shows examples of the temporal evolutions in the case of extremely high

viscosity applied to the heavy or light fluid. As is expected, the time constant of the

exponential curve varies according to the viscosity of the fluid, although the difference

between the asymptotic values for the exponential curves, ∆, is still almost consistent

with δx, as shown in Fig. 4.5. Figure 4.6 shows the time constants of the exponential

curves fitted for the up- and down-flow. The experimental results are also in fairly good

agreement with the theoretical values τu and τd obtained from Eqs. (2.19) and (2.20),

although there is a slight systematic deviation at high viscosities, which is thought to be

caused by the reduction in the viscosity of the high viscosity fluid due to the inflow of

the low viscosity fluid. Thus, even when the viscosity of the light or heavy fluid is varied,

each branch for the up- and down-flow is well described by Eqs. (2.19) and (2.20).

However, when we compare Fig. 4.4 with Fig. 4.1, we notice that a drastic change

occurs at the timing of the flow reversal. When the viscosity of the heavy fluid µH is

extremely large, the flow reversal from down- to up-flow occurs even when the height

of the heavy fluid surface is still high, while that from up- to down-flow does not occur

until the fluid surface becomes close to the hydrostatic equilibrium (Fig. 4.4(a)). On

the contrary, when the viscosity of the light fluid µL is extremely large, the flow reversal

from up- to down-flow occurs even when the fluid surface is still low, while that from

down- to up-flow does not occur until the fluid surface becomes close to the hydrostatic
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Figure 4.4: Temporal evolution of the height of the heavy fluid surface, in the case of (a) µH =

8.59 × 10−3 Pa · s, and µL = 0.89 × 10−3 Pa · s, ρL = 0.997×103 kg ·m−3, δρ = 0.060×103 kg ·m−3,

and (b) µH = 2.66 × 10−3 Pa · s, and µL = 14.18 × 10−3 Pa · s, ρL = 0.996×103 kg ·m−3, δρ =

0.062×103 kg ·m−3. Each branch for up- and down-flow is well fitted by an exponential curve (dashed

line).
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L

Figure 4.5: Ratio of the difference between the asymptotic values for the exponential curves ∆ to the

difference between the two hydrostatic equilibrium δx. Each data is averaged over 4 cycles from the

2nd to 5th. (a) µH is varied while µL is fixed at 0.89× 10−3 Pa · s. (b) µL is varied while µH is fixed at

(2.63± 0.03)× 10−3 Pa · s. Even when the viscosities of fluids are varied, ∆ almost agrees with δx.
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Figure 4.6: Time constants of the exponential curves fitted for each down- and up-flow (filled circle and

square, respectively). Each data is averaged over 4 cycles from the 2nd to 5th. (a) µH is varied while

µL is fixed at 0.89 × 10−3 Pa · s. (b) µL is varied while µH is fixed at (2.63 ± 0.03) × 10−3 Pa · s. The

solid and dashed lines indicate the theoretical values for τd and τu, respectively.
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Figure 4.7: Viscosity dependence of su (filled up triangle), sd (filled down triangle), sda (open square),

and sdb (open circle). The data are averaged over 4 cycles from the 2nd to the 5th. Simulated results

x̂u (solid line), x̂d (bold line) x̂da (dashed line), and x̂db (dotted line) are also shown. (a) µH is varied

while µL is fixed at 0.89× 10−3 Pa · s. (b) µL is varied while µH is fixed at (2.63± 0.03)× 10−3 Pa · s.
The parameters of the simulation are as follows: a = 0.365 mm, d = 70 mm, ρH = 1.057× 103 kg m−3,

ρL = 0.996×103 kg m−3, S = 7.70×10−4 m2, R = 1.44×10−4, b1 = 10.7, b2 = 160, k = 0.40 kg m−1s−3,

C1=7.11, C2=5.31, C3=0.32, α′=1.82, and γ′=0.30.

39



equilibrium. In order to evaluate such viscosity-dependent behaviors quantitatively, the

following two parameters, sd and su, are defined as

sd =

〈
x

(i)
d − x

(i)
d0

x
(i−1)
u0 − x

(i)
d0

〉
(4.1)

su =

〈
x(i−1)

u − x
(i)
d0

x
(i−1)
u0 − x

(i)
d0

〉
, (4.2)

where x
(i)
d and x(i)

u are the heights of the heavy fluid surface at the moments when the

flow reverses from the ith down- to the ith up-flow and from the ith up- to the (i + 1)th

down-flow, respectively. x
(i)
d0 and x

(i)
u0 are the asymptotic values for the exponential curves

fitted to the ith down- and up-flow, respectively (see Fig. 4.1(b)). In the present analysis,

we have averaged the data over four cycles from the 2nd to 5th in a series of experiments.

In fact, sd and su are expected to be suitable parameters for qualifying the timing of the

flow reversal over the entire process leading to the asymptotic equilibrium, because x
(i)
d0

and x
(i−1)
u0 are thought to be almost consistent with the hydrostatic equilibrium where

the pipe is filled with heavy and light fluid, x
(i)
de and x(i−1)

ue , respectively, with a density

difference of δρ(i). Figure 4.7 shows the viscosity dependence of sd and su when the

viscosity of either heavy or light fluid is varied. It is clear that both sd and su increase

when the viscosity of the heavy fluid increases, but decrease when that of the light fluid

increases. These results cannot be explained in terms of theories proposed so far, in

which the critical heights do not depend on the viscosity of fluids [40].

Thus, it becomes clear that the flow-reversal process is significantly affected by the

viscosity of the fluid. Figure 4.8 shows the temporal evolution of the intrusion length

when the viscosity of either heavy or light fluid is varied. Here, we set the origin of time

at the very moment of the flow reversal and plot the intrusion length against the time

leading to the flow reversal. It is clearly seen that the intrusion grows slowly at first

(process B), but begins to grow rapidly when the intrusion length exceeds about 1 mm

(process C).

For a large µH and small µL, the intrusion of the light fluid persists an extremely

long time before the flow reversal occurs, and the growth rate during the rapid-growing

process is also relatively small, as shown in Fig. 4.8(a). On the other hand, for a large µL

and small µH, the growth rate of the intrusion is relatively large and essentially does not

depend on µL (Fig. 4.8(b)). However, in the latter case, it is observed that the interface

between the two fluids is somehow disturbed at a certain intrusion length and its growth

is thus obstructed for some time, particularly at a large µL. A typical example is shown

in Fig. 4.9. In addition to the intrusion length, its width within the pipe depends on the

viscosity of the fluids, as shown in Fig. 4.10. In general, the width is larger for µH > µL,
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Figure 4.8: Viscosity-dependent temporal evolution of the intrusion of light fluid. (a) µH is varied while

µL is fixed at 0.89×10−3 Pa · s. (b) µL is varied while µH is fixed at (2.63±0.03)×10−3 Pa · s. Because

of the limitation of the visual field under the stereomicroscope, an intrusion length of more than 8 mm

is not observed. The dotted lines indicate 0.1 mm and 1 mm of intrusion length. The inset in (b) shows

an enlarged view. The obstruction of the growth is observed at a large µL (shown as an arrow, see also

Fig. 4.9).
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Figure 4.9: Front view of the disturbance of the interface at a large µL. µH = 2.66 × 10−3 Pa · s and

µL = 14.18× 10−3 Pa · s.

(a) (b)

Figure 4.10: Front views of the intrusions during the flow-reversal processes for (a) µH = 18.02 ×
10−3 Pa · s and µL = 0.89 × 10−3 Pa · s, and (b) µH = 2.65 × 10−3 Pa · s and µL = 8.48 × 10−3 Pa · s.
The width of the intrusion is larger in (a) than in (b) (white arrow heads).
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while it is smaller for µH < µL.

We characterize the viscosity-dependent behavior of the intrusion by employing the

following two quantities:

sda =

〈
x

(i)
da − x

(i)
d0

x
(i−1)
u0 − x

(i)
d0

〉
(4.3)

sdb =

〈
x

(i)
db − x

(i)
d0

x
(i−1)
u0 − x

(i)
d0

〉
, (4.4)

where x
(i)
da and x

(i)
db are the heights of the heavy fluid surface at the time when the intrusion

lengths exceed 0.1 mm and 1 mm, respectively. Because the intrusion begins to grow

rapidly when its length becomes nearly 1 mm, as shown in Fig. 4.8, the two quantities

sda and sdb roughly characterize the timings for the beginning of the intrusion (process

B) and for the onset of its rapid growth (process C), respectively. With increasing µH,

significant increases in both sda and sdb are observed, which are more remarkable than

those of sd (Fig. 4.7(a)). Thus, the clear sign of the flow reversal is expressed, which

is more prominent with increasing µH. On the other hand, with increasing µL, the

behaviors of sda and sdb are similar to those of sd (Fig. 4.7(b)). Thus, these newly-

introduced quantities sensitively characterize the dynamics of the flow reversal and then

clarify definitively the viscosity dependence of the density oscillation.
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Chapter 5

Modeling and simulation

As shown in Sec. 2.1, the behavior of each up- and down-flow of density oscillator

was theoretically described in the study reported before [31]. However, to understand

its overall behavior, it is clearly needed to describe the flow-reversal process correctly.

The viscosity dependence of the flow reversal found in the previous chapter is helpful

in understanding the fundamental mechanism of the flow reversal. Unfortunately, an

exact treatment of flow stability is difficult owing to the complexity of the flow within

a pipe during the flow-reversal process. Thus, a simple model describing the essential

mechanism of the flow-reversal process is required. In the present chapter, I will propose

a model by considering only forces parallel to a pipe wall, which acts on a unit volume

element located at the tip of the intrusion. Here, the case of the viscous damping regime

(βσ1/2 ¿ 1) with the pipe length much larger than the diameter (d À a) is considered.

In addition, we assume that the interface between the flow and the intrusion fluid is

completely parallel to the pipe axis except for that at the tip of the intrusion, where it

is assumed to be parallel to the cross section of the pipe (see Fig. 5.1).

5.1 Essential forces for flow reversal

In this section, the forces concerned with this phenomenon are considered separately.

In the following, the case for the flow reversal from down- to up-flow is considered.

5.1.1 Viscous drag force

First, there should be a viscous drag force acting on a unit volume element. We denote

this force as F1. F1 should be given by the summation of the shear stresses acting on

the inner and outer sides of the volume element (see green arrows in Fig. 5.1), which

generates owing to the velocity difference of the down-flow and the intrusion growing

upward, and the no-slip boundary condition at the pipe wall. Thus, it is found from
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z
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µL

Gr'

F1

Figure 5.1: Scheme of the viscous drag force (blue allow) acting on the unit volume element at the tip of

the intrusion (red square). Velocity profiles of the down-flow and the intrusion are also shown. The mean

velocity of the down flow where the intrusion does not exist is denoted as ū, while that in the presence

of the intrusion is cū. The growth rate of the intrusion is ξ̇, where ξ denotes the intrusion length. Notice

that upper direction is taken as positive for ū and ξ. The shear stresses acting on the inner and outer

sides of the volume element are shown by green arrows. Lower pictures show the magnified views of

the interface between the two fluids and that between the intrusion fluid and the pipe wall. Although

the actual interface between the two fluids does not exist, an extremely thin volume element at the

boundary between the two fluids is regarded as an interface (gray region), whose viscosity is denoted

as µI. Gr and G′r denote the gradient of the velocity profile at the interface between the two fluids and

that at the pipe wall, respectively. The shear stress at the interface between the two fluids σs and that

at the pipe wall σ′s are also shown (yellow arrows).
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Figure 5.2: Relation between ẋ and ū (upper direction is taken as positive). The surface area of an

inner container and the area of the cross section of a pipe is S and πa2, respectively.

the law of action and reaction that F1 equals to the difference between the shear stress

which the inner side of the volume element acts on the fluid flowing downward and that

which the intrusion fluid acts on the outer side of the volume element. Then, because

the difference arises within the unit length scale, F1 is described by the radial gradient

of the shear stress.

If we assume that the radial gradient of the shear stress is homogeneous with regard

to the pipe radius, F1 is derived by considering the shear stress at the interface between

the two fluids and that at the pipe wall (see yellow arrows in Fig. 5.1). Let σs and σ′s be

defined as the shear stress acting on the fluid flowing downward at the interface between

the two fluids and that acting on the intrusion fluid at the pipe wall, respectively. Because

the difference between σs and σ′s generates within a spatial scale of the pipe radius a,

the radial gradient of the shear stress F1 is described as

F1 =
σ′s − σs

a
. (5.1)

Now let us derive σs and σ′s individually. σs is given by the product of the viscosity

and the velocity gradient at the interface between two fluids, which are denoted as µI

and Gr, respectively. Actually, a definite interface between these two fluids will not exist,

since the viscosity of the fluid will vary continuously in space because of the miscible

nature of the heavy and light fluids. However, for convenience, it is assumed that the

mixed region consists of an extremely thin volume element at an interface with a fluid

having an appropriate viscosity. Since the viscosity of the fluid at the interface µI may be

somehow dependent on the viscosities of the two fluids, the following relation is assumed
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to hold:

µI =
µH + µL

2
. (5.2)

The velocity gradient at the interface Gr is estimated in the following way. When ξ is

defined as the intrusion length, i.e., the distance between the lower end of the pipe and

the tip of the intrusion, the growth rate of the intrusion is given as ξ̇. Meanwhile, the

velocity of the down-flow in the presence of the intrusion is thought to be described as

cū, where c is a positive constant larger than unity and ū is the mean velocity of the

flow inside a pipe (upper direction is taken as positive) when an intrusion does not exist

(see Eq. (2.3)). Because the velocity difference between the intrusion and the down-flow

generates within a spatial scale of the pipe radius a, Gr should satisfy

Gr ∝ ξ̇ − cū

a
. (5.3)

Here, as shown in Eq. (2.7), ū is related to ẋ from the condition of continuity as (see

Fig.5.2)

Sẋ = πa2ū. (5.4)

Hence, σs is derived using Eqs. (5.2), (5.3), and (5.4) as

σs = µIGr

∝ µH + µL

2

ξ̇ − c(S/πa2)ẋ

a
. (5.5)

On the other hand, the shear stress at the pipe wall σ′s is also given by the product of

the viscosity and the velocity gradient on the pipe wall. Here, for simplicity, we assume

that the viscosity is equal to µI, although it is considered that the viscosity on the pipe

wall is actually equal to µL. As I will discuss in Sec. 7.1, this assumption is not essentially

important in the processes A and B, although the growth rate of the intrusion in the

process C is thought to be somewhat affected by this assumption. Meanwhile, because

the velocity difference between the intrusion and the pipe wall generates within a spatial

scale of the pipe radius a, the velocity gradient on the pipe wall G′
r is given under the

assumption of no-slip condition as

G′
r ∝ − ξ̇

a
. (5.6)

Thus, σ′s is described as

σ′s ∝ −µH + µL

2

ξ̇

a
, (5.7)

Thus, from Eqs. (5.1), (5.5) and (5.7), the viscous drag force F1 is derived as

F1 =
µH + µL

2a2

(
b1

S

πa2
ẋ− b2ξ̇

)
, (5.8)
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where b1 and b2 are positive constants. It is noticed that the first term in the right

hand side of Eq. (5.8) is originated only from σs, while the second term includes the

contributions of both σs and σ′s.

