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Chapter 1

Introduction

1.1 Self-oscillatory systems

Systems exhibiting regular rhythms spontaneously are abound in nature [1-14]. These
systems are called self-oscillatory systems [1,2,15,16], and have been extensively studied
in various fields. One of the well known example is a heart which beats regularly even
without will. This regular rhythm is known to be originated from the periodic activi-
ties of pacemaker cells in sinoatrial nodes [3]. Another example is menstrual cycle that
occurs in the females of several mammals including human beings [4]. Physiologically,
they are known to be caused by the rhythmic changes of secretions of hormones. On
the other hand, a plasmodial slime mold, which is an amoeboid multinucleated unicel-
lular organism, exhibits various oscillatory phenomena, such as oscillations in adenosine
triphosphate and Ca?' concentrations, thickness of the plasmodium, and protoplasmic
streaming [5]. These are supposed to be generated by complicated mechanochemical reac-

tions among chemicals, actin, and intracellular organelles, and so on. The self-oscillatory

Figure 1.1: Scheme of limit cycle.



(b)

Figure 1.2: (a) A person on a swing exhibits self-oscillation. (b) Mechanical swing whose length changes
according to a prescribed function of time, exhibits forced oscillation. Reproduced from Ref. [2] with

permission.

systems are also found in non-living systems. For example, in Belousov-Zhavotinski reac-
tion (BZ reaction), spontaneous rhythmic change of color of reactants is observed, which
is caused by complicated processes of chemical reactions [6,7]. Another example is the
periodic cycle of El nino and La Nina phanomena, which is called El nino and southern
oscillation (ENSO). It is thought to be caused by a periodic change of the air pressure
and ocean current in the Pacific Ocean [8].

From physical and mathematical viewpoints, quite a few studies have been devoted
to capture common characteristics of these self-oscillatory systems [1,2,15,16]. In these
studies, the self-oscillatory systems are considered as dynamical systems whose behaviors
are predetermined by a set of rules (algorithm), and the oscillatory phenomena are
described by simple differential equations with several degrees of freedom.

Such an approach began more than a century ago. Near the end of nineteenth century,
Lord Rayleigh, who is famous for fluid dynamics and optics, devoted his studies also to
oscillatory phenomena in acoustic systems [17]. In his famous treatise ‘The theory of
sound’, he noted that vibrations of several acoustic systems are maintained in connec-
tion with constant energy source, and described their behaviors by a simple nonlinear
equation. Although the significance of his discovery was not realized immediately, it was
developed by the studies of van der Pol in 1920s [18-22]. He studied intensively on elec-
tric generators, and found that their behaviors were described by an equation similar to
that Rayleigh derived. On the other hand, another development of mathematical study
was achieved by Poincaré at the end of nineteenth century [15,23]. He found that a
dynamical system described by a couple of differential equations could exhibit a closed
orbit in the phase plane, towards which neighboring paths were attracted (Fig. 1.1). He
called this orbit as ‘(stable) limit cycle’.

About twenty years later than the discovery of van der Pol, a great contribution to



the oscillation theory was made by Andronov [15]. He noticed the inter-relation between
Poincaré’s limit cycles [23] and the periodic oscillations of the electronic generators stud-
ied by van der Pol [18-22]. As is the case in the van der Pol’s electric generators, some
automonous systems were known to exhibit undamped oscillations with taking energy
from nonperiodic sources.! He called this type of oscillation ‘self-oscillation’, and showed
that the orbit of the self-oscillation was attracted to a stable limit cycle in the phase
plane, which indicated that the dynamical behavior of the self-oscillatory system did not
depend on the initial condition but on the property of the system itself. Later, the defini-
tion of the self-oscillation was slightly extended by Landa [1]. In the extended definition,
self-oscillatory systems need not be autonomous. When an oscillation is maintained with
taking energy from a source but the frequency spectrum of the oscillation is independent
(or weakly dependent) of that of the energy source, it is generally called ‘self-oscillation’.

Importantly, self-oscillation is discriminated from so called ‘forced oscillation’, in which
the oscillation is maintained by a periodic external force and the period of the oscillator
is in accordance with it. For clarity, let us consider the following example. Figure 1-
2(a) shows the oscillation of swing [1,2]. The oscillation of the swing is maintained if
a person sits down when the swing approaches the left- and rightmost positions, and
stands up when it passes the bottom of the swing. In this case, the source of energy
here is muscular power of the person, because the movement of the center of gravity
supplies energy to the swing. On the other hand, Fig. 1.2(b) shows the mechanical swing
whose length is periodically changed by a mechanical force. In this case, the rhythm of
the swing becomes in accordance with that of the mechanical force. Although these two
systems seem to be similar, there is a crucial difference between them. In the former
case, the movement of the person occurs in accordance with the position of the swing,
i.e., autonomous, and the period is determined by the property of the swing itself. On
the other hand, in the latter case, the change of the length is in accordance with some
given periodic rhythm, i.e., non-automonous, and the period is determined by that of the
external force. Thus, we can conclude that the former is self-oscillation and the latter is
forced oscillation.

Synchronization is one of the most important properties of self-oscillatory systems [2,
25]. Synchronization is a phenomenon that several oscillators adjust their own frequencies
and behave cooperatively when the oscillators are coupled to each other or subjected
to a periodical external field. Indeed, synchronization is a well known phenomenon in
nature. For example, thousands of male fireflies living in southeast Asia emit light pulses
synchronously in order to attract females [26]. In a concert hall, rhythmic applause of

audience becomes sometimes synchronized [2]. Snowy tree crickets are able to synchronize

L‘automonous system’ means that the system is not driven by a force which explicitly depends on time.
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Figure 1.3: Electrical circuit that exhibits relaxation oscillation. It consists of a neon lamp Ne, a

condenser C, a resistance R, and a batery E.

their chirps by responding to the preceding chirps of their neighbors [2]. Quite a few
scientists have devoted their studies to such synchronization phenomena. Especially,
the emergence of the cooperative behavior of coupled oscillators has been studied from
analogy to the second order phase transition [25]. Recently, the coupled oscillator systems
are not only studied to understand their principle but also engineered based on the
obtained principle [27-30]. For example, the mechanism of coupled oscillators is used in
the field of robotics [27].

1.2 Relaxation oscillation

Relaxation oscillation is a particular type of self-sustained oscillation, which was first
proposed by van der Pol in 1926, before Andronov proposed a definition of self-oscillation
[19]. He devoted his study to electronic generators [18-22], and described their behaviors

by the following equation which is now famous for ‘van der Pol equation’:
i —e(l—vH)0+v=0. (1.1)

While nearly sinusoidal solution is obtained when ¢ < 1 is satisfied, he found that
periodic solution is obtained even in the case of € > 1, where the system is highly
nonlinear and dissipative. He pointed out that the latter condition is actually satisfied in
the electrical system called ‘multivibrator’ that was introduced by Abraham and Bloch
in 1919 [19].

Van der Pol noticed that the oscillatory behavior at € > 1 was found to be absolutely
different from that at e << 1. Firstly, the waveform deviates considerably from a sinu-

soidal function and contains many higher harmonics. Indeed, in the case of € > 1, the
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on
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Figure 1.4: Scheme of relaxation oscillation. When a switch is ‘on’, the system approaches an equilibrium
state A. However, before it reaches the equilibrium state, the switch is turned ‘off’, and the system
approaches the other equilibrium state B. Before it reaches the equilibrium state, the switch is turned

‘on’ again in the similar manner.

value of v evolves in the following way: v increases slowly at first, and when v reaches
a certain threshold, it jumps abruptly to a larger value. Then, v decreases slowly, and
when v reaches another threshold, it jumps abruptly to a smaller value. In this way,
the oscillation is characterized by the slow and fast processes. Secondly, the period of
oscillation is characterized by a relaxation time of the system. Actually, from a simple
analysis, the period of the multivibrator introduced by Abraham and Bloch is estimated
to be the product of the capacitance and resistance, which corresponds to the relaxation
time of the system. Van der Pol named the oscillation showing these characteristics as
‘relaxation oscillation’.

Later, he showed another example of electric circuit which exhibited relaxation oscilla-
tion (Fig. 1.3) [2,20,22]. It consists of a battery, a capacitor, a resister, and a neon tube
which conducts electric current only when the voltage reaches a certain critical level.
First, the capacitor is being slowly charged. When the voltage reaches the threshold,
the neon tube begins to conduct electric current. As a result, the capacitor quickly
discharges with its voltage dropping and the neon tube becomes nonconductive again.
Then, the process repeats again and again. Notice that also in this case, the period of
the oscillation is characterized by the relaxation time of the charge of the capacitor, that
is the product of the capacitance and resistance.

In general, relaxation oscillation is intuitively understood in the following way: Suppose
that the dynamics of a system is determined by a certain ‘switch’ (Fig. 1.4). When the
switch is ‘on’, the system approaches an equilibrium state. On the other hand, when the
switch is ‘off’; the system approaches another one. Thus, if we turn on or off the switch,
the state to which the system relaxes will change. Relaxation oscillator is considered as
a system that the mechanism that controls the switch is inherent in the system itself.

When the system relaxes to one of the equilibrium states to some extent, the switch is

7
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E threshold level E threshold level

accumulation

Figure 1.5: Mechanical model of a relaxation oscillator. (a) Water fills a vessel slowly until the surface
of the water reaches the threshold level. (b) Water flows out through a trap so that its level in the vessel

quickly goes down. Reproduced from Ref. [2] with permission.

turned automatically and the system relaxes to the other equilibrium state. Actually,
the examples shown by van der Pol can be considered in this way. While the durations of
‘on’ and ‘off” states are equivalent in the system described by Eq. (1.1), it is considered
in the system of Fig. 1.3 that the duration of ‘on’ state (conductive at the neon tube) is
extremely shorter than ‘off” state (nonconductive at the neon tube).

Van der Pol predicted in his paper that the relaxation oscillation was a common phe-
nomenon in nature [22]. For example, he considered that heart beat was a typical
example of the relaxation oscillation, and reproduced its behavior by using the system
of three coupled oscillators, each of which was composed of the electric circuit shown in
Fig. 1.3 [22].

The relaxation oscillations are nowadays extremely well known and extensively studied
in various fields [1-6,8,9,11-14]. One of the examples is shown in Fig. 1.5 [2]. The main
element of the system is a vessel being slowly filled with water. Then, when the water
level reaches a threshold, the vessel empties quickly and a new cycle begins. Another
example is found in endogenous circadian rhythms in plants performing crassulacean acid
metabolism (CAM) [11]. In these plants, the transport of malate between the cytoplasm
and vacuole is regulated by the property of the tonoplast of the vacuole. When the
concentration of malate in the vacuole is low, the influx of malate occurs. At the critical
concentration, the property of the tonoplast changes, and then the eflux of malate begins.
At another critical concentration, the property of the tonoplast changes again, and thus
the influx begins. In this way, oscillation will continue.

The relaxation oscillators are also applied to the technology. Particularly, those made
by electric circuit [13] have been applied to produce square or sawtooth waves, the former

of which is suitable for triggering synchronous logic circuits at precisely determined
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intervals, while the latter is used for raster scan of televisions or monitors.

1.3 Density oscillator

Density oscillator is known as a typical example of relaxation oscillator [31-54]. It
consists of an inner container with a thin pipe or a small orifice at the bottom, which
is held within an outer container (Fig. 1.6). The inner container is filled with heavy
fluid, while outer one is filled with light fluid. When the surfaces of both fluids are
initially set at nearly the same height, the heavy fluid starts to low downward through
the pipe, owing to the gradient of hydrostatic pressure. At a critical height, the flow
loses the stability and flow reversal occurs, which causes the light fluid to flow upward
through the pipe. At another critical height, the flow loses the stability again, causing
flow reversal and leading the heavy fluid to flow downward. In this way, the oscillation
continues for more than several tens of cycles.

Density oscillator was first investigated in 1970 by Martin, a geophysist [31]. He found
that a variety of straight tubes such as funnels and hypodermic syringes when filled with
salt water and partially submerged in a beaker of fresh water exhibited oscillations of a
finite amplitude. He named this phenomenon as ‘salt oscillation’. He not only performed
the detail experiments using hypodermic syringes, but also analyzed each up- and down-
flow according to Poiseuille’s law [55], and derived their dynamical behaviors theoretically
at two limiting cases: viscous damping regime and non-linear damping regime. The
experimental results were generally well explained by his analysis. However, he could
not describe the oscillatory behavior because the mechanism of the flow reversal was not
well understood.

The study of density oscillator was developed by Yoshikawa and his colleagues [32-34].
They founded the basis for the density oscillator as a relaxation oscillator, and formulated
the oscillatory behavior by combining the equations for up- and down-flow derived by
Martin. By using several approximations, they concluded that the oscillatory behavior
was phenomenologically described by the same equation as that Rayleigh described in
early days [17], now called ‘Rayleigh equation’. Recently, Okamura and Yoshikawa per-
formed a simulation based on fundamental equations of fluid dynamics, and found that
the oscillatory behavior was still described by Rayleigh equation even when Poiseuille’s
law was not assumed [35]. Moreover, they found through the simulation that the poten-
tial energy of the fluid was the source of energy, which was dissipated by the effect of
viscosity. This fact confirmed that the density oscillator had a typical characteristic of
relaxation oscillator.

Synchronization of density oscillators has been also extensively studied [33,36-39,45].

9



inner container
N\
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=

outer container

Figure 1.6: An example of density oscillator.

When several inner containers are held within one outer container, synchronization occurs
due to mutual interaction of oscillators through the height of the fluid surface of the
outer container (Fig. 1.7). Nakata et al. found that the ratio of the surface area of the
outer container to that of the inner container characterized the coupling strength [36].
Miyakawa and Yamada reported a system consisting of two oscillators coupled with each
other through the window of the partition wall, and found that in-phase synchronization
occurred at certain parameter region, although only anti-phase synchronization occurred
when the partition wall did not exist [38]. Yoshikawa and Fukunaga [33] investigated the
coupling among three oscillators, and found that the oscillators were synchronized with
their phases differed from each other equidistantly, which is now called ‘splay state’ [56,
57]. On the other hand, Miyakawa and Yamada [37] reported the coupling among more
than three oscillators. They found that the oscillators were not fully synchronized for
a large number of oscillators, while the splay or two-cluster state occurred when the
number of the oscillators was not so large.

From an electrochemical viewpoint, the oscillation of electrical potential, which occurs
when a couple of electrodes are placed in the light and heavy fluids, has been also
extensively studied from an analogy to electrical phenomena associated with oscillation
of biological membranes [34,44,46,47,50,52]. The cause of the oscillation of electrical
potential has long been in controversy. Noyes considered that it was caused by the
change in junction potential generated at the interface between two fluids [44]. Yoshikawa

et al. considered that not only junction potential but also streaming potential, which

10



Figure 1.7: Scheme of coupled oscillators. Several inner containers are held within a large container.

generated when electrical double layer formed at the pipe and fluid was violated owing
to the flow of the fluid, contributes to the oscillation [34]. Upadhyay et al. performed
the detail experiments in order to confirm whether the junction potential or streaming
potential was essential for the electrical oscillation, and concluded that the latter was
essential [50]. Later, it was also suggested that the oscillation of streaming potential
in density oscillator mimicked the sensing mechanism of taste [48]. On the other hand,
Cervellati and Solda suggested that the oscillation of electrical potential could be applied
to alternating voltage batteries [52]. Thus, research field of density oscillator has grown

with various kinds of applicable possibility.

1.4 Unsolved problem

As described in Sec. 1.2, mathematical models of relaxation oscillations show the
general behavior of the repetitive slow relaxation process and fast jumping process phe-
nomenologically [18,19,21,22]. However, when we look into more detailed mechanisms,
we have noticed that such models do not correctly answer a fundamental question why
relaxation oscillators oscillate. While harmonic oscillators oscillate due to their restoring
forces, relaxation oscillators maintain their oscillations owing to the supply of energy
from the sources at the jumping process, which corresponds to the process that the
‘switch’ is turned on or off [1,15]. Thus, the following questions may naturally arise:
“what mechanism causes the turn of the ‘switch’?” “How does the jumping process
initiate?”  Indeed, they must be the most essential questions for the mechanism of
relaxation oscillation.

The density oscillator is an excellent system to investigate the essential mechanism
of relaxation oscillation because of the simplicity of its experimental setup. In a den-

sity oscillator, the relaxation process corresponds to each up- and down-flow, while the
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jumping process corresponds to the flow reversal. Hence, understanding how the flow-
reversal process occurs is an absolutely important problem from the above context. As
described in the previous section, the behavior of the density oscillator has been already
described phenomenologically [32-34]. However, the essential cause of the flow reversal
has not been fully discussed. Martin considered that the flow reversal occurred due to
Rayleigh-Taylor instability [31], in which perturbation at a static interface between fluids
grew, when a heavy fluid was located above a light fluid [58]. However, the dynamical
process of the flow reversal cannot be understood in terms of Rayleigh-Taylor instability,
because the spatiotemporal dynamics during flow reversal are extremely complex: In
down- to up-flow, for instance, the flow reversal initiates from an intrusion of light fluid
along the inner wall of the pipe. After some time, the intrusion begins to grow rapidly
and climbs to the upper end of the pipe, and then the flow reverses completely (see
Fig. 4.3) [31,40,41].

Steinbock et al. approached this problem from a hydrodynamic viewpoint [40]. They
analyzed the stability of the down-flow inside the pipe, and derived the critical height
for the instability of the flow. The critical height thus obtained was in good agreement
with their experiment, when either the density of heavy fluid or the pipe length was
varied. However, they did not take into account the effect of the flow after it passes
through the pipe. In addition, the temporal evolution of the dynamical behavior during
the flow-reversal process was not considered, since the steady-state approximation was
employed in their analysis. Thus, the mechanism of the flow reversal is still not truly

understood.

1.5 Aim of the research

In the present thesis, I aim to clarify the mechanism of the jumping process of relaxation
oscillators by investigating the flow-reversal process in a density oscillator experimentally
and theoretically. In the previous experimental studies on the density oscillator [31-54],
the flow-reversal process has not been quantitatively evaluated because only the height
of the heavy fluid surface or electric potential between the electrodes has been measured.
In the present thesis, I will investigate the flow inside a pipe by using a stereomicroscope
quantitatively, which is crucial for understanding the microscopic mechanism of the flow-
reversal process.

From a hydrodynamic point of view, fluid dynamics in a system consisting of two
viscous fluids has been an intriguing problem [59,60]. Interestingly, the dynamics are
known to be extremely sensitive to the viscosities of the fluids. One of the well-known

examples is Saffman-Taylor instability, where an interface between two fluids tends to
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become unstable when less viscous fluid is forced into more viscous fluid in a porous
medium or a Hele-Shaw cell, while it remains stable in the opposite case [59]. Thus,
it is strongly expected that even in a density oscillator, the dynamical behavior inside
the connecting pipe will be largely affected by the viscosities of the fluids. Hence, I
will investigate the essential mechanism of the flow reversal by focusing mainly on the
viscosities of the fluids.