5.1.2 Hydrostatic pressure gradient

Second, there must be a gravitational force and the force due to the gradient of hydro-

static pressure. Let these forces be denoted as F2. When the intrusion exists sufficiently

at the interior of the pipe, F2 will satisfy the relation

F2 = −P (d)− P (0)

d
− ρLg, (5.9)

where P (d) and P (0) are the hydrostatic pressures at the upper and lower ends of the

pipe (see Fig. 5.3). Here, we have assumed that the gradient of the hydrostatic pressure is

homogeneous inside the pipe. The second term in the right hand side of Eq. (5.9) denotes

the gravitational force acting on the unit volume element. Notice that the density of the

volume element is assumed to be ρL, because it exists within the intrusion fluid. Because

the viscous damping regime is now considered, the effect of ‘head loss’ (see Sec. 2.1) can

be neglected. Thus, if P (d) and P (0) are assumed to be simply derived from the heights

of the fluid surfaces, they are given as (see Fig. 5.3)

P (d) = ρHg(x− d), (5.10)

P (0) = ρLgh. (5.11)

Here, the heights of the heavy and light fluid surfaces x and h are related through R,

which is the ratio of the surface area of the heavy fluid to that of the light fluid, in the

following way (see Eq. (2.6)):

h− hde = −R(x− xde), (5.12)

where xde and hde should satisfy (see Eq. (2.12))

ρHxde = ρLhde. (5.13)

By substituting Eqs. (5.10), (5.11), (5.12) and (5.13) into Eq. (5.9), we obtain

F2 = −ρHg(x− d)− ρLgh

d
− ρLg

= −ρHgx

d
+

ρLg

d

[
−R(x− xde) +

ρH

ρL

xde

]
+ δρg

= −ρHg(x− xde)(1 + RD)

d
+ δρg, (5.14)

where D = ρL/ρH and δρ = ρH − ρL.
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Figure 5.3: Scheme of the hydrostatic pressure gradient (up-blue arrow) and the gravitational force

(down-blue arrow) acting on the unit volume element (red square). P (d) and P (0) are the hydrostatic

pressures at the upper and lower ends of the pipe. If the hydrostatic pressure is assumed to be derived

simply from the height of the fluid surface, P (d) and P (0) are obtained like Eqs. (5.10) and (5.11), which

can be easily understood from the upper picture.
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On the other hand, if the volume element of the light fluid exists outside the pipe,

it is obvious that the hydrostatic pressure gradient balances the gravitational force.

Hence, when there is no intrusion (ξ = 0), the relation F2 = 0 should be automatically

satisfied. However, it is unnatural that the value of F2 jumps from 0 to −ρHg(x−xde)(1+

RD)/d + δρg discontinuously with regard to ξ at ξ = 0. This contradiction comes from

the assumption that the hydrostatic pressures P (d) and P (0) are simply derived from

the height of the fluid surface. Actually, it is considered that the flow near the end of

a pipe is thought to be complicated and hence the hydrostatic pressure near the end

deviates from that expected from the height of the fluid surface.

Although it is difficult to obtain the hydrostatic pressure strictly, we will describe it

phenomenologically so that F2 becomes continuous at ξ = 0. It seems appropriate to

describe F2 in the following way:

F2 =

[
−ρHg(x− xde)(1 + RD)

d
+ δρg

]
(1− e−ξ/α). (5.15)

The term (1−e−ξ/α) is introduced in order to connect F2 = −ρHg(x−xde)(1+RD)/d+δρg

for ξ À α and F2 = 0 at ξ = 0. Here, α characterizes the spatial range where F2 takes a

value between 0 and −ρHg(x− xde)(1 + RD)/d + δρg.

5.1.3 Effect of acceleration of fluid outside a pipe

Third, the effect of the acceleration of the fluid outside the pipe should be considered.

Let us arbitrarily consider two planes inside and outside the pipe as PL1 and PL2, as

shown in Fig. 5.4. The absolute value of the mean velocity of the flow at PL2 is defined

as V , while that at PL1 is −ū. Since the heavy fluid that has passed through the pipe

is accelerated due to the hydrostatic pressure gradient, the following relation is expected

to hold:

V = −ū + κ, (5.16)

where κ expresses the effect of the acceleration. The continuity condition naturally holds,

which results in

−ūπa2 = V Sc, (5.17)

where Sc denotes the area of the cross section of the down-flow in a plane of PL2. When

Sc is sufficiently small, it is expected that the intrusion of the light fluid is enforced as a

consequence, because the contraction of the flow causes a detachment of the down-flow

from the pipe wall. F3 is defined as the force due to this enforcement. Since it seems

difficult to derive F3 analytically, I will describe it phenomenologically. It is found from

Eqs. (5.16) and (5.17) that −ū = κ(πa2/Sc − 1)−1. Hence, since F3 increases as Sc

decreases, it is qualitatively found that F3 increases as −ū decreases. In addition, F3 is
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Figure 5.4: Schematic illustration of two planes, PL1 and PL2, which are vertical to the direction of

the flow. PL1 crosses the pipe, while PL2 is below but not too far from the lower end of the pipe. S

denotes the surface area of down-flow at PL2. −ū and V are the absolute value of the mean velocities

of the down-flow at PL1 and PL2, respectively.

also expected to be large when the intrusion length ξ is small. Thus, it seems appropriate

to describe F3 phenomenologically as

F3 = −ke−ξ/γ

ū
. (5.18)

where k is a positive constant. γ expresses the spatial range where the force works

effectively. Eq. (5.18) is rewritten by using Eq. (5.4) as

F3 = −ke−ξ/γ

(
πa2

S

)
ẋ−1. (5.19)

5.2 Description of flow-reversal process

5.2.1 Down- to up-flow

From Eqs. (5.8), (5.15), and (5.19), the equation of motion for a unit volume element

located at the tip of the intrusion is given as

ρLξ̈ = F1 + F2 + F3

=
µH + µL

2a2

(
b1

S

πa2
ẋ− b2ξ̇

)

+

[
−ρHg(x− xde)(1 + RD)

d
+ δρg

]
(1− e−ξ/α)− ke−ξ/γ

(
πa2

S

)
ẋ−1.(5.20)
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It is noticed that there is an exception that ξ remains zero in the case of F1 +F2 +F3 < 0

at ξ = 0. On the other hand, because the viscous damping regime is now considered,

the temporal evolution of x exhibits an exponential response, expressed as in Eqs. (2.20)

and (2.22): it is described as

x = Cdexp

[
−(1 + DR)ga4πρH

8SdµH

t

]
+ xde. (5.21)

Here, we have assumed that the temporal evolution of x is not affected by an intrusion.

This assumption is thought to be valid because it was found experimentally that the

deviation from an exponential response at the flow-reversal process is sufficiently small

compared with the amplitude of the oscillation, as shown in Fig. 4.1 (an exception will

be shown in Sec. 6.3). Equation (5.21) is rewritten as

ẋ = −(1 + DR)ga4πρH

8SdµH

(x− xde). (5.22)

By substituting Eq. (5.22) into Eq. (5.20), the temporal evolution of ξ is obtained as

ρLξ̈ =
µH + µL

2

[
−b1gρH(1 + DR)

8dµH

(x− xde)− b2

a2
ξ̇

]

+

[
−ρH(1 + RD)(x− xde)

d
+ δρg

]
(1− e−ξ/α)

+
8kdµH

ga2ρH(1 + DR)(x− xde)
e−ξ/γ, (5.23)

and when ξ becomes equal to the pipe length d, the flow reverses completely. Thus,

Eqs. (5.22) and (5.23) describe the behavior of the flow reversal from down- to up-flow.

5.2.2 Up- to down-flow

The flow reversal from up- to down-flow can be modelled in the same way as that

of down- to up-flow, although the analysis becomes somewhat complicated because the

decrease in the density of the heavy fluid due to inflow of the light fluid into the inner

container should be taken into account. Here ξ is taken as the distance between the

lower end of the pipe and the tip of the intrusion.

The viscous drag force F1 and the effect of the acceleration of the fluid outside the pipe

F3 are derived in the same way as the case of the flow reversal from down- to up-flow.

Thus, it is straightforward to obtain the following equations:

F1 =
µH + µL

2a2

(
b1

S

πa2
ẋ− b2ξ̇

)
(5.24)

F3 = −ke−(d−ξ)/γ

(
πa2

S

)
ẋ−1. (5.25)
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On the other hand, the derivation of the hydrostatic pressure gradient F2 is somewhat

complicated. Here, we assume that the density of the fluid that intrudes into a pipe is

ρ
(i)
H , whereas the mean density of the fluid in the inner container depends on time, which

is given as

ρH(t) = ρL +
δρ(i)(x

(i)
d − d)

x− d
. (5.26)

This assumption is thought to be valid because the light fluid that has passed through

the pipe accumulates above the heavy fluid in the inner container and hence the density

of the fluid at the lower part of the inner container does not vary during the up-flow

significantly. Thus, when the intrusion exists sufficiently at the interior of the pipe, F2

is given in the following way by assuming that the gradient of the hydrostatic pressure

is homogeneous inside the pipe:

F2 = −P (d)− P (0)

d
− ρ

(i)
H g. (5.27)

If it is assumed that the hydrostatic pressure is simply derived by the height of the fluid

surface, P (d) and P (0) are described in the same way as the case of the flow reversal

from down- to up-flow as

P (d) = ρH(t)g(x− d), (5.28)

P (0) = ρLgh. (5.29)

By substituting Eqs. (5.12), (5.13), (5.26), (5.28) and (5.29) into Eq. (5.27), F2 is derived

as follows:

F2 = − [ρ
(i)
H (x

(i)
d − d) + ρL(x − x

(i)
d )]g − ρLg [−R(x − x

(i)
de ) + (ρ

(i)
H /ρL)x

(i)
de ]

d
− ρ

(i)
H g

= −g

d
[ρ

(i)
H (x

(i)
d − x

(i)
de ) + ρL(x − x

(i)
d ) + ρLR(x − x

(i)
de )]. (5.30)

On the other hand, it is obvious that F2 = 0 when there is no intrusion (ξ = d). Because

F2 is a continuous function of ξ, F2 is phenomenologically described in the same as the

flow reversal from down- to up-flow, that is,

F2 = −g

d
[ρ

(i)
H (x

(i)
d − x

(i)
de ) + ρL(x − x

(i)
d ) + ρLR(x − x

(i)
de )](1− e−(d−ξ)/α). (5.31)

From Eqs. (5.24), (5.25) and (5.31), the equation of motion for a unit volume element

located at the tip of the intrusion is obtained as follows:

ρ
(i)
H ξ̈ = F1 + F2 + F3

=
µH + µL

2a2

[
b1

(
S

πa2

)
ẋ− b2ξ̇

]

−g

d
[ρ

(i)
H (x

(i)
d − x

(i)
de ) + ρL(x − x

(i)
d ) + ρLR(x − x

(i)
de )](1− e−(d−ξ)/α)

−ke−(d−ξ)/γ

(
πa2

S

)
ẋ−1. (5.32)
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Because the viscous damping regime is now considered, the temporal evolution of x

exhibits an exponential response under the assumption that it is not affected by an

intrusion. As shown in Eqs. (2.19) and (2.21), x is described as

x = Cuexp

[
−(1 + R)ga4πρL

8SdµL

t

]
+ x (i)

ue , (5.33)

with

x(i)
ue = x

(i)
de +

δρ(i)d

(1 + R)ρL

(5.34)

From Eqs. (5.33) and (5.34), the temporal evolution of x is described as

ẋ = −(1 + R)ga4πρL

8SdµL

[
x− x

(i)
de −

δρ(i)d

(1 + R)ρL

]
. (5.35)

By substituting Eq. (5.35) into Eq. (5.32), the temporal evolution of ξ is derived in the

following way:

ρ
(i)
H ξ̈ =

µH + µL

2

[
−b1gρL(1 + R)

8dµL

(
x− x

(i)
de −

δρ(i)d

(1 + R)ρL

)
− b2

a2
ξ̇

]

−g

d
[ρ

(i)
H (x

(i)
d − x

(i)
de ) + ρL(x − x

(i)
d ) + ρLR(x − x

(i)
de )](1 − e−(d−ξ)/α)

+
8kdµL

ga2ρL(1 + R)[x− x
(i)
de − δρ(i)d/((1 + R)ρL)]

e−(d−ξ)/γ, (5.36)

and when the intrusion reaches the lower end of the pipe (ξ = 0), the flow reverses

completely. In this way, Eqs. (5.35) and (5.36) describe the behavior of the flow reversal

from up- to down-flow.

5.2.3 Non-dimensionalized model

I have derived the model describing whole oscillatory process including the flow reversal

by using two variables, x and ξ (Eqs. (5.22) and (5.23) from down- to up-flow, and (5.35),

and (5.36) for up- to down-flow). This model can be simplified by describing it in the

non-dimensionalized form. Indeed, Eqs. (5.22), (5.23), (5.35), and (5.36) are written as

φ−1 dx̂

dt̂
= − x̂

µ̂H

, (5.37)

ε
dξ̂

dt̂
= −C1

x̂

µ̂H

+ C2
1− x̂

µ̂I

(1− e−ξ̂/α′)

+C3
µ̂H

µ̂I

e−ξ̂/γ′

x̂
− C4

µ̂I

d2ξ̂

dt̂2
, (5.38)

φ−1 dx̂

dt̂
=

1− ψx̂

µ̂L

, (5.39)

ε
dξ̂

dt̂
= C1

1− ψx̂

µ̂L

− C2
ψx̂ + (xd − xde)/d

µ̂I

(1− e−(ε−1−ξ̂)/α′)
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Figure 5.5: Definitions of parameters. The parameters with dimension are shown in the left side, while

non-dimensionalized parameters are shown in the right side. Upper picture is the scheme of the temporal

evolution of the height of heavy fluid surface, while lower picture is that of the intrusion length ξ. x
(i)
u ,

x
(i)
us and x

(i)
d are the heights of the heavy fluid surface when the flow reverses from ith up- to (i + 1)th

down-flow, from (i − 1)th up- to ith down-flow, and ith down- to ith up-flow, respectively. xda and

xdb are the heights of the heavy fluid surface when the intrusion length becomes 0.1 mm and 1 mm,

respectively. x
(i)
ue and x

(i)
de are the heights at the hydrostatic equilibria where a pipe is filled with light

and heavy fluids at ith cycle, respectively, and δx(i) is the difference between the x
(i−1)
ue and x

(i)
de . Non-

dimensionalized variables are normalized by δx(i), and thus x̂ = 0 and 1 correspond to the x
(i−1)
ue and

x
(i)
de in the dimensional form, respectively. x̂

(i)
u , x̂

(i)
us , x̂

(i)
d , x̂

(i)
da and x̂

(i)
db correspond to x

(i)
u , x

(i)
us , x

(i)
d ,

x
(i)
da and x

(i)
db in the dimensional form, respectively. Processes A, B, and C denote the processes where

the fluid flows one-way (ξ = 0), where an intrusion grows slowly, and where an intrusion grows rapidly,

respectively.
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−C3
µ̂L

µ̂I

e−(ε−1−ξ̂)/γ′

1− ψx̂
− C4

µ̂ID

d2ξ̂

dt̂2
, (5.40)

where ε = a/d ¿ 1, ξ̂ = ξ/a, t̂ = ηεt, η = 2ζµWρ
(i)
H /(a2ρ2

L), ζ = ga5πρ2
L/(16Sµ2

W),

µ̂H = µH/µW, µ̂L = µL/µW, µ̂I = µI/µW = (µH + µL)/(2µW), α′ = α/a, γ′ = γ/a,

φ = 1 + DR, and ψ = D(1 + R)/(1 + DR), with µW the viscosity of water at 25.0 oC,

0.89×10−3 Pa · s. C1, C2, C3, and C4 are given as

C1 =
b1δρS

b2ρHa2π
, (5.41)

C2 =
8Sδρ

b2ρHa2π
, (5.42)

C3 =
64kSµW

b2δρg2ρHa4π
, (5.43)

C4 =
a7ρLρHπg

8b2Sµ2
Wd2

. (5.44)

x̂ is defined as x̂ = (x − xde)/δx, where δx(i) = δρ(i)d/(ρ
(i)
H + ρLR) is the difference

between the two hydrostatic equilibrium, as shown in Eq. (2.42). Hence, x̂ = 0 and 1

correspond to the hydrostatic equilibrium where a pipe is filled with the heavy and light

fluid, respectively (see Fig. 5.5).

Here, the term (xd − xde)/d in Eq. (5.40) is neglected, because xd − xde is thought to

be much smaller than the pipe length d. In addition, the last terms in the right hand

sides of Eqs. (5.38) and (5.40) are neglected, which is understood from the following

consideration. Now we compare the contributions of the second and last terms in the

right hand sides of Eqs. (5.38) and (5.40). From Eqs. (5.42) and (5.44), we find that the

ratio of C4 to C2 is given as

C4

C2

=
a9π2ρ2

HρLg

64S2δρµ2
Wd2

= (βσ1/2)2 · µ2
L

µ2
W

· 3ε

8σ2D2
, (5.45)

where β2 = ga6πρ2
L/(16Sµ2

Ld) and σ = 3Sδρ(i)/(2a2πρL). As described in Sec. 2.1,

βσ1/2 ¿ 1 is satisfied in the viscous damping regime and σ > 3/2 should be satisfied so

that an oscillation occur. Moreover, D and µ2
L/µ2

W are usually not extremely larger than

unity, and we now consider the case of ε ¿ 1. Hence, we can confirm that C4/C2 ¿ 1

from Eq. (5.45), and thus the contributions of the last terms in the right hand sides of

Eqs. (5.38) and (5.40) are considered to be negligible compared with those of the second

terms.

Thus, the non-dimensionalized model is described in the following way: The behavior

during the down-flow is described as

φ−1 dx̂

dt̂
= − x̂

µ̂H

, (5.46)
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ε
dξ̂

dt̂
= −C1

x̂

µ̂H

+ C2
1− x̂

µ̂I

(1− e−ξ̂/α′) + C3
µ̂H

µ̂I

e−ξ̂/γ′

x̂
, (5.47)

and the flow reverses at ξ̂ = ε−1, which corresponds to ξ = d. On the other hand, the

behavior during the up-flow is described as

φ−1 dx̂

dt̂
=

1− ψx̂

µ̂L

, (5.48)

ε
dξ̂

dt̂
= C1

1− ψx̂

µ̂L

− C2
ψx̂

µ̂I

(1− e−(ε−1−ξ̂)/α′)− C3
µ̂L

µ̂I

e−(ε−1−ξ̂)/γ′

1− ψx̂
, (5.49)

and the flow reverses at ξ̂ = 0. Equations (5.46)-(5.49) are considered to be the fun-

damental equations describing the whole oscillatory behavior including the flow reversal

processes.

5.3 Simulations

In order to confirm the validity of the model derived in the previous section, numerical

simulations are performed. Figures 5.6-5.8 show the temporal evolutions of the height

of the heavy fluid surface x̂ and the intrusion length ξ̂, which are obtained by simulat-

ing Eqs. (5.46)-(5.49). The parameters C1, C2, C3, α′, and γ′ are chosen so that the

experimental results are well reproduced. Although the density of the heavy fluid ρH(t)

decreases as the number of cycles increases in the actual system, it is assumed that ρH(t)

is reset to a finite value at the beginning of the cycle, for simplicity. Runge-Kutta method

is used, and the time step is set at 0.0005.

Figure 5.6 shows the case where the viscosities of the two fluids are identical. As is

expected, the temporal evolution of x̂ shows an exponential response for each up- and

down-flow. On the other hand, ξ̂ is found to behave in the following way: During the

down-flow, ξ̂ remains zero when the value of x̂ is large (process A). As x̂ decreases, ξ̂

begins to increase gradually (process B). When ξ̂ exceeds a certain threshold, it suddenly

begins to increase rapidly (process C). Then, when the intrusion reaches the upper end

of the pipe, i.e., ξ̂ becomes ε−1, the flow reverses. On the other hand, during the up-flow,

ξ̂ remains ε−1 for small x̂ (process A), and begins to decrease gradually as x̂ increases

(process B). When the intrusion length exceeds a threshold, ξ̂ begins to decrease rapidly,

and the flow reverses when the intrusion reaches the lower end of the pipe (ξ̂ = 0). Thus,

the three processes found in the experiments are well reproduced by the simulation.

Figure 5.7 shows the case where the viscosity of the heavy fluid is extremely larger

than that of the light fluid. As is expected, the time constant of the exponential curve

of x̂ is larger in the down-flow than in the up-flow. The temporal evolution of ξ̂ is also

much affected by the viscosity. For the flow reversal from down- to up-flow, the processes
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Figure 5.6: The temporal evolutions of the height of the heavy fluid surface x̂ (black solid line) and the

intrusion length ξ̂ (red solid line) simulated from Eqs. (5.46)-(5.49) in the case of µH = 0.89×10−3 Pa · s
and µL = 0.89 × 10−3 Pa · s. The oscillatory behavior is well reproduced. The temporal evolution of

x̂ exhibits an exponential response (black dotted line). Before the flow reverses from down-(up-) to

up-(down-)flow, ξ̂ begins to increase(decrease) rapidly. Lower graphs show the magnified views of the

temporal evolution of ξ̂. It is clearly seen that the intrusion grows gradually before the onset of its

rapid growth occurs. The onsets of the gradual growth and rapid growth are shown by filled and empty

arrowheads, respectively. The parameters of the simulation are as follows: 2a = 0.73 mm, d = 70 mm,

ρH = 1.057× 103 kg m−3, ρL = 0.996× 103 kg m−3, S = 7.70× 10−4 m2, R = 1.44× 10−4, b1 = 10.7,

b2 = 160, k = 0.40 kg m−1s−3, C1=7.11, C2=5.31, C3=0.32, α′=1.82, and γ′=0.30.
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Figure 5.7: The temporal evolutions of the height of the heavy fluid surface x̂ (black solid line) and the

intrusion length ξ̂ (red solid line) simulated from Eqs. (5.46)-(5.49) in the case of µH = 8.90×10−3 Pa · s
and µL = 0.89 × 10−3 Pa · s. The oscillatory behavior is well reproduced. The temporal evolution of

x̂ exhibits an exponential response (black dotted line). Before the flow reverses from down-(up-) to

up-(down-)flow, ξ̂ begins to increase(decrease) rapidly. Lower graphs show the magnified views of the

temporal evolution of ξ̂. It is clearly seen that the intrusion grows gradually before the onset of its

rapid growth occurs. The onsets of the gradual growth and rapid growth are shown by filled and empty

arrowheads, respectively. The parameters of the simulation are as follows: 2a = 0.73 mm, d = 70 mm,

ρH = 1.057× 103 kg m−3, ρL = 0.996× 103 kg m−3, S = 7.70× 10−4 m2, R = 1.44× 10−4, b1 = 10.7,

b2 = 160, k = 0.40 kg m−1s−3, C1=7.11, C2=5.31, C3=0.32, α′=1.82, and γ′=0.30.
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Figure 5.8: The temporal evolutions of the height of the heavy fluid surface x̂ (black solid line) and the

intrusion length ξ̂ (red solid line) simulated from Eqs. (5.46)-(5.49) in the case of µH = 0.89×10−3 Pa · s
and µL = 8.90 × 10−3 Pa · s. The oscillatory behavior is well reproduced. The temporal evolution of

x̂ exhibits an exponential response (black dotted line). Before the flow reverses from down-(up-) to

up-(down-)flow, ξ̂ begins to increase(decrease) rapidly. Lower graphs show the magnified views of the

temporal evolution of ξ̂. It is clearly seen that the intrusion grows gradually before the onset of its

rapid growth occurs. The onsets of the gradual growth and rapid growth are shown by filled and empty

arrowheads, respectively. The parameters of the simulation are as follows: 2a = 0.73 mm, d = 70 mm,

ρH = 1.057× 103 kg m−3, ρL = 0.996× 103 kg m−3, S = 7.70× 10−4 m2, R = 1.44× 10−4, b1 = 10.7,

b2 = 160, k = 0.40 kg m−1s−3, C1=7.11, C2=5.31, C3=0.32, α′=1.82, and γ′=0.30.
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(a)

(b)

Figure 5.9: The viscosity-dependent temporal evolution of the intrusion of light fluid calculated from

Eqs. (5.46) and (5.47). (a) µH is varied while µL is fixed at 0.89× 10−3 Pa · s. Each curve corresponds

to µH = 1.77, 5.11, 6.53, 9.06, 11.96, 14.30, and 18.02 (×10−3 Pa · s) from right to left, respectively. (b)

µL is varied while µH is fixed at 2.63 × 10−3 Pa · s. Each curve corresponds to µH = 0.89, 1.47, 2.43,

4.36, 6.67, 11.05, and 14.18 (×10−3 Pa · s) from right to left, respectively. The dotted lines denote 0.1

mm and 1 mm of intrusion length. The parameters of the simulation are as follows: a = 0.365 mm,

d = 70 mm, ρH = 1.057× 103 kg m−3, ρL = 0.996× 103 kg m−3, S = 7.70× 10−4 m2, R = 1.44× 10−4,

b1 = 10.7, b2 = 160, k = 0.40 kg m−1s−3, C1=7.11, C2=5.31, C3=0.32, α′=1.82, and γ′=0.30.
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B and C begin even when x̂ is still large, and hence the flow reverses for relatively large

x̂ compared with the case shown in Fig. 5.6. On the contrary, for the flow reversal from

up- to down-flow, the processes B and C do not begin until the value of x̂ becomes close

to the asymptotic value of the exponential curve, and as a consequence the flow reverses

for relatively large x̂ compared with the case shown in Fig. 5.6.

The case where the viscosity of the light fluid is extremely larger than that of the

heavy fluid is shown in Fig. 5.8. Obviously, the opposite trend to Fig. 5.7 is shown: The

time constant of the exponential curve of x̂ is larger in the up-flow than the down-flow.

For the flow reversal from down- to up-flow, the processes B and C do not begin until

the value of x̂ becomes close to the asymptotic value of the exponential curve, and as a

consequence the flow reverses for relatively small x̂. For the flow reversal up- to down-

flow, the processes B and C begin even when x̂ is still small, and hence the flow reverses

for relatively small x̂.

Figure 5.9(a) shows the viscosity dependence of the temporal evolution of ξ at the flow

reversal from down- to up-flow, which is obtained by solving Eqs. (5.46) and (5.47). In

this figure, t is redefined so that its origin agrees with the time when the intrusion reaches

the upper end of the pipe, ξ = 70 mm, which corresponds to the moment when the flow

reverses completely. When µH is increased while µL is kept constant, the intrusion of

the light fluid tends to last for an extremely long time before the flow reversal occurs

and the growth rate in the process C becomes relatively small, as shown in Fig. 5.9(a),

which is in good agreement with the experimental result (Fig. 4.8(a)). In the same way

as the experiment, we have defined the parameters x̂da and x̂db as the values of x̂ when

the intrusion length ξ becomes 0.1 mm and 1 mm, corresponding to ξ̂ = 0.27 and 2.74,

which characterize the timings for the beginning of the intrusion and the onset of its

rapid growth, respectively. In addition, we have defined x̂d as the value of x̂ when ξ

becomes 70 mm, corresponding to ξ̂ = 191.78, which characterizes the timing for the

flow reversal. Then, the parameters x̂da , x̂db and x̂d are compared with the experimental

parameters sda , sdb and sd. As shown in Fig. 4.7(a), x̂da , x̂db , and x̂d are surprisingly in

good agreement with sda , sdb , and sd.

On the other hand, when µL is increased while µH is kept constant, x̂da , x̂db , and x̂d

decrease as µL increases, and their values are generally consistent with the experimental

results, as shown in Fig. 4.7(b). However, the values of x̂da , x̂db , and x̂d for large µL

are slightly lower than sda , sdb , and sd, respectively. Further, the growth rate of the

intrusion is generally slower for large µL in the simulation (Fig. 5.9(b)) than that in the

experiment (Fig. 4.8(b)).