It is quite difficult to solve the flow-reversal process analytically. Actually, the analysis
of flow that has passed through a pipe, has been one of difficult problems for hydro-
dynamicists. Hence, I aim to construct a simple model which not only describes the
general aspect of oscillatory behaviors but also contains the essential mechanism of the
flow-reversal process. Then, by considering the mechanism of the flow reversal based on
the constructed model, I will discuss how the jumping process is initiated in relaxation
oscillators.

The present thesis is organized as follows: In Chap. 2, we review the theoretical studies
on density oscillator. Chap. 3 is devoted to experimental procedures and preliminary
experiment on the flow-reversal process. In Chap. 4, the results obtained from quan-
titative measurements of the flow-reversal process with changing viscosity of fluids are
shown. Chap. 5 is devoted to the modeling of the dynamics of density oscillation, taking
essential mechanisms of the flow reversal into account. In Chap. 6, other factors which
relate to the oscillatory behavior including the flow-reversal process, such as the geom-
etry of a pipe, the density of the fluid, and the materials of the fluids are investigated.

Finally, discussion and future prospects are described in Chap. 7.

13



Chapter 2
Theoretical background

In this chapter, I will review the theories proposed so far to explain the phenomenon

of density oscillation.

2.1 Analysis of up- and down-flow

In this section, the analysis of each up- and down-flow studied by Martin [31] is de-
scribed. Now consider the case where the pipe length d is much larger than the pipe
radius a, and the flow inside a pipe is parallel to the axis of the pipe which is placed
vertical to the ground. Cylindrical coordinate is used, where z axis is taken to coincide
with the axis of the pipe and r denotes the radial coordinate. The origin of the z coor-
dinate is set at the lower end of the pipe, and the upper direction is taken as positive.

Then, z component of Navier-Stokes equation is given as follows:

ou  0P(z) wo [ ou
%o T ror (a) ’ (21)

where u is z component of the velocity of the flow, P(z) is the hydrostatic pressure, and

p and g are the density and viscosity of the fluid, respectively. If a space inside a pipe
is assumed to be completely occupied by the heavy or light fluid during the down- or
up-flow, respectively, the following equation is obtained by integrating Eq. (2.1) over the
space inside the pipe:
ou P(d) — P(0) 2u; Ou

Pigr =~ g P9It 5| (2:2)
where the suffix j is given as H or L, and py and py, are the average densities of the fluids
in the inner and outer containers, while py and py, are their viscosities, respectively (see
Fig. 2.1). Although py, pr, pn and pp, depend on the time due to inflow of the heavy

fluid into the outer container and that of the light fluid into the inner container, only
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Figure 2.1: Definition of the parameters. a and d are the radius and length of a pipe, while z and h are
the heights of the heavy and light fluid surfaces, respectively. py and py, are the densities of the heavy
and light fluids, while pg and py, are the viscosities of the heavy and light fluids, respectively.

pu is assumed to be a function of time while the other three are constants, since the
time dependence of the latter three are not essentially important. « denotes the average

velocity defined as
a

u(r, t)rdr. (2.3)

= —
a? Jo
Because the flow inside the pipe is almost regarded as Hagen-Poiseuille flow, which is
known as the steady flow of a incompressible fluid through a straight pipe of circular

cross section (see Appendix A), the following relation should hold (see Eq. (A.4)):

ou 4u
b - 2.4
or|._, a 24)
On the other hand, the hydrostatic pressure should satisfy
3
P(0) ~ P(d) = prgh — pu(t)g(e — d) — - pylal, (2.5)

where x and h are the heights of the heavy and light fluid surfaces, respectively. The
first and second terms in the right hand side of Eq. (2.5) are the difference of hydrostatic
pressure derived simply from the height of the fluid surface, while the third term denotes
the loss of pressure at the passage of a pipe, which is called ‘head loss’. Here, x and A
have the following relation,

h—hi) = —R(x —z{)), (2.6)

where R = S/Syu. Although it was assumed that the surface area of the outer container
Sout Was sufficiently larger than that of the inner container S in the theory derived
by Martin [31], here his theory is extended to the case where this assumption is not
necessary. Thus, in the limit of R — 0, the above relation is equivalent to that in his

theory. q:((;g and h((fe) are the heights of the heavy and light fluid surface at the hydrostatic
15



equilibrium where a pipe is filled with heavy fluid at ith cycle! (see Fig. 2.2). Here, the
term ‘cycle’ is defined as a sequence of down- and up-flow. In addition, it is obvious from

the condition of continuity as

i = ?ﬁa (2.7)
By substituting Eqgs. (2.4)-(2.7) into Eq (2.2), the following equations are obtained:
S 332 2 8VLS g (2) pH<t) — PL
h ! = h R ——q, (2.8
o * ddatn?” * a‘m T d\ pL de ) oL 9, (28)

for up-flow and

S . 35% .,  8vu(t)S. oL g [ pu(t) pL G /) 0
_ Z = Z(h 2.
a27rx 4da47r2x + pry T+ o) d \ pu +R)x pu(t) d ( de T RQ?de) , (2.9)

for down-flow, where vy (t) = pn/pu(t) and v1, = up/pr, are the kinematic viscosities of

the heavy and light fluids, respectively.

Equations (2.8) and (2.9) can be further simplified through the following considerations.
First, pu(t), which decreases as the number of cycles increases owing to inflow of the light
fluid, is derived in the following way: Since py(t) does not depend on the time during
the down-flow, let py(¢) be defined as

pu(t) = iy, (2.10)

for the ith down-flow. On the other hand, because the light fluid accumulates above the
heavy fluid in the inner container during the up-flow, py(t) should satisfy the following

relation for the ith up-flow:
pu(t)(x — d) = pif (x5) — d) + pr(e — z3)). (2.11)

Second, from the balance of the hydrostatic pressure at the hydrostatic equilibrium where
the pipe is filled with heavy fluid, the following relation should hold (see Fig. 2.2):

PR TS = publl. (2.12)

Third, the non-dimensionalized variables & and ¢ are introduced as follows:

T — Tde

T = 2.1
- 4,3
t = pEyRYE t, (2.14)

where 82 = ga®n/(16512d) and o = 356p% /(2a*mpy) with 5p@ = p{) — p .
Using Egs. (2.10)-(2.14), Egs. (2.8) and (2.9) are written in the non-dimensional form

as follows:

d270  951/2 [z 1/2 /47002
- o 7 |drn fo (I ) tol(l+Rz—-1=0, (215

@ g a1 U@

n the present thesis, superscript (i) is omitted when it is not essentially important.
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for up-flow and

270 941/2 [V(Hi)df(i) - Bol/? (df(i)>2
dt

’ ) 14+ DR =0 916
AT I AT, 4 +to(l+DR)Z =0, (216)

for down-flow, where D = pL/pg) and Z/I({i) = /LH/pﬁ). Note that # < 1 and o > 3/2
should be satisfied so that an oscillation occurs, which is found experimentally.

Thus, Egs. (2.15) and (2.16) are the fundamental equations describing each up- and
down-flow. As is expected, if we take the limit of R — 0, these equations correspond to
those derived by Martin (see Egs. (18) and (17) in [31]). Here, it is found that Egs. (2.15)
and (2.16) finally asymptotes to #» = 1/(1 + R) and #) = 0, which correspond to
z = 20 + 6pDd/[(1 + R)p,] and z = z{) in the dimensional form. Because these
asymptotic values should correspond to the hydrostatic equilibrium where a pipe is filled
with the light and heavy fluid at the ith cycle (Fig. 2.2), respectively, let 2() be defined
as 2} = gl +6p0d/[(1+ R)p,).

Although Egs. (2.15) and (2.16) are not solved analytically in general cases, they can
be solved in the two limiting cases, 1) the case where the inertia and non-linear terms are
neglected (viscous damping regime), and 2) the case where the viscous damping terms

are neglected (nonlinear damping regime).

Viscous damping regime

When fo'/? « 1 is satisfied, it is expected that the contributions of the inertia and
nonlinear terms in Egs. (2.15) and (2.16) are extremely smaller than that of the vis-

cous term. Thus, the inertia and nonlinear terms are thought to be neglected. Then,
Egs. (2.15) and (2.16) become

) 1/2d~(i)

% %%,: —o[(1+ R)i — 1], (2.17)
251/2 (i)d~(z‘)
(% ?i ;/ — —o(1+ DR)z. (2.18)

Equations (2.17) and (2.18) are easily solved, and the solutions are given in the dimen-

sional forms as follows:

x=—Che /™ 4 20 (2.19)
for up-flow and
z = Cae /™ 4 21, (2.20)

for down-flow, where C,, and Cy are positive constants, and 7, and 74 are given as follows:
85 d[LL

(1+ R)ga*mpr’
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Figure 2.2: Two hydrostatic equilibria for a pipe filled with (a) heavy fluid and (b) light fluid. 24, and
Zye are defined as the heights of the heavy fluid surface at (a) and (b), respectively.

Ta= 85dpun (2.22)

(14 DR)ga47Tpg)
Note that it is actually valid to neglect the inertia and nonlinear terms in Eqs. (2.15) and
(2.16) in the case of 30'/2 < 1 (which automatically satisfies 3 < 1 since ¢ > 3/2 should
be satisfied), because it is found from Eqs. (2.17) and (2.18) that an order of each term
in Egs. (2.15) and (2.16) is estimated as d%/dt? ~ (B%0/4)%, (20Y/2/B)(dE/dl) ~ oF
and (20'/2/3)(Bo'/?/4)(d%/dt)? ~ (5%0%/8)7 under the assumptions of D ~ 1, R ~ 1

and vy /vy, ~ 1, which confirms that the contribution of the viscous term is much larger

than those of the inertia and nonlinear terms.

Nonlinear damping regime

In the case of So'/? > 1, viscous terms, i.e., the second terms in the left hand side of
Egs. (2.15) and (2.16), are thought to be neglected. Then, by defining ®() = (d/dt)?,

the following relations are derived:
O'(z) 4+ o[®(Z) + 2(1+ R)z — 2] = 0, (2.23)

for the up-flow, and
(7)) — o[®(Z) — 2(1 + DR)Z] = 0, (2.24)

for the down-flow. Here, ®'(Z) means the derivative of ®(Z) with regard to Z. Now
consider the case of the down-flow, and suppose that di/di=0 and # = 1 at ¢t = 0.
Then, Eq. (2.24) is solved analytically as

O(7) = (;115)2 —2(1+ DR) (i 4 x) _2(1+ DR) (i 4 1) eo0-(2.25)
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Here, since 8 < 1 should be satisfied so that an oscillation occurs, ¢ > 1 should be

satisfied. Thus, Eq. (2.25) is approximated as

dt

From Eq. (2.26), the duration of the down-flow in the dimensional form ¢4 is roughly

®(7) = (df’fy ~ 2(1+ DR)i. (2.26)

estimated as

t < 4,8

win) | e

S 5 pl 12
= V3 . 2.27
V3 <gpL(1 + DR)) (227

The duration of the up-flow can be derived from Eq. (2.23) in the same way.

It is confirmed that it is actually valid to neglect the viscous term in Eq. (2.16) in the
case of 302 > 1 from the following consideration: From Eq. (2.26), it is found that
(dz/dt) ~ 1if D ~ 1 and R ~ 1 are satisfied. Hence, the contribution of the nonlinear
and viscous terms in Eq. (2.16) can be simply estimated from the coefficient of each
term. Thus, in the present case, the contribution of the nonlinear term is much larger
than that of the viscous term. In the same manner, it is also confirmed that the viscous

term in Eq. (2.15) can be actually neglected.

2.2 Phenomenological model of density oscillator

In the previous section, the dynamical behaviors of up- and down-flow are theoretically
described. However, the oscillatory behavior cannot be described by the theory, because
the flow reversal, i.e., switching between Eqgs. (2.15) and (2.16), is not considered. In
this section, a phenomenological model for the whole oscillatory behavior derived by
Yoshikawa et al. [32-34] is described.

Now consider the case of D =~ 1 and vy = v;, = v, and assume that ,0% and #® do not

depend on the number of cycles i. Then, both Egs. (2.15) and (2.16) are combined into

one equation as follows:
d?z’ dz"\ |da’ dz As dz
2 1<dt> di 2<dt> (1 + )x+2sgn<dt>’ (2.28)

where ' = & — 1/[2(1 + R)], A, = 0/2, Ay = 20'/?/3, and A3 = ¢. Because dz’/d{,
(dz’/df)|da’/dt|, and sgn(dz’/dE) are odd function of dz’/df, the right hand side of
Eq. (2.28) is approximated to the third order of dz’ /dt to describe the oscillatory behavior

in the following way:
d2g’ da’ de\* -
—— =B | —= | - By | —= | — ALa’ 2.29
df2 1<dt> 2<dt> G (2.29)
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Figure 2.3: Two-dimensional geometry for a rectangular pipe. y and z components of the velocity of

the flow are denoted as v and w, respectively.

where B; and B are positive constants, and A5 = A3(1+R). Equation (2.29) is known as
Rayleigh equation, which Rayleigh described for the vibrations in acoustic systems [17].

In this way, Eq. (2.29) has become one of the most common qualitative descriptions of
density oscillation. Indeed, Eq. (2.29) well describes the behavior of relaxation oscillation,
although the oscillatory behavior is not introduced in Eq. (2.28) (details are shown in
Appendix B). Moreover, behaviors of coupled oscillators can be also described by adding
a coupling term to Eq. (2.29) (see Appendix C). However, the present model has a
crucial problem that the flow-reversal process is not correctly described owing to the

approximation made to derive Eq. (2.29) from Eq. (2.28).

2.3 Analysis of flow stability

In the above theories, the flow-reversal process is not described explicitly either from a
phenomenological or microscopic standpoint. On the contrary, Steinbock et al. focused
on the flow-reversal process [40]. In the following, their stability analysis of the down-flow
inside a pipe will be shown. Although it was assumed that the surface area of the outer
container Sy, was sufficiently larger than that of the inner container S in their analysis,
here their theory is extended to the case where this assumption is not necessary.

Now consider a pipe with a two-dimensional rectangular cross section, and let y and
z denote the horizontal and vertical coordinates, respectively (see Fig. 2.3). The pipe
length d is assumed to be much larger than the diameter 2a. One-fluid model is applied
where the density of the fluid is described as p = py — dp©, with © the function of
space and time. The aim of the analysis is to find the condition that the down-flow loses
stability when an intrusion of light fluid exists steadily at y = 2z = 0. Using the steady

state approximation and Boussinesq approximation, Navier-Stokes equation is described
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as

J 1
wo,w+vodyw = —g+ Plg —0.P + v (02w + ow), (2.30)
PH PH
1
wo,v + voyv = —?ayP + v (0?0 + 8;1}), (2.31)
H

where P is the hydrostatic pressure, and v and w are the y and z components of the
velocity of flow, respectively. 0, and 0, are abbreviations of 0/0z and 0/0y, respectively.

The condition of continuity is given as
0w+ Oyv = 0. (2.32)
On the other hand, diffusion equation is given as
wd, O +v9,0 = D;(970 + 85@), (2.33)

where Dy is a diffusion constant. Equations (2.31)-(2.33) are written in the non-dimensionalized

forms as follows:

Re€ (000 + 005w) = MO — K — O:P + 02w + daw, (2.34)

Re€*(wdzv + 0050) = —0zP + 020 + *020, (2.35)
D

€ (00:0 + 19;0) = —é(e@a;@ +920). (2.37)

where z = d/z, § = y/2a, w = 2wa/Q, v = vd/Q, P = 8Pa®/(pudvuQ), R. = Q/vu,
k= 8a%g/(vu@Q), A = 8gadp/(vuQpn), and € = 2a/d < 1. @Q is the flow rate through a
pipe. Because the flow inside the pipe is nearly regarded as two-dimensional Poiseuille
flow (see Appendix A) [55], @ is derived as

2a
Q = wdy
0
2a° (pug(z —d) — pLgh
- _ . 2.38
S ( d + pug (2.38)

Let a stream function V(g, Z) be defined so that w = 9;¥(y, z) and v = —0;¥(y, 2) are
satisfied. Note that Eq. (2.36) is automatically fulfilled by defining the stream function.
The boundary conditions are given with using ¥ as 9;¥ = 0 (no slip) and —0;¥ = 0
(no penetration of the vertical walls) at y = 0 and 1. If ¥ = 0 at y = 0 is assumed,
Ulyy = [y dgw = 20dyw/@Q = 1 should be satisfied. In addition, since the heavy fluid
flows downward while an intrusion of the light fluid exists steadily at y = 2z = 0, the
boundary condition of © is given as © =1 at z =y =0 and © = 0 at y = 1. Using these
conditions, Egs. (2.34), (2.35), and (2.37) are solved at the zeroth order of ¢ as follows:

Oo(y,2) = 06o(2)(1 ), (2.39)

_ i _ A o
Uo(y,2) = 39> —2y° + 270021 = 7y, (2.40)

I\

I8}
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where 6y(0) = 1 should be satisfied.

Then, the condition that the down-flow loses its stability is given by Oyw|j—z—0 =
92W|5—z—0 > 0. This condition is derived from Eq. (2.40) as A > —72. Then, using
Egs. (2.6) and (2.38), this condition is found to be equivalent to

xr — xge) < émép“)(i (2.41)
p +pLR
Notice that when we take the limit of R — 0, Eq. (2.41) corresponds to the equation
derived by Steinbock et al. (see Eq. (12) in [40]).

Complementary explanation

Let us consider the physical meaning of the result by the analysis of Steinbock et al.,
Eq. (2.41). From Eq. (2.12), pg)xfje pLhde should be satisfied. In the same way,
P (@D — @) = pL(RGD — d) with b = A — R(z® — 2{?) should be satisfied for
the hydrostatic equilibrium where a pipe is filled with light fluid (see Fig. 2.2). From
these, we find that the difference between the heights of the fluid surfaces at the two

hydrostatic equilibrium 6z® is given as

6 = 2D _ gl — (2.42)
oS+ pLR
Thus, Eq. (2.41) is rewritten with an extremely simple form as
xr — xde 517 (2.43)

Equation (2.43) suggests that the critical height for the flow instability is expressed
only by difference between the heights of the fluid surfaces at the two hydrostatic equi-
libria. However, I will show in the following chapters that the critical height depends
significantly on experimental parameters such as the viscosities of the fluids. Thus, the

modification of this theoretical model is inevitable.
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Chapter 3

Experiment

3.1 Experimental setup

3.1.1 Overview

The experimental setup is shown in Fig. 3.1. The density oscillator employed here
consisted of an inner and an outer container, where the lower part of the outer container
was immersed in a constant-temperature chamber and fixed with a magnet. A glass pipe
was attached at the bottom of the inner container. The inner container was filled with
heavy fluid, while the outer container with light fluid. The outer container was covered
with an aluminum plate to prevent the fluid from evaporating. A laser displacement
meter (Hokuyo, PDA-03KT) was fixed at the inner container, and connected to a digital
multimeter. A stereomicroscope equipped with an Olympus DP70 digital camera was
set outside the constant-temperature chamber in order to observe the lower part of the

glass pipe, which was illuminated by a halogen lamp set at the other side of the chamber.