The flow reversal from up- to down-flow is also simulated by using Eqs. (5.48) and

(5.49), and compared with the experimental result. Here, the experimental parameter
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su should be compared with the value of x̂ when the flow reverses from (i− 1)th up- to

ith down-flow, which we denote as x̂(i)
us (see Fig.5.5). However, x̂(i)

us cannot be obtained

directly from the simulation. Hence, it is derived in the following way. Let x̂(i)
u be defined

as the value of x̂ when the flow reverses from ith up- to (i+1)th down-flow (see Fig.5.5).

Notice that x̂(i)
u is obtained directly from the simulation, because it corresponds to the

value of x̂ when ξ becomes 0 mm for the ith up-flow. Then, by assuming that the relation

x(i)
u − x(i−1 )

u ≈ x(i)
ue − x(i−1)

ue holds (see Fig. 5.5), the diffenrece between x̂(i)
u and x̂(i)

us is

derived as

x̂(i)
u − x̂(i)

us =
x(i)

u − x(i)
us

δx(i)

≈ x(i)
ue − x(i−1)

ue

δx(i)

=
x(i)

ue − x
(i)
de

δx(i)
− 1. (5.50)

On the other hand, as we have shown in Chap. 2, x(i)
ue − x

(i)
de and δx(i) are described as

x(i)
ue − x

(i)
de =

δρ(i)d

D(1 + R)ρ
(i)
H

, (5.51)

δx(i) =
δρ(i)d

(1 + DR)ρ
(i)
H

. (5.52)

By substituting Eqs. (5.51) and (5.52) into Eq. (5.50), x̂(i)
us is obtained as follows:

x̂us = x̂u + 1− 1

ψ
. (5.53)

Thus, x̂us can be calculated from x̂(i)
u . In Fig. 4.7, x̂us is compared with the experimental

value su. It is found that x̂us is qualitatively in good agreement with su, although x̂us is

slightly larger than su for µH > µL.

In this way, the flow-reversal process is generally reproduced by the model, although

not completely. Especially, the behaviors of the slow (process B) and rapid (process C)

growth of an intrusion are well reproduced. Indeed, this behavior is easily understandable

by the following considerations. Let f(ξ̂) be defined as the right hand side of Eq. (5.47).

Because x̂ is a slowly varying variable compared with ξ̂ with respect to time, which can

be deduced from Eqs. (5.46) and (5.47), x̂ is regarded as a parameter characterizing the

functional form of f(ξ̂). Figure 5.10 shows the x̂-dependence of f(ξ̂), where the functional

forms of F ′
1 ≡ −C1/µ̂Hx̂, F ′

2 ≡ C2/µ̂I · (1− x̂)(1− e−ξ̂/α′), and F ′
3 ≡ C3µ̂H/µ̂I · e−ξ̂/γ′/x̂,

are also shown. Notice that F ′
1, F ′

2, and F ′
3 are originated from the viscous drag force due

to the flow, the hydrostatic pressure gradient, and the effect of the acceleration of the

fluid that has passed through the pipe, respectively. When the value of x̂ is large, the
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Figure 5.10: The functional form of f(ξ̂) (bold black line), F ′1 (red solid line), F ′2 (green solid line), and

F ′3 (blue solid line) in the case of µ̂H=2.96 and µ̂L=1.00. The value of x̂ is varied: (a) x̂= 0.55, (b)

x̂= 0.38, (c) x̂= 0.32, and (d) x̂= 0.28. The arrows denote the stable solution of Eq. (5.47), ξ̂ = ξ̂0.

The parameters of the simulation are as follows: a = 0.365 mm, d = 70 mm, ρH = 1.057× 103 kg m−3,

ρL = 0.996×103 kg m−3, S = 7.70×10−4 m2, R = 1.44×10−4, b1 = 10.7, b2 = 160, k = 0.40 kg m−1s−3,

C1=7.11, C2=5.31, C3=0.32, α′=1.82, and γ′=0.30.
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Figure 5.11: The functional form of f(ξ̂) (bold black line), F ′1 (red solid line), F ′2 (green solid line), and

F ′3 (blue solid line) in the case of µ̂H=10.00 and µ̂L=1.00. The value of x̂ is varied: (a) x̂= 0.55, (b)

x̂= 0.38, (c) x̂= 0.32, and (d) x̂= 0.28. The arrows denote the stable solution of Eq. (5.47), ξ̂ = ξ̂0.

The parameters of the simulation are as follows: a = 0.365 mm, d = 70 mm, ρH = 1.057× 103 kg m−3,

ρL = 0.996×103 kg m−3, S = 7.70×10−4 m2, R = 1.44×10−4, b1 = 10.7, b2 = 160, k = 0.40 kg m−1s−3,

C1=7.11, C2=5.31, C3=0.32, α′=1.82, and γ′=0.30.

65



(a) (b)

(c) (d)

x=0.55 x=0.38

x=0.32 x=0.28

F'1

f(ξ)

F'2
F'3

ξ ξ

ξ ξ

f(ξ
)

f(ξ
)

f(ξ
)

f(ξ
)

Figure 5.12: The functional form of f(ξ̂) (bold black line), F ′1 (red solid line), F ′2 (green solid line), and

F ′3 (blue solid line) in the case of µ̂H=2.96 and µ̂L=7.00. The value of x̂ is varied: (a) x̂= 0.55, (b)

x̂= 0.38, (c) x̂= 0.32, and (d) x̂= 0.28. The arrows denote the stable solution of Eq. (5.47), ξ̂ = ξ̂0.

The parameters of the simulation are as follows: a = 0.365 mm, d = 70 mm, ρH = 1.057× 103 kg m−3,

ρL = 0.996×103 kg m−3, S = 7.70×10−4 m2, R = 1.44×10−4, b1 = 10.7, b2 = 160, k = 0.40 kg m−1s−3,

C1=7.11, C2=5.31, C3=0.32, α′=1.82, and γ′=0.30.
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intrusion does not occur and ξ̂ remains zero, because the relation f(0) ≤ 0 clearly holds

owing to the large contribution of F ′
1 (process A) (Fig. 5.10(a)). However, when x̂ is

decreased, f(0) becomes positive, because the contribution of F ′
3 becomes large and also

because the contribution of F ′
1 decreases while that of F ′

2 increases. Then, the relation

f(ξ̂) = 0 leads to a positive solution ξ̂0 with f ′(ξ̂0) < 0; hence, ξ̂ = ξ̂0 becomes a stable

solution of Eq. (5.47). Thus, the light fluid begins to intrude into a pipe (process B)

(Fig. 5.10(b)). As x̂ decreases much more, ξ̂0 increases gradually (Fig. 5.10(c)), and when

the summation of F ′
2 and F ′

3 overcomes F ′
1, the solution of f(ξ̂) = 0 vanishes, which leads

to f(ξ̂) > 0 for all ξ̂ (Fig. 5.10(d)). Thus, the intrusion becomes accelerated suddenly

(process C), and the flow reverses completely when the tip of the intrusion reaches the

upper end of the pipe (ξ̂ = ε−1).

When the viscosities of the fluids are varied, the functional form of f(ξ̂) changes sig-

nificantly, as shown in Figs. 5.11 and 5.12. For large µ̂H, f(ξ̂) becomes relatively large,

especially for small ξ̂, which is due to the relatively large contribution of F ′
3 (Fig. 5.11).

Thus, the intrusion and hence the onset of its rapid growth occur even when x̂ is still

large. On the other hand, for large µ̂L, the value of f(ξ̂) generally becomes small because

of the large contribution of F ′
1 (Fig. 5.12). Hence, the intrusion and the onset of its rapid

growth occur, when x̂ becomes sufficiently small. In this way, the viscosity dependence

of x̂da , x̂db , and x̂d are well explained.
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Chapter 6

Other factors related to oscillation

In the previous chapters, I have shown that the behavior of density oscillation, particu-

larly that of the flow-reversal process, is affected by the viscosities of the fluids, and have

explained it using a model, in which the forces acting on a unit volume element at the

tip of an intrusion at the flow-reversal process are considered. However, the behavior of

density oscillation is thought be also affected by several factors other than the viscosity.

In this chapter, the effects of the length and diameter of a pipe, the density difference

between the fluids, and the fluid materials are investigated.

6.1 Pipe length

It is considered that the pipe length relates to the flow-reversal process. I have per-

formed the experiments, in which the pipe lengths are varied from 10 mm to 70 mm,

while the pipe diameter is kept constant at 0.73 mm. For each pipe length, the viscosity

of heavy fluid µH was varied, while that of light fluid µL is kept constant. In the present

experimental conditions, βσ1/2/4 ≤ 8.84× 10−2 is satisfied so that the viscous damping

regime (see Sec. 2.1) is employed1. Each up- and down-flow is found to be fitted well

using an exponential function. As shown in Fig. 6.1, the difference between the asymp-

totic values for the exponential curves fitted to adjacent up- and down-flows ∆ is almost

consistent with the difference between the two hydrostatic equilibria δx, even when the

length of a pipe and the viscosity of the fluid are varied.

The temporal evolution of an intrusion is shown in Fig. 6.2. The time and intrusion

length are described by the non-dimensional variables t̂ and ξ̂, respectively, because the

non-dimensional description is helpful for us to understand whether the model proposed

in the previous section (Eqs. (5.46)-(5.49)) is valid or not. Namely, if the model is valid,

1Although βσ1/2 ¿ 1 had to be satisfied so that the viscous damping regime was employed in the theory previously

reported [31], it is obvious that it can be employed as far as βσ1/2/4 ¿ 1 is satisfied, because in this case the non-linear

terms are negligibly small compared with the viscous terms in Eqs. (2.15) and (2.16).
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H

Figure 6.1: The ratio of the difference between the asymptotic values for the exponential curves fitted

to adjacent up- and down-flows ∆ to the difference between the two hydrostatic equilibria δx for various

pipe lengths: 70mm (open circle), 50mm (filled square), 20mm (filled up triangle), and 10mm (filled

down triangle). Each data is averaged over 4 cycles from the 2nd to the 5th. µH is varied while µL is

fixed at 0.89× 10−3 Pa · s.

the processes A and B and the non-dimensionalized time leading to the flow reversal in

the process C will not be affected by the pipe length, since the pipe length relates only

to ε in Eqs. (5.46) and (5.47), and since dξ̂/dt̂ ∝ ε−1 is satisfied during the process C

while the flow reverses at ξ̂ = ε−1.

It is clearly seen in Fig. 6.2 that even when the pipe length is varied, an intrusion

grows slowly at first (process B), which is followed by the rapid growth (process C), and

the growth rate in these processes decreases significantly as µH is increased. However,

as the pipe length is shortened, the non-dimensionalized time taken for the processes B

and C decrease significantly, which implies that the non-dimensionalized model is not

quantitatively valid with respect to the change of the pipe length.

Figure 6.3 shows the heavy-fluid viscosity dependence of sda , sdb , sd, and su for various

pipe lengths. We find that the experimental results are almost in good agreement with the

simulations in the case of a long pipe. However, as the pipe length is shortened, sdb and

sd for large µH become slightly larger than the simulated values, and also the difference

between sdb and sd becomes smaller than the simulated result. These tendencies are

considered to be originated from the fact that the non-dimensionalized time taken for

the processes B and C decreases as the pipe length is shortened.

The case where the pipe length is extremely short is also examined. Because it is

difficult to attach a short pipe at the bottom of the inner container, the orifice is made
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(a) (b)

(c) (d)

Figure 6.2: The temporal evolution of an intrusion for the pipe length of (a) 70 mm, (b) 50mm, (c)

20mm, and (d) 10mm. The data are shown in the non-dimensional form. The origin of the time t̂ is

chosen to be the time when the flow reverses completely. For each pipe length, µH is varied while µL is

fixed at 0.89× 10−3 Pa · s. The dotted lines indicate 0.1 mm and 1 mm of intrusion length. In (d), the

data for ξ̂ > 10 are not shown because the intrusion could not be observed because of the bottom of the

inner container.
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(c)
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(d)H

H
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Figure 6.3: Viscosity dependence of su (filled up triangle), sd (filled down triangle), sda (open square),

and sdb (open circle) for the pipe length of (a) 70 mm, (b) 50 mm, (c) 20mm, and (d) 10mm. µH is

varied while µL is fixed at 0.89× 10−3 Pa · s. The data are averaged over 4 cycles from the 2nd to the

5th. Simulated results x̂u (solid line), x̂d (bold line) x̂da (dashed line), and x̂db (dotted line) are also

shown. The parameters of the simulation are as follows: a = 0.365 mm, ρH = 1.057 × 103 kg m−3,

ρL = 0.996 × 103 kg m−3, µL = 0.89 × 10−3 Pa · s, S = 7.70 × 10−4 m2, R = 1.44 × 10−4, b1 = 10.7,

b2 = 160, k = 0.40 kg m−1s−3, C1=7.11, C2=5.31, C3=0.32, α′=1.82, and γ′=0.30.
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Figure 6.4: The temporal evolution of the height of the heavy fluid surface when a pipe is replaced by

an orifice. The thickness of the bottom of the inner container is 2 mm, while the diameter of an orifice

is 1.12 mm. The viscosities of the heavy and light fluids are 1.77 × 10−3 Pa · s and 0.89 × 10−3 Pa · s,
respectively. Although each up- and down-flow is seemingly well fitted by an exponential function, its

asymptotic value is not consistent with that at the hydrostatic equilibrium (see Fig. 6.5).

Figure 6.5: The ratio of the difference between the asymptotic values for the exponential curves fitted

to adjacent up- and down-flows ∆ to the difference between the two hydrostatic equilibria δx when a

pipe is replaced by an orifice. The thickness of the bottom of the inner container is 5 mm (black filled

square), 3 mm (red circle), and 2 mm (green up triangle). Each data is averaged over 4 cycles from the

2nd to the 5th. µH is varied while µL is fixed at 0.89× 10−3 Pa · s.
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Figure 6.6: Definition of parameters. Upper picture is the scheme of the temporal evolution of the height

of heavy fluid surface, while lower picture is that of the intrusion length ξ. x
(i−1)
u and x

(i)
d are the heights

of the heavy fluid surface when the flow reverses from (i−1)th up- to ith down-flow and ith down- to ith

up-flow, respectively. xda and xdb are the heights of the heavy fluid surface when the intrusion length

becomes 0.1 mm and 1 mm, respectively. x
(i−1)
ue and x

(i)
de are the heights at the hydrostatic equilibria

where a pipe is filled with light and heavy fluids, respectively, and δx(i) is the difference between the

two. q1, q2, and q3 characterize the difference between x
(i−1)
u and x

(i)
da , x

(i)
da and x

(i)
db , and x

(i)
db and x

(i)
d ,

respectively, which are normalized by δx(i). q is the summation of q1, q2, and q3.
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H

Figure 6.7: Viscosity dependence of q when a pipe is replaced by an orifice. The thickness of the bottom

of the inner container is 5 mm (black filled square), 3 mm (red circle), and 2 mm (green up triangle). For

µH > 14 × 10−3 Pa · s, the reproducibility of oscillation was poor and simultaneous up- and down-flow

within an orifice was often observed. For comparison, the case where a pipe is used (the pipe diameter

and length is 0.73 mm and 70 mm, respectively) is also shown (black open square).

at the bottom of the inner container by using a drilling machine. The diameter of the

orifice is 1.12 ± 0.02 mm, and the thickness of the bottom of the inner container (and

hence the length of the orifice) is varied from 2 mm to 5mm. Because it is difficult to

observe the flow inside an orifice, only the height of the heavy fluid surface is measured.

Figure 6.4 shows the temporal evolution of the heavy fluid surface in the case where a

pipe is replaced by an orifice. Although each up- and down-flow is seemingly well fitted

by an exponential function, the difference between the asymptotic values for the adjacent

exponential curves ∆ is not consistent with the difference between the two hydrostatic

equilibria δx, as shown in Fig. 6.5. This is probably because S/N ratio is low compared

with the case of a long pipe and also because nonlinear damping terms in Eqs. (2.15) and

(2.16) are no longer neglected in the present case. Thus, the parameters sd, su, sda , and

sdb cannot be used for the present analysis. Instead, a new parameter q is introduced as

follows:

q =

〈
x(i−1)

u − x
(i)
d

δx(i)

〉
, (6.1)

where 〈...〉 denotes the average over four cycles from the 2nd to 5th. In fact, q is an

appropriate parameter for estimating the timings of the flow reversals because q be-

comes large when the flow reversal occurs near the hydrostatic equilibrium (see Fig. 6.6).

Figure 6.7 shows the relation between q and µH for various thickness of the bottom of

the inner container. It is clearly seen that q decreases significantly with increasing µH,
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although it does not depend much on µH when the pipe length is long. This tendency

corresponds to the increase of sd for large µH in Fig. 6.3. Moreover, for extremely large

µH, the reproducibility of oscillation is poor, and simultaneous up- and down-flow in the

orifice instead of oscillation is often observed.

6.2 Pipe diameter

Next, the viscosity-dependent flow-reversal processes for the inner pipe diameter of 1.60

mm and 3.50 mm are investigated. In the experiments, the pipe length is set constant at

50 mm and the surface areas of the inner and outer containers are set at 1.66× 10−3 m2

and 1.24×10−2 m2, respectively. In the case of the pipe diameter of 3.50 mm, high speed

camera (Photron FASTCAM Viewer) is used for the observation of the flow inside the

pipe because the flow reversal occurs rapidly, and the pictures are taken at an interval

of 0.33 s. Figure 6.8 shows an example of the pictures taken by the high speed camera.

The interface between the heavy and light fluids is clearly seen.

Figure 6.9 shows the temporal evolution of an intrusion. It is found that even when the

diameter is varied, the flow reversal begins with an intrusion (process B) and is followed

by a rapid growth (process C), and the growth rate of the intrusion decreases significantly

with increasing µH. Moreover, the onset of the rapid growth begins at ξ̂ ∼ 1, which does

not depend significantly on the diameter. However, in the case of the large diameter,

the intrusion is accelerated gradually and thus the processes B and C are not clearly

separated. In addition, for extremely large µH with the pipe diameter of 3.50 mm, an

intrusion of light fluid is always observed during the down-flow, and the oscillation is

quite irregular, as shown in Fig. 6.10.

Next, we analyze the height of the fluid surface at which the onset of intrusion and its

rapid growth occurs. Because the nonlinear damping terms in Eqs. (2.15) and (2.16) are

not negligible and hence each up- and down-flow is no longer fitted by an exponential

function, the parameters sd, su, sda , and sdb cannot be used for the present analysis.

Hence, the flow-reversal process is analyzed using the following parameters (see Fig. 6.6):

q1 =

〈
x(i−1)

u − x
(i)
da

δx(i)

〉
,

q2 =

〈
x

(i)
da − x

(i)
db

δx(i)

〉
,

q3 =

〈
x

(i)
db − x

(i)
d

δx(i)

〉
,

where 〈...〉 denotes the average over four cycles from the 2nd to 5th. Here, xda and

xdb denote the height of the heavy fluid surface when the non-dimensionalized intrusion
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(a) (b)

(c) (d)

Figure 6.8: Microscopic images of the intrusion in the time course of down-flow ((a)→(b)→(c)→(d))

taken by the high speed camera. An intrusion of light fluid is clearly seen (arrowheads). The

experimental conditions are as follows: 2a=3.5 mm, d=50 mm, ρH = 1.056×103 kg ·m−3, ρL =

0.997×103 kg ·m−3, µH = 1.76× 10−3 Pa · s and µL = 0.89× 10−3 Pa · s.
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(a)

(b)
t

t

ξ
ξ

Figure 6.9: The temporal evolution of an intrusion for the pipe diameter of (a) 1.60 mm and (b) 3.50

mm. µH is varied while µL is fixed at 0.89× 10−3 Pa · s. The data are shown in nondimensional forms.

The dotted lines indicate ξ̂ = 0.27 and 2.74.
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Figure 6.10: The temporal evolution of the height of the heavy fluid surface for the pipe diameter of

3.50 mm with µH = 14.02 × 10−3 Pa · s and µL = 0.89 × 10−3 Pa · s. The waveform of oscillation is

irregular.

length ξ̂ becomes 0.27 and 2.74, respectively. Notice that the parameter q introduced

in Eq. (6.1) corresponds to the summation of q1, q2 and q3. Although we cannot ex-

actly know the timing of the flow reversal from these parameters, q1, q2 and q3 roughly

characterize the durations of the processes A, B, and C, respectively.

Figure 6.11 shows the heavy-fluid viscosity dependence of q1, q2, q3, and q for the pipe

diameter of 1.60 mm and 3.50 mm. For comparison, the values of these parameters at

the experimental conditions shown in Chap. 3, where the pipe diameter of 0.73 mm

is employed, are shown in Fig. 6.12. It is clearly seen in Fig. 6.12 that q1 decreases,

while q2 and q3 increase as µH is increased, whereas q does not depend much on µH.

However, when the pipe diameter is large, q2 and q3 are relatively small for large µH,

while q1 is relatively large particularly for small µH, and as a consequence q decreases

with increasing µH, as shown in Fig. 6.11.

From these results, I speculate that the flow reversal from the down- to up-flow in the

case of the large pipe diameter occurs in the following way: For small µH, the intrusion

does not occur until the height of the fluid surface becomes close to the hydrostatic

equilibrium. On the other hand, for large µH, the onset of an intrusion occurs even when

the height of the fluid surface is still high, and once the intrusion occurs, it is gradually

accelerated and then the flow reverses immediately.
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(a)

(b)

H

H

Figure 6.11: The values of q1 (blue square), q2 (red circle), q3 (green down triangle) and q (black square)

for the pipe diameter of (a) 1.60 mm and (b) 3.50 mm. µH is varied while µL is fixed at 0.89×10−3 Pa · s.
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Figure 6.12: The values of q1 (open square), q2 (open circle), q3 (open down triangle) and q (filled

square) for the pipe diameter of 0.73 mm. The experimental conditions are same as those in Chap. 3.

µH is varied while µL is fixed at 0.89× 10−3 Pa · s.

Figure 6.13: Density-difference dependence of the temporal evolution of the intrusion. Because of the

limitation of the visual field under the stereomicroscope, an intrusion length of more than 8 mm is not

observed. The dotted lines indicate 0.1 mm and 1 mm of intrusion length.
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Figure 6.14: The relation between the average growth rate from 2mm to 8mm of the intrusion length

and the density difference δρ. These two are in proportional relation (solid line).

Figure 6.15: Temporal evolution of the height of the heavy fluid surface when δρ is extremely small:

ρL = 0.997×103 kg ·m−3, ρH = 1.003×103 kg ·m−3, µH = 1.39×10−3 Pa · s, and µL = 0.86×10−3 Pa · s.
Each branch for up- and down-flow is well fitted by an exponential curve (dotted line), but deviates

from it significantly before the flow reversal.
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Figure 6.16: Density-difference dependence of su (filled up triangle), sd (filled down triangle), sda (open

square), and sdb (open circle). The data are averaged over 4 cycles from the 2nd to the 5th. The density

of the light fluid was kept constant at 0.997×103 kg ·m−3. The viscosities of the heavy and light fluids

were (1.45± 0.07)× 10−3 Pa · s and 0.86× 10−3 Pa · s, respectively. Because the interface between the

fluids is not clearly observed when density difference is small, sda and sdb are not shown for small δρ.

Simulated results x̂u (solid line), x̂d (bold line) x̂da (dashed line), and x̂db (dotted line) are also shown.

The parameters of the simulation are as follows: a = 0.365 mm, d = 50 mm, ρL = 0.996× 103 kg m−3,

µH = 1.45× 10−3 Pa · s, µL = 0.89× 10−3 Pa · s, S = 1.66× 10−3 m2, R = 0.337, b1 = 10.7, b2 = 160,

k = 1.07× 10−4 × δρ2 kg m−1s−3, α′=1.82, and γ′=0.30.

6.3 Density of fluid

Next, the density difference between the fluids is varied. In the experiments, glu-

cose solution and water are used as the heavy and light fluids, respectively, and the

concentration of the glucose solution is varied, which changes the density of the heavy

fluid. Moreover, a small amount of methyl-cellulose is dissolved into the heavy fluid

to keep the viscosity nearly constant. The viscosities of the heavy and light fluids are

(1.45± 0.07)× 10−3 Pa · s and 0.86× 10−3 Pa · s, respectively. The surface areas of the

inner and outer containers are 1.66× 10−3 m2 and 4.93× 10−3 m2, and the diameter and

length of a pipe are 0.73 mm and 50 mm, respectively. The temperature of the fluid is

kept at 26.5± 0.5oC.

Figure 6.13 shows the temporal evolution of the intrusion length. Even when the

density difference between the fluids δρ is varied, the flow reversal begins with an intrusion

(process B) and is followed by the rapid growth (process C). Noticeably, the onset of the

rapid growth begins at about 1 mm in the intrusion length, irrespective of δρ. After the

onset of the rapid growth, the growth rate depends much on δρ. As shown in Fig. 6.14, the

average growth rate from 2 mm to 8 mm of the intrusion length is almost in proportion

to δρ.
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Figure 6.17: The simulated result of the temporal evolution of an intrusion when δρ is varied while ρL

is fixed at 0.997×103 kg ·m−3. Each curve corresponds to δρ = 0.013, 0.019, 0.025, 0.036, 0.042, 0.047,

0.058, and 0.074 (×103 kg ·m−3) from left to right, respectively. The dotted lines denote 0.1 mm and

1 mm of intrusion length. The parameters of the simulation are as follows: a = 0.365 mm, d = 50 mm,

ρL = 0.996 × 103 kg m−3, µH = 1.45 × 10−3 Pa · s, µL = 0.89 × 10−3 Pa · s, S = 1.66 × 10−3 m2,

R = 0.337, b1 = 10.7, b2 = 160, k = 1.07× 10−4 × δρ2 kg m−1s−3, α′=1.82, and γ′=0.30.

Figure 6.15 shows the temporal evolution of the height of the heavy fluid surface in

the case where the density difference δρ is extremely small. Even in this case each

up- and down-flow is fitted by an exponential function, and the asymptotic values of the

exponential functions are generally in good agreement with the theoretical values derived

from Eqs. (2.15) and (2.16). However, the height clearly deviates from the exponential

response before the flow reversal, which is thought to be due to the slow growth of the

intrusion in the process C.

The density-difference dependence of sd, su, sda and sdb is shown in Fig. 6.16. Although

sda and sdb do not depend much on δρ, sd decreases while su increases as δρ is decreased.

This is probably because the time taken for the process C is extremely long when δρ is

small and thus the flow-reversal process does not completely finish until the height of

the heavy fluid surface approaches near the hydrostatic equilibrium, while the processes

A and B do not depend on δρ.

These density-dependent behaviors are compared with the simulations of the model.

Figure 6.17 shows the simulated result of the temporal evolution of the intrusion length

where the parameters b1, b2 and k are chosen so that the relation k ∝ δρ2 is satisfied,

while b1 and b2 take constant values with regard to δρ (hence, C1, C2, and C3 are all in

proportion to δρ). Obviously, the onset of the rapid growth of intrusion occurs at the
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(b)
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Figure 6.18: Viscosity dependence of su (filled up triangle) and sd (filled down triangle) when glucose

solution and water were used as the heavy and light fluids with methyl-cellulose dissolved to change the

viscosity. The data are averaged over 4 cycles from the 2nd to the 5th. Simulated results x̂u (solid line)

and x̂d (bold line) are also shown. (a) µH is varied while µL is fixed at 0.89×10−3 Pa · s. (b) µL is varied

while µH is fixed at 1.40× 10−3 Pa · s. The parameters of the simulation are as follows: a = 0.365 mm,

d = 50 mm, ρH = 1.060× 103 kg m−3, ρL = 0.996× 103 kg m−3, S = 1.66× 10−3 m2, R = 7.76× 10−2,

b1 = 10.7, b2 = 160, k = 0.42 kg m−1s−3, α′=1.82, and γ′=0.30.
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same intrusion length even when δρ is varied, and the growth rate during the process

C is slow for small δρ, which is qualitatively in good agreement with the experimental

result. The density-difference dependence of the values of x̂d, x̂u, x̂da and x̂db is shown in

Fig. 6.16. It is clearly seen that x̂d, x̂u, x̂da and x̂db are generally in good agreement with

sd, su, sda and sdb , although x̂u and x̂da are slightly larger than su and sda , respectively.