3.1.2 Containers and a pipe

Both inner and outer containers were made of acryl resin (Fig. 3.2). The bottom of the
latter was attached to a stainless steel plate, so that it was fixed by the magnet attached
at the bottom of the constant-temperature chamber. The surface areas of the inner and
outer containers were 7.70 x10~% m? and 5.34 x1072 m?, while their heights were 0.15
m and 0.32 m, respectively.

A glass pipe (PYREX) was attached vertically at the bottom of the inner container.
The inner diameter and length of the pipe were 0.73 mm and 70 mm, respectively. As
shown in Fig. 3.3, the cross section of the glass pipe was smooth, and the inner diameters

at the upper and lower ends of the pipe were almost identical.
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Figure 3.1: Overview of the experimental setup.

3.1.3 Fluids

Although salt water and pure water have been often used as the heavy and light fluids
in the previous studies, they are not plausible for the present experiments, because
it is needed to change the viscosities of fluids over a wide range. Thus, mixtures of
water, 1-propanol, and glycerin were used for both the heavy and light fluids, where
water mixed into the fluids was boiled before use in order to remove air bubbles. The
viscosities of the fluids could be varied by changing their composition with their densities
maintained, as shown in Fig. 3.4. The densities of the heavy and light fluids were set at
(1.057 4+ 0.003) x10% kg - m~3 and (0.996 + 0.003)x10% kg - m~3, respectively, and hence
the difference in densities between the fluids was (0.061 £ 0.004)x10% kg - m™3. From
these conditions, it is found that 3c'/2/4 = 3.34 x 1072, and thus the experiments were

performed in the viscous damping regime!.

3.1.4 Temperature control

Since the temperature of the fluid relates to the viscosity of the fluid, the temperature
of the fluids was regulated at 25.0 & 0.5°C by immersing the lower part of the outer
container in a constant-temperature chamber. Although the upper part of the outer
container was not immersed in it, the temperature of the fluid near the pipe was well

controlled.

LAlthough Bo!/2 <« 1 had to be satisfied so that the viscous damping regime was employed in the theory previously
reported [31], it is obvious that it can be employed as far as Bo1/2/4 < 1 is satisfied, because in this case the non-linear

terms are negligibly small compared with the viscous terms in Egs. (2.15) and (2.16).
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Figure 3.2: Inner and outer containers. Overview is shown in the upper picture. Magnified view of the
bottom of the inner container is shown in the lower picture. A glass pipe is attached vertically at the

bottom of the inner container.
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Figure 3.3: Cross section of a glass pipe observed by a stereomicroscope. The cross section is smooth

and the distortion is not found. The internal diameter of the pipe is 0.73 mm.
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Figure 3.4: The composition curve of 1-propanol, glycerin and water to give a constant density of (a)
1.057x10% kg - m~—2 and (b) 0.996x 103 kg - m~3. The horizontal and vertical axes denote the ratio of

the weight of 1-propanol and glycerin to that of the summation of the three materials, respectively.
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Figure 3.5: Scheme of the constant-temperature chamber. The temperature was controlled by a ther-
mostat heater, in which the switch of the heater was regulated by sensing the temperature measured
by a thermocouple. Water in the chamber was always stirred, and the chamber was covered with an

heat-insulating material except for the pathway of the halogen lamp.

The scheme of the constant-temperature chamber was shown in Fig. 3.5. The tem-
perature was controlled by a thermostat heater, in which the switch of the heater was
regulated by sensing the temperature measured by a thermocouple. Water in the chamber
was always stirred in order to avoid the inhomogeneity of the temperature. Moreover, the
chamber was covered with a heat-insulating material except the pathway of the halogen

lamp.

3.1.5 Laser displacement meter

The height of the heavy fluid surface was measured by a laser displacement meter
(Hokuyo, PDA-03KT), in which the displacement of an object is measured by detecting
the light reflected from an object by a position sensitive detector (PSD). Because PSD
did not detect the light reflected from the fluid surface, a white acrylic plate was floated
on the heavy fluid. The spatial resolution of the laser displacement meter was 1 pum.

In order to know the relation between the actual displacement and the output of the
digital multimeter to which data was transmitted from the laser displacement meter, the
following procedure was employed. A container was filled with water, and the height of
the water level was measured by the laser displacemant meter. Then the change of the

output of the digital multimeter, which was in the unit of volt (V), was measured when
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Figure 3.6: Relation between the actual displacement of the fluid surface and the output of the digital
multimeter. A container was filled with water, and the height of the water level was measured by the
laser displacemant meter. The change of the output of the digital multimeter, which was in the unit
of volt (V), was measured when the water level was changed by 0.48 mm using a micropipet. The
horizontal axis denotes the output, while the vertical axis denotes the ratio of the actual displacement
to the change of the output. When the output lies within a range of 0.70-1.70 V, the ratio is found to
be approximately 5.10 mm/V.

the water level was changed by 0.48 mm using a micropipet. Figure 3.6 shows the ratio
of the actual displacement to the change of the output. At the output of 0.70-1.70 V,
the relation is found to be approximately 5.10 mm/V. Thus, all of the experiments were
performed so that the output was within the range of 0.70-1.70 V, and the displacement
in the unit of mm was calculated by multiplying 5.10 to the output in the unit of V.

3.1.6 Stereomicroscope

The lower part of the pipe was observed through a stereomicroscope. The interface
of the two fluids was clearly observed owing to the difference in their refractive indices.
The stereomicroscope was movable by setting it on a couple of laboratory jacks which
were placed on a plate equipped with several beads whose diameters were about 12 mm,
and the plate was fixed with magnet bases (see Fig. 3.7). A halogen lamp was used as an
illuminating source and set at the other side of the constant-temperature chamber. The

location of the halogen lamp and the stereomicroscope were adjusted so that the image

of the pipe was not blurred.
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Figure 3.7: A stereomicroscope equipped with an Olympus DP70 digital camera. The stereomicroscope
was movable by setting it on a couple of laboratory jacks which were placed on an acryl plate with

several beads. The acryl plate was fixed with magnet bases.
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3.2 Experimental procedure

Firstly, the fluids were prepared for the experiment. Appropriate amounts of water,
1-propanol, and glycerin were mixed and well stirred. Then, the heavy fluid was put
into a flask and was immersed in the constant-temperature chamber for more than thirty
minutes so that the temperature of the fluid becomes 25.0 4+ 0.5°C. The light fluid was
poured into the outer container, and was also immersed in the constant-temperature
chamber. Meanwhile, a small amount of the prepared fluids were used to measure the
densities and viscosities, which were measured by using a volumetric flask and an Ostwald
viscometer, respectively.

Next, the heavy fluid was poured into the inner container, which was set in the outer
container. In this step, great care was taken so that air bubbles did not generate. The
heights of the heavy and light fluid surfaces were first set to be nearly equal, so that
the oscillation began with down-flow. Although the fluid in the outer container was
somewhat disturbed when we set the inner container, such disturbance diminished until
the first flow reversal occurred. After the setting of the inner container, the white acrylic
plate in which water-repellency treatment was performed was floated on the heavy fluid
and the laser displacement meter was fixed to the inner container with gummed tape.
Here, the inner container was almost completely covered with the gummed tape, so that
the evaporation of the heavy fluid did not occur. Then, the height of the heavy fluid
surface was recorded at an interval of more than 500 ms, and for more than 6 cycles. An
Olympus DP70 digital camera was equipped with the stereomicroscope, and the pictures
were taken at an interval of more than 1 s, where the interval was determined by the

period of oscillation.
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Chapter 4

Results and analyses

4.1 General trend

4.1.1 Height of a fluid surface

First, let us see the general trend of the temporal evolution of the height of the heavy
fluid surface measured by the laser displacement meter. Figure 4.1 shows the case where
the viscosities of the heavy and light fluids are not extremely large compared with pure
water. In the present experimental condition, the pipe diameter and length are 0.73 and
70 mm, and the densities of the heavy and the light fluid are 1.057x10% kg - m—3 and
0.997x10% kg - m~3, respectively. It is found that the fluid surface moves up and down
regularly, and the average height shows a slow but continuous increase. This is because
the accumulation of the light fluid into the inner container causes a periodic decrease in
the density of the heavy fluid. Thus, as the number of cycles increases, the outputs of the
laser displacement meter get out of its measurement range, i.e., 0.7-1.7 V (Fig. 4.1(a)).

Figure 4.2 shows the durations of up- and down-flow and the amplitude of oscillation
plotted against the number of cycles. It is clearly seen that both durations and amplitude
are kept almost constant for the first about 10 cycles. However, as the number of cycles
increases, the amplitude decreases gradually, whereas the durations do not vary signif-
icantly. This is probably not only because the outputs of the laser displacement meter
get out of its measurement range, but also because the average difference in densities
decreases as the number of cycles increases. Although the oscillatory behavior more than
28 cycles is not quantitatively measured, it is considered that the amplitude continues
to decrease. Then, the oscillation finally stops.

Next, let us turn our attention to each up- and down-flow. As is expected from Egs.
(2.19) and (2.20), the temporal evolution for each flow between two adjacent flow reversals

can be expressed by an exponential function, although it slightly deviates from the
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Figure 4.1: Temporal evolution of the height of the heavy fluid surface. um = 2.64 x 1072 Pa-s, and
pur =1.98x1073 Pa-s, pr, = 0.997x10% kg - m~2, and §p = 0.062x10% kg - m 3. The pipe diameter and
length are 0.73 and 70 mm, respectively. (a) Long time behavior of oscillation. The fluid surface moves
up and down regularly, and the average height shows a slow but continuous increase. In the gray region,
the outputs of the laser displacement meter are out of its measurement range, and hence the obtained
data is inaccurate. (b) Magnified view of (a). Each branch for up- and down-flow is well fitted by an
exponential curve (dashed line). The definition of the parameters for the ith cycle is also shown. The
dashed-and-dotted lines denote the heights at which the flow reverses from the ith up- to the (i + 1)th
down- and from the ith down- to the ith up-flow. In the present graph, ¢ = 2. (c) magnified view of
(b) at the flow reversal from down- to up-flow. An arrow denotes the height of the heavy fluid surface

when the intrusion length becomes 1 mm.
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Figure 4.3: Microscopic images of the intrusion in the time course of down-flow ((a)—(b)—(c)—(d)).
Upper and lower images show the side and front views, respectively. An intrusion of light fluid is clearly
seen (arrows). Glucose solution and water are used as the heavy and light fluids, respectively, with
pL = 0.997x10% kg - m~3, §p = 0.067x10% kg - m~™3, ugg = 1.42x 1073 Pa-sand pur, = 0.89 x 1073 Pa - s.
Although the experimental condition employed in this figure is slightly different from that employed in

the present chapter, the difference is not crucial, as the behavior observed is almost identical.

exponential function before the flow reversal (Fig. 4.1(c)). The time constants of the
exponential functions fitted to the up- and down-flows are found to be 1.99 x 10? s and
1.58 x 103 s in the average of the 2nd to 5th cycles, which are in good agreement with the
values obtained from Egs. (2.19) and (2.20), 1.97 x 10 s and 1.57 x 10% s, respectively.
Moreover, the difference between the asymptotic values of the two adjacent exponential
functions is found to be 4.10 mm in the average of the 2nd to 5th cycles, which is in good
agreement with the difference between the two hydrostatic equilibria, 4.03 mm, that is
calculated from Eq. (2.42). Thus, since the exponential curves are characterized by the

time constants and their asymptotic values, it is found that each up- and down-flow is
well described by Egs. (2.19) and (2.20).

4.1.2 Flow-reversal process inside a pipe

Although each up- and down-flow exhibits an exponential response as described above,

the flow reverses before the fluid surface reaches the asymptotic value of the exponential
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function (Fig. 4.1). To investigate the mechanism of the flow reversal in detail, its
process is observed by a stereomicroscope. Figure 4.3 shows an example at the flow
reversal from the down- to up-flow. At first, the heavy fluid flows downward, as shown
in Fig. 4.3(a) (In the following, we call this process as “process A”). After a while, an
intrusion of the light fluid into a pipe is observed and grows upwards along the pipe wall
rather slowly (Fig. 4.3(b)) (“process B”). When the intrusion length measured from the
bottom of the pipe grows to some extent, it suddenly starts to grow rapidly (Figs. 4.3(c)
and (d)) (“process C”). Although we cannot evaluate the intrusion length quantitatively
when it becomes larger than 8mm because of the limitation of the visual field of the
stereomicroscope, the intrusion becomes accelerated as it approaches the upper end of
the pipe, and finally the flow reverses when it reaches the upper end of the pipe. It is
noted that the deviation from an exponential function in the height of the fluid surface
occurs at the process C (see Fig. 4.1(c)). The flow reversal from up- to down-flow occurs

in the same way as that from down- to up-flow.

4.2 Viscosity dependence

When the viscosity of the fluid is varied, the oscillatory behavior changes drastically.
Figure 4.4 shows examples of the temporal evolutions in the case of extremely high
viscosity applied to the heavy or light fluid. As is expected, the time constant of the
exponential curve varies according to the viscosity of the fluid, although the difference
between the asymptotic values for the exponential curves, A, is still almost consistent
with dx, as shown in Fig. 4.5. Figure 4.6 shows the time constants of the exponential
curves fitted for the up- and down-flow. The experimental results are also in fairly good
agreement with the theoretical values 7, and 74 obtained from Egs. (2.19) and (2.20),
although there is a slight systematic deviation at high viscosities, which is thought to be
caused by the reduction in the viscosity of the high viscosity fluid due to the inflow of
the low viscosity fluid. Thus, even when the viscosity of the light or heavy fluid is varied,
each branch for the up- and down-flow is well described by Egs. (2.19) and (2.20).

However, when we compare Fig. 4.4 with Fig. 4.1, we notice that a drastic change
occurs at the timing of the flow reversal. When the viscosity of the heavy fluid py is
extremely large, the flow reversal from down- to up-flow occurs even when the height
of the heavy fluid surface is still high, while that from up- to down-flow does not occur
until the fluid surface becomes close to the hydrostatic equilibrium (Fig. 4.4(a)). On
the contrary, when the viscosity of the light fluid py, is extremely large, the flow reversal
from up- to down-flow occurs even when the fluid surface is still low, while that from

down- to up-flow does not occur until the fluid surface becomes close to the hydrostatic
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Figure 4.4: Temporal evolution of the height of the heavy fluid surface, in the case of (a) ug =
8.59 x 1073 Pa-s, and up, = 0.89 x 1072 Pa-s, pr, = 0.997x10% kg - m~3, §p = 0.060x103 kg - m~3,
and (b) ug = 2.66 x 1072 Pa-s, and pp, = 14.18 x 1072 Pa-s, pr, = 0.996x10% kg-m~3, 6p =
0.062x10% kg - m~3. Each branch for up- and down-flow is well fitted by an exponential curve (dashed

line).
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difference between the two hydrostatic equilibrium §z. Each data is averaged over 4 cycles from the
2nd to 5th. (a) pg is varied while py, is fixed at 0.89 x 1073 Pa-s. (b) ur, is varied while puy is fixed at
(2.63 £0.03) x 1073 Pa-s. Even when the viscosities of fluids are varied, A almost agrees with dx.
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and sqp (open circle). The data are averaged over 4 cycles from the 2nd to the 5th. Simulated results
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while pr, is fixed at 0.89 x 1072 Pa-s. (b) ug, is varied while g is fixed at (2.63 +0.03) x 1072 Pa - s.
The parameters of the simulation are as follows: ¢ = 0.365 mm, d = 70 mm, pg = 1.057 x 10% kg m~3,
pr, =0.996x10°kg m™3, S = 7.70x 1074 m?, R = 1.44x 1074, b; = 10.7, by = 160, k = 0.40 kg m~'s~3,
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equilibrium. In order to evaluate such viscosity-dependent behaviors quantitatively, the

following two parameters, sq and s,, are defined as

) _ 40
_ [ Fa — %o
= <x(i1)—x(i)> (4.1)
u0 do
(i—1) _ .09
B ]
fu = <_,E(i1>_$<i>>’ (42)
u0 do

where x((f ) and 2 are the heights of the heavy fluid surface at the moments when the
flow reverses from the ith down- to the ith up-flow and from the ith up- to the (i + 1)th
down-flow, respectively. xffg and xffo) are the asymptotic values for the exponential curves
fitted to the ith down- and up-flow, respectively (see Fig. 4.1(b)). In the present analysis,
we have averaged the data over four cycles from the 2nd to 5th in a series of experiments.
In fact, sq and s, are expected to be suitable parameters for qualifying the timing of the

flow reversal over the entire process leading to the asymptotic equilibrium, because :r;((fg

Y are thought to be almost consistent with the hydrostatic equilibrium where

and 25
the pipe is filled with heavy and light fluid, a:ffe) and xl(fe_l), respectively, with a density
difference of dp. Figure 4.7 shows the viscosity dependence of sq and s, when the
viscosity of either heavy or light fluid is varied. It is clear that both sq and s, increase
when the viscosity of the heavy fluid increases, but decrease when that of the light fluid
increases. These results cannot be explained in terms of theories proposed so far, in
which the critical heights do not depend on the viscosity of fluids [40].

Thus, it becomes clear that the flow-reversal process is significantly affected by the
viscosity of the fluid. Figure 4.8 shows the temporal evolution of the intrusion length
when the viscosity of either heavy or light fluid is varied. Here, we set the origin of time
at the very moment of the flow reversal and plot the intrusion length against the time
leading to the flow reversal. It is clearly seen that the intrusion grows slowly at first
(process B), but begins to grow rapidly when the intrusion length exceeds about 1 mm
(process C).

For a large puyp and small py,, the intrusion of the light fluid persists an extremely
long time before the flow reversal occurs, and the growth rate during the rapid-growing
process is also relatively small, as shown in Fig. 4.8(a). On the other hand, for a large p,
and small py, the growth rate of the intrusion is relatively large and essentially does not
depend on py, (Fig. 4.8(b)). However, in the latter case, it is observed that the interface
between the two fluids is somehow disturbed at a certain intrusion length and its growth
is thus obstructed for some time, particularly at a large py,. A typical example is shown
in Fig. 4.9. In addition to the intrusion length, its width within the pipe depends on the
viscosity of the fluids, as shown in Fig. 4.10. In general, the width is larger for puy > pur,
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Figure 4.8: Viscosity-dependent temporal evolution of the intrusion of light fluid. (a) pp is varied while
pr, is fixed at 0.89 x 1073 Pa - s. (b) py, is varied while py is fixed at (2.6340.03) x 1072 Pa - s. Because
of the limitation of the visual field under the stereomicroscope, an intrusion length of more than 8 mm
is not observed. The dotted lines indicate 0.1 mm and 1 mm of intrusion length. The inset in (b) shows

an enlarged view. The obstruction of the growth is observed at a large ur, (shown as an arrow, see also

Fig. 4.9).
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Figure 4.9: Front view of the disturbance of the interface at a large pr,. pum = 2.66 x 1072 Pa-s and

pr, = 14.18 x 1073 Pa - s.
(a) ﬂ (b)
=

Figure 4.10: Front views of the intrusions during the flow-reversal processes for (a) pug = 18.02 x
1072 Pa-s and pup, = 0.89 x 1073 Pa-s, and (b) ug = 2.65 x 1072 Pa-s and up, = 8.48 x 1072 Pa -s.