6.4 Fluid materials

While the mixtures of water, one-propanol, and glycerin are used in the experiments

shown in Chap. 4, the viscosity dependence of the flow reversal is also investigated

with using other materials: glucose solution and water are used as the heavy and light

fluids, respectively, and methyl-cellulose is dissolved into the fluids to change the viscosity

without changing the density. The densities of the heavy and light fluids are kept constant

at (1.060 ± 0.002)×103 kg ·m−3 and 0.997×103 kg ·m−3, respectively. In the present

experiment, the surface areas of the inner and outer containers are 1.66 × 10−3 m2 and

2.34 × 10−2 m2, and the length and the diameter of a pipe are 50 mm and 0.73 mm,

respectively.

Figure 6.18 shows the viscosity dependence of sd and su when glucose solution and

water are used as the fluids. The simulated results obtained from Eqs. (5.46)-(5.49) are

also shown. It is obvious that the viscosity dependence of sd and su is well reproduced by

the model. It is noted that the temporal evolution of an intrusion is not quantitatively

measured in the present experiment, and thus sda and sda are not obtained. However,

it is observed by the naked eyes that an intrusion grows extremely slowly at the flow

reversal from down- (up-) to up- (down-) flow for large µH(µL), which qualitatively agrees

with the results when the mixtures of water, 1-propanol, and glycerin are used as the

fluids.

6.5 Summary

In this section, I will briefly summarize the results obtained when a short pipe or an

orifice is employed (Sec. 6.1), when the pipe diameter is large (Sec. 6.2), when the

density difference between the fluids is small (Sec. 6.3), and when other materials are

used as the fluids (Sec. 6.4).

(Short pipe)

• Non-dimensionalized time taken for the processes B and C is relatively short.
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• sdb and sd are relatively large.

• The difference between sdb and sd is relatively small.

(Orifice)

• q decreases with increasing µH.

• Simultaneous up- and down-flow is observed for extremely large µH.

(Large pipe diameter)

• Onset of the rapid growth of intrusion occurs at ξ̂ ∼ 1.

• An intrusion is accelerated throughout the processes B and C.

• q2 and q3 is relatively small for large µH.

• q1 is relatively large for small µH.

• Irregular oscillation is observed for extremely large µH.

(Small density difference)

• Onset of the rapid growth of intrusion occurs at ξ ∼ 1 mm.

• Growth rate in the process C is in proportion to δρ.

• The height of the fluid surface clearly deviates from exponential response before the

flow reversal.

• sd is relatively small while su is relatively large.

• The above results are reproduced by the simulation by putting k ∝ δρ2.

(Other fluid materials)

• The result is well reproduced by the simulation.
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Chapter 7

Discussion

7.1 Mechanism of density oscillation

I have investigated the mechanism of density oscillation experimentally and theoreti-

cally. Particularly, I have focused on the mechanism of the flow-reversal process, which

is essential but has not been well understood [31, 40]. In the above experiments, it is

found that the flow reversal from down- to up-flow in a density oscillator occurs in the

following way: At first, the heavy fluid flows in one-way (process A). After a while, the

light fluid intrudes into the pipe and the intrusion grows rather slowly (process B). When

it grows to some extent, it suddenly begins to grow rapidly (process C). Finally, the flow

reverses completely when it reaches the upper end of the pipe. The flow reversal in the

opposite direction also occurs in the similar way.

When the viscosities of the fluids are changed, the flow-reversal process is found to

change significantly. In the case of the flow-reversal from down- to up-flow, for instance,

an intrusion of the light fluid starts long before the flow reversal and grows slowly when

the viscosity of the heavy fluid is larger than that of the light fluid, while an intrusion

does not occur until the height of the heavy fluid surface becomes close to that at the

hydrostatic equilibrium when the viscosity of the light fluid is larger than that of the

heavy fluid.

Since it is difficult to analyze the viscosity-dependent flow-reversal process strictly, I

have described it by a simple model in which three forces acting on the tip of the intrusion

(viscous drag force F1, hydrostatic pressure gradient F2, and the effect of acceleration of

fluid that has passed through a pipe F3) are taken into account. Then, it is found that

the model well reproduces the experimental result.

Although the model reported previously (Eq. (2.29)) described the phenomenological

behavior of oscillation [32–34], the essential mechanism of the oscillation was not well

understood. On the contrary, the present model properly describes the whole oscillatory
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behavior based on its essential mechanism. Namely, the present model properly includes

the mechanism of the flow-reversal process, which is a key process of the oscillation.

Indeed, I conclude from the present model that the flow-reversal process occurs in the

following way:

1. The acceleration of the flow that has passed through a pipe causes the contraction

of the flow, which triggers the fluid to intrude into the pipe (F3).

2. After the intrusion occurs, it does not grow immediately but grows slowly, because

the viscous drag force (F1) hinders the growth of the intrusion.

3. As the height of the heavy fluid surface approaches the hydrostatic equilibirium, the

viscous drag force (F1) decreases while the hydrostatic pressure gradient (F2) which

accelerates the intrusion increases. Then, at a threshold, the intrusion is accelerated

suddenly and begins to grow rapidly.

4. The flow reverses completely when the intrusion reaches the upper (lower) end of

the pipe.

Thus, the present model is expected to become a useful model for the future studies

on the density oscillator. In the following, I will discuss several important aspects of the

model in detail.

7.1.1 Properties of forces

From the model, the properties of the three forces can be well understood. In the

non-dimensionalized model (Eqs. (5.46)-(5.49)), the three forces are characterized by F ′
1,

F ′
2, and F ′

3. As shown in Sec. 5.3, the contributions of these forces vary depending

on the value of the non-dimensionalized height of the heavy fluid surface x̂. When the

non-dimensionalized viscosities µ̂H and µ̂L are constants of O(1), the contributions of F ′
1

and F ′
2 are of the same order, and F ′

1 is dominant at large x̂, while F ′
2 is dominant at

small x̂. The contribution of F ′
3 is small as compared with F ′

1 and F ′
2 when x̂ is large.

However, when the value of x̂ becomes small, F ′
3 becomes comparable to F ′

1 and F ′
2 and

causes the intrusion (see Fig. 5.10).

When the viscosity of the fluid is changed, the properties of the forces change con-

siderably: the contribution of F ′
3 becomes relatively large for large µ̂H, while that of F ′

1

becomes relatively large for large µ̂L. Such viscosity dependence is originated from the

fact that the viscosity of the fluid at the interface µ̂I depends both on the viscosities of

the heavy and light fluids while the velocity of down- (up-) flow depends solely on the

viscosity of the heavy (light) fluid, and that the effect of the acceleration of the flow

that has passed through the pipe F3 is related to the velocity of the flow. Although
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the effect of the viscosity to the flow-reversal process was not considered in the anal-

ysis reported previously [40], I have properly taken it into account and described the

viscosity-dependent behaviors quite well.

The properties of the forces are characterized by the parameters α′, γ′, C1, C2, and

C3, as well as by the viscosities of the fluids. α′ and γ′ characterize not only the region

where the pressure gradient is not simply derived from the height of the fluid surface,

but also the intrusion length where the onset of its rapid growth occurs. Obviously, the

characteristic length of this region is thought to be of the order of the pipe diameter. In

fact, the onset of the rapid growth of an intrusion occurs necessarily at ξ̂ ∼ 1, as shown

in Chaps. 4 and 6. Thus, it is expected that α′ and γ′ are constants of O(1). Actually,

the values we set to fit the experimental result, i.e., α′ = 1.82 and γ′ = 0.30, are within

this order, and these values do not vary depending on experimental conditions. Hence,

with regard to the parameters α′ and γ′, the present model has a universal character.

On the other hand, the parameters C1, C2, and C3, which characterize the contribu-

tions of F ′
1, F ′

2, and F ′
3, respectively, are thought to depend on the pipe diameter (see

Eqs. (5.41)-(5.43)). As shown in Sec. 6.2, when the pipe diameter is large, q1 is relatively

large for small µ̂H and hence it is considered that in this case an intrusion does not oc-

cur until the height of the fluid surface approaches close to the hydrostatic equilibrium.

However, q1 decreases significantly as µ̂H is increased. This result implies that the con-

tribution of F ′
1 is larger than that of F ′

2 for the large pipe diameter, and the contribution

of F ′
3 becomes comparable to F ′

1 as µ̂H is increased. Hence, it is considered that C1 and

C3 are relatively large while C2 is relatively small for the large pipe diameter.

C1, C2, and C3 contain the parameters b1, b2, and k, which are determined experi-

mentally. If we assume b1, b2, and k are constants with regard to the pipe diameter,

it is found from Eqs. (5.41)-(5.43) that C1 ∝ a−2, C2 ∝ a−2, and C3 ∝ a−4, respec-

tively. However, since the contributions of C1 and C3 become relatively large as the pipe

diameter increases, it is considered that k increases significantly as the pipe diameter in-

creases. Moreover, b1 is also thought to increase as the pipe diameter increases, although

its detailed mechanism is still unclear.

The parameters C1, C2, and C3 also depend on the density difference between the

fluids δρ. In Sec. 6.3, I have shown that the intrusion length where the onset of the

rapid growth of the intrusion occurs does not depend on δρ and the growth rate during

the process C is in proportion to δρ. These behaviors have been well reproduced by the

simulation with putting k as k ∝ δρ2 and b1 and b2 as constants with regard to δρ, so

that C1, C2, and C3 become all in proportion to δρ. Intuitively, the increase of k with

increasing δρ is qualitatively understandable, because the acceleration of the fluid that

has passed through a pipe is thought to be in proportion to δρ. However, the reason
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that k is in proportion not to δρ but to δρ2 is still unclear.

7.1.2 Future problems concerning the model

As described above, the model contains the essence of density oscillation. Whereas the

model describes the behavior of oscillation fairly well, there remains some problems. In

the following, I will discuss them individually.

Growth rate of intrusion

At the derivation of F1, I have assumed that the shear stress at the pipe wall σ′s is in

proportion to the viscosity at the interface µI, for simplicity. However, it is considered

that σ′s is actually in proportion to the viscosity of the fluid of intrusion. Now consider

how the behavior changes if the relation σ′s ∝ µL is assumed to hold in the case of the

flow reversal from down- to up-flow. In this case, F1 is described in the following way:

F1 =
b1(µH + µL)

2a2

(
S

πa2
ẋ− ξ̇

)
− b′2µL

a2
ξ̇

=
b1(µH + µL)

2a2

S

πa2
ẋ−

[
b1(µH + µL)

2a2
+

b′2µL

a2

]
ξ̇, (7.1)

where b′2 is a positive constant. It is found that Eq. (7.1) is obtained by replacing b2 in

Eq. (5.8) with b1 + 2b′2µL/(µH + µL). Hence, we can regard b2 as a variable dependent

on the viscosities of fluids: it decreases as µH is increased while it increases as µL is

increased. Meanwhile, because the non-dimensionalized parameters C1, C2, and C3 in

Eqs. (5.47) and (5.49) are all in proportion to b−1
2 , the growth rate of intrusion is in

proportion to b−1
2 . Hence, when µH (µL) is large, the growth rate in the process C under

the assumption of σ′s ∝ µL should be faster (slower) than that under the assumption of

σ′s ∝ µI, while the processes A and B should not be affected by the assumptions.

However, even when σ′s ∝ µI is assumed, the growth rate of an intrusion in the case of

µL > µH at the flow reversal from down- to up-flow is somewhat slower in the simulation

than in the experiment (Figs. 4.8 and 5.9). Hence, if we assume σ′s ∝ µL, the discrepancy

of the growth rate between the simulation and the experiment is thought to become large.

Such discrepancy of the growth rate is thought to be closely related to the actual width

of the intrusion within the pipe. As described above, it has been found experimentally

that the width of the intrusion is smaller for µL > µH (Fig. 4.10). It is considered that

as the width becomes smaller, the growth of an intrusion becomes less hindered, which

enables the intrusion to grow more rapidly. The reason for the relatively slow growth

rate in the simulation is thought to be due to the neglect of this effect. However, the

reason that the width depends on the viscosities of the fluids is not yet clear.
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It is noted that the fact that x̂d becomes slightly lower than sd (Fig. 4.7) is thought to

be due to the discrepancy of the growth rate. The fact that x̂u is slightly larger than su

for µH > µL is considered in the similar manner. Hence, for the proper description of the

flow-reversal process, the effect of the width of intrusion should be properly considered.

Acceleration effect

As the flow is obstructed by the intrusion, the intrusion should be accelerated because

the intrusion is less obstructed by the flow. Then, the flow becomes much more obstructed

by the accelerated intrusion. In this way, the positive feedback loop should exist at the

flow-reversal process, although it is not considered in the model. In fact, we have observed

that the intrusion is accelerated gradually as the intrusion approaches the upper end of

the pipe. While the acceleration occurs at the late stage of the process C (hence it occurs

out of the visual field of the stereomicroscope) when the pipe diameter is small, it occurs

obviously throughout the processes B and C when the pipe diameter is large, as shown

in Fig. 6.9.

The deviation from exponential response before the flow reversal shown in Figs. 4.1 and

6.15 is thought to be caused by the acceleration of intrusion. Actually, the deviation is

found to occur at the process C, which corresponds to the timing when the acceleration

of intrusion occurs. The deviation is prominent when δρ is small (see Fig. 6.15), because

the growth rate during the process C is extremely slow and hence the acceleration of

intrusion is thought to occur also slowly.

The decrease of q2 and q3 for large µH with increasing the pipe diameter can be also

explained by the acceleration of intrusion. As estimated above, the parameters C1, C2,

and C3 decrease significantly as the pipe diameter increases if we assume that b1, b2 and

k are constants. Hence, it is expected that the growth rate of intrusion decreases as

the pipe diameter increases, although b1, b2 and k may depend somewhat on the pipe

diameter. Nevertheless, it is found that q2 and q3, which characterize the durations of

the processes B and C, respectively, decrease as the pipe diameter increases. This is

thought to be because the acceleration shortens the durations of the processes B and C.

In addition, when the pipe length is short, it is found that the duration of the process C

becomes shorter than that expected from the model (see Fig. 6.2). This is also considered

to be due to the acceleration of intrusion.

Onset of rapid growth

It is shown in Sec. 6.1 that not only the duration of the process C but also the process

B is shorter than that expected from the model when the pipe length is short. Although

the detailed mechanism of the reduction of the duration of the process B is still unclear,
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it is considered that the flow tends to lose its stability even by a slight intrusion when

the pipe length is short, while the flow is relatively stable against a slight intrusion when

the pipe length is long. Thus, more strict analysis of the flow stability is actually needed

to describe the onset of the rapid growth precisely.