The width of the intrusion is larger in (a) than in (b) (white arrow heads).
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while it is smaller for py < pr.
We characterize the viscosity-dependent behavior of the intrusion by employing the

following two quantities:

@ @
= (43
Lyo — Tgo
(4) (4)
- Lap — Ldo
Sdb - < (i—l) - (Z) > ) (44)
Tyo 40

where xg()l and :Cffg are the heights of the heavy fluid surface at the time when the intrusion
lengths exceed 0.1 mm and 1 mm, respectively. Because the intrusion begins to grow
rapidly when its length becomes nearly 1 mm, as shown in Fig. 4.8, the two quantities
Sd4a and sq; roughly characterize the timings for the beginning of the intrusion (process
B) and for the onset of its rapid growth (process C), respectively. With increasing pu,
significant increases in both sq, and sq; are observed, which are more remarkable than
those of sq (Fig. 4.7(a)). Thus, the clear sign of the flow reversal is expressed, which
is more prominent with increasing py. On the other hand, with increasing pur, the
behaviors of sq, and sq;, are similar to those of sq (Fig. 4.7(b)). Thus, these newly-
introduced quantities sensitively characterize the dynamics of the flow reversal and then

clarify definitively the viscosity dependence of the density oscillation.
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Chapter 5
Modeling and simulation

As shown in Sec. 2.1, the behavior of each up- and down-flow of density oscillator
was theoretically described in the study reported before [31]. However, to understand
its overall behavior, it is clearly needed to describe the flow-reversal process correctly.
The viscosity dependence of the flow reversal found in the previous chapter is helpful
in understanding the fundamental mechanism of the flow reversal. Unfortunately, an
exact treatment of flow stability is difficult owing to the complexity of the flow within
a pipe during the flow-reversal process. Thus, a simple model describing the essential
mechanism of the flow-reversal process is required. In the present chapter, I will propose
a model by considering only forces parallel to a pipe wall, which acts on a unit volume
element located at the tip of the intrusion. Here, the case of the viscous damping regime
(Bo'/? < 1) with the pipe length much larger than the diameter (d > a) is considered.
In addition, we assume that the interface between the flow and the intrusion fluid is
completely parallel to the pipe axis except for that at the tip of the intrusion, where it

is assumed to be parallel to the cross section of the pipe (see Fig. 5.1).

5.1 Essential forces for flow reversal

In this section, the forces concerned with this phenomenon are considered separately.

In the following, the case for the flow reversal from down- to up-flow is considered.

5.1.1 Viscous drag force

First, there should be a viscous drag force acting on a unit volume element. We denote
this force as F}. F) should be given by the summation of the shear stresses acting on
the inner and outer sides of the volume element (see green arrows in Fig. 5.1), which
generates owing to the velocity difference of the down-flow and the intrusion growing

upward, and the no-slip boundary condition at the pipe wall. Thus, it is found from
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Figure 5.1: Scheme of the viscous drag force (blue allow) acting on the unit volume element at the tip of
the intrusion (red square). Velocity profiles of the down-flow and the intrusion are also shown. The mean
velocity of the down flow where the intrusion does not exist is denoted as @, while that in the presence
of the intrusion is cu. The growth rate of the intrusion is 5 , where £ denotes the intrusion length. Notice
that upper direction is taken as positive for @ and £. The shear stresses acting on the inner and outer
sides of the volume element are shown by green arrows. Lower pictures show the magnified views of
the interface between the two fluids and that between the intrusion fluid and the pipe wall. Although
the actual interface between the two fluids does not exist, an extremely thin volume element at the
boundary between the two fluids is regarded as an interface (gray region), whose viscosity is denoted
as p1. Gy and G, denote the gradient of the velocity profile at the interface between the two fluids and

that at the pipe wall, respectively. The shear stress at the interface between the two fluids o, and that

at the pipe wall o7, are also shown (yellow arrows).
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dx

inner container

Figure 5.2: Relation between & and @ (upper direction is taken as positive). The surface area of an

inner container and the area of the cross section of a pipe is S and wa?, respectively.

the law of action and reaction that F; equals to the difference between the shear stress
which the inner side of the volume element acts on the fluid flowing downward and that
which the intrusion fluid acts on the outer side of the volume element. Then, because
the difference arises within the unit length scale, F} is described by the radial gradient
of the shear stress.

If we assume that the radial gradient of the shear stress is homogeneous with regard
to the pipe radius, Fi is derived by considering the shear stress at the interface between
the two fluids and that at the pipe wall (see yellow arrows in Fig. 5.1). Let o, and o/, be
defined as the shear stress acting on the fluid flowing downward at the interface between
the two fluids and that acting on the intrusion fluid at the pipe wall, respectively. Because
the difference between o, and o) generates within a spatial scale of the pipe radius a,

the radial gradient of the shear stress Fj is described as

o —o
F, == = 5.1
=2 (5.1

Now let us derive o5 and o individually. o is given by the product of the viscosity
and the velocity gradient at the interface between two fluids, which are denoted as p;
and G, respectively. Actually, a definite interface between these two fluids will not exist,
since the viscosity of the fluid will vary continuously in space because of the miscible
nature of the heavy and light fluids. However, for convenience, it is assumed that the
mixed region consists of an extremely thin volume element at an interface with a fluid
having an appropriate viscosity. Since the viscosity of the fluid at the interface y; may be

somehow dependent on the viscosities of the two fluids, the following relation is assumed
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to hold:
I
5 )

The velocity gradient at the interface G, is estimated in the following way. When ¢ is

1% (5.2)

defined as the intrusion length, i.e., the distance between the lower end of the pipe and
the tip of the intrusion, the growth rate of the intrusion is given as § . Meanwhile, the
velocity of the down-flow in the presence of the intrusion is thought to be described as
cui, where ¢ is a positive constant larger than unity and « is the mean velocity of the
flow inside a pipe (upper direction is taken as positive) when an intrusion does not exist
(see Eq. (2.3)). Because the velocity difference between the intrusion and the down-flow
generates within a spatial scale of the pipe radius a, G, should satisfy

f—cﬂ

G,

(5.3)

a

Here, as shown in Eq. (2.7), @ is related to & from the condition of continuity as (see
Fig.5.2)
Si = ma’. (5.4)

Hence, o, is derived using Eqs. (5.2), (5.3), and (5.4) as

0s = ,UIGr

On the other hand, the shear stress at the pipe wall ¢/, is also given by the product of
the viscosity and the velocity gradient on the pipe wall. Here, for simplicity, we assume
that the viscosity is equal to pup, although it is considered that the viscosity on the pipe
wall is actually equal to ur,. As I will discuss in Sec. 7.1, this assumption is not essentially
important in the processes A and B, although the growth rate of the intrusion in the
process C is thought to be somewhat affected by this assumption. Meanwhile, because
the velocity difference between the intrusion and the pipe wall generates within a spatial
scale of the pipe radius a, the velocity gradient on the pipe wall G, is given under the

assumption of no-slip condition as
Gl ox —=. (5.6)

Thus, o’ is described as .
_I_
o o Fm LS

5.7
s 2 a’ ( )
Thus, from Egs. (5.1), (5.5) and (5.7), the viscous drag force Fj is derived as
M+ pL S :
F1 = 2@2 <b1 WQQI - bgf) s (58)
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where by and b, are positive constants. It is noticed that the first term in the right
hand side of Eq. (5.8) is originated only from o, while the second term includes the

contributions of both o, and o.

5.1.2 Hydrostatic pressure gradient

Second, there must be a gravitational force and the force due to the gradient of hydro-
static pressure. Let these forces be denoted as F,. When the intrusion exists sufficiently
at the interior of the pipe, Fy will satisfy the relation
P(d) — P(0)

d
where P(d) and P(0) are the hydrostatic pressures at the upper and lower ends of the

Fy=— — pLY, (5.9)

pipe (see Fig. 5.3). Here, we have assumed that the gradient of the hydrostatic pressure is
homogeneous inside the pipe. The second term in the right hand side of Eq. (5.9) denotes
the gravitational force acting on the unit volume element. Notice that the density of the
volume element is assumed to be pr,, because it exists within the intrusion fluid. Because
the viscous damping regime is now considered, the effect of ‘head loss’ (see Sec. 2.1) can
be neglected. Thus, if P(d) and P(0) are assumed to be simply derived from the heights
of the fluid surfaces, they are given as (see Fig. 5.3)

P(d) = pug(z —d), (5.10)
P0) = pLgh. (5.11)

Here, the heights of the heavy and light fluid surfaces  and h are related through R,
which is the ratio of the surface area of the heavy fluid to that of the light fluid, in the
following way (see Eq. (2.6)):

h — hde = —R(QT - xde); (512)
where x4, and hq, should satisfy (see Eq. (2.12))
PHTde = PLAde- (5.13)

By substituting Eqgs. (5.10), (5.11), (5.12) and (5.13) into Eq. (5.9), we obtain

pug(x —d) — pLgh

F2 = d LY
x
— —pHdg + % —R(x — zq0) + fode + dpg
—240)(1 + RD

where D = pr,/py and dp = py — pr.
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-(P(d)-P(0))d

Figure 5.3: Scheme of the hydrostatic pressure gradient (up-blue arrow) and the gravitational force
(down-blue arrow) acting on the unit volume element (red square). P(d) and P(0) are the hydrostatic
pressures at the upper and lower ends of the pipe. If the hydrostatic pressure is assumed to be derived
simply from the height of the fluid surface, P(d) and P(0) are obtained like Egs. (5.10) and (5.11), which

can be easily understood from the upper picture.
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On the other hand, if the volume element of the light fluid exists outside the pipe,
it is obvious that the hydrostatic pressure gradient balances the gravitational force.
Hence, when there is no intrusion (¢ = 0), the relation F» = 0 should be automatically
satisfied. However, it is unnatural that the value of F;, jumps from 0 to —ppg(z —xqge)(1+
RD)/d + dpg discontinuously with regard to £ at £ = 0. This contradiction comes from
the assumption that the hydrostatic pressures P(d) and P(0) are simply derived from
the height of the fluid surface. Actually, it is considered that the flow near the end of
a pipe is thought to be complicated and hence the hydrostatic pressure near the end
deviates from that expected from the height of the fluid surface.

Although it is difficult to obtain the hydrostatic pressure strictly, we will describe it
phenomenologically so that Fy becomes continuous at & = 0. It seems appropriate to
describe F3 in the following way:

_pugle = ac) (1 + RD)

F2: d

+0pg| (1 —e=¢/9). (5.15)

The term (1—e~¢/*) is introduced in order to connect Fy = —prg(z—24.)(1+RD)/d+6pg
for £ > o and F, = 0 at £ = 0. Here, a characterizes the spatial range where F, takes a
value between 0 and —ppg(x — 240)(1 + RD)/d + dpg.

5.1.3 Effect of acceleration of fluid outside a pipe

Third, the effect of the acceleration of the fluid outside the pipe should be considered.
Let us arbitrarily consider two planes inside and outside the pipe as PL; and PL,, as
shown in Fig. 5.4. The absolute value of the mean velocity of the flow at PLs is defined
as V', while that at PL; is —u. Since the heavy fluid that has passed through the pipe
is accelerated due to the hydrostatic pressure gradient, the following relation is expected
to hold:

V =—u+k, (5.16)

where k expresses the effect of the acceleration. The continuity condition naturally holds,
which results in
—una® = V8., (5.17)

where S, denotes the area of the cross section of the down-flow in a plane of PLy;. When
S, is sufficiently small, it is expected that the intrusion of the light fluid is enforced as a
consequence, because the contraction of the flow causes a detachment of the down-flow
from the pipe wall. Fj is defined as the force due to this enforcement. Since it seems
difficult to derive F3 analytically, I will describe it phenomenologically. It is found from
Egs. (5.16) and (5.17) that —u = k(ma®/S. — 1)~!. Hence, since F3 increases as S.
decreases, it is qualitatively found that Fj increases as —u decreases. In addition, Fj is
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Figure 5.4: Schematic illustration of two planes, PL; and PLs, which are vertical to the direction of
the flow. PL; crosses the pipe, while PLs is below but not too far from the lower end of the pipe. S
denotes the surface area of down-flow at PL,. —u and V' are the absolute value of the mean velocities

of the down-flow at PL; and PL,, respectively.

also expected to be large when the intrusion length £ is small. Thus, it seems appropriate

to describe F3 phenomenologically as

ke=¢/
= (5.18)

u

where k is a positive constant. 7 expresses the spatial range where the force works

effectively. Eq. (5.18) is rewritten by using Eq. (5.4) as

2
Fy = —ke ¢/ (”g) it (5.19)

5.2 Description of flow-reversal process

5.2.1 Down- to up-flow

From Eqgs. (5.8), (5.15), and (5.19), the equation of motion for a unit volume element

located at the tip of the intrusion is given as

pré = Fi+FR+F
pa + UL S . :
- 2a? (bl 7ra2x B b2§)
1 [onsle =it )

7TCL2

+ 5pg] (1 —e 8/ — ke ¥/ ( 3
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It is noticed that there is an exception that £ remains zero in the case of Fy+ Fy+ F3 < 0
at £ = 0. On the other hand, because the viscous damping regime is now considered,
the temporal evolution of x exhibits an exponential response, expressed as in Egs. (2.20)
and (2.22): it is described as

(1+ DR)ga*mpn

x = Cgyexp |— + Zde. (5.21)

Here, we have assumed that the temporal evolution of z is not affected by an intrusion.
This assumption is thought to be valid because it was found experimentally that the
deviation from an exponential response at the flow-reversal process is sufficiently small
compared with the amplitude of the oscillation, as shown in Fig. 4.1 (an exception will

be shown in Sec. 6.3). Equation (5.21) is rewritten as

1+ DR)ga*n
__( 8Sd)5H PH (0 — o). (5.22)

By substituting Eq. (5.22) into Eq. (5.20), the temporal evolution of £ is obtained as

s NH"‘NL[ bigpn(1 + DR)
pLE = -

2 8d/LH

+ [_pH(l + Ri)(x — Ide) + 5pg] (1 . efg/a)

+ Skd/LH e—f/’Y’
ga’pu(1+ DR)(x — xqe)

by .
(x — 24e) — aifl

(5.23)

and when £ becomes equal to the pipe length d, the flow reverses completely. Thus,

Egs. (5.22) and (5.23) describe the behavior of the flow reversal from down- to up-flow.

5.2.2 Up- to down-flow

The flow reversal from up- to down-flow can be modelled in the same way as that
of down- to up-flow, although the analysis becomes somewhat complicated because the
decrease in the density of the heavy fluid due to inflow of the light fluid into the inner
container should be taken into account. Here £ is taken as the distance between the
lower end of the pipe and the tip of the intrusion.

The viscous drag force I and the effect of the acceleration of the fluid outside the pipe
F3 are derived in the same way as the case of the flow reversal from down- to up-flow.

Thus, it is straightforward to obtain the following equations:

+ S .
R uH2a2uL (blm2x—bzé) (5.24)
2
£y, = —ke @9/ (”;) il (5.25)
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On the other hand, the derivation of the hydrostatic pressure gradient F5 is somewhat
complicated. Here, we assume that the density of the fluid that intrudes into a pipe is
pg), whereas the mean density of the fluid in the inner container depends on time, which

is given as
Sp@ (2D — d
pu(t) = pr + p<jd)-

This assumption is thought to be valid because the light fluid that has passed through

(5.26)

the pipe accumulates above the heavy fluid in the inner container and hence the density
of the fluid at the lower part of the inner container does not vary during the up-flow
significantly. Thus, when the intrusion exists sufficiently at the interior of the pipe, F;
is given in the following way by assuming that the gradient of the hydrostatic pressure
is homogeneous inside the pipe:
P(d) — P(0 ;

F, = _<)d() - pﬁ)g. (5.27)
If it is assumed that the hydrostatic pressure is simply derived by the height of the fluid
surface, P(d) and P(0) are described in the same way as the case of the flow reversal

from down- to up-flow as

P(d) = pu(t)g(z —d), (5.28)
P(0) = pLgh. (5.29)

By substituting Eqgs. (5.12), (5.13), (5.26), (5.28) and (5.29) into Eq. (5.27), F; is derived

as follows:
() _ g — e — or dl—R(z — 2 (i) (i) ,
mo— e (g )+ pou(r —23)]g — prygl—R(z — z5) + (pw' /pr)%ae ] (i)
2 = d Pu 9
g: (@i i i i i
= ot (5" = 2y + pule = 0”) + pLR(z — i), (5.30)

On the other hand, it is obvious that F, = 0 when there is no intrusion (¢ = d). Because

F5 is a continuous function of &, F, is phenomenologically described in the same as the
flow reversal from down- to up-flow, that is,

g (i), (i i i i —(d-8)/a
Fy = —lo (e — ag)) + pule — ) + puR (e — al))(1— e (5.31)

From Egs. (5.24), (5.25) and (5.31), the equation of motion for a unit volume element

located at the tip of the intrusion is obtained as follows:

Pg)é = I+ Fkh+F
HH + [, {51( i)x’—bﬁ]
Ta

2a?
=l = afd) 4 e = al) 4+ pu R = D)1 = O
2
ke~ @=9/ (?) i (5.32)
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Because the viscous damping regime is now considered, the temporal evolution of x
exhibits an exponential response under the assumption that it is not affected by an

intrusion. As shown in Egs. (2.19) and (2.21), x is described as

(1+ R)ga*mpy, :
~ Cexp |- NG 5.33
x exp l SSdji + 2,0, (5.33)
with )
@) _ .0 opd
Tyd = Tge + 5.34
Ty R (5.34)
From Egs. (5.33) and (5.34), the temporal evolution of z is described as
1+ R)ga’ i opWd
_ Ut Rgdlmpn | o 0p0d | (5.35)
8Sdur, (1+ R)pw

By substituting Eq. (5.35) into Eq. (5.32), the temporal evolution of ¢ is derived in the

following way:

0§ pn 4 g l_ bigpr(1+ R) <x W §pd > by ]

Sdjiy T Ty R ) @

=l (2 = i)+ pule = a”) + pR(w = a1 - e O

8kd

+ AR e~ @9/ (5.36)
ga*ou(1+ R)[e — 2§) — 6p0d/((1 + R)p)]

and when the intrusion reaches the lower end of the pipe (¢ = 0), the flow reverses

completely. In this way, Egs. (5.35) and (5.36) describe the behavior of the flow reversal

from up- to down-flow.

5.2.3 Non-dimensionalized model

I have derived the model describing whole oscillatory process including the flow reversal
by using two variables, z and £ (Eqgs. (5.22) and (5.23) from down- to up-flow, and (5.35),
and (5.36) for up- to down-flow). This model can be simplified by describing it in the
non-dimensionalized form. Indeed, Egs. (5.22), (5.23), (5.35), and (5.36) are written as

dz T
1= = - 5.37
07 n (5.37)
dé & 1—3 "
> = —C,—+C 1—e 8@
“ai Y * i (1-e )
g et ¢y a2
Hu € 4
+C T T 5.38
3 ,ELI X M1 dtQ ( )
dz 1— 1
*1d“§ - 1-ve (5.39)
ML
€d§ — Cl 1 _A wx o 02 w‘r + (di_ xde)/d(l _ 67(671*5)/a/)
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Figure 5.5: Definitions of parameters. The parameters with dimension are shown in the left side, while

non-dimensionalized parameters are shown in the right side. Upper picture is the scheme of the temporal
evolution of the height of heavy fluid surface, while lower picture is that of the intrusion length &. x&i),
xf@ and xéi) are the heights of the heavy fluid surface when the flow reverses from ith up- to (i + 1)th
down-flow, from (i — 1)th up- to ith down-flow, and ith down- to ith up-flow, respectively. x4, and
xqp are the heights of the heavy fluid surface when the intrusion length becomes 0.1 mm and 1 mm,

respectively. x&‘e) and x((fe) are the heights at the hydrostatic equilibria where a pipe is filled with light

and heavy fluids at ith cycle, respectively, and 6z(? is the difference between the xffe_l) and ac((fe) . Non-

dimensionalized variables are normalized by 6z(¥), and thus & = 0 and 1 correspond to the :cEf;” and

x((fe) in the dimensional form, respectively. i‘&i), j;.(fs), iéi), 5:((12 and a?gg correspond to J;.(f), xffs), x((f),

xg; and xgg in the dimensional form, respectively. Processes A, B, and C denote the processes where
the fluid flows one-way (£ = 0), where an intrusion grows slowly, and where an intrusion grows rapidly,

respectively.
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_03&67(6‘176)/7’ G ﬁ

i 1—vi D di?’

where € = a/d < 1, § = ¢fa, T = net, n = 2pwply /(@®p}), ¢ = ga’mp? /(16Sky),

fm = pu/pw, fn = pu/pw, e = p/pw = (e £ p0)/Cpw), o = afa, v = v/a,

¢ =1+ DR, and v = D(1 + R)/(1 + DR), with puw the viscosity of water at 25.0 °C,
0.89x1072 Pa-s. O, Cy, Cs, and Oy are given as

b15p5

(5.40)

= (5.41)

o= it (542)

Cy = m, (5.43)
7

Oy = W. (5.44)

& is defined as & = (z — x40)/0x, where 02 = §p0d/(p\? + pLR) is the difference
between the two hydrostatic equilibrium, as shown in Eq. (2.42). Hence, z = 0 and 1
correspond to the hydrostatic equilibrium where a pipe is filled with the heavy and light
fluid, respectively (see Fig. 5.5).

Here, the term (x4 — x40)/d in Eq. (5.40) is neglected, because x4 — xq4. is thought to
be much smaller than the pipe length d. In addition, the last terms in the right hand
sides of Egs. (5.38) and (5.40) are neglected, which is understood from the following
consideration. Now we compare the contributions of the second and last terms in the
right hand sides of Egs. (5.38) and (5.40). From Egs. (5.42) and (5.44), we find that the
ratio of C4 to (s is given as

Cy _ a’m’phprg (Bo12)2 Ko 3e

4 - — 5.45
Cy  64520ppiyd? e 8c2D?’ (5.45)

where 32 = gaSwp? /(16Sutd) and o = 3S6p") /(2a*mpr). As described in Sec. 2.1,
Bol/? < 1 is satisfied in the viscous damping regime and ¢ > 3/2 should be satisfied so
that an oscillation occur. Moreover, D and p /u3, are usually not extremely larger than
unity, and we now consider the case of ¢ < 1. Hence, we can confirm that Cy/Cs < 1
from Eq. (5.45), and thus the contributions of the last terms in the right hand sides of
Egs. (5.38) and (5.40) are considered to be negligible compared with those of the second
terms.

Thus, the non-dimensionalized model is described in the following way: The behavior

A

during the down-flow is described as
z

iy
S (5.46)
dt 05

¢71
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dit fiH fi1 iz

(5.47)

and the flow reverses at é = ¢!, which corresponds to £ = d. On the other hand, the

behavior during the up-flow is described as

dé 11— @
—1
= = , 5.48
Y o (5.48)
aé 1 — 1d i o g e (€ =6/
B LT o VT ety g (5.49)

dt fu, fix fr 1=z
and the flow reverses at £ = 0. Equations (5.46)-(5.49) are considered to be the fun-
damental equations describing the whole oscillatory behavior including the flow reversal

processes.

5.3 Simulations

In order to confirm the validity of the model derived in the previous section, numerical
simulations are performed. Figures 5.6-5.8 show the temporal evolutions of the height
of the heavy fluid surface  and the intrusion length é , which are obtained by simulat-
ing Eqgs. (5.46)-(5.49). The parameters C, Cy, C3, o, and < are chosen so that the
experimental results are well reproduced. Although the density of the heavy fluid py(t)
decreases as the number of cycles increases in the actual system, it is assumed that py(t)
is reset to a finite value at the beginning of the cycle, for simplicity. Runge-Kutta method
is used, and the time step is set at 0.0005.

Figure 5.6 shows the case where the viscosities of the two fluids are identical. As is
expected, the temporal evolution of & shows an exponential response for each up- and
down-flow. On the other hand, é is found to behave in the following way: During the
down-flow, f remains zero when the value of Z is large (process A). As & decreases, é
begins to increase gradually (process B). When é exceeds a certain threshold, it suddenly
begins to increase rapidly (process C). Then, when the intrusion reaches the upper end
of the pipe, i.e., f becomes €1, the flow reverses. On the other hand, during the up-flow,
é remains € ! for small & (process A), and begins to decrease gradually as # increases
(process B). When the intrusion length exceeds a threshold, é begins to decrease rapidly,
and the flow reverses when the intrusion reaches the lower end of the pipe (é = 0). Thus,
the three processes found in the experiments are well reproduced by the simulation.

Figure 5.7 shows the case where the viscosity of the heavy fluid is extremely larger
than that of the light fluid. As is expected, the time constant of the exponential curve
of z is larger in the down-flow than in the up-flow. The temporal evolution of f is also

much affected by the viscosity. For the flow reversal from down- to up-flow, the processes
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Figure 5.6: The temporal evolutions of the height of the heavy fluid surface & (black solid line) and the
intrusion length & (red solid line) simulated from Eqs. (5.46)-(5.49) in the case of g = 0.89x 1073 Pa - s
and pr, = 0.89 x 1072 Pa-s. The oscillatory behavior is well reproduced. The temporal evolution of
% exhibits an exponential response (black dotted line). Before the flow reverses from down-(up-) to
up-(down-)flow, ¢ begins to increase(decrease) rapidly. Lower graphs show the magnified views of the
temporal evolution of é . It is clearly seen that the intrusion grows gradually before the onset of its
rapid growth occurs. The onsets of the gradual growth and rapid growth are shown by filled and empty
arrowheads, respectively. The parameters of the simulation are as follows: 2a = 0.73 mm, d = 70 mm,
pr = 1.057 x 10® kg m~2, pr, = 0.996 x 103 kg m3, S = 7.70 x 10~* m?, R = 1.44 x 107*, by = 10.7,
by = 160, k = 0.40 kg m~'s73, C1=7.11, C2=5.31, C3=0.32, o’=1.82, and ~'=0.30.
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Figure 5.7: The temporal evolutions of the height of the heavy fluid surface & (black solid line) and the
intrusion length & (red solid line) simulated from Eqs. (5.46)-(5.49) in the case of g = 8.90x 1073 Pa - s
and pr, = 0.89 x 1072 Pa-s. The oscillatory behavior is well reproduced. The temporal evolution of
% exhibits an exponential response (black dotted line). Before the flow reverses from down-(up-) to
up-(down-)flow, ¢ begins to increase(decrease) rapidly. Lower graphs show the magnified views of the
temporal evolution of é . It is clearly seen that the intrusion grows gradually before the onset of its
rapid growth occurs. The onsets of the gradual growth and rapid growth are shown by filled and empty
arrowheads, respectively. The parameters of the simulation are as follows: 2a = 0.73 mm, d = 70 mm,
pr = 1.057 x 10® kg m~2, pr, = 0.996 x 103 kg m3, S = 7.70 x 10~* m?, R = 1.44 x 107*, by = 10.7,
by = 160, k = 0.40 kg m~'s73, C1=7.11, C2=5.31, C3=0.32, o’=1.82, and ~'=0.30.
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Figure 5.8: The temporal evolutions of the height of the heavy fluid surface Z (black solid line) and the
intrusion length & (red solid line) simulated from Egs. (5.46)-(5.49) in the case of pug = 0.89x 1073 Pa - s
and up, = 8.90 x 1073 Pa-s. The oscillatory behavior is well reproduced. The temporal evolution of
& exhibits an exponential response (black dotted line). Before the flow reverses from down-(up-) to
up-(down-)flow, € begins to increase(decrease) rapidly. Lower graphs show the magnified views of the
temporal evolution of f . It is clearly seen that the intrusion grows gradually before the onset of its
rapid growth occurs. The onsets of the gradual growth and rapid growth are shown by filled and empty
arrowheads, respectively. The parameters of the simulation are as follows: 2a = 0.73 mm, d = 70 mm,
pu = 1.057 x 103 kg m—3, pp, = 0.996 x 10> kg m~3, S = 7.70 x 107* m?, R = 1.44 x 10~%, b; = 10.7,
by = 160, k = 0.40 kg m~1s73, C1=7.11, C3=>5.31, C3=0.32, o/=1.82, and 7'=0.30.

60



=

L6 E

=

o

=

L 4

=

=

L,

atss. O
) 0
Time (10" s)
(b)

=

g

i e

)

=

2

o

2

5]

g

=
0 -8 -6 -4
Time (10° s)

Figure 5.9: The viscosity-dependent temporal evolution of the intrusion of light fluid calculated from
Egs. (5.46) and (5.47). (a) ug is varied while py, is fixed at 0.89 x 1073 Pa-s. Each curve corresponds
to ug = 1.77, 5.11, 6.53, 9.06, 11.96, 14.30, and 18.02 (x10~3 Pa - s) from right to left, respectively. (b)
ur, is varied while py is fixed at 2.63 x 1073 Pa-s. Each curve corresponds to uy = 0.89, 1.47, 2.43,
4.36, 6.67, 11.05, and 14.18 (x1073 Pa - s) from right to left, respectively. The dotted lines denote 0.1
mm and 1 mm of intrusion length. The parameters of the simulation are as follows: a = 0.365 mm,
d =70 mm, pg = 1.057 x 10> kg m ™3, pp, = 0.996 x 103 kg m ™3, S = 7.70 x 10~* m?, R = 1.44 x 1074,
by = 10.7, by = 160, k = 0.40 kg m~'s~3, C;=7.11, C»=5.31, C3=0.32, o’=1.82, and ~'=0.30.
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B and C begin even when z is still large, and hence the flow reverses for relatively large
2 compared with the case shown in Fig. 5.6. On the contrary, for the flow reversal from
up- to down-flow, the processes B and C do not begin until the value of  becomes close
to the asymptotic value of the exponential curve, and as a consequence the flow reverses
for relatively large £ compared with the case shown in Fig. 5.6.

The case where the viscosity of the light fluid is extremely larger than that of the
heavy fluid is shown in Fig. 5.8. Obviously, the opposite trend to Fig. 5.7 is shown: The
time constant of the exponential curve of z is larger in the up-flow than the down-flow.
For the flow reversal from down- to up-flow, the processes B and C do not begin until
the value of Z becomes close to the asymptotic value of the exponential curve, and as a
consequence the flow reverses for relatively small z. For the flow reversal up- to down-
flow, the processes B and C begin even when Z is still small, and hence the flow reverses
for relatively small z.

Figure 5.9(a) shows the viscosity dependence of the temporal evolution of £ at the flow
reversal from down- to up-flow, which is obtained by solving Egs. (5.46) and (5.47). In
this figure, ¢ is redefined so that its origin agrees with the time when the intrusion reaches
the upper end of the pipe, £ = 70 mm, which corresponds to the moment when the flow
reverses completely. When py is increased while yy, is kept constant, the intrusion of
the light fluid tends to last for an extremely long time before the flow reversal occurs
and the growth rate in the process C becomes relatively small, as shown in Fig. 5.9(a),
which is in good agreement with the experimental result (Fig. 4.8(a)). In the same way
as the experiment, we have defined the parameters z4, and 4, as the values of & when
the intrusion length & becomes 0.1 mm and 1 mm, corresponding to é = 0.27 and 2.74,
which characterize the timings for the beginning of the intrusion and the onset of its
rapid growth, respectively. In addition, we have defined 24 as the value of & when &
becomes 70 mm, corresponding to é = 191.78, which characterizes the timing for the
flow reversal. Then, the parameters Zq,, 4, and 4 are compared with the experimental
parameters Sqq, Sqp and sq. As shown in Fig. 4.7(a), Z44, Zap, and Zq are surprisingly in
good agreement with sq,, Sqp, and sq.

On the other hand, when puy, is increased while uy is kept constant, Tq,, Zqp, and 4
decrease as pr, increases, and their values are generally consistent with the experimental
results, as shown in Fig. 4.7(b). However, the values of Zq,, Z4p, and &4 for large pi,
are slightly lower than sq,, Sqp, and sq, respectively. Further, the growth rate of the
intrusion is generally slower for large pp, in the simulation (Fig. 5.9(b)) than that in the
experiment (Fig. 4.8(b)).

The flow reversal from up- to down-flow is also simulated by using Egs. (5.48) and

(5.49), and compared with the experimental result. Here, the experimental parameter
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sy should be compared with the value of & when the flow reverses from (i — 1)th up- to
ith down-flow, which we denote as #() (see Fig.5.5). However, 2{¥) cannot be obtained
directly from the simulation. Hence, it is derived in the following way. Let 2{) be defined
as the value of Z when the flow reverses from ith up- to (i +1)th down-flow (see Fig.5.5).
Notice that £(!) is obtained directly from the simulation, because it corresponds to the

value of £ when & becomes 0 mm for the ith up-flow. Then, by assuming that the relation

1) ~ () — (=1 holds (see Fig. 5.5), the diffenrece between £V and £00) is

o — a

derived as
@ _ 200 2y — )
u us I0)
o — ofi
A
2 — x

- W - 1 (550)

On the other hand, as we have shown in Chap. 2, 2{)) — x((fg and 6z are described as

. ; spid

1) — 2 = P = (5.51)
D(1 + R)py
4 SoWd

oz = p—(l) (5.52)

(14+ DR)py

By substituting Egs. (5.51) and (5.52) into Eq. (5.50), () is obtained as follows:
S (5.53)
Tus = Ty - —. :
(4

Thus, Z,, can be calculated from fcl(f). In Fig. 4.7, 2, is compared with the experimental
value s,. It is found that Z,, is qualitatively in good agreement with s,, although . is
slightly larger than s, for puyg > pur,.

In this way, the flow-reversal process is generally reproduced by the model, although
not completely. Especially, the behaviors of the slow (process B) and rapid (process C)
growth of an intrusion are well reproduced. Indeed, this behavior is easily understandable
by the following considerations. Let f(€) be defined as the right hand side of Eq. (5.47).
Because 7 is a slowly varying variable compared with f with respect to time, which can
be deduced from Egs. (5.46) and (5.47), & is regarded as a parameter characterizing the
functional form of f (f ). Figure 5.10 shows the Z-dependence of f (f ), where the functional
forms of F| = —Cy/jn#, F) = Cy/fu - (1 — 2)(1 — e~¢/%"), and Fi = Csin/fu - e~$1' /%,
are also shown. Notice that FY, F}, and F} are originated from the viscous drag force due
to the flow, the hydrostatic pressure gradient, and the effect of the acceleration of the

fluid that has passed through the pipe, respectively. When the value of z is large, the
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Figure 5.10: The functional form of f(§) (bold black line), F{ (red solid line), Fy (green solid line), and
F} (blue solid line) in the case of ip=2.96 and fi;,=1.00. The value of % is varied: (a) &= 0.55, (b)
i= 0.38, (c) &= 0.32, and (d) 2= 0.28. The arrows denote the stable solution of Eq. (5.47), & = &.
The parameters of the simulation are as follows: ¢ = 0.365 mm, d = 70 mm, pg = 1.057 x 10% kg m~3,
pr, =0.996x10°kg m™3, S = 7.70x 1074 m?, R = 1.44x 1074, by = 10.7, by = 160, k = 0.40 kg m~'s~3,
Ch=7.11, C2=5.31, C3=0.32, a/=1.82, and ~'=0.30.
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Figure 5.11: The functional form of f(&) (bold black line), Fy (red solid line), Fy (green solid line), and
F} (blue solid line) in the case of fiy=10.00 and fi,=1.00. The value of & is varied: (a) &= 0.55, (b)
i= 0.38, (c) &= 0.32, and (d) 2= 0.28. The arrows denote the stable solution of Eq. (5.47), £ = &.
The parameters of the simulation are as follows: a = 0.365 mm, d = 70 mm, pg = 1.057 x 103 kg m~3,
pL = 0.996x103 kg m~3, S = 7.70x107* m?, R = 1.44x 104, by = 10.7, by = 160, k = 0.40 kg m~'s~3,

C1=7.11, C»=5.31, C5=0.32, a’=1.82, and 7'=0.30.
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Figure 5.12: The functional form of f(§) (bold black line), F| (red solid line), Fj (green solid line), and
F} (blue solid line) in the case of ip=2.96 and [i;,=7.00. The value of & is varied: (a) &= 0.55, (b)
i= 0.38, (c) #= 0.32, and (d) 2= 0.28. The arrows denote the stable solution of Eq. (5.47), & = &.
The parameters of the simulation are as follows: a = 0.365 mm, d = 70 mm, pg = 1.057 x 103 kg m—3,
pr, = 0.996x 103 kg m~3, § = 7.70x 10~4 m2, R = 1.44x10~%, b; = 10.7, by = 160, k = 0.40 kg m~'s~3,

C1=7.11, Cy=5.31, C3=0.32, o/'=1.82, and +'=0.30.
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intrusion does not occur and f remains zero, because the relation f(0) < 0 clearly holds
owing to the large contribution of F| (process A) (Fig. 5.10(a)). However, when & is
decreased, f(0) becomes positive, because the contribution of Fj becomes large and also
because the contribution of F| decreases while that of F} increases. Then, the relation
f(é) = 0 leads to a positive solution & with f’(éo) < 0; hence, ¢ = & becomes a stable
solution of Eq. (5.47). Thus, the light fluid begins to intrude into a pipe (process B)
(Fig. 5.10(b)). As & decreases much more, & increases gradually (Fig. 5.10(c)), and when
the summation of F and F} overcomes F, the solution of f(£) = 0 vanishes, which leads
to f (f) > 0 for all £ (Fig. 5.10(d)). Thus, the intrusion becomes accelerated suddenly
(process C), and the flow reverses completely when the tip of the intrusion reaches the
upper end of the pipe (€ = e™1).