Continuous connection between up- and down-flows

In the actual system, the flow reversal proceeds in a continuous manner. However, it

is assumed in the present model that the flow reversal occurs discontinuously when the

intrusion reaches the end of a pipe. Although this assumption is approximately valid in

most of the cases, it is no longer valid when the density difference δρ is extremely small,

in which the flow reversal proceeds rather slowly (see Figs. 6.13 and 6.15). For the exact

description of the flow-reversal process, it is clearly needed to improve the model so that

the flow-reversal process is described in a continuous manner.

Interfacial tension

In the experiments shown in Chap. 4, mixtures of water, 1-propanol, and glycerin

were used as the fluids, and their viscosities were varied by changing their compositions.

However, when the composition of the fluid is varied, not only the viscosity but also the

interfacial tension between the fluid and the glass pipe will vary. Thus, it is needed to

exclude the possibility that the interfacial tension plays an essential role for the flow-

reversal process other than the three factors considered in Sec. 5.1. However, I consider

that the main factor causing the change in the flow-reversal process is the viscosity of the

fluids, because similar results for sd and su are obtainable irrespectively of the materials

employed, as shown in Sec. 6.4. Thus, it seems that the effect of the interfacial tension

between the fluid and the pipe is not essentially important, even if it exists. However,

further investigations are needed to clarify the effect of the interfacial tension in detail.

Disturbance of interface

I have found that the obstruction of the growth of an intrusion due to a disturbance of

the interface occurs when a high-viscosity fluid intrudes into the flow of low-viscosity fluid

(Fig. 4.9). This phenomenon seems to be due to some kind of hydrodynamic instability

at the interface. However, the detailed mechanism of the instability has not been clarified

yet, and thus further study is needed from a hydrodynamic viewpoint.
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Irregular oscillation and simultaneous up- and down-flow

It is found that an irregular oscillation occurs for large µH, when the pipe diameter is

large. In addition, when a pipe is replaced by an orifice, simultaneous up- and down-flow

inside the orifice has been found to occur also for large µH. Although the mechanisms

of these phenomena have not been clarified yet, it is considered that in these cases the

flow inside a pipe cannot exist stably for any height of the fluid surface because of the

obstruction of the flow by an intrusion.

7.1.3 Extension to general cases

I have constructed the model under the assumption of βσ1/2 ¿ 1, i.e., the viscous

damping regime (see Sec. 2.1), and ε = a/d ¿ 1. However, for the full understanding

of the phenomenon, the nonlinear damping terms and the inertia terms in Eqs. (2.15),

(2.16), (5.20), and (5.32) should be taken into account. Thus, the flow reversal from

down- to up-flow is described by using Eqs. (2.16) and (5.20) in the following way:

dx̂

dt̂
= ẑ, (7.2)

ζε

4D

dẑ

dt̂
= −µ̂HDz̃ +

ζεσ

8φ
ẑ2 − φDx̃, (7.3)

dξ̂

dt̂
= θ̂, (7.4)

C4
dθ̂

dt̂
= −εµ̂Iθ̂ +

C1µ̂I

φ
ẑ + C2(1− x̂)(1− e−ξ̂/α′) +

C3φe−ξ̂/γ′

ẑ
. (7.5)

In the same way, the flow reversal from up- to down-flow is derived from Eqs. (2.15) and

(5.32) under the assumption of (xd − xde)/d ¿ 1 as follows:

dx̂

dt̂
= ẑ, (7.6)

ζε

4D

dẑ

dt̂
= −µ̂Lẑ − ζεσ

8φ
ẑ2 + φ(1− ψx̃), (7.7)

dξ̂

dt̂
= θ̂, (7.8)

C4

D

dθ̂

dt̂
= −εµ̂Iθ̂ +

C1µ̂I

φ
ẑ − C2ψx̃(1− e−(ε−1−ξ̂)/α′)− C3φe−(ε−1−ξ̂)/γ′

ẑ
. (7.9)

Thus, Eqs. (7.2)-(7.9) are thought to be the generalized description of density oscilla-

tion. However, it should be noted that it is not yet clear whether these equations really

reproduce the oscillatory behaviors correctly for any experimental condition. Thus, fur-

ther investigation is clearly needed to clarify the validity of Eqs. (7.2)-(7.9).
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7.2 Mechanism of relaxation oscillation

I have found that the flow-reversal process in a density oscillator is well described by

a model in which three forces F1, F2 and F3 are considered. These three forces are

regarded as ‘inhibiting factor’, ‘promoting factor’, and ‘triggering factor’ to characterize

the growth of intrusion, respectively, because F3 initiates the flow-reversal process and

F2 actually causes the flow reversal when it overwhelms F1 that hinders the intrusion

from growing.

The three factors are thought to be essential not only for the flow reversal in a density

oscillator but also for any jumping process in relaxation oscillators generally found in

nature. Namely, it is considered that the jumping process in a relaxation oscillator does

not occur abruptly but a trigger of the jumping can be found before it occurs. A typical

example is found in respiratory rhythms in mammals [14,61]. The respiratory rhythm is

known as a typical relaxation oscillation, and it has been long argued how the switching

between the inspiration and expiration occurs. Although its mechanism has not been

fully understood yet, it is known that lung inflation activates pulmonary stretch receptors

(PSRs), and the afferent activity from the PSRs is carried to the brainstem by the vagus

nerves, which ‘triggers’ the switching from inspiration to expiration [14,61].

Thus, it is considered that the jumping process in relaxation oscillators occurs essen-

tially in the same mechanism as the flow reversal in a density oscillator. Hence, the model

of the density oscillator Eqs. (5.46)-(5.49) can be generalized so that various systems ex-

hibiting relaxation oscillations will be universally described. The generalized equations

are written using two variables X and Y as follows:

Ẋ = −X

τ
(7.10)

εẎ = −Kinh(Y ; X) + Kpro(Y ; X) + Ktrig(Y ; X) (7.11)

for Ẋ < 0 and

Ẋ =
1−X

τ ′
(7.12)

εẎ = K ′
inh(Yth − Y ; 1−X)−K ′

pro(Yth − Y ; 1−X)−K ′
trig(Yth − Y ; 1−X)(7.13)

for Ẋ > 0, where X takes a value between 0 and 1, and the sign of Ẋ changes when

Y becomes 0 or Yth. Exceptionally, Y remains 0 when the right hand side of Eq. (7.11)

is negative, while Y remains Yth when the right hand side of Eq. (7.13) is positive. τ

and τ ′ denote the time constants in the relaxation processes, and ε is a parameter which

satisfies ε ¿ 1. The functions Kinh(Y ; X), Kpro(Y ; X), Ktrig(Y ; X), and their primes

are the functions of Y , and takes positive values for 0 ≤ Y ≤ Yth. Here, X is regarded

as a parameter characterizing the functional form of these functions, because X is a
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slowly varying variable compared with Y with respect to time. The functional form of

Kinh(Y ; X), Kpro(Y ; X), Ktrig(Y ; X) have the following characteristics (see Fig. 7.1)1:

1. −Kinh(Y ; X) + Kpro(Y ; X) is a increasing function of Y .

2. Kinh(Y ; X) decreases while Kpro(Y ; X) increases as X is decreased.

3. Ktrig(Y ; X) is a decreasing function of Y .

4. K ′
inh(Y ; X), K ′

pro(Y ; X), and K ′
trig(Y ; X) have the same characteristics as Kinh(Y ; X),

Kpro(Y ; X), and Ktrig(Y ; X), respectively.

The dynamics of a system described by Eqs. (7.10)-(7.13) are explained in the following

way. Now consider the case of Ẋ < 0. When the value of X is large, Y remains zero be-

cause contribution of Kinh(Y ; X) is larger than those of Kpro(Y ; X) and Ktrig(Y ; X) (see

Fig. 7.1(a)). As X is decreased, Eq. (7.11) comes to have a positive stable solution owing

to the contribution of Ktrig(Y ; X) (Fig. 7.1(b)), and the solution increases gradually as

X is decreased (Fig. 7.1(c)). With further decrease of X, the solution vanishes, and as

a consequence Y increases rapidly (Fig. 7.1(d)). The case of Ẋ > 0 can be considered in

the similar way. In this way, the whole oscillatory behaviors of relaxation oscillators can

be well described by using Eqs. (7.10)-(7.13).

Historically, many models of relaxation oscillators have been proposed [1, 8, 11, 15,

16, 22, 62]. However, some models lacked their essential mechanisms, although they

roughly captured the oscillatory characteristics of relaxation oscillators. For instance,

although the van der Pol equation is widely used for describing behaviors of relaxation

oscillators [22], it did not give us an answer to the fundamental question of “How does the

jumping process initiate?”. Meanwhile, the other models lacked universality although

they describe the detailed mechanisms of specific systems quite well. A typical example is

Hodgkin-Huxley equation, which is a model of neural spiking [62]. Although it contained

the detailed mechanisms of neural activities, it was quite complicated and cannot describe

1In the case of density oscillator, these functions are given by replacing x̂ and ξ̂ in Eqs. (5.46)-(5.49) with X and Y ,

respectively, as follows:

Kinh(Y ; X) =
C1X

µH
(= F ′1),

Kprom(Y ; X) = C2(1−X)(1− e−Y/α′ )(= F ′2),

Ktrig(Y ; X) =
C3µHe−Y/γ′

µIX
(= F ′3),

K′
inh(Y ; X) =

C1X

µL
,

K′
prom(Y ; X) = C2(1−X)(1− e−Y/α′ ),

K′
trig(Y ; X) =

C3µLe−Y/γ′

µIX
.

Here, φ ≈ ψ ≈ 1 has been assumed, for simplicity. Note that τ and τ ′ are given as τ = µH and τ ′ = µL, respectively.
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-Kinh+Kprom+Ktrig
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(a) (b)

(c) (d)

X: large

X: small

Figure 7.1: Scheme of the functional forms of −Kinh(Y ;X) (solid line), Kpro(Y ;X) (dashed line),

Ktrig(Y ;X) (dotted line), and −Kinh(Y ;X) + Kpro(Y ;X)K + Ktrig(Y ;X) (bold line). The value of

X is decreased as (a)→(b)→(c)→(d). Empty circles found in (b) and (c) are the stable solutions of

Eq. (7.11).
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the behaviors of relaxation oscillators other than those of neuronal systems. Therefore,

a model of relaxation oscillators which describe their essential mechanisms universally

has not been proposed up to now.

On the contrary, the present model (Eqs. (7.10)-(7.13)) not only contains the essen-

tial mechanism of oscillation but also describes the behaviors of relaxation oscillators

universally. Hence, it is expected that the present model is applied to any system that

exhibits relaxation oscillation, and makes it possible to understand its dynamics based

on its essential mechanism.

7.3 Future prospect

In the present thesis, I have clarified the essence of relaxation oscillation by investi-

gating the mechanism of density oscillation. Although systems exhibiting relaxation

oscillations are diverse in nature and their detailed mechanisms are mostly compli-

cated [1–6,9,11–14], their dynamics are thought to be simplified into a model described

in Eqs. (7.10)-(7.13). This finding is extremely important, because we can understand

macroscopic behaviors of relaxation oscillators from microscopic viewpoints. Indeed, the

present study is expected to be developed further as follows.

One of the direction for the future study is its application to coupled oscillator systems.

Although the generalized equations Eqs. (7.10)-(7.13) describe the behavior of a single

relaxation oscillator, they can be extended to describe behaviors of coupled relaxation

oscillators by adding coupling terms to them. Importantly, by using this model, we can

understand how the essential mechanism of each oscillator relates to overall dynamics of

coupled oscillators, whereas the detailed mechanism of each oscillator has been ignored for

the description of coupled oscillators in the studies previously reported [2,22,25]. Thus,

Eqs. (7.10)-(7.13) are expected to become the basis for the future theoretical studies of

coupled relaxation oscillators. Indeed, using this model, the dynamics of various types of

coupled oscillators such as the cases where time-delay exists at the coupling, where the

coupling strength between oscillators depend on their spatial distributions, and where

the properties of oscillators differ from each other, will be investigated.

Another possibility for the future application is the control of relaxation oscillation.

Recently, controlling the dynamics of relaxation oscillation has attracted particular at-

tention. A typical example is the bright light therapy to the patients with sleep dis-

orders. It is well known that the sleep-wake cycles exhibit relaxation oscillations [63].

The sleep-wake rhythm can be modulated by light, and thus it usually synchronizes with

the periodic day and night cycles. However, in the patients with sleep disorders, the

synchronization does not occur or their phases are shifted for some reason. Hence, as the
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Figure 7.2: Schematic image of “attractor crowding”. The basin of attraction becomes crowded in the

phase space and hence even small noise causes the system to hop freely among many coexisting stable

attractors.

treatment of the sleep disorders, scheduled exposure to bright light has been often used

to control the sleep-wake rhythms [64]. For the development of such control techniques,

Eqs. (7.10)-(7.13) are considered to become a useful model, because both the essential

cause of the disorder and the effect of the bright light can be taken into it, which will

lead us to predict the dynamics under the control by a simulation.

In this way, Eqs. (7.10)-(7.13) are expected to be used as an excellent model describing

the dynamics of relaxation oscillation. While the theoretical studies based on Eqs. (7.10)-

(7.13) are thought to be important, it is also important to verify the validity of the

theoretical expectation experimentally. For this purpose, density oscillator is thought to

be an excellent experimental system. In the following, I will show some examples of the

possible usage of the density oscillators for the studies on the coupled oscillators and the

control techniques.

Firstly, coupled density oscillators will be used for the investigation of the robustness of

splay state [56,57,65,66]. The splay state is a state where the phases of oscillators differ

from each other equidistantly, and hence the existence of a single splay state necessarily

implies the coexistence of (N−1)! symmetry-related states. The multiplicity of the splay

states has raised the possibility that they can be used as storage elements in a dynamic,

rewritable memory [57, 66]. However, it has not been actually realized, because with

increasing N the basin of attraction becomes crowded in the phase space and hence even

small noise causes the system to hop freely among many coexisting stable attractors
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Figure 7.3: Scheme of density oscillators coupled to each other by tubes. The height of the heavy

fluid surface is measured by a laser displacement meter, and recorded by a digital multimeter for each

oscillator. The data obtained from oscillators are analyzed by a computer, which regulates stepping

motors based on a finite algorithm. A syringe pump located at each oscillator is driven by the stepping

motor, and then the light fluid in the outer container is added or reduced. Although the present figure

shows the case where the number of oscillators is two, more than two oscillators can be coupled in the

same way.