~

When the viscosities of the fluids are varied, the functional form of f(£) changes sig-
nificantly, as shown in Figs. 5.11 and 5.12. For large /i, f(£) becomes relatively large,
especially for small £, which is due to the relatively large contribution of F. 5 (Fig. 5.11).
Thus, the intrusion and hence the onset of its rapid growth occur even when Z is still
large. On the other hand, for large jir,, the value of f (é ) generally becomes small because
of the large contribution of F| (Fig. 5.12). Hence, the intrusion and the onset of its rapid
growth occur, when z becomes sufficiently small. In this way, the viscosity dependence

of Tqa, Tap, and z4 are well explained.
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Chapter 6

Other factors related to oscillation

In the previous chapters, I have shown that the behavior of density oscillation, particu-
larly that of the flow-reversal process, is affected by the viscosities of the fluids, and have
explained it using a model, in which the forces acting on a unit volume element at the
tip of an intrusion at the flow-reversal process are considered. However, the behavior of
density oscillation is thought be also affected by several factors other than the viscosity.
In this chapter, the effects of the length and diameter of a pipe, the density difference

between the fluids, and the fluid materials are investigated.

6.1 Pipe length

It is considered that the pipe length relates to the flow-reversal process. I have per-
formed the experiments, in which the pipe lengths are varied from 10 mm to 70 mm,
while the pipe diameter is kept constant at 0.73 mm. For each pipe length, the viscosity
of heavy fluid puy was varied, while that of light fluid puy, is kept constant. In the present
experimental conditions, 30'/2/4 < 8.84 x 1072 is satisfied so that the viscous damping
regime (see Sec. 2.1) is employed!'. Each up- and down-flow is found to be fitted well
using an exponential function. As shown in Fig. 6.1, the difference between the asymp-
totic values for the exponential curves fitted to adjacent up- and down-flows A is almost
consistent with the difference between the two hydrostatic equilibria dx, even when the
length of a pipe and the viscosity of the fluid are varied.

The temporal evolution of an intrusion is shown in Fig. 6.2. The time and intrusion
length are described by the non-dimensional variables ¢ and é , respectively, because the
non-dimensional description is helpful for us to understand whether the model proposed

in the previous section (Egs. (5.46)-(5.49)) is valid or not. Namely, if the model is valid,

LAlthough Bo!/2 <« 1 had to be satisfied so that the viscous damping regime was employed in the theory previously
reported [31], it is obvious that it can be employed as far as Bo1/2/4 < 1 is satisfied, because in this case the non-linear

terms are negligibly small compared with the viscous terms in Egs. (2.15) and (2.16).
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Figure 6.1: The ratio of the difference between the asymptotic values for the exponential curves fitted
to adjacent up- and down-flows A to the difference between the two hydrostatic equilibria dx for various
pipe lengths: 70mm (open circle), 50mm (filled square), 20mm (filled up triangle), and 10mm (filled
down triangle). Each data is averaged over 4 cycles from the 2nd to the 5th. py is varied while pur, is
fixed at 0.89 x 1073 Pa - s.

the processes A and B and the non-dimensionalized time leading to the flow reversal in
the process C will not be affected by the pipe length, since the pipe length relates only
to € in Eqs. (5.46) and (5.47), and since df/df o €' is satisfied during the process C
while the flow reverses at é =L

It is clearly seen in Fig. 6.2 that even when the pipe length is varied, an intrusion
grows slowly at first (process B), which is followed by the rapid growth (process C), and
the growth rate in these processes decreases significantly as upy is increased. However,
as the pipe length is shortened, the non-dimensionalized time taken for the processes B
and C decrease significantly, which implies that the non-dimensionalized model is not
quantitatively valid with respect to the change of the pipe length.

Figure 6.3 shows the heavy-fluid viscosity dependence of sq,, Sqp, Sq, and s, for various
pipe lengths. We find that the experimental results are almost in good agreement with the
simulations in the case of a long pipe. However, as the pipe length is shortened, sq; and
sq for large py become slightly larger than the simulated values, and also the difference
between sq; and sq becomes smaller than the simulated result. These tendencies are
considered to be originated from the fact that the non-dimensionalized time taken for
the processes B and C decreases as the pipe length is shortened.

The case where the pipe length is extremely short is also examined. Because it is

difficult to attach a short pipe at the bottom of the inner container, the orifice is made
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Figure 6.2: The temporal evolution of an intrusion for the pipe length of (a) 70 mm, (b) 50mm, (c)
20mm, and (d) 10mm. The data are shown in the non-dimensional form. The origin of the time £ is
chosen to be the time when the flow reverses completely. For each pipe length, wpy is varied while pyp, is
fixed at 0.89 x 1073 Pa-s. The dotted lines indicate 0.1 mm and 1 mm of intrusion length. In (d), the
data for f > 10 are not shown because the intrusion could not be observed because of the bottom of the

inner container.
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Figure 6.3: Viscosity dependence of s, (filled up triangle), sq (filled down triangle), sq, (open square),

and sqp (open circle) for the pipe length of (a) 70 mm, (b) 50 mm, (c¢) 20mm, and (d) 10mm. gy is

varied while py, is fixed at 0.89 x 1072 Pa -s. The data are averaged over 4 cycles from the 2nd to the

5th. Simulated results &, (solid line), Zq (bold line) #q, (dashed line), and Zq; (dotted line) are also

shown. The parameters of the simulation are as follows: a = 0.365 mm, py = 1.057 x 103 kg m~3,

3

pr, = 0.996 x 103 kg m™3, pup, = 0.89 x 1073 Pa-s, S = 7.70 x 107% m?, R = 1.44 x 1074, b; = 10.7,
by =160, k = 0.40 kg m~'s73, C;=7.11, C3=>5.31, C53=0.32, o/=1.82, and 7'=0.30.
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Figure 6.4: The temporal evolution of the height of the heavy fluid surface when a pipe is replaced by
an orifice. The thickness of the bottom of the inner container is 2 mm, while the diameter of an orifice
is 1.12 mm. The viscosities of the heavy and light fluids are 1.77 x 1072 Pa-s and 0.89 x 1072 Pa-s,
respectively. Although each up- and down-flow is seemingly well fitted by an exponential function, its

asymptotic value is not consistent with that at the hydrostatic equilibrium (see Fig. 6.5).
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Figure 6.5: The ratio of the difference between the asymptotic values for the exponential curves fitted
to adjacent up- and down-flows A to the difference between the two hydrostatic equilibria dz when a
pipe is replaced by an orifice. The thickness of the bottom of the inner container is 5 mm (black filled
square), 3 mm (red circle), and 2 mm (green up triangle). Each data is averaged over 4 cycles from the

2nd to the 5th. uy is varied while py, is fixed at 0.89 x 1073 Pa - s.
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Figure 6.6: Definition of parameters. Upper picture is the scheme of the temporal evolution of the height
of heavy fluid surface, while lower picture is that of the intrusion length &. xl(f_l) and :c((ii) are the heights
of the heavy fluid surface when the flow reverses from (¢ — 1)th up- to ith down-flow and ith down- to ith
up-flow, respectively. x4, and x4, are the heights of the heavy fluid surface when the intrusion length
becomes 0.1 mm and 1 mm, respectively. 2 and xé’e) are the heights at the hydrostatic equilibria
where a pipe is filled with light and heavy fluids, respectively, and dz(?) is the difference between the
two. qi1, g2, and ¢3 characterize the difference between xl(f_l) and xézg, x((ili and x((fg, and mgg and mff)7

respectively, which are normalized by dz(*). ¢ is the summation of ¢1, ¢2, and g¢s.
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Figure 6.7: Viscosity dependence of ¢ when a pipe is replaced by an orifice. The thickness of the bottom
of the inner container is 5 mm (black filled square), 3 mm (red circle), and 2 mm (green up triangle). For
pp > 14 x 1073 Pa - s, the reproducibility of oscillation was poor and simultaneous up- and down-flow
within an orifice was often observed. For comparison, the case where a pipe is used (the pipe diameter

and length is 0.73 mm and 70 mm, respectively) is also shown (black open square).

at the bottom of the inner container by using a drilling machine. The diameter of the
orifice is 1.12 + 0.02 mm, and the thickness of the bottom of the inner container (and
hence the length of the orifice) is varied from 2 mm to 5mm. Because it is difficult to
observe the flow inside an orifice, only the height of the heavy fluid surface is measured.

Figure 6.4 shows the temporal evolution of the heavy fluid surface in the case where a
pipe is replaced by an orifice. Although each up- and down-flow is seemingly well fitted
by an exponential function, the difference between the asymptotic values for the adjacent
exponential curves A is not consistent with the difference between the two hydrostatic
equilibria dz, as shown in Fig. 6.5. This is probably because S/N ratio is low compared
with the case of a long pipe and also because nonlinear damping terms in Egs. (2.15) and
(2.16) are no longer neglected in the present case. Thus, the parameters sq, Sy, Sdq, and

sqp cannot be used for the present analysis. Instead, a new parameter ¢ is introduced as

(i-1) _ ,.(8)
o Ly Lq

where (...) denotes the average over four cycles from the 2nd to 5th. In fact, ¢ is an

follows:

appropriate parameter for estimating the timings of the flow reversals because ¢ be-
comes large when the flow reversal occurs near the hydrostatic equilibrium (see Fig. 6.6).
Figure 6.7 shows the relation between ¢ and py for various thickness of the bottom of

the inner container. It is clearly seen that ¢ decreases significantly with increasing puy,
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although it does not depend much on py when the pipe length is long. This tendency
corresponds to the increase of s4 for large uy in Fig. 6.3. Moreover, for extremely large
p, the reproducibility of oscillation is poor, and simultaneous up- and down-flow in the

orifice instead of oscillation is often observed.

6.2 Pipe diameter

Next, the viscosity-dependent flow-reversal processes for the inner pipe diameter of 1.60
mm and 3.50 mm are investigated. In the experiments, the pipe length is set constant at
50 mm and the surface areas of the inner and outer containers are set at 1.66 x 10~3 m?
and 1.24 x 1072 m?, respectively. In the case of the pipe diameter of 3.50 mm, high speed
camera (Photron FASTCAM Viewer) is used for the observation of the flow inside the
pipe because the flow reversal occurs rapidly, and the pictures are taken at an interval
of 0.33 s. Figure 6.8 shows an example of the pictures taken by the high speed camera.
The interface between the heavy and light fluids is clearly seen.

Figure 6.9 shows the temporal evolution of an intrusion. It is found that even when the
diameter is varied, the flow reversal begins with an intrusion (process B) and is followed
by a rapid growth (process C), and the growth rate of the intrusion decreases significantly
with increasing puy. Moreover, the onset of the rapid growth begins at é ~ 1, which does
not depend significantly on the diameter. However, in the case of the large diameter,
the intrusion is accelerated gradually and thus the processes B and C are not clearly
separated. In addition, for extremely large uy with the pipe diameter of 3.50 mm, an
intrusion of light fluid is always observed during the down-flow, and the oscillation is
quite irregular, as shown in Fig. 6.10.

Next, we analyze the height of the fluid surface at which the onset of intrusion and its
rapid growth occurs. Because the nonlinear damping terms in Eqgs. (2.15) and (2.16) are
not negligible and hence each up- and down-flow is no longer fitted by an exponential
function, the parameters sq, S,, Sdqq, and sqp cannot be used for the present analysis.

Hence, the flow-reversal process is analyzed using the following parameters (see Fig. 6.6):

-

@1 = (S.T(z) )
_whe— i

q2 51’ () )

_/al—ad
q3 S () )

where (...) denotes the average over four cycles from the 2nd to 5th. Here, 24, and

xqp denote the height of the heavy fluid surface when the non-dimensionalized intrusion
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(a) (b)

(c) (d)

Nk

Figure 6.8: Microscopic images of the intrusion in the time course of down-flow ((a)—(b)—(c)—(d))
taken by the high speed camera. An intrusion of light fluid is clearly seen (arrowheads). The
experimental conditions are as follows: 2a=3.5 mm, d=50 mm, pg = 1.056x10% kg-m—3, p;, =
0.997x10% kg - m~3, pug = 1.76 x 1073 Pa-s and ur, = 0.89 x 1073 Pa-s.
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Figure 6.9: The temporal evolution of an intrusion for the pipe diameter of (a) 1.60 mm and (b) 3.50
mm. pg is varied while py, is fixed at 0.89 x 1073 Pa -s. The data are shown in nondimensional forms.

The dotted lines indicate £ = 0.27 and 2.74.
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Figure 6.10: The temporal evolution of the height of the heavy fluid surface for the pipe diameter of
3.50 mm with pug = 14.02 x 1073 Pa-s and pp, = 0.89 x 1072 Pa-s. The waveform of oscillation is

irregular.

length é becomes 0.27 and 2.74, respectively. Notice that the parameter ¢ introduced
in Eq. (6.1) corresponds to the summation of ¢i, g2 and ¢3. Although we cannot ex-
actly know the timing of the flow reversal from these parameters, q;, g2 and g3 roughly
characterize the durations of the processes A, B, and C, respectively.

Figure 6.11 shows the heavy-fluid viscosity dependence of qi, g2, q3, and ¢ for the pipe
diameter of 1.60 mm and 3.50 mm. For comparison, the values of these parameters at
the experimental conditions shown in Chap. 3, where the pipe diameter of 0.73 mm
is employed, are shown in Fig. 6.12. It is clearly seen in Fig. 6.12 that ¢; decreases,
while ¢o and g3 increase as puy is increased, whereas ¢ does not depend much on .
However, when the pipe diameter is large, ¢o and g3 are relatively small for large uy,
while ¢ is relatively large particularly for small uy, and as a consequence ¢ decreases
with increasing py, as shown in Fig. 6.11.

From these results, I speculate that the flow reversal from the down- to up-flow in the
case of the large pipe diameter occurs in the following way: For small py, the intrusion
does not occur until the height of the fluid surface becomes close to the hydrostatic
equilibrium. On the other hand, for large uy, the onset of an intrusion occurs even when
the height of the fluid surface is still high, and once the intrusion occurs, it is gradually

accelerated and then the flow reverses immediately.
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for the pipe diameter of (a) 1.60 mm and (b) 3.50 mm. pg is varied while py, is fixed at 0.89x 1073 Pa - s.
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Figure 6.12: The values of ¢; (open square), g2 (open circle), gs (open down triangle) and ¢ (filled

square) for the pipe diameter of 0.73 mm. The experimental conditions are same as those in Chap. 3.

py is varied while p, is fixed at 0.89 x 1073 Pa-s.
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Figure 6.13: Density-difference dependence of the temporal evolution of the intrusion. Because of the

limitation of the visual field under the stereomicroscope, an intrusion length of more than 8 mm is not

observed. The dotted lines indicate 0.1 mm and 1 mm of intrusion length.
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Figure 6.15: Temporal evolution of the height of the heavy fluid surface when dp is extremely small:
pL = 0.997x10% kg - m~3, pg = 1.003x10% kg - m~3, ug = 1.39x1073 Pa - s, and puy, = 0.86x 1073 Pa - s.
Each branch for up- and down-flow is well fitted by an exponential curve (dotted line), but deviates

from it significantly before the flow reversal.
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Figure 6.16: Density-difference dependence of s, (filled up triangle), sq (filled down triangle), sq, (open
square), and sqp (open circle). The data are averaged over 4 cycles from the 2nd to the 5th. The density
of the light fluid was kept constant at 0.997x10% kg - m—3. The viscosities of the heavy and light fluids
were (1.45 4 0.07) x 1073 Pa-s and 0.86 x 1072 Pa - s, respectively. Because the interface between the
fluids is not clearly observed when density difference is small, sq, and sq; are not shown for small dp.

Simulated results &, (solid line), Z4 (bold line) &4, (dashed line), and Z4; (dotted line) are also shown.

The parameters of the simulation are as follows: a = 0.365 mm, d = 50 mm, pr, = 0.996 x 10% kg m~3,
pp = 1.45 x 1073 Pa s, uy, = 0.89 x 1073 Pa-s, S = 1.66 x 1073 m?2, R = 0.337, b; = 10.7, by, = 160,

k=1.07x107* x §p? kg m~'s™3, o/=1.82, and +'=0.30.
6.3 Density of fluid

Next, the density difference between the fluids is varied. In the experiments, glu-
cose solution and water are used as the heavy and light fluids, respectively, and the
concentration of the glucose solution is varied, which changes the density of the heavy
fluid. Moreover, a small amount of methyl-cellulose is dissolved into the heavy fluid
to keep the viscosity nearly constant. The viscosities of the heavy and light fluids are
(1.4540.07) x 1073 Pa-s and 0.86 x 1073 Pa - s, respectively. The surface areas of the
inner and outer containers are 1.66 x 1072 m? and 4.93 x 10~ m?, and the diameter and
length of a pipe are 0.73 mm and 50 mm, respectively. The temperature of the fluid is
kept at 26.5 £+ 0.5°C.

Figure 6.13 shows the temporal evolution of the intrusion length. Even when the
density difference between the fluids dp is varied, the flow reversal begins with an intrusion
(process B) and is followed by the rapid growth (process C). Noticeably, the onset of the
rapid growth begins at about 1 mm in the intrusion length, irrespective of §p. After the
onset of the rapid growth, the growth rate depends much on dp. As shown in Fig. 6.14, the
average growth rate from 2 mm to 8 mm of the intrusion length is almost in proportion

to dp.
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Figure 6.17: The simulated result of the temporal evolution of an intrusion when Jp is varied while py,
is fixed at 0.997x10% kg - m~3. Each curve corresponds to dp = 0.013, 0.019, 0.025, 0.036, 0.042, 0.047,
0.058, and 0.074 (x10% kg - m~3) from left to right, respectively. The dotted lines denote 0.1 mm and
1 mm of intrusion length. The parameters of the simulation are as follows: ¢ = 0.365 mm, d = 50 mm,
pr, = 0.996 x 10> kg m™3, puy = 1.45 x 1073 Pa-s, puy, = 0.89 x 1072 Pa-s, S = 1.66 x 1073 m?,
R =0.337, by = 10.7, by = 160, k = 1.07 x 10~* x §p? kg m~'s™3, o/=1.82, and 7'=0.30.

Figure 6.15 shows the temporal evolution of the height of the heavy fluid surface in
the case where the density difference dp is extremely small. Even in this case each
up- and down-flow is fitted by an exponential function, and the asymptotic values of the
exponential functions are generally in good agreement with the theoretical values derived
from Egs. (2.15) and (2.16). However, the height clearly deviates from the exponential
response before the flow reversal, which is thought to be due to the slow growth of the
intrusion in the process C.

The density-difference dependence of sq, sy, Sq, and sqp is shown in Fig. 6.16. Although
S4q and sq; do not depend much on dp, sq decreases while s, increases as dp is decreased.
This is probably because the time taken for the process C is extremely long when dp is
small and thus the flow-reversal process does not completely finish until the height of
the heavy fluid surface approaches near the hydrostatic equilibrium, while the processes
A and B do not depend on dp.

These density-dependent behaviors are compared with the simulations of the model.
Figure 6.17 shows the simulated result of the temporal evolution of the intrusion length
where the parameters by, by and k are chosen so that the relation k& o< §p? is satisfied,
while b; and by take constant values with regard to dp (hence, Cy, Cs, and Cj are all in

proportion to dp). Obviously, the onset of the rapid growth of intrusion occurs at the
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Figure 6.18: Viscosity dependence of s, (filled up triangle) and sq (filled down triangle) when glucose
solution and water were used as the heavy and light fluids with methyl-cellulose dissolved to change the
viscosity. The data are averaged over 4 cycles from the 2nd to the 5th. Simulated results &, (solid line)
and 24 (bold line) are also shown. (a) uy is varied while py, is fixed at 0.89 x 1073 Pa - s. (b) puy, is varied
while pu is fixed at 1.40 x 1072 Pa -s. The parameters of the simulation are as follows: a = 0.365 mm,
d =50 mm, py = 1.060 x 10% kg m~3, p;, = 0.996 x 10> kg m3, § = 1.66 x 1073 m?, R = 7.76 x 1072,
by = 10.7, by = 160, k = 0.42 kg m~'s3, o/=1.82, and +'=0.30.
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same intrusion length even when dp is varied, and the growth rate during the process
C is slow for small dp, which is qualitatively in good agreement with the experimental
result. The density-difference dependence of the values of 24, T, T4, and Zq, is shown in
Fig. 6.16. It is clearly seen that 24, T, T4, and 24, are generally in good agreement with

Sd, Su, Sda and sqp, although z, and 4, are slightly larger than s, and sq,, respectively.

6.4 Fluid materials

While the mixtures of water, one-propanol, and glycerin are used in the experiments
shown in Chap. 4, the viscosity dependence of the flow reversal is also investigated
with using other materials: glucose solution and water are used as the heavy and light
fluids, respectively, and methyl-cellulose is dissolved into the fluids to change the viscosity
without changing the density. The densities of the heavy and light fluids are kept constant
at (1.060 & 0.002)x10% kg - m~3 and 0.997x10% kg - m~3, respectively. In the present
experiment, the surface areas of the inner and outer containers are 1.66 x 10~% m? and
2.34 x 1072 m?, and the length and the diameter of a pipe are 50 mm and 0.73 mm,
respectively.

Figure 6.18 shows the viscosity dependence of sq and s, when glucose solution and
water are used as the fluids. The simulated results obtained from Egs. (5.46)-(5.49) are
also shown. It is obvious that the viscosity dependence of sq and s, is well reproduced by
the model. It is noted that the temporal evolution of an intrusion is not quantitatively
measured in the present experiment, and thus sq, and sq, are not obtained. However,
it is observed by the naked eyes that an intrusion grows extremely slowly at the flow
reversal from down- (up-) to up- (down-) flow for large py(jir,), which qualitatively agrees
with the results when the mixtures of water, 1-propanol, and glycerin are used as the
fluids.

6.5 Summary

In this section, I will briefly summarize the results obtained when a short pipe or an
orifice is employed (Sec. 6.1), when the pipe diameter is large (Sec. 6.2), when the
density difference between the fluids is small (Sec. 6.3), and when other materials are
used as the fluids (Sec. 6.4).

(Short pipe)

e Non-dimensionalized time taken for the processes B and C is relatively short.
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e sqp, and sq are relatively large.
e The difference between sq;, and sq is relatively small.
(Orifice)
e ¢ decreases with increasing py.
e Simultaneous up- and down-flow is observed for extremely large py.
(Large pipe diameter)
e Onset of the rapid growth of intrusion occurs at é ~ 1.
e An intrusion is accelerated throughout the processes B and C.
e ¢, and g is relatively small for large uy.
e ¢ is relatively large for small py.
e Irregular oscillation is observed for extremely large py.
(Small density difference)
e Onset of the rapid growth of intrusion occurs at & ~ 1 mm.
e Growth rate in the process C is in proportion to dp.

e The height of the fluid surface clearly deviates from exponential response before the

flow reversal.
e 54 is relatively small while s, is relatively large.
e The above results are reproduced by the simulation by putting k oc dp%.
(Other fluid materials)

e The result is well reproduced by the simulation.
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Chapter 7

Discussion

7.1 Mechanism of density oscillation

I have investigated the mechanism of density oscillation experimentally and theoreti-
cally. Particularly, I have focused on the mechanism of the flow-reversal process, which
is essential but has not been well understood [31,40]. In the above experiments, it is
found that the flow reversal from down- to up-flow in a density oscillator occurs in the
following way: At first, the heavy fluid flows in one-way (process A). After a while, the
light fluid intrudes into the pipe and the intrusion grows rather slowly (process B). When
it grows to some extent, it suddenly begins to grow rapidly (process C). Finally, the flow
reverses completely when it reaches the upper end of the pipe. The flow reversal in the
opposite direction also occurs in the similar way.

When the viscosities of the fluids are changed, the flow-reversal process is found to
change significantly. In the case of the flow-reversal from down- to up-flow, for instance,
an intrusion of the light fluid starts long before the flow reversal and grows slowly when
the viscosity of the heavy fluid is larger than that of the light fluid, while an intrusion
does not occur until the height of the heavy fluid surface becomes close to that at the
hydrostatic equilibrium when the viscosity of the light fluid is larger than that of the
heavy fluid.

Since it is difficult to analyze the viscosity-dependent flow-reversal process strictly, I
have described it by a simple model in which three forces acting on the tip of the intrusion
(viscous drag force F, hydrostatic pressure gradient F,, and the effect of acceleration of
fluid that has passed through a pipe F3) are taken into account. Then, it is found that
the model well reproduces the experimental result.

Although the model reported previously (Eq. (2.29)) described the phenomenological
behavior of oscillation [32-34], the essential mechanism of the oscillation was not well

understood. On the contrary, the present model properly describes the whole oscillatory
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behavior based on its essential mechanism. Namely, the present model properly includes
the mechanism of the flow-reversal process, which is a key process of the oscillation.
Indeed, I conclude from the present model that the flow-reversal process occurs in the

following way:

1. The acceleration of the flow that has passed through a pipe causes the contraction

of the flow, which triggers the fluid to intrude into the pipe (F3).

2. After the intrusion occurs, it does not grow immediately but grows slowly, because

the viscous drag force (F7) hinders the growth of the intrusion.

3. As the height of the heavy fluid surface approaches the hydrostatic equilibirium, the
viscous drag force (F7) decreases while the hydrostatic pressure gradient (F3) which
accelerates the intrusion increases. Then, at a threshold, the intrusion is accelerated

suddenly and begins to grow rapidly.

4. The flow reverses completely when the intrusion reaches the upper (lower) end of

the pipe.

Thus, the present model is expected to become a useful model for the future studies
on the density oscillator. In the following, I will discuss several important aspects of the

model in detail.

7.1.1 Properties of forces

From the model, the properties of the three forces can be well understood. In the
non-dimensionalized model (Egs. (5.46)-(5.49)), the three forces are characterized by FJ,
Fj, and F3. As shown in Sec. 5.3, the contributions of these forces vary depending
on the value of the non-dimensionalized height of the heavy fluid surface 2. When the
non-dimensionalized viscosities iy and fif, are constants of O(1), the contributions of F]
and F} are of the same order, and F is dominant at large &, while F} is dominant at
small 2. The contribution of Fj is small as compared with F| and Fj when z is large.
However, when the value of Z becomes small, F3 becomes comparable to F| and Fj and
causes the intrusion (see Fig. 5.10).

When the viscosity of the fluid is changed, the properties of the forces change con-
siderably: the contribution of Fj becomes relatively large for large fiyy, while that of F]
becomes relatively large for large fir,. Such viscosity dependence is originated from the
fact that the viscosity of the fluid at the interface iy depends both on the viscosities of
the heavy and light fluids while the velocity of down- (up-) flow depends solely on the
viscosity of the heavy (light) fluid, and that the effect of the acceleration of the flow
that has passed through the pipe Fj is related to the velocity of the flow. Although
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the effect of the viscosity to the flow-reversal process was not considered in the anal-
ysis reported previously [40], I have properly taken it into account and described the
viscosity-dependent behaviors quite well.

The properties of the forces are characterized by the parameters o/, v/, Cy, Cy, and
(3, as well as by the viscosities of the fluids. o and +' characterize not only the region
where the pressure gradient is not simply derived from the height of the fluid surface,
but also the intrusion length where the onset of its rapid growth occurs. Obviously, the
characteristic length of this region is thought to be of the order of the pipe diameter. In
fact, the onset of the rapid growth of an intrusion occurs necessarily at f ~ 1, as shown
in Chaps. 4 and 6. Thus, it is expected that o’ and 4 are constants of O(1). Actually,
the values we set to fit the experimental result, i.e., o' = 1.82 and +' = 0.30, are within
this order, and these values do not vary depending on experimental conditions. Hence,
with regard to the parameters o’ and 4/, the present model has a universal character.

On the other hand, the parameters C, Cs, and C5, which characterize the contribu-
tions of Fy, Fj, and F}, respectively, are thought to depend on the pipe diameter (see
Egs. (5.41)-(5.43)). As shown in Sec. 6.2, when the pipe diameter is large, ¢; is relatively
large for small iy and hence it is considered that in this case an intrusion does not oc-
cur until the height of the fluid surface approaches close to the hydrostatic equilibrium.
However, ¢; decreases significantly as jig is increased. This result implies that the con-
tribution of F] is larger than that of F} for the large pipe diameter, and the contribution
of F} becomes comparable to F| as fiy is increased. Hence, it is considered that C and
Cj5 are relatively large while Cs is relatively small for the large pipe diameter.

C1, Cs, and C3 contain the parameters by, by, and k, which are determined experi-
mentally. If we assume by, by, and k are constants with regard to the pipe diameter,
it is found from Eqs. (5.41)-(5.43) that C; o< a2, Cy x a2, and C3 o a™*, respec-
tively. However, since the contributions of C'; and C5 become relatively large as the pipe
diameter increases, it is considered that k increases significantly as the pipe diameter in-
creases. Moreover, b; is also thought to increase as the pipe diameter increases, although
its detailed mechanism is still unclear.

The parameters C, Cy, and C3 also depend on the density difference between the
fluids 0p. In Sec. 6.3, I have shown that the intrusion length where the onset of the
rapid growth of the intrusion occurs does not depend on dp and the growth rate during
the process C is in proportion to dp. These behaviors have been well reproduced by the
simulation with putting k¥ as k o dp? and b, and b, as constants with regard to dp, so
that C}, Cy, and C3 become all in proportion to dp. Intuitively, the increase of k with
increasing dp is qualitatively understandable, because the acceleration of the fluid that

has passed through a pipe is thought to be in proportion to dp. However, the reason
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that & is in proportion not to dp but to p? is still unclear.

7.1.2 Future problems concerning the model

As described above, the model contains the essence of density oscillation. Whereas the
model describes the behavior of oscillation fairly well, there remains some problems. In

the following, I will discuss them individually.

Growth rate of intrusion

At the derivation of Fj, I have assumed that the shear stress at the pipe wall ¢ is in
proportion to the viscosity at the interface uy, for simplicity. However, it is considered
that 0! is actually in proportion to the viscosity of the fluid of intrusion. Now consider
how the behavior changes if the relation o o gy, is assumed to hold in the case of the

flow reversal from down- to up-flow. In this case, F} is described in the following way:

bi(pa +p) (S . 2\ bour,
o= 2a? (7Ta2x_§> T ¢
obi(pm+pn) S bi(pa ) | Yoo s
N 2a2 7ra2x - 2a2 + a? & (7.1)

where b} is a positive constant. It is found that Eq. (7.1) is obtained by replacing b, in
Eq. (5.8) with by + 2b4ur/(un + pr). Hence, we can regard by as a variable dependent
on the viscosities of fluids: it decreases as py is increased while it increases as py, is
increased. Meanwhile, because the non-dimensionalized parameters C7, Cs, and C3 in
Eqs. (5.47) and (5.49) are all in proportion to by', the growth rate of intrusion is in
proportion to by *. Hence, when py (p1) is large, the growth rate in the process C under
the assumption of o/ o< pr, should be faster (slower) than that under the assumption of
ol o py, while the processes A and B should not be affected by the assumptions.
However, even when o/ o< p is assumed, the growth rate of an intrusion in the case of
iy, > pp at the flow reversal from down- to up-flow is somewhat slower in the simulation
than in the experiment (Figs. 4.8 and 5.9). Hence, if we assume o/, o py,, the discrepancy
of the growth rate between the simulation and the experiment is thought to become large.
Such discrepancy of the growth rate is thought to be closely related to the actual width
of the intrusion within the pipe. As described above, it has been found experimentally
that the width of the intrusion is smaller for py, > py (Fig. 4.10). It is considered that
as the width becomes smaller, the growth of an intrusion becomes less hindered, which
enables the intrusion to grow more rapidly. The reason for the relatively slow growth
rate in the simulation is thought to be due to the neglect of this effect. However, the

reason that the width depends on the viscosities of the fluids is not yet clear.
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It is noted that the fact that &4 becomes slightly lower than sq (Fig. 4.7) is thought to
be due to the discrepancy of the growth rate. The fact that z, is slightly larger than s,
for py > py, is considered in the similar manner. Hence, for the proper description of the

flow-reversal process, the effect of the width of intrusion should be properly considered.

Acceleration effect

As the flow is obstructed by the intrusion, the intrusion should be accelerated because
the intrusion is less obstructed by the flow. Then, the flow becomes much more obstructed
by the accelerated intrusion. In this way, the positive feedback loop should exist at the
flow-reversal process, although it is not considered in the model. In fact, we have observed
that the intrusion is accelerated gradually as the intrusion approaches the upper end of
the pipe. While the acceleration occurs at the late stage of the process C (hence it occurs
out of the visual field of the stereomicroscope) when the pipe diameter is small, it occurs
obviously throughout the processes B and C when the pipe diameter is large, as shown
in Fig. 6.9.

The deviation from exponential response before the flow reversal shown in Figs. 4.1 and
6.15 is thought to be caused by the acceleration of intrusion. Actually, the deviation is
found to occur at the process C, which corresponds to the timing when the acceleration
of intrusion occurs. The deviation is prominent when dp is small (see Fig. 6.15), because
the growth rate during the process C is extremely slow and hence the acceleration of
intrusion is thought to occur also slowly.

The decrease of ¢ and g3 for large uy with increasing the pipe diameter can be also
explained by the acceleration of intrusion. As estimated above, the parameters C4, Cs,
and (3 decrease significantly as the pipe diameter increases if we assume that by, b, and
k are constants. Hence, it is expected that the growth rate of intrusion decreases as
the pipe diameter increases, although by, b, and k£ may depend somewhat on the pipe
diameter. Nevertheless, it is found that ¢ and g3, which characterize the durations of
the processes B and C, respectively, decrease as the pipe diameter increases. This is
thought to be because the acceleration shortens the durations of the processes B and C.
In addition, when the pipe length is short, it is found that the duration of the process C
becomes shorter than that expected from the model (see Fig. 6.2). This is also considered

to be due to the acceleration of intrusion.

Onset of rapid growth

It is shown in Sec. 6.1 that not only the duration of the process C but also the process
B is shorter than that expected from the model when the pipe length is short. Although

the detailed mechanism of the reduction of the duration of the process B is still unclear,
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it is considered that the flow tends to lose its stability even by a slight intrusion when
the pipe length is short, while the flow is relatively stable against a slight intrusion when
the pipe length is long. Thus, more strict analysis of the flow stability is actually needed
to describe the onset of the rapid growth precisely.

Continuous connection between up- and down-flows

In the actual system, the flow reversal proceeds in a continuous manner. However, it
is assumed in the present model that the flow reversal occurs discontinuously when the
intrusion reaches the end of a pipe. Although this assumption is approximately valid in
most of the cases, it is no longer valid when the density difference dp is extremely small,
in which the flow reversal proceeds rather slowly (see Figs. 6.13 and 6.15). For the exact
description of the flow-reversal process, it is clearly needed to improve the model so that

the flow-reversal process is described in a continuous manner.

Interfacial tension

In the experiments shown in Chap. 4, mixtures of water, 1-propanol, and glycerin
were used as the fluids, and their viscosities were varied by changing their compositions.
However, when the composition of the fluid is varied, not only the viscosity but also the
interfacial tension between the fluid and the glass pipe will vary. Thus, it is needed to
exclude the possibility that the interfacial tension plays an essential role for the flow-
reversal process other than the three factors considered in Sec. 5.1. However, I consider
that the main factor causing the change in the flow-reversal process is the viscosity of the
fluids, because similar results for sq and s, are obtainable irrespectively of the materials
employed, as shown in Sec. 6.4. Thus, it seems that the effect of the interfacial tension
between the fluid and the pipe is not essentially important, even if it exists. However,

further investigations are needed to clarify the effect of the interfacial tension in detail.

Disturbance of interface

I have found that the obstruction of the growth of an intrusion due to a disturbance of
the interface occurs when a high-viscosity fluid intrudes into the flow of low-viscosity fluid
(Fig. 4.9). This phenomenon seems to be due to some kind of hydrodynamic instability
at the interface. However, the detailed mechanism of the instability has not been clarified

yet, and thus further study is needed from a hydrodynamic viewpoint.
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Irregular oscillation and simultaneous up- and down-flow

It is found that an irregular oscillation occurs for large puy, when the pipe diameter is
large. In addition, when a pipe is replaced by an orifice, simultaneous up- and down-flow
inside the orifice has been found to occur also for large puy. Although the mechanisms
of these phenomena have not been clarified yet, it is considered that in these cases the
flow inside a pipe cannot exist stably for any height of the fluid surface because of the

obstruction of the flow by an intrusion.