(Fig. 7.2) [65]. This phenomenon is called ‘attractor crowding’. Hence, we need to

investigate how we can achieve a stable splay state robust to noise. For this purpose,

density oscillators are thought to be a useful experimental system because they are known

to exhibit the splay state when several oscillators are coupled to each other [33,36–39,45].

Secondly, coupled density oscillators will be used for the investigation of time-delayed

feedback. Time-delayed feedback is a method that some proportion of the output signal

of a system is fed back to the input with time-delay [28, 67, 68]. This method has

been studied as an excellent scheme for the control of systems, and is known to be also

applied to coupled relaxation oscillators. In fact, interaction between oscillators can be

regulated arbitrarily using this method [28], and it is suggested that the method may be

applied to the desynchronization of synchronized neurons which cause tremors in patients

suffering from Parkinson’s disease or essential tremor [29]. For further development of

the time-delayed feedback scheme, the density oscillators will be used as an excellent

experimental system. Although the time-delayed coupling cannot be introduced if several

inner containers are held within one outer container (Fig. 1.7), it will be possible if the

oscillators are coupled to each other by tubes through which the light fluid is added or

reduced, whose amount is determined by the height of the heavy fluid surface of the

other inner containers (Fig. 7.3).

In this way, the dynamics of relaxation oscillators are expected to be clarified in the fu-
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ture not only theoretically by the model based on their essential mechanisms (Eqs. (7.10)-

(7.13)), but also experimentally by using density oscillators. Hence, further theoretical

and experimental studies on the relaxation oscillation are clearly needed.
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Appendix A

Hagen-Poiseuille flow

Hagen-Poiseuille flow is the steady flow of a incompressible fluid through a straight

pipe of circular cross section with rotational symmetry [55]. Now consider a long pipe

whose radius is a. Let z axis be selected along the axis of the pipe, and r denote the

radial coordinate measured from the axis outwards. The flow is assumed to be parallel

along the pipe, and thus the velocity components in the tangential and radial directions

are assumed to be zero. The z component of the velocity is denoted by u.

Then, from the condition of continuity, we can easily obtain ∂u/∂z = 0. Thus, u does

not depend on z and is described as u = u(r). On the other hand, we find that the

hydrostatic pressure P does not depend on r and is described as P = P (z), which is ob-

tained from the radial and tangential components of the Navier-Stokes equation. Hence,

the z component of the Navier-Stokes equations in cylindrical coordinates becomes

µ

(
∂2u

∂r2
+

1

r

∂u

∂r

)
=

∂P

∂z
, (A.1)

where µ is the viscosity of the fluid. The boundary condition is given as u = 0 for r = a

(no-slip condition). By solving Eq. (A.1) with this boundary condition, it is found that

u(r) = − 1

4µ

dP(z )

dz
(a2 − r2), (A.2)

where dP(z )/dz should be a constant, because u(r) does not depend on z. The mean

velocity ū is given as

ū =
2

a2

∫ a

0
u(r)rdr = − a2

8µ

dP(z )

dz
. (A.3)

From Eqs. (A.2) and (A.3), the following relation is obtained

∂u

∂r

∣∣∣∣∣
r=a

= −4ū

a
. (A.4)
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Two-dimensional Poiseuille flow

The steady flow between two parallel flat walls, which is known as two-dimensional

Poiseuille flow, is considered in the same way. Now let y and z axis be selected vertical

and parallel to the flat walls, respectively. The flat walls are assumed to be located at

y = 0, 2a. When we assume that the flow is parallel to the flat walls, y component of

the velocity becomes zero. Here let w be defined as the z component of the velocity.

From the condition of continuity, we obtain ∂w/∂z = 0. Thus w is described as

w = w(y). From the z component of the Navier-Stokes equations, it is found that the

hydrostatic pressure gradient P does not depend on y, and thus P is written as P = P (z).

Hence, z component of the Navier-Stokes equations becomes

µ
∂2w

∂y2
=

dP(z )

dz
. (A.5)

The boundary condition is given as w = 0 for y = 0, 2a (no-slip condition). By solving

Eq. (A.5) with this boundary condition, w(y) is obtained as

w(y) = − 1

2µ

dP(z )

dz
[a2 − (y − a)2], (A.6)

where dP(z )/dz should be a constant, because w(y) does not depend on z. Thus, the

flow rate Q is derived as

Q =
∫ 2a

0
dyw(y) = −2a3

3µ

dP(z )

dz
. (A.7)
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Appendix B

Complementary explanation for

phenomenological model

Although an oscillatory behavior cannot be introduced by Eq. (2.28), Eq. (2.29) re-

produces the behavior of relaxation oscillation phenomenologicaly. This fact can be

understood in the following way [15]. Let Eqs. (2.28) and (2.29) be rewritten as

dx̂ ′

dt̂
= ŷ′ (B.1)

dŷ ′

dt̂
= −A1ŷ ′|ŷ ′| − A2ŷ ′ − A3(1 + R)x̂ ′ +

A3

2
sgn(ŷ ′). (B.2)

and

dx̂ ′

dt̂
= ŷ′ (B.3)

dŷ ′

dt̂
= B1ŷ ′ − B2ŷ ′

3 − A′
3x̂
′. (B.4)

Here, notice that ŷ′ is generally a fast variable compared with x̂′ because A1, A2, and

A3 are usually much larger than unity. Then, vector fields can be drawn in ŷ′ − x̂′

plane. Figure B.1 shows the examples. In the case of Eqs. (B.1) and (B.2), the system

approaches to the equilibrium points (ŷ′, x̂′) = (0,±1/[2(1 + R)]) in the phase plane and

thus oscillatory behavior is not described. On the other hand, in the system described

by Eqs. (B.3) and (B.4), limit-cycle oscillation occurs in the following way: x̂′ increases

slowly along the curve of the steady solution of Eq. (B.4), A′
3x̂
′ = B1ŷ ′ − B2ŷ ′

3
. At a

threshold, the value of ŷ′ jumps to the lower value, and x̂′ decrease slowly along the

curve of A′
3x̂
′ = B1ŷ ′ −B2ŷ ′

3
. Then, at the other threshold, the value of ŷ′ jumps to the

higher value, and x̂′ increases slowly along the curve again. In this way, the reason that

Eq. (2.29) exhibits relaxation oscillation can be well understood.
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(a)

(b)

y

y

x
x

Figure B.1: Vector fields described by (a) Eqs. (B.1) and (B.2), and (b) Eqs. (B.3) and (B.4). The

trajectories with the initial condition of ŷ′ = 0.1 and x̂′ = −0.1 are also shown (red lines). Dotted lines

denote the steady solutions of (a) Eqs. (B.1) and (B.2), and (b) Eqs. (B.3) and (B.4). While any initial

condition is attracted to (ŷ′, x̂′) = (0,±1/[2(1 + R)]) (black circles) in the case of (a), the trajectory

draws a limit cycle in the case of (b). The values of the parameters are as follows: A1 = 10, A2 = 100,

A3 = 100, B1 = 140, B2 = 600, R = 0.
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Appendix C

Model of coupled density oscillators

A model describing coupled oscillators is derived by modifying Eq. (2.29). Although the

formulations of the model slightly differed depending on the studies and their derivations

were not described in detail [32–34], here the representative one with its derivation is

shown.

Now consider the case of N coupled oscillators, and each oscillator is assumed to be

nearly identical. Then, because the height of the light fluid surface h is determined by

those of the heavy fluid surfaces in the inner containers, Eq. (2.6) is rewritten in the

following way:

h− h
(i)
de = −R

N∑

j=1

(x
(i)
j − x

(i)
de ), j = 1, 2, ....., N. (C.1)

By using Eq. (C.1) instead of Eq. (2.6), Eqs. (2.8) and Eqs. (2.9) should be changed to

S

a2π
ẍk +

3S2

4da4π2
ẋk

2 +
8νLS

a4π
ẋk +

g

d

ρH(t)

ρL

xk +
g

d
R

N∑

j=1

xj =
g

d

(
h

(i)
de + RNx

(i)
de

)
+

ρH(t)− ρL

ρL

g,

(C.2)

S

a2π
ẍk − 3S2

4da4π2
ẋk

2 +
8νH(t)S

a4π
ẋk +

g

d
xk +

ρL

ρH(t)

g

d
R

N∑

j=1

xj =
ρL

ρH(t)

g

d

(
h

(i)
de + RNx

(i)
de

)
,

(C.3)

where k is an oscillator number. In the non-dimensionalized forms, the following equa-

tions instead of Eqs. (2.15) and Eqs. (2.16) are obtained:

d2x̂k
(i)

dt̂2
+

2σ1/2

β


dx̂k

(i)

dt̂
+

βσ1/2

4

(
dx̂k

(i)

dt̂

)2

 + σ(x̂k − 1) + σR

N∑

j=1

x̂j = 0, (C.4)

for up-flow and

d2x̂k
(i)

dt̂2
+

2σ1/2

β


ν

(i)
H

νL

dx̂k
(i)

dt̂
− βσ1/2

4

(
dx̂k

(i)

dt̂

)2

 + σx̂k + σDR

N∑

j=1

x̂j = 0, (C.5)

for down-flow.
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Hence, by assuming that D ≈ 1 and ν̂H = ν̂L = ν̂, and that ρ
(i)
H and x̂(i) do not

depend on the number of cycles i, the following equation is obtained in the same way as

Eq. (2.29):

d2x̂ ′k
dt̂2

= B1

(
dx̂ ′k
dt̂

)
− B2

(
dx̂ ′k
dt̂

)3

− A3x̂ ′k − A3R
N∑

j=1

x̂ ′j . (C.6)

Here, x̂′k is defined as x̂′k = x̂k − 1/2. The last term in the right hand of Eq. (C.6) is

originated from the change of the light fluid surface, through which the oscillators are

coupled to each other.
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[49] L. Adamciková, React. Kinet. Catal. Lett. 48, 649 (1992).

108



[50] S. Upadhyay, A. K. Das, V. Agarwala, and R. C. Srivastava, Langmuir 8, 2567 (1992).

[51] R. P. Rastogi, R. C. Srivastava and S. Kumar, J. Col. Inter. Sci. 283, 139 (2005).

[52] R. Cervellati and R. Solda, Am. J. Phys. 69, 543 (2001).

[53] K. Yoshikawa, S. Nakata, M. Yamakata and T. Waki, J. Chem. Edu. 66, 205 (1989).

[54] J. A. M. Villarreyes, H. J. B. da Costa, F. Kokubun, L. C. Schmitz, and J. A. Castro, Comp. Chem. Eng.

24, 1753 (2000).

[55] H. Schlichting, Boundary Layer Theory (McGraw-Hill, 1960).

[56] M. Silber, L. Fabiny, and K. Wiesenfeld, J. Opt. Soc. Am. B 10, 1121 (1993).

[57] S. Nichols and K. Wiesenfeld, Phys. Rev. A 45, 8430 (1992).

[58] G. I. Taylor, Proc. R. Soc. London Ser. A 201, 192 (1950).

[59] P. G. Saffman and G. I. Taylor, Proc. R. Soc. London Ser. A 245, 312 (1958).

[60] R. Menikoff, R. C. Mjosness, D. H. Sharp, and C. Zemach, Phys. Fluids 20, 2000 (1977).

[61] F. Hayashi, S. K. Coles, and D. R. McCrimmon, J. Neuroscience, 16, 6526 (1996).

[62] A. Hodgkin and A. Huxley, J. Physiol. 117, 500 (1952).

[63] C. G. D. Behn, E. N. Brown, T. E. Scammell and N. J. Koppell, J. Neurophsiol. 97, 3828 (2007).

[64] D. J. Dijk, Z. Boulos, C. I. Eastman, A. J. Lewy, S. S. Campbell, and M. Terman, 10, 113 (1995).

[65] K. Wiesenfeld and P. Hadley, Phys. Rev. Lett. 62 1335 (1989).

[66] K. Otsuka, Phys. Rev. Lett. 67, 1090 (1991).

[67] A. S. Mikhailov and K. Schowalter, Phys. Reports 425, 79 (2006).

[68] M. Rosenblum and A. Pikovsky, Phys. Rev. E 70, 041904 (2004); M. Rosenblum and A. Pikovsky, Phys.

Rev. Lett. 92, 114102 (2004).

109



Acknowledgements

I would like to express my sincere appreciation to Professor Shuichi Kinoshita of Osaka

University (Graduate school of Frontier biosciences) for his offer of worthwhile research

environment and thoughtful advices throughout the course of this work. I wish to thank

to Dr. Junji Watanabe of Osaka University (Graduate school of Frontier biosciences) for

his pointed advices. I would like to thank to Dr. Shinya Yoshioka of Osaka University

(Graduate school of Frontier biosciences) for his valuable suggestions. I am grateful to

Dr. Jun Miyazaki (Graduate school of Frontier biosciences) for his helpful discussions.

My thanks are also due to a number of my colleagues in Kinoshita laboratory.

Finally, I also renders thanks to Dr. Chihiro Hamaguchi and my parents who gave me

an opportunity to change my career from a physician to a physicist.

110



List of publications and Presentations

Original Papers

1. T. Kano and S. Kinoshita

“Viscosity-dependent flow reversal in a density oscillator”, Phys. Rev. E, 76, 046208

(2007).

2. T. Kano and S. Kinoshita

“Modeling of flow-reversal process in a density oscillator”, J. Korean Phys. Soc.,

submitted.

International Conference

1. T. Kano

“Flow reversal in a density oscillator”, 9th Tamura Symposium “Frontiers in Dy-

namics: Physical and Biological Systems”, Tokyo, Japan, (May 22-24, 2006).

2. T. Kano and S. Kinoshita

“Flow instability in density oscillator”, Gordon Research Conferences “Oscillations

& Dynamic Instabilities in Chemical Systems”, Oxford, UK, (July 30-August 4,

2006). 　

3. T. Kano and S. Kinoshita

“Modeling of dynamical behaviors in a density oscillator”, Gordon Research Con-

ferences “Nonlinear Science”, Waterville, USA, (June 23-29, 2007).

4. T. Kano and S. Kinoshita

“Modeling of flow-reversal process in a density oscillator”, The 10 th Asia Pacific

Physics Conference, Pohang, Korea (Aug. 21-24, 2007).

111


	d論完成（本審査後修正ー図の使用許諾が得られなかった場合用）-前-前-1.pdf
	d論完成（本審査後修正ー図の使用許諾が得られなかった場合用）-前-前-2.pdf