7.1.3 Extension to general cases

I have constructed the model under the assumption of Go'/? < 1, i.e., the viscous
damping regime (see Sec. 2.1), and € = a/d < 1. However, for the full understanding
of the phenomenon, the nonlinear damping terms and the inertia terms in Egs. (2.15),
(2.16), (5.20), and (5.32) should be taken into account. Thus, the flow reversal from
down- to up-flow is described by using Eqs. (2.16) and (5.20) in the following way:

dz
= A, 72
¥ z (7.2)
Ce d2 . Ceo 4 .
-—— = —auD -—z"—¢D .
dé A
¥ (7.4)
dé - Cij o Cageé/
Cimy = —cfuf+ ;“Iz+02(1—@)(1—e—f/a)+3¢2. (7.5)

In the same way, the flow reversal from up- to down-flow is derived from Egs. (2.15) and
(5.32) under the assumption of (x4 — xq4e)/d < 1 as follows:

‘;f _ (76)
Zf;jé — —ﬂLé—C;g,%QJrgb(l—wf), (7.7)
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Thus, Eqgs. (7.2)-(7.9) are thought to be the generalized description of density oscilla-
tion. However, it should be noted that it is not yet clear whether these equations really
reproduce the oscillatory behaviors correctly for any experimental condition. Thus, fur-

ther investigation is clearly needed to clarify the validity of Eqgs. (7.2)-(7.9).
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7.2 Mechanism of relaxation oscillation

I have found that the flow-reversal process in a density oscillator is well described by
a model in which three forces F;, F5 and F3 are considered. These three forces are
regarded as ‘inhibiting factor’, ‘promoting factor’, and ‘triggering factor’ to characterize
the growth of intrusion, respectively, because F3 initiates the flow-reversal process and
Fy actually causes the flow reversal when it overwhelms F} that hinders the intrusion
from growing.

The three factors are thought to be essential not only for the flow reversal in a density
oscillator but also for any jumping process in relaxation oscillators generally found in
nature. Namely, it is considered that the jumping process in a relaxation oscillator does
not occur abruptly but a trigger of the jumping can be found before it occurs. A typical
example is found in respiratory rhythms in mammals [14,61]. The respiratory rhythm is
known as a typical relaxation oscillation, and it has been long argued how the switching
between the inspiration and expiration occurs. Although its mechanism has not been
fully understood yet, it is known that lung inflation activates pulmonary stretch receptors
(PSRs), and the afferent activity from the PSRs is carried to the brainstem by the vagus
nerves, which ‘triggers’ the switching from inspiration to expiration [14,61].

Thus, it is considered that the jumping process in relaxation oscillators occurs essen-
tially in the same mechanism as the flow reversal in a density oscillator. Hence, the model
of the density oscillator Eqgs. (5.46)-(5.49) can be generalized so that various systems ex-
hibiting relaxation oscillations will be universally described. The generalized equations

are written using two variables X and Y as follows:

: X
v - 2 7.10
| - (7.10)
Y = —Kin(YV;X) 4 Kpro(Y; X) + Kiig(YV; X) (7.11)
for X < 0 and
: 1-X
X = — (7.12)
&Y = K, (Vin—Y:1-X)— KoY — Y51 = X) — Kl (Vi — V31 — X)(7.13)

for X > 0, where X takes a value between 0 and 1, and the sign of X changes when
Y becomes 0 or Yy,. Exceptionally, Y remains 0 when the right hand side of Eq. (7.11)
is negative, while Y remains Yy, when the right hand side of Eq. (7.13) is positive. 7
and 7’ denote the time constants in the relaxation processes, and € is a parameter which
satisfies € < 1. The functions Kinn(Y;X), Kpo(Y; X), Kiig(Y;X), and their primes
are the functions of Y, and takes positive values for 0 <Y < Y,. Here, X is regarded

as a parameter characterizing the functional form of these functions, because X is a
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slowly varying variable compared with Y with respect to time. The functional form of
Kin(Y; X), Kpro(Y; X), Kuig(Y; X) have the following characteristics (see Fig. 7.1)!:

1. —Kinn(Y; X) 4+ Kpo(Y; X) is a increasing function of Y.
2. Kinn(Y; X) decreases while K, (Y; X) increases as X is decreased.
3. Kuig(Y; X) is a decreasing function of Y.

4. Ky, (Y5 X)), K[ (Y5 X)), and K, (Y5 X) have the same characteristics as Kin, (Y5 X),

KoY X), and Ky, (Y5 X), respectively.

ri(
g

The dynamics of a system described by Eqs. (7.10)-(7.13) are explained in the following
way. Now consider the case of X < 0. When the value of X is large, Y remains zero be-
cause contribution of K, (Y; X) is larger than those of K0(Y; X) and Ky, (Y; X) (see
Fig. 7.1(a)). As X is decreased, Eq. (7.11) comes to have a positive stable solution owing
to the contribution of Ky, (Y;X) (Fig. 7.1(b)), and the solution increases gradually as
X is decreased (Fig. 7.1(c)). With further decrease of X, the solution vanishes, and as
a consequence Y increases rapidly (Fig. 7.1(d)). The case of X > 0 can be considered in
the similar way. In this way, the whole oscillatory behaviors of relaxation oscillators can
be well described by using Eqs. (7.10)-(7.13).

Historically, many models of relaxation oscillators have been proposed [1,8, 11, 15,
16,22, 62]. However, some models lacked their essential mechanisms, although they
roughly captured the oscillatory characteristics of relaxation oscillators. For instance,
although the van der Pol equation is widely used for describing behaviors of relaxation
oscillators [22], it did not give us an answer to the fundamental question of “How does the
jumping process initiate?”. Meanwhile, the other models lacked universality although
they describe the detailed mechanisms of specific systems quite well. A typical example is
Hodgkin-Huxley equation, which is a model of neural spiking [62]. Although it contained

the detailed mechanisms of neural activities, it was quite complicated and cannot describe

1In the case of density oscillator, these functions are given by replacing # and £ in Egs. (5.46)-(5.49) with X and Y,
respectively, as follows:

C1 X

Kinn(Y;X) = (= F),
HH
Kprom(Y; X) = Co(1—X)(1—e™Y/)(= Fp),
Cspupme= Y/
Kuig(YV;X) = T(: F3),
C1 X
Ki/nh(Y;X) = s
HL
’
K{)rom(y;x) = 02(1 - X)(l - e_Y/& )9
Csure™ Y/
K YV;X) = —Qx
B

Here, ¢ = 1) = 1 has been assumed, for simplicity. Note that 7 and 7’ are given as 7 = uy and 7’ = ur,, respectively.
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& Kprom *

Figure 7.1: Scheme of the functional forms of —Kj,n(Y;X) (solid line), Kpo(Y;X) (dashed line),
Kiig(Y; X) (dotted line), and —Kinn (Y;X) 4+ Koo (Y X)K + Kirig(Y; X) (bold line). The value of
X is decreased as (a)—(b)—(c)—(d). Empty circles found in (b) and (c) are the stable solutions of
Eq. (7.11).
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the behaviors of relaxation oscillators other than those of neuronal systems. Therefore,
a model of relaxation oscillators which describe their essential mechanisms universally
has not been proposed up to now.

On the contrary, the present model (Egs. (7.10)-(7.13)) not only contains the essen-
tial mechanism of oscillation but also describes the behaviors of relaxation oscillators
universally. Hence, it is expected that the present model is applied to any system that
exhibits relaxation oscillation, and makes it possible to understand its dynamics based

on its essential mechanism.

7.3 Future prospect

In the present thesis, I have clarified the essence of relaxation oscillation by investi-
gating the mechanism of density oscillation. Although systems exhibiting relaxation
oscillations are diverse in nature and their detailed mechanisms are mostly compli-
cated [1-6,9,11-14], their dynamics are thought to be simplified into a model described
in Egs. (7.10)-(7.13). This finding is extremely important, because we can understand
macroscopic behaviors of relaxation oscillators from microscopic viewpoints. Indeed, the
present study is expected to be developed further as follows.

One of the direction for the future study is its application to coupled oscillator systems.
Although the generalized equations Egs. (7.10)-(7.13) describe the behavior of a single
relaxation oscillator, they can be extended to describe behaviors of coupled relaxation
oscillators by adding coupling terms to them. Importantly, by using this model, we can
understand how the essential mechanism of each oscillator relates to overall dynamics of
coupled oscillators, whereas the detailed mechanism of each oscillator has been ignored for
the description of coupled oscillators in the studies previously reported [2,22,25]. Thus,
Egs. (7.10)-(7.13) are expected to become the basis for the future theoretical studies of
coupled relaxation oscillators. Indeed, using this model, the dynamics of various types of
coupled oscillators such as the cases where time-delay exists at the coupling, where the
coupling strength between oscillators depend on their spatial distributions, and where
the properties of oscillators differ from each other, will be investigated.

Another possibility for the future application is the control of relaxation oscillation.
Recently, controlling the dynamics of relaxation oscillation has attracted particular at-
tention. A typical example is the bright light therapy to the patients with sleep dis-
orders. It is well known that the sleep-wake cycles exhibit relaxation oscillations [63].
The sleep-wake rhythm can be modulated by light, and thus it usually synchronizes with
the periodic day and night cycles. However, in the patients with sleep disorders, the

synchronization does not occur or their phases are shifted for some reason. Hence, as the
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Figure 7.2: Schematic image of “attractor crowding”. The basin of attraction becomes crowded in the
phase space and hence even small noise causes the system to hop freely among many coexisting stable

attractors.

treatment of the sleep disorders, scheduled exposure to bright light has been often used
to control the sleep-wake rhythms [64]. For the development of such control techniques,
Egs. (7.10)-(7.13) are considered to become a useful model, because both the essential
cause of the disorder and the effect of the bright light can be taken into it, which will
lead us to predict the dynamics under the control by a simulation.

In this way, Eqs. (7.10)-(7.13) are expected to be used as an excellent model describing
the dynamics of relaxation oscillation. While the theoretical studies based on Eqs. (7.10)-
(7.13) are thought to be important, it is also important to verify the validity of the
theoretical expectation experimentally. For this purpose, density oscillator is thought to
be an excellent experimental system. In the following, I will show some examples of the
possible usage of the density oscillators for the studies on the coupled oscillators and the
control techniques.

Firstly, coupled density oscillators will be used for the investigation of the robustness of
splay state [56,57,65,66]. The splay state is a state where the phases of oscillators differ
from each other equidistantly, and hence the existence of a single splay state necessarily
implies the coexistence of (N —1)! symmetry-related states. The multiplicity of the splay
states has raised the possibility that they can be used as storage elements in a dynamic,
rewritable memory [57,66]. However, it has not been actually realized, because with
increasing /N the basin of attraction becomes crowded in the phase space and hence even

small noise causes the system to hop freely among many coexisting stable attractors
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Figure 7.3: Scheme of density oscillators coupled to each other by tubes. The height of the heavy

fluid surface is measured by a laser displacement meter, and recorded by a digital multimeter for each
oscillator. The data obtained from oscillators are analyzed by a computer, which regulates stepping
motors based on a finite algorithm. A syringe pump located at each oscillator is driven by the stepping
motor, and then the light fluid in the outer container is added or reduced. Although the present figure
shows the case where the number of oscillators is two, more than two oscillators can be coupled in the

same way.

(Fig. 7.2) [65]. This phenomenon is called ‘attractor crowding’. Hence, we need to
investigate how we can achieve a stable splay state robust to noise. For this purpose,
density oscillators are thought to be a useful experimental system because they are known
to exhibit the splay state when several oscillators are coupled to each other [33,36-39,45].

Secondly, coupled density oscillators will be used for the investigation of time-delayed
feedback. Time-delayed feedback is a method that some proportion of the output signal
of a system is fed back to the input with time-delay [28,67,68]. This method has
been studied as an excellent scheme for the control of systems, and is known to be also
applied to coupled relaxation oscillators. In fact, interaction between oscillators can be
regulated arbitrarily using this method [28], and it is suggested that the method may be
applied to the desynchronization of synchronized neurons which cause tremors in patients
suffering from Parkinson’s disease or essential tremor [29]. For further development of
the time-delayed feedback scheme, the density oscillators will be used as an excellent
experimental system. Although the time-delayed coupling cannot be introduced if several
inner containers are held within one outer container (Fig. 1.7), it will be possible if the
oscillators are coupled to each other by tubes through which the light fluid is added or
reduced, whose amount is determined by the height of the heavy fluid surface of the
other inner containers (Fig. 7.3).

In this way, the dynamics of relaxation oscillators are expected to be clarified in the fu-

99



ture not only theoretically by the model based on their essential mechanisms (Eqs. (7.10)-
(7.13)), but also experimentally by using density oscillators. Hence, further theoretical

and experimental studies on the relaxation oscillation are clearly needed.
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Appendix A

Hagen-Poiseuille flow

Hagen-Poiseuille flow is the steady flow of a incompressible fluid through a straight
pipe of circular cross section with rotational symmetry [55]. Now consider a long pipe
whose radius is a. Let z axis be selected along the axis of the pipe, and r denote the
radial coordinate measured from the axis outwards. The flow is assumed to be parallel
along the pipe, and thus the velocity components in the tangential and radial directions
are assumed to be zero. The z component of the velocity is denoted by w.

Then, from the condition of continuity, we can easily obtain du/dz = 0. Thus, u does
not depend on z and is described as u = wu(r). On the other hand, we find that the
hydrostatic pressure P does not depend on r and is described as P = P(z), which is ob-
tained from the radial and tangential components of the Navier-Stokes equation. Hence,
the z component of the Navier-Stokes equations in cylindrical coordinates becomes

Pu 10u oP
(G is) =5 A
where 1 is the viscosity of the fluid. The boundary condition is given as u = 0 for r = a
(no-slip condition). By solving Eq. (A.1) with this boundary condition, it is found that
1 dP(z)

L (a® —1?), (A.2)

u(r) =

where dP(z)/dz should be a constant, because u(r) does not depend on z. The mean

velocity @ is given as

2 o a* dP(z)

u= 2 u(r)rdr = T8 (A.3)
From Egs. (A.2) and (A.3), the following relation is obtained
ou 4u
- —— A4
or|._, a (A.4)
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Two-dimensional Poiseuille flow

The steady flow between two parallel flat walls, which is known as two-dimensional
Poiseuille flow, is considered in the same way. Now let y and z axis be selected vertical
and parallel to the flat walls, respectively. The flat walls are assumed to be located at
y = 0, 2a. When we assume that the flow is parallel to the flat walls, y component of
the velocity becomes zero. Here let w be defined as the z component of the velocity.

From the condition of continuity, we obtain dw/0dz = 0. Thus w is described as
w = w(y). From the z component of the Navier-Stokes equations, it is found that the
hydrostatic pressure gradient P does not depend on y, and thus P is written as P = P(z).

Hence, z component of the Navier-Stokes equations becomes

0*w  dP(z)

The boundary condition is given as w = 0 for y = 0, 2a (no-slip condition). By solving

Eq. (A.5) with this boundary condition, w(y) is obtained as

1 dP(z), , 2
_ﬂ P [a® — (y —a)7], (A.6)

w(y) =

where dP(z)/dz should be a constant, because w(y) does not depend on z. Thus, the

flow rate () is derived as

2t
3u dz

Q= [ dyuly) = (A7)
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Appendix B

Complementary explanation for

phenomenological model

Although an oscillatory behavior cannot be introduced by Eq. (2.28), Eq. (2.29) re-
produces the behavior of relaxation oscillation phenomenologicaly. This fact can be
understood in the following way [15]. Let Eqgs. (2.28) and (2.29) be rewritten as

i (1)
‘zyt A - Aey - A1+ R+ () (B.2)
and
it — (B.3)
ig = By — By’ — Ao, (B.4)

Here, notice that y' is generally a fast variable compared with 2/ because A;, A,, and
Ay are usually much larger than unity. Then, vector fields can be drawn in ¢ — z/
plane. Figure B.1 shows the examples. In the case of Egs. (B.1) and (B.2), the system
approaches to the equilibrium points (i, z') = (0, +1/[2(1 + R)]) in the phase plane and
thus oscillatory behavior is not described. On the other hand, in the system described
by Egs. (B.3) and (B.4), limit-cycle oscillation occurs in the following way: 2’ increases
slowly along the curve of the steady solution of Eq. (B.4), Ang’ = By — Bgyj’g. At a
threshold, the value of ?j’ jumps to the lower value, and 2/ decrease slowly along the
curve of Ang’ = By — B, gj’g. Then, at the other threshold, the value of 3 jumps to the
higher value, and 2’ increases slowly along the curve again. In this way, the reason that

Eq. (2.29) exhibits relaxation oscillation can be well understood.
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Figure B.1: Vector fields described by (a) Egs. (B.1) and (B.2), and (b) Egs. (B.3) and (B.4). The
trajectories with the initial condition of 3’ = 0.1 and 2’ = —0.1 are also shown (red lines). Dotted lines
denote the steady solutions of (a) Egs. (B.1) and (B.2), and (b) Egs. (B.3) and (B.4). While any initial
condition is attracted to (y/,z') = (0,%+1/[2(1 + R)]) (black circles) in the case of (a), the trajectory
draws a limit cycle in the case of (b). The values of the parameters are as follows: A; = 10, As = 100,
Az =100, B; = 140, By = 600, R = 0.
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Appendix C

Model of coupled density oscillators

A model describing coupled oscillators is derived by modifying Eq. (2.29). Although the
formulations of the model slightly differed depending on the studies and their derivations
were not described in detail [32-34], here the representative one with its derivation is
shown.

Now consider the case of N coupled oscillators, and each oscillator is assumed to be
nearly identical. Then, because the height of the light fluid surface h is determined by
those of the heavy fluid surfaces in the inner containers, Eq. (2.6) is rewritten in the

following way:

, N
h—hge): Z ~Z—Ide 17=12 ... N. (C.1)

By using Eq. (C.1) instead of Eq. ( .6), Egs. (2.8) and Egs. (2.9) should be changed to

S ., 38 5 8uS  gpu pu(t) — pu
Ly v o e we L o 2 RZ Tj= ( de + RNz de) TQ,
(C.2)
S 35 ., 8wm(t)S . g g, PL 9 (1) (i)
- 9 IRS u; = P2 I (30 L RN
2r 't 4dain * e i a" * pu(t) d jz:;% pu(t) d ( de xde)’
(C.3)

where £ is an oscillator number. In the non-dimensionalized forms, the following equa-
tions instead of Egs. (2.15) and Egs. (2.16) are obtained:

250 2002 [d @ Bo'? (da O\
~ + dtf\ + A

N
+o(@—1)+0oR> 2; =0, (C.4)

j=1

d¢? 3 4 dt

for up-flow and

2@ 9512 [0 q50) /2 ( qg @ 2 N
Tk o vy ATy . 50 Xk 4 szk +0DRZij _ 0, (0‘5)

=1

1, th 4

A

+
di? B

A

dit

for down-flow.

105



Hence, by assuming that D ~ 1 and vy = 7, = », and that pg) and 2 do not
depend on the number of cycles 7, the following equation is obtained in the same way as

Eq. (2.29):

4277, A", Az . N
S8E B (SR By (SEE) — Agrty — ARS 4. C.6
df2 1<dt> 2<dt SR A jz_:lzj (C.6)

Here, 2/), is defined as #/), = @, — 1/2. The last term in the right hand of Eq. (C.6) is
originated from the change of the light fluid surface, through which the oscillators are

coupled to each other.
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